diff options
Diffstat (limited to 'src/share/algebra')
-rw-r--r-- | src/share/algebra/browse.daase | 1560 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 2306 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1336 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 9507 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 32455 |
5 files changed, 23580 insertions, 23584 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index d5474542..a3869037 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2280030 . 3486501423) +(2279924 . 3486517510) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4459 . T) (-4457 . T) (-4456 . T) ((-4464 "*") . T) (-4455 . T) (-4460 . T) (-4454 . T)) +((-4458 . T) (-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4454 . T) (-4459 . T) (-4453 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -2221) +(-32 R -2060) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4462))) +((|HasAttribute| |#1| (QUOTE -4461))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4462 . T) (-4463 . T)) +((-4461 . T) (-4462 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,17 +82,17 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2221 UP UPUP -1567) +(-40 -2060 UP UPUP -3325) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4455 |has| (-419 |#2|) (-374)) (-4460 |has| (-419 |#2|) (-374)) (-4454 |has| (-419 |#2|) (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3765 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3765 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3765 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3765 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3765 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3765 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) -(-41 R -2221) +((-4454 |has| (-419 |#2|) (-374)) (-4459 |has| (-419 |#2|) (-374)) (-4453 |has| (-419 |#2|) (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2835 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2835 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2835 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2835 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2835 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2835 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +(-41 R -2060) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -442) (|devaluate| |#1|))))) @@ -106,23 +106,23 @@ NIL ((|HasCategory| |#1| (QUOTE (-317)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4459 |has| |#1| (-568)) (-4457 . T) (-4456 . T)) +((-4458 |has| |#1| (-568)) (-4456 . T) (-4455 . T)) ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4462 . T) (-4463 . T)) -((-3765 (-12 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#2|))))))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#2|))))))) +((-4461 . T) (-4462 . T)) +((-2835 (-12 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#2|))))))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (LIST (QUOTE -1057) (QUOTE (-576))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) @@ -130,7 +130,7 @@ NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4459 . T)) +((-4458 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -2221) +(-54 |Base| R -2060) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4462 . T) (-4463 . T)) +((-4461 . T) (-4462 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-61 -4124) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +(-61 -2706) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -4124) +(-62 -2706) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -4124) +(-63 -2706) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -4124) +(-64 -2706) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -4124) +(-65 -2706) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -4124) +(-66 -2706) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -4124) +(-67 -2706) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -4124) +(-68 -2706) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -4124) +(-69 -2706) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -4124) +(-70 -2706) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -4124) +(-71 -2706) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -4124) +(-72 -2706) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -4124) +(-73 -2706) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -4124) +(-74 -2706) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -4124) +(-77 -2706) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -4124) +(-78 -2706) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -4124) +(-79 -2706) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -4124) +(-80 -2706) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -4124) +(-81 -2706) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -4124) +(-82 -2706) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -4124) +(-83 -2706) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -4124) +(-84 -2706) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -4124) +(-85 -2706) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -4124) +(-86 -2706) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -4124) +(-87 -2706) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -4124) +(-88 -2706) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -4124) +(-89 -2706) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-374)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4462 . T)) +((-4461 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4462 . T) ((-4464 "*") . T) (-4463 . T) (-4459 . T) (-4457 . T) (-4456 . T) (-4455 . T) (-4460 . T) (-4454 . T) (-4453 . T) (-4452 . T) (-4451 . T) (-4450 . T) (-4458 . T) (-4461 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4449 . T)) +((-4461 . T) ((-4463 "*") . T) (-4462 . T) (-4458 . T) (-4456 . T) (-4455 . T) (-4454 . T) (-4459 . T) (-4453 . T) (-4452 . T) (-4451 . T) (-4450 . T) (-4449 . T) (-4457 . T) (-4460 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4448 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4459 . T)) +((-4458 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4464 "*")))) +((|HasAttribute| |#1| (QUOTE (-4463 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4462 . T)) +((-4461 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4463 . T)) +((-4462 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-3765 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-2835 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) ((-12 (|HasCategory| (-112) (QUOTE (-1119))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1119))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-874))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}."))) @@ -392,22 +392,22 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -2221 UP) +(-116 -2060 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-926))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1041))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (-3765 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-862)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1171))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (|HasCategory| (-117 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-926)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-117 |#1|) (QUOTE (-926))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-117 |#1|) (QUOTE (-1041))) (|HasCategory| (-117 |#1|) (QUOTE (-832))) (-2835 (|HasCategory| (-117 |#1|) (QUOTE (-832))) (|HasCategory| (-117 |#1|) (QUOTE (-862)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-1171))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-117 |#1|) (QUOTE (-237))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-317))) (|HasCategory| (-117 |#1|) (QUOTE (-557))) (|HasCategory| (-117 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-926)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4463))) +((|HasAttribute| |#1| (QUOTE -4462))) (-120 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -418,15 +418,15 @@ NIL NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-124) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL (-125 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -434,20 +434,20 @@ NIL NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4462 . T) (-4463 . T)) +((-4461 . T) (-4462 . T)) NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-3765 (-12 (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1119)))) (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-2835 (-12 (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-130) (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1119)))) (|HasCategory| (-130) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-130) (QUOTE (-1119))) (|HasCategory| (-130) (LIST (QUOTE -319) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -470,13 +470,13 @@ NIL NIL (-135) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4464 "*") . T)) +(((-4463 "*") . T)) NIL -(-136 |minix| -1937 S T$) +(-136 |minix| -2722 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -1937 R) +(-137 |minix| -2722 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -498,8 +498,8 @@ NIL NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4462 . T) (-4452 . T) (-4463 . T)) -((-3765 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4461 . T) (-4451 . T) (-4462 . T)) +((-2835 (-12 (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-145) (QUOTE (-379))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -514,7 +514,7 @@ NIL NIL (-146) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4459 . T)) +((-4458 . T)) NIL (-147 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -522,9 +522,9 @@ NIL NIL (-148) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4459 . T)) +((-4458 . T)) NIL -(-149 -2221 UP UPUP) +(-149 -2060 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -535,14 +535,14 @@ NIL (-151 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasAttribute| |#1| (QUOTE -4462))) +((|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasAttribute| |#1| (QUOTE -4461))) (-152 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-153 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4457 . T) (-4456 . T) (-4459 . T)) +((-4456 . T) (-4455 . T) (-4458 . T)) NIL (-154) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -2221) +(-159 R -2060) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -595,10 +595,10 @@ NIL (-166 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1222))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4458)) (|HasAttribute| |#2| (QUOTE -4461)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568)))) +((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1221))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4457)) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4455 -3765 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4458 |has| |#1| (-6 -4458)) (-4461 |has| |#1| (-6 -4461)) (-2738 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 -2835 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4457 |has| |#1| (-6 -4457)) (-4460 |has| |#1| (-6 -4460)) (-4136 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4455 -3765 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4458 |has| |#1| (-6 -4458)) (-4461 |has| |#1| (-6 -4461)) (-2738 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3765 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-926))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-926))))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1222)))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1222)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4461)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196))))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-360))))) +((-4454 -2835 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4457 |has| |#1| (-6 -4457)) (-4460 |has| |#1| (-6 -4460)) (-4136 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2835 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-360)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-926))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-926))))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1221)))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1221)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-237)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-238))) (-12 (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasAttribute| |#1| (QUOTE -4457)) (|HasAttribute| |#1| (QUOTE -4460)) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195))))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-360))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -626,7 +626,7 @@ NIL NIL (-174) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-175) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -634,7 +634,7 @@ NIL NIL (-176 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4464 "*") . T) (-4455 . T) (-4460 . T) (-4454 . T) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") . T) (-4454 . T) (-4459 . T) (-4453 . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-177) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -2221) +(-190 R -2060) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -796,23 +796,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-217 -2221 UP UPUP R) +(-217 -2060 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-218 -2221 FP) +(-218 -2060 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-219) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-3765 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-2835 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146))))) (-220) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-221 R -2221) +(-221 R -2060) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -826,19 +826,19 @@ NIL NIL (-224 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-225 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4459 . T)) +((-4458 . T)) NIL -(-226 R -2221) +(-226 R -2060) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-227) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2728 . T) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4125 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-228) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -846,19 +846,19 @@ NIL NIL (-229 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4464 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4463 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-230 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-231 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4463 . T)) +((-4462 . T)) NIL (-232 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4459 . T)) +((-4458 . T)) NIL (-233 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -870,7 +870,7 @@ NIL NIL (-235 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-236 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -882,36 +882,36 @@ NIL NIL (-238) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4459 . T)) +((-4458 . T)) NIL (-239 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4462))) +((|HasAttribute| |#1| (QUOTE -4461))) (-240 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4463 . T)) +((-4462 . T)) NIL (-241) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-242 S -1937 R) +(-242 S -2722 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasAttribute| |#3| (QUOTE -4459)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1119)))) -(-243 -1937 R) +((|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasAttribute| |#3| (QUOTE -4458)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1119)))) +(-243 -2722 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T)) +((-4455 |has| |#2| (-1068)) (-4456 |has| |#2| (-1068)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T)) NIL -(-244 -1937 A B) +(-244 -2722 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-245 -1937 R) +(-245 -2722 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3765 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-3765 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-3765 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4459)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4455 |has| |#2| (-1068)) (-4456 |has| |#2| (-1068)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2835 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-2835 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195))))) (-2835 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4458)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-246) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -922,7 +922,7 @@ NIL NIL (-248) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4455 . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-249 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -930,20 +930,20 @@ NIL NIL (-250 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-251 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-252 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-253 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#2| (QUOTE (-926))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-926))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) (-254) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -958,23 +958,23 @@ NIL NIL (-257 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4459 -3765 (-2445 (|has| |#4| (-1068)) (|has| |#4| (-238))) (|has| |#4| (-6 -4459)) (-2445 (|has| |#4| (-1068)) (|has| |#4| (-915 (-1196))))) (-4456 |has| |#4| (-1068)) (-4457 |has| |#4| (-1068)) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#4| (QUOTE (-374))) (-3765 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1068)))) (-3765 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-3765 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-862)))) (|HasCategory| |#4| (QUOTE (-379))) (-3765 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3765 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1068)))) (|HasCategory| |#4| (QUOTE (-238))) (-3765 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1068))))) (-3765 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#4| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-862)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1119))))) (-3765 (-12 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1068))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-3765 (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1068))))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-3765 (|HasCategory| |#4| (QUOTE (-1068))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1119)))) (-3765 (|HasAttribute| |#4| (QUOTE -4459)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) +((-4458 -2835 (-2758 (|has| |#4| (-1068)) (|has| |#4| (-238))) (|has| |#4| (-6 -4458)) (-2758 (|has| |#4| (-1068)) (|has| |#4| (-915 (-1195))))) (-4455 |has| |#4| (-1068)) (-4456 |has| |#4| (-1068)) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195)))))) (|HasCategory| |#4| (QUOTE (-374))) (-2835 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-1068)))) (-2835 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-374)))) (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (QUOTE (-805))) (-2835 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (QUOTE (-862)))) (|HasCategory| |#4| (QUOTE (-379))) (-2835 (-12 (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195)))) (-2835 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1068)))) (|HasCategory| |#4| (QUOTE (-238))) (-2835 (|HasCategory| |#4| (QUOTE (-238))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1068))))) (-2835 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1195)))))) (|HasCategory| |#4| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-238)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-374)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-379)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-738)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-805)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-862)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1119))))) (-2835 (-12 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1068))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-738))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-805))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -651) (QUOTE (-576))))) (-2835 (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1068))))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576))))) (-2835 (|HasCategory| |#4| (QUOTE (-1068))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (QUOTE (-1119)))) (-2835 (|HasAttribute| |#4| (QUOTE -4458)) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -915) (QUOTE (-1195)))))) (-12 (|HasCategory| |#4| (QUOTE (-237))) (|HasCategory| |#4| (QUOTE (-1068)))) (-12 (|HasCategory| |#4| (QUOTE (-1068))) (|HasCategory| |#4| (LIST (QUOTE -917) (QUOTE (-1195))))) (|HasCategory| |#4| (QUOTE (-862))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|))))) (-258 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4459 -3765 (-2445 (|has| |#3| (-1068)) (|has| |#3| (-238))) (|has| |#3| (-6 -4459)) (-2445 (|has| |#3| (-1068)) (|has| |#3| (-915 (-1196))))) (-4456 |has| |#3| (-1068)) (-4457 |has| |#3| (-1068)) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#3| (QUOTE (-374))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3765 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (|HasCategory| |#3| (QUOTE (-238))) (-3765 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068))))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#3| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-3765 (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-3765 (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119)))) (-3765 (|HasAttribute| |#3| (QUOTE -4459)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) +((-4458 -2835 (-2758 (|has| |#3| (-1068)) (|has| |#3| (-238))) (|has| |#3| (-6 -4458)) (-2758 (|has| |#3| (-1068)) (|has| |#3| (-915 (-1195))))) (-4455 |has| |#3| (-1068)) (-4456 |has| |#3| (-1068)) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))))) (|HasCategory| |#3| (QUOTE (-374))) (-2835 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-2835 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2835 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-2835 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (-2835 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (|HasCategory| |#3| (QUOTE (-238))) (-2835 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068))))) (-2835 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1195)))))) (|HasCategory| |#3| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119))))) (-2835 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-2835 (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-2835 (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119)))) (-2835 (|HasAttribute| |#3| (QUOTE -4458)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1195))))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (-259 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-238)))) (-260 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) NIL (-261 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4462 . T) (-4463 . T)) +((-4461 . T) (-4462 . T)) NIL (-262) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -1015,15 +1015,15 @@ NIL (-271 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-237)))) +((|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-237)))) (-272 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-273 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) (-274 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1068,11 +1068,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-285 R -2221) +(-285 R -2060) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-286 R -2221) +(-286 R -2060) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1098,7 +1098,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119)))) (-292 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4463 . T)) +((-4462 . T)) NIL (-293 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1119,18 +1119,18 @@ NIL (-297 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4463))) +((|HasAttribute| |#1| (QUOTE -4462))) (-298 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-299 S R |Mod| -1597 -3257 |exactQuo|) +(-299 S R |Mod| -2314 -1854 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-300) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4455 . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-301) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1146,21 +1146,21 @@ NIL NIL (-304 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4459 -3765 (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4456 |has| |#1| (-1068)) (-4457 |has| |#1| (-1068))) -((|HasCategory| |#1| (QUOTE (-374))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3765 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1119)))) (-3765 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-3765 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-738)))) +((-4458 -2835 (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4455 |has| |#1| (-1068)) (-4456 |has| |#1| (-1068))) +((|HasCategory| |#1| (QUOTE (-374))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1068)))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-1068)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1068)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1068)))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1068)))) (-2835 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738)))) (|HasCategory| |#1| (QUOTE (-485))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-1119)))) (-2835 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-312))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-485)))) (-2835 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738)))) (-2835 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-738)))) (-305 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#2|)))))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) (-306) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-307 -2221 S) +(-307 -2060 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-308 E -2221) +(-308 E -2060) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1198,7 +1198,7 @@ NIL NIL (-317) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-318 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1208,7 +1208,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-320 -2221) +(-320 -2060) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1222,8 +1222,8 @@ NIL NIL (-323 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-1041))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (-3765 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-862)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-1171))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1273) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| $ (QUOTE (-146)))) (-3765 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1273 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| $ (QUOTE (-146)))))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-1041))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (-2835 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-832))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-862)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-1171))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-237))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -319) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (LIST (QUOTE -296) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1272) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-317))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-862))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| $ (QUOTE (-146)))) (-2835 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1272 |#1| |#2| |#3| |#4|) (QUOTE (-926))) (|HasCategory| $ (QUOTE (-146)))))) (-324 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1234,9 +1234,9 @@ NIL NIL (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4459 -3765 (-12 (|has| |#1| (-568)) (-3765 (|has| |#1| (-1068)) (|has| |#1| (-485)))) (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) ((-4464 "*") |has| |#1| (-568)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-568)) (-4454 |has| |#1| (-568))) -((-3765 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-3765 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-21))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-1068))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3765 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3765 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1131)))) (-3765 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-3765 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1068)))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (LIST (QUOTE -1057) (QUOTE (-576))))) -(-327 R -2221) +((-4458 -2835 (-12 (|has| |#1| (-568)) (-2835 (|has| |#1| (-1068)) (|has| |#1| (-485)))) (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) ((-4463 "*") |has| |#1| (-568)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4453 |has| |#1| (-568))) +((-2835 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (-2835 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-21))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (QUOTE (-1068))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2835 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (-2835 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-2835 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-2835 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-1068)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (-2835 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2835 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1131)))) (-2835 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))))) (-2835 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1068)))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1131))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (LIST (QUOTE -1057) (QUOTE (-576))))) +(-327 R -2060) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1246,8 +1246,8 @@ NIL NIL (-329 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) (-330 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1258,7 +1258,7 @@ NIL NIL (-332 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) ((|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-804)))) (-333 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) @@ -1274,19 +1274,19 @@ NIL ((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) (-336 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-337 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-338 S -2221) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-338 S -2060) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-379)))) -(-339 -2221) +(-339 -2060) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-340) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1308,54 +1308,54 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-345 S -2221 UP UPUP R) +(-345 S -2060 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-346 -2221 UP UPUP R) +(-346 -2060 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -2221 UP UPUP R) +(-347 -2060 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-348 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-349 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-350 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-390)))) (|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (LIST (QUOTE -1057) (QUOTE (-576))))) (-351 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-352 S -2221 UP UPUP) +(-352 S -2060 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-374)))) -(-353 -2221 UP UPUP) +(-353 -2060 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4455 |has| (-419 |#2|) (-374)) (-4460 |has| (-419 |#2|) (-374)) (-4454 |has| (-419 |#2|) (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 |has| (-419 |#2|) (-374)) (-4459 |has| (-419 |#2|) (-374)) (-4453 |has| (-419 |#2|) (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-354 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| (-927 |#1|) (QUOTE (-146))) (|HasCategory| (-927 |#1|) (QUOTE (-379)))) (|HasCategory| (-927 |#1|) (QUOTE (-148))) (|HasCategory| (-927 |#1|) (QUOTE (-379))) (|HasCategory| (-927 |#1|) (QUOTE (-146)))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| (-927 |#1|) (QUOTE (-146))) (|HasCategory| (-927 |#1|) (QUOTE (-379)))) (|HasCategory| (-927 |#1|) (QUOTE (-148))) (|HasCategory| (-927 |#1|) (QUOTE (-379))) (|HasCategory| (-927 |#1|) (QUOTE (-146)))) (-355 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-356 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-357 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1370,33 +1370,33 @@ NIL NIL (-360) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-361 R UP -2221) +(-361 R UP -2060) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-362 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| (-927 |#1|) (QUOTE (-146))) (|HasCategory| (-927 |#1|) (QUOTE (-379)))) (|HasCategory| (-927 |#1|) (QUOTE (-148))) (|HasCategory| (-927 |#1|) (QUOTE (-379))) (|HasCategory| (-927 |#1|) (QUOTE (-146)))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| (-927 |#1|) (QUOTE (-146))) (|HasCategory| (-927 |#1|) (QUOTE (-379)))) (|HasCategory| (-927 |#1|) (QUOTE (-148))) (|HasCategory| (-927 |#1|) (QUOTE (-379))) (|HasCategory| (-927 |#1|) (QUOTE (-146)))) (-363 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-364 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-365 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| (-927 |#1|) (QUOTE (-146))) (|HasCategory| (-927 |#1|) (QUOTE (-379)))) (|HasCategory| (-927 |#1|) (QUOTE (-148))) (|HasCategory| (-927 |#1|) (QUOTE (-379))) (|HasCategory| (-927 |#1|) (QUOTE (-146)))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| (-927 |#1|) (QUOTE (-146))) (|HasCategory| (-927 |#1|) (QUOTE (-379)))) (|HasCategory| (-927 |#1|) (QUOTE (-148))) (|HasCategory| (-927 |#1|) (QUOTE (-379))) (|HasCategory| (-927 |#1|) (QUOTE (-146)))) (-366 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) -(-367 -2221 GF) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +(-367 -2060 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1404,21 +1404,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-369 -2221 FP FPP) +(-369 -2060 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-370 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-146)))) (-371 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-372 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4459 . T)) +((-4458 . T)) NIL (-373 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1426,7 +1426,7 @@ NIL NIL (-374) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-375 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1442,7 +1442,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-568)))) (-378 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4459 |has| |#1| (-568)) (-4457 . T) (-4456 . T)) +((-4458 |has| |#1| (-568)) (-4456 . T) (-4455 . T)) NIL (-379) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1454,7 +1454,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-374)))) (-381 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) NIL (-382 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1463,14 +1463,14 @@ NIL (-383 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119)))) +((|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119)))) (-384 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4462 . T)) +((-4461 . T)) NIL (-385 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4457 . T) (-4456 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4456 . T) (-4455 . T)) NIL (-386 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1490,7 +1490,7 @@ NIL NIL (-390) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4445 . T) (-4453 . T) (-2728 . T) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4444 . T) (-4452 . T) (-4125 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-391 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1498,11 +1498,11 @@ NIL NIL (-392 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-393 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-394) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1514,7 +1514,7 @@ NIL NIL (-396 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) ((|HasCategory| |#1| (QUOTE (-174)))) (-397 S) ((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) @@ -1526,7 +1526,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-862)))) (-399) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-400) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1538,13 +1538,13 @@ NIL NIL (-402 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-403) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-404 -2221 UP UPUP R) +(-404 -2060 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1568,11 +1568,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-410 -4124 |returnType| -3829 |symbols|) +(-410 -2706 |returnType| -1912 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-411 -2221 UP) +(-411 -2060 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1586,15 +1586,15 @@ NIL NIL (-414) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-415 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4445)) (|HasAttribute| |#1| (QUOTE -4453))) +((|HasAttribute| |#1| (QUOTE -4444)) (|HasAttribute| |#1| (QUOTE -4452))) (-416) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2728 . T) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4125 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-417 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1606,15 +1606,15 @@ NIL NIL (-419 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4449 -12 (|has| |#1| (-6 -4460)) (|has| |#1| (-464)) (|has| |#1| (-6 -4449))) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-832))) (-3765 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-862)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4449)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +((-4448 -12 (|has| |#1| (-6 -4459)) (|has| |#1| (-464)) (|has| |#1| (-6 -4448))) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-832))) (-2835 (|HasCategory| |#1| (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-862)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4448)) (|HasCategory| |#1| (QUOTE (-464)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) (-420 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-421 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) NIL (-422 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) @@ -1628,11 +1628,11 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-425 R -2221 UP A) +(-425 R -2060 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4459 . T)) +((-4458 . T)) NIL -(-426 R -2221 UP A |ibasis|) +(-426 R -2060 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -1057) (|devaluate| |#2|)))) @@ -1646,12 +1646,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-429 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4459 |has| |#1| (-568)) (-4457 . T) (-4456 . T)) +((-4458 |has| |#1| (-568)) (-4456 . T) (-4455 . T)) NIL (-430 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1241))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1241)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -319) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -296) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1240))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1240)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) (-431 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1678,17 +1678,17 @@ NIL ((|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379)))) (-437 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4462 . T) (-4452 . T) (-4463 . T)) +((-4461 . T) (-4451 . T) (-4462 . T)) NIL -(-438 R -2221) +(-438 R -2060) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-439 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4449 -12 (|has| |#1| (-6 -4449)) (|has| |#2| (-6 -4449))) (-4456 . T) (-4457 . T) (-4459 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4449)) (|HasAttribute| |#2| (QUOTE -4449)))) -(-440 R -2221) +((-4448 -12 (|has| |#1| (-6 -4448)) (|has| |#2| (-6 -4448))) (-4455 . T) (-4456 . T) (-4458 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4448)) (|HasAttribute| |#2| (QUOTE -4448)))) +(-440 R -2060) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL @@ -1698,17 +1698,17 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1131))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-442 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4459 -3765 (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) ((-4464 "*") |has| |#1| (-568)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-568)) (-4454 |has| |#1| (-568))) +((-4458 -2835 (|has| |#1| (-1068)) (|has| |#1| (-485))) (-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) ((-4463 "*") |has| |#1| (-568)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-568)) (-4453 |has| |#1| (-568))) NIL -(-443 R -2221) +(-443 R -2060) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-444 R -2221) +(-444 R -2060) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-445 R -2221) +(-445 R -2060) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1716,7 +1716,7 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-447 R -2221 UP) +(-447 R -2060 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-48))))) @@ -1748,7 +1748,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-455 R UP -2221) +(-455 R UP -2060) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1786,16 +1786,16 @@ NIL NIL (-464) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-465 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4459 |has| (-419 (-969 |#1|)) (-568)) (-4457 . T) (-4456 . T)) +((-4458 |has| (-419 (-969 |#1|)) (-568)) (-4456 . T) (-4455 . T)) ((|HasCategory| (-419 (-969 |#1|)) (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-419 (-969 |#1|)) (QUOTE (-568)))) (-466 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#2| (QUOTE (-926))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-926))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) (-467 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1822,7 +1822,7 @@ NIL NIL (-473 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-474 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1830,7 +1830,7 @@ NIL NIL (-475 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) (-476 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) @@ -1860,7 +1860,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 |lv| -2221 R) +(-483 |lv| -2060 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1870,23 +1870,23 @@ NIL NIL (-485) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4459 . T)) +((-4458 . T)) NIL (-486 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) (-487 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119)))) +((-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#2|)))))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119)))) (-488 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) (-489) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-490) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1894,29 +1894,29 @@ NIL NIL (-491 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#2|)))))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) (-492) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-493 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#2| (QUOTE (-926))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-494 -1937 S) +(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-926))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-494 -2722 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3765 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-3765 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-3765 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4459)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4455 |has| |#2| (-1068)) (-4456 |has| |#2| (-1068)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2835 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-2835 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195))))) (-2835 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4458)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-495) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-496 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-497 -2221 UP UPUP R) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +(-497 -2060 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1926,12 +1926,12 @@ NIL NIL (-499) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-3765 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-2835 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146))))) (-500 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4462)) (|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) +((|HasAttribute| |#1| (QUOTE -4461)) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (-501 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1952,33 +1952,33 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506 -2221 UP |AlExt| |AlPol|) +(-506 -2060 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-507) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| $ (QUOTE (-1068))) (|HasCategory| $ (LIST (QUOTE -1057) (QUOTE (-576))))) (-508 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-509 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-510 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-511 R UP -2221) +(-511 R UP -2060) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-512 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) ((-12 (|HasCategory| (-112) (QUOTE (-1119))) (|HasCategory| (-112) (LIST (QUOTE -319) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-112) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-112) (QUOTE (-1119))) (|HasCategory| (-112) (LIST (QUOTE -625) (QUOTE (-874))))) (-513 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) @@ -1992,10 +1992,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-516 -2221 |Expon| |VarSet| |DPoly|) +(-516 -2060 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1196))))) +((|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-1195))))) (-517 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -2042,36 +2042,36 @@ NIL ((|HasCategory| |#2| (QUOTE (-804)))) (-528 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-529) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-530 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| (-593 |#1|) (QUOTE (-146))) (|HasCategory| (-593 |#1|) (QUOTE (-379)))) (|HasCategory| (-593 |#1|) (QUOTE (-148))) (|HasCategory| (-593 |#1|) (QUOTE (-379))) (|HasCategory| (-593 |#1|) (QUOTE (-146)))) (-531 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-532 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-533 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4463))) +((|HasAttribute| |#3| (QUOTE -4462))) (-534 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4463))) +((|HasAttribute| |#7| (QUOTE -4462))) (-535 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4464 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4463 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-536) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2104,7 +2104,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-544 K -2221 |Par|) +(-544 K -2060 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2128,7 +2128,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-550 K -2221 |Par|) +(-550 K -2060 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2158,7 +2158,7 @@ NIL NIL (-557) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4460 . T) (-4461 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-558) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2178,13 +2178,13 @@ NIL NIL (-562 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-563 R -2221) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#2|)))))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) +(-563 R -2060) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-564 R0 -2221 UP UPUP R) +(-564 R0 -2060 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2194,7 +2194,7 @@ NIL NIL (-566 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2728 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4125 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-567 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2202,9 +2202,9 @@ NIL NIL (-568) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-569 R -2221) +(-569 R -2060) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2216,7 +2216,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-572 R -2221 L) +(-572 R -2060 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) @@ -2224,31 +2224,31 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-574 -2221 UP UPUP R) +(-574 -2060 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-575 -2221 UP) +(-575 -2060 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL (-576) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4444 . T) (-4450 . T) (-4454 . T) (-4449 . T) (-4460 . T) (-4461 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4443 . T) (-4449 . T) (-4453 . T) (-4448 . T) (-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-577) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-578 R -2221 L) +(-578 R -2060 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -668) (|devaluate| |#2|)))) -(-579 R -2221) +(-579 R -2060) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1158)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-641))))) -(-580 -2221 UP) +(-580 -2060 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2256,27 +2256,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-582 -2221) +(-582 -2060) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-583 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2728 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4125 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-584) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-585 R -2221) +(-585 R -2060) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) -(-586 -2221 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-294))) (|HasCategory| |#2| (QUOTE (-641))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-294)))) (|HasCategory| |#1| (QUOTE (-568)))) +(-586 -2060 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-587 R -2221) +(-587 R -2060) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2298,21 +2298,21 @@ NIL NIL (-592 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-593 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) (-594) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-595 R -2221) +(-595 R -2060) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-596 E -2221) +(-596 E -2060) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL @@ -2320,10 +2320,10 @@ NIL ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-598 -2221) +(-598 -2060) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4457 . T) (-4456 . T)) -((|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-1196))))) +((-4456 . T) (-4455 . T)) +((|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-1195))))) (-599 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL @@ -2350,19 +2350,19 @@ NIL NIL (-605 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3765 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2835 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-606 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL (-607 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))) (|HasCategory| (-576) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576)))))) (-608 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4464 "*") |has| |#1| (-568)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-568)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-568)))) (-609) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) @@ -2376,7 +2376,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-612 R -2221 FG) +(-612 R -2060 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2386,12 +2386,12 @@ NIL NIL (-614 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-615 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-862))) (|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#3| (QUOTE (-1119)))) +((|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-862))) (|HasAttribute| |#1| (QUOTE -4461)) (|HasCategory| |#3| (QUOTE (-1119)))) (-616 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2406,19 +2406,19 @@ NIL NIL (-619 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4459 -3765 (-2445 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4457 . T) (-4456 . T)) -((-3765 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4458 -2835 (-2758 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4456 . T) (-4455 . T)) +((-2835 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-620 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| (-1178) (QUOTE (-862))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| (-1177) (QUOTE (-862))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (LIST (QUOTE -625) (QUOTE (-874))))) (-621 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-622 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4463 . T)) +((-4462 . T)) NIL (-623 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2436,7 +2436,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-627 -2221 UP) +(-627 -2060 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2458,20 +2458,20 @@ NIL NIL (-632 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4459 . T)) +((-4458 . T)) NIL (-633 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-860)))) -(-634 R -2221) +(-634 R -2060) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL (-635 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4457 . T) (-4456 . T) ((-4464 "*") . T) (-4455 . T) (-4459 . T)) -((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) +((-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4454 . T) (-4458 . T)) +((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (-636 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL @@ -2486,7 +2486,7 @@ NIL NIL (-639 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4459 . T)) +((-4458 . T)) NIL (-640 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) @@ -2496,30 +2496,30 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-642 R -2221) +(-642 R -2060) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-643 |lv| -2221) +(-643 |lv| -2060) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-644) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -2900) (QUOTE (-52))))))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-52) (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1178) (QUOTE (-862))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (QUOTE (-1119)))) +((-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -4353) (QUOTE (-52))))))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-52) (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-1177) (QUOTE (-862))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (QUOTE (-1119)))) (-645 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-646 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4457 . T) (-4456 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4456 . T) (-4455 . T)) NIL (-647 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4459 -3765 (-2445 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4457 . T) (-4456 . T)) -((-3765 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) +((-4458 -2835 (-2758 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))) (-4456 . T) (-4455 . T)) +((-2835 (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -378) (|devaluate| |#1|)))) (-648 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL @@ -2531,7 +2531,7 @@ NIL (-650 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2433 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) +((-2746 (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-374)))) (-651 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.") (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{reducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL @@ -2554,8 +2554,8 @@ NIL NIL (-656 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-840))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-657 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2566,8 +2566,8 @@ NIL NIL (-659 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-660 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL @@ -2579,22 +2579,22 @@ NIL (-662 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4463))) +((|HasAttribute| |#1| (QUOTE -4462))) (-663 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-664 R -2221 L) +(-664 R -2060 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL (-665 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) (-666 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) (-667 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) @@ -2602,15 +2602,15 @@ NIL ((|HasCategory| |#2| (QUOTE (-374)))) (-668 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-669 -2221 UP) +(-669 -2060 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-670 A -4102) +(-670 A -1965) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) (-671 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) @@ -2626,7 +2626,7 @@ NIL NIL (-674 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) ((|HasCategory| |#1| (QUOTE (-803)))) (-675 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) @@ -2634,7 +2634,7 @@ NIL NIL (-676 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4457 . T) (-4456 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4456 . T) (-4455 . T)) ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-174)))) (-677 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) @@ -2642,13 +2642,13 @@ NIL NIL (-678 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL -(-679 -2221) +(-679 -2060) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-680 -2221 |Row| |Col| M) +(-680 -2060 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2658,8 +2658,8 @@ NIL NIL (-682 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4459 . T) (-4462 . T) (-4456 . T) (-4457 . T)) -((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-3765 (|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((-4458 . T) (-4461 . T) (-4455 . T) (-4456 . T)) +((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568))) (-2835 (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-683) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2679,7 +2679,7 @@ NIL (-687 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (QUOTE (-1068))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-688) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2723,10 +2723,10 @@ NIL (-698 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) +((|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-568)))) (-699 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4462 . T) (-4463 . T)) +((-4461 . T) (-4462 . T)) NIL (-700 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) @@ -2734,8 +2734,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568)))) (-701 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4462 . T) (-4463 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4464 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4461 . T) (-4462 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-568))) (|HasAttribute| |#1| (QUOTE (-4463 "*"))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-702 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2744,7 +2744,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-704 S -2221 FLAF FLAS) +(-704 S -2060 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2754,11 +2754,11 @@ NIL NIL (-706) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4455 . T) (-4460 |has| (-711) (-374)) (-4454 |has| (-711) (-374)) (-2738 . T) (-4461 |has| (-711) (-6 -4461)) (-4458 |has| (-711) (-6 -4458)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-3765 (|HasCategory| (-711) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-3765 (-12 (|HasCategory| (-711) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1196))))) (-3765 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-3765 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1041))) (|HasCategory| (-711) (QUOTE (-1222))) (-12 (|HasCategory| (-711) (QUOTE (-1021))) (|HasCategory| (-711) (QUOTE (-1222)))) (-3765 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-926))))) (-3765 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-926)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-926))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1079))) (|HasCategory| (-711) (QUOTE (-1222)))) (|HasCategory| (-711) (QUOTE (-1079))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926))) (-3765 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-374)))) (-3765 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-3765 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4461)) (|HasAttribute| (-711) (QUOTE -4458)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1196)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-146)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-360))))) +((-4454 . T) (-4459 |has| (-711) (-374)) (-4453 |has| (-711) (-374)) (-4136 . T) (-4460 |has| (-711) (-6 -4460)) (-4457 |has| (-711) (-6 -4457)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-711) (QUOTE (-148))) (|HasCategory| (-711) (QUOTE (-146))) (|HasCategory| (-711) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-379))) (|HasCategory| (-711) (QUOTE (-374))) (-2835 (|HasCategory| (-711) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-237))) (-2835 (-12 (|HasCategory| (-711) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1195))))) (-2835 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (LIST (QUOTE -296) (QUOTE (-711)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -319) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-711)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-711) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-711) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (-2835 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-360)))) (|HasCategory| (-711) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-711) (QUOTE (-1041))) (|HasCategory| (-711) (QUOTE (-1221))) (-12 (|HasCategory| (-711) (QUOTE (-1021))) (|HasCategory| (-711) (QUOTE (-1221)))) (-2835 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-374))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-926))))) (-2835 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (-12 (|HasCategory| (-711) (QUOTE (-374))) (|HasCategory| (-711) (QUOTE (-926)))) (-12 (|HasCategory| (-711) (QUOTE (-360))) (|HasCategory| (-711) (QUOTE (-926))))) (|HasCategory| (-711) (QUOTE (-557))) (-12 (|HasCategory| (-711) (QUOTE (-1079))) (|HasCategory| (-711) (QUOTE (-1221)))) (|HasCategory| (-711) (QUOTE (-1079))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926))) (-2835 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-374)))) (-2835 (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (QUOTE (-237)))) (-2835 (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-568)))) (-12 (|HasCategory| (-711) (QUOTE (-237))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (QUOTE (-238))) (|HasCategory| (-711) (QUOTE (-374)))) (-12 (|HasCategory| (-711) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-711) (QUOTE (-374)))) (|HasCategory| (-711) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-711) (QUOTE (-568))) (|HasAttribute| (-711) (QUOTE -4460)) (|HasAttribute| (-711) (QUOTE -4457)) (-12 (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (LIST (QUOTE -917) (QUOTE (-1195)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-146)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-711) (QUOTE (-317))) (|HasCategory| (-711) (QUOTE (-926)))) (|HasCategory| (-711) (QUOTE (-360))))) (-707 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4463 . T)) +((-4462 . T)) NIL (-708 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) @@ -2768,13 +2768,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-710 OV E -2221 PG) +(-710 OV E -2060 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-711) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2728 . T) (-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4125 . T) (-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-712 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2782,7 +2782,7 @@ NIL NIL (-713) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4461 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4460 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-714 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) @@ -2800,7 +2800,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-718 S -4286 I) +(-718 S -2051 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2810,7 +2810,7 @@ NIL NIL (-720 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) NIL (-721 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) @@ -2820,25 +2820,25 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-723 R |Mod| -1597 -3257 |exactQuo|) +(-723 R |Mod| -2314 -1854 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-724 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4458 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) (-725 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL (-726 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T)) +((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-727 R |Mod| -1597 -3257 |exactQuo|) +(-727 R |Mod| -2314 -1854 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4459 . T)) +((-4458 . T)) NIL (-728 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) @@ -2846,11 +2846,11 @@ NIL NIL (-729 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-730 -2221) +(-730 -2060) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4459 . T)) +((-4458 . T)) NIL (-731 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) @@ -2874,7 +2874,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-360))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379)))) (-736 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4455 |has| |#1| (-374)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 |has| |#1| (-374)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-737 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) @@ -2884,7 +2884,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-739 -2221 UP) +(-739 -2060 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2902,8 +2902,8 @@ NIL NIL (-743 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#2| (QUOTE (-926))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) +(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-926))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-876 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) (-744 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2918,15 +2918,15 @@ NIL NIL (-747 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T)) +((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-862)))) (-748 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4452 . T) (-4463 . T)) +((-4451 . T) (-4462 . T)) NIL (-749 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4462 . T) (-4452 . T) (-4463 . T)) +((-4461 . T) (-4451 . T) (-4462 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-750) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) @@ -2938,7 +2938,7 @@ NIL NIL (-752 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4457 . T) (-4456 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4456 . T) (-4455 . T) (-4458 . T)) NIL (-753 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) @@ -2954,7 +2954,7 @@ NIL NIL (-756 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-757) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) @@ -3036,11 +3036,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-777 -2221) +(-777 -2060) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-778 P -2221) +(-778 P -2060) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL @@ -3048,7 +3048,7 @@ NIL NIL NIL NIL -(-780 UP -2221) +(-780 UP -2060) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -3062,9 +3062,9 @@ NIL NIL (-783) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4464 "*") . T)) +(((-4463 "*") . T)) NIL -(-784 R -2221) +(-784 R -2060) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3084,7 +3084,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-789 -2221 |ExtF| |SUEx| |ExtP| |n|) +(-789 -2060 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3098,23 +3098,23 @@ NIL NIL (-792 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-2433 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-2433 (|HasCategory| |#1| (QUOTE (-557)))) (-2433 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-2433 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2433 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1196)))) (-2433 (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-2746 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-2746 (|HasCategory| |#1| (QUOTE (-557)))) (-2746 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-2746 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-576))))) (-2746 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-1195)))) (-2746 (|HasCategory| |#1| (LIST (QUOTE -1011) (QUOTE (-576))))))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) (-793 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL (-794 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4458 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) (-795 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-796 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL (-797 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) @@ -3166,25 +3166,25 @@ NIL ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-379)))) (-809 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-810 -3765 R OS S) +(-810 -2835 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-811 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-3765 (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3765 (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) +((-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (-2835 (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2835 (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1018 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (-812) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-813 R -2221 L) +(-813 R -2060 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-814 R -2221) +(-814 R -2060) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3192,7 +3192,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-816 R -2221) +(-816 R -2060) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3200,11 +3200,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-818 -2221 UP UPUP R) +(-818 -2060 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-819 -2221 UP L LQ) +(-819 -2060 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3212,41 +3212,41 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-821 -2221 UP L LQ) +(-821 -2060 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-822 -2221 UP) +(-822 -2060 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-823 -2221 L UP A LO) +(-823 -2060 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-824 -2221 UP) +(-824 -2060 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-825 -2221 LO) +(-825 -2060 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-826 -2221 LODO) +(-826 -2060 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-827 -1937 S |f|) +(-827 -2722 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4456 |has| |#2| (-1068)) (-4457 |has| |#2| (-1068)) (-4459 |has| |#2| (-6 -4459)) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-3765 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-3765 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-3765 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4459)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) +((-4455 |has| |#2| (-1068)) (-4456 |has| |#2| (-1068)) (-4458 |has| |#2| (-6 -4458)) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-374))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (-2835 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-379))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1068)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (|HasCategory| |#2| (QUOTE (-238))) (-2835 (|HasCategory| |#2| (QUOTE (-238))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068))))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))))) (|HasCategory| |#2| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-379)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119))))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-805))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195))))) (-2835 (|HasCategory| |#2| (QUOTE (-1068))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-1119)))) (|HasAttribute| |#2| (QUOTE -4458)) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1068)))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))))) (-828 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1196)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-830 (-1195)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) (-829 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4464 "*") |has| |#2| (-374)) (-4455 |has| |#2| (-374)) (-4460 |has| |#2| (-374)) (-4454 |has| |#2| (-374)) (-4459 . T) (-4457 . T) (-4456 . T)) +(((-4463 "*") |has| |#2| (-374)) (-4454 |has| |#2| (-374)) (-4459 |has| |#2| (-374)) (-4453 |has| |#2| (-374)) (-4458 . T) (-4456 . T) (-4455 . T)) ((|HasCategory| |#2| (QUOTE (-374)))) (-830 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) @@ -3258,7 +3258,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-862)))) (-832) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-833) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) @@ -3286,7 +3286,7 @@ NIL NIL (-839 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-238)))) (-840) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) @@ -3298,7 +3298,7 @@ NIL NIL (-842 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4462 . T) (-4452 . T) (-4463 . T)) +((-4461 . T) (-4451 . T) (-4462 . T)) NIL (-843) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) @@ -3310,8 +3310,8 @@ NIL NIL (-845 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4459 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3765 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +((-4458 |has| |#1| (-860))) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2835 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-2835 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) (-846 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL @@ -3322,7 +3322,7 @@ NIL NIL (-848 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T)) +((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) (-849) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) @@ -3350,13 +3350,13 @@ NIL NIL (-855 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4459 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3765 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3765 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) +((-4458 |has| |#1| (-860))) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-2835 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-2835 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-557)))) (-856) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-857 -1937 S) +(-857 -2722 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3370,7 +3370,7 @@ NIL NIL (-860) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4459 . T)) +((-4458 . T)) NIL (-861 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) @@ -3386,19 +3386,19 @@ NIL ((|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174)))) (-864 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) NIL (-865 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) -(-866 R |sigma| -1354) +(-866 R |sigma| -2843) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-374)))) -(-867 |x| R |sigma| -1354) +(-867 |x| R |sigma| -2843) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-374)))) (-868 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) @@ -3442,7 +3442,7 @@ NIL NIL (-878 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T)) +((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) (-879 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) @@ -3454,24 +3454,24 @@ NIL NIL (-881 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-882 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-883 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-882 |#1|) (QUOTE (-926))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-882 |#1|) (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-148))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-882 |#1|) (QUOTE (-1041))) (|HasCategory| (-882 |#1|) (QUOTE (-832))) (-3765 (|HasCategory| (-882 |#1|) (QUOTE (-832))) (|HasCategory| (-882 |#1|) (QUOTE (-862)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-1171))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-237))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-882 |#1|) (QUOTE (-238))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -882) (|devaluate| |#1|)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (QUOTE (-317))) (|HasCategory| (-882 |#1|) (QUOTE (-557))) (|HasCategory| (-882 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-926)))) (|HasCategory| (-882 |#1|) (QUOTE (-146))))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-882 |#1|) (QUOTE (-926))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| (-882 |#1|) (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-148))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-882 |#1|) (QUOTE (-1041))) (|HasCategory| (-882 |#1|) (QUOTE (-832))) (-2835 (|HasCategory| (-882 |#1|) (QUOTE (-832))) (|HasCategory| (-882 |#1|) (QUOTE (-862)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-1171))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| (-882 |#1|) (QUOTE (-237))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-882 |#1|) (QUOTE (-238))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -319) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (LIST (QUOTE -296) (LIST (QUOTE -882) (|devaluate| |#1|)) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (QUOTE (-317))) (|HasCategory| (-882 |#1|) (QUOTE (-557))) (|HasCategory| (-882 |#1|) (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-882 |#1|) (QUOTE (-926)))) (|HasCategory| (-882 |#1|) (QUOTE (-146))))) (-884 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-832))) (-3765 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-832))) (-2835 (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-862))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) (-885 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))))) (-886) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3531,7 +3531,7 @@ NIL (-900 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2433 (|HasCategory| |#2| (QUOTE (-1068)))) (-2433 (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (-2433 (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196))))) +((-12 (-2746 (|HasCategory| |#2| (QUOTE (-1068)))) (-2746 (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1195)))))) (-12 (|HasCategory| |#2| (QUOTE (-1068))) (-2746 (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1195)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1195))))) (-901 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3540,7 +3540,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-903 R -4286) +(-903 R -2051) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3572,7 +3572,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-911 UP -2221) +(-911 UP -2060) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3586,11 +3586,11 @@ NIL NIL (-914 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL (-915 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4459 . T)) +((-4458 . T)) NIL (-916 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) @@ -3603,14 +3603,14 @@ NIL (-918 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-919 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL (-920 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4459 . T)) +((-4458 . T)) NIL (-921 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) @@ -3618,8 +3618,8 @@ NIL NIL (-922 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4459 . T)) -((-3765 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) +((-4458 . T)) +((-2835 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-862)))) (-923 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL @@ -3634,13 +3634,13 @@ NIL ((|HasCategory| |#1| (QUOTE (-146)))) (-926) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-927 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-379)))) -(-928 R0 -2221 UP UPUP R) +(-928 R0 -2060 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3654,7 +3654,7 @@ NIL NIL (-931 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-932 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) @@ -3668,7 +3668,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-935 -2221) +(-935 -2060) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3678,17 +3678,17 @@ NIL NIL (-937) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-938) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4464 "*") . T)) +(((-4463 "*") . T)) NIL -(-939 -2221 P) +(-939 -2060 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-940 |xx| -2221) +(-940 |xx| -2060) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL @@ -3712,7 +3712,7 @@ NIL ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-946 R -2221) +(-946 R -2060) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3724,7 +3724,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-949 S R -2221) +(-949 S R -2060) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3744,11 +3744,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -899) (|devaluate| |#1|)))) -(-954 R -2221 -4286) +(-954 R -2060 -2051) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-955 -4286) +(-955 -2051) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL @@ -3770,8 +3770,8 @@ NIL NIL (-960 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-961 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3791,12 +3791,12 @@ NIL (-965 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-926))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) +((|HasCategory| |#2| (QUOTE (-926))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#4| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#4| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-966 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) NIL -(-967 E V R P -2221) +(-967 E V R P -2060) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3806,9 +3806,9 @@ NIL NIL (-969 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1196) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-970 E V R P -2221) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1195) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-970 E V R P -2060) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-464)))) @@ -3830,13 +3830,13 @@ NIL NIL (-975 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-976) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-977 -2221) +(-977 -2060) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3850,12 +3850,12 @@ NIL NIL (-980 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4460))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4459))) (-981 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4459 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) +((-4458 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738))))) (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-379)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-805))) (|HasCategory| |#2| (QUOTE (-805))))) (-12 (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-738)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-862))))) (-982) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -3878,7 +3878,7 @@ NIL NIL (-987 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4462 . T) (-4463 . T)) +((-4461 . T) (-4462 . T)) NIL (-988 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) @@ -3898,7 +3898,7 @@ NIL NIL (-992 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-993) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) @@ -3910,7 +3910,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-568)))) (-995 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4462 . T)) +((-4461 . T)) NIL (-996 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) @@ -3926,7 +3926,7 @@ NIL NIL (-999 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL (-1000 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) @@ -3944,7 +3944,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1004 K R UP -2221) +(-1004 K R UP -2060) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL @@ -3971,10 +3971,10 @@ NIL (-1010 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1171)))) +((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-832))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-1171)))) (-1011 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-1012 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) @@ -3986,7 +3986,7 @@ NIL NIL (-1014 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4462 . T) (-4463 . T)) +((-4461 . T) (-4462 . T)) NIL (-1015 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) @@ -3994,7 +3994,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-300)))) (-1016 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4455 |has| |#1| (-300)) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 |has| |#1| (-300)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-1017 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) @@ -4002,12 +4002,12 @@ NIL NIL (-1018 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4455 |has| |#1| (-300)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-3765 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-557)))) +((-4454 |has| |#1| (-300)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374))) (-2835 (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -296) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-557)))) (-1019 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-1020 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -4016,14 +4016,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1022 -2221 UP UPUP |radicnd| |n|) +(-1022 -2060 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4455 |has| (-419 |#2|) (-374)) (-4460 |has| (-419 |#2|) (-374)) (-4454 |has| (-419 |#2|) (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-3765 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-3765 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3765 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-3765 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-3765 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-3765 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) +((-4454 |has| (-419 |#2|) (-374)) (-4459 |has| (-419 |#2|) (-374)) (-4453 |has| (-419 |#2|) (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-146))) (|HasCategory| (-419 |#2|) (QUOTE (-148))) (|HasCategory| (-419 |#2|) (QUOTE (-360))) (-2835 (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))) (|HasCategory| (-419 |#2|) (QUOTE (-379))) (-2835 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2835 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (QUOTE (-360)))) (-2835 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-360))))) (-2835 (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -651) (QUOTE (-576)))) (-2835 (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 |#2|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-237))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-238))) (|HasCategory| (-419 |#2|) (QUOTE (-374)))) (-12 (|HasCategory| (-419 |#2|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-419 |#2|) (QUOTE (-374))))) (-1023 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-3765 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1196)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146))))) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-576) (QUOTE (-926))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-148))) (|HasCategory| (-576) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-1041))) (|HasCategory| (-576) (QUOTE (-832))) (-2835 (|HasCategory| (-576) (QUOTE (-832))) (|HasCategory| (-576) (QUOTE (-862)))) (|HasCategory| (-576) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-1171))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| (-576) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| (-576) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| (-576) (QUOTE (-237))) (|HasCategory| (-576) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| (-576) (QUOTE (-238))) (|HasCategory| (-576) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| (-576) (LIST (QUOTE -526) (QUOTE (-1195)) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -319) (QUOTE (-576)))) (|HasCategory| (-576) (LIST (QUOTE -296) (QUOTE (-576)) (QUOTE (-576)))) (|HasCategory| (-576) (QUOTE (-317))) (|HasCategory| (-576) (QUOTE (-557))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-576) (LIST (QUOTE -651) (QUOTE (-576)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-576) (QUOTE (-926)))) (|HasCategory| (-576) (QUOTE (-146))))) (-1024) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -4043,7 +4043,7 @@ NIL (-1028 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4463)) (|HasCategory| |#2| (QUOTE (-1119)))) +((|HasAttribute| |#1| (QUOTE -4462)) (|HasCategory| |#2| (QUOTE (-1119)))) (-1029 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL @@ -4054,21 +4054,21 @@ NIL NIL (-1031) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4455 . T) (-4460 . T) (-4454 . T) (-4457 . T) (-4456 . T) ((-4464 "*") . T) (-4459 . T)) +((-4454 . T) (-4459 . T) (-4453 . T) (-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4458 . T)) NIL -(-1032 R -2221) +(-1032 R -2060) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1033 R -2221) +(-1033 R -2060) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1034 -2221 UP) +(-1034 -2060 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1035 -2221 UP) +(-1035 -2060 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -4102,9 +4102,9 @@ NIL NIL (-1043 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4455 . T) (-4460 . T) (-4454 . T) (-4457 . T) (-4456 . T) ((-4464 "*") . T) (-4459 . T)) -((-3765 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1057) (QUOTE (-576))))) -(-1044 -2221 L) +((-4454 . T) (-4459 . T) (-4453 . T) (-4456 . T) (-4455 . T) ((-4463 "*") . T) (-4458 . T)) +((-2835 (|HasCategory| (-419 (-576)) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-419 (-576)) (LIST (QUOTE -1057) (QUOTE (-576))))) +(-1044 -2060 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -4114,12 +4114,12 @@ NIL ((|HasCategory| |#1| (QUOTE (-1119)))) (-1046 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) (-1047 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4464 "*")))) +((|HasAttribute| |#1| (QUOTE (-4463 "*")))) (-1048 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL @@ -4140,14 +4140,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1053 -2221 |Expon| |VarSet| |FPol| |LFPol|) +(-1053 -2060 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-1054) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (QUOTE (-1196))) (LIST (QUOTE |:|) (QUOTE -2900) (QUOTE (-52))))))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-52) (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-1196) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1119))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (QUOTE (-1195))) (LIST (QUOTE |:|) (QUOTE -4353) (QUOTE (-52))))))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-52) (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-1195) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1119))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -625) (QUOTE (-874))))) (-1055) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4190,7 +4190,7 @@ NIL NIL (-1065 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) ((-12 (|HasCategory| (-792 |#1| (-876 |#2|)) (QUOTE (-1119))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -792) (|devaluate| |#1|) (LIST (QUOTE -876) (|devaluate| |#2|)))))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-792 |#1| (-876 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| (-876 |#2|) (QUOTE (-379))) (|HasCategory| (-792 |#1| (-876 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) (-1066) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) @@ -4202,9 +4202,9 @@ NIL NIL (-1068) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4459 . T)) +((-4458 . T)) NIL -(-1069 |xx| -2221) +(-1069 |xx| -2060) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -4218,12 +4218,12 @@ NIL ((|HasCategory| |#4| (QUOTE (-317))) (|HasCategory| |#4| (QUOTE (-374))) (|HasCategory| |#4| (QUOTE (-568))) (|HasCategory| |#4| (QUOTE (-174)))) (-1072 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4462 . T) (-4457 . T) (-4456 . T)) +((-4461 . T) (-4456 . T) (-4455 . T)) NIL (-1073 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4462 . T) (-4457 . T) (-4456 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-3765 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4456 . T) (-4455 . T)) +((|HasCategory| |#3| (QUOTE (-174))) (-2835 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (QUOTE (-317))) (|HasCategory| |#3| (QUOTE (-568))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874))))) (-1074 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -4246,7 +4246,7 @@ NIL NIL (-1079) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-1080 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) @@ -4254,19 +4254,19 @@ NIL NIL (-1081) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4450 . T) (-4454 . T) (-4449 . T) (-4460 . T) (-4461 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4449 . T) (-4453 . T) (-4448 . T) (-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-1082) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (QUOTE (-1196))) (LIST (QUOTE |:|) (QUOTE -2900) (QUOTE (-52))))))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-52) (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (QUOTE (-1119))) (|HasCategory| (-1196) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1119))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (QUOTE (-1195))) (LIST (QUOTE |:|) (QUOTE -4353) (QUOTE (-52))))))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-52) (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| (-52) (QUOTE (-1119))) (|HasCategory| (-52) (LIST (QUOTE -319) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (QUOTE (-1119))) (|HasCategory| (-1195) (QUOTE (-862))) (|HasCategory| (-52) (QUOTE (-1119))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-52) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (LIST (QUOTE -625) (QUOTE (-874))))) (-1083 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1196))))) +((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1011) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-1195))))) (-1084 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) NIL (-1085) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) @@ -4290,7 +4290,7 @@ NIL NIL (-1090 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL (-1091 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) @@ -4308,11 +4308,11 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1095 |Base| R -2221) +(-1095 |Base| R -2060) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1096 |Base| R -2221) +(-1096 |Base| R -2060) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL @@ -4326,8 +4326,8 @@ NIL NIL (-1099 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4455 |has| |#1| (-374)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))))) +((-4454 |has| |#1| (-374)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-360))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-379))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-360))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-360)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))))) (-1100 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4354,8 +4354,8 @@ NIL NIL (-1106 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1107 (-1196)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1107 (-1195)) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1107 (-1195)) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1107 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1107 (-1195)) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1107 (-1195)) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1107 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4398,7 +4398,7 @@ NIL NIL (-1117 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4452 . T)) +((-4451 . T)) NIL (-1118 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) @@ -4414,8 +4414,8 @@ NIL NIL (-1121 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4462 . T) (-4452 . T) (-4463 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +((-4461 . T) (-4451 . T) (-4462 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-379))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-1122 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL @@ -4442,7 +4442,7 @@ NIL NIL (-1128 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL (-1129) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) @@ -4458,8 +4458,8 @@ NIL NIL (-1132 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4456 |has| |#3| (-1068)) (-4457 |has| |#3| (-1068)) (-4459 |has| |#3| (-6 -4459)) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#3| (QUOTE (-374))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3765 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-3765 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1119)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (|HasCategory| |#3| (QUOTE (-238))) (-3765 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068))))) (-3765 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196)))))) (|HasCategory| |#3| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1196))))) (-3765 (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119)))) (|HasAttribute| |#3| (QUOTE -4459)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1196))))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) +((-4455 |has| |#3| (-1068)) (-4456 |has| |#3| (-1068)) (-4458 |has| |#3| (-6 -4458)) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#3| (QUOTE (-374))) (-2835 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-2835 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-374)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (-2835 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862)))) (|HasCategory| |#3| (QUOTE (-379))) (-2835 (-12 (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576)))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (-2835 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (QUOTE (-1119)))) (-2835 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-2835 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-2835 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-2835 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (QUOTE (-1068)))) (-2835 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (|HasCategory| |#3| (QUOTE (-238))) (-2835 (|HasCategory| |#3| (QUOTE (-238))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068))))) (-2835 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1195)))))) (|HasCategory| |#3| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-238)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-374)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-379)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-738)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-805)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-862)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119))))) (-2835 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-374))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-738))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-805))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (|HasCategory| (-576) (QUOTE (-862))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (QUOTE (-237))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -917) (QUOTE (-1195))))) (-2835 (|HasCategory| |#3| (QUOTE (-1068))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576)))))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#3| (QUOTE (-1119)))) (|HasAttribute| |#3| (QUOTE -4458)) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1068)))) (-12 (|HasCategory| |#3| (QUOTE (-1068))) (|HasCategory| |#3| (LIST (QUOTE -915) (QUOTE (-1195))))) (|HasCategory| |#3| (QUOTE (-862))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#3| (QUOTE (-1119))) (|HasCategory| |#3| (LIST (QUOTE -319) (|devaluate| |#3|))))) (-1133 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4468,7 +4468,7 @@ NIL ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1135 R -2221) +(-1135 R -2060) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4486,19 +4486,19 @@ NIL NIL (-1139) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4450 . T) (-4454 . T) (-4449 . T) (-4460 . T) (-4461 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4449 . T) (-4453 . T) (-4448 . T) (-4459 . T) (-4460 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-1140 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4462 . T) (-4463 . T)) +((-4461 . T) (-4462 . T)) NIL (-1141 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4464 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) +((|HasCategory| |#3| (QUOTE (-374))) (|HasAttribute| |#3| (QUOTE (-4463 "*"))) (|HasCategory| |#3| (QUOTE (-174)))) (-1142 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4462 . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4461 . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL (-1143 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) @@ -4506,17 +4506,17 @@ NIL NIL (-1144 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1145 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) (-1146 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL -(-1147 UP -2221) +(-1147 UP -2060) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4570,19 +4570,19 @@ NIL NIL (-1160 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1119)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1119))) (-3765 (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1119))))) (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1119)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1119))) (-2835 (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -319) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1159 |#1| |#2|) (QUOTE (-1119))))) (|HasCategory| (-1159 |#1| |#2|) (LIST (QUOTE -625) (QUOTE (-874))))) (-1161 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4459 . T) (-4451 |has| |#2| (-6 (-4464 "*"))) (-4462 . T) (-4456 . T) (-4457 . T)) -((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-374))) (-3765 (|HasAttribute| |#2| (QUOTE (-4464 "*"))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((-4458 . T) (-4450 |has| |#2| (-6 (-4463 "*"))) (-4461 . T) (-4455 . T) (-4456 . T)) +((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-237))) (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (QUOTE (-317))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-374))) (-2835 (|HasAttribute| |#2| (QUOTE (-4463 "*"))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-1162 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL (-1163) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL (-1164 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) @@ -4590,12 +4590,12 @@ NIL NIL (-1165 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) (-1166 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-1167 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4606,8 +4606,8 @@ NIL NIL (-1169 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119)))) +((-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#2|)))))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-862))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119)))) (-1170) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL @@ -4634,567 +4634,563 @@ NIL NIL (-1176 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4463 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +((-4462 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (-1177) -((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4463 . T) (-4462 . T)) -NIL -(-1178) -NIL -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-3765 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) -(-1179 |Entry|) +((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (-2835 (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119)))) (|HasCategory| (-145) (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| (-145) (QUOTE (-1119))) (|HasCategory| (-145) (LIST (QUOTE -319) (QUOTE (-145)))))) +(-1178 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (QUOTE (-1178))) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#1|)))))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (QUOTE (-1119))) (|HasCategory| (-1178) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-1180 A) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (QUOTE (-1177))) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#1|)))))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (QUOTE (-1119))) (|HasCategory| (-1177) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (LIST (QUOTE -625) (QUOTE (-874))))) +(-1179 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1181 |Coef|) +(-1180 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1182 |Coef|) +(-1181 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1183 R UP) +(-1182 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-317)))) -(-1184 |n| R) +(-1183 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1185 S1 S2) +(-1184 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}"))) NIL NIL -(-1186) +(-1185) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1187 |Coef| |var| |cen|) +(-1186 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4464 "*") -3765 (-2445 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2445 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-926)))) (-4455 -3765 (-2445 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2445 (|has| |#1| (-374)) (|has| (-1194 |#1| |#2| |#3|) (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1194) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1194 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1188 R -2221) +(((-4463 "*") -2835 (-2758 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2758 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-926)))) (-4454 -2835 (-2758 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2758 (|has| |#1| (-374)) (|has| (-1193 |#1| |#2| |#3|) (-926)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1193) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1193 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1187 R -2060) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1189 R) +(-1188 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1190 R S) +(-1189 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1191 E OV R P) +(-1190 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1192 R) +(-1191 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4458 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4460)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1193 |Coef| |var| |cen|) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#1| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-238))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1192 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1194 |Coef| |var| |cen|) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) +(-1193 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1195) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) +(-1194) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1196) +(-1195) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1197 R) +(-1196 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1198 R) +(-1197 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-6 -4460)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-990) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4460))) -(-1199) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-6 -4459)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| (-990) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasAttribute| |#1| (QUOTE -4459))) +(-1198) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1200) +(-1199) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1201) +(-1200) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1202 N) +(-1201 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1203 N) +(-1202 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1204) +(-1203) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1205 R) +(-1204 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1206) +(-1205) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1207 S) +(-1206 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1208 S) +(-1207 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1209 |Key| |Entry|) +(-1208 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4462 . T) (-4463 . T)) -((-12 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2371) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2900) (|devaluate| |#2|)))))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-3765 (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) -(-1210 S) +((-4461 . T) (-4462 . T)) +((-12 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -319) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4282) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -4353) (|devaluate| |#2|)))))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#2| (QUOTE (-1119)))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -626) (QUOTE (-548)))) (-12 (|HasCategory| |#2| (QUOTE (-1119))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#2| (QUOTE (-1119))) (-2835 (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#2| (LIST (QUOTE -625) (QUOTE (-874)))) (|HasCategory| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (LIST (QUOTE -625) (QUOTE (-874))))) +(-1209 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1211 R) +(-1210 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1212 S |Key| |Entry|) +(-1211 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1213 |Key| |Entry|) +(-1212 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4463 . T)) +((-4462 . T)) NIL -(-1214 |Key| |Entry|) +(-1213 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1215) +(-1214) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1216 S) +(-1215 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1217) +(-1216) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1218) +(-1217) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1219 R) +(-1218 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1220) +(-1219) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1221 S) +(-1220 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1222) +(-1221) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1223 S) +(-1222 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4463 . T) (-4462 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1224 S) +((-4462 . T) (-4461 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1119))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) +(-1223 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1225) +(-1224) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1226 R -2221) +(-1225 R -2060) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1227 R |Row| |Col| M) +(-1226 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1228 R -2221) +(-1227 R -2060) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -626) (LIST (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -899) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -899) (|devaluate| |#1|))))) -(-1229 S R E V P) +(-1228 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-379)))) -(-1230 R E V P) +(-1229 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL -(-1231 |Coef|) +(-1230 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1232 |Curve|) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-374)))) +(-1231 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1233) +(-1232) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1234 S) +(-1233 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL ((|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1235 -2221) +(-1234 -2060) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1236) +(-1235) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1237) +(-1236) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1238 S) +(-1237 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL ((|HasCategory| |#1| (QUOTE (-862)))) -(-1239) +(-1238) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1240 S) +(-1239 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1241) +(-1240) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-1242) +(-1241) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1243) +(-1242) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1244) +(-1243) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1245) +(-1244) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1246 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1245 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1247 |Coef|) +(-1246 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-1248 S |Coef| UTS) +(-1247 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-374)))) -(-1249 |Coef| UTS) +(-1248 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-1250 |Coef| UTS) +(-1249 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-3765 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))))) (-3765 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1196)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-926))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) -(-1251 |Coef| |var| |cen|) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1195)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146))))) (-2835 (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-148))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-238)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862))))) (-2835 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-832)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-1195)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -296) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -319) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -526) (QUOTE (-1195)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-926))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-317)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-146))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195))))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-237)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-146)))))) +(-1250 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4464 "*") -3765 (-2445 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2445 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-926)))) (-4455 -3765 (-2445 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2445 (|has| |#1| (-374)) (|has| (-1279 |#1| |#2| |#3|) (-926)))) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) -((-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1196)) (LIST (QUOTE -1279) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1279 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1252 ZP) +(((-4463 "*") -2835 (-2758 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-832))) (|has| |#1| (-174)) (-2758 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-926)))) (-4454 -2835 (-2758 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-832))) (|has| |#1| (-568)) (-2758 (|has| |#1| (-374)) (|has| (-1278 |#1| |#2| |#3|) (-926)))) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +((-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|)))))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-576)) (|devaluate| |#1|))))) (|HasCategory| (-576) (QUOTE (-1131))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-374))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-374)))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374))))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1171))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -296) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -319) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -526) (QUOTE (-1195)) (LIST (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-576))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-317))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-832))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-237))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-926))) (|HasCategory| |#1| (QUOTE (-374)))) (-12 (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-374)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1251 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1253 R S) +(-1252 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL ((|HasCategory| |#1| (QUOTE (-860)))) -(-1254 S) +(-1253 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL ((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1119)))) -(-1255 |x| R |y| S) +(-1254 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1256 R Q UP) +(-1255 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1257 R UP) +(-1256 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1258 R UP) +(-1257 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1259 R U) +(-1258 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1260 |x| R) +(-1259 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4464 "*") |has| |#2| (-174)) (-4455 |has| |#2| (-568)) (-4458 |has| |#2| (-374)) (-4460 |has| |#2| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-3765 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-3765 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1196)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4460)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-3765 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-1261 R PR S PS) +(((-4463 "*") |has| |#2| (-174)) (-4454 |has| |#2| (-568)) (-4457 |has| |#2| (-374)) (-4459 |has| |#2| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-926))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-390)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-390))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -899) (QUOTE (-576)))) (|HasCategory| |#2| (LIST (QUOTE -899) (QUOTE (-576))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-390)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -626) (LIST (QUOTE -905) (QUOTE (-576)))))) (-12 (|HasCategory| (-1101) (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#2| (LIST (QUOTE -626) (QUOTE (-548))))) (|HasCategory| |#2| (LIST (QUOTE -651) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (QUOTE (-576)))) (-2835 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| |#2| (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (-2835 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasCategory| |#2| (LIST (QUOTE -917) (QUOTE (-1195)))) (|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasCategory| |#2| (QUOTE (-237))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE -4459)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (-2835 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-926)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-1260 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1262 S R) +(-1261 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL ((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-568))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-1171)))) -(-1263 R) +(-1262 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4458 |has| |#1| (-374)) (-4460 |has| |#1| (-6 -4460)) (-4457 . T) (-4456 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4457 |has| |#1| (-374)) (-4459 |has| |#1| (-6 -4459)) (-4456 . T) (-4455 . T) (-4458 . T)) NIL -(-1264 S |Coef| |Expon|) +(-1263 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4092) (LIST (|devaluate| |#2|) (QUOTE (-1196)))))) -(-1265 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1131))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3563) (LIST (|devaluate| |#2|) (QUOTE (-1195)))))) +(-1264 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-1266 RC P) +(-1265 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1267 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1266 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1268 |Coef|) +(-1267 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-1269 S |Coef| ULS) +(-1268 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1270 |Coef| ULS) +(-1269 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-1271 |Coef| ULS) +(-1270 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) -(-1272 |Coef| |var| |cen|) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) +(-1271 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4460 |has| |#1| (-374)) (-4454 |has| |#1| (-374)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-3765 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1273 R FE |var| |cen|) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4459 |has| |#1| (-374)) (-4453 |has| |#1| (-374)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#1| (QUOTE (-174))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-576)) (QUOTE (-1131))) (|HasCategory| |#1| (QUOTE (-374))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-2835 (|HasCategory| |#1| (QUOTE (-374))) (|HasCategory| |#1| (QUOTE (-568)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -419) (QUOTE (-576)))))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) +(-1272 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4464 "*") |has| (-1272 |#2| |#3| |#4|) (-174)) (-4455 |has| (-1272 |#2| |#3| |#4|) (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-174))) (-3765 (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1272 |#2| |#3| |#4|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1272 |#2| |#3| |#4|) (QUOTE (-568)))) -(-1274 A S) +(((-4463 "*") |has| (-1271 |#2| |#3| |#4|) (-174)) (-4454 |has| (-1271 |#2| |#3| |#4|) (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-174))) (-2835 (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576)))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -1057) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| (-1271 |#2| |#3| |#4|) (LIST (QUOTE -1057) (QUOTE (-576)))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-374))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1271 |#2| |#3| |#4|) (QUOTE (-568)))) +(-1273 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4463))) -(-1275 S) +((|HasAttribute| |#1| (QUOTE -4462))) +(-1274 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1276 |Coef1| |Coef2| UTS1 UTS2) +(-1275 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1277 S |Coef|) +(-1276 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1222))) (|HasSignature| |#2| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3597) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1196))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) -(-1278 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1221))) (|HasSignature| |#2| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3848) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1195))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#2| (QUOTE (-374)))) +(-1277 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-1279 |Coef| |var| |cen|) +(-1278 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4464 "*") |has| |#1| (-174)) (-4455 |has| |#1| (-568)) (-4456 . T) (-4457 . T) (-4459 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-3765 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1196)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -4092) (LIST (|devaluate| |#1|) (QUOTE (-1196)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-3765 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1222))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3597) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1196))))) (|HasSignature| |#1| (LIST (QUOTE -1541) (LIST (LIST (QUOTE -656) (QUOTE (-1196))) (|devaluate| |#1|))))))) -(-1280 |Coef| UTS) +(((-4463 "*") |has| |#1| (-174)) (-4454 |has| |#1| (-568)) (-4455 . T) (-4456 . T) (-4458 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasCategory| |#1| (QUOTE (-568))) (-2835 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-568)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -915) (QUOTE (-1195)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-783)) (|devaluate| |#1|)))) (|HasCategory| (-783) (QUOTE (-1131))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasSignature| |#1| (LIST (QUOTE -3563) (LIST (|devaluate| |#1|) (QUOTE (-1195)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-783))))) (|HasCategory| |#1| (QUOTE (-374))) (-2835 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-576)))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1221))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasSignature| |#1| (LIST (QUOTE -3848) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1195))))) (|HasSignature| |#1| (LIST (QUOTE -1991) (LIST (LIST (QUOTE -656) (QUOTE (-1195))) (|devaluate| |#1|))))))) +(-1279 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1281 -2221 UP L UTS) +(-1280 -2060 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-568)))) -(-1282) +(-1281) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1283 |sym|) +(-1282 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1284 S R) +(-1283 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL ((|HasCategory| |#2| (QUOTE (-1021))) (|HasCategory| |#2| (QUOTE (-1068))) (|HasCategory| |#2| (QUOTE (-738))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1285 R) +(-1284 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) NIL -(-1286 A B) +(-1285 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1287 R) +(-1286 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4463 . T) (-4462 . T)) -((-3765 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-3765 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-3765 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) -(-1288) +((-4462 . T) (-4461 . T)) +((-2835 (-12 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) (-2835 (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874))))) (|HasCategory| |#1| (LIST (QUOTE -626) (QUOTE (-548)))) (-2835 (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119)))) (|HasCategory| |#1| (QUOTE (-862))) (|HasCategory| (-576) (QUOTE (-862))) (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-738))) (|HasCategory| |#1| (QUOTE (-1068))) (-12 (|HasCategory| |#1| (QUOTE (-1021))) (|HasCategory| |#1| (QUOTE (-1068)))) (|HasCategory| |#1| (LIST (QUOTE -625) (QUOTE (-874)))) (-12 (|HasCategory| |#1| (QUOTE (-1119))) (|HasCategory| |#1| (LIST (QUOTE -319) (|devaluate| |#1|))))) +(-1287) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1289) +(-1288) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1290) +(-1289) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1291) +(-1290) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1292) +(-1291) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1293 A S) +(-1292 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1294 S) +(-1293 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4457 . T) (-4456 . T)) +((-4456 . T) (-4455 . T)) NIL -(-1295 R) +(-1294 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1296 K R UP -2221) +(-1295 K R UP -2060) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1297) +(-1296) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1298) +(-1297) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1299 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1298 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4457 |has| |#1| (-174)) (-4456 |has| |#1| (-174)) (-4459 . T)) +((-4456 |has| |#1| (-174)) (-4455 |has| |#1| (-174)) (-4458 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374)))) -(-1300 R E V P) +(-1299 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4463 . T) (-4462 . T)) +((-4462 . T) (-4461 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#4| (LIST (QUOTE -319) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -626) (QUOTE (-548)))) (|HasCategory| |#4| (QUOTE (-1119))) (|HasCategory| |#1| (QUOTE (-568))) (|HasCategory| |#3| (QUOTE (-379))) (|HasCategory| |#4| (LIST (QUOTE -625) (QUOTE (-874))))) -(-1301 R) +(-1300 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4456 . T) (-4457 . T) (-4459 . T)) +((-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-1302 |vl| R) +(-1301 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4459 . T) (-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4455))) -(-1303 R |VarSet| XPOLY) +((-4458 . T) (-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4454))) +(-1302 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1304 |vl| R) +(-1303 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T)) +((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) NIL -(-1305 S -2221) +(-1304 S -2060) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-379))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1306 -2221) +(-1305 -2060) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4454 . T) (-4460 . T) (-4455 . T) ((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +((-4453 . T) (-4459 . T) (-4454 . T) ((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL -(-1307 |VarSet| R) +(-1306 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4455))) -(-1308 |vl| R) +((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -729) (LIST (QUOTE -419) (QUOTE (-576))))) (|HasAttribute| |#2| (QUOTE -4454))) +(-1307 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T)) +((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) NIL -(-1309 R) +(-1308 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4455 |has| |#1| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4455))) -(-1310 R E) +((-4454 |has| |#1| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasAttribute| |#1| (QUOTE -4454))) +(-1309 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4459 . T) (-4460 |has| |#1| (-6 -4460)) (-4455 |has| |#1| (-6 -4455)) (-4457 . T) (-4456 . T)) -((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4460)) (|HasAttribute| |#1| (QUOTE -4455))) -(-1311 |VarSet| R) +((-4458 . T) (-4459 |has| |#1| (-6 -4459)) (-4454 |has| |#1| (-6 -4454)) (-4456 . T) (-4455 . T)) +((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-374))) (|HasAttribute| |#1| (QUOTE -4458)) (|HasAttribute| |#1| (QUOTE -4459)) (|HasAttribute| |#1| (QUOTE -4454))) +(-1310 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4455 |has| |#2| (-6 -4455)) (-4457 . T) (-4456 . T) (-4459 . T)) -((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4455))) -(-1312) +((-4454 |has| |#2| (-6 -4454)) (-4456 . T) (-4455 . T) (-4458 . T)) +((|HasCategory| |#2| (QUOTE (-174))) (|HasAttribute| |#2| (QUOTE -4454))) +(-1311) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1313 A) +(-1312 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1314 R |ls| |ls2|) +(-1313 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1315 R) +(-1314 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1316 |p|) +(-1315 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4464 "*") . T) (-4456 . T) (-4457 . T) (-4459 . T)) +(((-4463 "*") . T) (-4455 . T) (-4456 . T) (-4458 . T)) NIL NIL NIL @@ -5212,4 +5208,4 @@ NIL NIL NIL NIL -((-3 NIL 2280010 2280015 2280020 2280025) (-2 NIL 2279990 2279995 2280000 2280005) (-1 NIL 2279970 2279975 2279980 2279985) (0 NIL 2279950 2279955 2279960 2279965) (-1316 "ZMOD.spad" 2279759 2279772 2279888 2279945) (-1315 "ZLINDEP.spad" 2278825 2278836 2279749 2279754) (-1314 "ZDSOLVE.spad" 2268770 2268792 2278815 2278820) (-1313 "YSTREAM.spad" 2268265 2268276 2268760 2268765) (-1312 "YDIAGRAM.spad" 2267899 2267908 2268255 2268260) (-1311 "XRPOLY.spad" 2267119 2267139 2267755 2267824) (-1310 "XPR.spad" 2264914 2264927 2266837 2266936) (-1309 "XPOLY.spad" 2264469 2264480 2264770 2264839) (-1308 "XPOLYC.spad" 2263788 2263804 2264395 2264464) (-1307 "XPBWPOLY.spad" 2262225 2262245 2263568 2263637) (-1306 "XF.spad" 2260688 2260703 2262127 2262220) (-1305 "XF.spad" 2259131 2259148 2260572 2260577) (-1304 "XFALG.spad" 2256179 2256195 2259057 2259126) (-1303 "XEXPPKG.spad" 2255430 2255456 2256169 2256174) (-1302 "XDPOLY.spad" 2255044 2255060 2255286 2255355) (-1301 "XALG.spad" 2254704 2254715 2255000 2255039) (-1300 "WUTSET.spad" 2250543 2250560 2254350 2254377) (-1299 "WP.spad" 2249742 2249786 2250401 2250468) (-1298 "WHILEAST.spad" 2249540 2249549 2249732 2249737) (-1297 "WHEREAST.spad" 2249211 2249220 2249530 2249535) (-1296 "WFFINTBS.spad" 2246874 2246896 2249201 2249206) (-1295 "WEIER.spad" 2245096 2245107 2246864 2246869) (-1294 "VSPACE.spad" 2244769 2244780 2245064 2245091) (-1293 "VSPACE.spad" 2244462 2244475 2244759 2244764) (-1292 "VOID.spad" 2244139 2244148 2244452 2244457) (-1291 "VIEW.spad" 2241819 2241828 2244129 2244134) (-1290 "VIEWDEF.spad" 2237020 2237029 2241809 2241814) (-1289 "VIEW3D.spad" 2220981 2220990 2237010 2237015) (-1288 "VIEW2D.spad" 2208872 2208881 2220971 2220976) (-1287 "VECTOR.spad" 2207546 2207557 2207797 2207824) (-1286 "VECTOR2.spad" 2206185 2206198 2207536 2207541) (-1285 "VECTCAT.spad" 2204089 2204100 2206153 2206180) (-1284 "VECTCAT.spad" 2201800 2201813 2203866 2203871) (-1283 "VARIABLE.spad" 2201580 2201595 2201790 2201795) (-1282 "UTYPE.spad" 2201224 2201233 2201570 2201575) (-1281 "UTSODETL.spad" 2200519 2200543 2201180 2201185) (-1280 "UTSODE.spad" 2198735 2198755 2200509 2200514) (-1279 "UTS.spad" 2193682 2193710 2197202 2197299) (-1278 "UTSCAT.spad" 2191161 2191177 2193580 2193677) (-1277 "UTSCAT.spad" 2188284 2188302 2190705 2190710) (-1276 "UTS2.spad" 2187879 2187914 2188274 2188279) (-1275 "URAGG.spad" 2182552 2182563 2187869 2187874) (-1274 "URAGG.spad" 2177189 2177202 2182508 2182513) (-1273 "UPXSSING.spad" 2174834 2174860 2176270 2176403) (-1272 "UPXS.spad" 2172130 2172158 2172966 2173115) (-1271 "UPXSCONS.spad" 2169889 2169909 2170262 2170411) (-1270 "UPXSCCA.spad" 2168460 2168480 2169735 2169884) (-1269 "UPXSCCA.spad" 2167173 2167195 2168450 2168455) (-1268 "UPXSCAT.spad" 2165762 2165778 2167019 2167168) (-1267 "UPXS2.spad" 2165305 2165358 2165752 2165757) (-1266 "UPSQFREE.spad" 2163719 2163733 2165295 2165300) (-1265 "UPSCAT.spad" 2161506 2161530 2163617 2163714) (-1264 "UPSCAT.spad" 2158999 2159025 2161112 2161117) (-1263 "UPOLYC.spad" 2154039 2154050 2158841 2158994) (-1262 "UPOLYC.spad" 2148971 2148984 2153775 2153780) (-1261 "UPOLYC2.spad" 2148442 2148461 2148961 2148966) (-1260 "UP.spad" 2145548 2145563 2145935 2146088) (-1259 "UPMP.spad" 2144448 2144461 2145538 2145543) (-1258 "UPDIVP.spad" 2144013 2144027 2144438 2144443) (-1257 "UPDECOMP.spad" 2142258 2142272 2144003 2144008) (-1256 "UPCDEN.spad" 2141467 2141483 2142248 2142253) (-1255 "UP2.spad" 2140831 2140852 2141457 2141462) (-1254 "UNISEG.spad" 2140184 2140195 2140750 2140755) (-1253 "UNISEG2.spad" 2139681 2139694 2140140 2140145) (-1252 "UNIFACT.spad" 2138784 2138796 2139671 2139676) (-1251 "ULS.spad" 2128568 2128596 2129513 2129942) (-1250 "ULSCONS.spad" 2119702 2119722 2120072 2120221) (-1249 "ULSCCAT.spad" 2117439 2117459 2119548 2119697) (-1248 "ULSCCAT.spad" 2115284 2115306 2117395 2117400) (-1247 "ULSCAT.spad" 2113516 2113532 2115130 2115279) (-1246 "ULS2.spad" 2113030 2113083 2113506 2113511) (-1245 "UINT8.spad" 2112907 2112916 2113020 2113025) (-1244 "UINT64.spad" 2112783 2112792 2112897 2112902) (-1243 "UINT32.spad" 2112659 2112668 2112773 2112778) (-1242 "UINT16.spad" 2112535 2112544 2112649 2112654) (-1241 "UFD.spad" 2111600 2111609 2112461 2112530) (-1240 "UFD.spad" 2110727 2110738 2111590 2111595) (-1239 "UDVO.spad" 2109608 2109617 2110717 2110722) (-1238 "UDPO.spad" 2107101 2107112 2109564 2109569) (-1237 "TYPE.spad" 2107033 2107042 2107091 2107096) (-1236 "TYPEAST.spad" 2106952 2106961 2107023 2107028) (-1235 "TWOFACT.spad" 2105604 2105619 2106942 2106947) (-1234 "TUPLE.spad" 2105090 2105101 2105503 2105508) (-1233 "TUBETOOL.spad" 2101957 2101966 2105080 2105085) (-1232 "TUBE.spad" 2100604 2100621 2101947 2101952) (-1231 "TS.spad" 2099203 2099219 2100169 2100266) (-1230 "TSETCAT.spad" 2086330 2086347 2099171 2099198) (-1229 "TSETCAT.spad" 2073443 2073462 2086286 2086291) (-1228 "TRMANIP.spad" 2067809 2067826 2073149 2073154) (-1227 "TRIMAT.spad" 2066772 2066797 2067799 2067804) (-1226 "TRIGMNIP.spad" 2065299 2065316 2066762 2066767) (-1225 "TRIGCAT.spad" 2064811 2064820 2065289 2065294) (-1224 "TRIGCAT.spad" 2064321 2064332 2064801 2064806) (-1223 "TREE.spad" 2062896 2062907 2063928 2063955) (-1222 "TRANFUN.spad" 2062735 2062744 2062886 2062891) (-1221 "TRANFUN.spad" 2062572 2062583 2062725 2062730) (-1220 "TOPSP.spad" 2062246 2062255 2062562 2062567) (-1219 "TOOLSIGN.spad" 2061909 2061920 2062236 2062241) (-1218 "TEXTFILE.spad" 2060470 2060479 2061899 2061904) (-1217 "TEX.spad" 2057616 2057625 2060460 2060465) (-1216 "TEX1.spad" 2057172 2057183 2057606 2057611) (-1215 "TEMUTL.spad" 2056727 2056736 2057162 2057167) (-1214 "TBCMPPK.spad" 2054820 2054843 2056717 2056722) (-1213 "TBAGG.spad" 2053870 2053893 2054800 2054815) (-1212 "TBAGG.spad" 2052928 2052953 2053860 2053865) (-1211 "TANEXP.spad" 2052336 2052347 2052918 2052923) (-1210 "TALGOP.spad" 2052060 2052071 2052326 2052331) (-1209 "TABLE.spad" 2050471 2050494 2050741 2050768) (-1208 "TABLEAU.spad" 2049952 2049963 2050461 2050466) (-1207 "TABLBUMP.spad" 2046755 2046766 2049942 2049947) (-1206 "SYSTEM.spad" 2045983 2045992 2046745 2046750) (-1205 "SYSSOLP.spad" 2043466 2043477 2045973 2045978) (-1204 "SYSPTR.spad" 2043365 2043374 2043456 2043461) (-1203 "SYSNNI.spad" 2042547 2042558 2043355 2043360) (-1202 "SYSINT.spad" 2041951 2041962 2042537 2042542) (-1201 "SYNTAX.spad" 2038157 2038166 2041941 2041946) (-1200 "SYMTAB.spad" 2036225 2036234 2038147 2038152) (-1199 "SYMS.spad" 2032248 2032257 2036215 2036220) (-1198 "SYMPOLY.spad" 2031255 2031266 2031337 2031464) (-1197 "SYMFUNC.spad" 2030756 2030767 2031245 2031250) (-1196 "SYMBOL.spad" 2028259 2028268 2030746 2030751) (-1195 "SWITCH.spad" 2025030 2025039 2028249 2028254) (-1194 "SUTS.spad" 2022078 2022106 2023497 2023594) (-1193 "SUPXS.spad" 2019361 2019389 2020210 2020359) (-1192 "SUP.spad" 2016081 2016092 2016854 2017007) (-1191 "SUPFRACF.spad" 2015186 2015204 2016071 2016076) (-1190 "SUP2.spad" 2014578 2014591 2015176 2015181) (-1189 "SUMRF.spad" 2013552 2013563 2014568 2014573) (-1188 "SUMFS.spad" 2013189 2013206 2013542 2013547) (-1187 "SULS.spad" 2002960 2002988 2003918 2004347) (-1186 "SUCHTAST.spad" 2002729 2002738 2002950 2002955) (-1185 "SUCH.spad" 2002411 2002426 2002719 2002724) (-1184 "SUBSPACE.spad" 1994526 1994541 2002401 2002406) (-1183 "SUBRESP.spad" 1993696 1993710 1994482 1994487) (-1182 "STTF.spad" 1989795 1989811 1993686 1993691) (-1181 "STTFNC.spad" 1986263 1986279 1989785 1989790) (-1180 "STTAYLOR.spad" 1978898 1978909 1986144 1986149) (-1179 "STRTBL.spad" 1977403 1977420 1977552 1977579) (-1178 "STRING.spad" 1976558 1976567 1976572 1976599) (-1177 "STRICAT.spad" 1976245 1976254 1976526 1976553) (-1176 "STREAM.spad" 1973163 1973174 1975770 1975785) (-1175 "STREAM3.spad" 1972736 1972751 1973153 1973158) (-1174 "STREAM2.spad" 1971864 1971877 1972726 1972731) (-1173 "STREAM1.spad" 1971570 1971581 1971854 1971859) (-1172 "STINPROD.spad" 1970506 1970522 1971560 1971565) (-1171 "STEP.spad" 1969707 1969716 1970496 1970501) (-1170 "STEPAST.spad" 1968941 1968950 1969697 1969702) (-1169 "STBL.spad" 1967467 1967495 1967634 1967649) (-1168 "STAGG.spad" 1966542 1966553 1967457 1967462) (-1167 "STAGG.spad" 1965615 1965628 1966532 1966537) (-1166 "STACK.spad" 1964972 1964983 1965222 1965249) (-1165 "SREGSET.spad" 1962676 1962693 1964618 1964645) (-1164 "SRDCMPK.spad" 1961237 1961257 1962666 1962671) (-1163 "SRAGG.spad" 1956380 1956389 1961205 1961232) (-1162 "SRAGG.spad" 1951543 1951554 1956370 1956375) (-1161 "SQMATRIX.spad" 1949122 1949140 1950038 1950125) (-1160 "SPLTREE.spad" 1943674 1943687 1948558 1948585) (-1159 "SPLNODE.spad" 1940262 1940275 1943664 1943669) (-1158 "SPFCAT.spad" 1939071 1939080 1940252 1940257) (-1157 "SPECOUT.spad" 1937623 1937632 1939061 1939066) (-1156 "SPADXPT.spad" 1929218 1929227 1937613 1937618) (-1155 "spad-parser.spad" 1928683 1928692 1929208 1929213) (-1154 "SPADAST.spad" 1928384 1928393 1928673 1928678) (-1153 "SPACEC.spad" 1912583 1912594 1928374 1928379) (-1152 "SPACE3.spad" 1912359 1912370 1912573 1912578) (-1151 "SORTPAK.spad" 1911908 1911921 1912315 1912320) (-1150 "SOLVETRA.spad" 1909671 1909682 1911898 1911903) (-1149 "SOLVESER.spad" 1908199 1908210 1909661 1909666) (-1148 "SOLVERAD.spad" 1904225 1904236 1908189 1908194) (-1147 "SOLVEFOR.spad" 1902687 1902705 1904215 1904220) (-1146 "SNTSCAT.spad" 1902287 1902304 1902655 1902682) (-1145 "SMTS.spad" 1900559 1900585 1901852 1901949) (-1144 "SMP.spad" 1898034 1898054 1898424 1898551) (-1143 "SMITH.spad" 1896879 1896904 1898024 1898029) (-1142 "SMATCAT.spad" 1894989 1895019 1896823 1896874) (-1141 "SMATCAT.spad" 1893031 1893063 1894867 1894872) (-1140 "SKAGG.spad" 1891994 1892005 1892999 1893026) (-1139 "SINT.spad" 1890934 1890943 1891860 1891989) (-1138 "SIMPAN.spad" 1890662 1890671 1890924 1890929) (-1137 "SIG.spad" 1889992 1890001 1890652 1890657) (-1136 "SIGNRF.spad" 1889110 1889121 1889982 1889987) (-1135 "SIGNEF.spad" 1888389 1888406 1889100 1889105) (-1134 "SIGAST.spad" 1887774 1887783 1888379 1888384) (-1133 "SHP.spad" 1885702 1885717 1887730 1887735) (-1132 "SHDP.spad" 1873984 1874011 1874493 1874592) (-1131 "SGROUP.spad" 1873592 1873601 1873974 1873979) (-1130 "SGROUP.spad" 1873198 1873209 1873582 1873587) (-1129 "SGCF.spad" 1866337 1866346 1873188 1873193) (-1128 "SFRTCAT.spad" 1865267 1865284 1866305 1866332) (-1127 "SFRGCD.spad" 1864330 1864350 1865257 1865262) (-1126 "SFQCMPK.spad" 1858967 1858987 1864320 1864325) (-1125 "SFORT.spad" 1858406 1858420 1858957 1858962) (-1124 "SEXOF.spad" 1858249 1858289 1858396 1858401) (-1123 "SEX.spad" 1858141 1858150 1858239 1858244) (-1122 "SEXCAT.spad" 1855913 1855953 1858131 1858136) (-1121 "SET.spad" 1854237 1854248 1855334 1855373) (-1120 "SETMN.spad" 1852687 1852704 1854227 1854232) (-1119 "SETCAT.spad" 1852009 1852018 1852677 1852682) (-1118 "SETCAT.spad" 1851329 1851340 1851999 1852004) (-1117 "SETAGG.spad" 1847878 1847889 1851309 1851324) (-1116 "SETAGG.spad" 1844435 1844448 1847868 1847873) (-1115 "SEQAST.spad" 1844138 1844147 1844425 1844430) (-1114 "SEGXCAT.spad" 1843294 1843307 1844128 1844133) (-1113 "SEG.spad" 1843107 1843118 1843213 1843218) (-1112 "SEGCAT.spad" 1842032 1842043 1843097 1843102) (-1111 "SEGBIND.spad" 1841790 1841801 1841979 1841984) (-1110 "SEGBIND2.spad" 1841488 1841501 1841780 1841785) (-1109 "SEGAST.spad" 1841202 1841211 1841478 1841483) (-1108 "SEG2.spad" 1840637 1840650 1841158 1841163) (-1107 "SDVAR.spad" 1839913 1839924 1840627 1840632) (-1106 "SDPOL.spad" 1837246 1837257 1837537 1837664) (-1105 "SCPKG.spad" 1835335 1835346 1837236 1837241) (-1104 "SCOPE.spad" 1834488 1834497 1835325 1835330) (-1103 "SCACHE.spad" 1833184 1833195 1834478 1834483) (-1102 "SASTCAT.spad" 1833093 1833102 1833174 1833179) (-1101 "SAOS.spad" 1832965 1832974 1833083 1833088) (-1100 "SAERFFC.spad" 1832678 1832698 1832955 1832960) (-1099 "SAE.spad" 1830148 1830164 1830759 1830894) (-1098 "SAEFACT.spad" 1829849 1829869 1830138 1830143) (-1097 "RURPK.spad" 1827508 1827524 1829839 1829844) (-1096 "RULESET.spad" 1826961 1826985 1827498 1827503) (-1095 "RULE.spad" 1825201 1825225 1826951 1826956) (-1094 "RULECOLD.spad" 1825053 1825066 1825191 1825196) (-1093 "RTVALUE.spad" 1824788 1824797 1825043 1825048) (-1092 "RSTRCAST.spad" 1824505 1824514 1824778 1824783) (-1091 "RSETGCD.spad" 1820883 1820903 1824495 1824500) (-1090 "RSETCAT.spad" 1810819 1810836 1820851 1820878) (-1089 "RSETCAT.spad" 1800775 1800794 1810809 1810814) (-1088 "RSDCMPK.spad" 1799227 1799247 1800765 1800770) (-1087 "RRCC.spad" 1797611 1797641 1799217 1799222) (-1086 "RRCC.spad" 1795993 1796025 1797601 1797606) (-1085 "RPTAST.spad" 1795695 1795704 1795983 1795988) (-1084 "RPOLCAT.spad" 1775055 1775070 1795563 1795690) (-1083 "RPOLCAT.spad" 1754128 1754145 1774638 1774643) (-1082 "ROUTINE.spad" 1750011 1750020 1752775 1752802) (-1081 "ROMAN.spad" 1749339 1749348 1749877 1750006) (-1080 "ROIRC.spad" 1748419 1748451 1749329 1749334) (-1079 "RNS.spad" 1747322 1747331 1748321 1748414) (-1078 "RNS.spad" 1746311 1746322 1747312 1747317) (-1077 "RNG.spad" 1746046 1746055 1746301 1746306) (-1076 "RNGBIND.spad" 1745206 1745220 1746001 1746006) (-1075 "RMODULE.spad" 1744971 1744982 1745196 1745201) (-1074 "RMCAT2.spad" 1744391 1744448 1744961 1744966) (-1073 "RMATRIX.spad" 1743215 1743234 1743558 1743597) (-1072 "RMATCAT.spad" 1738794 1738825 1743171 1743210) (-1071 "RMATCAT.spad" 1734263 1734296 1738642 1738647) (-1070 "RLINSET.spad" 1733967 1733978 1734253 1734258) (-1069 "RINTERP.spad" 1733855 1733875 1733957 1733962) (-1068 "RING.spad" 1733325 1733334 1733835 1733850) (-1067 "RING.spad" 1732803 1732814 1733315 1733320) (-1066 "RIDIST.spad" 1732195 1732204 1732793 1732798) (-1065 "RGCHAIN.spad" 1730778 1730794 1731680 1731707) (-1064 "RGBCSPC.spad" 1730559 1730571 1730768 1730773) (-1063 "RGBCMDL.spad" 1730089 1730101 1730549 1730554) (-1062 "RF.spad" 1727731 1727742 1730079 1730084) (-1061 "RFFACTOR.spad" 1727193 1727204 1727721 1727726) (-1060 "RFFACT.spad" 1726928 1726940 1727183 1727188) (-1059 "RFDIST.spad" 1725924 1725933 1726918 1726923) (-1058 "RETSOL.spad" 1725343 1725356 1725914 1725919) (-1057 "RETRACT.spad" 1724771 1724782 1725333 1725338) (-1056 "RETRACT.spad" 1724197 1724210 1724761 1724766) (-1055 "RETAST.spad" 1724009 1724018 1724187 1724192) (-1054 "RESULT.spad" 1722069 1722078 1722656 1722683) (-1053 "RESRING.spad" 1721416 1721463 1722007 1722064) (-1052 "RESLATC.spad" 1720740 1720751 1721406 1721411) (-1051 "REPSQ.spad" 1720471 1720482 1720730 1720735) (-1050 "REP.spad" 1718025 1718034 1720461 1720466) (-1049 "REPDB.spad" 1717732 1717743 1718015 1718020) (-1048 "REP2.spad" 1707390 1707401 1717574 1717579) (-1047 "REP1.spad" 1701586 1701597 1707340 1707345) (-1046 "REGSET.spad" 1699383 1699400 1701232 1701259) (-1045 "REF.spad" 1698718 1698729 1699338 1699343) (-1044 "REDORDER.spad" 1697924 1697941 1698708 1698713) (-1043 "RECLOS.spad" 1696707 1696727 1697411 1697504) (-1042 "REALSOLV.spad" 1695847 1695856 1696697 1696702) (-1041 "REAL.spad" 1695719 1695728 1695837 1695842) (-1040 "REAL0Q.spad" 1693017 1693032 1695709 1695714) (-1039 "REAL0.spad" 1689861 1689876 1693007 1693012) (-1038 "RDUCEAST.spad" 1689582 1689591 1689851 1689856) (-1037 "RDIV.spad" 1689237 1689262 1689572 1689577) (-1036 "RDIST.spad" 1688804 1688815 1689227 1689232) (-1035 "RDETRS.spad" 1687668 1687686 1688794 1688799) (-1034 "RDETR.spad" 1685807 1685825 1687658 1687663) (-1033 "RDEEFS.spad" 1684906 1684923 1685797 1685802) (-1032 "RDEEF.spad" 1683916 1683933 1684896 1684901) (-1031 "RCFIELD.spad" 1681102 1681111 1683818 1683911) (-1030 "RCFIELD.spad" 1678374 1678385 1681092 1681097) (-1029 "RCAGG.spad" 1676302 1676313 1678364 1678369) (-1028 "RCAGG.spad" 1674157 1674170 1676221 1676226) (-1027 "RATRET.spad" 1673517 1673528 1674147 1674152) (-1026 "RATFACT.spad" 1673209 1673221 1673507 1673512) (-1025 "RANDSRC.spad" 1672528 1672537 1673199 1673204) (-1024 "RADUTIL.spad" 1672284 1672293 1672518 1672523) (-1023 "RADIX.spad" 1669108 1669122 1670654 1670747) (-1022 "RADFF.spad" 1666847 1666884 1666966 1667122) (-1021 "RADCAT.spad" 1666442 1666451 1666837 1666842) (-1020 "RADCAT.spad" 1666035 1666046 1666432 1666437) (-1019 "QUEUE.spad" 1665383 1665394 1665642 1665669) (-1018 "QUAT.spad" 1663871 1663882 1664214 1664279) (-1017 "QUATCT2.spad" 1663491 1663510 1663861 1663866) (-1016 "QUATCAT.spad" 1661661 1661672 1663421 1663486) (-1015 "QUATCAT.spad" 1659582 1659595 1661344 1661349) (-1014 "QUAGG.spad" 1658409 1658420 1659550 1659577) (-1013 "QQUTAST.spad" 1658177 1658186 1658399 1658404) (-1012 "QFORM.spad" 1657795 1657810 1658167 1658172) (-1011 "QFCAT.spad" 1656497 1656508 1657697 1657790) (-1010 "QFCAT.spad" 1654790 1654803 1655992 1655997) (-1009 "QFCAT2.spad" 1654482 1654499 1654780 1654785) (-1008 "QEQUAT.spad" 1654040 1654049 1654472 1654477) (-1007 "QCMPACK.spad" 1648786 1648806 1654030 1654035) (-1006 "QALGSET.spad" 1644864 1644897 1648700 1648705) (-1005 "QALGSET2.spad" 1642859 1642878 1644854 1644859) (-1004 "PWFFINTB.spad" 1640274 1640296 1642849 1642854) (-1003 "PUSHVAR.spad" 1639612 1639632 1640264 1640269) (-1002 "PTRANFN.spad" 1635739 1635750 1639602 1639607) (-1001 "PTPACK.spad" 1632826 1632837 1635729 1635734) (-1000 "PTFUNC2.spad" 1632648 1632663 1632816 1632821) (-999 "PTCAT.spad" 1631903 1631913 1632616 1632643) (-998 "PSQFR.spad" 1631210 1631234 1631893 1631898) (-997 "PSEUDLIN.spad" 1630096 1630106 1631200 1631205) (-996 "PSETPK.spad" 1615529 1615545 1629974 1629979) (-995 "PSETCAT.spad" 1609449 1609472 1615509 1615524) (-994 "PSETCAT.spad" 1603343 1603368 1609405 1609410) (-993 "PSCURVE.spad" 1602326 1602334 1603333 1603338) (-992 "PSCAT.spad" 1601109 1601138 1602224 1602321) (-991 "PSCAT.spad" 1599982 1600013 1601099 1601104) (-990 "PRTITION.spad" 1598680 1598688 1599972 1599977) (-989 "PRTDAST.spad" 1598399 1598407 1598670 1598675) (-988 "PRS.spad" 1587961 1587978 1598355 1598360) (-987 "PRQAGG.spad" 1587396 1587406 1587929 1587956) (-986 "PROPLOG.spad" 1586968 1586976 1587386 1587391) (-985 "PROPFUN2.spad" 1586591 1586604 1586958 1586963) (-984 "PROPFUN1.spad" 1585989 1586000 1586581 1586586) (-983 "PROPFRML.spad" 1584557 1584568 1585979 1585984) (-982 "PROPERTY.spad" 1584045 1584053 1584547 1584552) (-981 "PRODUCT.spad" 1581727 1581739 1582011 1582066) (-980 "PR.spad" 1580119 1580131 1580818 1580945) (-979 "PRINT.spad" 1579871 1579879 1580109 1580114) (-978 "PRIMES.spad" 1578124 1578134 1579861 1579866) (-977 "PRIMELT.spad" 1576205 1576219 1578114 1578119) (-976 "PRIMCAT.spad" 1575832 1575840 1576195 1576200) (-975 "PRIMARR.spad" 1574837 1574847 1575015 1575042) (-974 "PRIMARR2.spad" 1573604 1573616 1574827 1574832) (-973 "PREASSOC.spad" 1572986 1572998 1573594 1573599) (-972 "PPCURVE.spad" 1572123 1572131 1572976 1572981) (-971 "PORTNUM.spad" 1571898 1571906 1572113 1572118) (-970 "POLYROOT.spad" 1570747 1570769 1571854 1571859) (-969 "POLY.spad" 1568082 1568092 1568597 1568724) (-968 "POLYLIFT.spad" 1567347 1567370 1568072 1568077) (-967 "POLYCATQ.spad" 1565465 1565487 1567337 1567342) (-966 "POLYCAT.spad" 1558935 1558956 1565333 1565460) (-965 "POLYCAT.spad" 1551743 1551766 1558143 1558148) (-964 "POLY2UP.spad" 1551195 1551209 1551733 1551738) (-963 "POLY2.spad" 1550792 1550804 1551185 1551190) (-962 "POLUTIL.spad" 1549733 1549762 1550748 1550753) (-961 "POLTOPOL.spad" 1548481 1548496 1549723 1549728) (-960 "POINT.spad" 1547319 1547329 1547406 1547433) (-959 "PNTHEORY.spad" 1544021 1544029 1547309 1547314) (-958 "PMTOOLS.spad" 1542796 1542810 1544011 1544016) (-957 "PMSYM.spad" 1542345 1542355 1542786 1542791) (-956 "PMQFCAT.spad" 1541936 1541950 1542335 1542340) (-955 "PMPRED.spad" 1541415 1541429 1541926 1541931) (-954 "PMPREDFS.spad" 1540869 1540891 1541405 1541410) (-953 "PMPLCAT.spad" 1539949 1539967 1540801 1540806) (-952 "PMLSAGG.spad" 1539534 1539548 1539939 1539944) (-951 "PMKERNEL.spad" 1539113 1539125 1539524 1539529) (-950 "PMINS.spad" 1538693 1538703 1539103 1539108) (-949 "PMFS.spad" 1538270 1538288 1538683 1538688) (-948 "PMDOWN.spad" 1537560 1537574 1538260 1538265) (-947 "PMASS.spad" 1536570 1536578 1537550 1537555) (-946 "PMASSFS.spad" 1535537 1535553 1536560 1536565) (-945 "PLOTTOOL.spad" 1535317 1535325 1535527 1535532) (-944 "PLOT.spad" 1530240 1530248 1535307 1535312) (-943 "PLOT3D.spad" 1526704 1526712 1530230 1530235) (-942 "PLOT1.spad" 1525861 1525871 1526694 1526699) (-941 "PLEQN.spad" 1513151 1513178 1525851 1525856) (-940 "PINTERP.spad" 1512773 1512792 1513141 1513146) (-939 "PINTERPA.spad" 1512557 1512573 1512763 1512768) (-938 "PI.spad" 1512166 1512174 1512531 1512552) (-937 "PID.spad" 1511136 1511144 1512092 1512161) (-936 "PICOERCE.spad" 1510793 1510803 1511126 1511131) (-935 "PGROEB.spad" 1509394 1509408 1510783 1510788) (-934 "PGE.spad" 1501011 1501019 1509384 1509389) (-933 "PGCD.spad" 1499901 1499918 1501001 1501006) (-932 "PFRPAC.spad" 1499050 1499060 1499891 1499896) (-931 "PFR.spad" 1495713 1495723 1498952 1499045) (-930 "PFOTOOLS.spad" 1494971 1494987 1495703 1495708) (-929 "PFOQ.spad" 1494341 1494359 1494961 1494966) (-928 "PFO.spad" 1493760 1493787 1494331 1494336) (-927 "PF.spad" 1493334 1493346 1493565 1493658) (-926 "PFECAT.spad" 1491016 1491024 1493260 1493329) (-925 "PFECAT.spad" 1488726 1488736 1490972 1490977) (-924 "PFBRU.spad" 1486614 1486626 1488716 1488721) (-923 "PFBR.spad" 1484174 1484197 1486604 1486609) (-922 "PERM.spad" 1479981 1479991 1484004 1484019) (-921 "PERMGRP.spad" 1474751 1474761 1479971 1479976) (-920 "PERMCAT.spad" 1473412 1473422 1474731 1474746) (-919 "PERMAN.spad" 1471944 1471958 1473402 1473407) (-918 "PENDTREE.spad" 1471285 1471295 1471573 1471578) (-917 "PDSPC.spad" 1470098 1470108 1471275 1471280) (-916 "PDSPC.spad" 1468909 1468921 1470088 1470093) (-915 "PDRING.spad" 1468751 1468761 1468889 1468904) (-914 "PDMOD.spad" 1468567 1468579 1468719 1468746) (-913 "PDEPROB.spad" 1467582 1467590 1468557 1468562) (-912 "PDEPACK.spad" 1461622 1461630 1467572 1467577) (-911 "PDECOMP.spad" 1461092 1461109 1461612 1461617) (-910 "PDECAT.spad" 1459448 1459456 1461082 1461087) (-909 "PDDOM.spad" 1458886 1458899 1459438 1459443) (-908 "PDDOM.spad" 1458322 1458337 1458876 1458881) (-907 "PCOMP.spad" 1458175 1458188 1458312 1458317) (-906 "PBWLB.spad" 1456763 1456780 1458165 1458170) (-905 "PATTERN.spad" 1451302 1451312 1456753 1456758) (-904 "PATTERN2.spad" 1451040 1451052 1451292 1451297) (-903 "PATTERN1.spad" 1449376 1449392 1451030 1451035) (-902 "PATRES.spad" 1446951 1446963 1449366 1449371) (-901 "PATRES2.spad" 1446623 1446637 1446941 1446946) (-900 "PATMATCH.spad" 1444820 1444851 1446331 1446336) (-899 "PATMAB.spad" 1444249 1444259 1444810 1444815) (-898 "PATLRES.spad" 1443335 1443349 1444239 1444244) (-897 "PATAB.spad" 1443099 1443109 1443325 1443330) (-896 "PARTPERM.spad" 1441107 1441115 1443089 1443094) (-895 "PARSURF.spad" 1440541 1440569 1441097 1441102) (-894 "PARSU2.spad" 1440338 1440354 1440531 1440536) (-893 "script-parser.spad" 1439858 1439866 1440328 1440333) (-892 "PARSCURV.spad" 1439292 1439320 1439848 1439853) (-891 "PARSC2.spad" 1439083 1439099 1439282 1439287) (-890 "PARPCURV.spad" 1438545 1438573 1439073 1439078) (-889 "PARPC2.spad" 1438336 1438352 1438535 1438540) (-888 "PARAMAST.spad" 1437464 1437472 1438326 1438331) (-887 "PAN2EXPR.spad" 1436876 1436884 1437454 1437459) (-886 "PALETTE.spad" 1435846 1435854 1436866 1436871) (-885 "PAIR.spad" 1434833 1434846 1435434 1435439) (-884 "PADICRC.spad" 1432074 1432092 1433245 1433338) (-883 "PADICRAT.spad" 1429982 1429994 1430203 1430296) (-882 "PADIC.spad" 1429677 1429689 1429908 1429977) (-881 "PADICCT.spad" 1428226 1428238 1429603 1429672) (-880 "PADEPAC.spad" 1426915 1426934 1428216 1428221) (-879 "PADE.spad" 1425667 1425683 1426905 1426910) (-878 "OWP.spad" 1424907 1424937 1425525 1425592) (-877 "OVERSET.spad" 1424480 1424488 1424897 1424902) (-876 "OVAR.spad" 1424261 1424284 1424470 1424475) (-875 "OUT.spad" 1423347 1423355 1424251 1424256) (-874 "OUTFORM.spad" 1412739 1412747 1423337 1423342) (-873 "OUTBFILE.spad" 1412157 1412165 1412729 1412734) (-872 "OUTBCON.spad" 1411163 1411171 1412147 1412152) (-871 "OUTBCON.spad" 1410167 1410177 1411153 1411158) (-870 "OSI.spad" 1409642 1409650 1410157 1410162) (-869 "OSGROUP.spad" 1409560 1409568 1409632 1409637) (-868 "ORTHPOL.spad" 1408045 1408055 1409477 1409482) (-867 "OREUP.spad" 1407498 1407526 1407725 1407764) (-866 "ORESUP.spad" 1406799 1406823 1407178 1407217) (-865 "OREPCTO.spad" 1404656 1404668 1406719 1406724) (-864 "OREPCAT.spad" 1398803 1398813 1404612 1404651) (-863 "OREPCAT.spad" 1392840 1392852 1398651 1398656) (-862 "ORDSET.spad" 1392012 1392020 1392830 1392835) (-861 "ORDSET.spad" 1391182 1391192 1392002 1392007) (-860 "ORDRING.spad" 1390572 1390580 1391162 1391177) (-859 "ORDRING.spad" 1389970 1389980 1390562 1390567) (-858 "ORDMON.spad" 1389825 1389833 1389960 1389965) (-857 "ORDFUNS.spad" 1388957 1388973 1389815 1389820) (-856 "ORDFIN.spad" 1388777 1388785 1388947 1388952) (-855 "ORDCOMP.spad" 1387242 1387252 1388324 1388353) (-854 "ORDCOMP2.spad" 1386535 1386547 1387232 1387237) (-853 "OPTPROB.spad" 1385173 1385181 1386525 1386530) (-852 "OPTPACK.spad" 1377582 1377590 1385163 1385168) (-851 "OPTCAT.spad" 1375261 1375269 1377572 1377577) (-850 "OPSIG.spad" 1374915 1374923 1375251 1375256) (-849 "OPQUERY.spad" 1374464 1374472 1374905 1374910) (-848 "OP.spad" 1374206 1374216 1374286 1374353) (-847 "OPERCAT.spad" 1373672 1373682 1374196 1374201) (-846 "OPERCAT.spad" 1373136 1373148 1373662 1373667) (-845 "ONECOMP.spad" 1371881 1371891 1372683 1372712) (-844 "ONECOMP2.spad" 1371305 1371317 1371871 1371876) (-843 "OMSERVER.spad" 1370311 1370319 1371295 1371300) (-842 "OMSAGG.spad" 1370099 1370109 1370267 1370306) (-841 "OMPKG.spad" 1368715 1368723 1370089 1370094) (-840 "OM.spad" 1367688 1367696 1368705 1368710) (-839 "OMLO.spad" 1367113 1367125 1367574 1367613) (-838 "OMEXPR.spad" 1366947 1366957 1367103 1367108) (-837 "OMERR.spad" 1366492 1366500 1366937 1366942) (-836 "OMERRK.spad" 1365526 1365534 1366482 1366487) (-835 "OMENC.spad" 1364870 1364878 1365516 1365521) (-834 "OMDEV.spad" 1359179 1359187 1364860 1364865) (-833 "OMCONN.spad" 1358588 1358596 1359169 1359174) (-832 "OINTDOM.spad" 1358351 1358359 1358514 1358583) (-831 "OFMONOID.spad" 1356474 1356484 1358307 1358312) (-830 "ODVAR.spad" 1355735 1355745 1356464 1356469) (-829 "ODR.spad" 1355379 1355405 1355547 1355696) (-828 "ODPOL.spad" 1352668 1352678 1353008 1353135) (-827 "ODP.spad" 1341086 1341106 1341459 1341558) (-826 "ODETOOLS.spad" 1339735 1339754 1341076 1341081) (-825 "ODESYS.spad" 1337429 1337446 1339725 1339730) (-824 "ODERTRIC.spad" 1333438 1333455 1337386 1337391) (-823 "ODERED.spad" 1332837 1332861 1333428 1333433) (-822 "ODERAT.spad" 1330452 1330469 1332827 1332832) (-821 "ODEPRRIC.spad" 1327489 1327511 1330442 1330447) (-820 "ODEPROB.spad" 1326746 1326754 1327479 1327484) (-819 "ODEPRIM.spad" 1324080 1324102 1326736 1326741) (-818 "ODEPAL.spad" 1323466 1323490 1324070 1324075) (-817 "ODEPACK.spad" 1310132 1310140 1323456 1323461) (-816 "ODEINT.spad" 1309567 1309583 1310122 1310127) (-815 "ODEIFTBL.spad" 1306962 1306970 1309557 1309562) (-814 "ODEEF.spad" 1302453 1302469 1306952 1306957) (-813 "ODECONST.spad" 1301990 1302008 1302443 1302448) (-812 "ODECAT.spad" 1300588 1300596 1301980 1301985) (-811 "OCT.spad" 1298724 1298734 1299438 1299477) (-810 "OCTCT2.spad" 1298370 1298391 1298714 1298719) (-809 "OC.spad" 1296166 1296176 1298326 1298365) (-808 "OC.spad" 1293687 1293699 1295849 1295854) (-807 "OCAMON.spad" 1293535 1293543 1293677 1293682) (-806 "OASGP.spad" 1293350 1293358 1293525 1293530) (-805 "OAMONS.spad" 1292872 1292880 1293340 1293345) (-804 "OAMON.spad" 1292733 1292741 1292862 1292867) (-803 "OAGROUP.spad" 1292595 1292603 1292723 1292728) (-802 "NUMTUBE.spad" 1292186 1292202 1292585 1292590) (-801 "NUMQUAD.spad" 1280162 1280170 1292176 1292181) (-800 "NUMODE.spad" 1271516 1271524 1280152 1280157) (-799 "NUMINT.spad" 1269082 1269090 1271506 1271511) (-798 "NUMFMT.spad" 1267922 1267930 1269072 1269077) (-797 "NUMERIC.spad" 1260036 1260046 1267727 1267732) (-796 "NTSCAT.spad" 1258544 1258560 1260004 1260031) (-795 "NTPOLFN.spad" 1258095 1258105 1258461 1258466) (-794 "NSUP.spad" 1251048 1251058 1255588 1255741) (-793 "NSUP2.spad" 1250440 1250452 1251038 1251043) (-792 "NSMP.spad" 1246670 1246689 1246978 1247105) (-791 "NREP.spad" 1245048 1245062 1246660 1246665) (-790 "NPCOEF.spad" 1244294 1244314 1245038 1245043) (-789 "NORMRETR.spad" 1243892 1243931 1244284 1244289) (-788 "NORMPK.spad" 1241794 1241813 1243882 1243887) (-787 "NORMMA.spad" 1241482 1241508 1241784 1241789) (-786 "NONE.spad" 1241223 1241231 1241472 1241477) (-785 "NONE1.spad" 1240899 1240909 1241213 1241218) (-784 "NODE1.spad" 1240386 1240402 1240889 1240894) (-783 "NNI.spad" 1239281 1239289 1240360 1240381) (-782 "NLINSOL.spad" 1237907 1237917 1239271 1239276) (-781 "NIPROB.spad" 1236448 1236456 1237897 1237902) (-780 "NFINTBAS.spad" 1234008 1234025 1236438 1236443) (-779 "NETCLT.spad" 1233982 1233993 1233998 1234003) (-778 "NCODIV.spad" 1232198 1232214 1233972 1233977) (-777 "NCNTFRAC.spad" 1231840 1231854 1232188 1232193) (-776 "NCEP.spad" 1230006 1230020 1231830 1231835) (-775 "NASRING.spad" 1229602 1229610 1229996 1230001) (-774 "NASRING.spad" 1229196 1229206 1229592 1229597) (-773 "NARNG.spad" 1228548 1228556 1229186 1229191) (-772 "NARNG.spad" 1227898 1227908 1228538 1228543) (-771 "NAGSP.spad" 1226975 1226983 1227888 1227893) (-770 "NAGS.spad" 1216636 1216644 1226965 1226970) (-769 "NAGF07.spad" 1215067 1215075 1216626 1216631) (-768 "NAGF04.spad" 1209469 1209477 1215057 1215062) (-767 "NAGF02.spad" 1203538 1203546 1209459 1209464) (-766 "NAGF01.spad" 1199299 1199307 1203528 1203533) (-765 "NAGE04.spad" 1192999 1193007 1199289 1199294) (-764 "NAGE02.spad" 1183659 1183667 1192989 1192994) (-763 "NAGE01.spad" 1179661 1179669 1183649 1183654) (-762 "NAGD03.spad" 1177665 1177673 1179651 1179656) (-761 "NAGD02.spad" 1170412 1170420 1177655 1177660) (-760 "NAGD01.spad" 1164705 1164713 1170402 1170407) (-759 "NAGC06.spad" 1160580 1160588 1164695 1164700) (-758 "NAGC05.spad" 1159081 1159089 1160570 1160575) (-757 "NAGC02.spad" 1158348 1158356 1159071 1159076) (-756 "NAALG.spad" 1157889 1157899 1158316 1158343) (-755 "NAALG.spad" 1157450 1157462 1157879 1157884) (-754 "MULTSQFR.spad" 1154408 1154425 1157440 1157445) (-753 "MULTFACT.spad" 1153791 1153808 1154398 1154403) (-752 "MTSCAT.spad" 1151885 1151906 1153689 1153786) (-751 "MTHING.spad" 1151544 1151554 1151875 1151880) (-750 "MSYSCMD.spad" 1150978 1150986 1151534 1151539) (-749 "MSET.spad" 1148936 1148946 1150684 1150723) (-748 "MSETAGG.spad" 1148781 1148791 1148904 1148931) (-747 "MRING.spad" 1145758 1145770 1148489 1148556) (-746 "MRF2.spad" 1145328 1145342 1145748 1145753) (-745 "MRATFAC.spad" 1144874 1144891 1145318 1145323) (-744 "MPRFF.spad" 1142914 1142933 1144864 1144869) (-743 "MPOLY.spad" 1140385 1140400 1140744 1140871) (-742 "MPCPF.spad" 1139649 1139668 1140375 1140380) (-741 "MPC3.spad" 1139466 1139506 1139639 1139644) (-740 "MPC2.spad" 1139112 1139145 1139456 1139461) (-739 "MONOTOOL.spad" 1137463 1137480 1139102 1139107) (-738 "MONOID.spad" 1136782 1136790 1137453 1137458) (-737 "MONOID.spad" 1136099 1136109 1136772 1136777) (-736 "MONOGEN.spad" 1134847 1134860 1135959 1136094) (-735 "MONOGEN.spad" 1133617 1133632 1134731 1134736) (-734 "MONADWU.spad" 1131647 1131655 1133607 1133612) (-733 "MONADWU.spad" 1129675 1129685 1131637 1131642) (-732 "MONAD.spad" 1128835 1128843 1129665 1129670) (-731 "MONAD.spad" 1127993 1128003 1128825 1128830) (-730 "MOEBIUS.spad" 1126729 1126743 1127973 1127988) (-729 "MODULE.spad" 1126599 1126609 1126697 1126724) (-728 "MODULE.spad" 1126489 1126501 1126589 1126594) (-727 "MODRING.spad" 1125824 1125863 1126469 1126484) (-726 "MODOP.spad" 1124489 1124501 1125646 1125713) (-725 "MODMONOM.spad" 1124220 1124238 1124479 1124484) (-724 "MODMON.spad" 1120922 1120938 1121641 1121794) (-723 "MODFIELD.spad" 1120284 1120323 1120824 1120917) (-722 "MMLFORM.spad" 1119144 1119152 1120274 1120279) (-721 "MMAP.spad" 1118886 1118920 1119134 1119139) (-720 "MLO.spad" 1117345 1117355 1118842 1118881) (-719 "MLIFT.spad" 1115957 1115974 1117335 1117340) (-718 "MKUCFUNC.spad" 1115492 1115510 1115947 1115952) (-717 "MKRECORD.spad" 1115096 1115109 1115482 1115487) (-716 "MKFUNC.spad" 1114503 1114513 1115086 1115091) (-715 "MKFLCFN.spad" 1113471 1113481 1114493 1114498) (-714 "MKBCFUNC.spad" 1112966 1112984 1113461 1113466) (-713 "MINT.spad" 1112405 1112413 1112868 1112961) (-712 "MHROWRED.spad" 1110916 1110926 1112395 1112400) (-711 "MFLOAT.spad" 1109436 1109444 1110806 1110911) (-710 "MFINFACT.spad" 1108836 1108858 1109426 1109431) (-709 "MESH.spad" 1106618 1106626 1108826 1108831) (-708 "MDDFACT.spad" 1104829 1104839 1106608 1106613) (-707 "MDAGG.spad" 1104120 1104130 1104809 1104824) (-706 "MCMPLX.spad" 1099551 1099559 1100165 1100366) (-705 "MCDEN.spad" 1098761 1098773 1099541 1099546) (-704 "MCALCFN.spad" 1095883 1095909 1098751 1098756) (-703 "MAYBE.spad" 1095167 1095178 1095873 1095878) (-702 "MATSTOR.spad" 1092475 1092485 1095157 1095162) (-701 "MATRIX.spad" 1091179 1091189 1091663 1091690) (-700 "MATLIN.spad" 1088523 1088547 1091063 1091068) (-699 "MATCAT.spad" 1080252 1080274 1088491 1088518) (-698 "MATCAT.spad" 1071853 1071877 1080094 1080099) (-697 "MATCAT2.spad" 1071135 1071183 1071843 1071848) (-696 "MAPPKG3.spad" 1070050 1070064 1071125 1071130) (-695 "MAPPKG2.spad" 1069388 1069400 1070040 1070045) (-694 "MAPPKG1.spad" 1068216 1068226 1069378 1069383) (-693 "MAPPAST.spad" 1067531 1067539 1068206 1068211) (-692 "MAPHACK3.spad" 1067343 1067357 1067521 1067526) (-691 "MAPHACK2.spad" 1067112 1067124 1067333 1067338) (-690 "MAPHACK1.spad" 1066756 1066766 1067102 1067107) (-689 "MAGMA.spad" 1064546 1064563 1066746 1066751) (-688 "MACROAST.spad" 1064125 1064133 1064536 1064541) (-687 "M3D.spad" 1061845 1061855 1063503 1063508) (-686 "LZSTAGG.spad" 1059083 1059093 1061835 1061840) (-685 "LZSTAGG.spad" 1056319 1056331 1059073 1059078) (-684 "LWORD.spad" 1053024 1053041 1056309 1056314) (-683 "LSTAST.spad" 1052808 1052816 1053014 1053019) (-682 "LSQM.spad" 1051001 1051015 1051395 1051446) (-681 "LSPP.spad" 1050536 1050553 1050991 1050996) (-680 "LSMP.spad" 1049386 1049414 1050526 1050531) (-679 "LSMP1.spad" 1047204 1047218 1049376 1049381) (-678 "LSAGG.spad" 1046873 1046883 1047172 1047199) (-677 "LSAGG.spad" 1046562 1046574 1046863 1046868) (-676 "LPOLY.spad" 1045516 1045535 1046418 1046487) (-675 "LPEFRAC.spad" 1044787 1044797 1045506 1045511) (-674 "LO.spad" 1044188 1044202 1044721 1044748) (-673 "LOGIC.spad" 1043790 1043798 1044178 1044183) (-672 "LOGIC.spad" 1043390 1043400 1043780 1043785) (-671 "LODOOPS.spad" 1042320 1042332 1043380 1043385) (-670 "LODO.spad" 1041704 1041720 1042000 1042039) (-669 "LODOF.spad" 1040750 1040767 1041661 1041666) (-668 "LODOCAT.spad" 1039416 1039426 1040706 1040745) (-667 "LODOCAT.spad" 1038080 1038092 1039372 1039377) (-666 "LODO2.spad" 1037353 1037365 1037760 1037799) (-665 "LODO1.spad" 1036753 1036763 1037033 1037072) (-664 "LODEEF.spad" 1035555 1035573 1036743 1036748) (-663 "LNAGG.spad" 1031702 1031712 1035545 1035550) (-662 "LNAGG.spad" 1027813 1027825 1031658 1031663) (-661 "LMOPS.spad" 1024581 1024598 1027803 1027808) (-660 "LMODULE.spad" 1024349 1024359 1024571 1024576) (-659 "LMDICT.spad" 1023636 1023646 1023900 1023927) (-658 "LLINSET.spad" 1023343 1023353 1023626 1023631) (-657 "LITERAL.spad" 1023249 1023260 1023333 1023338) (-656 "LIST.spad" 1020984 1020994 1022396 1022423) (-655 "LIST3.spad" 1020295 1020309 1020974 1020979) (-654 "LIST2.spad" 1018997 1019009 1020285 1020290) (-653 "LIST2MAP.spad" 1015900 1015912 1018987 1018992) (-652 "LINSET.spad" 1015679 1015689 1015890 1015895) (-651 "LINEXP.spad" 1014448 1014458 1015669 1015674) (-650 "LINDEP.spad" 1013257 1013269 1014360 1014365) (-649 "LIMITRF.spad" 1011185 1011195 1013247 1013252) (-648 "LIMITPS.spad" 1010088 1010101 1011175 1011180) (-647 "LIE.spad" 1008104 1008116 1009378 1009523) (-646 "LIECAT.spad" 1007580 1007590 1008030 1008099) (-645 "LIECAT.spad" 1007084 1007096 1007536 1007541) (-644 "LIB.spad" 1005297 1005305 1005743 1005758) (-643 "LGROBP.spad" 1002650 1002669 1005287 1005292) (-642 "LF.spad" 1001605 1001621 1002640 1002645) (-641 "LFCAT.spad" 1000664 1000672 1001595 1001600) (-640 "LEXTRIPK.spad" 996167 996182 1000654 1000659) (-639 "LEXP.spad" 994170 994197 996147 996162) (-638 "LETAST.spad" 993869 993877 994160 994165) (-637 "LEADCDET.spad" 992267 992284 993859 993864) (-636 "LAZM3PK.spad" 990971 990993 992257 992262) (-635 "LAUPOL.spad" 989571 989584 990471 990540) (-634 "LAPLACE.spad" 989154 989170 989561 989566) (-633 "LA.spad" 988594 988608 989076 989115) (-632 "LALG.spad" 988370 988380 988574 988589) (-631 "LALG.spad" 988154 988166 988360 988365) (-630 "KVTFROM.spad" 987889 987899 988144 988149) (-629 "KTVLOGIC.spad" 987401 987409 987879 987884) (-628 "KRCFROM.spad" 987139 987149 987391 987396) (-627 "KOVACIC.spad" 985862 985879 987129 987134) (-626 "KONVERT.spad" 985584 985594 985852 985857) (-625 "KOERCE.spad" 985321 985331 985574 985579) (-624 "KERNEL.spad" 983976 983986 985105 985110) (-623 "KERNEL2.spad" 983679 983691 983966 983971) (-622 "KDAGG.spad" 982788 982810 983659 983674) (-621 "KDAGG.spad" 981905 981929 982778 982783) (-620 "KAFILE.spad" 980868 980884 981103 981130) (-619 "JORDAN.spad" 978697 978709 980158 980303) (-618 "JOINAST.spad" 978391 978399 978687 978692) (-617 "JAVACODE.spad" 978257 978265 978381 978386) (-616 "IXAGG.spad" 976390 976414 978247 978252) (-615 "IXAGG.spad" 974378 974404 976237 976242) (-614 "IVECTOR.spad" 973148 973163 973303 973330) (-613 "ITUPLE.spad" 972309 972319 973138 973143) (-612 "ITRIGMNP.spad" 971148 971167 972299 972304) (-611 "ITFUN3.spad" 970654 970668 971138 971143) (-610 "ITFUN2.spad" 970398 970410 970644 970649) (-609 "ITFORM.spad" 969753 969761 970388 970393) (-608 "ITAYLOR.spad" 967747 967762 969617 969714) (-607 "ISUPS.spad" 960184 960199 966721 966818) (-606 "ISUMP.spad" 959685 959701 960174 960179) (-605 "ISTRING.spad" 958773 958786 958854 958881) (-604 "ISAST.spad" 958492 958500 958763 958768) (-603 "IRURPK.spad" 957209 957228 958482 958487) (-602 "IRSN.spad" 955181 955189 957199 957204) (-601 "IRRF2F.spad" 953666 953676 955137 955142) (-600 "IRREDFFX.spad" 953267 953278 953656 953661) (-599 "IROOT.spad" 951606 951616 953257 953262) (-598 "IR.spad" 949407 949421 951461 951488) (-597 "IRFORM.spad" 948731 948739 949397 949402) (-596 "IR2.spad" 947759 947775 948721 948726) (-595 "IR2F.spad" 946965 946981 947749 947754) (-594 "IPRNTPK.spad" 946725 946733 946955 946960) (-593 "IPF.spad" 946290 946302 946530 946623) (-592 "IPADIC.spad" 946051 946077 946216 946285) (-591 "IP4ADDR.spad" 945608 945616 946041 946046) (-590 "IOMODE.spad" 945130 945138 945598 945603) (-589 "IOBFILE.spad" 944491 944499 945120 945125) (-588 "IOBCON.spad" 944356 944364 944481 944486) (-587 "INVLAPLA.spad" 944005 944021 944346 944351) (-586 "INTTR.spad" 937387 937404 943995 944000) (-585 "INTTOOLS.spad" 935142 935158 936961 936966) (-584 "INTSLPE.spad" 934462 934470 935132 935137) (-583 "INTRVL.spad" 934028 934038 934376 934457) (-582 "INTRF.spad" 932452 932466 934018 934023) (-581 "INTRET.spad" 931884 931894 932442 932447) (-580 "INTRAT.spad" 930611 930628 931874 931879) (-579 "INTPM.spad" 928996 929012 930254 930259) (-578 "INTPAF.spad" 926860 926878 928928 928933) (-577 "INTPACK.spad" 917234 917242 926850 926855) (-576 "INT.spad" 916682 916690 917088 917229) (-575 "INTHERTR.spad" 915956 915973 916672 916677) (-574 "INTHERAL.spad" 915626 915650 915946 915951) (-573 "INTHEORY.spad" 912065 912073 915616 915621) (-572 "INTG0.spad" 905798 905816 911997 912002) (-571 "INTFTBL.spad" 899827 899835 905788 905793) (-570 "INTFACT.spad" 898886 898896 899817 899822) (-569 "INTEF.spad" 897271 897287 898876 898881) (-568 "INTDOM.spad" 895894 895902 897197 897266) (-567 "INTDOM.spad" 894579 894589 895884 895889) (-566 "INTCAT.spad" 892838 892848 894493 894574) (-565 "INTBIT.spad" 892345 892353 892828 892833) (-564 "INTALG.spad" 891533 891560 892335 892340) (-563 "INTAF.spad" 891033 891049 891523 891528) (-562 "INTABL.spad" 889551 889582 889714 889741) (-561 "INT8.spad" 889431 889439 889541 889546) (-560 "INT64.spad" 889310 889318 889421 889426) (-559 "INT32.spad" 889189 889197 889300 889305) (-558 "INT16.spad" 889068 889076 889179 889184) (-557 "INS.spad" 886571 886579 888970 889063) (-556 "INS.spad" 884160 884170 886561 886566) (-555 "INPSIGN.spad" 883608 883621 884150 884155) (-554 "INPRODPF.spad" 882704 882723 883598 883603) (-553 "INPRODFF.spad" 881792 881816 882694 882699) (-552 "INNMFACT.spad" 880767 880784 881782 881787) (-551 "INMODGCD.spad" 880255 880285 880757 880762) (-550 "INFSP.spad" 878552 878574 880245 880250) (-549 "INFPROD0.spad" 877632 877651 878542 878547) (-548 "INFORM.spad" 874831 874839 877622 877627) (-547 "INFORM1.spad" 874456 874466 874821 874826) (-546 "INFINITY.spad" 874008 874016 874446 874451) (-545 "INETCLTS.spad" 873985 873993 873998 874003) (-544 "INEP.spad" 872523 872545 873975 873980) (-543 "INDE.spad" 872252 872269 872513 872518) (-542 "INCRMAPS.spad" 871673 871683 872242 872247) (-541 "INBFILE.spad" 870745 870753 871663 871668) (-540 "INBFF.spad" 866539 866550 870735 870740) (-539 "INBCON.spad" 864829 864837 866529 866534) (-538 "INBCON.spad" 863117 863127 864819 864824) (-537 "INAST.spad" 862778 862786 863107 863112) (-536 "IMPTAST.spad" 862486 862494 862768 862773) (-535 "IMATRIX.spad" 861431 861457 861943 861970) (-534 "IMATQF.spad" 860525 860569 861387 861392) (-533 "IMATLIN.spad" 859130 859154 860481 860486) (-532 "ILIST.spad" 857788 857803 858313 858340) (-531 "IIARRAY2.spad" 857176 857214 857395 857422) (-530 "IFF.spad" 856586 856602 856857 856950) (-529 "IFAST.spad" 856200 856208 856576 856581) (-528 "IFARRAY.spad" 853693 853708 855383 855410) (-527 "IFAMON.spad" 853555 853572 853649 853654) (-526 "IEVALAB.spad" 852960 852972 853545 853550) (-525 "IEVALAB.spad" 852363 852377 852950 852955) (-524 "IDPO.spad" 852161 852173 852353 852358) (-523 "IDPOAMS.spad" 851917 851929 852151 852156) (-522 "IDPOAM.spad" 851637 851649 851907 851912) (-521 "IDPC.spad" 850575 850587 851627 851632) (-520 "IDPAM.spad" 850320 850332 850565 850570) (-519 "IDPAG.spad" 850067 850079 850310 850315) (-518 "IDENT.spad" 849717 849725 850057 850062) (-517 "IDECOMP.spad" 846956 846974 849707 849712) (-516 "IDEAL.spad" 841905 841944 846891 846896) (-515 "ICDEN.spad" 841094 841110 841895 841900) (-514 "ICARD.spad" 840285 840293 841084 841089) (-513 "IBPTOOLS.spad" 838892 838909 840275 840280) (-512 "IBITS.spad" 838095 838108 838528 838555) (-511 "IBATOOL.spad" 835072 835091 838085 838090) (-510 "IBACHIN.spad" 833579 833594 835062 835067) (-509 "IARRAY2.spad" 832567 832593 833186 833213) (-508 "IARRAY1.spad" 831612 831627 831750 831777) (-507 "IAN.spad" 829835 829843 831428 831521) (-506 "IALGFACT.spad" 829438 829471 829825 829830) (-505 "HYPCAT.spad" 828862 828870 829428 829433) (-504 "HYPCAT.spad" 828284 828294 828852 828857) (-503 "HOSTNAME.spad" 828092 828100 828274 828279) (-502 "HOMOTOP.spad" 827835 827845 828082 828087) (-501 "HOAGG.spad" 825117 825127 827825 827830) (-500 "HOAGG.spad" 822174 822186 824884 824889) (-499 "HEXADEC.spad" 820179 820187 820544 820637) (-498 "HEUGCD.spad" 819214 819225 820169 820174) (-497 "HELLFDIV.spad" 818804 818828 819204 819209) (-496 "HEAP.spad" 818196 818206 818411 818438) (-495 "HEADAST.spad" 817729 817737 818186 818191) (-494 "HDP.spad" 806143 806159 806520 806619) (-493 "HDMP.spad" 803357 803372 803973 804100) (-492 "HB.spad" 801608 801616 803347 803352) (-491 "HASHTBL.spad" 800078 800109 800289 800316) (-490 "HASAST.spad" 799794 799802 800068 800073) (-489 "HACKPI.spad" 799285 799293 799696 799789) (-488 "GTSET.spad" 798224 798240 798931 798958) (-487 "GSTBL.spad" 796743 796778 796917 796932) (-486 "GSERIES.spad" 794056 794083 794875 795024) (-485 "GROUP.spad" 793329 793337 794036 794051) (-484 "GROUP.spad" 792610 792620 793319 793324) (-483 "GROEBSOL.spad" 791104 791125 792600 792605) (-482 "GRMOD.spad" 789675 789687 791094 791099) (-481 "GRMOD.spad" 788244 788258 789665 789670) (-480 "GRIMAGE.spad" 781133 781141 788234 788239) (-479 "GRDEF.spad" 779512 779520 781123 781128) (-478 "GRAY.spad" 777975 777983 779502 779507) (-477 "GRALG.spad" 777052 777064 777965 777970) (-476 "GRALG.spad" 776127 776141 777042 777047) (-475 "GPOLSET.spad" 775581 775604 775809 775836) (-474 "GOSPER.spad" 774850 774868 775571 775576) (-473 "GMODPOL.spad" 773998 774025 774818 774845) (-472 "GHENSEL.spad" 773081 773095 773988 773993) (-471 "GENUPS.spad" 769374 769387 773071 773076) (-470 "GENUFACT.spad" 768951 768961 769364 769369) (-469 "GENPGCD.spad" 768537 768554 768941 768946) (-468 "GENMFACT.spad" 767989 768008 768527 768532) (-467 "GENEEZ.spad" 765940 765953 767979 767984) (-466 "GDMP.spad" 762996 763013 763770 763897) (-465 "GCNAALG.spad" 756919 756946 762790 762857) (-464 "GCDDOM.spad" 756095 756103 756845 756914) (-463 "GCDDOM.spad" 755333 755343 756085 756090) (-462 "GB.spad" 752859 752897 755289 755294) (-461 "GBINTERN.spad" 748879 748917 752849 752854) (-460 "GBF.spad" 744646 744684 748869 748874) (-459 "GBEUCLID.spad" 742528 742566 744636 744641) (-458 "GAUSSFAC.spad" 741841 741849 742518 742523) (-457 "GALUTIL.spad" 740167 740177 741797 741802) (-456 "GALPOLYU.spad" 738621 738634 740157 740162) (-455 "GALFACTU.spad" 736794 736813 738611 738616) (-454 "GALFACT.spad" 726983 726994 736784 736789) (-453 "FVFUN.spad" 724006 724014 726973 726978) (-452 "FVC.spad" 723058 723066 723996 724001) (-451 "FUNDESC.spad" 722736 722744 723048 723053) (-450 "FUNCTION.spad" 722585 722597 722726 722731) (-449 "FT.spad" 720882 720890 722575 722580) (-448 "FTEM.spad" 720047 720055 720872 720877) (-447 "FSUPFACT.spad" 718947 718966 719983 719988) (-446 "FST.spad" 717033 717041 718937 718942) (-445 "FSRED.spad" 716513 716529 717023 717028) (-444 "FSPRMELT.spad" 715395 715411 716470 716475) (-443 "FSPECF.spad" 713486 713502 715385 715390) (-442 "FS.spad" 707754 707764 713261 713481) (-441 "FS.spad" 701800 701812 707309 707314) (-440 "FSINT.spad" 701460 701476 701790 701795) (-439 "FSERIES.spad" 700651 700663 701280 701379) (-438 "FSCINT.spad" 699968 699984 700641 700646) (-437 "FSAGG.spad" 699085 699095 699924 699963) (-436 "FSAGG.spad" 698164 698176 699005 699010) (-435 "FSAGG2.spad" 696907 696923 698154 698159) (-434 "FS2UPS.spad" 691398 691432 696897 696902) (-433 "FS2.spad" 691045 691061 691388 691393) (-432 "FS2EXPXP.spad" 690170 690193 691035 691040) (-431 "FRUTIL.spad" 689124 689134 690160 690165) (-430 "FR.spad" 682747 682757 688055 688124) (-429 "FRNAALG.spad" 678016 678026 682689 682742) (-428 "FRNAALG.spad" 673297 673309 677972 677977) (-427 "FRNAAF2.spad" 672753 672771 673287 673292) (-426 "FRMOD.spad" 672163 672193 672684 672689) (-425 "FRIDEAL.spad" 671388 671409 672143 672158) (-424 "FRIDEAL2.spad" 670992 671024 671378 671383) (-423 "FRETRCT.spad" 670503 670513 670982 670987) (-422 "FRETRCT.spad" 669880 669892 670361 670366) (-421 "FRAMALG.spad" 668228 668241 669836 669875) (-420 "FRAMALG.spad" 666608 666623 668218 668223) (-419 "FRAC.spad" 663614 663624 664017 664190) (-418 "FRAC2.spad" 663219 663231 663604 663609) (-417 "FR2.spad" 662555 662567 663209 663214) (-416 "FPS.spad" 659370 659378 662445 662550) (-415 "FPS.spad" 656213 656223 659290 659295) (-414 "FPC.spad" 655259 655267 656115 656208) (-413 "FPC.spad" 654391 654401 655249 655254) (-412 "FPATMAB.spad" 654153 654163 654381 654386) (-411 "FPARFRAC.spad" 653003 653020 654143 654148) (-410 "FORTRAN.spad" 651509 651552 652993 652998) (-409 "FORT.spad" 650458 650466 651499 651504) (-408 "FORTFN.spad" 647628 647636 650448 650453) (-407 "FORTCAT.spad" 647312 647320 647618 647623) (-406 "FORMULA.spad" 644786 644794 647302 647307) (-405 "FORMULA1.spad" 644265 644275 644776 644781) (-404 "FORDER.spad" 643956 643980 644255 644260) (-403 "FOP.spad" 643157 643165 643946 643951) (-402 "FNLA.spad" 642581 642603 643125 643152) (-401 "FNCAT.spad" 641176 641184 642571 642576) (-400 "FNAME.spad" 641068 641076 641166 641171) (-399 "FMTC.spad" 640866 640874 640994 641063) (-398 "FMONOID.spad" 640531 640541 640822 640827) (-397 "FMONCAT.spad" 637684 637694 640521 640526) (-396 "FM.spad" 637379 637391 637618 637645) (-395 "FMFUN.spad" 634409 634417 637369 637374) (-394 "FMC.spad" 633461 633469 634399 634404) (-393 "FMCAT.spad" 631129 631147 633429 633456) (-392 "FM1.spad" 630486 630498 631063 631090) (-391 "FLOATRP.spad" 628221 628235 630476 630481) (-390 "FLOAT.spad" 621535 621543 628087 628216) (-389 "FLOATCP.spad" 618966 618980 621525 621530) (-388 "FLINEXP.spad" 618688 618698 618956 618961) (-387 "FLINEXP.spad" 618354 618366 618624 618629) (-386 "FLASORT.spad" 617680 617692 618344 618349) (-385 "FLALG.spad" 615326 615345 617606 617675) (-384 "FLAGG.spad" 612368 612378 615306 615321) (-383 "FLAGG.spad" 609311 609323 612251 612256) (-382 "FLAGG2.spad" 608036 608052 609301 609306) (-381 "FINRALG.spad" 606097 606110 607992 608031) (-380 "FINRALG.spad" 604084 604099 605981 605986) (-379 "FINITE.spad" 603236 603244 604074 604079) (-378 "FINAALG.spad" 592357 592367 603178 603231) (-377 "FINAALG.spad" 581490 581502 592313 592318) (-376 "FILE.spad" 581073 581083 581480 581485) (-375 "FILECAT.spad" 579599 579616 581063 581068) (-374 "FIELD.spad" 579005 579013 579501 579594) (-373 "FIELD.spad" 578497 578507 578995 579000) (-372 "FGROUP.spad" 577144 577154 578477 578492) (-371 "FGLMICPK.spad" 575931 575946 577134 577139) (-370 "FFX.spad" 575306 575321 575647 575740) (-369 "FFSLPE.spad" 574809 574830 575296 575301) (-368 "FFPOLY.spad" 566071 566082 574799 574804) (-367 "FFPOLY2.spad" 565131 565148 566061 566066) (-366 "FFP.spad" 564528 564548 564847 564940) (-365 "FF.spad" 563976 563992 564209 564302) (-364 "FFNBX.spad" 562488 562508 563692 563785) (-363 "FFNBP.spad" 561001 561018 562204 562297) (-362 "FFNB.spad" 559466 559487 560682 560775) (-361 "FFINTBAS.spad" 556980 556999 559456 559461) (-360 "FFIELDC.spad" 554557 554565 556882 556975) (-359 "FFIELDC.spad" 552220 552230 554547 554552) (-358 "FFHOM.spad" 550968 550985 552210 552215) (-357 "FFF.spad" 548403 548414 550958 550963) (-356 "FFCGX.spad" 547250 547270 548119 548212) (-355 "FFCGP.spad" 546139 546159 546966 547059) (-354 "FFCG.spad" 544931 544952 545820 545913) (-353 "FFCAT.spad" 538104 538126 544770 544926) (-352 "FFCAT.spad" 531356 531380 538024 538029) (-351 "FFCAT2.spad" 531103 531143 531346 531351) (-350 "FEXPR.spad" 522820 522866 530859 530898) (-349 "FEVALAB.spad" 522528 522538 522810 522815) (-348 "FEVALAB.spad" 522021 522033 522305 522310) (-347 "FDIV.spad" 521463 521487 522011 522016) (-346 "FDIVCAT.spad" 519527 519551 521453 521458) (-345 "FDIVCAT.spad" 517589 517615 519517 519522) (-344 "FDIV2.spad" 517245 517285 517579 517584) (-343 "FCTRDATA.spad" 516253 516261 517235 517240) (-342 "FCPAK1.spad" 514820 514828 516243 516248) (-341 "FCOMP.spad" 514199 514209 514810 514815) (-340 "FC.spad" 504206 504214 514189 514194) (-339 "FAXF.spad" 497177 497191 504108 504201) (-338 "FAXF.spad" 490200 490216 497133 497138) (-337 "FARRAY.spad" 488350 488360 489383 489410) (-336 "FAMR.spad" 486486 486498 488248 488345) (-335 "FAMR.spad" 484606 484620 486370 486375) (-334 "FAMONOID.spad" 484274 484284 484560 484565) (-333 "FAMONC.spad" 482570 482582 484264 484269) (-332 "FAGROUP.spad" 482194 482204 482466 482493) (-331 "FACUTIL.spad" 480398 480415 482184 482189) (-330 "FACTFUNC.spad" 479592 479602 480388 480393) (-329 "EXPUPXS.spad" 476425 476448 477724 477873) (-328 "EXPRTUBE.spad" 473713 473721 476415 476420) (-327 "EXPRODE.spad" 470873 470889 473703 473708) (-326 "EXPR.spad" 466048 466058 466762 467057) (-325 "EXPR2UPS.spad" 462170 462183 466038 466043) (-324 "EXPR2.spad" 461875 461887 462160 462165) (-323 "EXPEXPAN.spad" 458676 458701 459308 459401) (-322 "EXIT.spad" 458347 458355 458666 458671) (-321 "EXITAST.spad" 458083 458091 458337 458342) (-320 "EVALCYC.spad" 457543 457557 458073 458078) (-319 "EVALAB.spad" 457115 457125 457533 457538) (-318 "EVALAB.spad" 456685 456697 457105 457110) (-317 "EUCDOM.spad" 454259 454267 456611 456680) (-316 "EUCDOM.spad" 451895 451905 454249 454254) (-315 "ESTOOLS.spad" 443741 443749 451885 451890) (-314 "ESTOOLS2.spad" 443344 443358 443731 443736) (-313 "ESTOOLS1.spad" 443029 443040 443334 443339) (-312 "ES.spad" 435844 435852 443019 443024) (-311 "ES.spad" 428565 428575 435742 435747) (-310 "ESCONT.spad" 425358 425366 428555 428560) (-309 "ESCONT1.spad" 425107 425119 425348 425353) (-308 "ES2.spad" 424612 424628 425097 425102) (-307 "ES1.spad" 424182 424198 424602 424607) (-306 "ERROR.spad" 421509 421517 424172 424177) (-305 "EQTBL.spad" 419981 420003 420190 420217) (-304 "EQ.spad" 414786 414796 417573 417685) (-303 "EQ2.spad" 414504 414516 414776 414781) (-302 "EP.spad" 410830 410840 414494 414499) (-301 "ENV.spad" 409508 409516 410820 410825) (-300 "ENTIRER.spad" 409176 409184 409452 409503) (-299 "EMR.spad" 408464 408505 409102 409171) (-298 "ELTAGG.spad" 406718 406737 408454 408459) (-297 "ELTAGG.spad" 404936 404957 406674 406679) (-296 "ELTAB.spad" 404411 404424 404926 404931) (-295 "ELFUTS.spad" 403798 403817 404401 404406) (-294 "ELEMFUN.spad" 403487 403495 403788 403793) (-293 "ELEMFUN.spad" 403174 403184 403477 403482) (-292 "ELAGG.spad" 401145 401155 403154 403169) (-291 "ELAGG.spad" 399053 399065 401064 401069) (-290 "ELABOR.spad" 398399 398407 399043 399048) (-289 "ELABEXPR.spad" 397331 397339 398389 398394) (-288 "EFUPXS.spad" 394107 394137 397287 397292) (-287 "EFULS.spad" 390943 390966 394063 394068) (-286 "EFSTRUC.spad" 388958 388974 390933 390938) (-285 "EF.spad" 383734 383750 388948 388953) (-284 "EAB.spad" 382010 382018 383724 383729) (-283 "E04UCFA.spad" 381546 381554 382000 382005) (-282 "E04NAFA.spad" 381123 381131 381536 381541) (-281 "E04MBFA.spad" 380703 380711 381113 381118) (-280 "E04JAFA.spad" 380239 380247 380693 380698) (-279 "E04GCFA.spad" 379775 379783 380229 380234) (-278 "E04FDFA.spad" 379311 379319 379765 379770) (-277 "E04DGFA.spad" 378847 378855 379301 379306) (-276 "E04AGNT.spad" 374697 374705 378837 378842) (-275 "DVARCAT.spad" 371587 371597 374687 374692) (-274 "DVARCAT.spad" 368475 368487 371577 371582) (-273 "DSMP.spad" 365849 365863 366154 366281) (-272 "DSEXT.spad" 365151 365161 365839 365844) (-271 "DSEXT.spad" 364360 364372 365050 365055) (-270 "DROPT.spad" 358319 358327 364350 364355) (-269 "DROPT1.spad" 357984 357994 358309 358314) (-268 "DROPT0.spad" 352841 352849 357974 357979) (-267 "DRAWPT.spad" 351014 351022 352831 352836) (-266 "DRAW.spad" 343890 343903 351004 351009) (-265 "DRAWHACK.spad" 343198 343208 343880 343885) (-264 "DRAWCX.spad" 340668 340676 343188 343193) (-263 "DRAWCURV.spad" 340215 340230 340658 340663) (-262 "DRAWCFUN.spad" 329747 329755 340205 340210) (-261 "DQAGG.spad" 327925 327935 329715 329742) (-260 "DPOLCAT.spad" 323274 323290 327793 327920) (-259 "DPOLCAT.spad" 318709 318727 323230 323235) (-258 "DPMO.spad" 310505 310521 310643 310856) (-257 "DPMM.spad" 302314 302332 302439 302652) (-256 "DOMTMPLT.spad" 302085 302093 302304 302309) (-255 "DOMCTOR.spad" 301840 301848 302075 302080) (-254 "DOMAIN.spad" 300927 300935 301830 301835) (-253 "DMP.spad" 298187 298202 298757 298884) (-252 "DMEXT.spad" 298054 298064 298155 298182) (-251 "DLP.spad" 297406 297416 298044 298049) (-250 "DLIST.spad" 295985 295995 296589 296616) (-249 "DLAGG.spad" 294402 294412 295975 295980) (-248 "DIVRING.spad" 293944 293952 294346 294397) (-247 "DIVRING.spad" 293530 293540 293934 293939) (-246 "DISPLAY.spad" 291720 291728 293520 293525) (-245 "DIRPROD.spad" 279871 279887 280511 280610) (-244 "DIRPROD2.spad" 278689 278707 279861 279866) (-243 "DIRPCAT.spad" 277882 277898 278585 278684) (-242 "DIRPCAT.spad" 276702 276720 277407 277412) (-241 "DIOSP.spad" 275527 275535 276692 276697) (-240 "DIOPS.spad" 274523 274533 275507 275522) (-239 "DIOPS.spad" 273493 273505 274479 274484) (-238 "DIFRING.spad" 273331 273339 273473 273488) (-237 "DIFFSPC.spad" 272910 272918 273321 273326) (-236 "DIFFSPC.spad" 272487 272497 272900 272905) (-235 "DIFFMOD.spad" 271976 271986 272455 272482) (-234 "DIFFDOM.spad" 271141 271152 271966 271971) (-233 "DIFFDOM.spad" 270304 270317 271131 271136) (-232 "DIFEXT.spad" 270123 270133 270284 270299) (-231 "DIAGG.spad" 269753 269763 270103 270118) (-230 "DIAGG.spad" 269391 269403 269743 269748) (-229 "DHMATRIX.spad" 267703 267713 268848 268875) (-228 "DFSFUN.spad" 261343 261351 267693 267698) (-227 "DFLOAT.spad" 258074 258082 261233 261338) (-226 "DFINTTLS.spad" 256305 256321 258064 258069) (-225 "DERHAM.spad" 254219 254251 256285 256300) (-224 "DEQUEUE.spad" 253543 253553 253826 253853) (-223 "DEGRED.spad" 253160 253174 253533 253538) (-222 "DEFINTRF.spad" 250697 250707 253150 253155) (-221 "DEFINTEF.spad" 249207 249223 250687 250692) (-220 "DEFAST.spad" 248575 248583 249197 249202) (-219 "DECIMAL.spad" 246584 246592 246945 247038) (-218 "DDFACT.spad" 244397 244414 246574 246579) (-217 "DBLRESP.spad" 243997 244021 244387 244392) (-216 "DBASE.spad" 242661 242671 243987 243992) (-215 "DATAARY.spad" 242123 242136 242651 242656) (-214 "D03FAFA.spad" 241951 241959 242113 242118) (-213 "D03EEFA.spad" 241771 241779 241941 241946) (-212 "D03AGNT.spad" 240857 240865 241761 241766) (-211 "D02EJFA.spad" 240319 240327 240847 240852) (-210 "D02CJFA.spad" 239797 239805 240309 240314) (-209 "D02BHFA.spad" 239287 239295 239787 239792) (-208 "D02BBFA.spad" 238777 238785 239277 239282) (-207 "D02AGNT.spad" 233591 233599 238767 238772) (-206 "D01WGTS.spad" 231910 231918 233581 233586) (-205 "D01TRNS.spad" 231887 231895 231900 231905) (-204 "D01GBFA.spad" 231409 231417 231877 231882) (-203 "D01FCFA.spad" 230931 230939 231399 231404) (-202 "D01ASFA.spad" 230399 230407 230921 230926) (-201 "D01AQFA.spad" 229845 229853 230389 230394) (-200 "D01APFA.spad" 229269 229277 229835 229840) (-199 "D01ANFA.spad" 228763 228771 229259 229264) (-198 "D01AMFA.spad" 228273 228281 228753 228758) (-197 "D01ALFA.spad" 227813 227821 228263 228268) (-196 "D01AKFA.spad" 227339 227347 227803 227808) (-195 "D01AJFA.spad" 226862 226870 227329 227334) (-194 "D01AGNT.spad" 222929 222937 226852 226857) (-193 "CYCLOTOM.spad" 222435 222443 222919 222924) (-192 "CYCLES.spad" 219227 219235 222425 222430) (-191 "CVMP.spad" 218644 218654 219217 219222) (-190 "CTRIGMNP.spad" 217144 217160 218634 218639) (-189 "CTOR.spad" 216835 216843 217134 217139) (-188 "CTORKIND.spad" 216438 216446 216825 216830) (-187 "CTORCAT.spad" 215687 215695 216428 216433) (-186 "CTORCAT.spad" 214934 214944 215677 215682) (-185 "CTORCALL.spad" 214523 214533 214924 214929) (-184 "CSTTOOLS.spad" 213768 213781 214513 214518) (-183 "CRFP.spad" 207492 207505 213758 213763) (-182 "CRCEAST.spad" 207212 207220 207482 207487) (-181 "CRAPACK.spad" 206263 206273 207202 207207) (-180 "CPMATCH.spad" 205767 205782 206188 206193) (-179 "CPIMA.spad" 205472 205491 205757 205762) (-178 "COORDSYS.spad" 200481 200491 205462 205467) (-177 "CONTOUR.spad" 199892 199900 200471 200476) (-176 "CONTFRAC.spad" 195642 195652 199794 199887) (-175 "CONDUIT.spad" 195400 195408 195632 195637) (-174 "COMRING.spad" 195074 195082 195338 195395) (-173 "COMPPROP.spad" 194592 194600 195064 195069) (-172 "COMPLPAT.spad" 194359 194374 194582 194587) (-171 "COMPLEX.spad" 189736 189746 189980 190241) (-170 "COMPLEX2.spad" 189451 189463 189726 189731) (-169 "COMPILER.spad" 189000 189008 189441 189446) (-168 "COMPFACT.spad" 188602 188616 188990 188995) (-167 "COMPCAT.spad" 186674 186684 188336 188597) (-166 "COMPCAT.spad" 184474 184486 186138 186143) (-165 "COMMUPC.spad" 184222 184240 184464 184469) (-164 "COMMONOP.spad" 183755 183763 184212 184217) (-163 "COMM.spad" 183566 183574 183745 183750) (-162 "COMMAAST.spad" 183329 183337 183556 183561) (-161 "COMBOPC.spad" 182244 182252 183319 183324) (-160 "COMBINAT.spad" 181011 181021 182234 182239) (-159 "COMBF.spad" 178393 178409 181001 181006) (-158 "COLOR.spad" 177230 177238 178383 178388) (-157 "COLONAST.spad" 176896 176904 177220 177225) (-156 "CMPLXRT.spad" 176607 176624 176886 176891) (-155 "CLLCTAST.spad" 176269 176277 176597 176602) (-154 "CLIP.spad" 172377 172385 176259 176264) (-153 "CLIF.spad" 171032 171048 172333 172372) (-152 "CLAGG.spad" 167537 167547 171022 171027) (-151 "CLAGG.spad" 163913 163925 167400 167405) (-150 "CINTSLPE.spad" 163244 163257 163903 163908) (-149 "CHVAR.spad" 161382 161404 163234 163239) (-148 "CHARZ.spad" 161297 161305 161362 161377) (-147 "CHARPOL.spad" 160807 160817 161287 161292) (-146 "CHARNZ.spad" 160560 160568 160787 160802) (-145 "CHAR.spad" 158434 158442 160550 160555) (-144 "CFCAT.spad" 157762 157770 158424 158429) (-143 "CDEN.spad" 156958 156972 157752 157757) (-142 "CCLASS.spad" 155107 155115 156369 156408) (-141 "CATEGORY.spad" 154149 154157 155097 155102) (-140 "CATCTOR.spad" 154040 154048 154139 154144) (-139 "CATAST.spad" 153658 153666 154030 154035) (-138 "CASEAST.spad" 153372 153380 153648 153653) (-137 "CARTEN.spad" 148739 148763 153362 153367) (-136 "CARTEN2.spad" 148129 148156 148729 148734) (-135 "CARD.spad" 145424 145432 148103 148124) (-134 "CAPSLAST.spad" 145198 145206 145414 145419) (-133 "CACHSET.spad" 144822 144830 145188 145193) (-132 "CABMON.spad" 144377 144385 144812 144817) (-131 "BYTEORD.spad" 144052 144060 144367 144372) (-130 "BYTE.spad" 143479 143487 144042 144047) (-129 "BYTEBUF.spad" 141338 141346 142648 142675) (-128 "BTREE.spad" 140411 140421 140945 140972) (-127 "BTOURN.spad" 139416 139426 140018 140045) (-126 "BTCAT.spad" 138808 138818 139384 139411) (-125 "BTCAT.spad" 138220 138232 138798 138803) (-124 "BTAGG.spad" 137686 137694 138188 138215) (-123 "BTAGG.spad" 137172 137182 137676 137681) (-122 "BSTREE.spad" 135913 135923 136779 136806) (-121 "BRILL.spad" 134110 134121 135903 135908) (-120 "BRAGG.spad" 133050 133060 134100 134105) (-119 "BRAGG.spad" 131954 131966 133006 133011) (-118 "BPADICRT.spad" 129828 129840 130083 130176) (-117 "BPADIC.spad" 129492 129504 129754 129823) (-116 "BOUNDZRO.spad" 129148 129165 129482 129487) (-115 "BOP.spad" 124330 124338 129138 129143) (-114 "BOP1.spad" 121796 121806 124320 124325) (-113 "BOOLE.spad" 121446 121454 121786 121791) (-112 "BOOLEAN.spad" 120884 120892 121436 121441) (-111 "BMODULE.spad" 120596 120608 120852 120879) (-110 "BITS.spad" 120017 120025 120232 120259) (-109 "BINDING.spad" 119430 119438 120007 120012) (-108 "BINARY.spad" 117444 117452 117800 117893) (-107 "BGAGG.spad" 116649 116659 117424 117439) (-106 "BGAGG.spad" 115862 115874 116639 116644) (-105 "BFUNCT.spad" 115426 115434 115842 115857) (-104 "BEZOUT.spad" 114566 114593 115376 115381) (-103 "BBTREE.spad" 111411 111421 114173 114200) (-102 "BASTYPE.spad" 111083 111091 111401 111406) (-101 "BASTYPE.spad" 110753 110763 111073 111078) (-100 "BALFACT.spad" 110212 110225 110743 110748) (-99 "AUTOMOR.spad" 109663 109672 110192 110207) (-98 "ATTREG.spad" 106386 106393 109415 109658) (-97 "ATTRBUT.spad" 102409 102416 106366 106381) (-96 "ATTRAST.spad" 102126 102133 102399 102404) (-95 "ATRIG.spad" 101596 101603 102116 102121) (-94 "ATRIG.spad" 101064 101073 101586 101591) (-93 "ASTCAT.spad" 100968 100975 101054 101059) (-92 "ASTCAT.spad" 100870 100879 100958 100963) (-91 "ASTACK.spad" 100209 100218 100477 100504) (-90 "ASSOCEQ.spad" 99035 99046 100165 100170) (-89 "ASP9.spad" 98116 98129 99025 99030) (-88 "ASP8.spad" 97159 97172 98106 98111) (-87 "ASP80.spad" 96481 96494 97149 97154) (-86 "ASP7.spad" 95641 95654 96471 96476) (-85 "ASP78.spad" 95092 95105 95631 95636) (-84 "ASP77.spad" 94461 94474 95082 95087) (-83 "ASP74.spad" 93553 93566 94451 94456) (-82 "ASP73.spad" 92824 92837 93543 93548) (-81 "ASP6.spad" 91691 91704 92814 92819) (-80 "ASP55.spad" 90200 90213 91681 91686) (-79 "ASP50.spad" 88017 88030 90190 90195) (-78 "ASP4.spad" 87312 87325 88007 88012) (-77 "ASP49.spad" 86311 86324 87302 87307) (-76 "ASP42.spad" 84718 84757 86301 86306) (-75 "ASP41.spad" 83297 83336 84708 84713) (-74 "ASP35.spad" 82285 82298 83287 83292) (-73 "ASP34.spad" 81586 81599 82275 82280) (-72 "ASP33.spad" 81146 81159 81576 81581) (-71 "ASP31.spad" 80286 80299 81136 81141) (-70 "ASP30.spad" 79178 79191 80276 80281) (-69 "ASP29.spad" 78644 78657 79168 79173) (-68 "ASP28.spad" 69917 69930 78634 78639) (-67 "ASP27.spad" 68814 68827 69907 69912) (-66 "ASP24.spad" 67901 67914 68804 68809) (-65 "ASP20.spad" 67365 67378 67891 67896) (-64 "ASP1.spad" 66746 66759 67355 67360) (-63 "ASP19.spad" 61432 61445 66736 66741) (-62 "ASP12.spad" 60846 60859 61422 61427) (-61 "ASP10.spad" 60117 60130 60836 60841) (-60 "ARRAY2.spad" 59477 59486 59724 59751) (-59 "ARRAY1.spad" 58314 58323 58660 58687) (-58 "ARRAY12.spad" 57027 57038 58304 58309) (-57 "ARR2CAT.spad" 52801 52822 56995 57022) (-56 "ARR2CAT.spad" 48595 48618 52791 52796) (-55 "ARITY.spad" 47967 47974 48585 48590) (-54 "APPRULE.spad" 47227 47249 47957 47962) (-53 "APPLYORE.spad" 46846 46859 47217 47222) (-52 "ANY.spad" 45705 45712 46836 46841) (-51 "ANY1.spad" 44776 44785 45695 45700) (-50 "ANTISYM.spad" 43221 43237 44756 44771) (-49 "ANON.spad" 42914 42921 43211 43216) (-48 "AN.spad" 41223 41230 42730 42823) (-47 "AMR.spad" 39408 39419 41121 41218) (-46 "AMR.spad" 37430 37443 39145 39150) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2279904 2279909 2279914 2279919) (-2 NIL 2279884 2279889 2279894 2279899) (-1 NIL 2279864 2279869 2279874 2279879) (0 NIL 2279844 2279849 2279854 2279859) (-1315 "ZMOD.spad" 2279653 2279666 2279782 2279839) (-1314 "ZLINDEP.spad" 2278719 2278730 2279643 2279648) (-1313 "ZDSOLVE.spad" 2268664 2268686 2278709 2278714) (-1312 "YSTREAM.spad" 2268159 2268170 2268654 2268659) (-1311 "YDIAGRAM.spad" 2267793 2267802 2268149 2268154) (-1310 "XRPOLY.spad" 2267013 2267033 2267649 2267718) (-1309 "XPR.spad" 2264808 2264821 2266731 2266830) (-1308 "XPOLY.spad" 2264363 2264374 2264664 2264733) (-1307 "XPOLYC.spad" 2263682 2263698 2264289 2264358) (-1306 "XPBWPOLY.spad" 2262119 2262139 2263462 2263531) (-1305 "XF.spad" 2260582 2260597 2262021 2262114) (-1304 "XF.spad" 2259025 2259042 2260466 2260471) (-1303 "XFALG.spad" 2256073 2256089 2258951 2259020) (-1302 "XEXPPKG.spad" 2255324 2255350 2256063 2256068) (-1301 "XDPOLY.spad" 2254938 2254954 2255180 2255249) (-1300 "XALG.spad" 2254598 2254609 2254894 2254933) (-1299 "WUTSET.spad" 2250437 2250454 2254244 2254271) (-1298 "WP.spad" 2249636 2249680 2250295 2250362) (-1297 "WHILEAST.spad" 2249434 2249443 2249626 2249631) (-1296 "WHEREAST.spad" 2249105 2249114 2249424 2249429) (-1295 "WFFINTBS.spad" 2246768 2246790 2249095 2249100) (-1294 "WEIER.spad" 2244990 2245001 2246758 2246763) (-1293 "VSPACE.spad" 2244663 2244674 2244958 2244985) (-1292 "VSPACE.spad" 2244356 2244369 2244653 2244658) (-1291 "VOID.spad" 2244033 2244042 2244346 2244351) (-1290 "VIEW.spad" 2241713 2241722 2244023 2244028) (-1289 "VIEWDEF.spad" 2236914 2236923 2241703 2241708) (-1288 "VIEW3D.spad" 2220875 2220884 2236904 2236909) (-1287 "VIEW2D.spad" 2208766 2208775 2220865 2220870) (-1286 "VECTOR.spad" 2207440 2207451 2207691 2207718) (-1285 "VECTOR2.spad" 2206079 2206092 2207430 2207435) (-1284 "VECTCAT.spad" 2203983 2203994 2206047 2206074) (-1283 "VECTCAT.spad" 2201694 2201707 2203760 2203765) (-1282 "VARIABLE.spad" 2201474 2201489 2201684 2201689) (-1281 "UTYPE.spad" 2201118 2201127 2201464 2201469) (-1280 "UTSODETL.spad" 2200413 2200437 2201074 2201079) (-1279 "UTSODE.spad" 2198629 2198649 2200403 2200408) (-1278 "UTS.spad" 2193576 2193604 2197096 2197193) (-1277 "UTSCAT.spad" 2191055 2191071 2193474 2193571) (-1276 "UTSCAT.spad" 2188178 2188196 2190599 2190604) (-1275 "UTS2.spad" 2187773 2187808 2188168 2188173) (-1274 "URAGG.spad" 2182446 2182457 2187763 2187768) (-1273 "URAGG.spad" 2177083 2177096 2182402 2182407) (-1272 "UPXSSING.spad" 2174728 2174754 2176164 2176297) (-1271 "UPXS.spad" 2172024 2172052 2172860 2173009) (-1270 "UPXSCONS.spad" 2169783 2169803 2170156 2170305) (-1269 "UPXSCCA.spad" 2168354 2168374 2169629 2169778) (-1268 "UPXSCCA.spad" 2167067 2167089 2168344 2168349) (-1267 "UPXSCAT.spad" 2165656 2165672 2166913 2167062) (-1266 "UPXS2.spad" 2165199 2165252 2165646 2165651) (-1265 "UPSQFREE.spad" 2163613 2163627 2165189 2165194) (-1264 "UPSCAT.spad" 2161400 2161424 2163511 2163608) (-1263 "UPSCAT.spad" 2158893 2158919 2161006 2161011) (-1262 "UPOLYC.spad" 2153933 2153944 2158735 2158888) (-1261 "UPOLYC.spad" 2148865 2148878 2153669 2153674) (-1260 "UPOLYC2.spad" 2148336 2148355 2148855 2148860) (-1259 "UP.spad" 2145442 2145457 2145829 2145982) (-1258 "UPMP.spad" 2144342 2144355 2145432 2145437) (-1257 "UPDIVP.spad" 2143907 2143921 2144332 2144337) (-1256 "UPDECOMP.spad" 2142152 2142166 2143897 2143902) (-1255 "UPCDEN.spad" 2141361 2141377 2142142 2142147) (-1254 "UP2.spad" 2140725 2140746 2141351 2141356) (-1253 "UNISEG.spad" 2140078 2140089 2140644 2140649) (-1252 "UNISEG2.spad" 2139575 2139588 2140034 2140039) (-1251 "UNIFACT.spad" 2138678 2138690 2139565 2139570) (-1250 "ULS.spad" 2128462 2128490 2129407 2129836) (-1249 "ULSCONS.spad" 2119596 2119616 2119966 2120115) (-1248 "ULSCCAT.spad" 2117333 2117353 2119442 2119591) (-1247 "ULSCCAT.spad" 2115178 2115200 2117289 2117294) (-1246 "ULSCAT.spad" 2113410 2113426 2115024 2115173) (-1245 "ULS2.spad" 2112924 2112977 2113400 2113405) (-1244 "UINT8.spad" 2112801 2112810 2112914 2112919) (-1243 "UINT64.spad" 2112677 2112686 2112791 2112796) (-1242 "UINT32.spad" 2112553 2112562 2112667 2112672) (-1241 "UINT16.spad" 2112429 2112438 2112543 2112548) (-1240 "UFD.spad" 2111494 2111503 2112355 2112424) (-1239 "UFD.spad" 2110621 2110632 2111484 2111489) (-1238 "UDVO.spad" 2109502 2109511 2110611 2110616) (-1237 "UDPO.spad" 2106995 2107006 2109458 2109463) (-1236 "TYPE.spad" 2106927 2106936 2106985 2106990) (-1235 "TYPEAST.spad" 2106846 2106855 2106917 2106922) (-1234 "TWOFACT.spad" 2105498 2105513 2106836 2106841) (-1233 "TUPLE.spad" 2104984 2104995 2105397 2105402) (-1232 "TUBETOOL.spad" 2101851 2101860 2104974 2104979) (-1231 "TUBE.spad" 2100498 2100515 2101841 2101846) (-1230 "TS.spad" 2099097 2099113 2100063 2100160) (-1229 "TSETCAT.spad" 2086224 2086241 2099065 2099092) (-1228 "TSETCAT.spad" 2073337 2073356 2086180 2086185) (-1227 "TRMANIP.spad" 2067703 2067720 2073043 2073048) (-1226 "TRIMAT.spad" 2066666 2066691 2067693 2067698) (-1225 "TRIGMNIP.spad" 2065193 2065210 2066656 2066661) (-1224 "TRIGCAT.spad" 2064705 2064714 2065183 2065188) (-1223 "TRIGCAT.spad" 2064215 2064226 2064695 2064700) (-1222 "TREE.spad" 2062790 2062801 2063822 2063849) (-1221 "TRANFUN.spad" 2062629 2062638 2062780 2062785) (-1220 "TRANFUN.spad" 2062466 2062477 2062619 2062624) (-1219 "TOPSP.spad" 2062140 2062149 2062456 2062461) (-1218 "TOOLSIGN.spad" 2061803 2061814 2062130 2062135) (-1217 "TEXTFILE.spad" 2060364 2060373 2061793 2061798) (-1216 "TEX.spad" 2057510 2057519 2060354 2060359) (-1215 "TEX1.spad" 2057066 2057077 2057500 2057505) (-1214 "TEMUTL.spad" 2056621 2056630 2057056 2057061) (-1213 "TBCMPPK.spad" 2054714 2054737 2056611 2056616) (-1212 "TBAGG.spad" 2053764 2053787 2054694 2054709) (-1211 "TBAGG.spad" 2052822 2052847 2053754 2053759) (-1210 "TANEXP.spad" 2052230 2052241 2052812 2052817) (-1209 "TALGOP.spad" 2051954 2051965 2052220 2052225) (-1208 "TABLE.spad" 2050365 2050388 2050635 2050662) (-1207 "TABLEAU.spad" 2049846 2049857 2050355 2050360) (-1206 "TABLBUMP.spad" 2046649 2046660 2049836 2049841) (-1205 "SYSTEM.spad" 2045877 2045886 2046639 2046644) (-1204 "SYSSOLP.spad" 2043360 2043371 2045867 2045872) (-1203 "SYSPTR.spad" 2043259 2043268 2043350 2043355) (-1202 "SYSNNI.spad" 2042441 2042452 2043249 2043254) (-1201 "SYSINT.spad" 2041845 2041856 2042431 2042436) (-1200 "SYNTAX.spad" 2038051 2038060 2041835 2041840) (-1199 "SYMTAB.spad" 2036119 2036128 2038041 2038046) (-1198 "SYMS.spad" 2032142 2032151 2036109 2036114) (-1197 "SYMPOLY.spad" 2031149 2031160 2031231 2031358) (-1196 "SYMFUNC.spad" 2030650 2030661 2031139 2031144) (-1195 "SYMBOL.spad" 2028153 2028162 2030640 2030645) (-1194 "SWITCH.spad" 2024924 2024933 2028143 2028148) (-1193 "SUTS.spad" 2021972 2022000 2023391 2023488) (-1192 "SUPXS.spad" 2019255 2019283 2020104 2020253) (-1191 "SUP.spad" 2015975 2015986 2016748 2016901) (-1190 "SUPFRACF.spad" 2015080 2015098 2015965 2015970) (-1189 "SUP2.spad" 2014472 2014485 2015070 2015075) (-1188 "SUMRF.spad" 2013446 2013457 2014462 2014467) (-1187 "SUMFS.spad" 2013083 2013100 2013436 2013441) (-1186 "SULS.spad" 2002854 2002882 2003812 2004241) (-1185 "SUCHTAST.spad" 2002623 2002632 2002844 2002849) (-1184 "SUCH.spad" 2002305 2002320 2002613 2002618) (-1183 "SUBSPACE.spad" 1994420 1994435 2002295 2002300) (-1182 "SUBRESP.spad" 1993590 1993604 1994376 1994381) (-1181 "STTF.spad" 1989689 1989705 1993580 1993585) (-1180 "STTFNC.spad" 1986157 1986173 1989679 1989684) (-1179 "STTAYLOR.spad" 1978792 1978803 1986038 1986043) (-1178 "STRTBL.spad" 1977297 1977314 1977446 1977473) (-1177 "STRING.spad" 1976245 1976254 1976466 1976493) (-1176 "STREAM.spad" 1973163 1973174 1975770 1975785) (-1175 "STREAM3.spad" 1972736 1972751 1973153 1973158) (-1174 "STREAM2.spad" 1971864 1971877 1972726 1972731) (-1173 "STREAM1.spad" 1971570 1971581 1971854 1971859) (-1172 "STINPROD.spad" 1970506 1970522 1971560 1971565) (-1171 "STEP.spad" 1969707 1969716 1970496 1970501) (-1170 "STEPAST.spad" 1968941 1968950 1969697 1969702) (-1169 "STBL.spad" 1967467 1967495 1967634 1967649) (-1168 "STAGG.spad" 1966542 1966553 1967457 1967462) (-1167 "STAGG.spad" 1965615 1965628 1966532 1966537) (-1166 "STACK.spad" 1964972 1964983 1965222 1965249) (-1165 "SREGSET.spad" 1962676 1962693 1964618 1964645) (-1164 "SRDCMPK.spad" 1961237 1961257 1962666 1962671) (-1163 "SRAGG.spad" 1956380 1956389 1961205 1961232) (-1162 "SRAGG.spad" 1951543 1951554 1956370 1956375) (-1161 "SQMATRIX.spad" 1949122 1949140 1950038 1950125) (-1160 "SPLTREE.spad" 1943674 1943687 1948558 1948585) (-1159 "SPLNODE.spad" 1940262 1940275 1943664 1943669) (-1158 "SPFCAT.spad" 1939071 1939080 1940252 1940257) (-1157 "SPECOUT.spad" 1937623 1937632 1939061 1939066) (-1156 "SPADXPT.spad" 1929218 1929227 1937613 1937618) (-1155 "spad-parser.spad" 1928683 1928692 1929208 1929213) (-1154 "SPADAST.spad" 1928384 1928393 1928673 1928678) (-1153 "SPACEC.spad" 1912583 1912594 1928374 1928379) (-1152 "SPACE3.spad" 1912359 1912370 1912573 1912578) (-1151 "SORTPAK.spad" 1911908 1911921 1912315 1912320) (-1150 "SOLVETRA.spad" 1909671 1909682 1911898 1911903) (-1149 "SOLVESER.spad" 1908199 1908210 1909661 1909666) (-1148 "SOLVERAD.spad" 1904225 1904236 1908189 1908194) (-1147 "SOLVEFOR.spad" 1902687 1902705 1904215 1904220) (-1146 "SNTSCAT.spad" 1902287 1902304 1902655 1902682) (-1145 "SMTS.spad" 1900559 1900585 1901852 1901949) (-1144 "SMP.spad" 1898034 1898054 1898424 1898551) (-1143 "SMITH.spad" 1896879 1896904 1898024 1898029) (-1142 "SMATCAT.spad" 1894989 1895019 1896823 1896874) (-1141 "SMATCAT.spad" 1893031 1893063 1894867 1894872) (-1140 "SKAGG.spad" 1891994 1892005 1892999 1893026) (-1139 "SINT.spad" 1890934 1890943 1891860 1891989) (-1138 "SIMPAN.spad" 1890662 1890671 1890924 1890929) (-1137 "SIG.spad" 1889992 1890001 1890652 1890657) (-1136 "SIGNRF.spad" 1889110 1889121 1889982 1889987) (-1135 "SIGNEF.spad" 1888389 1888406 1889100 1889105) (-1134 "SIGAST.spad" 1887774 1887783 1888379 1888384) (-1133 "SHP.spad" 1885702 1885717 1887730 1887735) (-1132 "SHDP.spad" 1873984 1874011 1874493 1874592) (-1131 "SGROUP.spad" 1873592 1873601 1873974 1873979) (-1130 "SGROUP.spad" 1873198 1873209 1873582 1873587) (-1129 "SGCF.spad" 1866337 1866346 1873188 1873193) (-1128 "SFRTCAT.spad" 1865267 1865284 1866305 1866332) (-1127 "SFRGCD.spad" 1864330 1864350 1865257 1865262) (-1126 "SFQCMPK.spad" 1858967 1858987 1864320 1864325) (-1125 "SFORT.spad" 1858406 1858420 1858957 1858962) (-1124 "SEXOF.spad" 1858249 1858289 1858396 1858401) (-1123 "SEX.spad" 1858141 1858150 1858239 1858244) (-1122 "SEXCAT.spad" 1855913 1855953 1858131 1858136) (-1121 "SET.spad" 1854237 1854248 1855334 1855373) (-1120 "SETMN.spad" 1852687 1852704 1854227 1854232) (-1119 "SETCAT.spad" 1852009 1852018 1852677 1852682) (-1118 "SETCAT.spad" 1851329 1851340 1851999 1852004) (-1117 "SETAGG.spad" 1847878 1847889 1851309 1851324) (-1116 "SETAGG.spad" 1844435 1844448 1847868 1847873) (-1115 "SEQAST.spad" 1844138 1844147 1844425 1844430) (-1114 "SEGXCAT.spad" 1843294 1843307 1844128 1844133) (-1113 "SEG.spad" 1843107 1843118 1843213 1843218) (-1112 "SEGCAT.spad" 1842032 1842043 1843097 1843102) (-1111 "SEGBIND.spad" 1841790 1841801 1841979 1841984) (-1110 "SEGBIND2.spad" 1841488 1841501 1841780 1841785) (-1109 "SEGAST.spad" 1841202 1841211 1841478 1841483) (-1108 "SEG2.spad" 1840637 1840650 1841158 1841163) (-1107 "SDVAR.spad" 1839913 1839924 1840627 1840632) (-1106 "SDPOL.spad" 1837246 1837257 1837537 1837664) (-1105 "SCPKG.spad" 1835335 1835346 1837236 1837241) (-1104 "SCOPE.spad" 1834488 1834497 1835325 1835330) (-1103 "SCACHE.spad" 1833184 1833195 1834478 1834483) (-1102 "SASTCAT.spad" 1833093 1833102 1833174 1833179) (-1101 "SAOS.spad" 1832965 1832974 1833083 1833088) (-1100 "SAERFFC.spad" 1832678 1832698 1832955 1832960) (-1099 "SAE.spad" 1830148 1830164 1830759 1830894) (-1098 "SAEFACT.spad" 1829849 1829869 1830138 1830143) (-1097 "RURPK.spad" 1827508 1827524 1829839 1829844) (-1096 "RULESET.spad" 1826961 1826985 1827498 1827503) (-1095 "RULE.spad" 1825201 1825225 1826951 1826956) (-1094 "RULECOLD.spad" 1825053 1825066 1825191 1825196) (-1093 "RTVALUE.spad" 1824788 1824797 1825043 1825048) (-1092 "RSTRCAST.spad" 1824505 1824514 1824778 1824783) (-1091 "RSETGCD.spad" 1820883 1820903 1824495 1824500) (-1090 "RSETCAT.spad" 1810819 1810836 1820851 1820878) (-1089 "RSETCAT.spad" 1800775 1800794 1810809 1810814) (-1088 "RSDCMPK.spad" 1799227 1799247 1800765 1800770) (-1087 "RRCC.spad" 1797611 1797641 1799217 1799222) (-1086 "RRCC.spad" 1795993 1796025 1797601 1797606) (-1085 "RPTAST.spad" 1795695 1795704 1795983 1795988) (-1084 "RPOLCAT.spad" 1775055 1775070 1795563 1795690) (-1083 "RPOLCAT.spad" 1754128 1754145 1774638 1774643) (-1082 "ROUTINE.spad" 1750011 1750020 1752775 1752802) (-1081 "ROMAN.spad" 1749339 1749348 1749877 1750006) (-1080 "ROIRC.spad" 1748419 1748451 1749329 1749334) (-1079 "RNS.spad" 1747322 1747331 1748321 1748414) (-1078 "RNS.spad" 1746311 1746322 1747312 1747317) (-1077 "RNG.spad" 1746046 1746055 1746301 1746306) (-1076 "RNGBIND.spad" 1745206 1745220 1746001 1746006) (-1075 "RMODULE.spad" 1744971 1744982 1745196 1745201) (-1074 "RMCAT2.spad" 1744391 1744448 1744961 1744966) (-1073 "RMATRIX.spad" 1743215 1743234 1743558 1743597) (-1072 "RMATCAT.spad" 1738794 1738825 1743171 1743210) (-1071 "RMATCAT.spad" 1734263 1734296 1738642 1738647) (-1070 "RLINSET.spad" 1733967 1733978 1734253 1734258) (-1069 "RINTERP.spad" 1733855 1733875 1733957 1733962) (-1068 "RING.spad" 1733325 1733334 1733835 1733850) (-1067 "RING.spad" 1732803 1732814 1733315 1733320) (-1066 "RIDIST.spad" 1732195 1732204 1732793 1732798) (-1065 "RGCHAIN.spad" 1730778 1730794 1731680 1731707) (-1064 "RGBCSPC.spad" 1730559 1730571 1730768 1730773) (-1063 "RGBCMDL.spad" 1730089 1730101 1730549 1730554) (-1062 "RF.spad" 1727731 1727742 1730079 1730084) (-1061 "RFFACTOR.spad" 1727193 1727204 1727721 1727726) (-1060 "RFFACT.spad" 1726928 1726940 1727183 1727188) (-1059 "RFDIST.spad" 1725924 1725933 1726918 1726923) (-1058 "RETSOL.spad" 1725343 1725356 1725914 1725919) (-1057 "RETRACT.spad" 1724771 1724782 1725333 1725338) (-1056 "RETRACT.spad" 1724197 1724210 1724761 1724766) (-1055 "RETAST.spad" 1724009 1724018 1724187 1724192) (-1054 "RESULT.spad" 1722069 1722078 1722656 1722683) (-1053 "RESRING.spad" 1721416 1721463 1722007 1722064) (-1052 "RESLATC.spad" 1720740 1720751 1721406 1721411) (-1051 "REPSQ.spad" 1720471 1720482 1720730 1720735) (-1050 "REP.spad" 1718025 1718034 1720461 1720466) (-1049 "REPDB.spad" 1717732 1717743 1718015 1718020) (-1048 "REP2.spad" 1707390 1707401 1717574 1717579) (-1047 "REP1.spad" 1701586 1701597 1707340 1707345) (-1046 "REGSET.spad" 1699383 1699400 1701232 1701259) (-1045 "REF.spad" 1698718 1698729 1699338 1699343) (-1044 "REDORDER.spad" 1697924 1697941 1698708 1698713) (-1043 "RECLOS.spad" 1696707 1696727 1697411 1697504) (-1042 "REALSOLV.spad" 1695847 1695856 1696697 1696702) (-1041 "REAL.spad" 1695719 1695728 1695837 1695842) (-1040 "REAL0Q.spad" 1693017 1693032 1695709 1695714) (-1039 "REAL0.spad" 1689861 1689876 1693007 1693012) (-1038 "RDUCEAST.spad" 1689582 1689591 1689851 1689856) (-1037 "RDIV.spad" 1689237 1689262 1689572 1689577) (-1036 "RDIST.spad" 1688804 1688815 1689227 1689232) (-1035 "RDETRS.spad" 1687668 1687686 1688794 1688799) (-1034 "RDETR.spad" 1685807 1685825 1687658 1687663) (-1033 "RDEEFS.spad" 1684906 1684923 1685797 1685802) (-1032 "RDEEF.spad" 1683916 1683933 1684896 1684901) (-1031 "RCFIELD.spad" 1681102 1681111 1683818 1683911) (-1030 "RCFIELD.spad" 1678374 1678385 1681092 1681097) (-1029 "RCAGG.spad" 1676302 1676313 1678364 1678369) (-1028 "RCAGG.spad" 1674157 1674170 1676221 1676226) (-1027 "RATRET.spad" 1673517 1673528 1674147 1674152) (-1026 "RATFACT.spad" 1673209 1673221 1673507 1673512) (-1025 "RANDSRC.spad" 1672528 1672537 1673199 1673204) (-1024 "RADUTIL.spad" 1672284 1672293 1672518 1672523) (-1023 "RADIX.spad" 1669108 1669122 1670654 1670747) (-1022 "RADFF.spad" 1666847 1666884 1666966 1667122) (-1021 "RADCAT.spad" 1666442 1666451 1666837 1666842) (-1020 "RADCAT.spad" 1666035 1666046 1666432 1666437) (-1019 "QUEUE.spad" 1665383 1665394 1665642 1665669) (-1018 "QUAT.spad" 1663871 1663882 1664214 1664279) (-1017 "QUATCT2.spad" 1663491 1663510 1663861 1663866) (-1016 "QUATCAT.spad" 1661661 1661672 1663421 1663486) (-1015 "QUATCAT.spad" 1659582 1659595 1661344 1661349) (-1014 "QUAGG.spad" 1658409 1658420 1659550 1659577) (-1013 "QQUTAST.spad" 1658177 1658186 1658399 1658404) (-1012 "QFORM.spad" 1657795 1657810 1658167 1658172) (-1011 "QFCAT.spad" 1656497 1656508 1657697 1657790) (-1010 "QFCAT.spad" 1654790 1654803 1655992 1655997) (-1009 "QFCAT2.spad" 1654482 1654499 1654780 1654785) (-1008 "QEQUAT.spad" 1654040 1654049 1654472 1654477) (-1007 "QCMPACK.spad" 1648786 1648806 1654030 1654035) (-1006 "QALGSET.spad" 1644864 1644897 1648700 1648705) (-1005 "QALGSET2.spad" 1642859 1642878 1644854 1644859) (-1004 "PWFFINTB.spad" 1640274 1640296 1642849 1642854) (-1003 "PUSHVAR.spad" 1639612 1639632 1640264 1640269) (-1002 "PTRANFN.spad" 1635739 1635750 1639602 1639607) (-1001 "PTPACK.spad" 1632826 1632837 1635729 1635734) (-1000 "PTFUNC2.spad" 1632648 1632663 1632816 1632821) (-999 "PTCAT.spad" 1631903 1631913 1632616 1632643) (-998 "PSQFR.spad" 1631210 1631234 1631893 1631898) (-997 "PSEUDLIN.spad" 1630096 1630106 1631200 1631205) (-996 "PSETPK.spad" 1615529 1615545 1629974 1629979) (-995 "PSETCAT.spad" 1609449 1609472 1615509 1615524) (-994 "PSETCAT.spad" 1603343 1603368 1609405 1609410) (-993 "PSCURVE.spad" 1602326 1602334 1603333 1603338) (-992 "PSCAT.spad" 1601109 1601138 1602224 1602321) (-991 "PSCAT.spad" 1599982 1600013 1601099 1601104) (-990 "PRTITION.spad" 1598680 1598688 1599972 1599977) (-989 "PRTDAST.spad" 1598399 1598407 1598670 1598675) (-988 "PRS.spad" 1587961 1587978 1598355 1598360) (-987 "PRQAGG.spad" 1587396 1587406 1587929 1587956) (-986 "PROPLOG.spad" 1586968 1586976 1587386 1587391) (-985 "PROPFUN2.spad" 1586591 1586604 1586958 1586963) (-984 "PROPFUN1.spad" 1585989 1586000 1586581 1586586) (-983 "PROPFRML.spad" 1584557 1584568 1585979 1585984) (-982 "PROPERTY.spad" 1584045 1584053 1584547 1584552) (-981 "PRODUCT.spad" 1581727 1581739 1582011 1582066) (-980 "PR.spad" 1580119 1580131 1580818 1580945) (-979 "PRINT.spad" 1579871 1579879 1580109 1580114) (-978 "PRIMES.spad" 1578124 1578134 1579861 1579866) (-977 "PRIMELT.spad" 1576205 1576219 1578114 1578119) (-976 "PRIMCAT.spad" 1575832 1575840 1576195 1576200) (-975 "PRIMARR.spad" 1574837 1574847 1575015 1575042) (-974 "PRIMARR2.spad" 1573604 1573616 1574827 1574832) (-973 "PREASSOC.spad" 1572986 1572998 1573594 1573599) (-972 "PPCURVE.spad" 1572123 1572131 1572976 1572981) (-971 "PORTNUM.spad" 1571898 1571906 1572113 1572118) (-970 "POLYROOT.spad" 1570747 1570769 1571854 1571859) (-969 "POLY.spad" 1568082 1568092 1568597 1568724) (-968 "POLYLIFT.spad" 1567347 1567370 1568072 1568077) (-967 "POLYCATQ.spad" 1565465 1565487 1567337 1567342) (-966 "POLYCAT.spad" 1558935 1558956 1565333 1565460) (-965 "POLYCAT.spad" 1551743 1551766 1558143 1558148) (-964 "POLY2UP.spad" 1551195 1551209 1551733 1551738) (-963 "POLY2.spad" 1550792 1550804 1551185 1551190) (-962 "POLUTIL.spad" 1549733 1549762 1550748 1550753) (-961 "POLTOPOL.spad" 1548481 1548496 1549723 1549728) (-960 "POINT.spad" 1547319 1547329 1547406 1547433) (-959 "PNTHEORY.spad" 1544021 1544029 1547309 1547314) (-958 "PMTOOLS.spad" 1542796 1542810 1544011 1544016) (-957 "PMSYM.spad" 1542345 1542355 1542786 1542791) (-956 "PMQFCAT.spad" 1541936 1541950 1542335 1542340) (-955 "PMPRED.spad" 1541415 1541429 1541926 1541931) (-954 "PMPREDFS.spad" 1540869 1540891 1541405 1541410) (-953 "PMPLCAT.spad" 1539949 1539967 1540801 1540806) (-952 "PMLSAGG.spad" 1539534 1539548 1539939 1539944) (-951 "PMKERNEL.spad" 1539113 1539125 1539524 1539529) (-950 "PMINS.spad" 1538693 1538703 1539103 1539108) (-949 "PMFS.spad" 1538270 1538288 1538683 1538688) (-948 "PMDOWN.spad" 1537560 1537574 1538260 1538265) (-947 "PMASS.spad" 1536570 1536578 1537550 1537555) (-946 "PMASSFS.spad" 1535537 1535553 1536560 1536565) (-945 "PLOTTOOL.spad" 1535317 1535325 1535527 1535532) (-944 "PLOT.spad" 1530240 1530248 1535307 1535312) (-943 "PLOT3D.spad" 1526704 1526712 1530230 1530235) (-942 "PLOT1.spad" 1525861 1525871 1526694 1526699) (-941 "PLEQN.spad" 1513151 1513178 1525851 1525856) (-940 "PINTERP.spad" 1512773 1512792 1513141 1513146) (-939 "PINTERPA.spad" 1512557 1512573 1512763 1512768) (-938 "PI.spad" 1512166 1512174 1512531 1512552) (-937 "PID.spad" 1511136 1511144 1512092 1512161) (-936 "PICOERCE.spad" 1510793 1510803 1511126 1511131) (-935 "PGROEB.spad" 1509394 1509408 1510783 1510788) (-934 "PGE.spad" 1501011 1501019 1509384 1509389) (-933 "PGCD.spad" 1499901 1499918 1501001 1501006) (-932 "PFRPAC.spad" 1499050 1499060 1499891 1499896) (-931 "PFR.spad" 1495713 1495723 1498952 1499045) (-930 "PFOTOOLS.spad" 1494971 1494987 1495703 1495708) (-929 "PFOQ.spad" 1494341 1494359 1494961 1494966) (-928 "PFO.spad" 1493760 1493787 1494331 1494336) (-927 "PF.spad" 1493334 1493346 1493565 1493658) (-926 "PFECAT.spad" 1491016 1491024 1493260 1493329) (-925 "PFECAT.spad" 1488726 1488736 1490972 1490977) (-924 "PFBRU.spad" 1486614 1486626 1488716 1488721) (-923 "PFBR.spad" 1484174 1484197 1486604 1486609) (-922 "PERM.spad" 1479981 1479991 1484004 1484019) (-921 "PERMGRP.spad" 1474751 1474761 1479971 1479976) (-920 "PERMCAT.spad" 1473412 1473422 1474731 1474746) (-919 "PERMAN.spad" 1471944 1471958 1473402 1473407) (-918 "PENDTREE.spad" 1471285 1471295 1471573 1471578) (-917 "PDSPC.spad" 1470098 1470108 1471275 1471280) (-916 "PDSPC.spad" 1468909 1468921 1470088 1470093) (-915 "PDRING.spad" 1468751 1468761 1468889 1468904) (-914 "PDMOD.spad" 1468567 1468579 1468719 1468746) (-913 "PDEPROB.spad" 1467582 1467590 1468557 1468562) (-912 "PDEPACK.spad" 1461622 1461630 1467572 1467577) (-911 "PDECOMP.spad" 1461092 1461109 1461612 1461617) (-910 "PDECAT.spad" 1459448 1459456 1461082 1461087) (-909 "PDDOM.spad" 1458886 1458899 1459438 1459443) (-908 "PDDOM.spad" 1458322 1458337 1458876 1458881) (-907 "PCOMP.spad" 1458175 1458188 1458312 1458317) (-906 "PBWLB.spad" 1456763 1456780 1458165 1458170) (-905 "PATTERN.spad" 1451302 1451312 1456753 1456758) (-904 "PATTERN2.spad" 1451040 1451052 1451292 1451297) (-903 "PATTERN1.spad" 1449376 1449392 1451030 1451035) (-902 "PATRES.spad" 1446951 1446963 1449366 1449371) (-901 "PATRES2.spad" 1446623 1446637 1446941 1446946) (-900 "PATMATCH.spad" 1444820 1444851 1446331 1446336) (-899 "PATMAB.spad" 1444249 1444259 1444810 1444815) (-898 "PATLRES.spad" 1443335 1443349 1444239 1444244) (-897 "PATAB.spad" 1443099 1443109 1443325 1443330) (-896 "PARTPERM.spad" 1441107 1441115 1443089 1443094) (-895 "PARSURF.spad" 1440541 1440569 1441097 1441102) (-894 "PARSU2.spad" 1440338 1440354 1440531 1440536) (-893 "script-parser.spad" 1439858 1439866 1440328 1440333) (-892 "PARSCURV.spad" 1439292 1439320 1439848 1439853) (-891 "PARSC2.spad" 1439083 1439099 1439282 1439287) (-890 "PARPCURV.spad" 1438545 1438573 1439073 1439078) (-889 "PARPC2.spad" 1438336 1438352 1438535 1438540) (-888 "PARAMAST.spad" 1437464 1437472 1438326 1438331) (-887 "PAN2EXPR.spad" 1436876 1436884 1437454 1437459) (-886 "PALETTE.spad" 1435846 1435854 1436866 1436871) (-885 "PAIR.spad" 1434833 1434846 1435434 1435439) (-884 "PADICRC.spad" 1432074 1432092 1433245 1433338) (-883 "PADICRAT.spad" 1429982 1429994 1430203 1430296) (-882 "PADIC.spad" 1429677 1429689 1429908 1429977) (-881 "PADICCT.spad" 1428226 1428238 1429603 1429672) (-880 "PADEPAC.spad" 1426915 1426934 1428216 1428221) (-879 "PADE.spad" 1425667 1425683 1426905 1426910) (-878 "OWP.spad" 1424907 1424937 1425525 1425592) (-877 "OVERSET.spad" 1424480 1424488 1424897 1424902) (-876 "OVAR.spad" 1424261 1424284 1424470 1424475) (-875 "OUT.spad" 1423347 1423355 1424251 1424256) (-874 "OUTFORM.spad" 1412739 1412747 1423337 1423342) (-873 "OUTBFILE.spad" 1412157 1412165 1412729 1412734) (-872 "OUTBCON.spad" 1411163 1411171 1412147 1412152) (-871 "OUTBCON.spad" 1410167 1410177 1411153 1411158) (-870 "OSI.spad" 1409642 1409650 1410157 1410162) (-869 "OSGROUP.spad" 1409560 1409568 1409632 1409637) (-868 "ORTHPOL.spad" 1408045 1408055 1409477 1409482) (-867 "OREUP.spad" 1407498 1407526 1407725 1407764) (-866 "ORESUP.spad" 1406799 1406823 1407178 1407217) (-865 "OREPCTO.spad" 1404656 1404668 1406719 1406724) (-864 "OREPCAT.spad" 1398803 1398813 1404612 1404651) (-863 "OREPCAT.spad" 1392840 1392852 1398651 1398656) (-862 "ORDSET.spad" 1392012 1392020 1392830 1392835) (-861 "ORDSET.spad" 1391182 1391192 1392002 1392007) (-860 "ORDRING.spad" 1390572 1390580 1391162 1391177) (-859 "ORDRING.spad" 1389970 1389980 1390562 1390567) (-858 "ORDMON.spad" 1389825 1389833 1389960 1389965) (-857 "ORDFUNS.spad" 1388957 1388973 1389815 1389820) (-856 "ORDFIN.spad" 1388777 1388785 1388947 1388952) (-855 "ORDCOMP.spad" 1387242 1387252 1388324 1388353) (-854 "ORDCOMP2.spad" 1386535 1386547 1387232 1387237) (-853 "OPTPROB.spad" 1385173 1385181 1386525 1386530) (-852 "OPTPACK.spad" 1377582 1377590 1385163 1385168) (-851 "OPTCAT.spad" 1375261 1375269 1377572 1377577) (-850 "OPSIG.spad" 1374915 1374923 1375251 1375256) (-849 "OPQUERY.spad" 1374464 1374472 1374905 1374910) (-848 "OP.spad" 1374206 1374216 1374286 1374353) (-847 "OPERCAT.spad" 1373672 1373682 1374196 1374201) (-846 "OPERCAT.spad" 1373136 1373148 1373662 1373667) (-845 "ONECOMP.spad" 1371881 1371891 1372683 1372712) (-844 "ONECOMP2.spad" 1371305 1371317 1371871 1371876) (-843 "OMSERVER.spad" 1370311 1370319 1371295 1371300) (-842 "OMSAGG.spad" 1370099 1370109 1370267 1370306) (-841 "OMPKG.spad" 1368715 1368723 1370089 1370094) (-840 "OM.spad" 1367688 1367696 1368705 1368710) (-839 "OMLO.spad" 1367113 1367125 1367574 1367613) (-838 "OMEXPR.spad" 1366947 1366957 1367103 1367108) (-837 "OMERR.spad" 1366492 1366500 1366937 1366942) (-836 "OMERRK.spad" 1365526 1365534 1366482 1366487) (-835 "OMENC.spad" 1364870 1364878 1365516 1365521) (-834 "OMDEV.spad" 1359179 1359187 1364860 1364865) (-833 "OMCONN.spad" 1358588 1358596 1359169 1359174) (-832 "OINTDOM.spad" 1358351 1358359 1358514 1358583) (-831 "OFMONOID.spad" 1356474 1356484 1358307 1358312) (-830 "ODVAR.spad" 1355735 1355745 1356464 1356469) (-829 "ODR.spad" 1355379 1355405 1355547 1355696) (-828 "ODPOL.spad" 1352668 1352678 1353008 1353135) (-827 "ODP.spad" 1341086 1341106 1341459 1341558) (-826 "ODETOOLS.spad" 1339735 1339754 1341076 1341081) (-825 "ODESYS.spad" 1337429 1337446 1339725 1339730) (-824 "ODERTRIC.spad" 1333438 1333455 1337386 1337391) (-823 "ODERED.spad" 1332837 1332861 1333428 1333433) (-822 "ODERAT.spad" 1330452 1330469 1332827 1332832) (-821 "ODEPRRIC.spad" 1327489 1327511 1330442 1330447) (-820 "ODEPROB.spad" 1326746 1326754 1327479 1327484) (-819 "ODEPRIM.spad" 1324080 1324102 1326736 1326741) (-818 "ODEPAL.spad" 1323466 1323490 1324070 1324075) (-817 "ODEPACK.spad" 1310132 1310140 1323456 1323461) (-816 "ODEINT.spad" 1309567 1309583 1310122 1310127) (-815 "ODEIFTBL.spad" 1306962 1306970 1309557 1309562) (-814 "ODEEF.spad" 1302453 1302469 1306952 1306957) (-813 "ODECONST.spad" 1301990 1302008 1302443 1302448) (-812 "ODECAT.spad" 1300588 1300596 1301980 1301985) (-811 "OCT.spad" 1298724 1298734 1299438 1299477) (-810 "OCTCT2.spad" 1298370 1298391 1298714 1298719) (-809 "OC.spad" 1296166 1296176 1298326 1298365) (-808 "OC.spad" 1293687 1293699 1295849 1295854) (-807 "OCAMON.spad" 1293535 1293543 1293677 1293682) (-806 "OASGP.spad" 1293350 1293358 1293525 1293530) (-805 "OAMONS.spad" 1292872 1292880 1293340 1293345) (-804 "OAMON.spad" 1292733 1292741 1292862 1292867) (-803 "OAGROUP.spad" 1292595 1292603 1292723 1292728) (-802 "NUMTUBE.spad" 1292186 1292202 1292585 1292590) (-801 "NUMQUAD.spad" 1280162 1280170 1292176 1292181) (-800 "NUMODE.spad" 1271516 1271524 1280152 1280157) (-799 "NUMINT.spad" 1269082 1269090 1271506 1271511) (-798 "NUMFMT.spad" 1267922 1267930 1269072 1269077) (-797 "NUMERIC.spad" 1260036 1260046 1267727 1267732) (-796 "NTSCAT.spad" 1258544 1258560 1260004 1260031) (-795 "NTPOLFN.spad" 1258095 1258105 1258461 1258466) (-794 "NSUP.spad" 1251048 1251058 1255588 1255741) (-793 "NSUP2.spad" 1250440 1250452 1251038 1251043) (-792 "NSMP.spad" 1246670 1246689 1246978 1247105) (-791 "NREP.spad" 1245048 1245062 1246660 1246665) (-790 "NPCOEF.spad" 1244294 1244314 1245038 1245043) (-789 "NORMRETR.spad" 1243892 1243931 1244284 1244289) (-788 "NORMPK.spad" 1241794 1241813 1243882 1243887) (-787 "NORMMA.spad" 1241482 1241508 1241784 1241789) (-786 "NONE.spad" 1241223 1241231 1241472 1241477) (-785 "NONE1.spad" 1240899 1240909 1241213 1241218) (-784 "NODE1.spad" 1240386 1240402 1240889 1240894) (-783 "NNI.spad" 1239281 1239289 1240360 1240381) (-782 "NLINSOL.spad" 1237907 1237917 1239271 1239276) (-781 "NIPROB.spad" 1236448 1236456 1237897 1237902) (-780 "NFINTBAS.spad" 1234008 1234025 1236438 1236443) (-779 "NETCLT.spad" 1233982 1233993 1233998 1234003) (-778 "NCODIV.spad" 1232198 1232214 1233972 1233977) (-777 "NCNTFRAC.spad" 1231840 1231854 1232188 1232193) (-776 "NCEP.spad" 1230006 1230020 1231830 1231835) (-775 "NASRING.spad" 1229602 1229610 1229996 1230001) (-774 "NASRING.spad" 1229196 1229206 1229592 1229597) (-773 "NARNG.spad" 1228548 1228556 1229186 1229191) (-772 "NARNG.spad" 1227898 1227908 1228538 1228543) (-771 "NAGSP.spad" 1226975 1226983 1227888 1227893) (-770 "NAGS.spad" 1216636 1216644 1226965 1226970) (-769 "NAGF07.spad" 1215067 1215075 1216626 1216631) (-768 "NAGF04.spad" 1209469 1209477 1215057 1215062) (-767 "NAGF02.spad" 1203538 1203546 1209459 1209464) (-766 "NAGF01.spad" 1199299 1199307 1203528 1203533) (-765 "NAGE04.spad" 1192999 1193007 1199289 1199294) (-764 "NAGE02.spad" 1183659 1183667 1192989 1192994) (-763 "NAGE01.spad" 1179661 1179669 1183649 1183654) (-762 "NAGD03.spad" 1177665 1177673 1179651 1179656) (-761 "NAGD02.spad" 1170412 1170420 1177655 1177660) (-760 "NAGD01.spad" 1164705 1164713 1170402 1170407) (-759 "NAGC06.spad" 1160580 1160588 1164695 1164700) (-758 "NAGC05.spad" 1159081 1159089 1160570 1160575) (-757 "NAGC02.spad" 1158348 1158356 1159071 1159076) (-756 "NAALG.spad" 1157889 1157899 1158316 1158343) (-755 "NAALG.spad" 1157450 1157462 1157879 1157884) (-754 "MULTSQFR.spad" 1154408 1154425 1157440 1157445) (-753 "MULTFACT.spad" 1153791 1153808 1154398 1154403) (-752 "MTSCAT.spad" 1151885 1151906 1153689 1153786) (-751 "MTHING.spad" 1151544 1151554 1151875 1151880) (-750 "MSYSCMD.spad" 1150978 1150986 1151534 1151539) (-749 "MSET.spad" 1148936 1148946 1150684 1150723) (-748 "MSETAGG.spad" 1148781 1148791 1148904 1148931) (-747 "MRING.spad" 1145758 1145770 1148489 1148556) (-746 "MRF2.spad" 1145328 1145342 1145748 1145753) (-745 "MRATFAC.spad" 1144874 1144891 1145318 1145323) (-744 "MPRFF.spad" 1142914 1142933 1144864 1144869) (-743 "MPOLY.spad" 1140385 1140400 1140744 1140871) (-742 "MPCPF.spad" 1139649 1139668 1140375 1140380) (-741 "MPC3.spad" 1139466 1139506 1139639 1139644) (-740 "MPC2.spad" 1139112 1139145 1139456 1139461) (-739 "MONOTOOL.spad" 1137463 1137480 1139102 1139107) (-738 "MONOID.spad" 1136782 1136790 1137453 1137458) (-737 "MONOID.spad" 1136099 1136109 1136772 1136777) (-736 "MONOGEN.spad" 1134847 1134860 1135959 1136094) (-735 "MONOGEN.spad" 1133617 1133632 1134731 1134736) (-734 "MONADWU.spad" 1131647 1131655 1133607 1133612) (-733 "MONADWU.spad" 1129675 1129685 1131637 1131642) (-732 "MONAD.spad" 1128835 1128843 1129665 1129670) (-731 "MONAD.spad" 1127993 1128003 1128825 1128830) (-730 "MOEBIUS.spad" 1126729 1126743 1127973 1127988) (-729 "MODULE.spad" 1126599 1126609 1126697 1126724) (-728 "MODULE.spad" 1126489 1126501 1126589 1126594) (-727 "MODRING.spad" 1125824 1125863 1126469 1126484) (-726 "MODOP.spad" 1124489 1124501 1125646 1125713) (-725 "MODMONOM.spad" 1124220 1124238 1124479 1124484) (-724 "MODMON.spad" 1120922 1120938 1121641 1121794) (-723 "MODFIELD.spad" 1120284 1120323 1120824 1120917) (-722 "MMLFORM.spad" 1119144 1119152 1120274 1120279) (-721 "MMAP.spad" 1118886 1118920 1119134 1119139) (-720 "MLO.spad" 1117345 1117355 1118842 1118881) (-719 "MLIFT.spad" 1115957 1115974 1117335 1117340) (-718 "MKUCFUNC.spad" 1115492 1115510 1115947 1115952) (-717 "MKRECORD.spad" 1115096 1115109 1115482 1115487) (-716 "MKFUNC.spad" 1114503 1114513 1115086 1115091) (-715 "MKFLCFN.spad" 1113471 1113481 1114493 1114498) (-714 "MKBCFUNC.spad" 1112966 1112984 1113461 1113466) (-713 "MINT.spad" 1112405 1112413 1112868 1112961) (-712 "MHROWRED.spad" 1110916 1110926 1112395 1112400) (-711 "MFLOAT.spad" 1109436 1109444 1110806 1110911) (-710 "MFINFACT.spad" 1108836 1108858 1109426 1109431) (-709 "MESH.spad" 1106618 1106626 1108826 1108831) (-708 "MDDFACT.spad" 1104829 1104839 1106608 1106613) (-707 "MDAGG.spad" 1104120 1104130 1104809 1104824) (-706 "MCMPLX.spad" 1099551 1099559 1100165 1100366) (-705 "MCDEN.spad" 1098761 1098773 1099541 1099546) (-704 "MCALCFN.spad" 1095883 1095909 1098751 1098756) (-703 "MAYBE.spad" 1095167 1095178 1095873 1095878) (-702 "MATSTOR.spad" 1092475 1092485 1095157 1095162) (-701 "MATRIX.spad" 1091179 1091189 1091663 1091690) (-700 "MATLIN.spad" 1088523 1088547 1091063 1091068) (-699 "MATCAT.spad" 1080252 1080274 1088491 1088518) (-698 "MATCAT.spad" 1071853 1071877 1080094 1080099) (-697 "MATCAT2.spad" 1071135 1071183 1071843 1071848) (-696 "MAPPKG3.spad" 1070050 1070064 1071125 1071130) (-695 "MAPPKG2.spad" 1069388 1069400 1070040 1070045) (-694 "MAPPKG1.spad" 1068216 1068226 1069378 1069383) (-693 "MAPPAST.spad" 1067531 1067539 1068206 1068211) (-692 "MAPHACK3.spad" 1067343 1067357 1067521 1067526) (-691 "MAPHACK2.spad" 1067112 1067124 1067333 1067338) (-690 "MAPHACK1.spad" 1066756 1066766 1067102 1067107) (-689 "MAGMA.spad" 1064546 1064563 1066746 1066751) (-688 "MACROAST.spad" 1064125 1064133 1064536 1064541) (-687 "M3D.spad" 1061845 1061855 1063503 1063508) (-686 "LZSTAGG.spad" 1059083 1059093 1061835 1061840) (-685 "LZSTAGG.spad" 1056319 1056331 1059073 1059078) (-684 "LWORD.spad" 1053024 1053041 1056309 1056314) (-683 "LSTAST.spad" 1052808 1052816 1053014 1053019) (-682 "LSQM.spad" 1051001 1051015 1051395 1051446) (-681 "LSPP.spad" 1050536 1050553 1050991 1050996) (-680 "LSMP.spad" 1049386 1049414 1050526 1050531) (-679 "LSMP1.spad" 1047204 1047218 1049376 1049381) (-678 "LSAGG.spad" 1046873 1046883 1047172 1047199) (-677 "LSAGG.spad" 1046562 1046574 1046863 1046868) (-676 "LPOLY.spad" 1045516 1045535 1046418 1046487) (-675 "LPEFRAC.spad" 1044787 1044797 1045506 1045511) (-674 "LO.spad" 1044188 1044202 1044721 1044748) (-673 "LOGIC.spad" 1043790 1043798 1044178 1044183) (-672 "LOGIC.spad" 1043390 1043400 1043780 1043785) (-671 "LODOOPS.spad" 1042320 1042332 1043380 1043385) (-670 "LODO.spad" 1041704 1041720 1042000 1042039) (-669 "LODOF.spad" 1040750 1040767 1041661 1041666) (-668 "LODOCAT.spad" 1039416 1039426 1040706 1040745) (-667 "LODOCAT.spad" 1038080 1038092 1039372 1039377) (-666 "LODO2.spad" 1037353 1037365 1037760 1037799) (-665 "LODO1.spad" 1036753 1036763 1037033 1037072) (-664 "LODEEF.spad" 1035555 1035573 1036743 1036748) (-663 "LNAGG.spad" 1031702 1031712 1035545 1035550) (-662 "LNAGG.spad" 1027813 1027825 1031658 1031663) (-661 "LMOPS.spad" 1024581 1024598 1027803 1027808) (-660 "LMODULE.spad" 1024349 1024359 1024571 1024576) (-659 "LMDICT.spad" 1023636 1023646 1023900 1023927) (-658 "LLINSET.spad" 1023343 1023353 1023626 1023631) (-657 "LITERAL.spad" 1023249 1023260 1023333 1023338) (-656 "LIST.spad" 1020984 1020994 1022396 1022423) (-655 "LIST3.spad" 1020295 1020309 1020974 1020979) (-654 "LIST2.spad" 1018997 1019009 1020285 1020290) (-653 "LIST2MAP.spad" 1015900 1015912 1018987 1018992) (-652 "LINSET.spad" 1015679 1015689 1015890 1015895) (-651 "LINEXP.spad" 1014448 1014458 1015669 1015674) (-650 "LINDEP.spad" 1013257 1013269 1014360 1014365) (-649 "LIMITRF.spad" 1011185 1011195 1013247 1013252) (-648 "LIMITPS.spad" 1010088 1010101 1011175 1011180) (-647 "LIE.spad" 1008104 1008116 1009378 1009523) (-646 "LIECAT.spad" 1007580 1007590 1008030 1008099) (-645 "LIECAT.spad" 1007084 1007096 1007536 1007541) (-644 "LIB.spad" 1005297 1005305 1005743 1005758) (-643 "LGROBP.spad" 1002650 1002669 1005287 1005292) (-642 "LF.spad" 1001605 1001621 1002640 1002645) (-641 "LFCAT.spad" 1000664 1000672 1001595 1001600) (-640 "LEXTRIPK.spad" 996167 996182 1000654 1000659) (-639 "LEXP.spad" 994170 994197 996147 996162) (-638 "LETAST.spad" 993869 993877 994160 994165) (-637 "LEADCDET.spad" 992267 992284 993859 993864) (-636 "LAZM3PK.spad" 990971 990993 992257 992262) (-635 "LAUPOL.spad" 989571 989584 990471 990540) (-634 "LAPLACE.spad" 989154 989170 989561 989566) (-633 "LA.spad" 988594 988608 989076 989115) (-632 "LALG.spad" 988370 988380 988574 988589) (-631 "LALG.spad" 988154 988166 988360 988365) (-630 "KVTFROM.spad" 987889 987899 988144 988149) (-629 "KTVLOGIC.spad" 987401 987409 987879 987884) (-628 "KRCFROM.spad" 987139 987149 987391 987396) (-627 "KOVACIC.spad" 985862 985879 987129 987134) (-626 "KONVERT.spad" 985584 985594 985852 985857) (-625 "KOERCE.spad" 985321 985331 985574 985579) (-624 "KERNEL.spad" 983976 983986 985105 985110) (-623 "KERNEL2.spad" 983679 983691 983966 983971) (-622 "KDAGG.spad" 982788 982810 983659 983674) (-621 "KDAGG.spad" 981905 981929 982778 982783) (-620 "KAFILE.spad" 980868 980884 981103 981130) (-619 "JORDAN.spad" 978697 978709 980158 980303) (-618 "JOINAST.spad" 978391 978399 978687 978692) (-617 "JAVACODE.spad" 978257 978265 978381 978386) (-616 "IXAGG.spad" 976390 976414 978247 978252) (-615 "IXAGG.spad" 974378 974404 976237 976242) (-614 "IVECTOR.spad" 973148 973163 973303 973330) (-613 "ITUPLE.spad" 972309 972319 973138 973143) (-612 "ITRIGMNP.spad" 971148 971167 972299 972304) (-611 "ITFUN3.spad" 970654 970668 971138 971143) (-610 "ITFUN2.spad" 970398 970410 970644 970649) (-609 "ITFORM.spad" 969753 969761 970388 970393) (-608 "ITAYLOR.spad" 967747 967762 969617 969714) (-607 "ISUPS.spad" 960184 960199 966721 966818) (-606 "ISUMP.spad" 959685 959701 960174 960179) (-605 "ISTRING.spad" 958773 958786 958854 958881) (-604 "ISAST.spad" 958492 958500 958763 958768) (-603 "IRURPK.spad" 957209 957228 958482 958487) (-602 "IRSN.spad" 955181 955189 957199 957204) (-601 "IRRF2F.spad" 953666 953676 955137 955142) (-600 "IRREDFFX.spad" 953267 953278 953656 953661) (-599 "IROOT.spad" 951606 951616 953257 953262) (-598 "IR.spad" 949407 949421 951461 951488) (-597 "IRFORM.spad" 948731 948739 949397 949402) (-596 "IR2.spad" 947759 947775 948721 948726) (-595 "IR2F.spad" 946965 946981 947749 947754) (-594 "IPRNTPK.spad" 946725 946733 946955 946960) (-593 "IPF.spad" 946290 946302 946530 946623) (-592 "IPADIC.spad" 946051 946077 946216 946285) (-591 "IP4ADDR.spad" 945608 945616 946041 946046) (-590 "IOMODE.spad" 945130 945138 945598 945603) (-589 "IOBFILE.spad" 944491 944499 945120 945125) (-588 "IOBCON.spad" 944356 944364 944481 944486) (-587 "INVLAPLA.spad" 944005 944021 944346 944351) (-586 "INTTR.spad" 937387 937404 943995 944000) (-585 "INTTOOLS.spad" 935142 935158 936961 936966) (-584 "INTSLPE.spad" 934462 934470 935132 935137) (-583 "INTRVL.spad" 934028 934038 934376 934457) (-582 "INTRF.spad" 932452 932466 934018 934023) (-581 "INTRET.spad" 931884 931894 932442 932447) (-580 "INTRAT.spad" 930611 930628 931874 931879) (-579 "INTPM.spad" 928996 929012 930254 930259) (-578 "INTPAF.spad" 926860 926878 928928 928933) (-577 "INTPACK.spad" 917234 917242 926850 926855) (-576 "INT.spad" 916682 916690 917088 917229) (-575 "INTHERTR.spad" 915956 915973 916672 916677) (-574 "INTHERAL.spad" 915626 915650 915946 915951) (-573 "INTHEORY.spad" 912065 912073 915616 915621) (-572 "INTG0.spad" 905798 905816 911997 912002) (-571 "INTFTBL.spad" 899827 899835 905788 905793) (-570 "INTFACT.spad" 898886 898896 899817 899822) (-569 "INTEF.spad" 897271 897287 898876 898881) (-568 "INTDOM.spad" 895894 895902 897197 897266) (-567 "INTDOM.spad" 894579 894589 895884 895889) (-566 "INTCAT.spad" 892838 892848 894493 894574) (-565 "INTBIT.spad" 892345 892353 892828 892833) (-564 "INTALG.spad" 891533 891560 892335 892340) (-563 "INTAF.spad" 891033 891049 891523 891528) (-562 "INTABL.spad" 889551 889582 889714 889741) (-561 "INT8.spad" 889431 889439 889541 889546) (-560 "INT64.spad" 889310 889318 889421 889426) (-559 "INT32.spad" 889189 889197 889300 889305) (-558 "INT16.spad" 889068 889076 889179 889184) (-557 "INS.spad" 886571 886579 888970 889063) (-556 "INS.spad" 884160 884170 886561 886566) (-555 "INPSIGN.spad" 883608 883621 884150 884155) (-554 "INPRODPF.spad" 882704 882723 883598 883603) (-553 "INPRODFF.spad" 881792 881816 882694 882699) (-552 "INNMFACT.spad" 880767 880784 881782 881787) (-551 "INMODGCD.spad" 880255 880285 880757 880762) (-550 "INFSP.spad" 878552 878574 880245 880250) (-549 "INFPROD0.spad" 877632 877651 878542 878547) (-548 "INFORM.spad" 874831 874839 877622 877627) (-547 "INFORM1.spad" 874456 874466 874821 874826) (-546 "INFINITY.spad" 874008 874016 874446 874451) (-545 "INETCLTS.spad" 873985 873993 873998 874003) (-544 "INEP.spad" 872523 872545 873975 873980) (-543 "INDE.spad" 872252 872269 872513 872518) (-542 "INCRMAPS.spad" 871673 871683 872242 872247) (-541 "INBFILE.spad" 870745 870753 871663 871668) (-540 "INBFF.spad" 866539 866550 870735 870740) (-539 "INBCON.spad" 864829 864837 866529 866534) (-538 "INBCON.spad" 863117 863127 864819 864824) (-537 "INAST.spad" 862778 862786 863107 863112) (-536 "IMPTAST.spad" 862486 862494 862768 862773) (-535 "IMATRIX.spad" 861431 861457 861943 861970) (-534 "IMATQF.spad" 860525 860569 861387 861392) (-533 "IMATLIN.spad" 859130 859154 860481 860486) (-532 "ILIST.spad" 857788 857803 858313 858340) (-531 "IIARRAY2.spad" 857176 857214 857395 857422) (-530 "IFF.spad" 856586 856602 856857 856950) (-529 "IFAST.spad" 856200 856208 856576 856581) (-528 "IFARRAY.spad" 853693 853708 855383 855410) (-527 "IFAMON.spad" 853555 853572 853649 853654) (-526 "IEVALAB.spad" 852960 852972 853545 853550) (-525 "IEVALAB.spad" 852363 852377 852950 852955) (-524 "IDPO.spad" 852161 852173 852353 852358) (-523 "IDPOAMS.spad" 851917 851929 852151 852156) (-522 "IDPOAM.spad" 851637 851649 851907 851912) (-521 "IDPC.spad" 850575 850587 851627 851632) (-520 "IDPAM.spad" 850320 850332 850565 850570) (-519 "IDPAG.spad" 850067 850079 850310 850315) (-518 "IDENT.spad" 849717 849725 850057 850062) (-517 "IDECOMP.spad" 846956 846974 849707 849712) (-516 "IDEAL.spad" 841905 841944 846891 846896) (-515 "ICDEN.spad" 841094 841110 841895 841900) (-514 "ICARD.spad" 840285 840293 841084 841089) (-513 "IBPTOOLS.spad" 838892 838909 840275 840280) (-512 "IBITS.spad" 838095 838108 838528 838555) (-511 "IBATOOL.spad" 835072 835091 838085 838090) (-510 "IBACHIN.spad" 833579 833594 835062 835067) (-509 "IARRAY2.spad" 832567 832593 833186 833213) (-508 "IARRAY1.spad" 831612 831627 831750 831777) (-507 "IAN.spad" 829835 829843 831428 831521) (-506 "IALGFACT.spad" 829438 829471 829825 829830) (-505 "HYPCAT.spad" 828862 828870 829428 829433) (-504 "HYPCAT.spad" 828284 828294 828852 828857) (-503 "HOSTNAME.spad" 828092 828100 828274 828279) (-502 "HOMOTOP.spad" 827835 827845 828082 828087) (-501 "HOAGG.spad" 825117 825127 827825 827830) (-500 "HOAGG.spad" 822174 822186 824884 824889) (-499 "HEXADEC.spad" 820179 820187 820544 820637) (-498 "HEUGCD.spad" 819214 819225 820169 820174) (-497 "HELLFDIV.spad" 818804 818828 819204 819209) (-496 "HEAP.spad" 818196 818206 818411 818438) (-495 "HEADAST.spad" 817729 817737 818186 818191) (-494 "HDP.spad" 806143 806159 806520 806619) (-493 "HDMP.spad" 803357 803372 803973 804100) (-492 "HB.spad" 801608 801616 803347 803352) (-491 "HASHTBL.spad" 800078 800109 800289 800316) (-490 "HASAST.spad" 799794 799802 800068 800073) (-489 "HACKPI.spad" 799285 799293 799696 799789) (-488 "GTSET.spad" 798224 798240 798931 798958) (-487 "GSTBL.spad" 796743 796778 796917 796932) (-486 "GSERIES.spad" 794056 794083 794875 795024) (-485 "GROUP.spad" 793329 793337 794036 794051) (-484 "GROUP.spad" 792610 792620 793319 793324) (-483 "GROEBSOL.spad" 791104 791125 792600 792605) (-482 "GRMOD.spad" 789675 789687 791094 791099) (-481 "GRMOD.spad" 788244 788258 789665 789670) (-480 "GRIMAGE.spad" 781133 781141 788234 788239) (-479 "GRDEF.spad" 779512 779520 781123 781128) (-478 "GRAY.spad" 777975 777983 779502 779507) (-477 "GRALG.spad" 777052 777064 777965 777970) (-476 "GRALG.spad" 776127 776141 777042 777047) (-475 "GPOLSET.spad" 775581 775604 775809 775836) (-474 "GOSPER.spad" 774850 774868 775571 775576) (-473 "GMODPOL.spad" 773998 774025 774818 774845) (-472 "GHENSEL.spad" 773081 773095 773988 773993) (-471 "GENUPS.spad" 769374 769387 773071 773076) (-470 "GENUFACT.spad" 768951 768961 769364 769369) (-469 "GENPGCD.spad" 768537 768554 768941 768946) (-468 "GENMFACT.spad" 767989 768008 768527 768532) (-467 "GENEEZ.spad" 765940 765953 767979 767984) (-466 "GDMP.spad" 762996 763013 763770 763897) (-465 "GCNAALG.spad" 756919 756946 762790 762857) (-464 "GCDDOM.spad" 756095 756103 756845 756914) (-463 "GCDDOM.spad" 755333 755343 756085 756090) (-462 "GB.spad" 752859 752897 755289 755294) (-461 "GBINTERN.spad" 748879 748917 752849 752854) (-460 "GBF.spad" 744646 744684 748869 748874) (-459 "GBEUCLID.spad" 742528 742566 744636 744641) (-458 "GAUSSFAC.spad" 741841 741849 742518 742523) (-457 "GALUTIL.spad" 740167 740177 741797 741802) (-456 "GALPOLYU.spad" 738621 738634 740157 740162) (-455 "GALFACTU.spad" 736794 736813 738611 738616) (-454 "GALFACT.spad" 726983 726994 736784 736789) (-453 "FVFUN.spad" 724006 724014 726973 726978) (-452 "FVC.spad" 723058 723066 723996 724001) (-451 "FUNDESC.spad" 722736 722744 723048 723053) (-450 "FUNCTION.spad" 722585 722597 722726 722731) (-449 "FT.spad" 720882 720890 722575 722580) (-448 "FTEM.spad" 720047 720055 720872 720877) (-447 "FSUPFACT.spad" 718947 718966 719983 719988) (-446 "FST.spad" 717033 717041 718937 718942) (-445 "FSRED.spad" 716513 716529 717023 717028) (-444 "FSPRMELT.spad" 715395 715411 716470 716475) (-443 "FSPECF.spad" 713486 713502 715385 715390) (-442 "FS.spad" 707754 707764 713261 713481) (-441 "FS.spad" 701800 701812 707309 707314) (-440 "FSINT.spad" 701460 701476 701790 701795) (-439 "FSERIES.spad" 700651 700663 701280 701379) (-438 "FSCINT.spad" 699968 699984 700641 700646) (-437 "FSAGG.spad" 699085 699095 699924 699963) (-436 "FSAGG.spad" 698164 698176 699005 699010) (-435 "FSAGG2.spad" 696907 696923 698154 698159) (-434 "FS2UPS.spad" 691398 691432 696897 696902) (-433 "FS2.spad" 691045 691061 691388 691393) (-432 "FS2EXPXP.spad" 690170 690193 691035 691040) (-431 "FRUTIL.spad" 689124 689134 690160 690165) (-430 "FR.spad" 682747 682757 688055 688124) (-429 "FRNAALG.spad" 678016 678026 682689 682742) (-428 "FRNAALG.spad" 673297 673309 677972 677977) (-427 "FRNAAF2.spad" 672753 672771 673287 673292) (-426 "FRMOD.spad" 672163 672193 672684 672689) (-425 "FRIDEAL.spad" 671388 671409 672143 672158) (-424 "FRIDEAL2.spad" 670992 671024 671378 671383) (-423 "FRETRCT.spad" 670503 670513 670982 670987) (-422 "FRETRCT.spad" 669880 669892 670361 670366) (-421 "FRAMALG.spad" 668228 668241 669836 669875) (-420 "FRAMALG.spad" 666608 666623 668218 668223) (-419 "FRAC.spad" 663614 663624 664017 664190) (-418 "FRAC2.spad" 663219 663231 663604 663609) (-417 "FR2.spad" 662555 662567 663209 663214) (-416 "FPS.spad" 659370 659378 662445 662550) (-415 "FPS.spad" 656213 656223 659290 659295) (-414 "FPC.spad" 655259 655267 656115 656208) (-413 "FPC.spad" 654391 654401 655249 655254) (-412 "FPATMAB.spad" 654153 654163 654381 654386) (-411 "FPARFRAC.spad" 653003 653020 654143 654148) (-410 "FORTRAN.spad" 651509 651552 652993 652998) (-409 "FORT.spad" 650458 650466 651499 651504) (-408 "FORTFN.spad" 647628 647636 650448 650453) (-407 "FORTCAT.spad" 647312 647320 647618 647623) (-406 "FORMULA.spad" 644786 644794 647302 647307) (-405 "FORMULA1.spad" 644265 644275 644776 644781) (-404 "FORDER.spad" 643956 643980 644255 644260) (-403 "FOP.spad" 643157 643165 643946 643951) (-402 "FNLA.spad" 642581 642603 643125 643152) (-401 "FNCAT.spad" 641176 641184 642571 642576) (-400 "FNAME.spad" 641068 641076 641166 641171) (-399 "FMTC.spad" 640866 640874 640994 641063) (-398 "FMONOID.spad" 640531 640541 640822 640827) (-397 "FMONCAT.spad" 637684 637694 640521 640526) (-396 "FM.spad" 637379 637391 637618 637645) (-395 "FMFUN.spad" 634409 634417 637369 637374) (-394 "FMC.spad" 633461 633469 634399 634404) (-393 "FMCAT.spad" 631129 631147 633429 633456) (-392 "FM1.spad" 630486 630498 631063 631090) (-391 "FLOATRP.spad" 628221 628235 630476 630481) (-390 "FLOAT.spad" 621535 621543 628087 628216) (-389 "FLOATCP.spad" 618966 618980 621525 621530) (-388 "FLINEXP.spad" 618688 618698 618956 618961) (-387 "FLINEXP.spad" 618354 618366 618624 618629) (-386 "FLASORT.spad" 617680 617692 618344 618349) (-385 "FLALG.spad" 615326 615345 617606 617675) (-384 "FLAGG.spad" 612368 612378 615306 615321) (-383 "FLAGG.spad" 609311 609323 612251 612256) (-382 "FLAGG2.spad" 608036 608052 609301 609306) (-381 "FINRALG.spad" 606097 606110 607992 608031) (-380 "FINRALG.spad" 604084 604099 605981 605986) (-379 "FINITE.spad" 603236 603244 604074 604079) (-378 "FINAALG.spad" 592357 592367 603178 603231) (-377 "FINAALG.spad" 581490 581502 592313 592318) (-376 "FILE.spad" 581073 581083 581480 581485) (-375 "FILECAT.spad" 579599 579616 581063 581068) (-374 "FIELD.spad" 579005 579013 579501 579594) (-373 "FIELD.spad" 578497 578507 578995 579000) (-372 "FGROUP.spad" 577144 577154 578477 578492) (-371 "FGLMICPK.spad" 575931 575946 577134 577139) (-370 "FFX.spad" 575306 575321 575647 575740) (-369 "FFSLPE.spad" 574809 574830 575296 575301) (-368 "FFPOLY.spad" 566071 566082 574799 574804) (-367 "FFPOLY2.spad" 565131 565148 566061 566066) (-366 "FFP.spad" 564528 564548 564847 564940) (-365 "FF.spad" 563976 563992 564209 564302) (-364 "FFNBX.spad" 562488 562508 563692 563785) (-363 "FFNBP.spad" 561001 561018 562204 562297) (-362 "FFNB.spad" 559466 559487 560682 560775) (-361 "FFINTBAS.spad" 556980 556999 559456 559461) (-360 "FFIELDC.spad" 554557 554565 556882 556975) (-359 "FFIELDC.spad" 552220 552230 554547 554552) (-358 "FFHOM.spad" 550968 550985 552210 552215) (-357 "FFF.spad" 548403 548414 550958 550963) (-356 "FFCGX.spad" 547250 547270 548119 548212) (-355 "FFCGP.spad" 546139 546159 546966 547059) (-354 "FFCG.spad" 544931 544952 545820 545913) (-353 "FFCAT.spad" 538104 538126 544770 544926) (-352 "FFCAT.spad" 531356 531380 538024 538029) (-351 "FFCAT2.spad" 531103 531143 531346 531351) (-350 "FEXPR.spad" 522820 522866 530859 530898) (-349 "FEVALAB.spad" 522528 522538 522810 522815) (-348 "FEVALAB.spad" 522021 522033 522305 522310) (-347 "FDIV.spad" 521463 521487 522011 522016) (-346 "FDIVCAT.spad" 519527 519551 521453 521458) (-345 "FDIVCAT.spad" 517589 517615 519517 519522) (-344 "FDIV2.spad" 517245 517285 517579 517584) (-343 "FCTRDATA.spad" 516253 516261 517235 517240) (-342 "FCPAK1.spad" 514820 514828 516243 516248) (-341 "FCOMP.spad" 514199 514209 514810 514815) (-340 "FC.spad" 504206 504214 514189 514194) (-339 "FAXF.spad" 497177 497191 504108 504201) (-338 "FAXF.spad" 490200 490216 497133 497138) (-337 "FARRAY.spad" 488350 488360 489383 489410) (-336 "FAMR.spad" 486486 486498 488248 488345) (-335 "FAMR.spad" 484606 484620 486370 486375) (-334 "FAMONOID.spad" 484274 484284 484560 484565) (-333 "FAMONC.spad" 482570 482582 484264 484269) (-332 "FAGROUP.spad" 482194 482204 482466 482493) (-331 "FACUTIL.spad" 480398 480415 482184 482189) (-330 "FACTFUNC.spad" 479592 479602 480388 480393) (-329 "EXPUPXS.spad" 476425 476448 477724 477873) (-328 "EXPRTUBE.spad" 473713 473721 476415 476420) (-327 "EXPRODE.spad" 470873 470889 473703 473708) (-326 "EXPR.spad" 466048 466058 466762 467057) (-325 "EXPR2UPS.spad" 462170 462183 466038 466043) (-324 "EXPR2.spad" 461875 461887 462160 462165) (-323 "EXPEXPAN.spad" 458676 458701 459308 459401) (-322 "EXIT.spad" 458347 458355 458666 458671) (-321 "EXITAST.spad" 458083 458091 458337 458342) (-320 "EVALCYC.spad" 457543 457557 458073 458078) (-319 "EVALAB.spad" 457115 457125 457533 457538) (-318 "EVALAB.spad" 456685 456697 457105 457110) (-317 "EUCDOM.spad" 454259 454267 456611 456680) (-316 "EUCDOM.spad" 451895 451905 454249 454254) (-315 "ESTOOLS.spad" 443741 443749 451885 451890) (-314 "ESTOOLS2.spad" 443344 443358 443731 443736) (-313 "ESTOOLS1.spad" 443029 443040 443334 443339) (-312 "ES.spad" 435844 435852 443019 443024) (-311 "ES.spad" 428565 428575 435742 435747) (-310 "ESCONT.spad" 425358 425366 428555 428560) (-309 "ESCONT1.spad" 425107 425119 425348 425353) (-308 "ES2.spad" 424612 424628 425097 425102) (-307 "ES1.spad" 424182 424198 424602 424607) (-306 "ERROR.spad" 421509 421517 424172 424177) (-305 "EQTBL.spad" 419981 420003 420190 420217) (-304 "EQ.spad" 414786 414796 417573 417685) (-303 "EQ2.spad" 414504 414516 414776 414781) (-302 "EP.spad" 410830 410840 414494 414499) (-301 "ENV.spad" 409508 409516 410820 410825) (-300 "ENTIRER.spad" 409176 409184 409452 409503) (-299 "EMR.spad" 408464 408505 409102 409171) (-298 "ELTAGG.spad" 406718 406737 408454 408459) (-297 "ELTAGG.spad" 404936 404957 406674 406679) (-296 "ELTAB.spad" 404411 404424 404926 404931) (-295 "ELFUTS.spad" 403798 403817 404401 404406) (-294 "ELEMFUN.spad" 403487 403495 403788 403793) (-293 "ELEMFUN.spad" 403174 403184 403477 403482) (-292 "ELAGG.spad" 401145 401155 403154 403169) (-291 "ELAGG.spad" 399053 399065 401064 401069) (-290 "ELABOR.spad" 398399 398407 399043 399048) (-289 "ELABEXPR.spad" 397331 397339 398389 398394) (-288 "EFUPXS.spad" 394107 394137 397287 397292) (-287 "EFULS.spad" 390943 390966 394063 394068) (-286 "EFSTRUC.spad" 388958 388974 390933 390938) (-285 "EF.spad" 383734 383750 388948 388953) (-284 "EAB.spad" 382010 382018 383724 383729) (-283 "E04UCFA.spad" 381546 381554 382000 382005) (-282 "E04NAFA.spad" 381123 381131 381536 381541) (-281 "E04MBFA.spad" 380703 380711 381113 381118) (-280 "E04JAFA.spad" 380239 380247 380693 380698) (-279 "E04GCFA.spad" 379775 379783 380229 380234) (-278 "E04FDFA.spad" 379311 379319 379765 379770) (-277 "E04DGFA.spad" 378847 378855 379301 379306) (-276 "E04AGNT.spad" 374697 374705 378837 378842) (-275 "DVARCAT.spad" 371587 371597 374687 374692) (-274 "DVARCAT.spad" 368475 368487 371577 371582) (-273 "DSMP.spad" 365849 365863 366154 366281) (-272 "DSEXT.spad" 365151 365161 365839 365844) (-271 "DSEXT.spad" 364360 364372 365050 365055) (-270 "DROPT.spad" 358319 358327 364350 364355) (-269 "DROPT1.spad" 357984 357994 358309 358314) (-268 "DROPT0.spad" 352841 352849 357974 357979) (-267 "DRAWPT.spad" 351014 351022 352831 352836) (-266 "DRAW.spad" 343890 343903 351004 351009) (-265 "DRAWHACK.spad" 343198 343208 343880 343885) (-264 "DRAWCX.spad" 340668 340676 343188 343193) (-263 "DRAWCURV.spad" 340215 340230 340658 340663) (-262 "DRAWCFUN.spad" 329747 329755 340205 340210) (-261 "DQAGG.spad" 327925 327935 329715 329742) (-260 "DPOLCAT.spad" 323274 323290 327793 327920) (-259 "DPOLCAT.spad" 318709 318727 323230 323235) (-258 "DPMO.spad" 310505 310521 310643 310856) (-257 "DPMM.spad" 302314 302332 302439 302652) (-256 "DOMTMPLT.spad" 302085 302093 302304 302309) (-255 "DOMCTOR.spad" 301840 301848 302075 302080) (-254 "DOMAIN.spad" 300927 300935 301830 301835) (-253 "DMP.spad" 298187 298202 298757 298884) (-252 "DMEXT.spad" 298054 298064 298155 298182) (-251 "DLP.spad" 297406 297416 298044 298049) (-250 "DLIST.spad" 295985 295995 296589 296616) (-249 "DLAGG.spad" 294402 294412 295975 295980) (-248 "DIVRING.spad" 293944 293952 294346 294397) (-247 "DIVRING.spad" 293530 293540 293934 293939) (-246 "DISPLAY.spad" 291720 291728 293520 293525) (-245 "DIRPROD.spad" 279871 279887 280511 280610) (-244 "DIRPROD2.spad" 278689 278707 279861 279866) (-243 "DIRPCAT.spad" 277882 277898 278585 278684) (-242 "DIRPCAT.spad" 276702 276720 277407 277412) (-241 "DIOSP.spad" 275527 275535 276692 276697) (-240 "DIOPS.spad" 274523 274533 275507 275522) (-239 "DIOPS.spad" 273493 273505 274479 274484) (-238 "DIFRING.spad" 273331 273339 273473 273488) (-237 "DIFFSPC.spad" 272910 272918 273321 273326) (-236 "DIFFSPC.spad" 272487 272497 272900 272905) (-235 "DIFFMOD.spad" 271976 271986 272455 272482) (-234 "DIFFDOM.spad" 271141 271152 271966 271971) (-233 "DIFFDOM.spad" 270304 270317 271131 271136) (-232 "DIFEXT.spad" 270123 270133 270284 270299) (-231 "DIAGG.spad" 269753 269763 270103 270118) (-230 "DIAGG.spad" 269391 269403 269743 269748) (-229 "DHMATRIX.spad" 267703 267713 268848 268875) (-228 "DFSFUN.spad" 261343 261351 267693 267698) (-227 "DFLOAT.spad" 258074 258082 261233 261338) (-226 "DFINTTLS.spad" 256305 256321 258064 258069) (-225 "DERHAM.spad" 254219 254251 256285 256300) (-224 "DEQUEUE.spad" 253543 253553 253826 253853) (-223 "DEGRED.spad" 253160 253174 253533 253538) (-222 "DEFINTRF.spad" 250697 250707 253150 253155) (-221 "DEFINTEF.spad" 249207 249223 250687 250692) (-220 "DEFAST.spad" 248575 248583 249197 249202) (-219 "DECIMAL.spad" 246584 246592 246945 247038) (-218 "DDFACT.spad" 244397 244414 246574 246579) (-217 "DBLRESP.spad" 243997 244021 244387 244392) (-216 "DBASE.spad" 242661 242671 243987 243992) (-215 "DATAARY.spad" 242123 242136 242651 242656) (-214 "D03FAFA.spad" 241951 241959 242113 242118) (-213 "D03EEFA.spad" 241771 241779 241941 241946) (-212 "D03AGNT.spad" 240857 240865 241761 241766) (-211 "D02EJFA.spad" 240319 240327 240847 240852) (-210 "D02CJFA.spad" 239797 239805 240309 240314) (-209 "D02BHFA.spad" 239287 239295 239787 239792) (-208 "D02BBFA.spad" 238777 238785 239277 239282) (-207 "D02AGNT.spad" 233591 233599 238767 238772) (-206 "D01WGTS.spad" 231910 231918 233581 233586) (-205 "D01TRNS.spad" 231887 231895 231900 231905) (-204 "D01GBFA.spad" 231409 231417 231877 231882) (-203 "D01FCFA.spad" 230931 230939 231399 231404) (-202 "D01ASFA.spad" 230399 230407 230921 230926) (-201 "D01AQFA.spad" 229845 229853 230389 230394) (-200 "D01APFA.spad" 229269 229277 229835 229840) (-199 "D01ANFA.spad" 228763 228771 229259 229264) (-198 "D01AMFA.spad" 228273 228281 228753 228758) (-197 "D01ALFA.spad" 227813 227821 228263 228268) (-196 "D01AKFA.spad" 227339 227347 227803 227808) (-195 "D01AJFA.spad" 226862 226870 227329 227334) (-194 "D01AGNT.spad" 222929 222937 226852 226857) (-193 "CYCLOTOM.spad" 222435 222443 222919 222924) (-192 "CYCLES.spad" 219227 219235 222425 222430) (-191 "CVMP.spad" 218644 218654 219217 219222) (-190 "CTRIGMNP.spad" 217144 217160 218634 218639) (-189 "CTOR.spad" 216835 216843 217134 217139) (-188 "CTORKIND.spad" 216438 216446 216825 216830) (-187 "CTORCAT.spad" 215687 215695 216428 216433) (-186 "CTORCAT.spad" 214934 214944 215677 215682) (-185 "CTORCALL.spad" 214523 214533 214924 214929) (-184 "CSTTOOLS.spad" 213768 213781 214513 214518) (-183 "CRFP.spad" 207492 207505 213758 213763) (-182 "CRCEAST.spad" 207212 207220 207482 207487) (-181 "CRAPACK.spad" 206263 206273 207202 207207) (-180 "CPMATCH.spad" 205767 205782 206188 206193) (-179 "CPIMA.spad" 205472 205491 205757 205762) (-178 "COORDSYS.spad" 200481 200491 205462 205467) (-177 "CONTOUR.spad" 199892 199900 200471 200476) (-176 "CONTFRAC.spad" 195642 195652 199794 199887) (-175 "CONDUIT.spad" 195400 195408 195632 195637) (-174 "COMRING.spad" 195074 195082 195338 195395) (-173 "COMPPROP.spad" 194592 194600 195064 195069) (-172 "COMPLPAT.spad" 194359 194374 194582 194587) (-171 "COMPLEX.spad" 189736 189746 189980 190241) (-170 "COMPLEX2.spad" 189451 189463 189726 189731) (-169 "COMPILER.spad" 189000 189008 189441 189446) (-168 "COMPFACT.spad" 188602 188616 188990 188995) (-167 "COMPCAT.spad" 186674 186684 188336 188597) (-166 "COMPCAT.spad" 184474 184486 186138 186143) (-165 "COMMUPC.spad" 184222 184240 184464 184469) (-164 "COMMONOP.spad" 183755 183763 184212 184217) (-163 "COMM.spad" 183566 183574 183745 183750) (-162 "COMMAAST.spad" 183329 183337 183556 183561) (-161 "COMBOPC.spad" 182244 182252 183319 183324) (-160 "COMBINAT.spad" 181011 181021 182234 182239) (-159 "COMBF.spad" 178393 178409 181001 181006) (-158 "COLOR.spad" 177230 177238 178383 178388) (-157 "COLONAST.spad" 176896 176904 177220 177225) (-156 "CMPLXRT.spad" 176607 176624 176886 176891) (-155 "CLLCTAST.spad" 176269 176277 176597 176602) (-154 "CLIP.spad" 172377 172385 176259 176264) (-153 "CLIF.spad" 171032 171048 172333 172372) (-152 "CLAGG.spad" 167537 167547 171022 171027) (-151 "CLAGG.spad" 163913 163925 167400 167405) (-150 "CINTSLPE.spad" 163244 163257 163903 163908) (-149 "CHVAR.spad" 161382 161404 163234 163239) (-148 "CHARZ.spad" 161297 161305 161362 161377) (-147 "CHARPOL.spad" 160807 160817 161287 161292) (-146 "CHARNZ.spad" 160560 160568 160787 160802) (-145 "CHAR.spad" 158434 158442 160550 160555) (-144 "CFCAT.spad" 157762 157770 158424 158429) (-143 "CDEN.spad" 156958 156972 157752 157757) (-142 "CCLASS.spad" 155107 155115 156369 156408) (-141 "CATEGORY.spad" 154149 154157 155097 155102) (-140 "CATCTOR.spad" 154040 154048 154139 154144) (-139 "CATAST.spad" 153658 153666 154030 154035) (-138 "CASEAST.spad" 153372 153380 153648 153653) (-137 "CARTEN.spad" 148739 148763 153362 153367) (-136 "CARTEN2.spad" 148129 148156 148729 148734) (-135 "CARD.spad" 145424 145432 148103 148124) (-134 "CAPSLAST.spad" 145198 145206 145414 145419) (-133 "CACHSET.spad" 144822 144830 145188 145193) (-132 "CABMON.spad" 144377 144385 144812 144817) (-131 "BYTEORD.spad" 144052 144060 144367 144372) (-130 "BYTE.spad" 143479 143487 144042 144047) (-129 "BYTEBUF.spad" 141338 141346 142648 142675) (-128 "BTREE.spad" 140411 140421 140945 140972) (-127 "BTOURN.spad" 139416 139426 140018 140045) (-126 "BTCAT.spad" 138808 138818 139384 139411) (-125 "BTCAT.spad" 138220 138232 138798 138803) (-124 "BTAGG.spad" 137686 137694 138188 138215) (-123 "BTAGG.spad" 137172 137182 137676 137681) (-122 "BSTREE.spad" 135913 135923 136779 136806) (-121 "BRILL.spad" 134110 134121 135903 135908) (-120 "BRAGG.spad" 133050 133060 134100 134105) (-119 "BRAGG.spad" 131954 131966 133006 133011) (-118 "BPADICRT.spad" 129828 129840 130083 130176) (-117 "BPADIC.spad" 129492 129504 129754 129823) (-116 "BOUNDZRO.spad" 129148 129165 129482 129487) (-115 "BOP.spad" 124330 124338 129138 129143) (-114 "BOP1.spad" 121796 121806 124320 124325) (-113 "BOOLE.spad" 121446 121454 121786 121791) (-112 "BOOLEAN.spad" 120884 120892 121436 121441) (-111 "BMODULE.spad" 120596 120608 120852 120879) (-110 "BITS.spad" 120017 120025 120232 120259) (-109 "BINDING.spad" 119430 119438 120007 120012) (-108 "BINARY.spad" 117444 117452 117800 117893) (-107 "BGAGG.spad" 116649 116659 117424 117439) (-106 "BGAGG.spad" 115862 115874 116639 116644) (-105 "BFUNCT.spad" 115426 115434 115842 115857) (-104 "BEZOUT.spad" 114566 114593 115376 115381) (-103 "BBTREE.spad" 111411 111421 114173 114200) (-102 "BASTYPE.spad" 111083 111091 111401 111406) (-101 "BASTYPE.spad" 110753 110763 111073 111078) (-100 "BALFACT.spad" 110212 110225 110743 110748) (-99 "AUTOMOR.spad" 109663 109672 110192 110207) (-98 "ATTREG.spad" 106386 106393 109415 109658) (-97 "ATTRBUT.spad" 102409 102416 106366 106381) (-96 "ATTRAST.spad" 102126 102133 102399 102404) (-95 "ATRIG.spad" 101596 101603 102116 102121) (-94 "ATRIG.spad" 101064 101073 101586 101591) (-93 "ASTCAT.spad" 100968 100975 101054 101059) (-92 "ASTCAT.spad" 100870 100879 100958 100963) (-91 "ASTACK.spad" 100209 100218 100477 100504) (-90 "ASSOCEQ.spad" 99035 99046 100165 100170) (-89 "ASP9.spad" 98116 98129 99025 99030) (-88 "ASP8.spad" 97159 97172 98106 98111) (-87 "ASP80.spad" 96481 96494 97149 97154) (-86 "ASP7.spad" 95641 95654 96471 96476) (-85 "ASP78.spad" 95092 95105 95631 95636) (-84 "ASP77.spad" 94461 94474 95082 95087) (-83 "ASP74.spad" 93553 93566 94451 94456) (-82 "ASP73.spad" 92824 92837 93543 93548) (-81 "ASP6.spad" 91691 91704 92814 92819) (-80 "ASP55.spad" 90200 90213 91681 91686) (-79 "ASP50.spad" 88017 88030 90190 90195) (-78 "ASP4.spad" 87312 87325 88007 88012) (-77 "ASP49.spad" 86311 86324 87302 87307) (-76 "ASP42.spad" 84718 84757 86301 86306) (-75 "ASP41.spad" 83297 83336 84708 84713) (-74 "ASP35.spad" 82285 82298 83287 83292) (-73 "ASP34.spad" 81586 81599 82275 82280) (-72 "ASP33.spad" 81146 81159 81576 81581) (-71 "ASP31.spad" 80286 80299 81136 81141) (-70 "ASP30.spad" 79178 79191 80276 80281) (-69 "ASP29.spad" 78644 78657 79168 79173) (-68 "ASP28.spad" 69917 69930 78634 78639) (-67 "ASP27.spad" 68814 68827 69907 69912) (-66 "ASP24.spad" 67901 67914 68804 68809) (-65 "ASP20.spad" 67365 67378 67891 67896) (-64 "ASP1.spad" 66746 66759 67355 67360) (-63 "ASP19.spad" 61432 61445 66736 66741) (-62 "ASP12.spad" 60846 60859 61422 61427) (-61 "ASP10.spad" 60117 60130 60836 60841) (-60 "ARRAY2.spad" 59477 59486 59724 59751) (-59 "ARRAY1.spad" 58314 58323 58660 58687) (-58 "ARRAY12.spad" 57027 57038 58304 58309) (-57 "ARR2CAT.spad" 52801 52822 56995 57022) (-56 "ARR2CAT.spad" 48595 48618 52791 52796) (-55 "ARITY.spad" 47967 47974 48585 48590) (-54 "APPRULE.spad" 47227 47249 47957 47962) (-53 "APPLYORE.spad" 46846 46859 47217 47222) (-52 "ANY.spad" 45705 45712 46836 46841) (-51 "ANY1.spad" 44776 44785 45695 45700) (-50 "ANTISYM.spad" 43221 43237 44756 44771) (-49 "ANON.spad" 42914 42921 43211 43216) (-48 "AN.spad" 41223 41230 42730 42823) (-47 "AMR.spad" 39408 39419 41121 41218) (-46 "AMR.spad" 37430 37443 39145 39150) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 50d8f5c8..9b6edeb6 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,15 +1,15 @@ -(203171 . 3486501429) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) #0#) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) -((((-576)) . T) (($) -3765 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T)) +(203171 . 3486517519) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) #0#) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) +((((-576)) . T) (($) -2835 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T)) (((|#2| |#2|) . T)) ((((-576)) . T)) -((($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) +((($ $) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576))))) ((($) . T)) (((|#1|) . T)) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T)) -((($) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((($) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) (|has| |#1| (-926)) ((((-874)) . T)) ((((-874)) . T)) @@ -19,49 +19,49 @@ ((($) . T)) (((|#2| |#2|) . T)) ((((-145)) . T)) -((((-548)) . T) (((-1178)) . T) (((-227)) . T) (((-390)) . T) (((-905 (-390))) . T)) +((((-548)) . T) (((-1177)) . T) (((-227)) . T) (((-390)) . T) (((-905 (-390))) . T)) (((|#1|) . T)) ((((-227)) . T) (((-874)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1|) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-860))) -((($ $) . T) ((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) -(-3765 (|has| |#1| (-832)) (|has| |#1| (-862))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-860))) +((($ $) . T) ((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) +(-2835 (|has| |#1| (-832)) (|has| |#1| (-862))) ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T)) ((((-874)) . T)) ((((-874)) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-860)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-326 |#1|)) . T) (((-576)) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) ((((-576)) . T) (((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) ((((-874)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) (((|#4|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) ((((-874)) . T)) ((((-874)) |has| (-1113 |#1|) (-1119))) -((((-874)) . T) (((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1201)) . T)) +((((-1200)) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) -(-3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -(((|#2| (-494 (-2048 |#1|) (-783))) . T)) -((((-1196)) -3765 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196))))) -(((|#1| (-543 (-1196))) . T)) +(-2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(((|#2| (-494 (-3485 |#1|) (-783))) . T)) +((((-1195)) -2835 (|has| (-419 |#2|) (-915 (-1195))) (|has| (-419 |#2|) (-917 (-1195))))) +(((|#1| (-543 (-1195))) . T)) (((#0=(-882 |#1|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -((((-1178)) . T) (((-975 (-130))) . T) (((-874)) . T)) +((((-1177)) . T) (((-975 (-130))) . T) (((-874)) . T)) ((((-874)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (|has| |#4| (-379)) (|has| |#3| (-379)) (((|#1|) . T)) -((((-1196)) . T)) +((((-1195)) . T)) ((((-518)) . T)) ((((-882 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((((-874)) . T)) @@ -72,15 +72,15 @@ (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-568)) -((((-576)) . T) (((-419 (-576))) -3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-2 (|:| -2550 |#1|) (|:| -3175 |#2|))) . T)) +((((-576)) . T) (((-419 (-576))) -2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T)) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-2 (|:| -3257 |#1|) (|:| -4274 |#2|))) . T)) ((($) . T)) -((((-576)) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1196)) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-576)) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1195)) . T)) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-1196)) . T)) +((((-1195)) . T)) ((((-576)) . T) (($) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) @@ -98,12 +98,12 @@ ((((-874)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) (|has| |#1| (-1119)) (((|#1|) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-117 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) @@ -111,14 +111,14 @@ ((((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) (((|#2|) . T) (((-576)) . T) ((|#6|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) ((($) . T)) (((|#2|) . T)) ((($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) ((($ $) . T)) ((($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) @@ -127,30 +127,30 @@ (|has| |#1| (-379)) (((|#1|) . T)) ((((-874)) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) ((((-576)) . T)) ((((-874)) . T)) (((|#1| |#2|) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068))) +((($) -2835 (|has| |#1| (-238)) (|has| |#1| (-237)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (|has| |#1| (-568)) (((|#1|) . T) (((-576)) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-860))) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (|has| |#1| (-1119)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (|has| |#1| (-1119)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (|has| |#1| (-860)) (((|#1| |#1|) . T)) ((($) . T) (((-419 (-576))) . T)) @@ -165,14 +165,14 @@ (|has| |#3| (-805)) (|has| |#3| (-805)) (((|#1| |#2|) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1201)) . T)) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1200)) . T)) (((|#1| |#2|) . T)) -(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1196) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1196) |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) (((-1195) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1195) |#2|)))) (|has| |#1| (-1119)) (|has| |#1| (-1119)) ((((-576)) . T) (((-419 (-576))) . T)) -(((|#1| (-1196) (-1107 (-1196)) (-543 (-1107 (-1196)))) . T)) +(((|#1| (-1195) (-1107 (-1195)) (-543 (-1107 (-1195)))) . T)) ((((-576) |#1|) . T)) ((((-576)) . T)) ((((-576)) . T)) @@ -187,48 +187,48 @@ (|has| |#2| (-805)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1178) |#1|) . T)) -((((-1254 (-576)) $) . T) (((-576) (-130)) . T)) +((((-1177) |#1|) . T)) +((((-1253 (-576)) $) . T) (((-576) (-130)) . T)) (((|#1|) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) (((|#3| (-783)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-419 (-576))) . T) (($) . T)) ((($) . T)) ((($) . T)) (|has| |#1| (-1119)) ((((-419 (-576))) . T) (((-576)) . T)) ((((-576)) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) -((((-576)) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#2|) . T)) -((((-1196) |#2|) |has| |#2| (-526 (-1196) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|))) +((((-576)) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#2|) . T)) +((((-1195) |#2|) |has| |#2| (-526 (-1195) |#2|)) ((|#2| |#2|) |has| |#2| (-319 |#2|))) ((((-419 (-576))) . T) (((-576)) . T)) -((((-576)) . T) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1101)) . T) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) +((((-576)) . T) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1101)) . T) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (((|#1|) . T) (($) . T)) ((((-576)) . T)) ((((-576)) . T)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) ((((-576)) . T)) ((((-576)) . T)) ((((-419 (-576))) . T) (($) . T)) -(((#0=(-711) (-1192 #0#)) . T)) +(((#0=(-711) (-1191 #0#)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#2| (-374)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -3765 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) +((($) -2835 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (((|#1| |#2|) . T)) ((((-874)) . T)) (((|#1|) . T)) -((((-1178) |#1|) . T)) +((((-1177) |#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) @@ -236,13 +236,13 @@ ((((-874)) . T)) ((((-874)) . T)) (((|#1| |#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) ((((-874)) . T)) ((((-874)) . T)) ((((-874)) . T)) @@ -250,13 +250,13 @@ ((((-874)) . T)) ((((-576) |#1|) . T)) ((((-874)) . T)) -((((-171 (-227))) |has| |#1| (-1041)) (((-171 (-390))) |has| |#1| (-1041)) (((-548)) |has| |#1| (-626 (-548))) (((-1192 |#1|)) . T) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390))))) +((((-171 (-227))) |has| |#1| (-1041)) (((-171 (-390))) |has| |#1| (-1041)) (((-548)) |has| |#1| (-626 (-548))) (((-1191 |#1|)) . T) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390))))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1|) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-860))) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-860))) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) (|has| |#1| (-374)) ((((-874)) . T)) ((($) . T)) @@ -264,56 +264,56 @@ ((((-130)) . T)) (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) -((($) -3765 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($) -2835 (|has| |#2| (-238)) (|has| |#2| (-237)))) (|has| |#4| (-1068)) (|has| |#3| (-1068)) -((((-874)) . T) (((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) ((((-874)) . T)) (((|#1|) . T)) ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -(((|#2|) . T) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) +(((|#2|) . T) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) (|has| |#1| (-568)) -((((-576)) -3765 (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119))) (|has| |#4| (-1068))) ((|#4|) |has| |#4| (-1119)) (((-419 (-576))) -12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119)))) -((((-576)) -3765 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068))) ((|#3|) |has| |#3| (-1119)) (((-419 (-576))) -12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) +((((-576)) -2835 (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119))) (|has| |#4| (-1068))) ((|#4|) |has| |#4| (-1119)) (((-419 (-576))) -12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119)))) +((((-576)) -2835 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068))) ((|#3|) |has| |#3| (-1119)) (((-419 (-576))) -12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (|has| |#1| (-568)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (((|#1|) . T)) (|has| |#1| (-568)) ((((-876 |#1|)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) (((|#2|) . T)) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1101)) . T)) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (((-1101)) . T)) ((((-711)) . T)) (((|#1|) . T)) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1107 (-1196))) . T)) -(-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (((-1107 (-1195))) . T)) +(-12 (|has| |#1| (-1021)) (|has| |#1| (-1221))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) -(((|#4| |#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1068)))) -(((|#3| |#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068)))) +(((|#4| |#4|) -2835 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1068)))) +(((|#3| |#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068)))) (((|#2|) . T)) (((|#1|) . T)) ((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576))))) ((((-874)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -2550 |#1|) (|:| -3175 |#2|))) . T) (((-874)) . T)) +((((-2 (|:| -3257 |#1|) (|:| -4274 |#2|))) . T) (((-874)) . T)) ((((-548)) |has| |#1| (-626 (-548))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576))))) -(((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1068)))) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068)))) -((((-2 (|:| -2550 |#1|) (|:| -3175 |#2|))) . T)) +(((|#4|) -2835 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1068)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068)))) +((((-2 (|:| -3257 |#1|) (|:| -4274 |#2|))) . T)) ((((-874)) . T)) ((((-874)) . T)) ((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) @@ -321,15 +321,15 @@ (((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) ((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-419 $) (-419 $)) |has| |#2| (-568)) (($ $) . T) ((|#2| |#2|) . T)) -((($ (-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) -((((-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) . T)) +((($ (-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195))))) +((((-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) . T)) (((|#1|) . T)) (|has| |#2| (-926)) -((((-1178) (-52)) . T)) +((((-1177) (-52)) . T)) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) ((((-548)) . T) (((-227)) . T) (((-390)) . T) (((-905 (-390))) . T)) ((((-874)) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068))) (((|#1|) |has| |#1| (-174))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-874)) . T)) @@ -343,80 +343,80 @@ (|has| |#1| (-1119)) ((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) . T) (((-1201)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((((-1201)) . T)) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-874)) . T) (((-1200)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-1200)) . T)) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-238)) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#1| (-543 (-830 (-1196)))) . T)) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#1| (-543 (-830 (-1195)))) . T)) (((|#1| (-990)) . T)) ((((-576)) . T) ((|#2|) . T)) -((((-1196)) . T)) +((((-1195)) . T)) (((#0=(-882 |#1|) $) |has| #0# (-296 #0# #0#))) ((((-576) |#4|) . T)) ((((-576) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (|has| |#1| (-1171)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) -(|has| (-1273 |#1| |#2| |#3| |#4|) (-146)) -(|has| (-1273 |#1| |#2| |#3| |#4|) (-148)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) +(|has| (-1272 |#1| |#2| |#3| |#4|) (-146)) +(|has| (-1272 |#1| |#2| |#3| |#4|) (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) +((((-1195)) -12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068)))) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-1119)) -((((-1178) |#1|) . T)) +((((-1177) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-1144 |#1| (-1196))) . T) (((-576)) . T) (((-830 (-1196))) . T) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-1196)) . T)) +((((-1144 |#1| (-1195))) . T) (((-576)) . T) (((-830 (-1195))) . T) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-1195)) . T)) (|has| |#2| (-379)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((($) . T) ((|#1|) . T)) (((|#2|) |has| |#2| (-1068))) ((((-874)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) #0#) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) #0#) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) (((|#1|) . T)) -((((-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((#0=(-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) #0#) |has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))))) +((((-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((#0=(-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) #0#) |has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))))) ((((-874)) . T)) ((((-576) |#1|) . T)) ((((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390))))) (((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) ((($) . T)) ((((-874)) . T)) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) ((((-874)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-874)) . T)) ((((-874)) . T)) -(|has| (-1272 |#2| |#3| |#4|) (-148)) -(|has| (-1272 |#2| |#3| |#4|) (-146)) +(|has| (-1271 |#2| |#3| |#4|) (-148)) +(|has| (-1271 |#2| |#3| |#4|) (-146)) (((|#2|) |has| |#2| (-1119)) (((-576)) -12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((|#1|) . T)) (|has| |#1| (-1119)) ((((-874)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068))) (((|#1|) . T)) ((($) . T)) ((((-576) |#1|) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-860))) ((((-874)) |has| |#1| (-1119))) -((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) -(-3765 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) +((($) -2835 (|has| |#1| (-238)) (|has| |#1| (-237)))) +(-2835 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068)) (|has| |#1| (-1131))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((((-927 |#1|)) . T)) ((((-419 |#2|) |#3|) . T)) (|has| |#1| (-15 * (|#1| (-576) |#1|))) @@ -427,7 +427,7 @@ ((((-874)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (|has| |#1| (-374)) -(-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-783) |#1|))) @@ -438,45 +438,45 @@ (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) (((|#1|) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) ((((-874)) . T)) (((|#2|) . T)) -(-3765 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568)) (((-576)) . T)) (|has| |#2| (-805)) (|has| |#2| (-805)) -((((-1279 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1283 |#2|)) . T) (((-1279 |#1| |#2| |#3|)) . T) (((-1251 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-1278 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +((((-1282 |#2|)) . T) (((-1278 |#1| |#2| |#3|)) . T) (((-1250 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) (((|#1|) . T)) -((((-1196)) -12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068)))) +((((-1195)) -12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068)))) (((|#1|) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -(-3765 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-568)))) +(-2835 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($ $) |has| |#1| (-568)) ((|#1| |#1|) . T)) -((($ (-1196)) -3765 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196))))) -(((#0=(-711) (-1192 #0#)) . T)) +((($ (-1195)) -2835 (|has| (-419 |#2|) (-915 (-1195))) (|has| (-419 |#2|) (-917 (-1195))))) +(((#0=(-711) (-1191 #0#)) . T)) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -((((-874)) . T) (((-1287 |#4|)) . T)) -((((-874)) . T) (((-1287 |#3|)) . T)) +((((-874)) . T) (((-1286 |#4|)) . T)) +((((-874)) . T) (((-1286 |#3|)) . T)) ((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) . T)) ((((-874)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((($) . T)) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1279 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1278 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) (((|#3|) |has| |#3| (-1068))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (|has| (-1113 |#1|) (-1119)) (((|#2| (-831 |#1|)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) @@ -484,20 +484,20 @@ (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) (((|#2|) . T) ((|#6|) . T)) (|has| |#1| (-374)) ((((-576)) . T) ((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) (((|#2|) . T) ((|#6|) . T)) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((#0=(-1101) |#2|) . T) ((#0# $) . T) (($ $) . T)) ((((-874)) . T)) ((((-927 |#1|)) . T)) @@ -506,58 +506,58 @@ ((((-245 |#1| |#2|) |#2|) . T)) ((((-874)) . T)) (((|#3|) |has| |#3| (-1119)) (((-576)) -12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (((-419 (-576))) -12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#1|) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) . T)) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) . T)) (|has| |#1| (-374)) -((((-1201)) . T)) +((((-1200)) . T)) (((|#1|) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-860))) ((($) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) (|has| |#2| (-832)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-860)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((((-874)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) (((|#1| |#2|) . T)) -((((-1196)) -12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))))) -((((-1178) |#1|) . T)) +((((-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195))))) +((((-1177) |#1|) . T)) (((|#1| |#2| |#3| (-543 |#3|)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) ((((-874)) . T)) ((((-419 (-576))) . T)) (((|#1|) . T)) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((((-419 (-576))) . T)) (|has| |#1| (-379)) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((((-576)) . T)) ((((-576)) . T)) (((|#1|) . T) (((-576)) . T)) -(-3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((((-874)) . T)) ((((-874)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) -((((-1196) #0=(-882 |#1|)) |has| #0# (-526 (-1196) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) +((((-1195) #0=(-882 |#1|)) |has| #0# (-526 (-1195) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) (((|#1|) . T)) ((((-576) |#4|) . T)) ((((-576) |#3|) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) (|has| |#2| (-1068)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T)) ((((-419 (-576))) . T) (((-576)) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) @@ -566,9 +566,9 @@ ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T)) ((((-576)) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +((($) . T) (((-576)) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-576)) -3765 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1119)) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) +((((-576)) -2835 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1119)) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -587,114 +587,114 @@ ((((-576) |#3|) . T)) ((((-874)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((((-874)) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((((-576) |#1|) . T)) (((|#1|) . T)) ((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1196) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1195) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3765 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) -(((|#2| |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) +((($) -2835 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +(((|#2| |#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) ((((-145)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-379)) (|has| |#2| (-379))) ((((-874)) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) (((|#1|) . T)) ((((-874)) . T)) (|has| |#1| (-1119)) (|has| $ (-148)) -((((-1201)) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -((($) -3765 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) +((((-1200)) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) +((($) -2835 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (|has| |#1| (-374)) -(-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-783) |#1|))) (((|#1|) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) ((((-874)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -(-3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((|#2| (-543 (-876 |#1|))) . T)) ((((-874)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1|) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((((-593 |#1|)) . T)) ((($) . T)) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T) (($) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-1194 |#1| |#2| |#3|)) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -((((-1283 |#2|)) . T) (((-1194 |#1| |#2| |#3|)) . T) (((-1187 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-1193 |#1| |#2| |#3|)) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +((((-1282 |#2|)) . T) (((-1193 |#1| |#2| |#3|)) . T) (((-1186 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) (((|#4|) . T)) (((|#3|) . T)) ((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T)) -((((-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) -(-3765 (|has| |#2| (-238)) (|has| |#2| (-237))) +((((-1195)) -12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068)))) +(-2835 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) ((((-876 |#1|)) . T)) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) ((|#3|) . T)) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) ((|#3|) . T)) ((($) . T)) ((((-874)) . T)) ((((-874)) . T)) -((((-576)) . T) (((-419 (-576))) -3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T)) +((((-576)) . T) (((-419 (-576))) -2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T)) ((((-576) |#2|) . T)) ((((-874)) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) . T)) ((((-874)) . T)) ((((-874)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1194 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((#1=(-1193 |#1| |#2| |#3|) #1#) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) ((((-874)) . T)) (((|#2|) |has| |#2| (-1068))) (|has| |#1| (-1119)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174)) (($) . T)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) ((((-874)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) ((($ (-876 |#1|)) . T)) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) ((($ |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1101)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (($ (-1101)) . T)) ((($) . T)) (((#0=(-1101) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1107 (-1196))) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (($ (-1107 (-1195))) . T)) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (((|#1|) . T)) (((|#2|) |has| |#2| (-1119)) (((-576)) -12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (($) . T)) (((|#2|) |has| |#1| (-374))) (((|#2|) |has| |#1| (-374))) ((((-576) |#1|) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) ((((-874)) . T)) ((((-419 |#2|) |#3|) . T)) @@ -704,29 +704,29 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-874)) . T) (((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((((-1201)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1200)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#2| |#3| (-876 |#1|)) . T)) -((((-1196)) |has| |#2| (-915 (-1196)))) +((((-1195)) |has| |#2| (-915 (-1195)))) (((|#1|) . T)) (((|#1| (-543 |#2|) |#2|) . T)) (((|#1| (-783) (-1101)) . T)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) -(((|#1| (-543 (-1107 (-1196))) (-1107 (-1196))) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) +(((|#1| (-543 (-1107 (-1195))) (-1107 (-1195))) . T)) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (((|#2|) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((|#1|) . T)) (((|#2|) . T)) -((((-1018 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3765 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) +((((-1018 |#1|)) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2835 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-805)) @@ -734,7 +734,7 @@ (|has| |#1| (-379)) (|has| |#1| (-379)) ((((-906 |#1|)) . T) (((-831 |#1|)) . T)) -((((-831 (-1196))) . T)) +((((-831 (-1195))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -752,85 +752,85 @@ ((($ $) . T) (((-576) |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -((((-1279 |#1| |#2| |#3|) $) -12 (|has| (-1279 |#1| |#2| |#3|) (-296 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) +((((-1278 |#1| |#2| |#3|) $) -12 (|has| (-1278 |#1| |#2| |#3|) (-296 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) ((((-783) |#1|) . T) (($ $) . T)) (((|#1|) . T)) -((($ (-1196)) . T)) +((($ (-1195)) . T)) ((((-1159 |#1| |#2|)) |has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|)))) (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) (((|#2|) . T) (((-576)) |has| |#2| (-1057 (-576))) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576))))) (((|#1|) . T)) -((((-1196)) -3765 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1196)))))) +((((-1195)) -2835 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1195)))))) (((|#1| |#2|) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) (((|#2|) . T)) -((((-874)) -3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((-1287 |#2|)) . T)) +((((-874)) -2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((-1286 |#2|)) . T)) ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#1|) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) ((((-576)) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) (|has| |#1| (-1119)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-576) (-145)) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) ((((-576)) . T)) (((|#1|) . T) ((|#2|) . T) (((-576)) . T)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-576)) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) +((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-576)) . T)) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) (((|#1|) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((($) . T) (((-576)) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) (((|#2|) |has| |#1| (-374))) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -((((-1201)) . T)) +((((-1200)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((|#1| (-543 #0=(-1196)) #0#) . T)) +(((|#1| (-543 #0=(-1195)) #0#) . T)) (((|#1|) . T) (($) . T)) ((((-576)) . T)) (((#0=(-419 (-969 |#1|)) #0#) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (|has| |#1| (-1119)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (|has| |#1| (-1119)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-548)) |has| |#1| (-626 (-548)))) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) (((|#1| |#1|) |has| |#1| (-174))) -(-3765 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(-2835 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-419 (-969 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((((-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((((-874)) . T)) ((((-874)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) |has| |#1| (-1068)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((|#1| |#2|) . T)) (|has| |#3| (-1068)) (|has| |#3| (-805)) (|has| |#3| (-805)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) (((|#2|) . T)) ((((-874)) . T)) ((((-874)) . T)) @@ -847,34 +847,34 @@ (|has| |#1| (-1119)) (((|#2|) . T)) ((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576))))) -(((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-374)))) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(((|#4|) -2835 (|has| |#4| (-174)) (|has| |#4| (-374)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)))) ((((-874)) . T)) (((|#1|) . T)) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-926))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-926))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-926))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-926))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) (((|#2|) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-926))) -((($ $) . T) ((#0=(-1196) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-830 (-1196)) |#1|) . T) ((#1# $) . T)) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-926))) +((($ $) . T) ((#0=(-1195) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-830 (-1195)) |#1|) . T) ((#1# $) . T)) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-926))) ((((-576) |#2|) . T)) ((((-874)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) ((((-576) |#1|) . T)) (|has| (-419 |#2|) (-148)) (|has| (-419 |#2|) (-146)) @@ -887,42 +887,42 @@ (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((((-874)) . T)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) (|has| |#1| (-38 (-419 (-576)))) -((((-400) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) +((((-400) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-1171)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) -((((-874)) . T) (((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1236)) . T) (((-874)) . T) (((-1201)) . T)) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) +((((-874)) . T) (((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-1235)) . T) (((-874)) . T) (((-1200)) . T)) ((((-117 |#1|)) . T)) -((((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) (((|#1|) . T)) -((((-400) (-1178)) . T)) +((((-400) (-1177)) . T)) (|has| |#1| (-568)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) -((((-783) (-1201)) . T)) +((((-783) (-1200)) . T)) ((((-874)) . T)) ((((-831 |#1|)) . T)) ((($) . T)) (((|#2|) |has| |#2| (-174))) -((((-1196) (-52)) . T)) +((((-1195) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -931,25 +931,25 @@ ((((-656 |#1|)) . T)) ((((-874)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (((|#2|) |has| |#2| (-319 |#2|))) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1192 |#1|)) . T)) +(((|#1| (-1191 |#1|)) . T)) (|has| $ (-148)) (((|#2|) . T)) ((($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (|has| |#2| (-379)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1| |#2|) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1| |#2|) . T)) ((((-874)) . T)) @@ -957,62 +957,62 @@ ((((-874)) . T)) ((((-874)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) -((($) . T) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((($) . T) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((((-874)) . T)) -((((-1194 |#1| |#2| |#3|) $) -12 (|has| (-1194 |#1| |#2| |#3|) (-296 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) +((((-1193 |#1| |#2| |#3|) $) -12 (|has| (-1193 |#1| |#2| |#3|) (-296 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) ((((-783) |#1|) . T) (($ $) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -(((#0=(-1279 |#1| |#2| |#3|) #0#) -12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1196) #0#) -12 (|has| (-1279 |#1| |#2| |#3|) (-526 (-1196) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +(((#0=(-1278 |#1| |#2| |#3|) #0#) -12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1195) #0#) -12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1195) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-576)) . T) (($) . T)) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-576)) . T) ((|#2|) . T)) ((((-576)) . T) (($) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-419 (-576))) . T) (((-576)) . T)) ((((-576) (-145)) . T)) ((((-145)) . T)) (((|#1|) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((((-112)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-112)) . T)) ((((-548)) |has| |#1| (-626 (-548))) (((-227)) . #0=(|has| |#1| (-1041))) (((-390)) . #0#)) ((((-874)) . T)) (((|#1|) . T)) -((((-1201)) . T)) +((((-1200)) . T)) (|has| |#1| (-832)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#2|) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-568))) (|has| |#1| (-568)) (|has| |#1| (-862)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-576)) . T) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) (|has| |#1| (-926)) (((|#1|) . T)) (|has| |#1| (-1119)) ((((-874)) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((((-874)) . T)) ((((-874)) . T)) ((((-874)) . T)) -(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) -((((-576) (-145)) . T) (((-1254 (-576)) $) . T)) +(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) +((((-576) (-145)) . T) (((-1253 (-576)) $) . T)) ((($) . T)) (|has| |#4| (-1068)) (|has| |#3| (-1068)) -((((-1201)) . T) (((-874)) . T)) -((((-1201)) . T)) +((((-1200)) . T) (((-874)) . T)) +((((-1200)) . T)) ((((-874)) . T)) (|has| |#1| (-1119)) (((|#1| (-990)) . T)) @@ -1030,20 +1030,20 @@ (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) -(-3765 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +(-2835 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-174)) ((|#4|) . T) (((-576)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) ((((-874)) . T)) -(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2835 (|has| |#1| (-238)) (|has| |#1| (-237))) (|has| |#1| (-360)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#2|) . T) (($) . T) (((-419 (-576))) . T)) -((($) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) (|has| |#1| (-840)) ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T)) (|has| |#1| (-1119)) @@ -1054,56 +1054,56 @@ (((|#4|) |has| |#4| (-1119))) (((|#3|) |has| |#3| (-1119))) (|has| |#3| (-379)) -((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-576)) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +((($) |has| |#1| (-568)) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-576)) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) ((((-874)) . T)) ((((-874)) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#2|) . T)) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#1|) |has| |#1| (-174))) (|has| |#2| (-374)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((((-419 (-576))) . T) (((-576)) . T)) -((($) -3765 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($) -2835 (|has| |#2| (-238)) (|has| |#2| (-237)))) ((($ (-876 |#1|)) . T)) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ |#3|) . T)) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (($ |#3|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((($) . T) (((-576)) . T)) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) ((((-145)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) ((((-145)) . T)) ((((-145)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#) ((|#2|) . T) (((-576)) . T)) (((|#1| |#2| |#3|) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) (((|#1|) |has| |#1| (-174))) (|has| $ (-148)) (|has| $ (-148)) -((((-1201)) . T)) +((((-1200)) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#1| (-1119)) ((((-874)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1068)) (|has| |#1| (-1131))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1068)) (|has| |#1| (-1131))) ((($ $) |has| |#1| (-296 $ $)) ((|#1| $) |has| |#1| (-296 |#1| |#1|))) (((|#1| (-419 (-576))) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-1196)) . T)) +((((-1195)) . T)) (|has| |#1| (-568)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-568)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -1115,7 +1115,7 @@ (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-148)) -(((|#2| (-245 (-2048 |#1|) (-783)) (-876 |#1|)) . T)) +(((|#2| (-245 (-3485 |#1|) (-783)) (-876 |#1|)) . T)) (((|#1| (-543 |#3|) |#3|) . T)) (|has| |#1| (-146)) (((#0=(-419 (-576)) #0#) |has| |#2| (-374)) (($ $) . T)) @@ -1129,12 +1129,12 @@ (|has| |#1| (-146)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) -(-3765 (|has| |#1| (-360)) (|has| |#1| (-379))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#1| (-360)) (|has| |#1| (-379))) ((((-1161 |#2| |#1|)) . T) ((|#1|) . T)) (((|#1| |#2|) . T)) (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) -(((|#2|) . T) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (|has| |#3| (-805)) (|has| |#3| (-805)) ((((-874)) . T)) @@ -1152,7 +1152,7 @@ (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-1196) (-52)) . T)) +((((-1195) (-52)) . T)) ((((-1023 10)) . T) (((-419 (-576))) . T) (((-874)) . T)) ((((-548)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) (((|#1|) . T)) @@ -1162,34 +1162,34 @@ ((((-874)) . T)) ((((-874)) . T)) (((|#1| |#2|) . T)) -((((-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))) (((-1101)) . T)) +((((-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195)))) (((-1101)) . T)) (((|#1|) . T)) (((|#3|) . T) (((-624 $)) . T)) (((|#1| (-419 (-576))) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((((-576)) -3765 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1119)) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) +((($ (-1282 |#2|)) . T) (($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((((-576)) -2835 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1119)) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -(((#0=(-1194 |#1| |#2| |#3|) #0#) -12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1196) #0#) -12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +(((#0=(-1193 |#1| |#2| |#3|) #0#) -12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))) (((-1195) #0#) -12 (|has| (-1193 |#1| |#2| |#3|) (-526 (-1195) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) ((((-874)) . T)) ((((-874)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) |has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) |has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))))) ((((-874)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -((((-1196) (-52)) . T)) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) +((((-1195) (-52)) . T)) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195))))) (((|#3|) . T)) ((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T)) (|has| |#1| (-840)) @@ -1197,12 +1197,12 @@ ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| (-1113 |#1|) (-1119)) -(((|#2| |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) +(((|#2| |#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)))) +((((-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) ((((-576)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) ((((-783)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) @@ -1218,113 +1218,113 @@ ((((-117 |#1|)) . T)) (((|#1|) . T)) ((((-419 (-576))) . T) (($) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((($) . T) (((-419 (-576))) . T)) -((((-1201)) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-1200)) . T)) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((((-576)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) -((($ (-1196)) -3765 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1196)))))) +((($ (-1195)) -2835 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1195)))))) ((((-576)) . T)) -((($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) -((((-905 (-576))) . T) (((-905 (-390))) . T) (((-548)) . T) (((-1196)) . T)) +((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) +((((-905 (-576))) . T) (((-905 (-390))) . T) (((-548)) . T) (((-1195)) . T)) ((((-874)) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) ((($) . T)) (((|#1|) . T)) ((((-874)) . T)) -(-3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((|#1|) . T) (($) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3765 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((($) -2835 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-882 |#1|)) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (|has| |#2| (-1171)) -(((#0=(-52)) . T) (((-2 (|:| -2371 (-1196)) (|:| -2900 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4282 (-1195)) (|:| -4353 #0#))) . T)) (((|#1| |#2|) . T)) (|has| |#3| (-1068)) (((|#1| (-576) (-1101)) . T)) ((((-876 |#1|)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1| (-419 (-576)) (-1101)) . T)) -((((-1196)) . T)) -((($) -3765 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((($) -3765 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) +((((-1195)) . T)) +((($) -2835 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2835 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237)))) ((((-576) |#2|) . T)) -((($ (-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) +((($ (-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195))))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-379)) (((|#1| |#1|) . T)) ((((-874)) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) (-12 (|has| |#1| (-379)) (|has| |#2| (-379))) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) (|has| |#1| (-360)) -((((-576)) -3765 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068))) ((|#3|) |has| |#3| (-1119)) (((-419 (-576))) -12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) +((((-576)) -2835 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068))) ((|#3|) |has| |#3| (-1119)) (((-419 (-576))) -12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) (((|#1|) . T)) (((|#1|) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#4|) . T)) (((|#4|) . T) (((-874)) . T)) -(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1068))) (($) |has| |#4| (-1068))) -(((|#2|) . T) (((-576)) . T) ((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) #0#) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +(((|#3|) . T) ((|#2|) . T) (((-576)) . T) ((|#4|) -2835 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1068))) (($) |has| |#4| (-1068))) +(((|#2|) . T) (((-576)) . T) ((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) #0#) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) (|has| |#1| (-568)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-874)) . T)) (((|#1| |#2|) . T)) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-926))) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-926))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-926))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-926))) ((((-419 (-576))) . T) (((-576)) . T)) ((((-576)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) ((($) . T)) ((((-874)) . T)) (((|#1|) . T)) ((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((((-874)) . T)) -(((|#3| |#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068)))) +(((|#3| |#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068)))) (|has| |#1| (-1041)) ((((-874)) . T)) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068)))) ((((-576) (-112)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) (((|#1|) |has| |#1| (-319 |#1|))) -((((-1201)) . T)) +((((-1200)) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) -((((-1196) $) |has| |#1| (-526 (-1196) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|))) -((((-1196)) |has| |#1| (-915 (-1196)))) -(-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360))) +((((-1195) $) |has| |#1| (-526 (-1195) $)) (($ $) |has| |#1| (-319 $)) ((|#1| |#1|) |has| |#1| (-319 |#1|)) (((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|))) +((((-1195)) |has| |#1| (-915 (-1195)))) +(-2835 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-360))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((($) . T)) ((((-400) |#1|) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-1119)) (((|#2|) . T) (((-874)) . T)) ((((-874)) . T)) (((|#2|) . T)) ((((-927 |#1|)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) (((|#1| |#2|) . T)) ((($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) @@ -1333,7 +1333,7 @@ (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1| |#1|) . T)) (((#0=(-882 |#1|)) |has| #0# (-319 #0#))) -((((-576)) . T) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T)) +((((-576)) . T) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-1057 (-419 (-576))))) ((|#1|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-805)) (|has| |#2| (-805)) @@ -1342,9 +1342,9 @@ (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (|has| |#2| (-1068)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -(((|#2|) . T) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#2|) . T) (($) . T)) -(|has| |#1| (-1222)) +(|has| |#1| (-1221)) (((#0=(-576) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#4|) |has| |#4| (-1068))) @@ -1356,14 +1356,14 @@ (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (|has| |#1| (-374)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) ((((-874)) . T)) ((((-874)) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) +((($ $) . T) ((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1| |#1|) . T)) ((((-874)) . T)) (((|#1|) . T)) ((((-548)) |has| |#3| (-626 (-548)))) @@ -1371,32 +1371,32 @@ (((|#1| |#2|) . T)) (|has| |#1| (-860)) (|has| |#1| (-860)) -((($) . T) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-576) |#3|) . T)) (((|#2|) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((($) . T)) -(((#0=(-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) #0#) |has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))))) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1101)) . T)) +(((#0=(-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) #0#) |has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))))) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (((-1101)) . T)) ((($) . T)) ((($) . T)) (((|#2|) |has| |#2| (-1119))) -((((-874)) -3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((-1287 |#2|)) . T)) +((((-874)) -2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((-1286 |#2|)) . T)) ((($) . T)) ((((-576)) . T) (($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1178) (-52)) . T)) +((((-1177) (-52)) . T)) (((|#2|) |has| |#2| (-174))) -((($) -3765 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((($) -2835 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) |has| |#2| (-174)) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-874)) . T)) (((|#2|) . T)) -((($) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) +((($) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T)) ((($) . T) (((-576)) . T)) ((((-576) (-145)) . T)) -((((-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T) ((|#1| |#2|) . T)) +((((-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T) ((|#1| |#2|) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((((-874)) . T)) ((((-927 |#1|)) . T)) (|has| |#1| (-374)) @@ -1404,71 +1404,71 @@ (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-860)) -((($) -3765 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2835 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (|has| |#1| (-374)) (((|#1|) . T) (($) . T)) (|has| |#1| (-860)) -((($) . T) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) -((((-1196)) |has| |#1| (-915 (-1196)))) +((($) . T) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((((-1195)) |has| |#1| (-915 (-1195)))) (|has| |#1| (-860)) ((((-518)) . T)) -(((|#1| (-1196)) . T)) -(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) -((((-874)) . T) (((-1201)) . T)) +(((|#1| (-1195)) . T)) +(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) +((((-874)) . T) (((-1200)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1201)) . T)) +((((-1200)) . T)) (|has| |#1| (-1119)) -(((|#1| (-1196) (-830 (-1196)) (-543 (-830 (-1196)))) . T)) +(((|#1| (-1195) (-830 (-1195)) (-543 (-830 (-1195)))) . T)) ((((-419 (-969 |#1|))) . T)) ((((-548)) . T)) ((((-874)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T) (((-1254 (-576)) $) . T) ((|#1| |#2|) . T)) +((((-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T) (((-1253 (-576)) $) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-174))) (|has| |#2| (-429 |#1|)) (|has| |#2| (-429 |#1|)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T)) (((|#1|) . T)) ((((-548)) |has| |#1| (-626 (-548))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576))))) ((((-874)) . T)) ((((-882 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -(((|#2|) . T) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((((-518)) . T)) ((((-518)) . T)) -((((-1196)) -3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) -((((-1196)) -3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) +((((-1195)) -2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) +((((-1195)) -2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) (|has| |#1| (-568)) (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) -(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2835 (|has| |#1| (-238)) (|has| |#1| (-237))) ((((-882 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#2| (-1068)) -((((-1178) |#1|) . T)) +((((-1177) |#1|) . T)) (|has| |#1| (-1171)) ((((-975 |#1|)) . T)) -(((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-419 (-576))) |has| |#1| (-1057 (-576))) (((-576)) |has| |#1| (-1057 (-576))) (((-1196)) |has| |#1| (-1057 (-1196))) ((|#1|) . T)) +(((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) +((((-419 (-576))) |has| |#1| (-1057 (-576))) (((-576)) |has| |#1| (-1057 (-576))) (((-1195)) |has| |#1| (-1057 (-1195))) ((|#1|) . T)) ((($) . T)) ((($) . T)) ((((-576) |#2|) . T)) ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) ((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390)))) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-576)) . T)) ((((-656 |#4|)) . T) (((-874)) . T)) @@ -1476,40 +1476,40 @@ ((((-548)) |has| |#4| (-626 (-548)))) ((((-874)) . T) (((-656 |#4|)) . T)) ((($) |has| |#1| (-860))) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -((((-576)) -3765 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1119)) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +((((-576)) -2835 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068))) ((|#2|) |has| |#2| (-1119)) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((|#1|) . T)) (((|#1|) . T)) ((((-656 |#4|)) . T) (((-874)) . T)) ((((-548)) |has| |#4| (-626 (-548)))) -(((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-1196)) |has| (-419 |#2|) (-915 (-1196)))) +((((-1195)) |has| (-419 |#2|) (-915 (-1195)))) (((|#2|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) #0#) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) #0#) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) ((($) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((($) -2835 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) ((($) . T)) ((($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) ((($) . T)) ((($) . T)) -((((-874)) -3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-874))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1068)) (|has| |#3| (-1119))) (((-1287 |#3|)) . T)) +((((-874)) -2835 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-625 (-874))) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1068)) (|has| |#3| (-1119))) (((-1286 |#3|)) . T)) (((|#2|) . T)) ((((-576) |#2|) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) -(((|#2| |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(((|#2| |#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) (((|#2|) . T) (((-576)) . T)) ((((-874)) . T)) ((((-874)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T) ((|#2|) . T)) ((((-874)) . T)) ((((-874)) . T)) -((((-1178) (-1196) (-576) (-227) (-874)) . T)) +((((-1177) (-1195) (-576) (-227) (-874)) . T)) ((((-874)) . T)) ((((-874)) . T)) ((((-874)) . T)) @@ -1542,42 +1542,42 @@ ((((-419 (-576))) . T) (($) . T)) ((((-874)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) ((($) . T) (((-419 (-576))) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068)))) (|has| $ (-148)) ((((-419 |#2|)) . T)) ((((-419 (-576))) |has| #0=(-419 |#2|) (-1057 (-419 (-576)))) (((-576)) |has| #0# (-1057 (-576))) ((#0#) . T)) (((|#2| |#2|) . T)) -((((-874)) . T)) (|has| |#2| (-146)) (|has| |#2| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) (((|#1|) . T)) (|has| |#2| (-238)) -((((-874)) . T) (((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) (((|#2|) . T)) -((((-1201)) . T)) -((((-1196) (-52)) . T)) +((((-1200)) . T)) +((((-1195) (-52)) . T)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-874)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) ((((-906 |#1|)) . T) ((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) (((|#1| |#1|) . T)) -((((-1196)) |has| |#2| (-915 (-1196)))) +((((-1195)) |has| |#2| (-915 (-1195)))) ((((-130)) . T)) -((((-576) (-112)) . T) (((-1254 (-576)) $) . T)) +((((-576) (-112)) . T) (((-1253 (-576)) $) . T)) (|has| |#1| (-568)) (((|#2|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-576)) . T) (((-831 (-1196))) . T)) +(((|#1|) . T) (((-576)) . T) (((-831 (-1195))) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) @@ -1594,19 +1594,19 @@ ((((-874)) . T)) ((((-874)) . T)) ((((-1018 |#1|)) . T) ((|#1|) . T)) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-830 (-1196))) . T)) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (((-830 (-1195))) . T)) ((((-874)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((((-419 (-576))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1192 |#1|)) . T)) +(((|#1| (-1191 |#1|)) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (((|#3|) . T) (($) . T)) (|has| |#1| (-862)) (((|#1|) . T) (((-576)) . T) (($) . T)) (((|#2|) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) ((((-576) |#2|) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) @@ -1617,38 +1617,38 @@ ((((-874)) . T)) (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) -(-3765 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))) +(-2835 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237)))) (|has| |#1| (-38 (-419 (-576)))) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) #0#) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) #0#) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) (((|#2| |#2|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-374)) (((|#2|) . T) (((-576)) |has| |#2| (-1057 (-576))) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576))))) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#2|) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) (|has| |#1| (-1119)) (((|#1|) |has| |#1| (-174))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-1178) (-52)) . T)) +((((-1177) (-52)) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($ (-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196)))) (($ (-1101)) . T)) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($ (-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195)))) (($ (-1101)) . T)) (|has| |#1| (-38 (-419 (-576)))) (((|#2|) |has| |#2| (-174))) (((|#2|) . T)) (((|#1|) . T)) -((((-576)) -3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) ((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068))) +((((-576)) -2835 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) ((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068))) ((((-576) |#3|) . T)) ((((-576) (-145)) . T)) ((((-145)) . T)) ((((-874)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) ((((-112)) . T)) (|has| |#1| (-148)) (((|#1|) . T)) @@ -1658,39 +1658,39 @@ ((((-576)) . T) (($) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1|) . T)) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195))))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-145)) . T)) ((((-874)) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) -((((-1196) (-52)) . T) (((-1178) (-52)) . T)) +((((-1195) (-52)) . T) (((-1177) (-52)) . T)) (((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1| |#2|) . T)) -(-3765 (|has| |#2| (-238)) (|has| |#2| (-237))) -((((-1254 (-576)) $) . T) (((-576) (-145)) . T)) -(((#0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) #0#) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2835 (|has| |#2| (-238)) (|has| |#2| (-237))) +((((-576) (-145)) . T) (((-1253 (-576)) $) . T)) +(((#0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) #0#) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-862)) (((|#2| (-783) (-1101)) . T)) (((|#1| |#2|) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (|has| |#1| (-803)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-568))) -((((-1196)) -3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-568))) +((((-1195)) -2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (((|#1|) |has| |#1| (-174))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-3765 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) -(-3765 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) +(-2835 (|has| |#1| (-148)) (-12 (|has| |#1| (-374)) (|has| |#2| (-148)))) +(-2835 (|has| |#1| (-146)) (-12 (|has| |#1| (-374)) (|has| |#2| (-146)))) (((|#4|) . T)) (|has| |#1| (-146)) -((((-1178) |#1|) . T)) +((((-1177) |#1|) . T)) (|has| |#1| (-148)) (((|#1|) . T)) ((((-576)) . T)) @@ -1700,39 +1700,39 @@ ((((-874)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#3|) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) (((-576)) . T) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) . T)) ((((-874)) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (((|#1|) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))) (((-975 |#1|)) . T)) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119))) (((-975 |#1|)) . T)) (|has| |#1| (-860)) (|has| |#1| (-860)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-975 |#1|)) . T)) -(((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)))) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) +(((|#4|) -2835 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) (|has| |#2| (-374)) (((|#1|) |has| |#1| (-174))) -(((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1068)))) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068)))) +(((|#4|) -2835 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-738)) (|has| |#4| (-1068)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068)))) (((|#2|) |has| |#2| (-1068))) (((|#2|) |has| |#2| (-1068))) -((((-1178) |#1|) . T)) +((((-1177) |#1|) . T)) (((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (((|#2| (-906 |#1|)) . T)) ((($) . T)) ((($ (-876 |#1|)) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T)) -((((-400) (-1178)) . T)) -((($ (-1196)) . T)) +((((-400) (-1177)) . T)) +((($ (-1195)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) -3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((-1287 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2371 (-1178)) (|:| -2900 #0#))) . T)) +((((-874)) -2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-625 (-874))) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((-1286 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4282 (-1177)) (|:| -4353 #0#))) . T)) (((|#1|) . T)) ((((-874)) . T)) (((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) @@ -1741,31 +1741,31 @@ ((((-576)) . T)) (|has| |#2| (-148)) (|has| |#1| (-485)) -(-3765 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) +(-2835 (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068))) (|has| |#1| (-374)) ((((-874)) . T)) (|has| |#1| (-38 (-419 (-576)))) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) -((((-1201)) . T)) +((((-1200)) . T)) (|has| |#1| (-860)) (|has| |#1| (-860)) ((((-874)) . T)) (((|#2|) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T) (((-576)) . T) (((-831 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1196)) |has| |#1| (-915 (-1196)))) +((((-1195)) |has| |#1| (-915 (-1195)))) (((|#2| |#2|) . T)) ((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((((-874)) . T)) ((((-874)) . T)) (|has| |#1| (-1119)) -(((|#2| (-494 (-2048 |#1|) (-783)) (-876 |#1|)) . T)) +(((|#2| (-494 (-3485 |#1|) (-783)) (-876 |#1|)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) -(((|#1| (-543 (-1196)) (-1196)) . T)) +(((|#1| (-543 (-1195)) (-1195)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-874)) . T)) @@ -1783,19 +1783,19 @@ (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#2|) . T)) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((((-1196) (-52)) . T)) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) . T)) +((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((((-1195) (-52)) . T)) ((((-419 (-576)) |#1|) . T) (($ $) . T)) (((|#1| (-576)) . T)) ((((-927 |#1|)) . T)) -(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068))) (($) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))) -((((-1196)) -3765 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) +(((|#1|) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068))) (($) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068)))) +((((-1195)) -2835 (-12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068))))) (((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) (|has| |#1| (-862)) (|has| |#1| (-862)) @@ -1805,7 +1805,7 @@ ((((-576)) . T)) (|has| |#1| (-862)) ((((-701 |#2|)) . T) (((-874)) . T)) -((((-1279 |#1| |#2| |#3|)) -12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +((((-1278 |#1| |#2| |#3|)) -12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (|has| |#1| (-238)) (((|#1| |#2|) . T)) @@ -1815,15 +1815,15 @@ (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (((|#1|) |has| |#1| (-174))) (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)))) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(-3765 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-926))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(-2835 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-926))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((($ |#2|) . T)) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1101)) . T)) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (($ (-1101)) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) ((((-576) |#2|) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)))) (|has| |#1| (-360)) (((|#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (((|#2|) . T) (((-576)) . T)) @@ -1832,7 +1832,7 @@ (|has| |#1| (-832)) (|has| |#1| (-832)) (((|#1|) . T)) -(-3765 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-860)) (|has| |#1| (-860)) (|has| |#1| (-860)) @@ -1841,18 +1841,18 @@ ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) (((-1101)) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((((-1195)) |has| |#1| (-915 (-1195))) (((-1101)) . T)) (((|#1|) . T)) (|has| |#1| (-860)) -(((#0=(-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) #0#) |has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))))) +(((#0=(-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) #0#) |has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (|has| |#1| (-1119)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) @@ -1872,14 +1872,14 @@ (((|#1| (-783) (-1101)) . T)) (((|#3|) . T)) ((((-145)) . T)) -((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) -3765 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))) ((|#1|) . T)) +((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) -2835 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))) ((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) ((((-145)) . T)) -((((-1196)) -3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) +((((-1195)) -2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) (((|#1|) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -1891,38 +1891,38 @@ ((((-874)) . T)) ((((-876 |#1|)) . T)) (((|#2|) . T)) -(((|#1| (-1192 |#1|)) . T)) +(((|#1| (-1191 |#1|)) . T)) ((((-1101)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) ((($) . T) ((|#1|) . T) (((-419 (-576))) . T) (((-576)) |has| |#1| (-651 (-576)))) ((($) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((($) |has| |#1| (-568))) (((|#2|) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) . T)) ((($) |has| |#1| (-860))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) (|has| |#1| (-926)) -((((-1196)) . T)) +((((-1195)) . T)) ((((-874)) . T)) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1279 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-576) |#2|) . T)) -((($ (-1196)) -3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) -((($ (-1196)) -3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) -((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($ (-1195)) -2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) +((($ (-1195)) -2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) +((($) -2835 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) ((($) |has| |#1| (-379))) (((|#1| |#2|) . T)) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-926))) -(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((#0=(-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) #0#) |has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-926))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-926))) +(((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((#0=(-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) #0#) |has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-926))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) @@ -1931,47 +1931,47 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)))) (|has| |#1| (-862)) (|has| |#1| (-568)) ((((-593 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-862)))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-862)))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-927 |#1|)) . T)) (((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) (((|#1| (-783)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) . T)) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) . T)) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) ((((-684 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-874)) . T) (((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) ((((-548)) . T)) ((((-874)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-874)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((((-1201)) . T)) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-1200)) . T)) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-576)) . T)) (((|#3|) . T) (((-576)) . T) (((-624 $)) . T)) ((((-874)) . T)) ((((-874)) . T)) ((((-874)) . T)) (((|#2|) . T)) -(-3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1068)) (|has| |#3| (-1119))) +(-2835 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1068)) (|has| |#3| (-1119))) (|has| |#2| (-1068)) ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T)) -(|has| |#1| (-1222)) -(|has| |#1| (-1222)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) -(|has| |#1| (-1222)) -(|has| |#1| (-1222)) +(|has| |#1| (-1221)) +(|has| |#1| (-1221)) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) +(|has| |#1| (-1221)) +(|has| |#1| (-1221)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-419 |#1|) #1#) . T) ((|#1| |#1|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) @@ -1985,19 +1985,19 @@ (((|#1|) . T)) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1178) (-52)) . T)) +((((-1177) (-52)) . T)) (|has| |#1| (-1119)) (((|#1|) |has| |#1| (-174)) (($) . T)) -(-3765 (|has| |#2| (-832)) (|has| |#2| (-862))) +(-2835 (|has| |#2| (-832)) (|has| |#2| (-862))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T)) ((((-783)) . T)) -(-3765 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360))) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195))))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((((-874)) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (|has| |#2| (-926)) @@ -2005,32 +2005,32 @@ (((|#2|) |has| |#2| (-1119))) ((($) . T) (((-576)) . T)) ((($) . T)) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -((((-548)) . T) (((-419 (-1192 (-576)))) . T) (((-227)) . T) (((-390)) . T)) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((((-548)) . T) (((-419 (-1191 (-576)))) . T) (((-227)) . T) (((-390)) . T)) ((((-390)) . T) (((-227)) . T) (((-874)) . T)) (|has| |#1| (-926)) (|has| |#1| (-926)) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-830 (-1196))) . T)) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (($ (-830 (-1195))) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (|has| |#1| (-926)) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-926))) ((($) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068)))) (((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) -((((-1194 |#1| |#2| |#3|)) -12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-926))) +((((-1193 |#1| |#2| |#3|)) -12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-926))) ((((-874)) . T)) ((((-874)) . T)) ((($ $) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((($) -3765 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((($) -2835 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (-12 (|has| |#1| (-374)) (|has| |#2| (-237))))) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) ((((-990)) . T)) ((((-990)) . T) (((-874)) . T)) @@ -2039,7 +2039,7 @@ ((($) . T)) (((|#1|) . T)) ((((-112)) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((((-576)) . T)) (((|#1| (-576)) . T)) ((($) . T)) @@ -2048,7 +2048,7 @@ (((|#1|) . T)) ((((-576)) . T)) (((|#1| |#2|) . T)) -((((-1196)) |has| |#1| (-1068))) +((((-1195)) |has| |#1| (-1068))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -2056,25 +2056,25 @@ ((((-874)) . T)) (((|#1|) . T)) (((|#1| (-576)) . T)) -(((|#1| (-1279 |#1| |#2| |#3|)) . T)) +(((|#1| (-1278 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-419 (-576))) . T)) -(((|#1| (-1251 |#1| |#2| |#3|)) . T)) +(((|#1| (-1250 |#1| |#2| |#3|)) . T)) (((|#1| (-783)) . T)) ((((-874)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (|has| |#1| (-1119)) (((|#1|) . T)) -((((-1178) |#1|) . T)) +((((-1177) |#1|) . T)) ((($) . T)) (|has| |#2| (-148)) (|has| |#2| (-146)) -(((|#1| (-543 (-830 (-1196))) (-830 (-1196))) . T)) +(((|#1| (-543 (-830 (-1195))) (-830 (-1195))) . T)) ((((-874)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) |has| |#1| (-1068))) -((((-576) (-112)) . T) (((-1254 (-576)) $) . T)) +((((-576) (-112)) . T) (((-1253 (-576)) $) . T)) ((((-874)) |has| |#1| (-1119))) (((|#1|) . T) (((-576)) . T) (($) . T)) ((((-576)) . T)) @@ -2083,54 +2083,54 @@ ((((-576)) . T)) ((((-576)) . T)) ((((-874)) . T)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-360))) ((((-874)) . T)) (|has| |#1| (-148)) (((|#3|) . T)) ((((-874)) . T)) (|has| |#3| (-1068)) -((($) -3765 (|has| |#2| (-238)) (|has| |#2| (-237)))) -((((-1272 |#2| |#3| |#4|)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T)) +((($) -2835 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((((-1271 |#2| |#3| |#4|)) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T)) ((((-874)) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) -3765 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-419 (-969 |#1|))) |has| |#1| (-568)) (((-969 |#1|)) |has| |#1| (-1068)) (((-1196)) . T)) +((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (((-624 $)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) -2835 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-419 (-969 |#1|))) |has| |#1| (-568)) (((-969 |#1|)) |has| |#1| (-1068)) (((-1195)) . T)) (((|#1|) . T) (($) . T)) (((|#1| (-783)) . T)) (((|#1|) . T)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1|) |has| |#1| (-319 |#1|))) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T)) ((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390)))) (((|#1|) . T)) -((($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) +((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (((|#1|) . T)) (|has| |#1| (-568)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) (((|#1|) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) -(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) |has| |#1| (-174))) +(((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1194 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) -(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-1193 |#1| |#2| |#3|)) |has| |#1| (-374)) ((|#1|) . T)) +(((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) (((|#1|) |has| |#1| (-174))) ((((-874)) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) +((($ (-1282 |#2|)) . T) (($ (-1195)) -2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) +((($ (-1282 |#2|)) . T) (($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) +((($ (-1282 |#2|)) . T) (($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) (((|#1|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) (((|#3|) |has| |#3| (-1119))) ((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)))) -((((-1272 |#2| |#3| |#4|)) . T)) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)))) +((((-1271 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) (|has| |#1| (-832)) (|has| |#1| (-832)) @@ -2139,8 +2139,8 @@ (|has| |#1| (-860)) (|has| |#1| (-860)) (((|#1| (-576) (-1101)) . T)) -(-3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +(-2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068))) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#1| (-419 (-576)) (-1101)) . T)) (((|#1| (-783) (-1101)) . T)) (|has| |#1| (-862)) @@ -2154,41 +2154,41 @@ ((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-1119)) ((((-419 (-576))) |has| |#2| (-374)) (($) . T) (((-576)) . T)) -((((-576)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))) +((((-576)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068)))) (((|#1|) . T)) (|has| |#1| (-1119)) ((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((|#2|) |has| |#1| (-374))) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) -((((-701 (-350 (-4103) (-4103 (QUOTE X) (QUOTE HESS)) (-711)))) . T)) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) +((((-701 (-350 (-3573) (-3573 (QUOTE X) (QUOTE HESS)) (-711)))) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) ((((-874)) . T)) ((((-874)) . T)) ((((-874)) . T)) -((((-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) -(((|#1| |#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068)))) +((((-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) +(((|#1| |#1|) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068)))) (((|#1|) . T)) ((((-576)) . T)) ((((-576)) . T)) -(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068)))) +(((|#1|) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068)))) (((|#2|) |has| |#2| (-374))) (((|#1|) . T)) ((($) . T) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-374)) (((-576)) |has| |#1| (-651 (-576)))) (|has| |#1| (-862)) (((|#1|) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#1|) . T) (((-576)) . T)) (((|#2|) . T)) ((((-576)) . T) ((|#3|) . T)) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) |has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-926))) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) |has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-926))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((((-874)) . T)) ((((-874)) . T)) -((($ (-1196)) -3765 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) -((((-576)) -3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) ((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068))) +((($ (-1195)) -2835 (-12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068))))) +((((-576)) -2835 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) ((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068))) ((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) ((((-874)) . T)) ((($) |has| |#1| (-238))) @@ -2205,11 +2205,11 @@ (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1| (-1194 |#1| |#2| |#3|)) . T)) +(((|#1| (-1193 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1| (-419 (-576))) . T)) (((|#1| |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -(((|#1| (-1187 |#1| |#2| |#3|)) . T)) +(((|#1| (-1186 |#1| |#2| |#3|)) . T)) (((|#1| (-783)) . T)) (((|#1|) . T)) ((((-419 (-969 |#1|))) . T)) @@ -2223,12 +2223,12 @@ (|has| |#1| (-146)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1196)) |has| |#1| (-1057 (-1196)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-576)) . T) ((|#1|) . T) (($) . T) (((-419 (-576))) . T) (((-1195)) |has| |#1| (-1057 (-1195)))) (((|#1| |#2|) . T)) -((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) -3765 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))) ((|#1|) . T)) -(-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068)))) -(-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) +((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) -2835 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))) ((|#1|) . T)) +(-2835 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068)))) +(-2835 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) ((((-145)) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -2239,21 +2239,21 @@ ((((-874)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) (|has| |#1| (-374)) (|has| |#1| (-374)) ((($ |#2|) . T)) (|has| (-419 |#2|) (-238)) ((((-656 |#1|)) . T)) -((($ (-1283 |#2|)) . T) (($ (-1196)) -3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) -((($ (-1283 |#2|)) . T) (($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) +((($ (-1282 |#2|)) . T) (($ (-1195)) -2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) +((($ (-1282 |#2|)) . T) (($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) +((($ (-1282 |#2|)) . T) (($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (|has| |#1| (-926)) (((|#2|) |has| |#2| (-1068))) (((|#2|) |has| |#2| (-1068))) (|has| |#1| (-374)) ((($) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) (((|#1|) |has| |#1| (-174))) ((($ (-876 |#1|)) . T)) (((|#1| |#1|) . T)) @@ -2263,8 +2263,8 @@ (((|#2|) |has| |#2| (-1119))) (((|#1|) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-656 $)) . T) (((-1178)) . T) (((-1196)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T)) -((((-576)) -3765 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) ((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068))) +((((-656 $)) . T) (((-1177)) . T) (((-1195)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T)) +((((-576)) -2835 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) ((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068))) ((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) (((|#1|) . T)) ((((-874)) . T)) @@ -2279,7 +2279,7 @@ (((|#1| (-419 (-576)) (-1101)) . T)) (((|#1| (-783) (-1101)) . T)) (((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-576)) -3765 (|has| (-419 (-576)) (-1057 (-576))) (|has| |#1| (-1057 (-576)))) (((-419 (-576))) . T)) +(((|#1|) . T) (((-576)) -2835 (|has| (-419 (-576)) (-1057 (-576))) (|has| |#1| (-1057 (-576)))) (((-419 (-576))) . T)) (((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) @@ -2298,37 +2298,37 @@ ((((-711)) . T)) ((((-711)) . T)) (((|#2|) |has| |#2| (-174))) -(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2835 (|has| |#1| (-238)) (|has| |#1| (-237))) ((((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576))))) -((((-112)) |has| |#1| (-1119)) (((-874)) -3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1119)))) +((((-112)) |has| |#1| (-1119)) (((-874)) -2835 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1119)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) . T)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) ((((-874)) . T)) -((((-1196)) -3765 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) +((((-1195)) -2835 (-12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068))))) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) ((((-874)) . T)) ((((-711)) . T) (((-419 (-576))) . T) (((-576)) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#2|) . T)) -((($) . T) (((-576)) . T) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-576)) . T) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-576) |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +(((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) ((((-390)) . T)) ((((-711)) . T)) ((((-419 (-576))) . #0=(|has| |#2| (-374))) (($) . #0#)) (((|#1|) |has| |#1| (-174))) ((((-419 (-969 |#1|))) . T)) (((|#2| |#2|) . T)) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((|#1|) . T)) (((|#2|) . T)) (((|#3|) |has| |#3| (-1068))) @@ -2337,17 +2337,17 @@ (|has| |#1| (-374)) (((|#3|) |has| |#3| (-1068))) ((($) . T)) -((((-1196)) |has| |#2| (-915 (-1196)))) +((((-1195)) |has| |#2| (-915 (-1195)))) ((((-874)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((((-419 (-576))) . T) (($) . T)) (|has| |#1| (-485)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-374)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1068)) (|has| |#1| (-1131))) -((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-485)) (|has| |#1| (-568)) (|has| |#1| (-1068)) (|has| |#1| (-1131))) +((($) -2835 (|has| |#1| (-238)) (|has| |#1| (-237)) (|has| |#1| (-360)))) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-360)) @@ -2358,7 +2358,7 @@ (|has| |#1| (-38 (-419 (-576)))) (((|#2|) . T) (((-874)) . T)) (((|#2|) . T) (((-874)) . T)) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195))))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) @@ -2369,18 +2369,18 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-862)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) ((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (((|#2|) . T)) (|has| |#1| (-15 * (|#1| (-576) |#1|))) (((|#3|) . T)) ((((-117 |#1|)) . T)) (|has| |#1| (-379)) -(-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +(-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-862)) (|has| |#1| (-15 * (|#1| (-783) |#1|))) @@ -2399,17 +2399,17 @@ (((|#1|) |has| |#1| (-374))) (((|#1|) |has| |#1| (-374))) ((((-874)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((($ $) . T) (((-624 $) $) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) -((($) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((($) -3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-1068))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) -((($) . T) (((-576)) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) +((($) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) +((($) -2835 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((|#1|) -2835 (|has| |#1| (-174)) (|has| |#1| (-1068))) (((-419 (-576))) |has| |#1| (-568)) (((-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) +((($) . T) (((-576)) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-374)) ((((-390)) . T) (((-576)) . T) (((-419 (-576))) . T)) -((((-1196)) -3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) +((((-1195)) -2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) ((((-656 (-792 |#1| (-876 |#2|)))) . T) (((-874)) . T)) ((((-548)) |has| (-792 |#1| (-876 |#2|)) (-626 (-548)))) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) @@ -2418,32 +2418,32 @@ (((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (((|#1|) |has| |#1| (-174))) ((((-874)) . T)) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-926))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-926))) (((|#1|) . T)) ((($) . T)) ((($) |has| |#1| (-568)) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) ((((-783)) . T)) (|has| |#1| (-1119)) -((((-576)) -3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) ((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068))) +((((-576)) -2835 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) ((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068))) (($) |has| |#2| (-1068))) ((((-874)) . T)) -((((-1196)) . T) (((-874)) . T)) +((((-1195)) . T) (((-874)) . T)) ((((-576)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) ((((-419 (-576))) . T) (((-576)) . T) (((-624 $)) . T)) (|has| |#1| (-146)) (|has| |#1| (-148)) ((((-576)) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) -(((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T)) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) +(((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (($) . T)) ((((-576)) . T)) ((($) . T)) (|has| |#1| (-374)) -(-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) +(-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) (|has| |#1| (-374)) (|has| |#1| (-146)) (|has| |#1| (-148)) @@ -2464,26 +2464,26 @@ (|has| |#1| (-1119)) ((((-1161 |#2| |#1|)) . T) ((|#1|) . T) (((-576)) . T)) (((|#1| |#2|) . T)) -((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576)))))) -((((-1196)) -3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))))) +((((-576)) . T) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576)))))) +((((-1195)) -2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))))) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) (((|#2|) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (($) . T) (((-576)) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) ((((-874)) . T)) ((((-576)) . T)) -(-3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) +(-2835 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((((-969 |#1|)) . T) (((-874)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) +(((|#1| |#1|) . T) (($ $) -2835 (|has| |#1| (-300)) (|has| |#1| (-374))) ((#0=(-419 (-576)) #0#) |has| |#1| (-374))) ((((-969 |#1|)) . T)) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) . T)) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) . T)) ((($) . T)) ((((-576) |#1|) . T)) -((((-1196)) |has| (-419 |#2|) (-915 (-1196)))) -(((|#1|) . T) (($) -3765 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) +((((-1195)) |has| (-419 |#2|) (-915 (-1195)))) +(((|#1|) . T) (($) -2835 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) ((((-548)) |has| |#2| (-626 (-548)))) ((((-701 |#2|)) . T) (((-874)) . T)) (((|#1|) . T)) @@ -2491,43 +2491,43 @@ (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) ((((-882 |#1|)) . T)) (((|#1|) |has| |#1| (-174))) -(-3765 (|has| |#4| (-805)) (|has| |#4| (-862))) -(-3765 (|has| |#3| (-805)) (|has| |#3| (-862))) +(-2835 (|has| |#4| (-805)) (|has| |#4| (-862))) +(-2835 (|has| |#3| (-805)) (|has| |#3| (-862))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-874)) . T)) ((((-874)) . T)) (((|#1|) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T)) (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)))) (((|#2|) |has| |#2| (-1068))) (((|#2|) |has| |#2| (-1068))) (((|#3|) . T)) ((($) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) (((|#1|) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068)))) (((|#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) (((|#1|) . T)) ((($) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) ((((-419 (-576))) . T) (($) . T)) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-1241))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-1240))) ((($) . T)) ((((-419 (-576))) |has| #0=(-419 |#2|) (-1057 (-419 (-576)))) (((-576)) |has| #0# (-1057 (-576))) ((#0#) . T)) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) (((|#1| (-783)) . T)) (|has| |#1| (-862)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) ((((-576)) . T)) (|has| |#1| (-38 (-419 (-576)))) -((((-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) |has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))))) +((((-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) |has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))))) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (|has| |#1| (-860)) (|has| |#1| (-38 (-419 (-576)))) @@ -2550,59 +2550,59 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-1178)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) +((((-1177)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) ((((-874)) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) -(-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) +(-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-15 * (|#1| (-783) |#1|))) -(((|#2|) . T) (((-576)) . T) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1101)) . T) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) +(((|#2|) . T) (((-576)) . T) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1101)) . T) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (((|#1| |#2|) . T)) ((((-145)) . T)) ((((-792 |#1| (-876 |#2|))) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) -(|has| |#1| (-1222)) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +(|has| |#1| (-1221)) ((((-874)) . T)) (((|#1|) . T)) -(-3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1068)) (|has| |#3| (-1119))) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|))) +(-2835 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-379)) (|has| |#3| (-738)) (|has| |#3| (-805)) (|has| |#3| (-862)) (|has| |#3| (-1068)) (|has| |#3| (-1119))) +((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|))) (((|#2|) . T)) (((|#2|) . T)) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) ((((-927 |#1|)) . T)) -((($) -3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068))))) -((($) -3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) +((($) -2835 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068))))) +((($) -2835 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) ((($) . T)) ((((-419 (-969 |#1|))) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1196)) -3765 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1195)) -2835 (-12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068))))) ((((-548)) |has| |#4| (-626 (-548)))) (|has| |#1| (-860)) ((((-874)) . T) (((-656 |#4|)) . T)) (|has| |#1| (-1119)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) |has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))))) +(((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) |has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))))) (|has| |#1| (-374)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)))) ((((-684 |#1|)) . T)) -(((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068)))) +(((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-738)) (|has| |#3| (-1068)))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (|has| |#1| (-146)) (|has| |#1| (-148)) -(-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) -(-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) +(-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-148)) (|has| |#1| (-374))) (|has| |#1| (-148))) +(-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) (|has| |#1| (-860)) (((|#1| |#2|) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) @@ -2618,7 +2618,7 @@ ((((-576)) . T) ((|#1|) . T)) (((|#2|) . T) (($) . T) (((-576)) . T)) (((|#2|) . T)) -((((-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) +((((-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195))))) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-374))) ((((-419 |#2|)) . T)) @@ -2627,10 +2627,10 @@ ((((-874)) . T)) ((((-874)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) -(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)))) +((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +(((|#1|) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) @@ -2640,23 +2640,23 @@ (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) |has| |#2| (-374))) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (((|#2|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((($) . T) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) +((($) . T) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2835 (|has| |#1| (-238)) (|has| |#1| (-237))) (((#0=(-792 |#1| (-876 |#2|)) #0#) |has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|))))) -((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($) -2835 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((((-576)) . T) (($) . T)) ((((-876 |#1|)) . T)) (((|#2|) |has| |#2| (-174))) (((|#1|) |has| |#1| (-174))) (((|#2|) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) (((-1101)) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) (((-1107 (-1196))) . T)) +((((-1195)) |has| |#1| (-915 (-1195))) (((-1101)) . T)) +((((-1195)) |has| |#1| (-915 (-1195))) (((-1107 (-1195))) . T)) (((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) -((($ (-1196)) -3765 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) +((($ (-1195)) -2835 (-12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068))))) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (|has| |#1| (-38 (-419 (-576)))) @@ -2665,13 +2665,13 @@ (|has| |#1| (-146)) (|has| |#1| (-148)) ((($ $) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1119))) (|has| |#1| (-568)) (((|#2|) . T)) ((((-576)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#1|) . T)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) ((((-593 |#1|)) . T)) ((($) . T)) @@ -2680,7 +2680,7 @@ ((($) . T)) (((|#1|) . T)) ((((-874)) . T)) -(((|#2|) |has| |#2| (-6 (-4464 "*")))) +(((|#2|) |has| |#2| (-6 (-4463 "*")))) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) @@ -2690,38 +2690,38 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T) (((-576)) . T)) -((((-1272 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (((-576)) -3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))) (|has| |#1| (-1068))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -3765 (|has| |#1| (-568)) (|has| |#1| (-1057 (-419 (-576))))) (((-419 (-969 |#1|))) |has| |#1| (-568)) (((-969 |#1|)) |has| |#1| (-1068)) (((-1196)) . T)) +((((-1271 |#2| |#3| |#4|)) . T) (((-576)) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-48)) -12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (((-576)) -2835 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))) (|has| |#1| (-1068))) ((|#1|) . T) (((-624 $)) . T) (($) |has| |#1| (-568)) (((-419 (-576))) -2835 (|has| |#1| (-568)) (|has| |#1| (-1057 (-419 (-576))))) (((-419 (-969 |#1|))) |has| |#1| (-568)) (((-969 |#1|)) |has| |#1| (-1068)) (((-1195)) . T)) ((((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) (((-576)) |has| |#2| (-1057 (-576))) ((|#2|) . T) (((-876 |#1|)) . T)) ((($) . T) (((-117 |#1|)) . T) (((-419 (-576))) . T)) ((((-1144 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) -((((-1192 |#1|)) . T) (((-1101)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) -((((-1144 |#1| (-1196))) . T) (((-1107 (-1196))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-1196)) . T)) +((((-1191 |#1|)) . T) (((-1101)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) +((((-1144 |#1| (-1195))) . T) (((-1107 (-1195))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-1195)) . T)) (|has| |#1| (-1119)) ((($) . T)) (|has| |#1| (-1119)) ((((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))) (((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((|#1| |#2|) . T)) -((((-1196) |#1|) . T)) +((((-1195) |#1|) . T)) (((|#4|) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1196) (-52)) . T)) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1195) (-52)) . T)) ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T)) -((((-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) +((((-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) . T)) ((((-874)) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) -(((#0=(-1273 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-379)) (|has| |#2| (-738)) (|has| |#2| (-805)) (|has| |#2| (-862)) (|has| |#2| (-1068)) (|has| |#2| (-1119))) +(((#0=(-1272 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1| |#1|) |has| |#1| (-174)) ((#0=(-419 (-576)) #0#) |has| |#1| (-568)) (($ $) |has| |#1| (-568))) ((($) |has| |#1| (-15 * (|#1| (-576) |#1|)))) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1| $) |has| |#1| (-296 |#1| |#1|))) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (|has| |#1| (-374)) -((($) |has| |#1| (-860)) (((-576)) -3765 (|has| |#1| (-21)) (|has| |#1| (-860)))) -((($) -3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) +((($) |has| |#1| (-860)) (((-576)) -2835 (|has| |#1| (-21)) (|has| |#1| (-860)))) +((($) -2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) ((($) |has| |#1| (-15 * (|#1| (-783) |#1|)))) (|has| |#1| (-146)) @@ -2731,38 +2731,38 @@ ((((-419 (-576))) . T) (($) . T)) (((|#3|) |has| |#3| (-374))) (((|#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) -((((-1196)) . T)) -((($) . T) (((-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T)) +((((-1195)) . T)) +((($) . T) (((-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576)))) (((-576)) . T)) (((|#1|) . T)) (((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (((|#2| |#3|) . T)) -(-3765 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((|#1| (-543 |#2|)) . T)) (((|#1| (-783)) . T)) -(((|#1| (-543 (-1107 (-1196)))) . T)) +(((|#1| (-543 (-1107 (-1195)))) . T)) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (|has| |#2| (-926)) -(-3765 (|has| |#2| (-805)) (|has| |#2| (-862))) +(-2835 (|has| |#2| (-805)) (|has| |#2| (-862))) ((((-874)) . T)) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) -(((|#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068)))) -((($ (-1196)) -3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) -((($ $) . T) ((#0=(-1272 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576))))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)))) +(((|#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-738)) (|has| |#2| (-1068)))) +((($ (-1195)) -2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) +((($ $) . T) ((#0=(-1271 |#2| |#3| |#4|) #0#) . T) ((#1=(-419 (-576)) #1#) |has| #0# (-38 (-419 (-576))))) ((((-927 |#1|)) . T)) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((((-576)) . T) (($) . T) (((-419 (-576))) . T)) ((((-874)) . T)) ((($) . T) (((-576)) . T)) ((($) . T)) -(-3765 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-374)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -(-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) +((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) +(-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068))) ((((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T)) (((|#1| |#2|) . T)) ((((-874)) . T)) @@ -2799,9 +2799,9 @@ ((($) . T)) (((|#4|) . T)) ((($) . T)) -((($ (-1196)) -3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))))) +((($ (-1195)) -2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))))) ((((-874)) . T)) -(((|#1| (-543 (-1196))) . T)) +(((|#1| (-543 (-1195))) . T)) ((($ $) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) @@ -2809,29 +2809,29 @@ (((|#2|) . T)) (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (((|#2|) . T)) -(((|#2|) -3765 (|has| |#2| (-6 (-4464 "*"))) (|has| |#2| (-174)))) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(((|#2|) -2835 (|has| |#2| (-6 (-4463 "*"))) (|has| |#2| (-174)))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (|has| |#2| (-926)) (|has| |#1| (-926)) -((($) -3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))))) +((($) -2835 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))))) (((|#2|) |has| |#2| (-174))) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) ((((-874)) . T)) ((((-874)) . T)) ((((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) . T)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) . T)) (((|#1|) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((((-874)) . T)) (((|#1| |#2|) . T)) ((($) . T) (((-576)) . T)) (((|#1| (-419 (-576))) . T)) (((|#1|) . T)) -(-3765 (|has| |#1| (-300)) (|has| |#1| (-374))) +(-2835 (|has| |#1| (-300)) (|has| |#1| (-374))) ((((-145)) . T)) ((((-576)) |has| #0=(-419 |#2|) (-651 (-576))) ((#0#) . T) (((-419 (-576))) . T) (($) . T)) (|has| |#1| (-860)) @@ -2847,25 +2847,25 @@ ((((-874)) . T)) ((((-874)) . T)) ((((-189)) . T) (((-874)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) ((((-874)) . T)) ((((-874)) . T)) ((((-548)) |has| |#1| (-626 (-548))) (((-905 (-576))) |has| |#1| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#1| (-626 (-905 (-390))))) -((((-1196) (-52)) . T)) +((((-1195) (-52)) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($ (-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) -((((-656 (-145))) . T) (((-1178)) . T)) +((($ (-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) +((((-656 (-145))) . T) (((-1177)) . T)) ((((-874)) . T)) -((((-1178)) . T)) -((((-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) +((((-1177)) . T)) +((((-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((|#1| |#1|) |has| |#1| (-319 |#1|))) (|has| |#1| (-862)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) ((((-874)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((($) -3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) +((($) -2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) ((((-874)) . T)) (((|#2|) |has| |#2| (-374))) @@ -2878,14 +2878,14 @@ ((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) (|has| |#4| (-1068)) (|has| |#3| (-1068)) -((((-1196) (-52)) . T)) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((((-1195) (-52)) . T)) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) (|has| |#1| (-926)) ((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (|has| |#1| (-926)) @@ -2894,7 +2894,7 @@ (((|#1|) . T)) ((((-874)) . T)) ((((-576)) . T)) -((($ (-1196)) -3765 (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))))) +((($ (-1195)) -2835 (-12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068))))) (((#0=(-419 (-576)) #0#) . T) (($ $) . T)) ((((-419 (-576))) . T) (($) . T)) (((|#1| (-419 (-576)) (-1101)) . T)) @@ -2903,12 +2903,12 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (|has| |#1| (-832)) (((#0=(-927 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) ((((-419 |#2|)) . T)) (|has| |#1| (-860)) -((((-1223 |#1|)) . T) (((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-1222 |#1|)) . T) (((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) (((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) . T) ((#1=(-576) #1#) . T) (($ $) . T)) ((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) @@ -2919,48 +2919,48 @@ (|has| |#1| (-146)) (((|#2|) . T)) ((((-874)) . T)) -((((-1196)) . T)) +((((-1195)) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T)) (((|#1|) |has| |#1| (-174))) (((|#2|) |has| |#2| (-174))) (((|#1|) . T)) (((|#2|) . T)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) . T)) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) . T)) ((((-576) |#3|) . T)) -(((#0=(-52)) . T) (((-2 (|:| -2371 (-1196)) (|:| -2900 #0#))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -4282 (-1195)) (|:| -4353 #0#))) . T)) (|has| |#1| (-360)) ((((-576)) . T)) ((((-874)) . T)) (((|#1|) . T)) -(((#0=(-1273 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#))) +(((#0=(-1272 |#1| |#2| |#3| |#4|) $) |has| #0# (-296 #0# #0#))) (|has| |#1| (-374)) -(-3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) -(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068))) (($) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068))) (((-576)) -3765 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)))) +(-2835 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) +(((|#1|) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068))) (($) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068))) (((-576)) -2835 (|has| |#1| (-21)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068)))) (((#0=(-1101) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) (((#0=(-419 (-576)) #0#) . T) ((#1=(-711) #1#) . T) (($ $) . T)) ((((-326 |#1|)) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) |has| |#1| (-374))) ((((-874)) . T)) (|has| |#1| (-1119)) (((|#1|) . T)) -(((|#1|) -3765 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) -(((|#1|) -3765 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(((|#1|) -2835 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) +(((|#1|) -2835 (|has| |#2| (-378 |#1|)) (|has| |#2| (-429 |#1|)))) (((|#2|) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) ((((-591)) . T)) (((|#3| |#3|) . T)) -((($ (-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) +((($ (-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195))))) (|has| |#2| (-238)) ((((-876 |#1|)) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) ((|#3|) . T)) +((((-1195)) |has| |#1| (-915 (-1195))) ((|#3|) . T)) ((((-656 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) (-12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((((-419 (-576))) . T) (($) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) ((($) . T) (((-419 (-576))) . T)) ((((-874)) . T)) (|has| |#1| (-374)) @@ -2972,10 +2972,10 @@ (|has| |#1| (-1119)) (((|#2|) . T)) (((|#1|) . T)) -((($) -3765 (|has| |#1| (-238)) (|has| |#1| (-237)))) +((($) -2835 (|has| |#1| (-238)) (|has| |#1| (-237)))) ((((-576)) . T)) (((|#2|) . T) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#1|) . T) (($) . T) (((-576)) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) (((|#1| |#2|) . T)) ((($) . T)) @@ -2985,7 +2985,7 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T) (((-576)) . T)) (((|#1|) . T) (((-576)) . T)) -(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) +(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#2|) . T)) ((((-874)) . T)) @@ -3022,7 +3022,7 @@ (|has| |#2| (-1041)) ((($) . T)) (|has| |#1| (-926)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) @@ -3031,32 +3031,32 @@ (|has| |#1| (-374)) ((((-927 |#1|)) . T)) ((($) . T) (((-576)) . T) ((|#1|) . T) (((-419 (-576))) . T)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) |has| |#1| (-860)) (((-576)) -3765 (|has| |#1| (-21)) (|has| |#1| (-860)))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) |has| |#1| (-860)) (((-576)) -2835 (|has| |#1| (-21)) (|has| |#1| (-860)))) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -(-3765 (|has| |#1| (-379)) (|has| |#1| (-862))) +(-2835 (|has| |#1| (-379)) (|has| |#1| (-862))) (((|#1|) . T)) ((((-783)) . T)) ((((-874)) . T)) -(-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) +(-2835 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) ((((-419 |#2|) |#3|) . T)) ((($) . T) (((-419 (-576))) . T)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T) (((-624 $)) . T)) ((((-576)) . T) (($) . T)) ((((-576)) . T) (($) . T)) ((((-783) |#1|) . T)) -(((|#2| (-245 (-2048 |#1|) (-783))) . T)) +(((|#2| (-245 (-3485 |#1|) (-783))) . T)) (((|#1| (-543 |#3|)) . T)) ((((-419 (-576))) . T)) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -((((-1178)) . T) (((-874)) . T)) -(((#0=(-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) #0#) |has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))))) -((((-1178)) . T)) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((((-1177)) . T) (((-874)) . T)) +(((#0=(-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) #0#) |has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))))) +((((-1177)) . T)) (|has| |#1| (-926)) (|has| |#2| (-374)) (((|#1|) . T) (($) . T) (((-576)) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) ((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) ((((-874)) . T)) (((|#1|) . T)) @@ -3073,13 +3073,13 @@ (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -(-3765 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) (|has| |#1| (-38 (-419 (-576)))) (-12 (|has| |#1| (-557)) (|has| |#1| (-840))) ((((-874)) . T)) -((((-1196)) -3765 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))))) +((((-1195)) -2835 (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1195)))))) (|has| |#1| (-374)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (|has| |#1| (-374)) ((((-419 (-576))) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) @@ -3088,25 +3088,25 @@ (|has| |#1| (-379)) (|has| |#1| (-379)) ((((-576) |#1|) . T)) -((((-1196)) |has| |#1| (-915 (-1196)))) +((((-1195)) |has| |#1| (-915 (-1195)))) (((|#1|) . T)) -(-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))) +(-2835 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360))) (((|#2|) |has| |#1| (-374))) (((|#2|) |has| |#1| (-374))) ((((-576)) . T) (($) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) ((($) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-1196)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1196)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576))))) +(((|#2|) . T) (((-1195)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1195)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))) (((-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576))))) (((|#2|) . T)) ((($) . T)) -((((-1196) #0=(-1273 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1196) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) +((((-1195) #0=(-1272 |#1| |#2| |#3| |#4|)) |has| #0# (-526 (-1195) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) ((((-419 (-576))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((((-624 $) $) . T) (($ $) . T)) -((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1192 (-711))) . T) (((-905 (-390))) . T)) +((((-171 (-227))) . T) (((-171 (-390))) . T) (((-1191 (-711))) . T) (((-905 (-390))) . T)) (((|#3|) . T)) (|has| |#1| (-568)) (|has| (-419 |#2|) (-238)) @@ -3118,7 +3118,7 @@ ((($ $) . T)) ((($) . T)) ((((-874)) . T)) -((((-1196)) |has| |#2| (-915 (-1196)))) +((((-1195)) |has| |#2| (-915 (-1195)))) ((((-419 (-576))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (($) . T) (((-576)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) @@ -3126,35 +3126,35 @@ (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#2|) |has| |#1| (-374))) ((((-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-390)))) (((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-576))))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) (((|#1|) . T)) ((($) . T) (((-576)) . T) ((|#2|) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((|#3|) . T)) -((((-1178)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) +((((-1177)) . T) (((-518)) . T) (((-227)) . T) (((-576)) . T)) (((|#1|) . T)) (|has| |#1| (-374)) (|has| |#1| (-568)) (((|#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) (((|#2|) . T)) (((|#2|) . T)) (|has| |#2| (-1068)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (|has| |#1| (-38 (-419 (-576)))) (((|#1| |#2|) . T)) (|has| |#1| (-38 (-419 (-576)))) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) ((($) . T)) -((((-1178) |#1|) . T)) +((((-1177) |#1|) . T)) (|has| |#1| (-148)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) (|has| |#1| (-148)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-379))) ((($) . T)) (|has| |#1| (-148)) ((((-593 |#1|)) . T)) @@ -3166,10 +3166,10 @@ ((($) . T)) ((((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) -((((-419 (-576))) |has| |#2| (-1057 (-576))) (((-576)) |has| |#2| (-1057 (-576))) (((-1196)) |has| |#2| (-1057 (-1196))) ((|#2|) . T)) +((((-419 (-576))) |has| |#2| (-1057 (-576))) (((-576)) |has| |#2| (-1057 (-576))) (((-1195)) |has| |#2| (-1057 (-1195))) ((|#2|) . T)) (((#0=(-419 |#2|) #0#) . T) ((#1=(-419 (-576)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-360))) (|has| |#1| (-148)) ((((-874)) . T)) ((($) . T)) @@ -3185,11 +3185,11 @@ ((((-874)) . T)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -((((-1196) (-52)) . T)) +((((-1195) (-52)) . T)) ((((-419 |#2|)) . T)) ((((-874)) . T)) (((|#1|) . T)) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195))))) (|has| |#1| (-1119)) (|has| |#1| (-803)) (|has| |#1| (-803)) @@ -3197,16 +3197,16 @@ ((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((((-874)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-115)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-227)) . T) (((-390)) . T) (((-905 (-390))) . T)) ((((-874)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) ((((-874)) . T)) -(-3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) +(-2835 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) ((((-874)) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -3219,25 +3219,25 @@ ((((-874)) . T)) (((|#2|) . T)) ((((-576)) . T)) -((((-1196)) -3765 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196))))) +((((-1195)) -2835 (|has| (-419 |#2|) (-915 (-1195))) (|has| (-419 |#2|) (-917 (-1195))))) ((((-874)) . T)) ((((-576)) . T)) -(-3765 (|has| |#2| (-805)) (|has| |#2| (-862))) +(-2835 (|has| |#2| (-805)) (|has| |#2| (-862))) ((((-171 (-390))) . T) (((-227)) . T) (((-390)) . T)) ((((-874)) . T)) ((((-874)) . T)) -((((-1178)) . T) (((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) +((((-1177)) . T) (((-548)) . T) (((-576)) . T) (((-905 (-576))) . T) (((-390)) . T) (((-227)) . T)) ((((-874)) . T)) (|has| |#1| (-148)) (|has| |#1| (-146)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) ((((-576) $) . T) (((-656 (-576)) $) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1196))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-485)) (|has| |#1| (-738)) (|has| |#1| (-915 (-1195))) (|has| |#1| (-1068)) (|has| |#1| (-1131)) (|has| |#1| (-1119))) (|has| |#1| (-1171)) ((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T)) @@ -3247,20 +3247,20 @@ (((#0=(-117 |#1|) $) |has| #0# (-296 #0# #0#))) (((|#1|) |has| |#1| (-174))) ((((-326 |#1|)) . T) (((-576)) . T)) -(-3765 (|has| |#2| (-238)) (|has| |#2| (-237))) +(-2835 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) ((((-874)) . T)) ((((-115)) . T) ((|#1|) . T)) ((((-874)) . T)) -((((-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) +((((-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195))))) (((|#1|) |has| |#1| (-319 |#1|))) -((((-576) |#1|) . T) (((-1254 (-576)) $) . T)) +((((-576) |#1|) . T) (((-1253 (-576)) $) . T)) (((|#1| |#2|) . T)) -((((-1196) |#1|) . T)) -(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)))) +((((-1195) |#1|) . T)) +(((|#1|) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)))) (((|#1|) . T)) -((($ (-1196)) . T)) -(((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068)))) +((($ (-1195)) . T)) +(((|#1|) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-1068)))) ((((-576)) . T) (((-419 (-576))) . T)) (((|#1|) . T)) (|has| |#1| (-568)) @@ -3270,15 +3270,15 @@ ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (|has| |#1| (-374)) (|has| |#1| (-568)) ((($) . T)) (|has| |#1| (-1119)) ((((-792 |#1| (-876 |#2|))) |has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|))))) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) @@ -3286,18 +3286,18 @@ (((|#1| (-543 |#2|)) . T)) (((|#1| (-783)) . T)) (|has| |#1| (-238)) -(((|#1| (-543 (-1107 (-1196)))) . T)) +(((|#1| (-543 (-1107 (-1195)))) . T)) (|has| |#2| (-374)) -((($) -3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))))) +((($) -2835 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))))) ((((-593 |#1|)) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) . T)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) . T)) (((|#1|) . T)) (((|#1|) . T) (((-576)) . T)) (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-874)) . T)) ((((-874)) . T)) -(-3765 (|has| |#3| (-805)) (|has| |#3| (-862))) +(-2835 (|has| |#3| (-805)) (|has| |#3| (-862))) ((((-874)) . T)) ((((-1139)) . T) (((-874)) . T)) ((((-548)) . T) (((-874)) . T)) @@ -3308,16 +3308,16 @@ ((((-576)) . T)) (((|#3|) . T)) ((((-874)) . T)) -(-3765 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-576)) . T) (((-419 (-576))) -3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T)) -((((-1144 |#1| |#2|)) . T) ((|#2|) . T) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-576)) . T)) -((((-1192 |#1|)) . T) (((-576)) . T) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1101)) . T) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) -(-3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) -((((-1144 |#1| (-1196))) . T) (((-576)) . T) (((-1107 (-1196))) . T) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-1196)) . T)) +(-2835 (|has| |#1| (-317)) (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-576)) . T) (((-419 (-576))) -2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T)) +((((-1144 |#1| |#2|)) . T) ((|#2|) . T) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-576)) . T)) +((((-1191 |#1|)) . T) (((-576)) . T) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((-1101)) . T) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) +(-2835 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) +((((-1144 |#1| (-1195))) . T) (((-576)) . T) (((-1107 (-1195))) . T) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) (((-1195)) . T)) (((#0=(-593 |#1|) #0#) . T) (($ $) . T) ((#1=(-419 (-576)) #1#) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1|) |has| |#1| (-174))) -(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) +(((|#1| (-1286 |#1|) (-1286 |#1|)) . T)) ((((-593 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) @@ -3325,13 +3325,13 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T) (((-419 (-576))) . T)) -(((|#2|) |has| |#2| (-6 (-4464 "*")))) +(((|#2|) |has| |#2| (-6 (-4463 "*")))) (((|#1|) . T)) ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((|#1|) . T) (((-576)) . T)) (((|#1|) . T)) ((((-874)) . T)) ((((-304 |#3|)) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) ((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) @@ -3339,22 +3339,22 @@ (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) ((((-874)) . T)) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#2| (-926)) (|has| |#1| (-926)) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-874)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) . T)) +((((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3364,7 +3364,7 @@ (|has| |#1| (-1119)) (((|#1|) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) -((((-1196)) . T) ((|#1|) . T)) +((((-1195)) . T) ((|#1|) . T)) ((((-874)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T)) ((((-874)) . T)) @@ -3373,44 +3373,44 @@ (((#0=(-419 (-576)) #0#) . T)) ((((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174))) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) (((|#1|) . T)) (((|#1|) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) (((|#1|) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-548)) . T)) ((((-874)) . T)) -((($) -3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) +((($) -2835 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) ((((-576)) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) ((((-874)) . T)) -((((-1196)) |has| |#2| (-915 (-1196))) (((-1101)) . T)) +((((-1195)) |has| |#2| (-915 (-1195))) (((-1101)) . T)) ((((-927 |#1|)) . T)) -((((-1272 |#2| |#3| |#4|)) . T)) +((((-1271 |#2| |#3| |#4|)) . T)) ((($) . T) (((-419 (-576))) . T)) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((((-874)) . T)) -(|has| |#1| (-1241)) +(|has| |#1| (-1240)) (((|#2|) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1196)) |has| |#1| (-915 (-1196)))) +((((-1195)) |has| |#1| (-915 (-1195)))) ((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((($) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((($) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) . T)) +(((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576)))) ((|#1| |#1|) . T) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-568)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#2|) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-568)))) +((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-568)))) (|has| |#1| (-568)) (((|#1|) |has| |#1| (-374))) ((((-576)) . T)) -((((-1196) #0=(-117 |#1|)) |has| #0# (-526 (-1196) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) +((((-1195) #0=(-117 |#1|)) |has| #0# (-526 (-1195) #0#)) ((#0# #0#) |has| #0# (-319 #0#))) (|has| |#1| (-803)) (|has| |#1| (-803)) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195))))) (((|#2|) . T) (((-576)) |has| |#2| (-1057 (-576))) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576))))) ((((-1101)) . T) ((|#2|) . T) (((-576)) |has| |#2| (-1057 (-576))) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576))))) (((|#1|) . T)) @@ -3429,11 +3429,11 @@ ((($) |has| |#1| (-379))) (|has| |#2| (-832)) (|has| |#2| (-832)) -((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) -((($ (-1196)) |has| |#1| (-915 (-1196)))) +((((-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) (($) . T) ((|#1|) . T)) +((($ (-1195)) |has| |#1| (-915 (-1195)))) (((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) -((($) -3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) -(((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) +((($) -2835 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) +(((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-576)) |has| |#1| (-899 (-576))) (((-390)) |has| |#1| (-899 (-390)))) (((|#1|) . T)) @@ -3448,7 +3448,7 @@ (((|#1|) . T)) (((|#1|) |has| |#1| (-174))) (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) -(((|#2|) -3765 (|has| |#2| (-6 (-4464 "*"))) (|has| |#2| (-174)))) +(((|#2|) -2835 (|has| |#2| (-6 (-4463 "*"))) (|has| |#2| (-174)))) (((|#2|) . T)) (|has| |#1| (-374)) (((|#2|) . T)) @@ -3460,14 +3460,14 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#2| (-783)) . T)) -((((-1196)) . T)) +((((-1195)) . T)) ((((-882 |#1|)) . T)) -(-3765 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) -(-3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1068))) +(-2835 (|has| |#3| (-21)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) +(-2835 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1068))) ((((-874)) . T)) (((|#1|) . T)) -(-3765 (|has| |#2| (-805)) (|has| |#2| (-862))) -(-3765 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))) +(-2835 (|has| |#2| (-805)) (|has| |#2| (-862))) +(-2835 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))) ((((-882 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-379)) @@ -3494,19 +3494,19 @@ (((|#1|) . T)) ((((-874)) . T)) (|has| |#2| (-926)) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) . T)) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) . T)) ((((-548)) |has| |#2| (-626 (-548))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576))))) ((((-874)) . T)) ((((-874)) . T)) (((|#3|) |has| |#3| (-1068)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) -((((-1144 |#1| |#2|)) . T) (((-969 |#1|)) |has| |#2| (-626 (-1196))) (((-874)) . T)) -((((-969 |#1|)) |has| |#2| (-626 (-1196))) (((-1178)) -12 (|has| |#1| (-1057 (-576))) (|has| |#2| (-626 (-1196)))) (((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) -((((-1192 |#1|)) . T) (((-874)) . T)) +((((-1144 |#1| |#2|)) . T) (((-969 |#1|)) |has| |#2| (-626 (-1195))) (((-874)) . T)) +((((-969 |#1|)) |has| |#2| (-626 (-1195))) (((-1177)) -12 (|has| |#1| (-1057 (-576))) (|has| |#2| (-626 (-1195)))) (((-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390))))) (((-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) +((((-1191 |#1|)) . T) (((-874)) . T)) ((((-874)) . T)) ((((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) (((-576)) |has| |#2| (-1057 (-576))) ((|#2|) . T) (((-876 |#1|)) . T)) -((((-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (((-1101)) . T)) +((((-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (((-1101)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T) (((-1196)) . T)) +((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T) (((-1195)) . T)) ((((-874)) . T)) ((((-576)) . T)) (((|#1|) . T)) @@ -3517,20 +3517,20 @@ ((((-874)) . T)) (((|#1|) . T)) ((((-874)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) ((((-656 |#1|)) . T)) ((($) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) -((($) . T) (((-576)) . T) (((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) -((((-576)) -3765 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) (($) -3765 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((|#1|) -3765 (|has| |#1| (-174)) (|has| |#1| (-1068))) (((-419 (-576))) |has| |#1| (-568))) -((((-1201)) . T)) +((($) . T) (((-576)) . T) (((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T)) +((((-576)) -2835 (|has| |#1| (-21)) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) (($) -2835 (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-174)) (|has| |#1| (-568)) (|has| |#1| (-1068))) ((|#1|) -2835 (|has| |#1| (-174)) (|has| |#1| (-1068))) (((-419 (-576))) |has| |#1| (-568))) +((((-1200)) . T)) ((((-576)) . T) (((-419 (-576))) . T)) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) -((((-1201)) . T)) -((((-1201)) . T)) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195))))) +((((-1200)) . T)) +((((-1200)) . T)) (((|#1|) |has| |#1| (-174)) (($) . T)) -((((-1201)) . T)) +((((-1200)) . T)) (((|#1|) |has| |#1| (-319 |#1|))) ((((-390)) . T)) (((|#1|) . T)) @@ -3541,26 +3541,26 @@ ((((-874)) . T)) (((|#1|) . T)) (|has| |#1| (-1119)) -(((|#2| (-494 (-2048 |#1|) (-783))) . T)) +(((|#2| (-494 (-3485 |#1|) (-783))) . T)) ((((-576) |#1|) . T)) -((((-1178)) . T) (((-874)) . T)) +((((-1177)) . T) (((-874)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-543 (-1196))) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) +(((|#1| (-543 (-1195))) . T)) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) ((((-576)) . T)) (((|#2|) . T)) -((($) -3765 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))))) +((($) -2835 (-12 (|has| |#2| (-238)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))))) (((|#2|) . T)) -((((-1196)) |has| |#1| (-915 (-1196))) (((-1101)) . T)) +((((-1195)) |has| |#1| (-915 (-1195))) (((-1101)) . T)) (((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) (|has| |#1| (-568)) -(((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) +(((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576)))) (((-576)) . T) (($) . T)) ((($) . T) (((-419 (-576))) . T)) ((($) . T)) ((($) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) (((|#1|) . T)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-874)) . T)) ((((-145)) . T)) (((|#1|) . T) (((-419 (-576))) . T)) @@ -3569,7 +3569,7 @@ ((((-874)) . T)) (((|#1|) . T)) (|has| |#1| (-1171)) -((($ (-1196)) -3765 (|has| (-419 |#2|) (-915 (-1196))) (|has| (-419 |#2|) (-917 (-1196))))) +((($ (-1195)) -2835 (|has| (-419 |#2|) (-915 (-1195))) (|has| (-419 |#2|) (-917 (-1195))))) (((|#1|) . T)) (((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T)) ((((-419 $) (-419 $)) |has| |#1| (-568)) (($ $) . T) ((|#1| |#1|) . T)) @@ -3578,8 +3578,8 @@ ((((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-576)) |has| |#1| (-1057 (-576))) ((|#1|) . T) ((|#2|) . T)) ((((-1101)) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576))))) ((((-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390)))) (((-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576))))) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T)) ((((-576) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) @@ -3594,55 +3594,55 @@ (|has| |#1| (-1119)) (|has| |#1| (-1119)) (|has| |#2| (-374)) -(((|#1|) . T) (($) -3765 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) +(((|#1|) . T) (($) -2835 (|has| |#1| (-300)) (|has| |#1| (-374))) (((-419 (-576))) |has| |#1| (-374))) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576)))) -((($) -3765 (|has| |#2| (-238)) (|has| |#2| (-237)))) +((($) -2835 (|has| |#2| (-238)) (|has| |#2| (-237)))) ((((-576)) . T)) -((($ (-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) -((((-1196)) -12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068)))) -((((-1196)) -12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068)))) +((($ (-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195))))) +((((-1195)) -12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068)))) +((((-1195)) -12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068)))) (((|#1|) . T)) (|has| |#1| (-238)) -(((|#2| (-245 (-2048 |#1|) (-783))) . T)) +(((|#2| (-245 (-3485 |#1|) (-783))) . T)) (((|#1| (-543 |#3|)) . T)) (|has| |#1| (-379)) (|has| |#1| (-379)) (|has| |#1| (-379)) (((|#1|) . T) (($) . T)) (((|#1| (-543 |#2|)) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) (((|#1| (-783)) . T)) (|has| |#1| (-568)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-1068))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ((((-874)) . T)) ((((-576)) . T) (((-419 (-576))) . T) (($) . T)) -(-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -(-3765 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1068))) +(-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) +(-2835 (|has| |#3| (-21)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1068))) (|has| |#2| (-1068)) (((|#1|) |has| |#1| (-174))) (((|#4|) |has| |#4| (-1068))) (((|#3|) |has| |#3| (-1068))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832))) -((((-576)) . T) (((-419 (-576))) -3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T)) -((((-1144 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) ((|#2|) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-576)) . T) (((-419 (-576))) -2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))) ((|#2|) . T) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-876 |#1|)) . T)) +((((-1144 |#1| |#2|)) . T) (((-576)) . T) ((|#3|) . T) (($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))) ((|#2|) . T)) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-548)) |has| |#1| (-626 (-548)))) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) (((|#1|) . T) (((-419 (-576))) . T) (($) . T) (((-576)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) ((((-684 |#1|)) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (($) . T)) ((($ $) . T) ((#0=(-419 (-576)) #0#) . T)) ((((-874)) . T)) -((((-656 $)) . T) (((-1178)) . T) (((-1196)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-656 $)) . T) (((-1177)) . T) (((-1195)) . T) (((-576)) . T) (((-227)) . T) (((-874)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) ((($) . T) (((-419 (-576))) . T)) (((|#1|) . T)) (((|#4|) |has| |#4| (-1119)) (((-576)) -12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119))) (((-419 (-576))) -12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119)))) @@ -3650,68 +3650,68 @@ (|has| |#2| (-374)) (((|#2|) |has| |#2| (-1068)) (((-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) +(((#0=(-419 (-576)) #0#) |has| |#2| (-38 (-419 (-576)))) ((|#2| |#2|) . T) (($ $) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1| |#1|) . T) ((#0=(-419 (-576)) #0#) |has| |#1| (-38 (-419 (-576))))) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) (((|#1| |#1|) . T) (($ $) . T) ((#0=(-419 (-576)) #0#) . T)) -((((-1196)) |has| |#1| (-1068))) +((((-1195)) |has| |#1| (-1068))) (|has| |#2| (-374)) (((|#2| |#2|) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (($) -2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) . T) (($) . T) (((-419 (-576))) . T)) (((|#2|) . T)) ((((-874)) |has| |#1| (-1119))) ((($) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#2| (-832)) (|has| |#2| (-832)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-374)) (|has| |#1| (-374)) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#1|) |has| |#2| (-429 |#1|))) (((|#1|) |has| |#2| (-429 |#1|))) -((((-1178)) . T)) +((((-1177)) . T)) ((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-656 |#1|)) . T) (((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-656 |#1|)) . T) (((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) ((((-656 |#1|)) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-874)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1236)) . T) (((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) |has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))))) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-874)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1235)) . T) (((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) |has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))))) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((((-576) |#1|) . T)) (((|#1|) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) -((((-1196)) |has| |#1| (-915 (-1196))) (((-830 (-1196))) . T)) -(-3765 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1068))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#1|) |has| |#1| (-174))) +((((-1195)) |has| |#1| (-915 (-1195))) (((-830 (-1195))) . T)) +(-2835 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-132)) (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-805)) (|has| |#3| (-1068))) ((((-831 |#1|)) . T)) (((|#1| |#2|) . T)) ((((-874)) . T)) @@ -3720,56 +3720,56 @@ ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) (|has| |#1| (-38 (-419 (-576)))) ((((-874)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) (((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) (|has| |#1| (-374)) -(-3765 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238)))) +(-2835 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238)))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-374)) (((|#1|) . T)) -(((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) +(((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1| |#1|) . T)) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) ((((-326 |#1|)) . T)) ((((-927 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -(((#0=(-711) (-1192 #0#)) . T)) -((((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) +(((#0=(-711) (-1191 #0#)) . T)) +((((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((|#1|) . T)) (((|#1|) . T) (($) . T) (((-576)) . T) (((-419 (-576))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-860)) -(((|#2|) . T) (((-1196)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1196)))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) -(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -3765 (|has| |#1| (-374)) (|has| |#1| (-568)))) +(((|#2|) . T) (((-1195)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1195)))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568))) (((-576)) . T) ((|#1|) |has| |#1| (-174))) +(((|#2|) . T) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) (((-576)) . T) (($) -2835 (|has| |#1| (-374)) (|has| |#1| (-568)))) ((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1144 |#1| (-1196))) . T) (((-830 (-1196))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-1196)) . T)) +((((-1144 |#1| (-1195))) . T) (((-830 (-1195))) . T) ((|#1|) . T) (((-576)) |has| |#1| (-1057 (-576))) (((-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) (((-1195)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) (((#0=(-1101) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1196) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1107 (-1196)) |#1|) . T) ((#1# $) . T)) +((($ $) . T) ((#0=(-1195) $) |has| |#1| (-238)) ((#0# |#1|) |has| |#1| (-238)) ((#1=(-1107 (-1195)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) (((-576)) |has| |#2| (-651 (-576))) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576))))) (|has| |#2| (-926)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) (((|#1|) |has| |#1| (-174))) ((((-576) |#1|) . T)) (((|#1|) . T)) -((((-1201)) . T)) -(((#0=(-1273 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#))) +((((-1200)) . T)) +(((#0=(-1272 |#1| |#2| |#3| |#4|)) |has| #0# (-319 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2| |#2|) |has| |#1| (-374)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) ((#0=(-419 (-576)) #0#) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) (|has| |#2| (-238)) (|has| $ (-148)) ((((-874)) . T)) -((($) . T) (((-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) +((($) . T) (((-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-360))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((((-874)) . T)) (|has| |#1| (-860)) ((((-130)) . T)) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) ((((-419 (-576))) . T) (((-711)) . T) (($) . T) (((-576)) . T)) (((|#1|) . T)) ((((-130)) . T)) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196))))) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195))))) ((((-874)) . T)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (((|#2| (-684 |#1|)) . T)) @@ -3778,41 +3778,41 @@ ((((-874)) |has| |#1| (-1119))) (((|#4|) . T)) (|has| |#1| (-568)) -((($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) -((((-1196)) -3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) -(((|#1|) . T) (($) -3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -(-3765 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) +((($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374))) ((|#2|) |has| |#1| (-374)) ((|#1|) . T)) +((((-1195)) -2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) +(((|#1|) . T) (($) -2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-568))) (((-419 (-576))) -2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-374)))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) +(-2835 (|has| |#2| (-174)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (((|#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (((|#1|) . T)) -(((|#1| (-543 (-830 (-1196)))) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) -((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1196)) |has| |#2| (-1057 (-1196)))) +(((|#1| (-543 (-830 (-1195)))) . T)) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((((-576)) . T) ((|#2|) . T) (($) . T) (((-419 (-576))) . T) (((-1195)) |has| |#2| (-1057 (-1195)))) (((|#1|) . T)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) (((|#1|) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) -(-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) +(-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) +((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) ((($) . T) (((-882 |#1|)) . T) (((-419 (-576))) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) (|has| |#1| (-568)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) (((|#1|) . T)) (((|#2| |#2|) . T) ((#0=(-419 (-576)) #0#) . T) (($ $) . T)) (((|#2|) . T) (((-419 (-576))) . T) (($) . T)) @@ -3832,9 +3832,9 @@ ((((-874)) . T)) ((((-874)) . T)) ((((-874)) . T)) -(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) -(((|#1|) . T) (((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) +(-2835 (|has| |#1| (-238)) (|has| |#1| (-237))) +(((|#1|) . T) (((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) ((((-874)) . T)) ((((-115)) . T) ((|#1|) . T) (((-576)) . T)) ((((-130)) . T)) @@ -3842,60 +3842,60 @@ (((|#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) . T)) (((|#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) . T)) -((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) +((((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) |has| |#2| (-174)) (($) -2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926)))) (((|#2|) . T) ((|#6|) . T)) ((($) . T) (((-419 (-576))) |has| |#2| (-38 (-419 (-576)))) ((|#2|) . T) (((-576)) |has| |#2| (-651 (-576)))) ((($) . T) (((-576)) . T)) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-1123)) . T)) ((((-874)) . T)) -((((-1201)) . T) (((-874)) . T)) -((((-1201)) . T) (((-874)) . T)) -((($) -3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) -((((-1201)) . T)) -((((-1201)) . T)) +((((-1200)) . T) (((-874)) . T)) +((((-1200)) . T) (((-874)) . T)) +((($) -2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((((-1200)) . T)) +((((-1200)) . T)) ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((($) . T) (((-576)) . T)) -((($) -3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) +((($) -2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) ((((-874)) . T)) (|has| |#2| (-926)) -((($ $) . T) (((-1196) $) . T)) -((((-1279 |#1| |#2| |#3|)) . T)) -((((-1279 |#1| |#2| |#3|)) |has| |#1| (-374))) +((($ $) . T) (((-1195) $) . T)) +((((-1278 |#1| |#2| |#3|)) . T)) +((((-1278 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#1|) . T)) -((((-1279 |#1| |#2| |#3|)) . T) (((-1251 |#1| |#2| |#3|)) . T)) +((((-1278 |#1| |#2| |#3|)) . T) (((-1250 |#1| |#2| |#3|)) . T)) (|has| |#1| (-926)) -((((-1196)) . T) (((-874)) . T)) +((((-1195)) . T) (((-874)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-174))) ((((-711)) . T)) ((((-711)) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) -((((-1201)) . T)) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-1200)) . T)) (((|#1|) |has| |#1| (-174))) -((((-1201)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) +((((-1200)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-576))) . T)) (((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568)) (((-419 (-576))) |has| |#1| (-568))) -((((-1201)) . T)) -((((-1273 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) +((((-1200)) . T)) +((((-1272 |#1| |#2| |#3| |#4|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1|) |has| |#1| (-174)) (((-419 (-576))) |has| |#1| (-568)) (($) |has| |#1| (-568))) ((((-419 (-576))) . T) (($) . T)) (((|#1| (-576)) . T)) -((($ (-1196)) -3765 (|has| |#1| (-915 (-1196))) (|has| |#1| (-917 (-1196)))) (($ (-1101)) . T)) +((($ (-1195)) -2835 (|has| |#1| (-915 (-1195))) (|has| |#1| (-917 (-1195)))) (($ (-1101)) . T)) ((((-419 (-576))) . T) (((-576)) . T) (($) . T)) (((|#1|) |has| |#1| (-174))) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -((((-1201)) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1201)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1200)) . T)) +((((-1200)) . T)) (|has| |#1| (-374)) (|has| |#1| (-374)) -(-3765 (|has| |#1| (-174)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-174)) (|has| |#1| (-568))) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) (((|#1| (-783)) . T)) @@ -3904,40 +3904,40 @@ ((((-576) |#1|) . T)) ((((-576) |#1|) . T)) (|has| |#1| (-1119)) -(-3765 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) +(-2835 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-237))) ((((-576) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-905 (-390))) . T) (((-905 (-576))) . T) (((-1196)) . T) (((-548)) . T)) -(-3765 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) -(-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) +((((-905 (-390))) . T) (((-905 (-576))) . T) (((-1195)) . T) (((-548)) . T)) +(-2835 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-132)) (|has| |#2| (-174)) (|has| |#2| (-374)) (|has| |#2| (-805)) (|has| |#2| (-1068))) +(-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) ((((-874)) . T)) ((((-576)) . T)) ((((-576)) . T)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (|has| |#2| (-1068)) -((((-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) -(-3765 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) +((((-1195)) -12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068)))) +(-2835 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) (|has| |#1| (-146)) (|has| |#1| (-148)) (|has| |#1| (-374)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) |has| #0# (-174)) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) (|has| |#1| (-238)) ((($) . T) (((-576)) . T) (((-419 (-576))) . T)) ((($) . T) (((-576)) . T)) ((($) . T) (((-576)) . T)) -((($) . T) ((#0=(-1272 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) +((($) . T) ((#0=(-1271 |#2| |#3| |#4|)) . T) (((-419 (-576))) |has| #0# (-38 (-419 (-576))))) ((((-874)) . T)) (((|#1| (-783) (-1101)) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) -((((-1254 (-576)) $) . T) (((-576) |#1|) . T)) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) +((((-1253 (-576)) $) . T) (((-576) |#1|) . T)) ((((-117 |#1|)) . T)) ((((-117 |#1|)) . T)) (((|#2|) |has| |#2| (-1068))) @@ -3948,12 +3948,12 @@ ((((-576)) . T)) ((((-576)) . T)) ((((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) |has| |#1| (-174)) (($) |has| |#1| (-568))) -((((-1178) (-1196) (-576) (-227) (-874)) . T)) +((((-1177) (-1195) (-576) (-227) (-874)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) ((((-576)) . T) ((|#2|) |has| |#2| (-174))) ((((-115)) . T) ((|#1|) . T) (((-576)) . T)) -(-3765 (|has| |#1| (-360)) (|has| |#1| (-379))) +(-2835 (|has| |#1| (-360)) (|has| |#1| (-379))) (((|#1| |#2|) . T)) ((((-227)) . T)) ((((-419 (-576))) . T) (($) . T) (((-576)) . T)) @@ -3962,11 +3962,11 @@ ((($) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((|#1|) . T) (((-576)) |has| |#1| (-651 (-576)))) ((($) . T) (((-576)) |has| |#1| (-651 (-576))) ((|#1|) . T) (((-419 (-576))) |has| |#1| (-38 (-419 (-576))))) (((|#2|) |has| |#2| (-1119)) (((-576)) -12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (((-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) -(-3765 (|has| |#2| (-238)) (|has| |#2| (-237))) +(-2835 (|has| |#2| (-238)) (|has| |#2| (-237))) (((|#1|) . T)) (((|#1|) . T)) ((((-548)) |has| |#1| (-626 (-548)))) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-862)) (|has| |#1| (-1119)))) ((((-576) $) . T) (((-656 (-576)) $) . T)) ((($) . T) (((-419 (-576))) . T)) (|has| |#1| (-926)) @@ -3977,15 +3977,15 @@ (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-174))) (((|#1|) . T) (((-576)) . T)) -((((-1201)) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-568))) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-860))) +((((-1200)) . T)) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-568))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-860))) (((|#2|) . T)) -(-3765 (|has| |#1| (-21)) (|has| |#1| (-860))) +(-2835 (|has| |#1| (-21)) (|has| |#1| (-860))) (((|#1|) |has| |#1| (-174))) (((|#1|) . T)) (((|#1|) . T)) -((((-874)) -3765 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) +((((-874)) -2835 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) ((((-419 |#2|) |#3|) . T)) ((((-419 (-576))) . T) (($) . T)) (|has| |#1| (-38 (-419 (-576)))) @@ -4001,17 +4001,17 @@ ((($) . T) (((-419 (-576))) . T)) (|has| |#4| (-1068)) (|has| |#3| (-1068)) -((((-874)) . T) (((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) (|has| |#4| (-805)) (|has| |#4| (-805)) (|has| |#3| (-805)) (|has| |#3| (-805)) -((((-1201)) . T)) +((((-1200)) . T)) ((((-576)) . T)) (((|#2|) . T)) -((((-1196)) -3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) -((((-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) +((((-1195)) -2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) +((((-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (((|#1| |#1|) . T) (($ $) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1|) . T)) @@ -4021,111 +4021,111 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T)) ((((-876 |#1|)) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) ((((-1159 |#1| |#2|)) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) -(((|#2|) . T) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) . T)) +((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) +(((|#2|) . T) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) . T)) ((($) . T)) (|has| |#1| (-1041)) -(((|#2|) . T) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((($) . T)) ((((-874)) . T)) ((((-548)) |has| |#2| (-626 (-548))) (((-905 (-576))) |has| |#2| (-626 (-905 (-576)))) (((-905 (-390))) |has| |#2| (-626 (-905 (-390)))) (((-390)) . #0=(|has| |#2| (-1041))) (((-227)) . #0#)) ((((-304 |#3|)) . T)) -((((-1196) (-52)) . T)) +((((-1195) (-52)) . T)) (((|#1|) . T)) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))) -((((-1196)) -3765 (|has| |#2| (-915 (-1196))) (|has| |#2| (-917 (-1196))))) +((((-1195)) -2835 (|has| |#2| (-915 (-1195))) (|has| |#2| (-917 (-1195))))) ((((-874)) . T)) (((|#2|) . T)) ((((-874)) . T)) ((((-419 (-576)) |#1|) . T) (($ $) . T)) ((((-419 |#2|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) ((((-419 (-576))) . T) (((-711)) . T) (($) . T)) -((((-1194 |#1| |#2| |#3|)) . T)) -((((-1194 |#1| |#2| |#3|)) . T) (((-1187 |#1| |#2| |#3|)) . T)) +((((-1193 |#1| |#2| |#3|)) . T)) +((((-1193 |#1| |#2| |#3|)) . T) (((-1186 |#1| |#2| |#3|)) . T)) ((((-874)) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) ((((-576) |#1|) . T)) -((((-1194 |#1| |#2| |#3|)) |has| |#1| (-374))) +((((-1193 |#1| |#2| |#3|)) |has| |#1| (-374))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-374)) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -3765 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1068))) (($) |has| |#4| (-1068)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) -(((|#2|) . T) ((|#3|) -3765 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -2835 (|has| |#4| (-174)) (|has| |#4| (-374)) (|has| |#4| (-1068))) (($) |has| |#4| (-1068)) (((-576)) -12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) +(((|#2|) . T) ((|#3|) -2835 (|has| |#3| (-174)) (|has| |#3| (-374)) (|has| |#3| (-1068))) (($) |has| |#3| (-1068)) (((-576)) -12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((|#1|) . T)) (((|#1|) . T)) ((((-117 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) (((-576)) |has| |#2| (-1057 (-576))) ((|#2|) . T) (((-876 |#1|)) . T)) -((((-1196)) . T) ((|#1|) . T)) +((((-1195)) . T) ((|#1|) . T)) ((((-874)) . T)) ((((-874)) . T)) ((((-874)) . T)) ((((-189)) . T) (((-874)) . T)) ((((-874)) . T)) (((|#1|) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) ((((-130)) . T) (((-874)) . T)) -((((-576) |#1|) . T) (((-1254 (-576)) $) . T)) +((((-576) |#1|) . T) (((-1253 (-576)) $) . T)) ((((-130)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) (($ $) . T) (((-576) |#1|) . T)) ((($ $) . T) (((-419 (-576)) |#1|) . T)) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-926))) -((($ (-1196)) |has| |#1| (-1068))) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-464)) (|has| |#1| (-926))) +((($ (-1195)) |has| |#1| (-1068))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) ((((-874)) . T)) ((((-874)) . T)) ((((-874)) . T)) (((|#1| (-543 |#2|)) . T)) -((((-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) . T)) +((((-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) . T)) ((((-576) (-130)) . T)) (((|#1| (-576)) . T)) (((|#1| (-419 (-576))) . T)) (((|#1| (-783)) . T)) ((((-927 |#1|)) . T) (((-419 (-576))) . T) (((-576)) . T) (($) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) ((((-117 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) -((((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -(-3765 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) -(-3765 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) +((((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +(-2835 (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) +(-2835 (|has| |#1| (-464)) (|has| |#1| (-568)) (|has| |#1| (-926))) ((($) . T)) (((|#2| (-543 (-876 |#1|))) . T)) -((((-1201)) . T)) -((((-1201)) . T)) +((((-1200)) . T)) +((((-1200)) . T)) ((((-576) |#1|) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) (((|#2|) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-874)) . T) (((-1201)) . T)) -((((-1201)) . T)) -((((-874)) -3765 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-874)) . T) (((-1200)) . T)) +((((-1200)) . T)) +((((-874)) -2835 (|has| |#1| (-625 (-874))) (|has| |#1| (-1119)))) (((|#1|) . T)) (((|#2| (-783)) . T)) (((|#1| |#2|) . T)) -((((-1178) |#1|) . T)) +((((-1177) |#1|) . T)) ((((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) (|has| |#1| (-568)) (|has| |#1| (-568)) -((((-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T)) +((((-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T)) ((($) . T) ((|#2|) . T)) ((($) . T) (((-419 (-576))) . T)) ((((-419 (-576))) . T) (($) . T)) @@ -4134,18 +4134,18 @@ ((((-576)) . T) (($) . T)) (((|#2| $) |has| |#2| (-296 |#2| |#2|))) (((|#1| (-656 |#1|)) |has| |#1| (-860))) -(-3765 (|has| |#1| (-238)) (|has| |#1| (-360))) -(-3765 (|has| |#1| (-374)) (|has| |#1| (-360))) -((((-1283 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576))))) +(-2835 (|has| |#1| (-238)) (|has| |#1| (-360))) +(-2835 (|has| |#1| (-374)) (|has| |#1| (-360))) +((((-1282 |#1|)) . T) (((-576)) . T) ((|#2|) . T) (((-419 (-576))) |has| |#2| (-1057 (-419 (-576))))) (|has| |#1| (-1119)) (((|#1|) . T)) -((((-1283 |#1|)) . T) (((-576)) . T) (($) -3765 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-1101)) . T) ((|#2|) . T) (((-419 (-576))) -3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) +((((-1282 |#1|)) . T) (((-576)) . T) (($) -2835 (|has| |#2| (-374)) (|has| |#2| (-464)) (|has| |#2| (-568)) (|has| |#2| (-926))) (((-1101)) . T) ((|#2|) . T) (((-419 (-576))) -2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) ((((-419 (-576))) . T) (($) . T)) -((((-1018 |#1|)) . T) ((|#1|) . T) (((-576)) -3765 (|has| (-1018 |#1|) (-1057 (-576))) (|has| |#1| (-1057 (-576)))) (((-419 (-576))) -3765 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) +((((-1018 |#1|)) . T) ((|#1|) . T) (((-576)) -2835 (|has| (-1018 |#1|) (-1057 (-576))) (|has| |#1| (-1057 (-576)))) (((-419 (-576))) -2835 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) ((((-927 |#1|)) . T) (((-419 (-576))) . T) (($) . T)) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) -((((-1196)) |has| |#1| (-915 (-1196)))) +((((-1195)) |has| |#1| (-915 (-1195)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (((|#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) ((((-927 |#1|)) . T) (($) . T) (((-419 (-576))) . T)) @@ -4158,12 +4158,12 @@ (((|#1| |#2| |#3| |#4|) . T)) (((#0=(-1159 |#1| |#2|) #0#) |has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) #0#) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((#0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) #0#) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) (|has| |#1| (-296 |#1| |#1|)) -(-3765 (|has| |#1| (-238)) (|has| |#1| (-237))) +(-2835 (|has| |#1| (-238)) (|has| |#1| (-237))) (((#0=(-117 |#1|)) |has| #0# (-319 #0#))) ((($ $) . T)) -(-3765 (|has| |#1| (-862)) (|has| |#1| (-1119))) +(-2835 (|has| |#1| (-862)) (|has| |#1| (-1119))) ((($ $) . T) ((#0=(-876 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-238)) ((|#2| |#1|) |has| |#1| (-238)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-490 . -1119) T) ((-273 . -526) 203062) ((-253 . -526) 203005) ((-250 . -1119) 202955) ((-583 . -111) 202940) ((-543 . -23) T) ((-139 . -1119) T) ((-138 . -1119) T) ((-118 . -319) 202897) ((-134 . -1119) T) ((-1018 . -237) 202848) ((-811 . -1237) 202817) ((-491 . -526) 202609) ((-689 . -628) 202593) ((-706 . -102) T) ((-1160 . -526) 202512) ((-411 . -237) T) ((-402 . -132) T) ((-1300 . -995) 202481) ((-1043 . -1070) 202418) ((-31 . -93) T) ((-614 . -501) 202402) ((-1043 . -652) 202339) ((-633 . -132) T) ((-831 . -858) T) ((-535 . -57) 202289) ((-531 . -526) 202222) ((-362 . -234) 202209) ((-365 . -1070) 202154) ((-59 . -526) 202087) ((-528 . -526) 202020) ((-430 . -915) 201979) ((-171 . -1068) T) ((-509 . -526) 201912) ((-508 . -526) 201845) ((-365 . -652) 201790) ((-811 . -1057) 201570) ((-711 . -38) 201535) ((-1260 . -628) 201283) ((-354 . -360) T) ((-1113 . -1112) 201267) ((-1113 . -1119) 201245) ((-867 . -628) 201142) ((-171 . -248) 201093) ((-171 . -238) 201044) ((-1113 . -1114) 201002) ((-884 . -296) 200960) ((-227 . -807) T) ((-227 . -804) T) ((-706 . -294) NIL) ((-583 . -628) 200932) ((-1169 . -1213) 200911) ((-419 . -1011) 200895) ((-48 . -1070) 200860) ((-713 . -21) T) ((-713 . -25) T) ((-48 . -652) 200825) ((-1302 . -660) 200799) ((-1169 . -107) 200749) ((-326 . -161) 200728) ((-326 . -144) 200707) ((-117 . -21) T) ((-40 . -232) 200684) ((-40 . -272) 200661) ((-135 . -25) T) ((-117 . -25) T) ((-620 . -298) 200637) ((-487 . -298) 200616) ((-1260 . -336) 200593) ((-1260 . -1068) T) ((-867 . -1068) T) ((-811 . -349) 200577) ((-140 . -187) T) ((-118 . -1171) NIL) ((-91 . -625) 200509) ((-489 . -132) T) ((-1260 . -238) T) ((-1115 . -502) 200490) ((-1115 . -625) 200456) ((-1109 . -502) 200437) ((-1109 . -625) 200403) ((-605 . -1237) T) ((-1092 . -502) 200384) ((-583 . -1068) T) ((-1092 . -625) 200350) ((-674 . -729) 200334) ((-1085 . -502) 200315) ((-1085 . -625) 200281) ((-975 . -298) 200258) ((-60 . -34) T) ((-1081 . -807) T) ((-1081 . -804) T) ((-1055 . -502) 200239) ((-1038 . -502) 200220) ((-828 . -738) T) ((-743 . -47) 200185) ((-635 . -38) 200172) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 200103) ((-253 . -300) 200034) ((-1055 . -625) 200000) ((-1043 . -102) T) ((-1038 . -625) 199966) ((-638 . -502) 199947) ((-425 . -738) T) ((-118 . -38) 199892) ((-495 . -502) 199873) ((-638 . -625) 199839) ((-425 . -485) T) ((-220 . -502) 199820) ((-495 . -625) 199786) ((-365 . -102) T) ((-220 . -625) 199752) ((-1231 . -1077) T) ((-354 . -658) 199682) ((-723 . -1077) T) ((-1194 . -47) 199659) ((-1193 . -47) 199629) ((-1187 . -47) 199606) ((-129 . -298) 199581) ((-1054 . -152) 199527) ((-927 . -300) T) ((-1145 . -47) 199499) ((-706 . -319) NIL) ((-527 . -625) 199481) ((-522 . -625) 199463) ((-520 . -625) 199445) ((-337 . -1119) 199395) ((-326 . -909) 199359) ((-323 . -909) NIL) ((-724 . -464) 199290) ((-48 . -102) T) ((-1271 . -296) 199248) ((-1250 . -296) 199148) ((-656 . -678) 199132) ((-656 . -663) 199116) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-656 . -384) 199100) ((-617 . -502) 199082) ((-614 . -296) 199034) ((-617 . -625) 199001) ((-400 . -102) T) ((-1139 . -144) T) ((-127 . -625) 198933) ((-886 . -1119) T) ((-670 . -423) 198917) ((-743 . -1237) T) ((-726 . -625) 198899) ((-255 . -625) 198866) ((-189 . -625) 198848) ((-163 . -625) 198830) ((-158 . -625) 198812) ((-1302 . -738) T) ((-1121 . -34) T) ((-883 . -807) NIL) ((-883 . -804) NIL) ((-870 . -862) T) ((-743 . -899) NIL) ((-1311 . -132) T) ((-392 . -132) T) ((-905 . -628) 198780) ((-921 . -102) T) ((-743 . -1057) 198656) ((-1194 . -1237) T) ((-1193 . -1237) T) ((-543 . -132) T) ((-1187 . -1237) T) ((-1106 . -423) 198640) ((-1019 . -501) 198624) ((-118 . -412) 198601) ((-1145 . -1237) T) ((-794 . -423) 198585) ((-792 . -423) 198569) ((-960 . -34) T) ((-706 . -1171) NIL) ((-258 . -660) 198389) ((-257 . -660) 198196) ((-829 . -937) 198175) ((-466 . -423) 198159) ((-614 . -19) 198143) ((-1165 . -1230) 198112) ((-1187 . -899) NIL) ((-1187 . -897) 198064) ((-614 . -616) 198041) ((-1223 . -625) 197973) ((-1195 . -625) 197955) ((-62 . -407) T) ((-1193 . -1057) 197890) ((-1187 . -1057) 197856) ((-706 . -38) 197806) ((-40 . -658) 197736) ((-486 . -296) 197694) ((-1243 . -625) 197676) ((-743 . -388) 197660) ((-850 . -625) 197642) ((-670 . -1077) T) ((-635 . -917) 197565) ((-1271 . -1021) 197531) ((-1250 . -1021) 197497) ((-256 . -1237) T) ((-1107 . -628) 197481) ((-1082 . -1213) 197456) ((-1095 . -628) 197433) ((-884 . -626) 197240) ((-884 . -625) 197222) ((-118 . -917) NIL) ((-713 . -234) 197209) ((-1209 . -501) 197146) ((-430 . -1041) 197124) ((-48 . -319) 197111) ((-1082 . -107) 197057) ((-491 . -501) 196994) ((-532 . -1237) T) ((-1187 . -349) 196946) ((-1160 . -501) 196917) ((-1187 . -388) 196869) ((-1106 . -1077) T) ((-449 . -102) T) ((-185 . -1119) T) ((-258 . -34) T) ((-257 . -34) T) ((-794 . -1077) T) ((-792 . -1077) T) ((-743 . -915) 196846) ((-466 . -1077) T) ((-59 . -501) 196830) ((-1053 . -1075) 196804) ((-531 . -501) 196788) ((-528 . -501) 196772) ((-509 . -501) 196756) ((-508 . -501) 196740) ((-250 . -526) 196673) ((-1053 . -111) 196640) ((-1194 . -915) 196553) ((-1193 . -915) 196459) ((-682 . -1131) T) ((-1187 . -915) 196292) ((-657 . -93) T) ((-1145 . -915) 196276) ((-365 . -1171) T) ((-332 . -1075) 196258) ((-31 . -502) 196239) ((-258 . -806) 196218) ((-258 . -805) 196197) ((-257 . -806) 196176) ((-257 . -805) 196155) ((-31 . -625) 196121) ((-50 . -1077) T) ((-258 . -738) 196099) ((-257 . -738) 196077) ((-1231 . -1119) T) ((-682 . -23) T) ((-593 . -1077) T) ((-530 . -1077) T) ((-390 . -1075) 196042) ((-332 . -111) 196017) ((-73 . -394) T) ((-73 . -407) T) ((-1043 . -38) 195954) ((-706 . -412) 195936) ((-99 . -102) T) ((-723 . -1119) T) ((-1316 . -1070) 195923) ((-1022 . -146) 195895) ((-1022 . -148) 195867) ((-882 . -658) 195839) ((-390 . -111) 195795) ((-329 . -1241) 195774) ((-486 . -1021) 195740) ((-365 . -38) 195705) ((-40 . -381) 195677) ((-885 . -625) 195549) ((-128 . -126) 195533) ((-122 . -126) 195517) ((-848 . -1075) 195487) ((-845 . -21) 195439) ((-839 . -1075) 195423) ((-845 . -25) 195375) ((-329 . -568) 195326) ((-529 . -628) 195307) ((-576 . -840) T) ((-245 . -1237) T) ((-1053 . -628) 195276) ((-848 . -111) 195241) ((-839 . -111) 195220) ((-1271 . -625) 195202) ((-1250 . -625) 195184) ((-1250 . -626) 194855) ((-1192 . -926) 194834) ((-1144 . -926) 194813) ((-48 . -38) 194778) ((-1309 . -1131) T) ((-548 . -296) 194734) ((-614 . -625) 194646) ((-614 . -626) 194607) ((-1307 . -1131) T) ((-372 . -628) 194591) ((-332 . -628) 194575) ((-1161 . -237) 194526) ((-245 . -1057) 194353) ((-1192 . -660) 194242) ((-1144 . -660) 194131) ((-866 . -660) 194105) ((-730 . -625) 194087) ((-558 . -379) T) ((-1309 . -23) T) ((-706 . -917) NIL) ((-1307 . -23) T) ((-503 . -1119) T) ((-390 . -628) 194037) ((-390 . -630) 194019) ((-1053 . -1068) T) ((-877 . -102) T) ((-1209 . -296) 193998) ((-171 . -379) 193949) ((-1023 . -1237) T) ((-848 . -628) 193903) ((-839 . -628) 193858) ((-44 . -23) T) ((-491 . -296) 193837) ((-598 . -1119) T) ((-1316 . -102) T) ((-1165 . -1128) 193806) ((-1123 . -1122) 193758) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1131) T) ((-1231 . -729) 193655) ((-1217 . -1119) T) ((-1023 . -897) 193637) ((-1023 . -899) 193619) ((-635 . -232) 193603) ((-635 . -272) 193587) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1023 . -1057) 193547) ((-723 . -729) 193512) ((-245 . -388) 193481) ((-390 . -1068) T) ((-225 . -1077) T) ((-118 . -272) 193458) ((-118 . -232) 193435) ((-59 . -296) 193387) ((-153 . -23) T) ((-528 . -296) 193339) ((-337 . -526) 193272) ((-508 . -296) 193224) ((-390 . -248) T) ((-390 . -238) T) ((-848 . -1068) T) ((-839 . -1068) T) ((-724 . -966) 193193) ((-713 . -862) T) ((-486 . -625) 193175) ((-1273 . -1070) 193080) ((-592 . -658) 193052) ((-576 . -658) 193024) ((-507 . -658) 192974) ((-839 . -238) 192953) ((-135 . -862) T) ((-1273 . -652) 192845) ((-670 . -1119) T) ((-1209 . -616) 192824) ((-562 . -1213) 192803) ((-347 . -1119) T) ((-329 . -374) 192782) ((-419 . -148) 192761) ((-419 . -146) 192740) ((-981 . -1131) 192639) ((-245 . -915) 192571) ((-827 . -1131) 192549) ((-666 . -864) 192533) ((-491 . -616) 192512) ((-562 . -107) 192462) ((-1023 . -388) 192444) ((-1023 . -349) 192426) ((-1196 . -625) 192408) ((-97 . -1119) T) ((-981 . -23) 192219) ((-489 . -21) T) ((-489 . -25) T) ((-827 . -23) 192071) ((-1196 . -626) 191993) ((-59 . -19) 191977) ((-1192 . -738) T) ((-1144 . -738) T) ((-1106 . -1119) T) ((-528 . -19) 191961) ((-508 . -19) 191945) ((-59 . -616) 191922) ((-1022 . -237) 191859) ((-918 . -102) 191837) ((-866 . -738) T) ((-794 . -1119) T) ((-528 . -616) 191814) ((-508 . -616) 191791) ((-792 . -1119) T) ((-792 . -1084) 191758) ((-473 . -1119) T) ((-466 . -1119) T) ((-598 . -729) 191733) ((-661 . -1119) T) ((-1279 . -47) 191710) ((-1273 . -102) T) ((-1272 . -47) 191680) ((-1251 . -47) 191657) ((-1231 . -174) 191608) ((-1193 . -317) 191587) ((-1187 . -317) 191566) ((-1115 . -628) 191547) ((-1109 . -628) 191528) ((-1099 . -568) 191479) ((-1099 . -1241) 191430) ((-1023 . -915) NIL) ((-1092 . -628) 191411) ((-682 . -132) T) ((-639 . -1131) T) ((-1085 . -628) 191392) ((-1055 . -628) 191373) ((-1038 . -628) 191354) ((-726 . -1075) 191324) ((-711 . -658) 191274) ((-284 . -1119) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -909) 191177) ((-723 . -174) T) ((-50 . -1119) T) ((-607 . -47) 191154) ((-227 . -660) 191119) ((-593 . -1119) T) ((-530 . -1119) T) ((-499 . -832) T) ((-499 . -937) T) ((-370 . -1241) T) ((-364 . -1241) T) ((-356 . -1241) T) ((-329 . -1131) T) ((-326 . -1070) 191029) ((-323 . -1070) 190958) ((-108 . -1241) T) ((-638 . -628) 190939) ((-370 . -568) T) ((-219 . -937) T) ((-219 . -832) T) ((-326 . -652) 190849) ((-323 . -652) 190778) ((-364 . -568) T) ((-356 . -568) T) ((-495 . -628) 190759) ((-108 . -568) T) ((-670 . -729) 190729) ((-1187 . -1041) NIL) ((-220 . -628) 190710) ((-329 . -23) T) ((-67 . -1237) T) ((-1019 . -625) 190642) ((-706 . -272) 190624) ((-706 . -232) 190606) ((-726 . -111) 190571) ((-656 . -34) T) ((-250 . -501) 190555) ((-1316 . -1171) T) ((-1311 . -21) T) ((-1311 . -25) T) ((-1309 . -132) T) ((-1121 . -1117) 190539) ((-173 . -1119) T) ((-1307 . -132) T) ((-1300 . -102) T) ((-1283 . -625) 190505) ((-1279 . -1237) T) ((-1272 . -1237) T) ((-969 . -926) 190484) ((-1272 . -1057) 190419) ((-1251 . -1237) T) ((-1251 . -899) NIL) ((-527 . -628) 190403) ((-1251 . -897) 190355) ((-1251 . -1057) 190321) ((-1231 . -526) 190288) ((-493 . -926) 190267) ((-1209 . -626) NIL) ((-1209 . -625) 190249) ((-1106 . -729) 190098) ((-1081 . -660) 190070) ((-969 . -660) 189959) ((-609 . -502) 189940) ((-597 . -502) 189921) ((-794 . -729) 189750) ((-609 . -625) 189716) ((-597 . -625) 189682) ((-548 . -625) 189664) ((-548 . -626) 189645) ((-792 . -729) 189494) ((-1096 . -102) T) ((-392 . -25) T) ((-635 . -658) 189466) ((-392 . -21) T) ((-493 . -660) 189355) ((-473 . -729) 189326) ((-466 . -729) 189175) ((-1006 . -102) T) ((-1161 . -1142) 189120) ((-1065 . -1230) 189049) ((-918 . -319) 188987) ((-749 . -102) T) ((-118 . -658) 188917) ((-617 . -628) 188899) ((-888 . -93) T) ((-726 . -628) 188853) ((-543 . -25) T) ((-693 . -93) T) ((-688 . -93) T) ((-676 . -625) 188835) ((-657 . -502) 188816) ((-142 . -102) T) ((-44 . -132) T) ((-657 . -625) 188769) ((-607 . -1237) T) ((-354 . -1077) T) ((-299 . -1131) T) ((-490 . -93) T) ((-419 . -237) 188720) ((-366 . -625) 188702) ((-363 . -625) 188684) ((-355 . -625) 188666) ((-273 . -626) 188414) ((-273 . -625) 188396) ((-253 . -625) 188378) ((-253 . -626) 188239) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1160 . -625) 188221) ((-1139 . -652) 188208) ((-1139 . -1070) 188195) ((-831 . -738) T) ((-831 . -869) T) ((-614 . -298) 188172) ((-593 . -729) 188137) ((-491 . -626) NIL) ((-491 . -625) 188119) ((-530 . -729) 188064) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-927 . -625) 188046) ((-927 . -626) 188028) ((-398 . -738) T) ((-884 . -1075) 187980) ((-884 . -111) 187918) ((-726 . -1068) T) ((-724 . -1263) 187902) ((-706 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 187834) ((-390 . -807) T) ((-225 . -1119) T) ((-169 . -1237) T) ((-390 . -804) T) ((-227 . -806) T) ((-227 . -803) T) ((-59 . -626) 187795) ((-59 . -625) 187707) ((-227 . -738) T) ((-528 . -626) 187668) ((-528 . -625) 187580) ((-509 . -625) 187512) ((-508 . -626) 187473) ((-508 . -625) 187385) ((-1099 . -374) 187336) ((-40 . -423) 187313) ((-77 . -1237) T) ((-883 . -926) NIL) ((-370 . -339) 187297) ((-370 . -374) T) ((-364 . -339) 187281) ((-364 . -374) T) ((-356 . -339) 187265) ((-356 . -374) T) ((-326 . -294) 187244) ((-108 . -374) T) ((-70 . -1237) T) ((-1251 . -349) 187196) ((-883 . -660) 187141) ((-1251 . -388) 187093) ((-981 . -132) 186948) ((-827 . -132) 186819) ((-975 . -663) 186803) ((-1106 . -174) 186714) ((-975 . -384) 186698) ((-1081 . -806) T) ((-1081 . -803) T) ((-884 . -628) 186596) ((-794 . -174) 186487) ((-792 . -174) 186398) ((-828 . -47) 186360) ((-1081 . -738) T) ((-337 . -501) 186344) ((-969 . -738) T) ((-1300 . -319) 186282) ((-1279 . -915) 186195) ((-466 . -174) 186106) ((-250 . -296) 186058) ((-1272 . -915) 185964) ((-1271 . -1075) 185799) ((-1251 . -915) 185632) ((-493 . -738) T) ((-1250 . -1075) 185440) ((-1231 . -300) 185419) ((-1206 . -1237) T) ((-1203 . -379) T) ((-1202 . -379) T) ((-1165 . -152) 185403) ((-1139 . -102) T) ((-1137 . -1119) T) ((-1099 . -23) T) ((-1099 . -1131) T) ((-1094 . -102) T) ((-1076 . -625) 185370) ((-1022 . -421) 185342) ((-944 . -972) T) ((-749 . -319) 185280) ((-75 . -1237) T) ((-676 . -393) 185252) ((-171 . -926) 185205) ((-30 . -972) T) ((-112 . -856) T) ((-1 . -625) 185187) ((-1018 . -909) 185108) ((-129 . -663) 185090) ((-50 . -632) 185074) ((-706 . -658) 185009) ((-607 . -915) 184922) ((-450 . -102) T) ((-129 . -384) 184904) ((-142 . -319) NIL) ((-884 . -1068) T) ((-845 . -862) 184883) ((-81 . -1237) T) ((-723 . -300) T) ((-40 . -1077) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 184865) ((-171 . -660) 184739) ((-519 . -625) 184721) ((-362 . -148) 184703) ((-362 . -146) T) ((-370 . -1131) T) ((-364 . -1131) T) ((-356 . -1131) T) ((-1023 . -317) T) ((-931 . -317) T) ((-884 . -248) T) ((-108 . -1131) T) ((-884 . -238) 184682) ((-1271 . -111) 184503) ((-1250 . -111) 184292) ((-250 . -1275) 184276) ((-576 . -860) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 184263) ((-323 . -319) 184204) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1023 . -1041) T) ((-31 . -628) 184185) ((-108 . -23) T) ((-666 . -1070) 184169) ((-250 . -616) 184146) ((-343 . -1119) T) ((-666 . -652) 184116) ((-1273 . -38) 184008) ((-1260 . -926) 183987) ((-112 . -1119) T) ((-828 . -1237) T) ((-1054 . -102) T) ((-1260 . -660) 183876) ((-883 . -806) NIL) ((-867 . -660) 183850) ((-883 . -803) NIL) ((-828 . -899) NIL) ((-883 . -738) T) ((-1106 . -526) 183723) ((-794 . -526) 183670) ((-792 . -526) 183622) ((-583 . -660) 183609) ((-828 . -1057) 183437) ((-466 . -526) 183380) ((-400 . -401) T) ((-1271 . -628) 183193) ((-1250 . -628) 182941) ((-60 . -1237) T) ((-633 . -862) 182920) ((-512 . -673) T) ((-1165 . -995) 182889) ((-1043 . -658) 182826) ((-1022 . -464) T) ((-711 . -860) T) ((-522 . -804) T) ((-486 . -1075) 182661) ((-512 . -113) T) ((-354 . -1119) T) ((-323 . -1171) NIL) ((-299 . -132) T) ((-406 . -1119) T) ((-882 . -1077) T) ((-706 . -381) 182628) ((-365 . -658) 182558) ((-225 . -632) 182535) ((-337 . -296) 182487) ((-486 . -111) 182308) ((-1271 . -1068) T) ((-1250 . -1068) T) ((-828 . -388) 182292) ((-171 . -738) T) ((-666 . -102) T) ((-1271 . -248) 182271) ((-1271 . -238) 182223) ((-1250 . -238) 182128) ((-1250 . -248) 182107) ((-1022 . -414) NIL) ((-682 . -651) 182055) ((-326 . -38) 181965) ((-323 . -38) 181894) ((-69 . -625) 181876) ((-329 . -505) 181842) ((-48 . -658) 181792) ((-1209 . -298) 181771) ((-1245 . -862) T) ((-1132 . -1131) 181749) ((-83 . -1237) T) ((-61 . -625) 181731) ((-491 . -298) 181710) ((-1302 . -1057) 181687) ((-1184 . -1119) T) ((-1132 . -23) 181539) ((-828 . -915) 181475) ((-1260 . -738) T) ((-1121 . -1237) T) ((-486 . -628) 181301) ((-362 . -237) T) ((-1106 . -300) 181232) ((-983 . -1119) T) ((-906 . -102) T) ((-794 . -300) 181143) ((-337 . -19) 181127) ((-59 . -298) 181104) ((-792 . -300) 181035) ((-867 . -738) T) ((-118 . -860) NIL) ((-528 . -298) 181012) ((-337 . -616) 180989) ((-508 . -298) 180966) ((-466 . -300) 180897) ((-1054 . -319) 180748) ((-888 . -502) 180729) ((-888 . -625) 180695) ((-693 . -502) 180676) ((-583 . -738) T) ((-688 . -502) 180657) ((-693 . -625) 180607) ((-688 . -625) 180573) ((-674 . -625) 180555) ((-490 . -502) 180536) ((-490 . -625) 180502) ((-250 . -626) 180463) ((-250 . -502) 180440) ((-139 . -502) 180421) ((-138 . -502) 180402) ((-134 . -502) 180383) ((-250 . -625) 180275) ((-215 . -102) T) ((-139 . -625) 180241) ((-138 . -625) 180207) ((-134 . -625) 180173) ((-1166 . -34) T) ((-960 . -1237) T) ((-354 . -729) 180118) ((-682 . -25) T) ((-682 . -21) T) ((-1196 . -628) 180099) ((-486 . -1068) T) ((-647 . -429) 180064) ((-619 . -429) 180029) ((-1139 . -1171) T) ((-724 . -1070) 179852) ((-593 . -300) T) ((-530 . -300) T) ((-1272 . -317) 179831) ((-486 . -238) 179783) ((-486 . -248) 179762) ((-1251 . -317) 179741) ((-724 . -652) 179570) ((-1251 . -1041) NIL) ((-1099 . -132) T) ((-884 . -807) 179549) ((-145 . -102) T) ((-40 . -1119) T) ((-884 . -804) 179528) ((-656 . -1029) 179512) ((-592 . -1077) T) ((-576 . -1077) T) ((-507 . -1077) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 179496) ((-323 . -412) 179457) ((-364 . -132) T) ((-356 . -132) T) ((-1201 . -1119) T) ((-1139 . -38) 179444) ((-1113 . -625) 179411) ((-108 . -132) T) ((-971 . -1119) T) ((-938 . -1119) T) ((-783 . -1119) T) ((-684 . -1119) T) ((-713 . -148) T) ((-117 . -148) T) ((-1309 . -21) T) ((-1309 . -25) T) ((-1307 . -21) T) ((-1307 . -25) T) ((-676 . -1075) 179395) ((-543 . -862) T) ((-512 . -862) T) ((-366 . -1075) 179347) ((-363 . -1075) 179299) ((-355 . -1075) 179251) ((-258 . -1237) T) ((-257 . -1237) T) ((-273 . -1075) 179094) ((-253 . -1075) 178937) ((-676 . -111) 178916) ((-829 . -1241) 178895) ((-559 . -856) T) ((-326 . -917) 178861) ((-366 . -111) 178799) ((-363 . -111) 178737) ((-355 . -111) 178675) ((-273 . -111) 178504) ((-253 . -111) 178333) ((-323 . -917) NIL) ((-635 . -423) 178317) ((-44 . -21) T) ((-44 . -25) T) ((-827 . -651) 178223) ((-829 . -568) 178202) ((-258 . -1057) 178029) ((-257 . -1057) 177856) ((-127 . -120) 177840) ((-927 . -1075) 177805) ((-724 . -102) T) ((-711 . -1077) T) ((-609 . -628) 177786) ((-597 . -628) 177767) ((-548 . -630) 177670) ((-354 . -174) T) ((-88 . -625) 177652) ((-153 . -21) T) ((-153 . -25) T) ((-927 . -111) 177608) ((-40 . -729) 177553) ((-882 . -1119) T) ((-676 . -628) 177530) ((-657 . -628) 177511) ((-366 . -628) 177448) ((-363 . -628) 177385) ((-559 . -1119) T) ((-355 . -628) 177322) ((-337 . -626) 177283) ((-337 . -625) 177195) ((-273 . -628) 176948) ((-253 . -628) 176733) ((-1250 . -804) 176686) ((-1250 . -807) 176639) ((-258 . -388) 176608) ((-257 . -388) 176577) ((-666 . -38) 176547) ((-620 . -34) T) ((-494 . -1131) 176525) ((-487 . -34) T) ((-1132 . -132) 176396) ((-981 . -25) 176207) ((-927 . -628) 176157) ((-886 . -625) 176139) ((-981 . -21) 176094) ((-827 . -25) 175927) ((-827 . -21) 175838) ((-1243 . -379) T) ((-635 . -1077) T) ((-1198 . -568) 175817) ((-1192 . -47) 175794) ((-366 . -1068) T) ((-363 . -1068) T) ((-494 . -23) 175646) ((-355 . -1068) T) ((-273 . -1068) T) ((-253 . -1068) T) ((-1144 . -47) 175618) ((-118 . -1077) T) ((-1053 . -660) 175592) ((-975 . -34) T) ((-366 . -238) 175571) ((-366 . -248) T) ((-363 . -238) 175550) ((-363 . -248) T) ((-355 . -238) 175529) ((-355 . -248) T) ((-273 . -336) 175501) ((-253 . -336) 175458) ((-273 . -238) 175437) ((-1176 . -152) 175421) ((-258 . -915) 175353) ((-257 . -915) 175285) ((-1161 . -909) 175206) ((-1101 . -862) T) ((-426 . -1131) T) ((-1073 . -23) T) ((-1043 . -860) T) ((-927 . -1068) T) ((-332 . -660) 175188) ((-713 . -237) T) ((-682 . -234) 175133) ((-1231 . -1021) 175099) ((-1193 . -937) 175078) ((-1187 . -937) 175057) ((-1187 . -832) NIL) ((-1018 . -1070) 174953) ((-984 . -1237) T) ((-927 . -248) T) ((-829 . -374) 174932) ((-396 . -23) T) ((-128 . -1119) 174910) ((-122 . -1119) 174888) ((-927 . -238) T) ((-129 . -34) T) ((-390 . -660) 174853) ((-1018 . -652) 174801) ((-882 . -729) 174788) ((-1316 . -658) 174760) ((-1065 . -152) 174725) ((-1012 . -1237) T) ((-40 . -174) T) ((-706 . -423) 174707) ((-724 . -319) 174694) ((-848 . -660) 174654) ((-839 . -660) 174628) ((-329 . -25) T) ((-329 . -21) T) ((-670 . -296) 174607) ((-592 . -1119) T) ((-576 . -1119) T) ((-507 . -1119) T) ((-250 . -298) 174584) ((-1192 . -1237) T) ((-1144 . -1237) T) ((-323 . -272) 174545) ((-323 . -232) 174506) ((-1192 . -899) NIL) ((-55 . -1119) T) ((-1144 . -899) 174365) ((-130 . -862) T) ((-1192 . -1057) 174245) ((-1144 . -1057) 174128) ((-185 . -625) 174110) ((-866 . -1057) 174006) ((-794 . -296) 173933) ((-829 . -1131) T) ((-1053 . -738) T) ((-1065 . -995) 173862) ((-614 . -663) 173846) ((-1022 . -909) 173753) ((-1018 . -102) T) ((-829 . -23) T) ((-724 . -1171) 173731) ((-706 . -1077) T) ((-614 . -384) 173715) ((-362 . -464) T) ((-354 . -300) T) ((-1288 . -1119) T) ((-254 . -1119) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -738) T) ((-722 . -1119) T) ((-711 . -1119) T) ((-372 . -485) T) ((-1231 . -625) 173697) ((-1192 . -388) 173681) ((-1144 . -388) 173665) ((-1043 . -423) 173627) ((-142 . -231) 173609) ((-390 . -806) T) ((-390 . -803) T) ((-882 . -174) T) ((-390 . -738) T) ((-723 . -625) 173591) ((-724 . -38) 173420) ((-1287 . -1285) 173404) ((-362 . -414) T) ((-1287 . -1119) 173354) ((-1210 . -1119) T) ((-592 . -729) 173341) ((-576 . -729) 173328) ((-507 . -729) 173293) ((-1273 . -658) 173183) ((-326 . -641) 173162) ((-848 . -738) T) ((-839 . -738) T) ((-656 . -1237) T) ((-1099 . -651) 173110) ((-1192 . -915) 173053) ((-1144 . -915) 173037) ((-827 . -234) 172928) ((-674 . -1075) 172912) ((-108 . -651) 172894) ((-494 . -132) 172765) ((-1198 . -1131) T) ((-969 . -47) 172734) ((-635 . -1119) T) ((-674 . -111) 172713) ((-503 . -625) 172679) ((-337 . -298) 172656) ((-493 . -47) 172613) ((-1198 . -23) T) ((-118 . -1119) T) ((-103 . -102) 172591) ((-1299 . -1131) T) ((-560 . -862) T) ((-227 . -1237) T) ((-1073 . -132) T) ((-1043 . -1077) T) ((-1299 . -23) T) ((-831 . -1057) 172575) ((-1217 . -625) 172557) ((-1022 . -736) 172529) ((-1139 . -840) T) ((-711 . -729) 172494) ((-598 . -625) 172476) ((-398 . -1057) 172460) ((-365 . -1077) T) ((-396 . -132) T) ((-334 . -1057) 172444) ((-1124 . -1119) T) ((-1099 . -21) T) ((-1099 . -25) T) ((-227 . -899) 172426) ((-1023 . -937) T) ((-91 . -34) T) ((-1023 . -832) T) ((-931 . -937) T) ((-1018 . -319) 172391) ((-888 . -628) 172372) ((-499 . -1241) T) ((-726 . -660) 172332) ((-693 . -628) 172313) ((-688 . -628) 172294) ((-219 . -1241) T) ((-419 . -909) 172215) ((-227 . -1057) 172175) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 172156) ((-370 . -25) T) ((-326 . -658) 171811) ((-323 . -658) 171725) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -234) 171671) ((-250 . -628) 171648) ((-139 . -628) 171629) ((-138 . -628) 171610) ((-134 . -628) 171591) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1077) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1081 . -1237) T) ((-969 . -1237) T) ((-670 . -625) 171573) ((-493 . -1237) T) ((-749 . -748) 171557) ((-347 . -625) 171539) ((-68 . -394) T) ((-68 . -407) T) ((-1121 . -107) 171523) ((-1081 . -899) 171505) ((-969 . -899) 171430) ((-665 . -1131) T) ((-635 . -729) 171417) ((-493 . -899) NIL) ((-1165 . -102) T) ((-1113 . -630) 171401) ((-1081 . -1057) 171383) ((-97 . -625) 171365) ((-489 . -148) T) ((-969 . -1057) 171245) ((-118 . -729) 171190) ((-724 . -917) 171097) ((-665 . -23) T) ((-493 . -1057) 170973) ((-1106 . -626) NIL) ((-1106 . -625) 170955) ((-794 . -626) NIL) ((-794 . -625) 170916) ((-792 . -626) 170550) ((-792 . -625) 170464) ((-1132 . -651) 170370) ((-473 . -625) 170352) ((-466 . -625) 170334) ((-466 . -626) 170195) ((-1054 . -231) 170141) ((-884 . -926) 170120) ((-127 . -34) T) ((-829 . -132) T) ((-661 . -625) 170102) ((-590 . -102) T) ((-366 . -1306) 170086) ((-363 . -1306) 170070) ((-355 . -1306) 170054) ((-128 . -526) 169987) ((-122 . -526) 169920) ((-523 . -804) T) ((-523 . -807) T) ((-522 . -806) T) ((-103 . -319) 169858) ((-224 . -102) 169836) ((-711 . -174) T) ((-706 . -1119) T) ((-884 . -660) 169752) ((-65 . -395) T) ((-284 . -625) 169734) ((-65 . -407) T) ((-969 . -388) 169718) ((-882 . -300) T) ((-50 . -625) 169700) ((-1018 . -38) 169648) ((-1139 . -658) 169620) ((-593 . -625) 169602) ((-493 . -388) 169586) ((-593 . -626) 169568) ((-530 . -625) 169550) ((-927 . -1306) 169537) ((-883 . -1237) T) ((-713 . -464) T) ((-507 . -526) 169503) ((-499 . -374) T) ((-366 . -379) 169482) ((-363 . -379) 169461) ((-355 . -379) 169440) ((-726 . -738) T) ((-219 . -374) T) ((-117 . -464) T) ((-1310 . -1301) 169424) ((-883 . -897) 169401) ((-883 . -899) NIL) ((-981 . -862) 169300) ((-827 . -862) 169251) ((-1244 . -102) T) ((-666 . -668) 169235) ((-1223 . -34) T) ((-173 . -625) 169217) ((-1132 . -25) 169050) ((-1132 . -21) 168961) ((-883 . -1057) 168938) ((-969 . -915) 168919) ((-1260 . -47) 168896) ((-927 . -379) T) ((-59 . -663) 168880) ((-528 . -663) 168864) ((-493 . -915) 168841) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -663) 168825) ((-59 . -384) 168809) ((-635 . -174) T) ((-528 . -384) 168793) ((-508 . -384) 168777) ((-839 . -720) 168761) ((-1192 . -317) 168740) ((-1198 . -132) T) ((-1161 . -1070) 168724) ((-118 . -174) T) ((-1161 . -652) 168656) ((-1165 . -319) 168594) ((-171 . -1237) T) ((-1299 . -132) T) ((-878 . -1070) 168564) ((-647 . -756) 168548) ((-619 . -756) 168532) ((-1272 . -937) 168511) ((-1251 . -937) 168490) ((-1251 . -832) NIL) ((-878 . -652) 168460) ((-706 . -729) 168410) ((-1250 . -926) 168363) ((-1043 . -1119) T) ((-883 . -388) 168340) ((-883 . -349) 168317) ((-922 . -1131) T) ((-171 . -897) 168301) ((-171 . -899) 168226) ((-1287 . -526) 168159) ((-1271 . -660) 168056) ((-1099 . -234) 167929) ((-499 . -1131) T) ((-365 . -1119) T) ((-219 . -1131) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1057) 167825) ((-304 . -909) 167782) ((-329 . -862) T) ((-1250 . -660) 167590) ((-884 . -806) 167569) ((-884 . -803) 167548) ((-884 . -738) T) ((-499 . -23) T) ((-370 . -234) 167521) ((-364 . -234) 167494) ((-356 . -234) 167467) ((-225 . -625) 167449) ((-176 . -464) T) ((-224 . -319) 167387) ((-86 . -453) T) ((-86 . -407) T) ((-108 . -234) 167374) ((-219 . -23) T) ((-1311 . -1304) 167353) ((-689 . -1057) 167337) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-137 . -482) 167292) ((-1260 . -1237) T) ((-666 . -658) 167251) ((-48 . -1119) T) ((-724 . -272) 167235) ((-724 . -232) 167219) ((-883 . -915) NIL) ((-1260 . -899) NIL) ((-902 . -102) T) ((-898 . -102) T) ((-400 . -1119) T) ((-171 . -388) 167203) ((-171 . -349) 167187) ((-1260 . -1057) 167067) ((-867 . -1057) 166963) ((-1161 . -102) T) ((-1018 . -917) 166886) ((-674 . -804) 166865) ((-665 . -132) T) ((-674 . -807) 166844) ((-118 . -526) 166752) ((-583 . -1057) 166734) ((-304 . -1294) 166704) ((-878 . -102) T) ((-980 . -568) 166683) ((-1231 . -1075) 166566) ((-1022 . -1070) 166511) ((-494 . -651) 166417) ((-921 . -1119) T) ((-1043 . -729) 166354) ((-723 . -1075) 166319) ((-1022 . -652) 166264) ((-629 . -102) T) ((-614 . -34) T) ((-1166 . -1237) T) ((-1231 . -111) 166133) ((-486 . -660) 166030) ((-365 . -729) 165975) ((-171 . -915) 165934) ((-711 . -300) T) ((-706 . -174) T) ((-723 . -111) 165890) ((-1316 . -1077) T) ((-1260 . -388) 165874) ((-430 . -1241) 165852) ((-1137 . -625) 165834) ((-323 . -860) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1250 . -803) 165787) ((-1250 . -806) 165740) ((-1271 . -738) T) ((-1250 . -738) T) ((-48 . -729) 165705) ((-227 . -1041) T) ((-1273 . -423) 165671) ((-362 . -1294) 165648) ((-1260 . -915) 165591) ((-730 . -738) T) ((-343 . -625) 165573) ((-1231 . -628) 165455) ((-1132 . -234) 165346) ((-112 . -625) 165328) ((-112 . -626) 165310) ((-730 . -485) T) ((-723 . -628) 165260) ((-1310 . -1070) 165244) ((-494 . -25) 165077) ((-128 . -501) 165061) ((-122 . -501) 165045) ((-494 . -21) 164956) ((-1310 . -652) 164926) ((-635 . -300) T) ((-598 . -1075) 164901) ((-449 . -1119) T) ((-1081 . -317) T) ((-118 . -300) T) ((-1123 . -102) T) ((-1022 . -102) T) ((-598 . -111) 164869) ((-1161 . -319) 164807) ((-1231 . -1068) T) ((-1081 . -1041) T) ((-66 . -1237) T) ((-1073 . -25) T) ((-1073 . -21) T) ((-723 . -1068) T) ((-396 . -21) T) ((-396 . -25) T) ((-706 . -526) NIL) ((-1043 . -174) T) ((-723 . -248) T) ((-1081 . -557) T) ((-724 . -658) 164717) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 164699) ((-419 . -1070) 164651) ((-406 . -625) 164633) ((-1139 . -860) T) ((-486 . -738) T) ((-905 . -1057) 164601) ((-419 . -652) 164553) ((-108 . -862) T) ((-670 . -1075) 164537) ((-499 . -132) T) ((-1273 . -1077) T) ((-219 . -132) T) ((-1176 . -102) 164515) ((-99 . -1119) T) ((-250 . -678) 164499) ((-250 . -663) 164483) ((-670 . -111) 164462) ((-598 . -628) 164446) ((-326 . -423) 164430) ((-250 . -384) 164414) ((-1179 . -240) 164361) ((-1018 . -272) 164345) ((-1018 . -232) 164329) ((-74 . -1237) T) ((-48 . -174) T) ((-713 . -399) T) ((-713 . -144) T) ((-1310 . -102) T) ((-1217 . -628) 164311) ((-1107 . -1237) T) ((-1106 . -1075) 164154) ((-1095 . -1237) T) ((-273 . -926) 164133) ((-253 . -926) 164112) ((-794 . -1075) 163935) ((-792 . -1075) 163778) ((-620 . -1237) T) ((-1184 . -625) 163760) ((-1106 . -111) 163589) ((-1065 . -102) T) ((-487 . -1237) T) ((-473 . -1075) 163560) ((-466 . -1075) 163403) ((-676 . -660) 163387) ((-883 . -317) T) ((-794 . -111) 163196) ((-792 . -111) 163025) ((-366 . -660) 162977) ((-363 . -660) 162929) ((-355 . -660) 162881) ((-273 . -660) 162770) ((-253 . -660) 162659) ((-1178 . -862) T) ((-1107 . -1057) 162643) ((-473 . -111) 162604) ((-466 . -111) 162433) ((-1095 . -1057) 162410) ((-1019 . -34) T) ((-983 . -625) 162392) ((-975 . -1237) T) ((-127 . -1029) 162376) ((-980 . -1131) T) ((-883 . -1041) NIL) ((-747 . -1131) T) ((-727 . -1131) T) ((-670 . -628) 162294) ((-1287 . -501) 162278) ((-1161 . -38) 162238) ((-980 . -23) T) ((-927 . -660) 162203) ((-877 . -1119) T) ((-855 . -102) T) ((-829 . -21) T) ((-647 . -1070) 162187) ((-619 . -1070) 162171) ((-829 . -25) T) ((-747 . -23) T) ((-727 . -23) T) ((-647 . -652) 162155) ((-110 . -673) T) ((-619 . -652) 162139) ((-593 . -1075) 162104) ((-530 . -1075) 162049) ((-229 . -57) 162007) ((-465 . -23) T) ((-419 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-706 . -300) T) ((-878 . -38) 161977) ((-593 . -111) 161933) ((-530 . -111) 161862) ((-1106 . -628) 161598) ((-430 . -1131) T) ((-326 . -1077) 161488) ((-323 . -1077) T) ((-129 . -1237) T) ((-794 . -628) 161236) ((-792 . -628) 161002) ((-670 . -1068) T) ((-1316 . -1119) T) ((-466 . -628) 160787) ((-171 . -317) 160718) ((-430 . -23) T) ((-40 . -625) 160700) ((-40 . -626) 160684) ((-108 . -1011) 160666) ((-117 . -881) 160650) ((-661 . -628) 160634) ((-48 . -526) 160600) ((-1223 . -1029) 160584) ((-1201 . -625) 160551) ((-1209 . -34) T) ((-971 . -625) 160517) ((-938 . -625) 160499) ((-1132 . -862) 160450) ((-783 . -625) 160432) ((-684 . -625) 160414) ((-1176 . -319) 160352) ((-491 . -34) T) ((-1111 . -1237) T) ((-489 . -464) T) ((-1160 . -34) T) ((-1106 . -1068) T) ((-50 . -628) 160321) ((-794 . -1068) T) ((-792 . -1068) T) ((-659 . -240) 160305) ((-644 . -240) 160251) ((-593 . -628) 160201) ((-530 . -628) 160131) ((-494 . -234) 160022) ((-1260 . -317) 160001) ((-1106 . -336) 159962) ((-466 . -1068) T) ((-1198 . -21) T) ((-1106 . -238) 159941) ((-794 . -336) 159918) ((-794 . -238) T) ((-792 . -336) 159890) ((-743 . -1241) 159869) ((-337 . -663) 159853) ((-1198 . -25) T) ((-59 . -34) T) ((-531 . -34) T) ((-528 . -34) T) ((-466 . -336) 159832) ((-337 . -384) 159816) ((-509 . -34) T) ((-508 . -34) T) ((-1022 . -1171) NIL) ((-743 . -568) 159747) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -738) T) ((-363 . -738) T) ((-355 . -738) T) ((-273 . -738) T) ((-253 . -738) T) ((-390 . -1237) T) ((-1065 . -319) 159655) ((-1299 . -21) T) ((-918 . -1119) 159633) ((-830 . -234) 159620) ((-50 . -1068) T) ((-1299 . -25) T) ((-1194 . -568) 159599) ((-1193 . -1241) 159578) ((-1193 . -568) 159529) ((-1187 . -1241) 159508) ((-1187 . -568) 159459) ((-593 . -1068) T) ((-530 . -1068) T) ((-1043 . -300) T) ((-372 . -1057) 159443) ((-332 . -1057) 159427) ((-1022 . -38) 159372) ((-390 . -899) 159354) ((-1018 . -658) 159277) ((-848 . -1237) T) ((-839 . -1237) 159256) ((-811 . -1131) T) ((-927 . -738) T) ((-593 . -248) T) ((-593 . -238) T) ((-530 . -238) T) ((-530 . -248) T) ((-1145 . -568) 159235) ((-365 . -300) T) ((-659 . -707) 159219) ((-390 . -1057) 159179) ((-304 . -1070) 159100) ((-350 . -909) 159079) ((-1139 . -1077) T) ((-103 . -126) 159063) ((-304 . -652) 159005) ((-811 . -23) T) ((-1309 . -1304) 158981) ((-1307 . -1304) 158960) ((-1287 . -296) 158912) ((-419 . -319) 158877) ((-1273 . -1119) T) ((-1161 . -917) 158800) ((-882 . -625) 158782) ((-848 . -1057) 158751) ((-205 . -799) T) ((-204 . -799) T) ((-203 . -799) T) ((-202 . -799) T) ((-201 . -799) T) ((-200 . -799) T) ((-199 . -799) T) ((-198 . -799) T) ((-197 . -799) T) ((-196 . -799) T) ((-559 . -625) 158733) ((-507 . -1021) T) ((-283 . -851) T) ((-282 . -851) T) ((-281 . -851) T) ((-280 . -851) T) ((-48 . -300) T) ((-279 . -851) T) ((-278 . -851) T) ((-277 . -851) T) ((-195 . -799) T) ((-624 . -862) T) ((-666 . -423) 158717) ((-682 . -237) 158668) ((-225 . -628) 158630) ((-110 . -862) T) ((-665 . -21) T) ((-665 . -25) T) ((-1310 . -38) 158600) ((-118 . -296) 158551) ((-1287 . -19) 158535) ((-1287 . -616) 158512) ((-1300 . -1119) T) ((-362 . -1070) 158457) ((-1096 . -1119) T) ((-1006 . -1119) T) ((-980 . -132) T) ((-829 . -234) 158444) ((-749 . -1119) T) ((-362 . -652) 158389) ((-747 . -132) T) ((-727 . -132) T) ((-523 . -805) T) ((-523 . -806) T) ((-465 . -132) T) ((-419 . -1171) 158367) ((-225 . -1068) T) ((-304 . -102) 158149) ((-142 . -1119) T) ((-711 . -1021) T) ((-1124 . -296) 158105) ((-91 . -1237) T) ((-128 . -625) 158037) ((-122 . -625) 157969) ((-1316 . -174) T) ((-1193 . -374) 157948) ((-1187 . -374) 157927) ((-326 . -1119) T) ((-430 . -132) T) ((-323 . -1119) T) ((-419 . -38) 157879) ((-1152 . -102) T) ((-1273 . -729) 157771) ((-666 . -1077) T) ((-1154 . -1282) T) ((-329 . -146) 157750) ((-329 . -148) 157729) ((-140 . -1119) T) ((-137 . -1119) T) ((-115 . -1119) T) ((-870 . -102) T) ((-592 . -625) 157711) ((-576 . -626) 157610) ((-576 . -625) 157592) ((-507 . -625) 157574) ((-507 . -626) 157519) ((-497 . -23) T) ((-494 . -862) 157470) ((-499 . -651) 157452) ((-982 . -625) 157434) ((-1022 . -917) 157343) ((-219 . -651) 157325) ((-227 . -416) T) ((-674 . -660) 157309) ((-55 . -625) 157291) ((-1192 . -937) 157270) ((-743 . -1131) T) ((-362 . -102) T) ((-1236 . -1102) T) ((-1139 . -856) T) ((-830 . -862) T) ((-743 . -23) T) ((-354 . -1075) 157215) ((-1178 . -1177) T) ((-1166 . -107) 157199) ((-1194 . -1131) T) ((-1193 . -1131) T) ((-527 . -1057) 157183) ((-1187 . -1131) T) ((-1145 . -1131) T) ((-354 . -111) 157112) ((-1023 . -1241) T) ((-127 . -1237) T) ((-931 . -1241) T) ((-1288 . -625) 157094) ((-706 . -296) NIL) ((-726 . -1237) T) ((-1194 . -23) T) ((-1193 . -23) T) ((-1187 . -23) T) ((-1161 . -272) 157078) ((-1161 . -232) 157062) ((-1023 . -568) T) ((-1145 . -23) T) ((-931 . -568) T) ((-1094 . -1119) T) ((-254 . -625) 157044) ((-827 . -237) 156941) ((-811 . -132) T) ((-722 . -625) 156923) ((-326 . -729) 156833) ((-323 . -729) 156762) ((-711 . -625) 156744) ((-711 . -626) 156689) ((-419 . -412) 156673) ((-450 . -1119) T) ((-499 . -25) T) ((-499 . -21) T) ((-1139 . -1119) T) ((-219 . -25) T) ((-219 . -21) T) ((-724 . -423) 156657) ((-726 . -1057) 156626) ((-1287 . -625) 156538) ((-1287 . -626) 156499) ((-1273 . -174) T) ((-1210 . -625) 156481) ((-250 . -34) T) ((-354 . -628) 156411) ((-406 . -628) 156393) ((-943 . -993) T) ((-1223 . -1237) T) ((-674 . -803) 156372) ((-674 . -806) 156351) ((-410 . -407) T) ((-535 . -102) 156329) ((-1054 . -1119) T) ((-419 . -917) 156252) ((-224 . -1014) 156236) ((-516 . -102) T) ((-635 . -625) 156218) ((-45 . -862) NIL) ((-635 . -626) 156195) ((-1054 . -622) 156170) ((-918 . -526) 156103) ((-329 . -237) 156055) ((-354 . -1068) T) ((-118 . -626) NIL) ((-118 . -625) 156037) ((-884 . -1237) T) ((-682 . -429) 156021) ((-682 . -1142) 155966) ((-512 . -152) 155948) ((-354 . -238) T) ((-354 . -248) T) ((-40 . -1075) 155893) ((-884 . -897) 155877) ((-884 . -899) 155802) ((-724 . -1077) T) ((-706 . -1021) NIL) ((-1271 . -47) 155772) ((-1250 . -47) 155749) ((-1160 . -1029) 155720) ((-1139 . -729) 155707) ((-3 . |UnionCategory|) T) ((-1124 . -625) 155689) ((-1099 . -148) 155668) ((-1099 . -146) 155619) ((-1023 . -374) T) ((-983 . -628) 155603) ((-227 . -937) T) ((-40 . -111) 155532) ((-884 . -1057) 155396) ((-1022 . -232) 155373) ((-1022 . -272) 155350) ((-713 . -1070) 155337) ((-931 . -374) T) ((-713 . -652) 155324) ((-329 . -1225) 155290) ((-390 . -317) T) ((-329 . -1222) 155256) ((-326 . -174) 155235) ((-323 . -174) T) ((-593 . -1306) 155222) ((-530 . -1306) 155199) ((-370 . -148) 155178) ((-117 . -1070) 155165) ((-370 . -146) 155116) ((-364 . -148) 155095) ((-364 . -146) 155046) ((-356 . -148) 155025) ((-620 . -1213) 155001) ((-117 . -652) 154988) ((-356 . -146) 154939) ((-329 . -35) 154905) ((-487 . -1213) 154884) ((0 . |EnumerationCategory|) T) ((-329 . -95) 154850) ((-390 . -1041) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 154800) ((-666 . -1119) T) ((-620 . -107) 154747) ((-497 . -132) T) ((-487 . -107) 154697) ((-245 . -1131) 154675) ((-884 . -388) 154659) ((-884 . -349) 154643) ((-245 . -23) 154495) ((-40 . -628) 154425) ((-1081 . -937) T) ((-1081 . -832) T) ((-593 . -379) T) ((-530 . -379) T) ((-1300 . -526) 154358) ((-1279 . -568) 154337) ((-1272 . -1241) 154316) ((-362 . -1171) T) ((-337 . -34) T) ((-44 . -429) 154300) ((-1201 . -628) 154236) ((-885 . -1237) T) ((-402 . -756) 154220) ((-1272 . -568) 154171) ((-1271 . -1237) T) ((-1161 . -658) 154130) ((-743 . -132) T) ((-684 . -628) 154114) ((-1251 . -1241) 154093) ((-1251 . -568) 154044) ((-1250 . -1237) T) ((-1250 . -899) 153917) ((-1250 . -897) 153887) ((-1194 . -132) T) ((-321 . -1102) T) ((-1193 . -132) T) ((-749 . -526) 153820) ((-1187 . -132) T) ((-1145 . -132) T) ((-906 . -1119) T) ((-145 . -856) T) ((-1043 . -1021) T) ((-703 . -625) 153802) ((-1023 . -23) T) ((-535 . -319) 153740) ((-1023 . -1131) T) ((-142 . -526) NIL) ((-878 . -658) 153685) ((-1022 . -360) NIL) ((-990 . -23) T) ((-931 . -1131) T) ((-362 . -38) 153650) ((-931 . -23) T) ((-884 . -915) 153609) ((-82 . -625) 153591) ((-40 . -1068) T) ((-882 . -1075) 153578) ((-882 . -111) 153563) ((-713 . -102) T) ((-706 . -625) 153545) ((-614 . -1237) T) ((-608 . -568) 153524) ((-439 . -1131) T) ((-350 . -1070) 153508) ((-215 . -1119) T) ((-176 . -1070) 153440) ((-486 . -47) 153410) ((-40 . -238) 153382) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 153361) ((-350 . -652) 153345) ((-706 . -626) 153253) ((-326 . -526) 153219) ((-176 . -652) 153151) ((-323 . -526) 153043) ((-499 . -234) 153030) ((-1271 . -1057) 153014) ((-1250 . -1057) 152800) ((-1018 . -423) 152784) ((-219 . -234) 152771) ((-439 . -23) T) ((-1139 . -174) T) ((-1273 . -300) T) ((-666 . -729) 152741) ((-145 . -1119) T) ((-48 . -1021) T) ((-419 . -272) 152725) ((-419 . -232) 152709) ((-305 . -240) 152659) ((-883 . -937) T) ((-883 . -832) NIL) ((-882 . -628) 152631) ((-876 . -862) T) ((-1250 . -349) 152601) ((-1250 . -388) 152571) ((-1099 . -237) 152450) ((-224 . -1140) 152434) ((-304 . -917) 152393) ((-1287 . -298) 152370) ((-370 . -237) 152349) ((-364 . -237) 152328) ((-486 . -1237) T) ((-356 . -237) 152307) ((-108 . -237) T) ((-1231 . -660) 152232) ((-1022 . -658) 152162) ((-980 . -21) T) ((-980 . -25) T) ((-747 . -21) T) ((-747 . -25) T) ((-727 . -21) T) ((-727 . -25) T) ((-723 . -660) 152127) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1018 . -1077) T) ((-882 . -1068) T) ((-786 . -102) T) ((-1272 . -374) 152106) ((-1271 . -915) 152012) ((-1251 . -374) 151991) ((-1250 . -915) 151842) ((-1043 . -625) 151824) ((-419 . -840) 151777) ((-1194 . -505) 151743) ((-171 . -937) 151674) ((-1193 . -505) 151640) ((-1187 . -505) 151606) ((-724 . -1119) T) ((-1145 . -505) 151572) ((-592 . -1075) 151559) ((-576 . -1075) 151546) ((-507 . -1075) 151511) ((-326 . -300) 151490) ((-323 . -300) T) ((-365 . -625) 151472) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 151451) ((-592 . -111) 151436) ((-576 . -111) 151421) ((-507 . -111) 151377) ((-1196 . -899) 151344) ((-918 . -501) 151328) ((-48 . -625) 151310) ((-48 . -626) 151255) ((-245 . -132) 151126) ((-1310 . -658) 151085) ((-1260 . -937) 151064) ((-828 . -1241) 151043) ((-400 . -502) 151024) ((-1054 . -526) 150868) ((-400 . -625) 150834) ((-828 . -568) 150765) ((-598 . -660) 150740) ((-273 . -47) 150712) ((-253 . -47) 150669) ((-543 . -521) 150646) ((-592 . -628) 150618) ((-576 . -628) 150590) ((-507 . -628) 150523) ((-1093 . -1237) T) ((-1019 . -1237) T) ((-1279 . -23) T) ((-1279 . -1131) T) ((-1272 . -1131) T) ((-711 . -1075) 150488) ((-1272 . -23) T) ((-1251 . -1131) T) ((-1251 . -23) T) ((-1231 . -738) T) ((-1139 . -300) T) ((-1022 . -381) 150460) ((-112 . -379) T) ((-486 . -915) 150366) ((-1132 . -237) 150263) ((-921 . -625) 150245) ((-55 . -628) 150227) ((-91 . -107) 150211) ((-1023 . -132) T) ((-922 . -862) 150162) ((-713 . -1171) T) ((-711 . -111) 150118) ((-855 . -658) 150035) ((-608 . -1131) T) ((-607 . -1131) T) ((-724 . -729) 149864) ((-723 . -738) T) ((-990 . -132) T) ((-931 . -132) T) ((-499 . -862) T) ((-811 . -25) T) ((-811 . -21) T) ((-592 . -1068) T) ((-219 . -862) T) ((-419 . -658) 149801) ((-576 . -1068) T) ((-548 . -1237) T) ((-507 . -1068) T) ((-608 . -23) T) ((-354 . -1306) 149778) ((-329 . -464) 149757) ((-350 . -319) 149744) ((-607 . -23) T) ((-439 . -132) T) ((-670 . -660) 149718) ((-250 . -1029) 149702) ((-884 . -317) T) ((-1311 . -1301) 149686) ((-783 . -804) T) ((-783 . -807) T) ((-713 . -38) 149673) ((-576 . -238) T) ((-507 . -248) T) ((-507 . -238) T) ((-1169 . -240) 149623) ((-1106 . -926) 149602) ((-117 . -38) 149589) ((-211 . -812) T) ((-210 . -812) T) ((-209 . -812) T) ((-208 . -812) T) ((-884 . -1041) 149567) ((-1300 . -501) 149551) ((-794 . -926) 149530) ((-792 . -926) 149509) ((-1209 . -1237) T) ((-366 . -1237) 149488) ((-363 . -1237) 149467) ((-355 . -1237) 149446) ((-273 . -1237) T) ((-253 . -1237) T) ((-466 . -926) 149425) ((-749 . -501) 149409) ((-1106 . -660) 149298) ((-711 . -628) 149233) ((-794 . -660) 149122) ((-635 . -1075) 149109) ((-491 . -1237) T) ((-354 . -379) T) ((-142 . -501) 149091) ((-792 . -660) 148980) ((-1160 . -1237) T) ((-561 . -862) T) ((-473 . -660) 148951) ((-273 . -899) 148810) ((-253 . -899) NIL) ((-118 . -1075) 148755) ((-466 . -660) 148644) ((-676 . -1057) 148621) ((-635 . -111) 148606) ((-402 . -1070) 148590) ((-366 . -1057) 148574) ((-363 . -1057) 148558) ((-355 . -1057) 148542) ((-273 . -1057) 148386) ((-253 . -1057) 148262) ((-927 . -1237) T) ((-118 . -111) 148191) ((-59 . -1237) T) ((-402 . -652) 148175) ((-633 . -1070) 148159) ((-531 . -1237) T) ((-528 . -1237) T) ((-509 . -1237) T) ((-508 . -1237) T) ((-449 . -625) 148141) ((-446 . -625) 148123) ((-633 . -652) 148107) ((-3 . -102) T) ((-1046 . -1230) 148076) ((-845 . -102) T) ((-701 . -57) 148034) ((-711 . -1068) T) ((-647 . -658) 148003) ((-619 . -658) 147972) ((-50 . -660) 147946) ((-299 . -464) T) ((-488 . -1230) 147915) ((0 . -102) T) ((-593 . -660) 147880) ((-530 . -660) 147825) ((-49 . -102) T) ((-927 . -1057) 147812) ((-711 . -248) T) ((-1099 . -421) 147791) ((-743 . -651) 147739) ((-1018 . -1119) T) ((-724 . -174) 147630) ((-635 . -628) 147525) ((-499 . -1011) 147507) ((-430 . -234) 147452) ((-273 . -388) 147436) ((-253 . -388) 147420) ((-411 . -1119) T) ((-1045 . -102) 147398) ((-350 . -38) 147382) ((-219 . -1011) 147364) ((-118 . -628) 147294) ((-176 . -38) 147226) ((-1271 . -317) 147205) ((-1250 . -317) 147184) ((-670 . -738) T) ((-99 . -625) 147166) ((-489 . -1070) 147131) ((-1187 . -651) 147083) ((-489 . -652) 147048) ((-497 . -25) T) ((-497 . -21) T) ((-1250 . -1041) 147000) ((-1076 . -1237) T) ((-635 . -1068) T) ((-390 . -416) T) ((-402 . -102) T) ((-1124 . -630) 146915) ((-273 . -915) 146861) ((-253 . -915) 146838) ((-118 . -1068) T) ((-828 . -1131) T) ((-1106 . -738) T) ((-635 . -238) 146817) ((-633 . -102) T) ((-794 . -738) T) ((-792 . -738) T) ((-425 . -1131) T) ((-118 . -248) T) ((-40 . -379) NIL) ((-118 . -238) NIL) ((-1242 . -862) T) ((-466 . -738) T) ((-828 . -23) T) ((-743 . -25) T) ((-743 . -21) T) ((-682 . -909) 146738) ((-1096 . -296) 146717) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -779) 146699) ((-706 . -1075) 146649) ((-1312 . -102) T) ((-1279 . -132) T) ((-1272 . -132) T) ((-1251 . -132) T) ((-1194 . -25) T) ((-1161 . -423) 146633) ((-647 . -378) 146565) ((-619 . -378) 146497) ((-1176 . -1168) 146481) ((-103 . -1119) 146459) ((-1194 . -21) T) ((-1193 . -21) T) ((-877 . -625) 146441) ((-1018 . -729) 146389) ((-225 . -660) 146356) ((-706 . -111) 146290) ((-50 . -738) T) ((-1193 . -25) T) ((-362 . -360) T) ((-1187 . -21) T) ((-1099 . -464) 146241) ((-1187 . -25) T) ((-724 . -526) 146188) ((-593 . -738) T) ((-530 . -738) T) ((-1145 . -21) T) ((-1145 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -658) 145923) ((-494 . -237) 145820) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 145799) ((-1245 . -102) T) ((-323 . -296) 145734) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-703 . -628) 145718) ((-1316 . -625) 145700) ((-1316 . -626) 145682) ((-1099 . -414) 145661) ((-1054 . -501) 145592) ((-137 . -296) 145569) ((-576 . -807) T) ((-576 . -804) T) ((-1082 . -240) 145515) ((-370 . -414) 145466) ((-364 . -414) 145417) ((-356 . -414) 145368) ((-1302 . -1131) T) ((-1311 . -1070) 145352) ((-392 . -1070) 145336) ((-1311 . -652) 145306) ((-830 . -237) T) ((-392 . -652) 145276) ((-706 . -628) 145211) ((-1302 . -23) T) ((-1289 . -102) T) ((-350 . -917) 145192) ((-177 . -625) 145174) ((-1161 . -1077) T) ((-559 . -379) T) ((-682 . -756) 145158) ((-1198 . -146) 145137) ((-1198 . -148) 145116) ((-1165 . -1119) T) ((-1165 . -1090) 145085) ((-69 . -1237) T) ((-1043 . -1075) 145022) ((-362 . -658) 144952) ((-878 . -1077) T) ((-245 . -651) 144858) ((-706 . -1068) T) ((-365 . -1075) 144803) ((-61 . -1237) T) ((-1043 . -111) 144719) ((-918 . -625) 144630) ((-706 . -248) T) ((-706 . -238) NIL) ((-855 . -860) 144609) ((-711 . -807) T) ((-711 . -804) T) ((-1022 . -423) 144586) ((-365 . -111) 144515) ((-390 . -937) T) ((-419 . -860) 144494) ((-724 . -300) 144405) ((-225 . -738) T) ((-1279 . -505) 144371) ((-1272 . -505) 144337) ((-1251 . -505) 144303) ((-590 . -1119) T) ((-326 . -1021) 144282) ((-224 . -1119) 144260) ((-1244 . -856) T) ((-329 . -992) 144222) ((-105 . -102) T) ((-48 . -1075) 144187) ((-1311 . -102) T) ((-392 . -102) T) ((-48 . -111) 144143) ((-827 . -909) 144010) ((-1023 . -651) 143992) ((-1273 . -625) 143974) ((-543 . -102) T) ((-512 . -102) T) ((-1152 . -1153) 143958) ((-153 . -1294) 143942) ((-250 . -1237) T) ((-1236 . -102) T) ((-1043 . -628) 143879) ((-829 . -237) T) ((-1192 . -1241) 143858) ((-365 . -628) 143788) ((-1144 . -1241) 143767) ((-245 . -25) 143600) ((-245 . -21) 143511) ((-128 . -120) 143495) ((-122 . -120) 143479) ((-44 . -756) 143463) ((-1192 . -568) 143374) ((-1144 . -568) 143305) ((-1244 . -1119) T) ((-1054 . -296) 143280) ((-1186 . -1102) T) ((-1013 . -1102) T) ((-828 . -132) T) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-258 . -1131) 143258) ((-257 . -1131) 143236) ((-1043 . -1068) T) ((-1022 . -1077) T) ((-48 . -628) 143169) ((-354 . -660) 143114) ((-1300 . -625) 143076) ((-633 . -38) 143060) ((-1300 . -626) 143021) ((-1194 . -234) 142974) ((-1096 . -625) 142956) ((-1043 . -248) T) ((-365 . -1068) T) ((-827 . -1294) 142926) ((-258 . -23) T) ((-257 . -23) T) ((-1006 . -625) 142908) ((-1193 . -234) 142854) ((-1187 . -234) 142671) ((-749 . -626) 142632) ((-749 . -625) 142614) ((-1179 . -152) 142561) ((-811 . -862) 142540) ((-1023 . -25) T) ((-1018 . -526) 142452) ((-365 . -238) T) ((-365 . -248) T) ((-400 . -628) 142433) ((-927 . -317) T) ((-142 . -625) 142415) ((-142 . -626) 142374) ((-329 . -909) 142278) ((-1023 . -21) T) ((-990 . -25) T) ((-931 . -21) T) ((-931 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-855 . -423) 142262) ((-48 . -1068) T) ((-1309 . -1301) 142246) ((-1307 . -1301) 142230) ((-1054 . -616) 142205) ((-326 . -626) 142066) ((-326 . -625) 142048) ((-323 . -626) NIL) ((-323 . -625) 142030) ((-48 . -248) T) ((-48 . -238) T) ((-666 . -296) 141991) ((-562 . -240) 141941) ((-140 . -625) 141908) ((-137 . -625) 141890) ((-115 . -625) 141872) ((-489 . -38) 141837) ((-1311 . -1308) 141816) ((-1302 . -132) T) ((-1310 . -1077) T) ((-1101 . -102) T) ((-88 . -1237) T) ((-512 . -319) NIL) ((-1019 . -107) 141800) ((-902 . -1119) T) ((-898 . -1119) T) ((-1287 . -663) 141784) ((-1287 . -384) 141768) ((-337 . -1237) T) ((-605 . -862) T) ((-1161 . -1119) T) ((-1161 . -1072) 141708) ((-103 . -526) 141641) ((-944 . -625) 141623) ((-354 . -738) T) ((-30 . -625) 141605) ((-878 . -1119) T) ((-855 . -1077) 141584) ((-40 . -660) 141491) ((-227 . -1241) T) ((-419 . -1077) T) ((-1178 . -152) 141473) ((-1018 . -300) 141424) ((-629 . -1119) T) ((-227 . -568) T) ((-329 . -1268) 141408) ((-329 . -1265) 141378) ((-713 . -658) 141350) ((-1209 . -1213) 141329) ((-1094 . -625) 141311) ((-1209 . -107) 141261) ((-659 . -152) 141245) ((-644 . -152) 141191) ((-117 . -658) 141163) ((-491 . -1213) 141142) ((-499 . -148) T) ((-499 . -146) NIL) ((-1139 . -626) 141057) ((-450 . -625) 141039) ((-219 . -148) T) ((-219 . -146) NIL) ((-1139 . -625) 141021) ((-130 . -102) T) ((-52 . -102) T) ((-1251 . -651) 140973) ((-491 . -107) 140923) ((-1012 . -23) T) ((-1311 . -38) 140893) ((-1192 . -1131) T) ((-1144 . -1131) T) ((-1081 . -1241) T) ((-245 . -234) 140784) ((-321 . -102) T) ((-866 . -1131) T) ((-969 . -1241) 140763) ((-493 . -1241) 140742) ((-1081 . -568) T) ((-969 . -568) 140673) ((-1192 . -23) T) ((-1170 . -1102) T) ((-1144 . -23) T) ((-866 . -23) T) ((-493 . -568) 140604) ((-1161 . -729) 140536) ((-682 . -1070) 140520) ((-1165 . -526) 140453) ((-682 . -652) 140437) ((-1054 . -626) NIL) ((-1054 . -625) 140419) ((-96 . -1102) T) ((-1316 . -1075) 140406) ((-878 . -729) 140376) ((-1316 . -111) 140361) ((-1231 . -47) 140330) ((-1187 . -862) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1123 . -1119) T) ((-1022 . -1119) T) ((-62 . -625) 140312) ((-1099 . -909) 140181) ((-1043 . -804) T) ((-1043 . -807) T) ((-1279 . -25) T) ((-1279 . -21) T) ((-1272 . -21) T) ((-1272 . -25) T) ((-882 . -660) 140168) ((-1251 . -21) T) ((-1251 . -25) T) ((-1046 . -152) 140152) ((-1023 . -234) 140139) ((-884 . -832) 140118) ((-884 . -937) T) ((-724 . -296) 140045) ((-608 . -21) T) ((-350 . -658) 140004) ((-108 . -909) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -658) 139921) ((-40 . -738) T) ((-224 . -526) 139854) ((-607 . -25) T) ((-488 . -152) 139838) ((-475 . -152) 139822) ((-938 . -806) T) ((-938 . -738) T) ((-783 . -805) T) ((-783 . -806) T) ((-518 . -1119) T) ((-514 . -1119) T) ((-783 . -738) T) ((-227 . -374) T) ((-1309 . -1070) 139806) ((-1307 . -1070) 139790) ((-1309 . -652) 139760) ((-1176 . -1119) 139738) ((-883 . -1241) T) ((-1307 . -652) 139708) ((-666 . -625) 139690) ((-883 . -568) T) ((-706 . -379) NIL) ((-44 . -1070) 139674) ((-1316 . -628) 139656) ((-1310 . -1119) T) ((-682 . -102) T) ((-370 . -1294) 139640) ((-364 . -1294) 139624) ((-44 . -652) 139608) ((-356 . -1294) 139592) ((-560 . -102) T) ((-1231 . -1237) T) ((-532 . -862) 139571) ((-499 . -237) T) ((-219 . -237) T) ((-1065 . -1119) T) ((-829 . -464) 139550) ((-153 . -1070) 139534) ((-1065 . -1090) 139463) ((-1046 . -995) 139432) ((-831 . -1131) T) ((-1022 . -729) 139377) ((-153 . -652) 139361) ((-398 . -1131) T) ((-488 . -995) 139330) ((-475 . -995) 139299) ((-110 . -152) 139281) ((-73 . -625) 139263) ((-906 . -625) 139245) ((-1099 . -736) 139224) ((-1316 . -1068) T) ((-828 . -651) 139172) ((-304 . -1077) 139114) ((-171 . -1241) 139019) ((-227 . -1131) T) ((-334 . -23) T) ((-1187 . -1011) 138971) ((-855 . -1119) T) ((-1273 . -1075) 138876) ((-1145 . -752) 138855) ((-1271 . -937) 138834) ((-1250 . -937) 138813) ((-882 . -738) T) ((-171 . -568) 138724) ((-592 . -660) 138711) ((-576 . -660) 138683) ((-419 . -1119) T) ((-270 . -1119) T) ((-215 . -625) 138665) ((-507 . -660) 138615) ((-227 . -23) T) ((-1250 . -832) 138568) ((-1309 . -102) T) ((-365 . -1306) 138545) ((-1307 . -102) T) ((-1273 . -111) 138437) ((-1132 . -909) 138304) ((-827 . -1070) 138205) ((-827 . -652) 138127) ((-145 . -625) 138109) ((-1012 . -132) T) ((-44 . -102) T) ((-245 . -862) 138060) ((-1260 . -1241) 138039) ((-103 . -501) 138023) ((-1310 . -729) 137993) ((-1106 . -47) 137954) ((-1081 . -1131) T) ((-969 . -1131) T) ((-128 . -34) T) ((-122 . -34) T) ((-794 . -47) 137931) ((-792 . -47) 137903) ((-1260 . -568) 137814) ((-365 . -379) T) ((-493 . -1131) T) ((-1192 . -132) T) ((-1144 . -132) T) ((-466 . -47) 137793) ((-883 . -374) T) ((-866 . -132) T) ((-153 . -102) T) ((-1081 . -23) T) ((-969 . -23) T) ((-583 . -568) T) ((-828 . -25) T) ((-828 . -21) T) ((-1161 . -526) 137726) ((-604 . -1102) T) ((-598 . -1057) 137710) ((-1273 . -628) 137584) ((-493 . -23) T) ((-362 . -1077) T) ((-1231 . -915) 137565) ((-682 . -319) 137503) ((-1132 . -1294) 137473) ((-711 . -660) 137438) ((-1023 . -862) T) ((-1022 . -174) T) ((-980 . -146) 137417) ((-647 . -1119) T) ((-619 . -1119) T) ((-980 . -148) 137396) ((-747 . -148) 137375) ((-747 . -146) 137354) ((-670 . -1237) T) ((-990 . -862) T) ((-1279 . -234) 137307) ((-1272 . -234) 137253) ((-1251 . -234) 137070) ((-845 . -658) 136987) ((-486 . -937) 136966) ((-329 . -1070) 136801) ((-326 . -1075) 136711) ((-323 . -1075) 136640) ((-1018 . -296) 136598) ((-419 . -729) 136550) ((-329 . -652) 136391) ((-607 . -234) 136344) ((-713 . -860) T) ((-1273 . -1068) T) ((-326 . -111) 136240) ((-323 . -111) 136153) ((-981 . -102) T) ((-827 . -102) 135905) ((-724 . -626) NIL) ((-724 . -625) 135887) ((-1273 . -336) 135831) ((-670 . -1057) 135727) ((-1106 . -1237) T) ((-1054 . -298) 135702) ((-592 . -738) T) ((-576 . -806) T) ((-171 . -374) 135653) ((-576 . -803) T) ((-576 . -738) T) ((-507 . -738) T) ((-794 . -1237) T) ((-792 . -1237) T) ((-1165 . -501) 135637) ((-466 . -1237) T) ((-1106 . -899) NIL) ((-883 . -1131) T) ((-118 . -926) NIL) ((-1309 . -1308) 135613) ((-1307 . -1308) 135592) ((-794 . -899) NIL) ((-792 . -899) 135451) ((-1302 . -25) T) ((-1302 . -21) T) ((-1234 . -102) 135429) ((-1125 . -407) T) ((-635 . -660) 135416) ((-466 . -899) NIL) ((-687 . -102) 135394) ((-1106 . -1057) 135221) ((-883 . -23) T) ((-794 . -1057) 135080) ((-792 . -1057) 134937) ((-118 . -660) 134882) ((-466 . -1057) 134758) ((-326 . -628) 134322) ((-323 . -628) 134205) ((-402 . -658) 134174) ((-661 . -1057) 134158) ((-639 . -102) T) ((-593 . -1237) T) ((-530 . -1237) T) ((-224 . -501) 134142) ((-1287 . -34) T) ((-633 . -658) 134101) ((-299 . -1070) 134088) ((-137 . -628) 134072) ((-299 . -652) 134059) ((-647 . -729) 134043) ((-619 . -729) 134027) ((-682 . -38) 133987) ((-329 . -102) T) ((-85 . -625) 133969) ((-50 . -1057) 133953) ((-1139 . -1075) 133940) ((-1106 . -388) 133924) ((-794 . -388) 133908) ((-711 . -738) T) ((-711 . -806) T) ((-711 . -803) T) ((-593 . -1057) 133895) ((-530 . -1057) 133872) ((-60 . -57) 133834) ((-334 . -132) T) ((-326 . -1068) 133724) ((-323 . -1068) T) ((-171 . -1131) T) ((-792 . -388) 133708) ((-45 . -152) 133658) ((-1023 . -1011) 133640) ((-466 . -388) 133624) ((-419 . -174) T) ((-326 . -248) 133603) ((-323 . -248) T) ((-323 . -238) NIL) ((-304 . -1119) 133385) ((-227 . -132) T) ((-1139 . -111) 133370) ((-171 . -23) T) ((-811 . -148) 133349) ((-811 . -146) 133328) ((-258 . -651) 133234) ((-257 . -651) 133140) ((-329 . -294) 133106) ((-1176 . -526) 133039) ((-489 . -658) 132989) ((-494 . -909) 132856) ((-1152 . -1119) T) ((-227 . -1079) T) ((-827 . -319) 132794) ((-1106 . -915) 132729) ((-794 . -915) 132672) ((-792 . -915) 132656) ((-1309 . -38) 132626) ((-1307 . -38) 132596) ((-1260 . -1131) T) ((-867 . -1131) T) ((-466 . -915) 132573) ((-870 . -1119) T) ((-1260 . -23) T) ((-1139 . -628) 132545) ((-1081 . -132) T) ((-583 . -1131) T) ((-867 . -23) T) ((-635 . -738) T) ((-366 . -937) T) ((-363 . -937) T) ((-299 . -102) T) ((-355 . -937) T) ((-989 . -1102) T) ((-969 . -132) T) ((-828 . -234) 132490) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-118 . -738) T) ((-1065 . -526) 132391) ((-706 . -926) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -237) 132342) ((-687 . -319) 132280) ((-647 . -773) T) ((-619 . -773) T) ((-1251 . -862) NIL) ((-1099 . -1070) 132190) ((-1022 . -300) T) ((-706 . -660) 132140) ((-258 . -25) T) ((-362 . -1119) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 132124) ((-2 . -102) T) ((-927 . -937) T) ((-1099 . -652) 131992) ((-494 . -1294) 131962) ((-1139 . -1068) T) ((-723 . -317) T) ((-370 . -1070) 131914) ((-364 . -1070) 131866) ((-356 . -1070) 131818) ((-370 . -652) 131770) ((-225 . -1057) 131747) ((-364 . -652) 131699) ((-108 . -1070) 131649) ((-356 . -652) 131601) ((-304 . -729) 131543) ((-713 . -1077) T) ((-499 . -464) T) ((-419 . -526) 131455) ((-108 . -652) 131405) ((-219 . -464) T) ((-1139 . -238) T) ((-305 . -152) 131355) ((-1018 . -626) 131316) ((-1018 . -625) 131298) ((-1008 . -625) 131280) ((-117 . -1077) T) ((-666 . -1075) 131264) ((-227 . -505) T) ((-411 . -625) 131246) ((-411 . -626) 131223) ((-1073 . -1294) 131193) ((-666 . -111) 131172) ((-682 . -917) 131095) ((-1161 . -501) 131079) ((-1311 . -658) 131038) ((-392 . -658) 131007) ((-63 . -453) T) ((-63 . -407) T) ((-1179 . -102) T) ((-883 . -132) T) ((-496 . -102) 130985) ((-1316 . -379) T) ((-1099 . -102) T) ((-1080 . -102) T) ((-362 . -729) 130930) ((-743 . -148) 130909) ((-743 . -146) 130888) ((-666 . -628) 130806) ((-1043 . -660) 130743) ((-535 . -1119) 130721) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1119) T) ((-365 . -660) 130666) ((-1192 . -651) 130614) ((-1144 . -651) 130562) ((-396 . -521) 130541) ((-845 . -860) 130520) ((-390 . -1241) T) ((-706 . -738) T) ((-1251 . -1011) 130472) ((-350 . -1077) T) ((-112 . -1237) T) ((-176 . -1077) T) ((-103 . -625) 130404) ((-1194 . -146) 130383) ((-1194 . -148) 130362) ((-390 . -568) T) ((-1193 . -148) 130341) ((-1193 . -146) 130320) ((-1187 . -146) 130227) ((-419 . -300) T) ((-1187 . -148) 130134) ((-1145 . -148) 130113) ((-1145 . -146) 130092) ((-329 . -38) 129933) ((-171 . -132) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-666 . -1068) T) ((-48 . -660) 129883) ((-1132 . -1070) 129784) ((-906 . -628) 129761) ((-1132 . -652) 129683) ((-1186 . -102) T) ((-1013 . -102) T) ((-1012 . -21) T) ((-128 . -1029) 129667) ((-122 . -1029) 129651) ((-1012 . -25) T) ((-918 . -120) 129635) ((-1178 . -102) T) ((-1260 . -132) T) ((-1192 . -25) T) ((-354 . -1237) T) ((-1192 . -21) T) ((-867 . -132) T) ((-1144 . -25) T) ((-1144 . -21) T) ((-866 . -25) T) ((-866 . -21) T) ((-794 . -317) 129614) ((-1179 . -319) 129409) ((-1176 . -501) 129393) ((-1169 . -152) 129343) ((-659 . -102) 129321) ((-644 . -102) T) ((-1165 . -625) 129283) ((-583 . -132) T) ((-633 . -860) 129262) ((-1165 . -626) 129223) ((-1043 . -803) T) ((-1043 . -806) T) ((-1043 . -738) T) ((-827 . -917) 129092) ((-724 . -1075) 128915) ((-496 . -319) 128853) ((-465 . -429) 128823) ((-362 . -174) T) ((-299 . -38) 128810) ((-258 . -234) 128701) ((-257 . -234) 128592) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1057) 128569) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-724 . -111) 128378) ((-365 . -738) T) ((-682 . -272) 128362) ((-682 . -232) 128346) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 128295) ((-108 . -319) NIL) ((-72 . -407) T) ((-1132 . -102) 128047) ((-845 . -423) 128031) ((-1139 . -807) T) ((-1139 . -804) T) ((-713 . -1119) T) ((-590 . -625) 128013) ((-390 . -374) T) ((-171 . -505) 127991) ((-224 . -625) 127923) ((-135 . -1119) T) ((-117 . -1119) T) ((-983 . -1237) T) ((-48 . -738) T) ((-1065 . -501) 127888) ((-142 . -437) 127870) ((-142 . -379) T) ((-1046 . -102) T) ((-524 . -521) 127849) ((-724 . -628) 127605) ((-1194 . -237) 127564) ((-488 . -102) T) ((-475 . -102) T) ((-1193 . -237) 127516) ((-1187 . -237) 127339) ((-1053 . -1131) T) ((-329 . -917) 127245) ((-1244 . -625) 127227) ((-1201 . -1057) 127163) ((-1194 . -35) 127129) ((-1194 . -95) 127095) ((-1194 . -1225) 127061) ((-1194 . -1222) 127027) ((-1193 . -1222) 126993) ((-1193 . -1225) 126959) ((-1178 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1099 . -1171) 126938) ((-40 . -1237) T) ((-1193 . -95) 126904) ((-1053 . -23) T) ((-1193 . -35) 126870) ((-583 . -505) T) ((-1187 . -1222) 126836) ((-1187 . -1225) 126802) ((-1187 . -95) 126768) ((-1187 . -35) 126734) ((-372 . -1131) T) ((-370 . -1171) 126713) ((-364 . -1171) 126692) ((-356 . -1171) 126671) ((-1123 . -296) 126627) ((-1145 . -35) 126593) ((-1145 . -95) 126559) ((-108 . -1171) T) ((-1145 . -1225) 126525) ((-845 . -1077) 126504) ((-659 . -319) 126442) ((-644 . -319) 126293) ((-1145 . -1222) 126259) ((-724 . -1068) T) ((-1081 . -651) 126241) ((-1099 . -38) 126109) ((-969 . -651) 126057) ((-1023 . -148) T) ((-1023 . -146) NIL) ((-390 . -1131) T) ((-334 . -25) T) ((-332 . -23) T) ((-960 . -862) 126036) ((-724 . -336) 126013) ((-493 . -651) 125961) ((-40 . -1057) 125849) ((-724 . -238) T) ((-713 . -729) 125836) ((-350 . -1119) T) ((-176 . -1119) T) ((-341 . -862) T) ((-430 . -464) 125786) ((-390 . -23) T) ((-370 . -38) 125751) ((-364 . -38) 125716) ((-356 . -38) 125681) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-848 . -1131) T) ((-108 . -38) 125631) ((-839 . -1131) T) ((-786 . -1119) T) ((-117 . -729) 125618) ((-684 . -1057) 125602) ((-624 . -102) T) ((-848 . -23) T) ((-839 . -23) T) ((-1176 . -296) 125554) ((-1132 . -319) 125492) ((-494 . -1070) 125393) ((-1121 . -240) 125377) ((-64 . -408) T) ((-64 . -407) T) ((-1170 . -102) T) ((-110 . -102) T) ((-494 . -652) 125299) ((-40 . -388) 125276) ((-96 . -102) T) ((-665 . -864) 125260) ((-1192 . -234) 125247) ((-1154 . -1102) T) ((-1081 . -21) T) ((-1081 . -25) T) ((-1073 . -1070) 125231) ((-827 . -272) 125200) ((-827 . -232) 125169) ((-969 . -25) T) ((-969 . -21) T) ((-1073 . -652) 125111) ((-633 . -1077) T) ((-1139 . -379) T) ((-1046 . -319) 125049) ((-682 . -658) 125008) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1070) 124992) ((-902 . -625) 124974) ((-898 . -625) 124956) ((-535 . -526) 124889) ((-258 . -862) 124840) ((-257 . -862) 124791) ((-396 . -652) 124761) ((-883 . -651) 124738) ((-488 . -319) 124676) ((-475 . -319) 124614) ((-362 . -300) T) ((-1176 . -1275) 124598) ((-1161 . -625) 124560) ((-1161 . -626) 124521) ((-1159 . -102) T) ((-1018 . -1075) 124417) ((-40 . -915) 124369) ((-1176 . -616) 124346) ((-1316 . -660) 124333) ((-1082 . -152) 124279) ((-499 . -909) NIL) ((-878 . -502) 124256) ((-1018 . -111) 124138) ((-884 . -1241) T) ((-219 . -909) NIL) ((-350 . -729) 124122) ((-878 . -625) 124084) ((-176 . -729) 124016) ((-884 . -568) T) ((-419 . -296) 123974) ((-245 . -237) 123871) ((-108 . -412) 123853) ((-84 . -395) T) ((-84 . -407) T) ((-713 . -174) T) ((-629 . -625) 123835) ((-99 . -738) T) ((-494 . -102) 123587) ((-99 . -485) T) ((-117 . -174) T) ((-1309 . -658) 123546) ((-1307 . -658) 123505) ((-171 . -651) 123453) ((-1099 . -917) 123324) ((-1073 . -102) T) ((-1018 . -628) 123214) ((-883 . -25) T) ((-827 . -243) 123193) ((-883 . -21) T) ((-830 . -102) T) ((-44 . -658) 123136) ((-1023 . -237) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 123114) ((-128 . -1237) T) ((-122 . -1237) T) ((-108 . -917) NIL) ((-829 . -1070) 123065) ((-829 . -652) 123007) ((-1053 . -132) T) ((-682 . -378) 122991) ((-153 . -658) 122950) ((-647 . -296) 122908) ((-619 . -296) 122866) ((-1316 . -738) T) ((-1018 . -1068) T) ((-1260 . -651) 122814) ((-1123 . -625) 122796) ((-1022 . -625) 122778) ((-576 . -1237) T) ((-507 . -1237) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1119) T) ((-1022 . -626) 122762) ((-1018 . -248) 122741) ((-1018 . -238) 122720) ((-1279 . -146) 122699) ((-1279 . -148) 122678) ((-845 . -1119) T) ((-1272 . -148) 122657) ((-1272 . -146) 122636) ((-1271 . -1241) 122615) ((-1251 . -146) 122522) ((-1251 . -148) 122429) ((-1250 . -1241) 122408) ((-390 . -132) T) ((-227 . -234) 122395) ((-576 . -899) 122377) ((0 . -1119) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1119) T) ((-1273 . -660) 122282) ((-1271 . -568) 122233) ((-726 . -1131) T) ((-1250 . -568) 122184) ((-576 . -1057) 122166) ((-607 . -148) 122145) ((-607 . -146) 122124) ((-507 . -1057) 122067) ((-1154 . -1156) T) ((-87 . -395) T) ((-87 . -407) T) ((-884 . -374) T) ((-848 . -132) T) ((-839 . -132) T) ((-981 . -658) 122011) ((-726 . -23) T) ((-518 . -625) 121977) ((-514 . -625) 121959) ((-827 . -658) 121738) ((-1311 . -1077) T) ((-390 . -1079) T) ((-1045 . -1119) 121716) ((-55 . -1057) 121698) ((-918 . -34) T) ((-494 . -319) 121636) ((-604 . -102) T) ((-1176 . -626) 121597) ((-1176 . -625) 121529) ((-1198 . -1070) 121412) ((-45 . -102) T) ((-829 . -102) T) ((-1198 . -652) 121309) ((-1260 . -25) T) ((-1260 . -21) T) ((-1081 . -234) 121296) ((-867 . -25) T) ((-44 . -378) 121280) ((-867 . -21) T) ((-743 . -464) 121231) ((-1310 . -625) 121213) ((-1299 . -1070) 121183) ((-1073 . -319) 121121) ((-683 . -1102) T) ((-618 . -1102) T) ((-402 . -1119) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1102) T) ((-162 . -1102) T) ((-157 . -1102) T) ((-155 . -1102) T) ((-1299 . -652) 121091) ((-633 . -1119) T) ((-711 . -899) 121073) ((-1287 . -1237) T) ((-229 . -319) 121011) ((-145 . -379) T) ((-1065 . -626) 120953) ((-1065 . -625) 120896) ((-323 . -926) NIL) ((-1245 . -856) T) ((-1132 . -917) 120765) ((-711 . -1057) 120710) ((-723 . -937) T) ((-486 . -1241) 120689) ((-1193 . -464) 120668) ((-1187 . -464) 120647) ((-340 . -102) T) ((-884 . -1131) T) ((-329 . -658) 120529) ((-326 . -660) 120258) ((-323 . -660) 120187) ((-486 . -568) 120138) ((-350 . -526) 120104) ((-562 . -152) 120054) ((-40 . -317) T) ((-855 . -625) 120036) ((-713 . -300) T) ((-884 . -23) T) ((-390 . -505) T) ((-1099 . -272) 120006) ((-1099 . -232) 119976) ((-524 . -102) T) ((-419 . -626) 119783) ((-419 . -625) 119765) ((-270 . -625) 119747) ((-117 . -300) T) ((-1273 . -738) T) ((-635 . -1237) T) ((-1312 . -1119) T) ((-1271 . -374) 119726) ((-1250 . -374) 119705) ((-1300 . -34) T) ((-1245 . -1119) T) ((-118 . -1237) T) ((-108 . -272) 119687) ((-108 . -232) 119669) ((-1198 . -102) T) ((-489 . -1119) T) ((-535 . -501) 119653) ((-749 . -34) T) ((-665 . -1070) 119637) ((-665 . -652) 119607) ((-883 . -234) NIL) ((-142 . -34) T) ((-118 . -897) 119584) ((-118 . -899) NIL) ((-635 . -1057) 119467) ((-1299 . -102) T) ((-1279 . -237) 119426) ((-656 . -862) 119405) ((-1272 . -237) 119357) ((-1251 . -237) 119180) ((-305 . -102) T) ((-724 . -379) 119159) ((-118 . -1057) 119136) ((-402 . -729) 119120) ((-607 . -237) 119079) ((-633 . -729) 119063) ((-1124 . -1237) T) ((-45 . -319) 118867) ((-828 . -146) 118846) ((-828 . -148) 118825) ((-299 . -658) 118797) ((-1310 . -393) 118776) ((-831 . -862) T) ((-1289 . -1119) T) ((-1179 . -231) 118723) ((-398 . -862) 118702) ((-1279 . -35) 118668) ((-1279 . -1225) 118634) ((-1279 . -1222) 118600) ((-1272 . -1222) 118566) ((-527 . -132) T) ((-1272 . -1225) 118532) ((-1251 . -1222) 118498) ((-1251 . -1225) 118464) ((-1279 . -95) 118430) ((-1272 . -95) 118396) ((-430 . -909) 118317) ((-647 . -625) 118286) ((-619 . -625) 118255) ((-227 . -862) T) ((-1272 . -35) 118221) ((-1271 . -1131) T) ((-1251 . -95) 118187) ((-1139 . -660) 118159) ((-1251 . -35) 118125) ((-1250 . -1131) T) ((-605 . -152) 118107) ((-1099 . -360) 118086) ((-176 . -300) T) ((-118 . -388) 118063) ((-118 . -349) 118040) ((-171 . -234) 117965) ((-882 . -317) T) ((-323 . -806) NIL) ((-323 . -803) NIL) ((-326 . -738) 117814) ((-323 . -738) T) ((-486 . -374) 117793) ((-370 . -360) 117772) ((-364 . -360) 117751) ((-356 . -360) 117730) ((-326 . -485) 117709) ((-1271 . -23) T) ((-1250 . -23) T) ((-730 . -1131) T) ((-726 . -132) T) ((-665 . -102) T) ((-489 . -729) 117674) ((-45 . -292) 117624) ((-105 . -1119) T) ((-68 . -625) 117606) ((-989 . -102) T) ((-876 . -102) T) ((-635 . -915) 117565) ((-1311 . -1119) T) ((-392 . -1119) T) ((-1260 . -234) 117552) ((-1236 . -1119) T) ((-82 . -1237) T) ((-1132 . -272) 117521) ((-1081 . -862) T) ((-118 . -915) NIL) ((-794 . -937) 117500) ((-725 . -862) T) ((-543 . -1119) T) ((-512 . -1119) T) ((-366 . -1241) T) ((-363 . -1241) T) ((-355 . -1241) T) ((-273 . -1241) 117479) ((-253 . -1241) 117458) ((-545 . -872) T) ((-1132 . -232) 117427) ((-1178 . -840) T) ((-1161 . -1075) 117411) ((-402 . -773) T) ((-706 . -1237) T) ((-703 . -1057) 117395) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 117326) ((-253 . -568) 117257) ((-537 . -1102) T) ((-1161 . -111) 117236) ((-465 . -756) 117206) ((-878 . -1075) 117176) ((-829 . -38) 117118) ((-706 . -897) 117100) ((-706 . -899) 117082) ((-305 . -319) 116886) ((-1176 . -298) 116863) ((-927 . -1241) T) ((-1099 . -658) 116758) ((-1023 . -464) T) ((-682 . -423) 116742) ((-878 . -111) 116707) ((-931 . -464) T) ((-706 . -1057) 116652) ((-927 . -568) T) ((-545 . -625) 116634) ((-593 . -937) T) ((-499 . -1070) 116584) ((-486 . -1131) T) ((-530 . -937) T) ((-494 . -917) 116453) ((-65 . -625) 116435) ((-219 . -1070) 116385) ((-499 . -652) 116335) ((-370 . -658) 116272) ((-364 . -658) 116209) ((-356 . -658) 116146) ((-644 . -231) 116092) ((-219 . -652) 116042) ((-108 . -658) 115992) ((-486 . -23) T) ((-1139 . -806) T) ((-884 . -132) T) ((-1139 . -803) T) ((-1302 . -1304) 115971) ((-1139 . -738) T) ((-666 . -660) 115945) ((-304 . -625) 115686) ((-1161 . -628) 115604) ((-1054 . -34) T) ((-828 . -237) 115555) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1311 . -729) 115525) ((-706 . -388) 115507) ((-706 . -349) 115489) ((-489 . -174) T) ((-392 . -729) 115459) ((-878 . -628) 115394) ((-883 . -862) NIL) ((-576 . -1041) T) ((-507 . -1041) T) ((-1152 . -625) 115376) ((-1132 . -243) 115355) ((-216 . -102) T) ((-1169 . -102) T) ((-71 . -625) 115337) ((-1161 . -1068) T) ((-1198 . -38) 115234) ((-870 . -625) 115216) ((-576 . -557) T) ((-682 . -1077) T) ((-743 . -966) 115169) ((-365 . -1237) T) ((-1161 . -238) 115148) ((-1101 . -1119) T) ((-1053 . -25) T) ((-1053 . -21) T) ((-1022 . -1075) 115093) ((-922 . -102) T) ((-878 . -1068) T) ((-706 . -915) NIL) ((-366 . -339) 115077) ((-366 . -374) T) ((-363 . -339) 115061) ((-363 . -374) T) ((-355 . -339) 115045) ((-355 . -374) T) ((-499 . -102) T) ((-1299 . -38) 115015) ((-558 . -862) T) ((-535 . -699) 114965) ((-219 . -102) T) ((-1043 . -1057) 114845) ((-1022 . -111) 114774) ((-1194 . -992) 114743) ((-1193 . -992) 114705) ((-532 . -152) 114689) ((-1099 . -381) 114668) ((-362 . -625) 114650) ((-332 . -21) T) ((-365 . -1057) 114627) ((-332 . -25) T) ((-1187 . -992) 114596) ((-48 . -1237) T) ((-76 . -625) 114578) ((-1145 . -992) 114545) ((-711 . -317) T) ((-130 . -856) T) ((-927 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-927 . -339) 114532) ((-86 . -625) 114514) ((-711 . -1041) T) ((-689 . -862) T) ((-1271 . -132) T) ((-1250 . -132) T) ((-918 . -1029) 114498) ((-848 . -21) T) ((-48 . -1057) 114441) ((-848 . -25) T) ((-839 . -25) T) ((-839 . -21) T) ((-1132 . -658) 114220) ((-1309 . -1077) T) ((-561 . -102) T) ((-1307 . -1077) T) ((-666 . -738) T) ((-1123 . -630) 114123) ((-1022 . -628) 114053) ((-1310 . -1075) 114037) ((-827 . -423) 114006) ((-103 . -120) 113990) ((-130 . -1119) T) ((-52 . -1119) T) ((-943 . -625) 113972) ((-883 . -1011) 113949) ((-835 . -102) T) ((-1310 . -111) 113928) ((-743 . -909) 113903) ((-665 . -38) 113873) ((-583 . -862) T) ((-366 . -1131) T) ((-363 . -1131) T) ((-355 . -1131) T) ((-273 . -1131) T) ((-253 . -1131) T) ((-1169 . -319) 113677) ((-1107 . -234) 113664) ((-635 . -317) 113643) ((-676 . -23) T) ((-536 . -1102) T) ((-321 . -1119) T) ((-494 . -272) 113612) ((-494 . -232) 113581) ((-153 . -1077) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1022 . -1068) T) ((-724 . -926) 113560) ((-1194 . -909) 113448) ((-1193 . -909) 113329) ((-1187 . -909) 113065) ((-1176 . -628) 113042) ((-1022 . -238) 113014) ((-1022 . -248) T) ((-1145 . -909) 112996) ((-118 . -1041) NIL) ((-927 . -1131) T) ((-1272 . -464) 112975) ((-1251 . -464) 112954) ((-535 . -625) 112886) ((-724 . -660) 112775) ((-419 . -1075) 112727) ((-516 . -625) 112709) ((-927 . -23) T) ((-499 . -319) NIL) ((-1310 . -628) 112665) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 112603) ((-827 . -1077) 112581) ((-749 . -1117) 112565) ((-1271 . -505) 112531) ((-1250 . -505) 112497) ((-560 . -856) T) ((-142 . -1117) 112479) ((-489 . -300) T) ((-1310 . -1068) T) ((-258 . -237) 112376) ((-257 . -237) 112273) ((-1242 . -102) T) ((-1082 . -102) T) ((-855 . -628) 112141) ((-512 . -526) NIL) ((-494 . -243) 112120) ((-419 . -628) 112018) ((-980 . -1070) 111901) ((-747 . -1070) 111871) ((-980 . -652) 111768) ((-1192 . -146) 111747) ((-747 . -652) 111717) ((-465 . -1070) 111687) ((-1192 . -148) 111666) ((-1144 . -148) 111645) ((-1144 . -146) 111624) ((-647 . -1075) 111608) ((-619 . -1075) 111592) ((-465 . -652) 111562) ((-1194 . -1278) 111546) ((-1194 . -1265) 111523) ((-1193 . -1270) 111484) ((-682 . -1119) T) ((-682 . -1072) 111424) ((-1193 . -1265) 111394) ((-560 . -1119) T) ((-499 . -1171) T) ((-1193 . -1268) 111378) ((-1187 . -1249) 111339) ((-830 . -275) 111323) ((-219 . -1171) T) ((-354 . -937) T) ((-99 . -1237) T) ((-647 . -111) 111302) ((-619 . -111) 111281) ((-1187 . -1265) 111258) ((-855 . -1068) 111237) ((-1187 . -1247) 111221) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1070) 111195) ((-419 . -1068) T) ((-329 . -1077) T) ((-706 . -317) T) ((-430 . -652) 111169) ((-108 . -860) T) ((-724 . -738) T) ((-419 . -248) T) ((-419 . -238) 111148) ((-390 . -234) 111135) ((-499 . -38) 111085) ((-219 . -38) 111035) ((-486 . -505) 111001) ((-1244 . -379) T) ((-1178 . -1163) T) ((-1120 . -102) T) ((-839 . -234) 110974) ((-713 . -625) 110956) ((-713 . -626) 110871) ((-726 . -21) T) ((-726 . -25) T) ((-1154 . -102) T) ((-494 . -658) 110650) ((-245 . -909) 110517) ((-135 . -625) 110499) ((-117 . -625) 110481) ((-158 . -25) T) ((-1309 . -1119) T) ((-884 . -651) 110429) ((-1307 . -1119) T) ((-980 . -102) T) ((-747 . -102) T) ((-727 . -102) T) ((-465 . -102) T) ((-828 . -464) 110380) ((-44 . -1119) T) ((-1107 . -862) T) ((-1082 . -319) 110231) ((-676 . -132) T) ((-1073 . -658) 110200) ((-682 . -729) 110184) ((-299 . -1077) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -658) 110153) ((-430 . -102) T) ((-153 . -1119) T) ((-45 . -231) 110103) ((-1023 . -909) NIL) ((-811 . -1070) 110087) ((-975 . -862) 110066) ((-1018 . -660) 109968) ((-811 . -652) 109952) ((-245 . -1294) 109922) ((-1043 . -317) T) ((-304 . -1075) 109843) ((-927 . -132) T) ((-40 . -937) T) ((-499 . -412) 109825) ((-365 . -317) T) ((-219 . -412) 109807) ((-1099 . -423) 109791) ((-304 . -111) 109707) ((-1203 . -862) T) ((-1202 . -862) T) ((-884 . -25) T) ((-884 . -21) T) ((-1273 . -47) 109651) ((-350 . -625) 109633) ((-1192 . -237) T) ((-227 . -148) T) ((-176 . -625) 109615) ((-786 . -625) 109597) ((-129 . -862) T) ((-620 . -240) 109544) ((-487 . -240) 109494) ((-1309 . -729) 109464) ((-48 . -317) T) ((-1307 . -729) 109434) ((-65 . -628) 109363) ((-981 . -1119) T) ((-827 . -1119) 109115) ((-322 . -102) T) ((-918 . -1237) T) ((-48 . -1041) T) ((-1250 . -651) 109023) ((-701 . -102) 109001) ((-44 . -729) 108985) ((-562 . -102) T) ((-304 . -628) 108916) ((-67 . -394) T) ((-499 . -917) NIL) ((-67 . -407) T) ((-219 . -917) NIL) ((-674 . -23) T) ((-829 . -658) 108852) ((-682 . -773) T) ((-1234 . -1119) 108830) ((-362 . -1075) 108775) ((-687 . -1119) 108753) ((-1081 . -148) T) ((-969 . -148) 108732) ((-969 . -146) 108711) ((-811 . -102) T) ((-153 . -729) 108695) ((-493 . -148) 108674) ((-493 . -146) 108653) ((-362 . -111) 108582) ((-1099 . -1077) T) ((-332 . -862) 108561) ((-1279 . -992) 108530) ((-639 . -1119) T) ((-1272 . -992) 108492) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 108442) ((-370 . -1077) T) ((-364 . -1077) T) ((-356 . -1077) T) ((-304 . -1068) 108384) ((-1251 . -992) 108353) ((-390 . -862) T) ((-108 . -1077) T) ((-1018 . -738) T) ((-882 . -937) T) ((-855 . -807) 108332) ((-855 . -804) 108311) ((-430 . -319) 108250) ((-480 . -102) T) ((-607 . -992) 108219) ((-329 . -1119) T) ((-419 . -807) 108198) ((-419 . -804) 108177) ((-512 . -501) 108159) ((-1273 . -1057) 108125) ((-1271 . -21) T) ((-1271 . -25) T) ((-1250 . -21) T) ((-1250 . -25) T) ((-827 . -729) 108067) ((-362 . -628) 107997) ((-711 . -416) T) ((-1300 . -1237) T) ((-1132 . -423) 107966) ((-618 . -102) T) ((-1096 . -1237) T) ((-1022 . -379) NIL) ((-683 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1198 . -658) 107876) ((-749 . -1237) T) ((-743 . -1070) 107719) ((-44 . -773) T) ((-743 . -652) 107568) ((-605 . -102) T) ((-665 . -668) 107552) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1237) T) ((-883 . -148) T) ((-883 . -146) NIL) ((-1299 . -658) 107497) ((-1279 . -909) 107385) ((-1236 . -93) T) ((-362 . -1068) T) ((-227 . -237) T) ((-70 . -394) T) ((-70 . -407) T) ((-1185 . -102) T) ((-682 . -526) 107318) ((-1272 . -909) 107199) ((-1251 . -909) 106935) ((-701 . -319) 106873) ((-980 . -38) 106770) ((-1200 . -625) 106752) ((-747 . -38) 106722) ((-562 . -319) 106526) ((-1194 . -1070) 106409) ((-326 . -1237) T) ((-362 . -238) T) ((-362 . -248) T) ((-323 . -1237) T) ((-299 . -1119) T) ((-1193 . -1070) 106244) ((-1187 . -1070) 106034) ((-1145 . -1070) 105917) ((-1194 . -652) 105814) ((-1193 . -652) 105655) ((-723 . -1241) T) ((-1187 . -652) 105451) ((-1176 . -663) 105435) ((-1145 . -652) 105332) ((-1231 . -568) 105311) ((-831 . -397) 105295) ((-723 . -568) T) ((-607 . -909) 105206) ((-326 . -897) 105190) ((-326 . -899) 105115) ((-137 . -1237) T) ((-323 . -897) 105076) ((-323 . -899) NIL) ((-811 . -319) 105041) ((-329 . -729) 104882) ((-398 . -397) 104866) ((-334 . -333) 104843) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 104817) ((-326 . -1057) 104480) ((-227 . -1222) T) ((-227 . -1225) T) ((-3 . -625) 104462) ((-323 . -1057) 104392) ((-884 . -234) 104337) ((-2 . -1119) T) ((-2 . |RecordCategory|) T) ((-1132 . -1077) 104315) ((-845 . -625) 104297) ((-1081 . -237) T) ((-592 . -937) T) ((-576 . -832) T) ((-576 . -937) T) ((-507 . -937) T) ((-137 . -1057) 104281) ((-227 . -95) T) ((-171 . -148) 104260) ((-75 . -453) T) ((0 . -625) 104242) ((-75 . -407) T) ((-171 . -146) 104193) ((-227 . -35) T) ((-49 . -625) 104175) ((-489 . -1077) T) ((-499 . -272) 104157) ((-499 . -232) 104139) ((-496 . -987) 104123) ((-219 . -272) 104105) ((-219 . -232) 104087) ((-81 . -453) T) ((-81 . -407) T) ((-1165 . -34) T) ((-743 . -102) T) ((-665 . -658) 104046) ((-1045 . -625) 104013) ((-512 . -296) 103963) ((-326 . -388) 103932) ((-323 . -388) 103893) ((-323 . -349) 103854) ((-1104 . -625) 103836) ((-828 . -966) 103783) ((-674 . -132) T) ((-1260 . -146) 103762) ((-1260 . -148) 103741) ((-1194 . -102) T) ((-1193 . -102) T) ((-1187 . -102) T) ((-1179 . -1119) T) ((-1145 . -102) T) ((-224 . -34) T) ((-299 . -729) 103728) ((-1179 . -622) 103704) ((-605 . -319) NIL) ((-1279 . -1278) 103688) ((-496 . -1119) 103666) ((-1169 . -231) 103616) ((-402 . -625) 103598) ((-522 . -862) T) ((-1139 . -1237) T) ((-1279 . -1265) 103575) ((-1272 . -1270) 103536) ((-1272 . -1265) 103506) ((-1272 . -1268) 103490) ((-1251 . -1249) 103451) ((-1251 . -1265) 103428) ((-1251 . -1247) 103412) ((-633 . -625) 103394) ((-1194 . -294) 103360) ((-711 . -937) T) ((-1193 . -294) 103326) ((-1187 . -294) 103292) ((-1145 . -294) 103258) ((-1099 . -1119) T) ((-1080 . -1119) T) ((-48 . -312) T) ((-326 . -915) 103224) ((-323 . -915) NIL) ((-1080 . -1087) 103203) ((-1139 . -899) 103185) ((-811 . -38) 103169) ((-273 . -651) 103117) ((-253 . -651) 103065) ((-713 . -1075) 103052) ((-607 . -1265) 103029) ((-1139 . -1057) 103011) ((-329 . -174) 102942) ((-370 . -1119) T) ((-364 . -1119) T) ((-356 . -1119) T) ((-512 . -19) 102924) ((-1121 . -152) 102908) ((-883 . -237) NIL) ((-108 . -1119) T) ((-117 . -1075) 102895) ((-723 . -374) T) ((-512 . -616) 102870) ((-713 . -111) 102855) ((-1312 . -625) 102822) ((-1312 . -502) 102804) ((-1271 . -234) 102750) ((-1250 . -234) 102603) ((-448 . -102) T) ((-888 . -1282) T) ((-256 . -102) T) ((-45 . -1168) 102553) ((-117 . -111) 102538) ((-1289 . -625) 102520) ((-1260 . -237) T) ((-1245 . -625) 102502) ((-1243 . -862) T) ((-647 . -732) T) ((-619 . -732) T) ((-1231 . -1131) T) ((-1231 . -23) T) ((-1192 . -464) 102433) ((-1187 . -319) 102318) ((-1186 . -1119) T) ((-827 . -526) 102251) ((-1054 . -1237) T) ((-245 . -1070) 102152) ((-1178 . -1119) T) ((-1161 . -660) 102090) ((-960 . -152) 102074) ((-1145 . -319) 102061) ((-1144 . -464) 102012) ((-245 . -652) 101934) ((-1106 . -568) 101865) ((-1106 . -1241) 101844) ((-1099 . -729) 101712) ((-537 . -102) T) ((-532 . -102) 101662) ((-1023 . -1070) 101612) ((-1013 . -1119) T) ((-828 . -909) 101508) ((-794 . -1241) 101487) ((-792 . -1241) 101466) ((-62 . -1237) T) ((-489 . -625) 101418) ((-489 . -626) 101340) ((-794 . -568) 101251) ((-792 . -568) 101182) ((-743 . -319) 101169) ((-713 . -628) 101141) ((-494 . -423) 101110) ((-635 . -937) 101089) ((-466 . -1241) 101068) ((-687 . -526) 101001) ((-676 . -25) T) ((-410 . -625) 100983) ((-676 . -21) T) ((-466 . -568) 100914) ((-430 . -917) 100837) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -937) T) ((-118 . -832) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -237) 100768) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 100750) ((-117 . -628) 100722) ((-1023 . -652) 100672) ((-960 . -999) 100656) ((-931 . -652) 100608) ((-931 . -1070) 100560) ((-927 . -21) T) ((-927 . -25) T) ((-884 . -862) 100511) ((-878 . -660) 100471) ((-723 . -1131) T) ((-723 . -23) T) ((-713 . -1068) T) ((-713 . -238) T) ((-299 . -174) T) ((-666 . -1237) T) ((-321 . -93) T) ((-659 . -1119) 100449) ((-644 . -622) 100424) ((-644 . -1119) T) ((-593 . -1241) T) ((-593 . -568) T) ((-530 . -1241) T) ((-530 . -568) T) ((-499 . -658) 100374) ((-486 . -234) 100320) ((-439 . -1070) 100304) ((-439 . -652) 100288) ((-370 . -729) 100240) ((-364 . -729) 100192) ((-350 . -1075) 100176) ((-356 . -729) 100128) ((-350 . -111) 100107) ((-176 . -1075) 100039) ((-219 . -658) 99989) ((-176 . -111) 99900) ((-108 . -729) 99850) ((-283 . -1119) T) ((-282 . -1119) T) ((-281 . -1119) T) ((-280 . -1119) T) ((-279 . -1119) T) ((-278 . -1119) T) ((-277 . -1119) T) ((-214 . -1119) T) ((-213 . -1119) T) ((-171 . -1225) 99828) ((-171 . -1222) 99806) ((-211 . -1119) T) ((-210 . -1119) T) ((-117 . -1068) T) ((-209 . -1119) T) ((-208 . -1119) T) ((-205 . -1119) T) ((-204 . -1119) T) ((-203 . -1119) T) ((-202 . -1119) T) ((-201 . -1119) T) ((-200 . -1119) T) ((-199 . -1119) T) ((-198 . -1119) T) ((-197 . -1119) T) ((-196 . -1119) T) ((-195 . -1119) T) ((-245 . -102) 99558) ((-171 . -35) 99536) ((-171 . -95) 99514) ((-666 . -1057) 99410) ((-494 . -1077) 99388) ((-1132 . -1119) 99140) ((-1161 . -34) T) ((-682 . -501) 99124) ((-73 . -1237) T) ((-105 . -625) 99106) ((-1311 . -625) 99088) ((-392 . -625) 99070) ((-350 . -628) 99022) ((-176 . -628) 98939) ((-1236 . -502) 98920) ((-743 . -38) 98769) ((-583 . -1225) T) ((-583 . -1222) T) ((-543 . -625) 98751) ((-532 . -319) 98689) ((-512 . -625) 98671) ((-512 . -626) 98653) ((-1236 . -625) 98619) ((-1187 . -1171) NIL) ((-1046 . -1090) 98588) ((-1046 . -1119) T) ((-1023 . -102) T) ((-990 . -102) T) ((-931 . -102) T) ((-906 . -1057) 98565) ((-1161 . -738) T) ((-1022 . -660) 98472) ((-488 . -1119) T) ((-475 . -1119) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1082 . -231) 98418) ((-1194 . -38) 98315) ((-878 . -738) T) ((-706 . -937) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1193 . -38) 98156) ((-350 . -1068) T) ((-1187 . -38) 97952) ((-1099 . -174) T) ((-176 . -1068) T) ((-1145 . -38) 97849) ((-724 . -47) 97826) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 97800) ((-509 . -57) 97750) ((-362 . -1306) 97727) ((-227 . -464) T) ((-329 . -300) 97678) ((-356 . -174) T) ((-176 . -248) T) ((-1250 . -862) 97577) ((-108 . -174) T) ((-884 . -1011) 97561) ((-670 . -1131) T) ((-593 . -374) T) ((-593 . -339) 97548) ((-530 . -339) 97525) ((-530 . -374) T) ((-326 . -317) 97504) ((-323 . -317) T) ((-614 . -862) 97483) ((-1132 . -729) 97425) ((-532 . -292) 97409) ((-670 . -23) T) ((-430 . -232) 97393) ((-430 . -272) 97377) ((-323 . -1041) NIL) ((-347 . -23) T) ((-103 . -1029) 97361) ((-45 . -36) 97340) ((-624 . -1119) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-245 . -319) 97278) ((-1106 . -1131) T) ((-1310 . -660) 97252) ((-794 . -1131) T) ((-792 . -1131) T) ((-1198 . -423) 97236) ((-466 . -1131) T) ((-1081 . -464) T) ((-1170 . -1119) T) ((-969 . -464) 97187) ((-1134 . -1102) T) ((-110 . -1119) T) ((-1106 . -23) T) ((-1179 . -526) 96970) ((-829 . -1077) T) ((-794 . -23) T) ((-792 . -23) T) ((-493 . -464) 96921) ((-473 . -23) T) ((-392 . -393) 96900) ((-366 . -234) 96873) ((-363 . -234) 96846) ((-355 . -234) 96819) ((-466 . -23) T) ((-273 . -234) 96764) ((-258 . -909) 96631) ((-257 . -909) 96498) ((-96 . -1119) T) ((-724 . -1237) T) ((-682 . -296) 96475) ((-496 . -526) 96408) ((-1279 . -1070) 96291) ((-1279 . -652) 96188) ((-1272 . -652) 96029) ((-1272 . -1070) 95864) ((-1251 . -652) 95660) ((-299 . -300) T) ((-1251 . -1070) 95450) ((-1101 . -625) 95432) ((-1101 . -626) 95413) ((-419 . -926) 95392) ((-1231 . -132) T) ((-50 . -1131) T) ((-1187 . -412) 95344) ((-1043 . -937) T) ((-1022 . -738) T) ((-855 . -660) 95317) ((-724 . -899) NIL) ((-608 . -1070) 95277) ((-593 . -1131) T) ((-530 . -1131) T) ((-607 . -1070) 95160) ((-1176 . -34) T) ((-1023 . -319) NIL) ((-827 . -501) 95144) ((-608 . -652) 95117) ((-365 . -937) T) ((-607 . -652) 95014) ((-927 . -234) 95001) ((-419 . -660) 94917) ((-50 . -23) T) ((-723 . -132) T) ((-724 . -1057) 94797) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 94768) ((-1159 . -1119) T) ((-1302 . -1301) 94752) ((-743 . -917) 94729) ((-713 . -807) T) ((-713 . -804) T) ((-1139 . -317) T) ((-390 . -148) T) ((-290 . -625) 94711) ((-289 . -625) 94693) ((-1250 . -1011) 94663) ((-48 . -937) T) ((-687 . -501) 94647) ((-258 . -1294) 94617) ((-257 . -1294) 94587) ((-1107 . -237) T) ((-1196 . -862) T) ((-1139 . -1041) T) ((-1065 . -34) T) ((-848 . -148) 94566) ((-848 . -146) 94545) ((-749 . -107) 94529) ((-624 . -133) T) ((-1198 . -1077) T) ((-494 . -1119) 94281) ((-1194 . -917) 94194) ((-1193 . -917) 94100) ((-1187 . -917) 93861) ((-883 . -464) T) ((-85 . -1237) T) ((-142 . -107) 93843) ((-1145 . -917) 93827) ((-724 . -388) 93811) ((-845 . -628) 93679) ((-1310 . -738) T) ((-1299 . -1077) T) ((-1279 . -102) T) ((-1139 . -557) T) ((-591 . -102) T) ((-130 . -502) 93661) ((-1272 . -102) T) ((-402 . -1075) 93645) ((-1192 . -966) 93614) ((-44 . -296) 93591) ((-130 . -625) 93558) ((-52 . -625) 93540) ((-1144 . -966) 93507) ((-665 . -423) 93491) ((-1251 . -102) T) ((-1178 . -526) NIL) ((-674 . -25) T) ((-633 . -1075) 93475) ((-674 . -21) T) ((-980 . -658) 93385) ((-747 . -658) 93330) ((-727 . -658) 93302) ((-402 . -111) 93281) ((-224 . -261) 93265) ((-1073 . -1072) 93205) ((-1073 . -1119) T) ((-1023 . -1171) T) ((-830 . -1119) T) ((-465 . -658) 93120) ((-647 . -660) 93104) ((-354 . -1241) T) ((-633 . -111) 93083) ((-619 . -660) 93067) ((-608 . -102) T) ((-321 . -502) 93048) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1119) T) ((-396 . -1119) T) ((-321 . -625) 93014) ((-229 . -1119) 92992) ((-659 . -526) 92925) ((-644 . -526) 92769) ((-845 . -1068) 92748) ((-656 . -152) 92732) ((-354 . -568) T) ((-724 . -915) 92675) ((-562 . -231) 92625) ((-1279 . -294) 92591) ((-1272 . -294) 92557) ((-1099 . -300) 92508) ((-499 . -860) T) ((-225 . -1131) T) ((-1251 . -294) 92474) ((-1231 . -505) 92440) ((-1023 . -38) 92390) ((-219 . -860) T) ((-430 . -658) 92349) ((-931 . -38) 92301) ((-855 . -806) 92280) ((-855 . -803) 92259) ((-855 . -738) 92238) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 92169) ((-439 . -38) 92153) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -806) 92132) ((-419 . -803) 92111) ((-419 . -738) T) ((-512 . -298) 92086) ((-489 . -1075) 92051) ((-670 . -132) T) ((-633 . -628) 92020) ((-1132 . -526) 91953) ((-347 . -132) T) ((-171 . -414) 91932) ((-494 . -729) 91874) ((-827 . -296) 91851) ((-489 . -111) 91807) ((-665 . -1077) T) ((-1192 . -909) 91710) ((-1144 . -909) 91692) ((-828 . -1070) 91535) ((-1298 . -1102) T) ((-1260 . -464) 91466) ((-828 . -652) 91315) ((-1297 . -1102) T) ((-1106 . -132) T) ((-1073 . -729) 91257) ((-1046 . -526) 91190) ((-794 . -132) T) ((-792 . -132) T) ((-583 . -464) T) ((-633 . -1068) T) ((-604 . -1119) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -237) T) ((-1018 . -1237) T) ((-45 . -1119) T) ((-396 . -729) 91160) ((-829 . -1119) T) ((-488 . -526) 91093) ((-475 . -526) 91026) ((-1312 . -628) 91008) ((-465 . -378) 90978) ((-45 . -622) 90957) ((-411 . -1237) T) ((-326 . -312) T) ((-839 . -237) 90936) ((-489 . -628) 90886) ((-1251 . -319) 90771) ((-682 . -625) 90733) ((-59 . -862) 90712) ((-1023 . -412) 90694) ((-560 . -625) 90676) ((-811 . -658) 90635) ((-827 . -616) 90612) ((-528 . -862) 90591) ((-508 . -862) 90570) ((-1018 . -1057) 90466) ((-40 . -1241) T) ((-245 . -917) 90335) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -660) 90195) ((-354 . -339) 90172) ((-354 . -374) T) ((-332 . -333) 90149) ((-329 . -296) 90107) ((-40 . -568) T) ((-390 . -1222) T) ((-390 . -1225) T) ((-1054 . -1213) 90082) ((-1209 . -240) 90032) ((-1187 . -232) 89984) ((-1187 . -272) 89936) ((-340 . -1119) T) ((-390 . -95) T) ((-390 . -35) T) ((-1054 . -107) 89882) ((-489 . -1068) T) ((-1311 . -1075) 89866) ((-491 . -240) 89816) ((-1179 . -501) 89750) ((-1302 . -1070) 89734) ((-392 . -1075) 89718) ((-1302 . -652) 89688) ((-489 . -248) T) ((-828 . -102) T) ((-726 . -148) 89667) ((-726 . -146) 89646) ((-496 . -501) 89630) ((-497 . -346) 89599) ((-524 . -1119) T) ((-1311 . -111) 89578) ((-1018 . -388) 89562) ((-425 . -102) T) ((-392 . -111) 89541) ((-1018 . -349) 89525) ((-288 . -1002) 89509) ((-287 . -1002) 89493) ((-1023 . -917) NIL) ((-1309 . -625) 89475) ((-1307 . -625) 89457) ((-110 . -526) NIL) ((-1192 . -1263) 89441) ((-866 . -864) 89425) ((-1198 . -1119) T) ((-103 . -1237) T) ((-969 . -966) 89386) ((-829 . -729) 89328) ((-1251 . -1171) NIL) ((-493 . -966) 89273) ((-1081 . -144) T) ((-60 . -102) 89251) ((-44 . -625) 89233) ((-78 . -625) 89215) ((-362 . -660) 89160) ((-1299 . -1119) T) ((-523 . -862) T) ((-299 . -296) 89139) ((-354 . -1131) T) ((-305 . -1119) T) ((-1018 . -915) 89098) ((-305 . -622) 89077) ((-1311 . -628) 89026) ((-1279 . -38) 88923) ((-1272 . -38) 88764) ((-1251 . -38) 88560) ((-499 . -1077) T) ((-392 . -628) 88544) ((-219 . -1077) T) ((-354 . -23) T) ((-153 . -625) 88526) ((-845 . -807) 88505) ((-845 . -804) 88484) ((-1236 . -628) 88465) ((-608 . -38) 88438) ((-607 . -38) 88335) ((-882 . -568) T) ((-225 . -132) T) ((-329 . -1021) 88301) ((-79 . -625) 88283) ((-724 . -317) 88262) ((-304 . -738) 88164) ((-836 . -102) T) ((-876 . -856) T) ((-304 . -485) 88143) ((-1302 . -102) T) ((-40 . -374) T) ((-884 . -148) 88122) ((-497 . -658) 88104) ((-884 . -146) 88083) ((-1178 . -501) 88065) ((-1311 . -1068) T) ((-494 . -526) 87998) ((-1165 . -1237) T) ((-981 . -625) 87980) ((-659 . -501) 87964) ((-644 . -501) 87895) ((-827 . -625) 87588) ((-48 . -27) T) ((-1198 . -729) 87485) ((-969 . -909) 87464) ((-665 . -1119) T) ((-873 . -872) T) ((-448 . -375) 87438) ((-743 . -658) 87348) ((-493 . -909) 87323) ((-1121 . -102) T) ((-989 . -1119) T) ((-876 . -1119) T) ((-828 . -319) 87310) ((-545 . -539) T) ((-545 . -588) T) ((-1307 . -393) 87282) ((-1073 . -526) 87215) ((-1179 . -296) 87191) ((-245 . -232) 87160) ((-245 . -272) 87129) ((-258 . -1070) 87030) ((-257 . -1070) 86931) ((-1299 . -729) 86901) ((-1186 . -93) T) ((-1013 . -93) T) ((-829 . -174) 86880) ((-258 . -652) 86802) ((-257 . -652) 86724) ((-1234 . -502) 86701) ((-229 . -526) 86634) ((-633 . -807) 86613) ((-633 . -804) 86592) ((-1234 . -625) 86504) ((-224 . -1237) T) ((-687 . -625) 86436) ((-1194 . -658) 86346) ((-1176 . -1029) 86330) ((-960 . -102) 86280) ((-362 . -738) T) ((-873 . -625) 86262) ((-1193 . -658) 86144) ((-1187 . -658) 85981) ((-1145 . -658) 85891) ((-1251 . -412) 85843) ((-1132 . -501) 85827) ((-60 . -319) 85765) ((-341 . -102) T) ((-1231 . -21) T) ((-1231 . -25) T) ((-40 . -1131) T) ((-723 . -21) T) ((-639 . -625) 85747) ((-527 . -333) 85726) ((-723 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-938 . -1131) T) ((-40 . -23) T) ((-783 . -1131) T) ((-576 . -1241) T) ((-507 . -1241) T) ((-1023 . -272) 85708) ((-329 . -625) 85690) ((-1023 . -232) 85672) ((-171 . -167) 85656) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-783 . -23) T) ((-1271 . -148) 85635) ((-1179 . -616) 85611) ((-1271 . -146) 85590) ((-1046 . -501) 85574) ((-1250 . -146) 85499) ((-1250 . -148) 85424) ((-1302 . -1308) 85403) ((-883 . -909) NIL) ((-488 . -501) 85387) ((-475 . -501) 85371) ((-535 . -34) T) ((-665 . -729) 85341) ((-1279 . -917) 85254) ((-1272 . -917) 85160) ((-1251 . -917) 84921) ((-112 . -986) T) ((-1198 . -174) 84872) ((-674 . -862) 84851) ((-376 . -102) T) ((-607 . -917) 84764) ((-245 . -243) 84743) ((-258 . -102) T) ((-257 . -102) T) ((-1260 . -966) 84712) ((-250 . -862) 84691) ((-828 . -38) 84540) ((-45 . -526) 84332) ((-1178 . -296) 84282) ((-216 . -1119) T) ((-1169 . -1119) T) ((-884 . -237) 84233) ((-1169 . -622) 84212) ((-598 . -25) T) ((-598 . -21) T) ((-1121 . -319) 84150) ((-980 . -423) 84134) ((-711 . -1241) T) ((-644 . -296) 84087) ((-1106 . -651) 84035) ((-922 . -1119) T) ((-794 . -651) 83983) ((-792 . -651) 83931) ((-354 . -132) T) ((-299 . -625) 83913) ((-882 . -1131) T) ((-711 . -568) T) ((-130 . -628) 83895) ((-466 . -651) 83843) ((-171 . -909) 83764) ((-922 . -920) 83748) ((-390 . -464) T) ((-499 . -1119) T) ((-960 . -319) 83686) ((-713 . -660) 83658) ((-561 . -856) T) ((-219 . -1119) T) ((-326 . -937) 83637) ((-323 . -937) T) ((-323 . -832) NIL) ((-402 . -732) T) ((-882 . -23) T) ((-117 . -660) 83624) ((-486 . -146) 83603) ((-430 . -423) 83587) ((-486 . -148) 83566) ((-110 . -501) 83548) ((-321 . -628) 83529) ((-2 . -625) 83511) ((-188 . -102) T) ((-1178 . -19) 83493) ((-1178 . -616) 83468) ((-670 . -21) T) ((-670 . -25) T) ((-605 . -1163) T) ((-1132 . -296) 83445) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -658) 83224) ((-507 . -374) T) ((-1309 . -1075) 83208) ((-1307 . -1075) 83192) ((-1302 . -38) 83162) ((-1271 . -1222) 83128) ((-1260 . -909) 83031) ((-1192 . -1070) 82854) ((-1161 . -1237) T) ((-1144 . -1070) 82697) ((-866 . -1070) 82681) ((-644 . -616) 82656) ((-1271 . -1225) 82622) ((-1271 . -95) 82588) ((-1271 . -237) 82540) ((-1192 . -652) 82369) ((-1144 . -652) 82218) ((-866 . -652) 82188) ((-1254 . -102) 82166) ((-1251 . -232) 82118) ((-561 . -1119) T) ((-1106 . -25) T) ((-1106 . -21) T) ((-543 . -804) T) ((-543 . -807) T) ((-118 . -1241) T) ((-980 . -1077) T) ((-635 . -568) T) ((-794 . -25) T) ((-794 . -21) T) ((-792 . -21) T) ((-792 . -25) T) ((-747 . -1077) T) ((-727 . -1077) T) ((-682 . -1075) 82102) ((-529 . -1102) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1251 . -272) 82054) ((-1170 . -93) T) ((-1161 . -1057) 81950) ((-829 . -300) 81929) ((-1250 . -1222) 81895) ((-835 . -1119) T) ((-983 . -986) T) ((-682 . -111) 81874) ((-629 . -1237) T) ((-305 . -526) 81666) ((-1250 . -1225) 81632) ((-1250 . -237) 81491) ((-1245 . -379) T) ((-258 . -319) 81429) ((-257 . -319) 81367) ((-1242 . -856) T) ((-1179 . -626) NIL) ((-1179 . -625) 81349) ((-1161 . -388) 81333) ((-1139 . -832) T) ((-1139 . -937) T) ((-96 . -93) T) ((-1132 . -616) 81310) ((-1099 . -626) 81294) ((-1099 . -625) 81276) ((-1023 . -658) 81226) ((-931 . -658) 81163) ((-827 . -298) 81140) ((-496 . -625) 81072) ((-620 . -152) 81019) ((-499 . -729) 80969) ((-430 . -1077) T) ((-494 . -501) 80953) ((-439 . -658) 80912) ((-337 . -862) 80891) ((-350 . -660) 80865) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -729) 80815) ((-171 . -736) 80786) ((-176 . -660) 80718) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 80668) ((-1080 . -625) 80650) ((-1012 . -102) T) ((-874 . -102) T) ((-828 . -917) 80550) ((-811 . -423) 80513) ((-40 . -132) T) ((-711 . -374) T) ((-713 . -738) T) ((-713 . -806) T) ((-713 . -803) T) ((-214 . -910) T) ((-592 . -1131) T) ((-576 . -1131) T) ((-507 . -1131) T) ((-370 . -625) 80495) ((-364 . -625) 80477) ((-356 . -625) 80459) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 80389) ((-108 . -625) 80331) ((-213 . -910) T) ((-975 . -152) 80315) ((-783 . -132) T) ((-682 . -628) 80233) ((-135 . -738) T) ((-117 . -738) T) ((-1271 . -35) 80199) ((-1073 . -501) 80183) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1250 . -95) 80149) ((-1250 . -35) 80115) ((-1192 . -102) T) ((-1144 . -102) T) ((-866 . -102) T) ((-229 . -501) 80099) ((-1309 . -111) 80078) ((-1307 . -111) 80057) ((-44 . -1075) 80041) ((-1309 . -628) 79987) ((-1309 . -1068) T) ((-1260 . -1263) 79971) ((-867 . -864) 79955) ((-1198 . -300) 79934) ((-1123 . -1237) T) ((-110 . -296) 79884) ((-1022 . -1237) T) ((-129 . -152) 79866) ((-1161 . -915) 79825) ((-44 . -111) 79804) ((-1307 . -628) 79733) ((-1242 . -1119) T) ((-1201 . -1282) T) ((-1186 . -502) 79714) ((-682 . -1068) T) ((-1186 . -625) 79680) ((-1178 . -626) NIL) ((-486 . -237) 79632) ((-1082 . -622) 79607) ((-1013 . -502) 79588) ((-74 . -453) T) ((-74 . -407) T) ((-1082 . -1119) T) ((-153 . -1075) 79572) ((-1013 . -625) 79538) ((-682 . -238) 79517) ((-583 . -566) 79501) ((-366 . -148) 79480) ((-366 . -146) 79431) ((-363 . -148) 79410) ((-363 . -146) 79361) ((-355 . -148) 79340) ((-355 . -146) 79291) ((-273 . -146) 79270) ((-273 . -148) 79249) ((-253 . -148) 79228) ((-118 . -374) T) ((-253 . -146) 79207) ((-1178 . -625) 79189) ((-153 . -111) 79168) ((-1022 . -1057) 79056) ((-1187 . -860) NIL) ((-706 . -1241) T) ((-811 . -1077) T) ((-711 . -1131) T) ((-1307 . -1068) T) ((-1176 . -1237) T) ((-1022 . -388) 79033) ((-927 . -146) T) ((-927 . -148) 79015) ((-882 . -132) T) ((-827 . -1075) 78936) ((-711 . -23) T) ((-706 . -568) T) ((-227 . -1070) 78901) ((-659 . -625) 78833) ((-659 . -626) 78794) ((-644 . -626) NIL) ((-644 . -625) 78776) ((-499 . -174) T) ((-227 . -652) 78741) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-486 . -1225) 78707) ((-486 . -1222) 78673) ((-283 . -625) 78655) ((-282 . -625) 78637) ((-281 . -625) 78619) ((-280 . -625) 78601) ((-279 . -625) 78583) ((-512 . -663) 78565) ((-278 . -625) 78547) ((-350 . -738) T) ((-277 . -625) 78529) ((-110 . -19) 78511) ((-176 . -738) T) ((-512 . -384) 78493) ((-214 . -625) 78475) ((-532 . -1168) 78459) ((-512 . -124) T) ((-110 . -616) 78434) ((-213 . -625) 78416) ((-486 . -35) 78382) ((-486 . -95) 78348) ((-211 . -625) 78330) ((-210 . -625) 78312) ((-209 . -625) 78294) ((-208 . -625) 78276) ((-205 . -625) 78258) ((-204 . -625) 78240) ((-203 . -625) 78222) ((-202 . -625) 78204) ((-201 . -625) 78186) ((-200 . -625) 78168) ((-199 . -625) 78150) ((-548 . -1122) 78102) ((-198 . -625) 78084) ((-197 . -625) 78066) ((-45 . -501) 78003) ((-196 . -625) 77985) ((-195 . -625) 77967) ((-153 . -628) 77936) ((-1134 . -102) T) ((-827 . -111) 77852) ((-656 . -102) 77802) ((-494 . -296) 77779) ((-1310 . -1057) 77763) ((-1132 . -625) 77456) ((-1120 . -1119) T) ((-1065 . -1237) T) ((-1192 . -319) 77443) ((-1081 . -1070) 77430) ((-1154 . -1119) T) ((-969 . -1070) 77273) ((-1144 . -319) 77260) ((-1115 . -1102) T) ((-635 . -1131) T) ((-1081 . -652) 77247) ((-1109 . -1102) T) ((-969 . -652) 77096) ((-1106 . -234) 77041) ((-493 . -1070) 76884) ((-1092 . -1102) T) ((-1085 . -1102) T) ((-1055 . -1102) T) ((-1038 . -1102) T) ((-118 . -1131) T) ((-493 . -652) 76733) ((-794 . -234) 76720) ((-831 . -102) T) ((-638 . -1102) T) ((-635 . -23) T) ((-1169 . -526) 76512) ((-495 . -1102) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1102) T) ((-980 . -1119) T) ((-153 . -1068) T) ((-743 . -423) 76496) ((-118 . -23) T) ((-1022 . -915) 76448) ((-747 . -1119) T) ((-727 . -1119) T) ((-1279 . -658) 76358) ((-465 . -1119) T) ((-419 . -1237) T) ((-326 . -442) 76342) ((-604 . -93) T) ((-1272 . -658) 76224) ((-1046 . -626) 76185) ((-1043 . -1241) T) ((-227 . -102) T) ((-1046 . -625) 76147) ((-828 . -272) 76131) ((-828 . -232) 76115) ((-827 . -628) 75913) ((-1251 . -658) 75750) ((-1043 . -568) T) ((-845 . -660) 75723) ((-365 . -1241) T) ((-488 . -625) 75685) ((-488 . -626) 75646) ((-475 . -626) 75607) ((-475 . -625) 75569) ((-608 . -658) 75528) ((-419 . -897) 75512) ((-329 . -1075) 75347) ((-419 . -899) 75272) ((-607 . -658) 75182) ((-855 . -1057) 75078) ((-499 . -526) NIL) ((-494 . -616) 75055) ((-593 . -234) 75042) ((-365 . -568) T) ((-530 . -234) 75029) ((-219 . -526) NIL) ((-884 . -464) T) ((-430 . -1119) T) ((-419 . -1057) 74893) ((-329 . -111) 74714) ((-706 . -374) T) ((-227 . -294) T) ((-1234 . -628) 74691) ((-48 . -1241) T) ((-1192 . -1171) 74669) ((-1179 . -298) 74645) ((-1081 . -102) T) ((-969 . -102) T) ((-827 . -1068) 74623) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -237) 74602) ((-363 . -237) 74581) ((-355 . -237) 74560) ((-48 . -568) T) ((-883 . -1070) 74505) ((-273 . -237) 74456) ((-827 . -238) 74408) ((-326 . -27) 74387) ((-258 . -917) 74256) ((-257 . -917) 74125) ((-255 . -847) 74107) ((-189 . -847) 74089) ((-725 . -102) T) ((-305 . -501) 74026) ((-883 . -652) 73971) ((-493 . -102) T) ((-743 . -1077) T) ((-624 . -625) 73953) ((-624 . -626) 73814) ((-419 . -388) 73798) ((-419 . -349) 73782) ((-1192 . -38) 73611) ((-1144 . -38) 73460) ((-329 . -628) 73286) ((-927 . -237) T) ((-647 . -1237) 73260) ((-619 . -1237) 73234) ((-866 . -38) 73204) ((-402 . -660) 73188) ((-656 . -319) 73126) ((-1170 . -502) 73107) ((-1170 . -625) 73073) ((-980 . -729) 72970) ((-747 . -729) 72940) ((-224 . -107) 72924) ((-45 . -296) 72824) ((-633 . -660) 72798) ((-322 . -1119) T) ((-299 . -1075) 72785) ((-110 . -625) 72767) ((-110 . -626) 72749) ((-465 . -729) 72719) ((-828 . -260) 72658) ((-701 . -1119) 72636) ((-562 . -1119) T) ((-1194 . -1077) T) ((-1193 . -1077) T) ((-96 . -502) 72617) ((-1187 . -1077) T) ((-299 . -111) 72602) ((-1145 . -1077) T) ((-562 . -622) 72581) ((-96 . -625) 72547) ((-1023 . -860) T) ((-229 . -699) 72505) ((-706 . -1131) T) ((-1231 . -752) 72481) ((-1043 . -374) T) ((-850 . -847) 72463) ((-845 . -806) 72442) ((-419 . -915) 72401) ((-329 . -1068) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1070) 72311) ((-68 . -1237) T) ((-845 . -803) 72290) ((-430 . -729) 72264) ((-811 . -1119) T) ((-724 . -937) 72243) ((-711 . -132) T) ((-171 . -652) 72071) ((-706 . -23) T) ((-499 . -300) T) ((-845 . -738) 72050) ((-329 . -238) 72002) ((-329 . -248) 71981) ((-219 . -300) T) ((-130 . -379) T) ((-1271 . -464) 71960) ((-1250 . -464) 71939) ((-365 . -339) 71916) ((-365 . -374) T) ((-1159 . -625) 71898) ((-45 . -1275) 71848) ((-883 . -102) T) ((-656 . -292) 71832) ((-711 . -1079) T) ((-1298 . -102) T) ((-1297 . -102) T) ((-489 . -660) 71797) ((-480 . -1119) T) ((-45 . -616) 71722) ((-1178 . -298) 71697) ((-299 . -628) 71669) ((-40 . -651) 71608) ((-1260 . -1070) 71431) ((-867 . -1070) 71415) ((-48 . -374) T) ((-1125 . -625) 71397) ((-1260 . -652) 71226) ((-867 . -652) 71196) ((-644 . -298) 71171) ((-828 . -658) 71081) ((-583 . -1070) 71068) ((-494 . -625) 70761) ((-245 . -423) 70730) ((-969 . -319) 70717) ((-583 . -652) 70704) ((-65 . -1237) T) ((-1192 . -917) 70611) ((-1185 . -1119) T) ((-1082 . -526) 70455) ((-683 . -1119) T) ((-635 . -132) T) ((-493 . -319) 70442) ((-618 . -1119) T) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1068) T) ((-182 . -1119) T) ((-162 . -1119) T) ((-157 . -1119) T) ((-155 . -1119) T) ((-465 . -773) T) ((-31 . -1102) T) ((-980 . -174) 70393) ((-1144 . -917) 70377) ((-989 . -93) T) ((-1132 . -298) 70354) ((-1099 . -1075) 70264) ((-633 . -806) 70243) ((-605 . -1119) T) ((-633 . -803) 70222) ((-633 . -738) T) ((-305 . -296) 70201) ((-304 . -1237) T) ((-1073 . -625) 70163) ((-1073 . -626) 70124) ((-1043 . -1131) T) ((-171 . -102) T) ((-284 . -862) T) ((-1121 . -231) 70108) ((-830 . -625) 70090) ((-1099 . -111) 69986) ((-1043 . -23) T) ((-1022 . -317) T) ((-811 . -729) 69970) ((-370 . -1075) 69922) ((-365 . -1131) T) ((-364 . -1075) 69874) ((-426 . -625) 69856) ((-396 . -625) 69838) ((-356 . -1075) 69790) ((-229 . -625) 69722) ((-913 . -102) T) ((-853 . -102) T) ((-108 . -1075) 69672) ((-820 . -102) T) ((-781 . -102) T) ((-689 . -102) T) ((-486 . -464) 69651) ((-430 . -174) T) ((-370 . -111) 69589) ((-364 . -111) 69527) ((-356 . -111) 69465) ((-258 . -272) 69434) ((-258 . -232) 69403) ((-257 . -272) 69372) ((-257 . -232) 69341) ((-365 . -23) T) ((-71 . -1237) T) ((-227 . -38) 69306) ((-108 . -111) 69240) ((-40 . -25) T) ((-40 . -21) T) ((-682 . -732) T) ((-171 . -294) 69218) ((-48 . -1131) T) ((-938 . -25) T) ((-783 . -25) T) ((-1311 . -660) 69192) ((-1169 . -501) 69129) ((-497 . -1119) T) ((-1302 . -658) 69088) ((-1260 . -102) T) ((-1081 . -1171) T) ((-867 . -102) T) ((-245 . -1077) 69066) ((-981 . -804) 69019) ((-981 . -807) 68972) ((-392 . -660) 68956) ((-48 . -23) T) ((-827 . -807) 68935) ((-827 . -804) 68914) ((-560 . -379) T) ((-305 . -616) 68893) ((-489 . -738) T) ((-583 . -102) T) ((-1099 . -628) 68711) ((-255 . -187) T) ((-189 . -187) T) ((-883 . -319) 68668) ((-665 . -296) 68647) ((-112 . -673) T) ((-362 . -1237) T) ((-370 . -628) 68584) ((-364 . -628) 68521) ((-356 . -628) 68458) ((-76 . -1237) T) ((-108 . -628) 68408) ((-112 . -113) T) ((-1081 . -38) 68395) ((-676 . -385) 68374) ((-969 . -38) 68223) ((-743 . -1119) T) ((-493 . -38) 68072) ((-86 . -1237) T) ((-604 . -502) 68053) ((-1251 . -860) NIL) ((-583 . -294) T) ((-1194 . -1119) T) ((-604 . -625) 68019) ((-1193 . -1119) T) ((-1187 . -1119) T) ((-1099 . -1068) T) ((-362 . -1057) 67996) ((-829 . -502) 67980) ((-1023 . -1077) T) ((-45 . -625) 67962) ((-45 . -626) NIL) ((-931 . -1077) T) ((-829 . -625) 67931) ((-1166 . -102) 67909) ((-1099 . -248) 67860) ((-439 . -1077) T) ((-370 . -1068) T) ((-364 . -1068) T) ((-376 . -375) 67837) ((-356 . -1068) T) ((-354 . -234) 67824) ((-258 . -243) 67803) ((-257 . -243) 67782) ((-1099 . -238) 67707) ((-1145 . -1119) T) ((-304 . -915) 67666) ((-108 . -1068) T) ((-706 . -132) T) ((-430 . -526) 67508) ((-370 . -238) 67487) ((-370 . -248) T) ((-44 . -732) T) ((-364 . -238) 67466) ((-364 . -248) T) ((-356 . -238) 67445) ((-356 . -248) T) ((-1186 . -628) 67426) ((-171 . -319) 67391) ((-108 . -248) T) ((-108 . -238) T) ((-1013 . -628) 67372) ((-329 . -804) T) ((-882 . -21) T) ((-882 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 67347) ((-1132 . -1075) 67268) ((-883 . -1171) NIL) ((-340 . -625) 67250) ((-419 . -1041) 67228) ((-1132 . -111) 67144) ((-703 . -1282) T) ((-448 . -1119) T) ((-256 . -1119) T) ((-1311 . -738) T) ((-63 . -625) 67126) ((-883 . -38) 67071) ((-535 . -1237) T) ((-614 . -152) 67055) ((-524 . -625) 67037) ((-1260 . -319) 67024) ((-743 . -729) 66873) ((-543 . -805) T) ((-543 . -806) T) ((-576 . -651) 66855) ((-507 . -651) 66815) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 66766) ((-537 . -1119) T) ((-532 . -1119) 66716) ((-253 . -464) 66667) ((-1169 . -296) 66646) ((-1198 . -625) 66628) ((-701 . -526) 66561) ((-980 . -300) 66540) ((-562 . -526) 66332) ((-258 . -658) 66180) ((-257 . -658) 66015) ((-1299 . -625) 65984) ((-1299 . -502) 65968) ((-1194 . -729) 65865) ((-1192 . -272) 65849) ((-1192 . -232) 65833) ((-1132 . -628) 65631) ((-171 . -1171) 65610) ((-1193 . -729) 65451) ((-1187 . -729) 65247) ((-983 . -113) T) ((-905 . -102) T) ((-1176 . -686) 65231) ((-1145 . -729) 65128) ((-1043 . -132) T) ((-366 . -414) 65079) ((-363 . -414) 65030) ((-355 . -414) 64981) ((-981 . -379) 64934) ((-811 . -526) 64846) ((-305 . -626) NIL) ((-305 . -625) 64828) ((-927 . -464) T) ((-922 . -296) 64807) ((-827 . -379) 64786) ((-522 . -521) 64765) ((-520 . -521) 64744) ((-884 . -909) 64665) ((-499 . -296) NIL) ((-494 . -298) 64642) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-706 . -505) NIL) ((-99 . -1131) T) ((-40 . -234) 64573) ((-171 . -38) 64401) ((-969 . -917) 64382) ((-1271 . -992) 64344) ((-1166 . -319) 64282) ((-493 . -917) 64259) ((-1250 . -992) 64228) ((-927 . -414) T) ((-1132 . -1068) 64206) ((-1273 . -568) T) ((-1169 . -616) 64185) ((-112 . -862) T) ((-1082 . -501) 64116) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1260 . -1171) 64094) ((-1132 . -238) 64046) ((-48 . -132) T) ((-1218 . -102) T) ((-245 . -1119) 63798) ((-883 . -412) 63775) ((-1107 . -102) T) ((-1095 . -102) T) ((-620 . -102) T) ((-487 . -102) T) ((-1260 . -38) 63604) ((-867 . -38) 63574) ((-1053 . -1070) 63548) ((-743 . -174) 63459) ((-665 . -625) 63441) ((-657 . -1102) T) ((-1053 . -652) 63425) ((-583 . -38) 63412) ((-989 . -502) 63393) ((-989 . -625) 63359) ((-975 . -102) 63309) ((-876 . -625) 63291) ((-876 . -626) 63213) ((-605 . -526) NIL) ((-1316 . -1131) T) ((-1279 . -1077) T) ((-1272 . -1077) T) ((-1271 . -909) 63117) ((-332 . -1070) 63099) ((-1251 . -1077) T) ((-1250 . -909) 62894) ((-1231 . -148) 62873) ((-1231 . -146) 62852) ((-1204 . -102) T) ((-332 . -652) 62834) ((-713 . -1237) T) ((-1203 . -102) T) ((-1202 . -102) T) ((-1194 . -174) 62785) ((-1193 . -174) 62716) ((-608 . -1077) T) ((-607 . -1077) T) ((-1187 . -174) 62647) ((-1170 . -628) 62628) ((-390 . -1070) 62593) ((-1145 . -174) 62544) ((-1023 . -1119) T) ((-990 . -1119) T) ((-931 . -1119) T) ((-883 . -917) NIL) ((-390 . -652) 62509) ((-811 . -809) 62493) ((-711 . -25) T) ((-711 . -21) T) ((-118 . -651) 62470) ((-713 . -899) 62452) ((-439 . -1119) T) ((-326 . -1241) 62431) ((-323 . -1241) T) ((-171 . -412) 62415) ((-848 . -1070) 62385) ((-486 . -992) 62347) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -625) 62329) ((-839 . -1070) 62313) ((-108 . -807) T) ((-108 . -804) T) ((-713 . -1057) 62295) ((-326 . -568) 62274) ((-323 . -568) T) ((-848 . -652) 62244) ((-839 . -652) 62214) ((-1316 . -23) T) ((-135 . -1057) 62196) ((-96 . -628) 62177) ((-1012 . -658) 62159) ((-494 . -1075) 62080) ((-45 . -298) 62005) ((-245 . -729) 61947) ((-529 . -102) T) ((-494 . -111) 61863) ((-1111 . -102) 61833) ((-1053 . -102) T) ((-1192 . -658) 61743) ((-1144 . -658) 61653) ((-866 . -658) 61612) ((-656 . -840) 61591) ((-743 . -526) 61534) ((-1073 . -1075) 61518) ((-171 . -917) 61441) ((-1154 . -93) T) ((-1082 . -296) 61416) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1119) T) ((-682 . -660) 61354) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1075) 61338) ((-1073 . -111) 61317) ((-828 . -423) 61301) ((-118 . -25) T) ((-89 . -625) 61283) ((-118 . -21) T) ((-620 . -319) 61078) ((-487 . -319) 60882) ((-1169 . -626) NIL) ((-350 . -1237) T) ((-396 . -111) 60861) ((-390 . -102) T) ((-216 . -625) 60843) ((-1169 . -625) 60825) ((-1187 . -526) 60594) ((-1023 . -729) 60544) ((-1145 . -526) 60514) ((-931 . -729) 60466) ((-494 . -628) 60264) ((-362 . -317) T) ((-1209 . -152) 60214) ((-486 . -909) 60095) ((-975 . -319) 60033) ((-848 . -102) T) ((-439 . -729) 60017) ((-227 . -840) T) ((-839 . -102) T) ((-837 . -102) T) ((-1309 . -660) 59991) ((-1271 . -1270) 59970) ((-491 . -152) 59920) ((-1271 . -1265) 59890) ((-1139 . -1241) T) ((-350 . -1057) 59857) ((-1271 . -1268) 59841) ((-1260 . -917) 59748) ((-1250 . -1249) 59727) ((-80 . -625) 59709) ((-922 . -625) 59691) ((-1250 . -1265) 59668) ((-1139 . -568) T) ((-938 . -862) T) ((-783 . -862) T) ((-684 . -862) T) ((-499 . -626) 59598) ((-499 . -625) 59539) ((-390 . -294) T) ((-1250 . -1247) 59523) ((-1273 . -1131) T) ((-219 . -626) 59453) ((-219 . -625) 59394) ((-1082 . -616) 59369) ((-830 . -628) 59353) ((-576 . -234) 59340) ((-528 . -152) 59324) ((-59 . -152) 59308) ((-508 . -152) 59292) ((-507 . -234) 59279) ((-370 . -1306) 59263) ((-364 . -1306) 59247) ((-356 . -1306) 59231) ((-326 . -374) 59210) ((-323 . -374) T) ((-494 . -1068) 59188) ((-706 . -651) 59170) ((-1307 . -660) 59144) ((-129 . -319) NIL) ((-1273 . -23) T) ((-701 . -501) 59128) ((-64 . -625) 59110) ((-1132 . -807) 59089) ((-1132 . -804) 59068) ((-562 . -501) 59005) ((-682 . -34) T) ((-494 . -238) 58957) ((-305 . -298) 58936) ((-828 . -1077) T) ((-44 . -660) 58894) ((-1099 . -379) 58845) ((-743 . -300) 58776) ((-532 . -526) 58709) ((-829 . -1075) 58660) ((-1106 . -146) 58639) ((-561 . -625) 58621) ((-370 . -379) 58600) ((-364 . -379) 58579) ((-356 . -379) 58558) ((-1106 . -148) 58537) ((-985 . -1237) T) ((-883 . -272) 58514) ((-883 . -232) 58491) ((-829 . -111) 58433) ((-794 . -146) 58412) ((-273 . -966) 58379) ((-253 . -966) 58324) ((-794 . -148) 58303) ((-792 . -146) 58282) ((-792 . -148) 58261) ((-153 . -660) 58235) ((-591 . -1119) T) ((-465 . -296) 58198) ((-466 . -148) 58177) ((-466 . -146) 58156) ((-682 . -738) T) ((-835 . -625) 58138) ((-1279 . -1119) T) ((-1272 . -1119) T) ((-1251 . -1119) T) ((-1231 . -1225) 58104) ((-1231 . -1222) 58070) ((-1194 . -300) 58049) ((-1193 . -300) 58000) ((-1187 . -300) 57951) ((-1145 . -300) 57930) ((-350 . -915) 57911) ((-1023 . -174) T) ((-931 . -174) T) ((-706 . -21) T) ((-706 . -25) T) ((-227 . -658) 57861) ((-608 . -1119) T) ((-607 . -1119) T) ((-486 . -1268) 57845) ((-486 . -1265) 57815) ((-430 . -296) 57743) ((-559 . -862) T) ((-326 . -1131) 57592) ((-323 . -1131) T) ((-1231 . -35) 57558) ((-1231 . -95) 57524) ((-84 . -625) 57506) ((-91 . -102) 57484) ((-1316 . -132) T) ((-726 . -1070) 57454) ((-604 . -628) 57435) ((-593 . -146) T) ((-593 . -148) 57417) ((-530 . -148) 57399) ((-530 . -146) T) ((-726 . -652) 57369) ((-326 . -23) 57221) ((-40 . -353) 57195) ((-323 . -23) T) ((-829 . -628) 57109) ((-1178 . -663) 57091) ((-1302 . -1077) T) ((-1178 . -384) 57073) ((-1115 . -102) T) ((-827 . -660) 56906) ((-1109 . -102) T) ((-1092 . -102) T) ((-171 . -272) 56890) ((-171 . -232) 56874) ((-1085 . -102) T) ((-1055 . -102) T) ((-1038 . -102) T) ((-605 . -501) 56856) ((-638 . -102) T) ((-245 . -526) 56789) ((-495 . -102) T) ((-1309 . -738) T) ((-1307 . -738) T) ((-220 . -102) T) ((-1198 . -1075) 56672) ((-1081 . -658) 56644) ((-969 . -658) 56554) ((-1198 . -111) 56423) ((-888 . -1102) T) ((-873 . -175) T) ((-493 . -658) 56333) ((-273 . -909) 56239) ((-253 . -909) 56214) ((-829 . -1068) T) ((-693 . -1102) T) ((-688 . -1102) T) ((-635 . -234) 56159) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -651) 56119) ((-520 . -102) T) ((-490 . -1102) T) ((-1299 . -1075) 56089) ((-118 . -234) NIL) ((-139 . -1102) T) ((-138 . -1102) T) ((-134 . -1102) T) ((-1053 . -38) 56073) ((-829 . -238) T) ((-829 . -248) 56052) ((-1299 . -111) 56017) ((-1279 . -729) 55914) ((-1272 . -729) 55755) ((-1260 . -272) 55739) ((-562 . -296) 55718) ((-1260 . -232) 55702) ((-1242 . -625) 55684) ((-618 . -93) T) ((-1082 . -626) NIL) ((-1082 . -625) 55666) ((-683 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1251 . -729) 55462) ((-1022 . -937) T) ((-153 . -738) T) ((-1198 . -628) 55315) ((-1132 . -379) 55294) ((-1043 . -25) T) ((-1023 . -526) NIL) ((-258 . -423) 55263) ((-257 . -423) 55232) ((-1043 . -21) T) ((-884 . -1070) 55184) ((-608 . -729) 55157) ((-607 . -729) 55054) ((-811 . -296) 55012) ((-127 . -102) 54990) ((-845 . -1057) 54886) ((-171 . -840) 54865) ((-329 . -660) 54762) ((-827 . -34) T) ((-726 . -102) T) ((-1139 . -1131) T) ((-1045 . -1237) T) ((-884 . -652) 54714) ((-390 . -38) 54679) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1294) 54663) ((-363 . -1294) 54647) ((-355 . -1294) 54631) ((-171 . -360) 54610) ((-576 . -862) T) ((-1106 . -237) 54561) ((-1139 . -23) T) ((-87 . -625) 54543) ((-794 . -237) T) ((-713 . -317) T) ((-848 . -38) 54513) ((-839 . -38) 54483) ((-1299 . -628) 54425) ((-1273 . -132) T) ((-1169 . -298) 54404) ((-981 . -738) 54303) ((-981 . -805) 54256) ((-981 . -806) 54209) ((-117 . -317) T) ((-91 . -319) 54147) ((-687 . -34) T) ((-562 . -616) 54126) ((-48 . -25) T) ((-48 . -21) T) ((-827 . -806) 54105) ((-827 . -805) 54084) ((-713 . -1041) T) ((-665 . -1075) 54068) ((-883 . -658) 53998) ((-827 . -738) 53976) ((-981 . -485) 53929) ((-494 . -807) 53908) ((-494 . -804) 53887) ((-927 . -1294) 53874) ((-1198 . -1068) T) ((-665 . -111) 53853) ((-1198 . -336) 53830) ((-1223 . -102) 53808) ((-1120 . -625) 53790) ((-713 . -557) T) ((-828 . -1119) T) ((-593 . -237) T) ((-530 . -237) T) ((-1299 . -1068) T) ((-1154 . -502) 53771) ((-1243 . -102) T) ((-425 . -1119) T) ((-1154 . -625) 53737) ((-258 . -1077) 53715) ((-257 . -1077) 53693) ((-850 . -102) T) ((-299 . -660) 53680) ((-605 . -296) 53630) ((-701 . -699) 53588) ((-980 . -625) 53570) ((-884 . -102) T) ((-747 . -625) 53552) ((-727 . -625) 53534) ((-1279 . -174) 53485) ((-1272 . -174) 53416) ((-1251 . -174) 53347) ((-711 . -862) T) ((-1023 . -300) T) ((-465 . -625) 53329) ((-639 . -738) T) ((-60 . -1119) 53307) ((-250 . -152) 53291) ((-931 . -300) T) ((-1043 . -1031) T) ((-639 . -485) T) ((-724 . -1241) 53270) ((-706 . -234) NIL) ((-665 . -628) 53188) ((-171 . -658) 53083) ((-1287 . -862) 53062) ((-608 . -174) 53041) ((-607 . -174) 52992) ((-1271 . -652) 52833) ((-1271 . -1070) 52668) ((-1250 . -652) 52482) ((-1250 . -1070) 52290) ((-724 . -568) 52201) ((-419 . -937) T) ((-419 . -832) 52180) ((-329 . -806) T) ((-989 . -628) 52161) ((-329 . -738) T) ((-656 . -1168) 52145) ((-430 . -625) 52127) ((-430 . -626) 52034) ((-110 . -663) 52016) ((-176 . -317) T) ((-127 . -319) 51954) ((-110 . -384) 51936) ((-410 . -1237) T) ((-326 . -132) 51807) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 51791) ((-666 . -1131) T) ((-605 . -19) 51773) ((-61 . -453) T) ((-61 . -407) T) ((-836 . -1119) T) ((-605 . -616) 51748) ((-489 . -1057) 51708) ((-665 . -1068) T) ((-666 . -23) T) ((-1302 . -1119) T) ((-31 . -102) T) ((-1260 . -658) 51618) ((-867 . -658) 51577) ((-828 . -729) 51426) ((-589 . -872) T) ((-583 . -658) 51398) ((-118 . -862) NIL) ((-1192 . -423) 51382) ((-1144 . -423) 51366) ((-866 . -423) 51350) ((-885 . -102) 51301) ((-1271 . -102) T) ((-1251 . -526) 51070) ((-1250 . -102) T) ((-1223 . -319) 51008) ((-1194 . -296) 50973) ((-1193 . -296) 50931) ((-537 . -93) T) ((-1187 . -296) 50759) ((-322 . -625) 50741) ((-1121 . -1119) T) ((-1099 . -660) 50615) ((-723 . -464) T) ((-701 . -625) 50547) ((-299 . -738) T) ((-108 . -926) NIL) ((-701 . -626) 50508) ((-613 . -625) 50490) ((-589 . -625) 50472) ((-562 . -626) NIL) ((-562 . -625) 50454) ((-541 . -625) 50436) ((-523 . -521) 50415) ((-499 . -1075) 50365) ((-486 . -1070) 50200) ((-519 . -521) 50179) ((-486 . -652) 50020) ((-219 . -1075) 49970) ((-370 . -660) 49922) ((-364 . -660) 49874) ((-227 . -860) T) ((-356 . -660) 49826) ((-614 . -102) 49776) ((-499 . -111) 49710) ((-494 . -379) 49689) ((-108 . -660) 49639) ((-365 . -234) 49626) ((-245 . -501) 49610) ((-354 . -148) 49592) ((-354 . -146) T) ((-171 . -381) 49563) ((-960 . -1285) 49547) ((-219 . -111) 49481) ((-884 . -319) 49446) ((-960 . -1119) 49396) ((-811 . -626) 49357) ((-811 . -625) 49339) ((-730 . -102) T) ((-341 . -1119) T) ((-216 . -628) 49316) ((-1139 . -132) T) ((-726 . -38) 49286) ((-326 . -505) 49265) ((-512 . -1237) T) ((-1271 . -294) 49231) ((-1250 . -294) 49197) ((-337 . -152) 49181) ((-451 . -1119) T) ((-1082 . -298) 49156) ((-1302 . -729) 49126) ((-48 . -234) 49113) ((-1179 . -34) T) ((-1311 . -1057) 49090) ((-496 . -34) T) ((-480 . -625) 49072) ((-256 . -296) 49046) ((-392 . -1057) 49030) ((-1192 . -1077) T) ((-1144 . -1077) T) ((-866 . -1077) T) ((-1081 . -860) T) ((-499 . -628) 48980) ((-219 . -628) 48930) ((-828 . -174) 48841) ((-532 . -296) 48793) ((-1279 . -300) 48772) ((-1218 . -375) 48746) ((-1107 . -275) 48730) ((-683 . -502) 48711) ((-683 . -625) 48677) ((-618 . -502) 48658) ((-118 . -1011) 48635) ((-618 . -625) 48585) ((-486 . -102) T) ((-182 . -502) 48566) ((-182 . -625) 48532) ((-162 . -502) 48513) ((-162 . -625) 48479) ((-157 . -502) 48460) ((-155 . -502) 48441) ((-157 . -625) 48407) ((-376 . -1119) T) ((-258 . -1119) T) ((-257 . -1119) T) ((-155 . -625) 48373) ((-1272 . -300) 48324) ((-1251 . -300) 48275) ((-884 . -1171) 48253) ((-1194 . -1021) 48219) ((-620 . -375) 48159) ((-1193 . -1021) 48125) ((-620 . -231) 48072) ((-706 . -862) T) ((-605 . -625) 48054) ((-605 . -626) NIL) ((-487 . -231) 48004) ((-499 . -1068) T) ((-1187 . -1021) 47970) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1068) T) ((-1145 . -1021) 47936) ((-1099 . -738) T) ((-724 . -1131) T) ((-608 . -300) 47915) ((-607 . -300) 47894) ((-499 . -248) T) ((-499 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1185 . -625) 47876) ((-884 . -38) 47828) ((-370 . -738) T) ((-364 . -738) T) ((-356 . -738) T) ((-108 . -806) T) ((-108 . -803) T) ((-724 . -23) T) ((-108 . -738) T) ((-532 . -1275) 47812) ((-1316 . -25) T) ((-486 . -294) 47778) ((-1316 . -21) T) ((-1250 . -319) 47717) ((-1196 . -102) T) ((-40 . -146) 47689) ((-40 . -148) 47661) ((-532 . -616) 47638) ((-1132 . -660) 47471) ((-614 . -319) 47409) ((-45 . -663) 47359) ((-45 . -678) 47309) ((-45 . -384) 47259) ((-1178 . -34) T) ((-883 . -860) NIL) ((-666 . -132) T) ((-497 . -625) 47241) ((-245 . -296) 47218) ((-188 . -1119) T) ((-1106 . -464) 47169) ((-828 . -526) 47043) ((-794 . -464) 46974) ((-676 . -1070) 46958) ((-659 . -34) T) ((-644 . -34) T) ((-676 . -652) 46942) ((-366 . -1070) 46894) ((-354 . -237) T) ((-363 . -1070) 46846) ((-355 . -1070) 46798) ((-273 . -1070) 46641) ((-253 . -1070) 46484) ((-792 . -464) 46435) ((-366 . -652) 46387) ((-363 . -652) 46339) ((-355 . -652) 46291) ((-273 . -652) 46140) ((-253 . -652) 45989) ((-466 . -464) 45940) ((-969 . -423) 45924) ((-743 . -625) 45906) ((-258 . -729) 45848) ((-257 . -729) 45790) ((-743 . -626) 45651) ((-493 . -423) 45635) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -937) T) ((-1019 . -102) 45613) ((-927 . -1070) 45578) ((-1043 . -862) T) ((-60 . -526) 45511) ((-927 . -652) 45476) ((-1250 . -1171) 45428) ((-1023 . -296) NIL) ((-227 . -1077) T) ((-390 . -840) T) ((-1132 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1254 . -1112) 45412) ((-1254 . -1119) 45390) ((-245 . -616) 45367) ((-1254 . -1114) 45324) ((-1194 . -625) 45306) ((-1193 . -625) 45288) ((-1187 . -625) 45270) ((-1187 . -626) NIL) ((-1145 . -625) 45252) ((-884 . -412) 45236) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1271 . -38) 45077) ((-1250 . -38) 44891) ((-882 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1283 . -102) T) ((-1273 . -21) T) ((-1273 . -25) T) ((-1132 . -806) 44870) ((-1132 . -805) 44849) ((-1012 . -1119) T) ((-1046 . -34) T) ((-874 . -1119) T) ((-1132 . -738) 44827) ((-676 . -102) T) ((-657 . -102) T) ((-562 . -298) 44806) ((-1209 . -102) T) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1081 . -1077) T) ((-969 . -1077) T) ((-326 . -651) 44712) ((-323 . -651) 44673) ((-1192 . -1119) T) ((-493 . -1077) T) ((-491 . -102) T) ((-448 . -625) 44655) ((-1144 . -1119) T) ((-256 . -625) 44637) ((-866 . -1119) T) ((-1160 . -102) T) ((-828 . -300) 44568) ((-980 . -1075) 44451) ((-489 . -1041) T) ((-884 . -917) 44374) ((-747 . -1075) 44344) ((-1053 . -658) 44303) ((-1166 . -1140) 44287) ((-465 . -1075) 44257) ((-1121 . -526) 44190) ((-980 . -111) 44059) ((-927 . -102) T) ((-40 . -237) 43996) ((-747 . -111) 43961) ((-537 . -502) 43942) ((-537 . -625) 43908) ((-59 . -102) 43858) ((-532 . -626) 43819) ((-532 . -625) 43731) ((-531 . -102) 43709) ((-528 . -102) 43659) ((-509 . -102) 43637) ((-508 . -102) 43587) ((-465 . -111) 43550) ((-332 . -658) 43532) ((-430 . -1075) 43506) ((-1231 . -992) 43468) ((-1018 . -1131) T) ((-390 . -658) 43418) ((-1154 . -628) 43399) ((-960 . -526) 43332) ((-499 . -807) T) ((-486 . -38) 43173) ((-430 . -111) 43140) ((-499 . -804) T) ((-1019 . -319) 43078) ((-219 . -807) T) ((-219 . -804) T) ((-1018 . -23) T) ((-724 . -132) T) ((-1250 . -412) 43048) ((-848 . -658) 42993) ((-839 . -658) 42952) ((-326 . -25) 42804) ((-171 . -423) 42788) ((-326 . -21) 42659) ((-323 . -25) T) ((-323 . -21) T) ((-876 . -379) T) ((-980 . -628) 42512) ((-110 . -34) T) ((-747 . -628) 42468) ((-727 . -628) 42450) ((-494 . -660) 42283) ((-883 . -1077) T) ((-605 . -298) 42258) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1192 . -729) 42087) ((-1076 . -102) 42065) ((-1144 . -729) 41914) ((-1139 . -651) 41896) ((-866 . -729) 41866) ((-682 . -1237) T) ((-1 . -102) T) ((-430 . -628) 41774) ((-245 . -625) 41467) ((-1134 . -1119) T) ((-1260 . -423) 41451) ((-1209 . -319) 41255) ((-980 . -1068) T) ((-747 . -1068) T) ((-727 . -1068) T) ((-656 . -1119) 41205) ((-1073 . -660) 41189) ((-867 . -423) 41173) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 41160) ((-253 . -319) 41147) ((-1271 . -917) 41053) ((-980 . -336) 41032) ((-1250 . -917) 40829) ((-396 . -660) 40813) ((-682 . -1057) 40709) ((-491 . -319) 40513) ((-258 . -526) 40446) ((-257 . -526) 40379) ((-1160 . -319) 40305) ((-1231 . -909) 40284) ((-831 . -1119) T) ((-811 . -1075) 40268) ((-1279 . -296) 40233) ((-1272 . -296) 40191) ((-1251 . -296) 40019) ((-398 . -1119) T) ((-334 . -1119) T) ((-430 . -1068) T) ((-171 . -1077) T) ((-59 . -319) 39957) ((-811 . -111) 39936) ((-607 . -296) 39901) ((-531 . -319) 39839) ((-528 . -319) 39777) ((-509 . -319) 39715) ((-508 . -319) 39653) ((-430 . -238) 39632) ((-494 . -34) T) ((-227 . -1119) T) ((-1023 . -626) 39562) ((-1023 . -625) 39522) ((-990 . -625) 39482) ((-931 . -625) 39464) ((-711 . -148) T) ((-713 . -937) T) ((-713 . -832) T) ((-439 . -625) 39446) ((-1139 . -21) T) ((-1139 . -25) T) ((-682 . -388) 39430) ((-117 . -937) T) ((-884 . -272) 39414) ((-884 . -232) 39398) ((-44 . -1237) T) ((-78 . -1237) T) ((-127 . -126) 39382) ((-1073 . -34) T) ((-1309 . -1057) 39356) ((-1307 . -1057) 39313) ((-1260 . -1077) T) ((-867 . -1077) T) ((-366 . -1171) 39292) ((-363 . -1171) 39271) ((-355 . -1171) 39250) ((-494 . -806) 39229) ((-494 . -805) 39208) ((-229 . -34) T) ((-494 . -738) 39186) ((-811 . -628) 39032) ((-674 . -1070) 39016) ((-60 . -501) 39000) ((-583 . -1077) T) ((-1192 . -174) 38891) ((-674 . -652) 38875) ((-486 . -917) 38781) ((-1144 . -174) 38692) ((-1081 . -1119) T) ((-1106 . -966) 38637) ((-969 . -1119) T) ((-829 . -660) 38588) ((-794 . -966) 38557) ((-725 . -1119) T) ((-792 . -966) 38524) ((-528 . -292) 38508) ((-682 . -915) 38467) ((-493 . -1119) T) ((-466 . -966) 38434) ((-79 . -1237) T) ((-366 . -38) 38399) ((-363 . -38) 38364) ((-355 . -38) 38329) ((-273 . -38) 38178) ((-253 . -38) 38027) ((-927 . -1171) T) ((-536 . -502) 38008) ((-635 . -148) 37987) ((-635 . -146) 37966) ((-536 . -625) 37932) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -738) T) ((-811 . -1068) T) ((-576 . -237) T) ((-507 . -237) T) ((-354 . -464) T) ((-1279 . -1021) 37898) ((-1272 . -1021) 37864) ((-1251 . -1021) 37830) ((-927 . -38) 37795) ((-227 . -729) 37760) ((-329 . -47) 37730) ((-40 . -421) 37702) ((-141 . -625) 37684) ((-1018 . -132) T) ((-827 . -1237) T) ((-176 . -937) T) ((-561 . -379) T) ((-726 . -658) 37629) ((-618 . -628) 37610) ((-354 . -414) T) ((-683 . -628) 37591) ((-323 . -234) NIL) ((-182 . -628) 37572) ((-162 . -628) 37553) ((-157 . -628) 37534) ((-155 . -628) 37515) ((-532 . -298) 37492) ((-1250 . -232) 37462) ((-1250 . -272) 37432) ((-1198 . -660) 37357) ((-888 . -102) T) ((-827 . -1057) 37184) ((-45 . -34) T) ((-693 . -102) T) ((-688 . -102) T) ((-674 . -102) T) ((-666 . -21) T) ((-666 . -25) T) ((-1121 . -501) 37168) ((-687 . -1237) T) ((-490 . -102) T) ((-250 . -102) 37118) ((-558 . -856) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1106 . -909) 37013) ((-883 . -1119) T) ((-1192 . -526) 36960) ((-1081 . -729) 36947) ((-794 . -909) 36850) ((-743 . -1075) 36693) ((-792 . -909) 36675) ((-969 . -729) 36524) ((-1144 . -526) 36476) ((-1298 . -1119) T) ((-1297 . -1119) T) ((-466 . -909) 36451) ((-493 . -729) 36300) ((-67 . -625) 36282) ((-743 . -111) 36111) ((-960 . -501) 36095) ((-1299 . -660) 36055) ((-1194 . -1075) 35938) ((-829 . -738) T) ((-1193 . -1075) 35773) ((-1187 . -1075) 35563) ((-329 . -1237) T) ((-1145 . -1075) 35446) ((-1022 . -1241) T) ((-1113 . -102) 35424) ((-827 . -388) 35393) ((-591 . -625) 35375) ((-558 . -1119) T) ((-1022 . -568) T) ((-1194 . -111) 35244) ((-1193 . -111) 35065) ((-1187 . -111) 34834) ((-1145 . -111) 34703) ((-1124 . -1122) 34667) ((-390 . -860) T) ((-1279 . -625) 34649) ((-1272 . -625) 34631) ((-884 . -658) 34568) ((-1251 . -625) 34550) ((-1251 . -626) NIL) ((-245 . -298) 34527) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1119) T) ((-743 . -628) 34312) ((-706 . -148) T) ((-706 . -146) NIL) ((-608 . -625) 34294) ((-607 . -625) 34276) ((-1139 . -234) 34263) ((-913 . -1119) T) ((-853 . -1119) T) ((-820 . -1119) T) ((-273 . -917) 34173) ((-253 . -917) 34150) ((-781 . -1119) T) ((-689 . -1119) T) ((-670 . -864) 34134) ((-635 . -237) 34085) ((-827 . -915) 34017) ((-1242 . -379) T) ((-40 . -414) NIL) ((-118 . -237) NIL) ((-1194 . -628) 33899) ((-1139 . -673) T) ((-883 . -729) 33844) ((-258 . -501) 33828) ((-257 . -501) 33812) ((-1193 . -628) 33555) ((-1187 . -628) 33350) ((-724 . -651) 33298) ((-665 . -660) 33272) ((-1145 . -628) 33154) ((-305 . -34) T) ((-1139 . -113) T) ((-743 . -1068) T) ((-593 . -1294) 33141) ((-530 . -1294) 33118) ((-1260 . -1119) T) ((-1192 . -300) 33029) ((-1144 . -300) 32960) ((-1081 . -174) T) ((-299 . -1237) T) ((-867 . -1119) T) ((-969 . -174) 32871) ((-794 . -1263) 32855) ((-656 . -526) 32788) ((-77 . -625) 32770) ((-743 . -336) 32735) ((-1198 . -738) T) ((-583 . -1119) T) ((-493 . -174) 32646) ((-250 . -319) 32584) ((-1161 . -1131) T) ((-70 . -625) 32566) ((-1299 . -738) T) ((-1194 . -1068) T) ((-1193 . -1068) T) ((-337 . -102) 32516) ((-1187 . -1068) T) ((-1161 . -23) T) ((-1145 . -1068) T) ((-91 . -1140) 32500) ((-878 . -1131) T) ((-1194 . -238) 32459) ((-1193 . -248) 32438) ((-1193 . -238) 32390) ((-1187 . -238) 32277) ((-1187 . -248) 32256) ((-329 . -915) 32162) ((-878 . -23) T) ((-171 . -729) 31990) ((-419 . -1241) T) ((-1120 . -379) T) ((-1022 . -374) T) ((-882 . -464) T) ((-1043 . -148) T) ((-960 . -296) 31942) ((-323 . -862) NIL) ((-1271 . -658) 31824) ((-886 . -102) T) ((-1250 . -658) 31679) ((-724 . -25) T) ((-419 . -568) T) ((-724 . -21) T) ((-537 . -628) 31660) ((-365 . -148) 31642) ((-365 . -146) T) ((-1166 . -1119) 31620) ((-465 . -732) T) ((-75 . -625) 31602) ((-115 . -862) T) ((-250 . -292) 31586) ((-245 . -1075) 31507) ((-81 . -625) 31489) ((-747 . -379) 31442) ((-1196 . -840) T) ((-749 . -240) 31426) ((-1179 . -1237) T) ((-142 . -240) 31408) ((-245 . -111) 31324) ((-1260 . -729) 31153) ((-48 . -148) T) ((-883 . -174) T) ((-867 . -729) 31123) ((-496 . -1237) T) ((-969 . -526) 31070) ((-665 . -738) T) ((-583 . -729) 31057) ((-1053 . -1077) T) ((-706 . -237) NIL) ((-493 . -526) 31000) ((-960 . -19) 30984) ((-960 . -616) 30961) ((-1099 . -1237) 30912) ((-828 . -626) NIL) ((-828 . -625) 30894) ((-1231 . -652) 30791) ((-1231 . -1070) 30674) ((-1023 . -1075) 30624) ((-425 . -625) 30606) ((-258 . -296) 30583) ((-370 . -1237) 30562) ((-364 . -1237) 30541) ((-356 . -1237) 30520) ((-257 . -296) 30497) ((-499 . -926) NIL) ((-326 . -29) 30467) ((-108 . -1237) T) ((-1022 . -1131) T) ((-219 . -926) NIL) ((-1099 . -1057) 30363) ((-931 . -1075) 30315) ((-1023 . -111) 30249) ((-1022 . -23) T) ((-723 . -1070) 30214) ((-931 . -111) 30152) ((-749 . -707) 30136) ((-723 . -652) 30101) ((-273 . -272) 30085) ((-273 . -232) 30069) ((-439 . -1075) 30053) ((-390 . -1077) T) ((-245 . -628) 29851) ((-706 . -1225) NIL) ((-499 . -660) 29801) ((-486 . -658) 29683) ((-108 . -897) 29665) ((-108 . -899) 29647) ((-706 . -1222) NIL) ((-219 . -660) 29597) ((-370 . -1057) 29581) ((-364 . -1057) 29565) ((-337 . -319) 29503) ((-356 . -1057) 29487) ((-227 . -300) T) ((-439 . -111) 29466) ((-60 . -625) 29398) ((-171 . -174) T) ((-1139 . -862) T) ((-108 . -1057) 29358) ((-905 . -1119) T) ((-848 . -1077) T) ((-839 . -1077) T) ((-706 . -35) NIL) ((-706 . -95) NIL) ((-323 . -1011) 29319) ((-185 . -102) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-419 . -374) T) ((-245 . -1068) 29297) ((-1169 . -34) T) ((-489 . -937) T) ((-1018 . -651) 29245) ((-258 . -616) 29222) ((-257 . -616) 29199) ((-1099 . -388) 29183) ((-883 . -526) 29091) ((-245 . -238) 29043) ((-1178 . -1237) T) ((-1023 . -628) 28993) ((-931 . -628) 28930) ((-836 . -625) 28912) ((-1310 . -1131) T) ((-1302 . -625) 28894) ((-1260 . -174) 28785) ((-439 . -628) 28754) ((-108 . -388) 28736) ((-108 . -349) 28718) ((-1081 . -300) T) ((-969 . -300) 28649) ((-811 . -379) 28628) ((-659 . -1237) T) ((-644 . -1237) T) ((-1310 . -23) T) ((-598 . -1070) 28603) ((-493 . -300) 28534) ((-583 . -174) T) ((-337 . -292) 28518) ((-365 . -237) T) ((-1231 . -102) T) ((-1218 . -1119) T) ((-1107 . -1119) T) ((-1095 . -1119) T) ((-598 . -652) 28493) ((-83 . -625) 28475) ((-1203 . -856) T) ((-1202 . -856) T) ((-723 . -102) T) ((-366 . -360) 28454) ((-620 . -1119) T) ((-363 . -360) 28433) ((-355 . -360) 28412) ((-487 . -1119) T) ((-1209 . -231) 28362) ((-273 . -260) 28324) ((-1161 . -132) T) ((-620 . -622) 28300) ((-1099 . -915) 28233) ((-1023 . -1068) T) ((-931 . -1068) T) ((-487 . -622) 28212) ((-1187 . -804) NIL) ((-1187 . -807) NIL) ((-1121 . -626) 28173) ((-1121 . -625) 28155) ((-491 . -231) 28105) ((-1023 . -248) T) ((-1023 . -238) T) ((-975 . -1119) 28055) ((-439 . -1068) T) ((-931 . -248) T) ((-878 . -132) T) ((-48 . -237) T) ((-711 . -464) T) ((-855 . -1131) 28034) ((-108 . -915) NIL) ((-1231 . -294) 28000) ((-1132 . -1237) T) ((-884 . -860) 27979) ((-1018 . -25) T) ((-922 . -738) T) ((-171 . -526) 27891) ((-1018 . -21) T) ((-922 . -485) T) ((-419 . -1131) T) ((-499 . -806) T) ((-499 . -803) T) ((-927 . -360) T) ((-499 . -738) T) ((-219 . -806) T) ((-219 . -803) T) ((-724 . -234) 27878) ((-219 . -738) T) ((-855 . -23) 27830) ((-1204 . -1119) T) ((-670 . -1070) 27814) ((-1203 . -1119) T) ((-536 . -628) 27795) ((-1202 . -1119) T) ((-329 . -317) 27774) ((-1054 . -240) 27720) ((-670 . -652) 27690) ((-419 . -23) T) ((-960 . -626) 27651) ((-960 . -625) 27563) ((-656 . -501) 27547) ((-45 . -1029) 27497) ((-1132 . -1057) 27324) ((-629 . -986) T) ((-503 . -102) T) ((-341 . -625) 27306) ((-1012 . -296) 27273) ((-605 . -663) 27255) ((-131 . -1119) T) ((-129 . -1119) T) ((-605 . -384) 27237) ((-354 . -1294) 27214) ((-451 . -625) 27196) ((-1260 . -526) 27143) ((-1106 . -1070) 26986) ((-1046 . -1237) T) ((-883 . -300) T) ((-1192 . -296) 26913) ((-1106 . -652) 26762) ((-1019 . -1014) 26746) ((-794 . -1070) 26569) ((-792 . -1070) 26412) ((-794 . -652) 26241) ((-792 . -652) 26090) ((-488 . -1237) T) ((-475 . -1237) T) ((-598 . -102) T) ((-473 . -1070) 26061) ((-466 . -1070) 25904) ((-676 . -658) 25873) ((-635 . -464) 25852) ((-473 . -652) 25823) ((-466 . -652) 25672) ((-366 . -658) 25609) ((-363 . -658) 25546) ((-355 . -658) 25483) ((-273 . -658) 25393) ((-253 . -658) 25303) ((-1302 . -393) 25275) ((-529 . -1119) T) ((-118 . -464) T) ((-1217 . -102) T) ((-1111 . -1119) 25245) ((-1053 . -1119) T) ((-1134 . -93) T) ((-906 . -862) T) ((-1279 . -111) 25114) ((-362 . -1241) T) ((-1279 . -1075) 24997) ((-1132 . -388) 24966) ((-1272 . -1075) 24801) ((-1251 . -1075) 24591) ((-1272 . -111) 24412) ((-1251 . -111) 24181) ((-1231 . -319) 24168) ((-1022 . -132) T) ((-927 . -658) 24118) ((-376 . -625) 24100) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1075) 24060) ((-607 . -1075) 23943) ((-593 . -1070) 23908) ((-530 . -1070) 23853) ((-372 . -1119) T) ((-332 . -1119) T) ((-258 . -625) 23814) ((-257 . -625) 23775) ((-593 . -652) 23740) ((-530 . -652) 23685) ((-706 . -421) 23652) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -909) 23559) ((-670 . -102) T) ((-608 . -111) 23512) ((-607 . -111) 23381) ((-390 . -1119) T) ((-347 . -102) T) ((-171 . -300) 23292) ((-1250 . -860) 23245) ((-726 . -1077) T) ((-1166 . -526) 23178) ((-1210 . -847) 23162) ((-1132 . -915) 23094) ((-848 . -1119) T) ((-839 . -1119) T) ((-837 . -1119) T) ((-97 . -102) T) ((-145 . -862) T) ((-624 . -897) 23078) ((-110 . -1237) T) ((-1106 . -102) T) ((-1082 . -34) T) ((-794 . -102) T) ((-792 . -102) T) ((-1279 . -628) 22960) ((-1272 . -628) 22703) ((-473 . -102) T) ((-466 . -102) T) ((-1251 . -628) 22498) ((-245 . -807) 22477) ((-245 . -804) 22456) ((-661 . -102) T) ((-608 . -628) 22414) ((-607 . -628) 22296) ((-1260 . -300) 22207) ((-676 . -646) 22191) ((-188 . -625) 22173) ((-656 . -296) 22125) ((-1053 . -729) 22109) ((-583 . -300) T) ((-980 . -660) 22034) ((-1310 . -132) T) ((-747 . -660) 21994) ((-727 . -660) 21981) ((-284 . -102) T) ((-465 . -660) 21911) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1279 . -1068) T) ((-1272 . -1068) T) ((-1251 . -1068) T) ((-519 . -658) 21893) ((-332 . -729) 21875) ((-1279 . -238) 21834) ((-1272 . -248) 21813) ((-1272 . -238) 21765) ((-1251 . -238) 21652) ((-1251 . -248) 21631) ((-1231 . -38) 21528) ((-608 . -1068) T) ((-607 . -1068) T) ((-1023 . -807) T) ((-1023 . -804) T) ((-990 . -807) T) ((-990 . -804) T) ((-884 . -1077) T) ((-109 . -625) 21510) ((-706 . -464) T) ((-390 . -729) 21475) ((-430 . -660) 21449) ((-882 . -881) 21433) ((-723 . -38) 21398) ((-607 . -238) 21357) ((-40 . -736) 21329) ((-362 . -339) 21306) ((-362 . -374) T) ((-1099 . -317) 21257) ((-304 . -1131) 21138) ((-1125 . -1237) T) ((-1018 . -234) 21083) ((-173 . -102) T) ((-1254 . -625) 21050) ((-855 . -132) 21002) ((-848 . -729) 20972) ((-656 . -1275) 20956) ((-839 . -729) 20926) ((-656 . -616) 20903) ((-494 . -1237) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-411 . -234) 20890) ((-419 . -132) T) ((-532 . -678) 20874) ((-108 . -317) T) ((-304 . -23) 20757) ((-532 . -663) 20741) ((-706 . -414) NIL) ((-532 . -384) 20725) ((-301 . -625) 20707) ((-91 . -1119) 20685) ((-108 . -1041) T) ((-576 . -144) T) ((-1287 . -152) 20669) ((-494 . -1057) 20496) ((-1273 . -146) 20457) ((-1273 . -148) 20418) ((-1073 . -1237) T) ((-1012 . -625) 20400) ((-830 . -1237) T) ((-874 . -625) 20382) ((-828 . -1075) 20225) ((-1298 . -93) T) ((-1297 . -93) T) ((-1192 . -626) NIL) ((-1115 . -1119) T) ((-1109 . -1119) T) ((-1106 . -319) 20212) ((-1092 . -1119) T) ((-229 . -1237) T) ((-1085 . -1119) T) ((-1055 . -1119) T) ((-1038 . -1119) T) ((-794 . -319) 20199) ((-792 . -319) 20186) ((-1192 . -625) 20168) ((-828 . -111) 19997) ((-1144 . -625) 19979) ((-638 . -1119) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 19966) ((-495 . -1119) T) ((-1144 . -626) 19714) ((-1053 . -174) T) ((-960 . -298) 19691) ((-220 . -1119) T) ((-866 . -625) 19673) ((-620 . -526) 19456) ((-81 . -628) 19397) ((-830 . -1057) 19381) ((-487 . -526) 19173) ((-980 . -738) T) ((-747 . -738) T) ((-727 . -738) T) ((-362 . -1131) T) ((-1199 . -625) 19155) ((-225 . -102) T) ((-494 . -388) 19124) ((-527 . -1119) T) ((-522 . -1119) T) ((-520 . -1119) T) ((-811 . -660) 19098) ((-1043 . -464) T) ((-975 . -526) 19031) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-245 . -379) 19010) ((-390 . -174) T) ((-1271 . -1077) T) ((-1250 . -1077) T) ((-227 . -1021) T) ((-828 . -628) 18747) ((-711 . -399) T) ((-430 . -738) T) ((-713 . -1241) T) ((-1161 . -651) 18695) ((-592 . -881) 18679) ((-1302 . -1075) 18663) ((-1179 . -1213) 18639) ((-713 . -568) T) ((-127 . -1119) 18617) ((-726 . -1119) T) ((-670 . -38) 18587) ((-494 . -915) 18519) ((-255 . -1119) T) ((-189 . -1119) T) ((-365 . -414) T) ((-326 . -148) 18498) ((-326 . -146) 18477) ((-129 . -526) NIL) ((-117 . -568) T) ((-323 . -148) 18433) ((-323 . -146) 18389) ((-48 . -464) T) ((-163 . -1119) T) ((-158 . -1119) T) ((-1179 . -107) 18336) ((-794 . -1171) 18314) ((-701 . -34) T) ((-1302 . -111) 18293) ((-562 . -34) T) ((-496 . -107) 18277) ((-258 . -298) 18254) ((-257 . -298) 18231) ((-1243 . -856) T) ((-883 . -296) 18182) ((-45 . -1237) T) ((-1231 . -917) 18163) ((-829 . -1237) T) ((-828 . -1068) T) ((-674 . -658) 18132) ((-1198 . -47) 18109) ((-828 . -336) 18071) ((-1106 . -38) 17920) ((-828 . -238) 17899) ((-794 . -38) 17728) ((-792 . -38) 17577) ((-1134 . -502) 17558) ((-466 . -38) 17407) ((-1134 . -625) 17373) ((-1137 . -102) T) ((-656 . -626) 17334) ((-656 . -625) 17246) ((-593 . -1171) T) ((-530 . -1171) T) ((-1166 . -501) 17230) ((-354 . -1070) 17175) ((-1223 . -1119) 17153) ((-1161 . -25) T) ((-1161 . -21) T) ((-354 . -652) 17098) ((-1302 . -628) 17047) ((-486 . -1077) T) ((-1243 . -1119) T) ((-1251 . -804) NIL) ((-1251 . -807) NIL) ((-1018 . -862) 17026) ((-850 . -1119) T) ((-831 . -625) 17008) ((-878 . -21) T) ((-878 . -25) T) ((-811 . -738) T) ((-176 . -1241) T) ((-593 . -38) 16973) ((-530 . -38) 16938) ((-398 . -625) 16920) ((-343 . -102) T) ((-334 . -625) 16902) ((-171 . -296) 16860) ((-63 . -1237) T) ((-112 . -102) T) ((-884 . -1119) T) ((-176 . -568) T) ((-726 . -729) 16830) ((-304 . -132) 16713) ((-227 . -625) 16695) ((-227 . -626) 16625) ((-1022 . -651) 16564) ((-1302 . -1068) T) ((-1139 . -148) T) ((-644 . -1213) 16539) ((-743 . -926) 16518) ((-605 . -34) T) ((-659 . -107) 16502) ((-644 . -107) 16448) ((-635 . -909) 16369) ((-1260 . -296) 16296) ((-743 . -660) 16185) ((-305 . -1237) T) ((-1198 . -1057) 16081) ((-960 . -630) 16058) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -909) NIL) ((-1187 . -926) NIL) ((-1081 . -626) 15973) ((-1081 . -625) 15955) ((-969 . -625) 15937) ((-725 . -502) 15887) ((-354 . -102) T) ((-258 . -1075) 15808) ((-257 . -1075) 15729) ((-406 . -102) T) ((-31 . -1119) T) ((-969 . -626) 15590) ((-725 . -625) 15525) ((-1300 . -1230) 15494) ((-493 . -625) 15476) ((-493 . -626) 15337) ((-273 . -423) 15321) ((-253 . -423) 15305) ((-323 . -237) NIL) ((-258 . -111) 15221) ((-257 . -111) 15137) ((-1194 . -660) 15062) ((-1193 . -660) 14959) ((-1187 . -660) 14811) ((-1145 . -660) 14736) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1022 . -25) T) ((-1022 . -21) T) ((-885 . -1119) 14687) ((-40 . -1070) 14632) ((-884 . -729) 14584) ((-40 . -652) 14529) ((-390 . -300) T) ((-171 . -1021) 14480) ((-1106 . -917) 14379) ((-706 . -399) T) ((-1018 . -1016) 14363) ((-713 . -1131) T) ((-706 . -167) 14345) ((-794 . -917) 14252) ((-792 . -917) 14236) ((-1271 . -1119) T) ((-1250 . -1119) T) ((-1184 . -102) T) ((-326 . -1222) 14215) ((-326 . -1225) 14194) ((-466 . -917) 14171) ((-326 . -976) 14150) ((-135 . -1131) T) ((-117 . -1131) T) ((-665 . -1237) T) ((-614 . -1285) 14134) ((-713 . -23) T) ((-614 . -1119) 14084) ((-326 . -95) 14063) ((-91 . -526) 13996) ((-176 . -374) T) ((-258 . -628) 13794) ((-257 . -628) 13592) ((-326 . -35) 13571) ((-620 . -501) 13505) ((-135 . -23) T) ((-117 . -23) T) ((-983 . -102) T) ((-730 . -1119) T) ((-487 . -501) 13442) ((-419 . -651) 13390) ((-665 . -1057) 13286) ((-975 . -501) 13270) ((-366 . -1077) T) ((-363 . -1077) T) ((-355 . -1077) T) ((-273 . -1077) T) ((-253 . -1077) T) ((-883 . -626) NIL) ((-883 . -625) 13252) ((-1298 . -502) 13233) ((-1297 . -502) 13214) ((-1310 . -21) T) ((-1298 . -625) 13180) ((-1297 . -625) 13146) ((-583 . -1021) T) ((-743 . -738) T) ((-1310 . -25) T) ((-258 . -1068) 13124) ((-257 . -1068) 13102) ((-72 . -1237) T) ((-1161 . -234) 13047) ((-258 . -238) 12999) ((-257 . -238) 12951) ((-1139 . -237) T) ((-40 . -102) T) ((-927 . -1077) T) ((-706 . -909) NIL) ((-1201 . -102) T) ((-129 . -501) 12933) ((-1194 . -738) T) ((-1193 . -738) T) ((-1187 . -738) T) ((-1187 . -803) NIL) ((-1187 . -806) NIL) ((-971 . -102) T) ((-938 . -102) T) ((-882 . -1070) 12920) ((-1145 . -738) T) ((-783 . -102) T) ((-684 . -102) T) ((-882 . -652) 12907) ((-558 . -625) 12889) ((-486 . -1119) T) ((-350 . -1131) T) ((-176 . -1131) T) ((-329 . -937) 12868) ((-1271 . -729) 12709) ((-884 . -174) T) ((-1250 . -729) 12523) ((-855 . -21) 12475) ((-855 . -25) 12427) ((-250 . -1168) 12411) ((-127 . -526) 12344) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12110) ((-171 . -625) 12092) ((-176 . -23) T) ((-656 . -298) 12069) ((-532 . -34) T) ((-913 . -625) 12051) ((-89 . -1237) T) ((-853 . -625) 12033) ((-820 . -625) 12015) ((-781 . -625) 11997) ((-689 . -625) 11979) ((-245 . -660) 11812) ((-629 . -113) T) ((-1196 . -1119) T) ((-1192 . -1075) 11635) ((-1169 . -1237) T) ((-1144 . -1075) 11478) ((-866 . -1075) 11462) ((-1254 . -630) 11446) ((-1192 . -111) 11255) ((-1144 . -111) 11084) ((-866 . -111) 11063) ((-1244 . -862) T) ((-1260 . -626) NIL) ((-1260 . -625) 11045) ((-354 . -1171) T) ((-867 . -625) 11027) ((-1095 . -296) 11006) ((-1231 . -658) 10916) ((-80 . -1237) T) ((-922 . -1237) T) ((-1223 . -526) 10849) ((-1023 . -926) NIL) ((-1106 . -272) 10833) ((-620 . -296) 10809) ((-1106 . -232) 10793) ((-499 . -1237) T) ((-583 . -625) 10775) ((-487 . -296) 10754) ((-1023 . -660) 10704) ((-529 . -93) T) ((-1022 . -234) 10635) ((-219 . -1237) T) ((-975 . -296) 10587) ((-882 . -102) T) ((-299 . -937) T) ((-829 . -317) 10566) ((-794 . -272) 10550) ((-794 . -232) 10534) ((-931 . -660) 10486) ((-723 . -658) 10436) ((-706 . -736) 10403) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10368) ((-499 . -897) 10350) ((-499 . -899) 10332) ((-486 . -729) 10173) ((-219 . -897) 10155) ((-64 . -1237) T) ((-219 . -899) 10137) ((-619 . -25) T) ((-439 . -660) 10111) ((-1192 . -628) 9880) ((-499 . -1057) 9840) ((-884 . -526) 9752) ((-1144 . -628) 9544) ((-866 . -628) 9462) ((-219 . -1057) 9422) ((-245 . -34) T) ((-1019 . -1119) 9400) ((-592 . -1070) 9387) ((-576 . -1070) 9374) ((-507 . -1070) 9339) ((-1271 . -174) 9270) ((-1250 . -174) 9201) ((-592 . -652) 9188) ((-576 . -652) 9175) ((-507 . -652) 9140) ((-724 . -146) 9119) ((-724 . -148) 9098) ((-713 . -132) T) ((-137 . -477) 9075) ((-1166 . -625) 9007) ((-670 . -668) 8991) ((-129 . -296) 8941) ((-117 . -132) T) ((-489 . -1241) T) ((-620 . -616) 8917) ((-487 . -616) 8896) ((-347 . -346) 8865) ((-609 . -1119) T) ((-597 . -1119) T) ((-548 . -1119) T) ((-489 . -568) T) ((-1192 . -1068) T) ((-1144 . -1068) T) ((-866 . -1068) T) ((-245 . -806) 8844) ((-245 . -805) 8823) ((-1192 . -336) 8800) ((-245 . -738) 8778) ((-975 . -19) 8762) ((-499 . -388) 8744) ((-499 . -349) 8726) ((-1144 . -336) 8698) ((-365 . -1294) 8675) ((-219 . -388) 8657) ((-219 . -349) 8639) ((-975 . -616) 8616) ((-1192 . -238) T) ((-1283 . -1119) T) ((-676 . -1119) T) ((-657 . -1119) T) ((-1209 . -1119) T) ((-1106 . -260) 8553) ((-598 . -658) 8513) ((-366 . -1119) T) ((-363 . -1119) T) ((-355 . -1119) T) ((-273 . -1119) T) ((-253 . -1119) T) ((-84 . -1237) T) ((-128 . -102) 8491) ((-122 . -102) 8469) ((-1250 . -526) 8329) ((-1209 . -622) 8308) ((-1160 . -1119) T) ((-1134 . -628) 8289) ((-1099 . -937) 8240) ((-491 . -1119) T) ((-1023 . -806) T) ((-1023 . -803) T) ((-491 . -622) 8219) ((-258 . -807) 8198) ((-258 . -804) 8177) ((-257 . -807) 8156) ((-40 . -1171) NIL) ((-257 . -804) 8135) ((-1023 . -738) T) ((-129 . -19) 8117) ((-990 . -806) T) ((-711 . -1070) 8082) ((-931 . -738) T) ((-927 . -1119) T) ((-905 . -625) 8064) ((-129 . -616) 8039) ((-711 . -652) 8004) ((-91 . -501) 7988) ((-499 . -915) NIL) ((-884 . -300) T) ((-227 . -1075) 7953) ((-848 . -296) 7932) ((-219 . -915) NIL) ((-845 . -1131) 7911) ((-59 . -1119) 7861) ((-531 . -1119) 7839) ((-528 . -1119) 7789) ((-509 . -1119) 7767) ((-508 . -1119) 7717) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7648) ((-370 . -937) T) ((-364 . -937) T) ((-356 . -937) T) ((-227 . -111) 7604) ((-845 . -23) 7556) ((-439 . -738) T) ((-108 . -937) T) ((-40 . -38) 7501) ((-108 . -832) T) ((-593 . -360) T) ((-530 . -360) T) ((-670 . -658) 7460) ((-326 . -464) 7439) ((-323 . -464) T) ((-614 . -526) 7372) ((-419 . -234) 7317) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7181) ((-304 . -21) 7064) ((-45 . -1213) 7043) ((-66 . -625) 7025) ((-55 . -102) T) ((-347 . -658) 7007) ((-1288 . -102) T) ((-1287 . -102) 6957) ((-45 . -107) 6907) ((-831 . -628) 6891) ((-1279 . -660) 6816) ((-1272 . -660) 6713) ((-1251 . -660) 6565) ((-1251 . -926) NIL) ((-1218 . -625) 6547) ((-1121 . -437) 6531) ((-1121 . -379) 6510) ((-398 . -628) 6494) ((-334 . -628) 6478) ((-1210 . -102) T) ((-1115 . -93) T) ((-1082 . -1237) T) ((-1106 . -658) 6388) ((-1081 . -1075) 6375) ((-1081 . -111) 6360) ((-969 . -1075) 6203) ((-969 . -111) 6032) ((-794 . -658) 5942) ((-792 . -658) 5852) ((-635 . -1070) 5839) ((-676 . -729) 5823) ((-635 . -652) 5810) ((-493 . -1075) 5653) ((-489 . -374) T) ((-473 . -658) 5609) ((-466 . -658) 5519) ((-227 . -628) 5469) ((-366 . -729) 5421) ((-363 . -729) 5373) ((-118 . -1070) 5318) ((-355 . -729) 5270) ((-273 . -729) 5119) ((-253 . -729) 4968) ((-1109 . -93) T) ((-1092 . -93) T) ((-118 . -652) 4913) ((-1085 . -93) T) ((-960 . -663) 4897) ((-1076 . -1119) 4875) ((-493 . -111) 4704) ((-1055 . -93) T) ((-1038 . -93) T) ((-960 . -384) 4688) ((-254 . -102) T) ((-980 . -47) 4667) ((-74 . -625) 4649) ((-724 . -237) T) ((-722 . -102) T) ((-711 . -102) T) ((-1 . -1119) T) ((-633 . -1131) T) ((-1107 . -625) 4631) ((-638 . -93) T) ((-1095 . -625) 4613) ((-927 . -729) 4578) ((-127 . -501) 4562) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1237) T) ((-220 . -93) T) ((-620 . -625) 4544) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4526) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -658) 4485) ((-523 . -1119) T) ((-519 . -1119) T) ((-128 . -319) 4423) ((-122 . -319) 4361) ((-608 . -660) 4335) ((-607 . -660) 4260) ((-593 . -658) 4210) ((-227 . -1068) T) ((-530 . -658) 4140) ((-390 . -1021) T) ((-227 . -248) T) ((-227 . -238) T) ((-1081 . -628) 4112) ((-1081 . -630) 4093) ((-975 . -626) 4054) ((-975 . -625) 3966) ((-969 . -628) 3755) ((-882 . -38) 3742) ((-725 . -628) 3692) ((-1271 . -300) 3643) ((-1250 . -300) 3594) ((-493 . -628) 3379) ((-1139 . -464) T) ((-514 . -862) T) ((-326 . -1158) 3358) ((-1018 . -148) 3337) ((-1018 . -146) 3316) ((-507 . -319) 3303) ((-305 . -1213) 3282) ((-1204 . -625) 3264) ((-1203 . -625) 3246) ((-1202 . -625) 3228) ((-883 . -1075) 3173) ((-489 . -1131) T) ((-140 . -847) 3155) ((-115 . -847) 3136) ((-635 . -102) T) ((-1223 . -501) 3120) ((-258 . -379) 3099) ((-257 . -379) 3078) ((-1081 . -1068) T) ((-305 . -107) 3028) ((-131 . -625) 3010) ((-129 . -626) NIL) ((-129 . -625) 2954) ((-118 . -102) T) ((-969 . -1068) T) ((-883 . -111) 2883) ((-489 . -23) T) ((-465 . -1237) T) ((-493 . -1068) T) ((-1081 . -238) T) ((-969 . -336) 2852) ((-40 . -917) 2761) ((-493 . -336) 2718) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2629) ((-253 . -174) 2540) ((-980 . -1057) 2436) ((-529 . -502) 2417) ((-747 . -1057) 2388) ((-529 . -625) 2354) ((-430 . -1237) T) ((-1124 . -102) T) ((-1111 . -625) 2313) ((-1053 . -625) 2295) ((-706 . -1070) 2245) ((-1300 . -152) 2229) ((-1298 . -628) 2210) ((-1297 . -628) 2191) ((-1292 . -625) 2173) ((-1279 . -738) T) ((-706 . -652) 2123) ((-1272 . -738) T) ((-1251 . -803) NIL) ((-1251 . -806) NIL) ((-171 . -1075) 2033) ((-927 . -174) T) ((-883 . -628) 1963) ((-1251 . -738) T) ((-1022 . -353) 1937) ((-225 . -658) 1889) ((-1019 . -526) 1822) ((-855 . -862) 1801) ((-576 . -1171) T) ((-486 . -300) 1752) ((-608 . -738) T) ((-372 . -625) 1734) ((-332 . -625) 1716) ((-430 . -1057) 1612) ((-607 . -738) T) ((-419 . -862) 1563) ((-171 . -111) 1459) ((-845 . -132) 1411) ((-749 . -152) 1395) ((-1287 . -319) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1029) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-726 . -296) 1159) ((-499 . -1041) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1041) T) ((-883 . -1068) T) ((-848 . -625) 1080) ((-839 . -625) 1062) ((-837 . -625) 1044) ((-828 . -926) 1023) ((-1311 . -1131) T) ((-1260 . -1075) 846) ((-867 . -1075) 830) ((-883 . -248) T) ((-883 . -238) NIL) ((-701 . -1237) T) ((-1311 . -23) T) ((-828 . -660) 719) ((-562 . -1237) T) ((-430 . -349) 703) ((-583 . -1075) 690) ((-1260 . -111) 499) ((-713 . -651) 481) ((-867 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1209 . -526) 30) ((-888 . -1119) T) ((-693 . -1119) T) ((-688 . -1119) T) ((-674 . -1119) T))
\ No newline at end of file +(((-490 . -1119) T) ((-273 . -526) 203062) ((-253 . -526) 203005) ((-250 . -1119) 202955) ((-583 . -111) 202940) ((-543 . -23) T) ((-139 . -1119) T) ((-138 . -1119) T) ((-118 . -319) 202897) ((-134 . -1119) T) ((-1018 . -237) 202848) ((-811 . -1236) 202817) ((-491 . -526) 202609) ((-689 . -628) 202593) ((-706 . -102) T) ((-1160 . -526) 202512) ((-411 . -237) T) ((-402 . -132) T) ((-1299 . -995) 202481) ((-1043 . -1070) 202418) ((-31 . -93) T) ((-614 . -501) 202402) ((-1043 . -652) 202339) ((-633 . -132) T) ((-831 . -858) T) ((-535 . -57) 202289) ((-531 . -526) 202222) ((-362 . -234) 202209) ((-365 . -1070) 202154) ((-59 . -526) 202087) ((-528 . -526) 202020) ((-430 . -915) 201979) ((-171 . -1068) T) ((-509 . -526) 201912) ((-508 . -526) 201845) ((-365 . -652) 201790) ((-811 . -1057) 201570) ((-711 . -38) 201535) ((-1259 . -628) 201283) ((-354 . -360) T) ((-1113 . -1112) 201267) ((-1113 . -1119) 201245) ((-867 . -628) 201142) ((-171 . -248) 201093) ((-171 . -238) 201044) ((-1113 . -1114) 201002) ((-884 . -296) 200960) ((-227 . -807) T) ((-227 . -804) T) ((-706 . -294) NIL) ((-583 . -628) 200932) ((-1169 . -1212) 200911) ((-419 . -1011) 200895) ((-48 . -1070) 200860) ((-713 . -21) T) ((-713 . -25) T) ((-48 . -652) 200825) ((-1301 . -660) 200799) ((-1169 . -107) 200749) ((-326 . -161) 200728) ((-326 . -144) 200707) ((-117 . -21) T) ((-40 . -232) 200684) ((-40 . -272) 200661) ((-135 . -25) T) ((-117 . -25) T) ((-620 . -298) 200637) ((-487 . -298) 200616) ((-1259 . -336) 200593) ((-1259 . -1068) T) ((-867 . -1068) T) ((-811 . -349) 200577) ((-140 . -187) T) ((-118 . -1171) NIL) ((-91 . -625) 200509) ((-489 . -132) T) ((-1259 . -238) T) ((-1115 . -502) 200490) ((-1115 . -625) 200456) ((-1109 . -502) 200437) ((-1109 . -625) 200403) ((-605 . -1236) T) ((-1092 . -502) 200384) ((-583 . -1068) T) ((-1092 . -625) 200350) ((-674 . -729) 200334) ((-1085 . -502) 200315) ((-1085 . -625) 200281) ((-975 . -298) 200258) ((-60 . -34) T) ((-1081 . -807) T) ((-1081 . -804) T) ((-1055 . -502) 200239) ((-1038 . -502) 200220) ((-828 . -738) T) ((-743 . -47) 200185) ((-635 . -38) 200172) ((-366 . -300) T) ((-363 . -300) T) ((-355 . -300) T) ((-273 . -300) 200103) ((-253 . -300) 200034) ((-1055 . -625) 200000) ((-1043 . -102) T) ((-1038 . -625) 199966) ((-638 . -502) 199947) ((-425 . -738) T) ((-118 . -38) 199892) ((-495 . -502) 199873) ((-638 . -625) 199839) ((-425 . -485) T) ((-220 . -502) 199820) ((-495 . -625) 199786) ((-365 . -102) T) ((-220 . -625) 199752) ((-1230 . -1077) T) ((-354 . -658) 199682) ((-723 . -1077) T) ((-1193 . -47) 199659) ((-1192 . -47) 199629) ((-1186 . -47) 199606) ((-129 . -298) 199581) ((-1054 . -152) 199527) ((-927 . -300) T) ((-1145 . -47) 199499) ((-706 . -319) NIL) ((-527 . -625) 199481) ((-522 . -625) 199463) ((-520 . -625) 199445) ((-337 . -1119) 199395) ((-326 . -909) 199359) ((-323 . -909) NIL) ((-724 . -464) 199290) ((-48 . -102) T) ((-1270 . -296) 199248) ((-1249 . -296) 199148) ((-656 . -678) 199132) ((-656 . -663) 199116) ((-350 . -21) T) ((-350 . -25) T) ((-40 . -360) NIL) ((-176 . -21) T) ((-176 . -25) T) ((-656 . -384) 199100) ((-617 . -502) 199082) ((-614 . -296) 199034) ((-617 . -625) 199001) ((-400 . -102) T) ((-1139 . -144) T) ((-127 . -625) 198933) ((-886 . -1119) T) ((-670 . -423) 198917) ((-743 . -1236) T) ((-726 . -625) 198899) ((-255 . -625) 198866) ((-189 . -625) 198848) ((-163 . -625) 198830) ((-158 . -625) 198812) ((-1301 . -738) T) ((-1121 . -34) T) ((-883 . -807) NIL) ((-883 . -804) NIL) ((-870 . -862) T) ((-743 . -899) NIL) ((-1310 . -132) T) ((-392 . -132) T) ((-905 . -628) 198780) ((-921 . -102) T) ((-743 . -1057) 198656) ((-1193 . -1236) T) ((-1192 . -1236) T) ((-543 . -132) T) ((-1186 . -1236) T) ((-1106 . -423) 198640) ((-1019 . -501) 198624) ((-118 . -412) 198601) ((-1145 . -1236) T) ((-794 . -423) 198585) ((-792 . -423) 198569) ((-960 . -34) T) ((-706 . -1171) NIL) ((-258 . -660) 198389) ((-257 . -660) 198196) ((-829 . -937) 198175) ((-466 . -423) 198159) ((-614 . -19) 198143) ((-1165 . -1229) 198112) ((-1186 . -899) NIL) ((-1186 . -897) 198064) ((-614 . -616) 198041) ((-1222 . -625) 197973) ((-1194 . -625) 197955) ((-62 . -407) T) ((-1192 . -1057) 197890) ((-1186 . -1057) 197856) ((-706 . -38) 197806) ((-40 . -658) 197736) ((-486 . -296) 197694) ((-1242 . -625) 197676) ((-743 . -388) 197660) ((-850 . -625) 197642) ((-670 . -1077) T) ((-635 . -917) 197565) ((-1270 . -1021) 197531) ((-1249 . -1021) 197497) ((-256 . -1236) T) ((-1107 . -628) 197481) ((-1082 . -1212) 197456) ((-1095 . -628) 197433) ((-884 . -626) 197240) ((-884 . -625) 197222) ((-118 . -917) NIL) ((-713 . -234) 197209) ((-1208 . -501) 197146) ((-430 . -1041) 197124) ((-48 . -319) 197111) ((-1082 . -107) 197057) ((-491 . -501) 196994) ((-532 . -1236) T) ((-1186 . -349) 196946) ((-1160 . -501) 196917) ((-1186 . -388) 196869) ((-1106 . -1077) T) ((-449 . -102) T) ((-185 . -1119) T) ((-258 . -34) T) ((-257 . -34) T) ((-794 . -1077) T) ((-792 . -1077) T) ((-743 . -915) 196846) ((-466 . -1077) T) ((-59 . -501) 196830) ((-1053 . -1075) 196804) ((-531 . -501) 196788) ((-528 . -501) 196772) ((-509 . -501) 196756) ((-508 . -501) 196740) ((-250 . -526) 196673) ((-1053 . -111) 196640) ((-1193 . -915) 196553) ((-1192 . -915) 196459) ((-682 . -1131) T) ((-1186 . -915) 196292) ((-657 . -93) T) ((-1145 . -915) 196276) ((-365 . -1171) T) ((-332 . -1075) 196258) ((-31 . -502) 196239) ((-258 . -806) 196218) ((-258 . -805) 196197) ((-257 . -806) 196176) ((-257 . -805) 196155) ((-31 . -625) 196121) ((-50 . -1077) T) ((-258 . -738) 196099) ((-257 . -738) 196077) ((-1230 . -1119) T) ((-682 . -23) T) ((-593 . -1077) T) ((-530 . -1077) T) ((-390 . -1075) 196042) ((-332 . -111) 196017) ((-73 . -394) T) ((-73 . -407) T) ((-1043 . -38) 195954) ((-706 . -412) 195936) ((-99 . -102) T) ((-723 . -1119) T) ((-1315 . -1070) 195923) ((-1022 . -146) 195895) ((-1022 . -148) 195867) ((-882 . -658) 195839) ((-390 . -111) 195795) ((-329 . -1240) 195774) ((-486 . -1021) 195740) ((-365 . -38) 195705) ((-40 . -381) 195677) ((-885 . -625) 195549) ((-128 . -126) 195533) ((-122 . -126) 195517) ((-848 . -1075) 195487) ((-845 . -21) 195439) ((-839 . -1075) 195423) ((-845 . -25) 195375) ((-329 . -568) 195326) ((-529 . -628) 195307) ((-576 . -840) T) ((-245 . -1236) T) ((-1053 . -628) 195276) ((-848 . -111) 195241) ((-839 . -111) 195220) ((-1270 . -625) 195202) ((-1249 . -625) 195184) ((-1249 . -626) 194855) ((-1191 . -926) 194834) ((-1144 . -926) 194813) ((-48 . -38) 194778) ((-1308 . -1131) T) ((-548 . -296) 194734) ((-614 . -625) 194646) ((-614 . -626) 194607) ((-1306 . -1131) T) ((-372 . -628) 194591) ((-332 . -628) 194575) ((-1161 . -237) 194526) ((-245 . -1057) 194353) ((-1191 . -660) 194242) ((-1144 . -660) 194131) ((-866 . -660) 194105) ((-730 . -625) 194087) ((-558 . -379) T) ((-1308 . -23) T) ((-706 . -917) NIL) ((-1306 . -23) T) ((-503 . -1119) T) ((-390 . -628) 194037) ((-390 . -630) 194019) ((-1053 . -1068) T) ((-877 . -102) T) ((-1208 . -296) 193998) ((-171 . -379) 193949) ((-1023 . -1236) T) ((-848 . -628) 193903) ((-839 . -628) 193858) ((-44 . -23) T) ((-491 . -296) 193837) ((-598 . -1119) T) ((-1315 . -102) T) ((-1165 . -1128) 193806) ((-1123 . -1122) 193758) ((-402 . -21) T) ((-402 . -25) T) ((-153 . -1131) T) ((-1230 . -729) 193655) ((-1216 . -1119) T) ((-1023 . -897) 193637) ((-1023 . -899) 193619) ((-635 . -232) 193603) ((-635 . -272) 193587) ((-633 . -21) T) ((-299 . -568) T) ((-633 . -25) T) ((-1023 . -1057) 193547) ((-723 . -729) 193512) ((-245 . -388) 193481) ((-390 . -1068) T) ((-225 . -1077) T) ((-118 . -272) 193458) ((-118 . -232) 193435) ((-59 . -296) 193387) ((-153 . -23) T) ((-528 . -296) 193339) ((-337 . -526) 193272) ((-508 . -296) 193224) ((-390 . -248) T) ((-390 . -238) T) ((-848 . -1068) T) ((-839 . -1068) T) ((-724 . -966) 193193) ((-713 . -862) T) ((-486 . -625) 193175) ((-1272 . -1070) 193080) ((-592 . -658) 193052) ((-576 . -658) 193024) ((-507 . -658) 192974) ((-839 . -238) 192953) ((-135 . -862) T) ((-1272 . -652) 192845) ((-670 . -1119) T) ((-1208 . -616) 192824) ((-562 . -1212) 192803) ((-347 . -1119) T) ((-329 . -374) 192782) ((-419 . -148) 192761) ((-419 . -146) 192740) ((-981 . -1131) 192639) ((-245 . -915) 192571) ((-827 . -1131) 192549) ((-666 . -864) 192533) ((-491 . -616) 192512) ((-562 . -107) 192462) ((-1023 . -388) 192444) ((-1023 . -349) 192426) ((-1195 . -625) 192408) ((-97 . -1119) T) ((-981 . -23) 192219) ((-489 . -21) T) ((-489 . -25) T) ((-827 . -23) 192071) ((-1195 . -626) 191993) ((-59 . -19) 191977) ((-1191 . -738) T) ((-1144 . -738) T) ((-1106 . -1119) T) ((-528 . -19) 191961) ((-508 . -19) 191945) ((-59 . -616) 191922) ((-1022 . -237) 191859) ((-918 . -102) 191837) ((-866 . -738) T) ((-794 . -1119) T) ((-528 . -616) 191814) ((-508 . -616) 191791) ((-792 . -1119) T) ((-792 . -1084) 191758) ((-473 . -1119) T) ((-466 . -1119) T) ((-598 . -729) 191733) ((-661 . -1119) T) ((-1278 . -47) 191710) ((-1272 . -102) T) ((-1271 . -47) 191680) ((-1250 . -47) 191657) ((-1230 . -174) 191608) ((-1192 . -317) 191587) ((-1186 . -317) 191566) ((-1115 . -628) 191547) ((-1109 . -628) 191528) ((-1099 . -568) 191479) ((-1099 . -1240) 191430) ((-1023 . -915) NIL) ((-1092 . -628) 191411) ((-682 . -132) T) ((-639 . -1131) T) ((-1085 . -628) 191392) ((-1055 . -628) 191373) ((-1038 . -628) 191354) ((-726 . -1075) 191324) ((-711 . -658) 191274) ((-284 . -1119) T) ((-85 . -453) T) ((-85 . -407) T) ((-724 . -909) 191177) ((-723 . -174) T) ((-50 . -1119) T) ((-607 . -47) 191154) ((-227 . -660) 191119) ((-593 . -1119) T) ((-530 . -1119) T) ((-499 . -832) T) ((-499 . -937) T) ((-370 . -1240) T) ((-364 . -1240) T) ((-356 . -1240) T) ((-329 . -1131) T) ((-326 . -1070) 191029) ((-323 . -1070) 190958) ((-108 . -1240) T) ((-638 . -628) 190939) ((-370 . -568) T) ((-219 . -937) T) ((-219 . -832) T) ((-326 . -652) 190849) ((-323 . -652) 190778) ((-364 . -568) T) ((-356 . -568) T) ((-495 . -628) 190759) ((-108 . -568) T) ((-670 . -729) 190729) ((-1186 . -1041) NIL) ((-220 . -628) 190710) ((-329 . -23) T) ((-67 . -1236) T) ((-1019 . -625) 190642) ((-706 . -272) 190624) ((-706 . -232) 190606) ((-726 . -111) 190571) ((-656 . -34) T) ((-250 . -501) 190555) ((-1315 . -1171) T) ((-1310 . -21) T) ((-1310 . -25) T) ((-1308 . -132) T) ((-1121 . -1117) 190539) ((-173 . -1119) T) ((-1306 . -132) T) ((-1299 . -102) T) ((-1282 . -625) 190505) ((-1278 . -1236) T) ((-1271 . -1236) T) ((-969 . -926) 190484) ((-1271 . -1057) 190419) ((-1250 . -1236) T) ((-1250 . -899) NIL) ((-527 . -628) 190403) ((-1250 . -897) 190355) ((-1250 . -1057) 190321) ((-1230 . -526) 190288) ((-493 . -926) 190267) ((-1208 . -626) NIL) ((-1208 . -625) 190249) ((-1106 . -729) 190098) ((-1081 . -660) 190070) ((-969 . -660) 189959) ((-609 . -502) 189940) ((-597 . -502) 189921) ((-794 . -729) 189750) ((-609 . -625) 189716) ((-597 . -625) 189682) ((-548 . -625) 189664) ((-548 . -626) 189645) ((-792 . -729) 189494) ((-1096 . -102) T) ((-392 . -25) T) ((-635 . -658) 189466) ((-392 . -21) T) ((-493 . -660) 189355) ((-473 . -729) 189326) ((-466 . -729) 189175) ((-1006 . -102) T) ((-1161 . -1142) 189120) ((-1065 . -1229) 189049) ((-918 . -319) 188987) ((-749 . -102) T) ((-118 . -658) 188917) ((-617 . -628) 188899) ((-888 . -93) T) ((-726 . -628) 188853) ((-543 . -25) T) ((-693 . -93) T) ((-688 . -93) T) ((-676 . -625) 188835) ((-657 . -502) 188816) ((-142 . -102) T) ((-44 . -132) T) ((-657 . -625) 188769) ((-607 . -1236) T) ((-354 . -1077) T) ((-299 . -1131) T) ((-490 . -93) T) ((-419 . -237) 188720) ((-366 . -625) 188702) ((-363 . -625) 188684) ((-355 . -625) 188666) ((-273 . -626) 188414) ((-273 . -625) 188396) ((-253 . -625) 188378) ((-253 . -626) 188239) ((-139 . -93) T) ((-138 . -93) T) ((-134 . -93) T) ((-1160 . -625) 188221) ((-1139 . -652) 188208) ((-1139 . -1070) 188195) ((-831 . -738) T) ((-831 . -869) T) ((-614 . -298) 188172) ((-593 . -729) 188137) ((-491 . -626) NIL) ((-491 . -625) 188119) ((-530 . -729) 188064) ((-326 . -102) T) ((-323 . -102) T) ((-299 . -23) T) ((-153 . -132) T) ((-927 . -625) 188046) ((-927 . -626) 188028) ((-398 . -738) T) ((-884 . -1075) 187980) ((-884 . -111) 187918) ((-726 . -1068) T) ((-724 . -1262) 187902) ((-706 . -360) NIL) ((-115 . -102) T) ((-140 . -102) T) ((-137 . -102) T) ((-531 . -625) 187834) ((-390 . -807) T) ((-225 . -1119) T) ((-169 . -1236) T) ((-390 . -804) T) ((-227 . -806) T) ((-227 . -803) T) ((-59 . -626) 187795) ((-59 . -625) 187707) ((-227 . -738) T) ((-528 . -626) 187668) ((-528 . -625) 187580) ((-509 . -625) 187512) ((-508 . -626) 187473) ((-508 . -625) 187385) ((-1099 . -374) 187336) ((-40 . -423) 187313) ((-77 . -1236) T) ((-883 . -926) NIL) ((-370 . -339) 187297) ((-370 . -374) T) ((-364 . -339) 187281) ((-364 . -374) T) ((-356 . -339) 187265) ((-356 . -374) T) ((-326 . -294) 187244) ((-108 . -374) T) ((-70 . -1236) T) ((-1250 . -349) 187196) ((-883 . -660) 187141) ((-1250 . -388) 187093) ((-981 . -132) 186948) ((-827 . -132) 186819) ((-975 . -663) 186803) ((-1106 . -174) 186714) ((-975 . -384) 186698) ((-1081 . -806) T) ((-1081 . -803) T) ((-884 . -628) 186596) ((-794 . -174) 186487) ((-792 . -174) 186398) ((-828 . -47) 186360) ((-1081 . -738) T) ((-337 . -501) 186344) ((-969 . -738) T) ((-1299 . -319) 186282) ((-1278 . -915) 186195) ((-466 . -174) 186106) ((-250 . -296) 186058) ((-1271 . -915) 185964) ((-1270 . -1075) 185799) ((-1250 . -915) 185632) ((-493 . -738) T) ((-1249 . -1075) 185440) ((-1230 . -300) 185419) ((-1205 . -1236) T) ((-1202 . -379) T) ((-1201 . -379) T) ((-1165 . -152) 185403) ((-1139 . -102) T) ((-1137 . -1119) T) ((-1099 . -23) T) ((-1099 . -1131) T) ((-1094 . -102) T) ((-1076 . -625) 185370) ((-1022 . -421) 185342) ((-944 . -972) T) ((-749 . -319) 185280) ((-75 . -1236) T) ((-676 . -393) 185252) ((-171 . -926) 185205) ((-30 . -972) T) ((-112 . -856) T) ((-1 . -625) 185187) ((-1018 . -909) 185108) ((-129 . -663) 185090) ((-50 . -632) 185074) ((-706 . -658) 185009) ((-607 . -915) 184922) ((-450 . -102) T) ((-129 . -384) 184904) ((-142 . -319) NIL) ((-884 . -1068) T) ((-845 . -862) 184883) ((-81 . -1236) T) ((-723 . -300) T) ((-40 . -1077) T) ((-593 . -174) T) ((-530 . -174) T) ((-523 . -625) 184865) ((-171 . -660) 184739) ((-519 . -625) 184721) ((-362 . -148) 184703) ((-362 . -146) T) ((-370 . -1131) T) ((-364 . -1131) T) ((-356 . -1131) T) ((-1023 . -317) T) ((-931 . -317) T) ((-884 . -248) T) ((-108 . -1131) T) ((-884 . -238) 184682) ((-1270 . -111) 184503) ((-1249 . -111) 184292) ((-250 . -1274) 184276) ((-576 . -860) T) ((-370 . -23) T) ((-365 . -360) T) ((-326 . -319) 184263) ((-323 . -319) 184204) ((-364 . -23) T) ((-329 . -132) T) ((-356 . -23) T) ((-1023 . -1041) T) ((-31 . -628) 184185) ((-108 . -23) T) ((-666 . -1070) 184169) ((-250 . -616) 184146) ((-343 . -1119) T) ((-666 . -652) 184116) ((-1272 . -38) 184008) ((-1259 . -926) 183987) ((-112 . -1119) T) ((-828 . -1236) T) ((-1054 . -102) T) ((-1259 . -660) 183876) ((-883 . -806) NIL) ((-867 . -660) 183850) ((-883 . -803) NIL) ((-828 . -899) NIL) ((-883 . -738) T) ((-1106 . -526) 183723) ((-794 . -526) 183670) ((-792 . -526) 183622) ((-583 . -660) 183609) ((-828 . -1057) 183437) ((-466 . -526) 183380) ((-400 . -401) T) ((-1270 . -628) 183193) ((-1249 . -628) 182941) ((-60 . -1236) T) ((-633 . -862) 182920) ((-512 . -673) T) ((-1165 . -995) 182889) ((-1043 . -658) 182826) ((-1022 . -464) T) ((-711 . -860) T) ((-522 . -804) T) ((-486 . -1075) 182661) ((-512 . -113) T) ((-354 . -1119) T) ((-323 . -1171) NIL) ((-299 . -132) T) ((-406 . -1119) T) ((-882 . -1077) T) ((-706 . -381) 182628) ((-365 . -658) 182558) ((-225 . -632) 182535) ((-337 . -296) 182487) ((-486 . -111) 182308) ((-1270 . -1068) T) ((-1249 . -1068) T) ((-828 . -388) 182292) ((-171 . -738) T) ((-666 . -102) T) ((-1270 . -248) 182271) ((-1270 . -238) 182223) ((-1249 . -238) 182128) ((-1249 . -248) 182107) ((-1022 . -414) NIL) ((-682 . -651) 182055) ((-326 . -38) 181965) ((-323 . -38) 181894) ((-69 . -625) 181876) ((-329 . -505) 181842) ((-48 . -658) 181792) ((-1208 . -298) 181771) ((-1244 . -862) T) ((-1132 . -1131) 181749) ((-83 . -1236) T) ((-61 . -625) 181731) ((-491 . -298) 181710) ((-1301 . -1057) 181687) ((-1183 . -1119) T) ((-1132 . -23) 181539) ((-828 . -915) 181475) ((-1259 . -738) T) ((-1121 . -1236) T) ((-486 . -628) 181301) ((-362 . -237) T) ((-1106 . -300) 181232) ((-983 . -1119) T) ((-906 . -102) T) ((-794 . -300) 181143) ((-337 . -19) 181127) ((-59 . -298) 181104) ((-792 . -300) 181035) ((-867 . -738) T) ((-118 . -860) NIL) ((-528 . -298) 181012) ((-337 . -616) 180989) ((-508 . -298) 180966) ((-466 . -300) 180897) ((-1054 . -319) 180748) ((-888 . -502) 180729) ((-888 . -625) 180695) ((-693 . -502) 180676) ((-583 . -738) T) ((-688 . -502) 180657) ((-693 . -625) 180607) ((-688 . -625) 180573) ((-674 . -625) 180555) ((-490 . -502) 180536) ((-490 . -625) 180502) ((-250 . -626) 180463) ((-250 . -502) 180440) ((-139 . -502) 180421) ((-138 . -502) 180402) ((-134 . -502) 180383) ((-250 . -625) 180275) ((-215 . -102) T) ((-139 . -625) 180241) ((-138 . -625) 180207) ((-134 . -625) 180173) ((-1166 . -34) T) ((-960 . -1236) T) ((-354 . -729) 180118) ((-682 . -25) T) ((-682 . -21) T) ((-1195 . -628) 180099) ((-486 . -1068) T) ((-647 . -429) 180064) ((-619 . -429) 180029) ((-1139 . -1171) T) ((-724 . -1070) 179852) ((-593 . -300) T) ((-530 . -300) T) ((-1271 . -317) 179831) ((-486 . -238) 179783) ((-486 . -248) 179762) ((-1250 . -317) 179741) ((-724 . -652) 179570) ((-1250 . -1041) NIL) ((-1099 . -132) T) ((-884 . -807) 179549) ((-145 . -102) T) ((-40 . -1119) T) ((-884 . -804) 179528) ((-656 . -1029) 179512) ((-592 . -1077) T) ((-576 . -1077) T) ((-507 . -1077) T) ((-419 . -464) T) ((-370 . -132) T) ((-326 . -412) 179496) ((-323 . -412) 179457) ((-364 . -132) T) ((-356 . -132) T) ((-1200 . -1119) T) ((-1139 . -38) 179444) ((-1113 . -625) 179411) ((-108 . -132) T) ((-971 . -1119) T) ((-938 . -1119) T) ((-783 . -1119) T) ((-684 . -1119) T) ((-713 . -148) T) ((-117 . -148) T) ((-1308 . -21) T) ((-1308 . -25) T) ((-1306 . -21) T) ((-1306 . -25) T) ((-676 . -1075) 179395) ((-543 . -862) T) ((-512 . -862) T) ((-366 . -1075) 179347) ((-363 . -1075) 179299) ((-355 . -1075) 179251) ((-258 . -1236) T) ((-257 . -1236) T) ((-273 . -1075) 179094) ((-253 . -1075) 178937) ((-676 . -111) 178916) ((-829 . -1240) 178895) ((-559 . -856) T) ((-326 . -917) 178861) ((-366 . -111) 178799) ((-363 . -111) 178737) ((-355 . -111) 178675) ((-273 . -111) 178504) ((-253 . -111) 178333) ((-323 . -917) NIL) ((-635 . -423) 178317) ((-44 . -21) T) ((-44 . -25) T) ((-827 . -651) 178223) ((-829 . -568) 178202) ((-258 . -1057) 178029) ((-257 . -1057) 177856) ((-127 . -120) 177840) ((-927 . -1075) 177805) ((-724 . -102) T) ((-711 . -1077) T) ((-609 . -628) 177786) ((-597 . -628) 177767) ((-548 . -630) 177670) ((-354 . -174) T) ((-88 . -625) 177652) ((-153 . -21) T) ((-153 . -25) T) ((-927 . -111) 177608) ((-40 . -729) 177553) ((-882 . -1119) T) ((-676 . -628) 177530) ((-657 . -628) 177511) ((-366 . -628) 177448) ((-363 . -628) 177385) ((-559 . -1119) T) ((-355 . -628) 177322) ((-337 . -626) 177283) ((-337 . -625) 177195) ((-273 . -628) 176948) ((-253 . -628) 176733) ((-1249 . -804) 176686) ((-1249 . -807) 176639) ((-258 . -388) 176608) ((-257 . -388) 176577) ((-666 . -38) 176547) ((-620 . -34) T) ((-494 . -1131) 176525) ((-487 . -34) T) ((-1132 . -132) 176396) ((-981 . -25) 176207) ((-927 . -628) 176157) ((-886 . -625) 176139) ((-981 . -21) 176094) ((-827 . -25) 175927) ((-827 . -21) 175838) ((-1242 . -379) T) ((-635 . -1077) T) ((-1197 . -568) 175817) ((-1191 . -47) 175794) ((-366 . -1068) T) ((-363 . -1068) T) ((-494 . -23) 175646) ((-355 . -1068) T) ((-273 . -1068) T) ((-253 . -1068) T) ((-1144 . -47) 175618) ((-118 . -1077) T) ((-1053 . -660) 175592) ((-975 . -34) T) ((-366 . -238) 175571) ((-366 . -248) T) ((-363 . -238) 175550) ((-363 . -248) T) ((-355 . -238) 175529) ((-355 . -248) T) ((-273 . -336) 175501) ((-253 . -336) 175458) ((-273 . -238) 175437) ((-1176 . -152) 175421) ((-258 . -915) 175353) ((-257 . -915) 175285) ((-1161 . -909) 175206) ((-1101 . -862) T) ((-426 . -1131) T) ((-1073 . -23) T) ((-1043 . -860) T) ((-927 . -1068) T) ((-332 . -660) 175188) ((-713 . -237) T) ((-682 . -234) 175133) ((-1230 . -1021) 175099) ((-1192 . -937) 175078) ((-1186 . -937) 175057) ((-1186 . -832) NIL) ((-1018 . -1070) 174953) ((-984 . -1236) T) ((-927 . -248) T) ((-829 . -374) 174932) ((-396 . -23) T) ((-128 . -1119) 174910) ((-122 . -1119) 174888) ((-927 . -238) T) ((-129 . -34) T) ((-390 . -660) 174853) ((-1018 . -652) 174801) ((-882 . -729) 174788) ((-1315 . -658) 174760) ((-1065 . -152) 174725) ((-1012 . -1236) T) ((-40 . -174) T) ((-706 . -423) 174707) ((-724 . -319) 174694) ((-848 . -660) 174654) ((-839 . -660) 174628) ((-329 . -25) T) ((-329 . -21) T) ((-670 . -296) 174607) ((-592 . -1119) T) ((-576 . -1119) T) ((-507 . -1119) T) ((-250 . -298) 174584) ((-1191 . -1236) T) ((-1144 . -1236) T) ((-323 . -272) 174545) ((-323 . -232) 174506) ((-1191 . -899) NIL) ((-55 . -1119) T) ((-1144 . -899) 174365) ((-130 . -862) T) ((-1191 . -1057) 174245) ((-1144 . -1057) 174128) ((-185 . -625) 174110) ((-866 . -1057) 174006) ((-794 . -296) 173933) ((-829 . -1131) T) ((-1053 . -738) T) ((-1065 . -995) 173862) ((-614 . -663) 173846) ((-1022 . -909) 173753) ((-1018 . -102) T) ((-829 . -23) T) ((-724 . -1171) 173731) ((-706 . -1077) T) ((-614 . -384) 173715) ((-362 . -464) T) ((-354 . -300) T) ((-1287 . -1119) T) ((-254 . -1119) T) ((-411 . -102) T) ((-299 . -21) T) ((-299 . -25) T) ((-372 . -738) T) ((-722 . -1119) T) ((-711 . -1119) T) ((-372 . -485) T) ((-1230 . -625) 173697) ((-1191 . -388) 173681) ((-1144 . -388) 173665) ((-1043 . -423) 173627) ((-142 . -231) 173609) ((-390 . -806) T) ((-390 . -803) T) ((-882 . -174) T) ((-390 . -738) T) ((-723 . -625) 173591) ((-724 . -38) 173420) ((-1286 . -1284) 173404) ((-362 . -414) T) ((-1286 . -1119) 173354) ((-1209 . -1119) T) ((-592 . -729) 173341) ((-576 . -729) 173328) ((-507 . -729) 173293) ((-1272 . -658) 173183) ((-326 . -641) 173162) ((-848 . -738) T) ((-839 . -738) T) ((-656 . -1236) T) ((-1099 . -651) 173110) ((-1191 . -915) 173053) ((-1144 . -915) 173037) ((-827 . -234) 172928) ((-674 . -1075) 172912) ((-108 . -651) 172894) ((-494 . -132) 172765) ((-1197 . -1131) T) ((-969 . -47) 172734) ((-635 . -1119) T) ((-674 . -111) 172713) ((-503 . -625) 172679) ((-337 . -298) 172656) ((-493 . -47) 172613) ((-1197 . -23) T) ((-118 . -1119) T) ((-103 . -102) 172591) ((-1298 . -1131) T) ((-560 . -862) T) ((-227 . -1236) T) ((-1073 . -132) T) ((-1043 . -1077) T) ((-1298 . -23) T) ((-831 . -1057) 172575) ((-1216 . -625) 172557) ((-1022 . -736) 172529) ((-1139 . -840) T) ((-711 . -729) 172494) ((-598 . -625) 172476) ((-398 . -1057) 172460) ((-365 . -1077) T) ((-396 . -132) T) ((-334 . -1057) 172444) ((-1124 . -1119) T) ((-1099 . -21) T) ((-1099 . -25) T) ((-227 . -899) 172426) ((-1023 . -937) T) ((-91 . -34) T) ((-1023 . -832) T) ((-931 . -937) T) ((-1018 . -319) 172391) ((-888 . -628) 172372) ((-499 . -1240) T) ((-726 . -660) 172332) ((-693 . -628) 172313) ((-688 . -628) 172294) ((-219 . -1240) T) ((-419 . -909) 172215) ((-227 . -1057) 172175) ((-40 . -300) T) ((-499 . -568) T) ((-490 . -628) 172156) ((-370 . -25) T) ((-326 . -658) 171811) ((-323 . -658) 171725) ((-370 . -21) T) ((-364 . -25) T) ((-364 . -21) T) ((-219 . -568) T) ((-356 . -25) T) ((-356 . -21) T) ((-329 . -234) 171671) ((-250 . -628) 171648) ((-139 . -628) 171629) ((-138 . -628) 171610) ((-134 . -628) 171591) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1077) T) ((-592 . -174) T) ((-576 . -174) T) ((-507 . -174) T) ((-1081 . -1236) T) ((-969 . -1236) T) ((-670 . -625) 171573) ((-493 . -1236) T) ((-749 . -748) 171557) ((-347 . -625) 171539) ((-68 . -394) T) ((-68 . -407) T) ((-1121 . -107) 171523) ((-1081 . -899) 171505) ((-969 . -899) 171430) ((-665 . -1131) T) ((-635 . -729) 171417) ((-493 . -899) NIL) ((-1165 . -102) T) ((-1113 . -630) 171401) ((-1081 . -1057) 171383) ((-97 . -625) 171365) ((-489 . -148) T) ((-969 . -1057) 171245) ((-118 . -729) 171190) ((-724 . -917) 171097) ((-665 . -23) T) ((-493 . -1057) 170973) ((-1106 . -626) NIL) ((-1106 . -625) 170955) ((-794 . -626) NIL) ((-794 . -625) 170916) ((-792 . -626) 170550) ((-792 . -625) 170464) ((-1132 . -651) 170370) ((-473 . -625) 170352) ((-466 . -625) 170334) ((-466 . -626) 170195) ((-1054 . -231) 170141) ((-884 . -926) 170120) ((-127 . -34) T) ((-829 . -132) T) ((-661 . -625) 170102) ((-590 . -102) T) ((-366 . -1305) 170086) ((-363 . -1305) 170070) ((-355 . -1305) 170054) ((-128 . -526) 169987) ((-122 . -526) 169920) ((-523 . -804) T) ((-523 . -807) T) ((-522 . -806) T) ((-103 . -319) 169858) ((-224 . -102) 169836) ((-711 . -174) T) ((-706 . -1119) T) ((-884 . -660) 169752) ((-65 . -395) T) ((-284 . -625) 169734) ((-65 . -407) T) ((-969 . -388) 169718) ((-882 . -300) T) ((-50 . -625) 169700) ((-1018 . -38) 169648) ((-1139 . -658) 169620) ((-593 . -625) 169602) ((-493 . -388) 169586) ((-593 . -626) 169568) ((-530 . -625) 169550) ((-927 . -1305) 169537) ((-883 . -1236) T) ((-713 . -464) T) ((-507 . -526) 169503) ((-499 . -374) T) ((-366 . -379) 169482) ((-363 . -379) 169461) ((-355 . -379) 169440) ((-726 . -738) T) ((-219 . -374) T) ((-117 . -464) T) ((-1309 . -1300) 169424) ((-883 . -897) 169401) ((-883 . -899) NIL) ((-981 . -862) 169300) ((-827 . -862) 169251) ((-1243 . -102) T) ((-666 . -668) 169235) ((-1222 . -34) T) ((-173 . -625) 169217) ((-1132 . -25) 169050) ((-1132 . -21) 168961) ((-883 . -1057) 168938) ((-969 . -915) 168919) ((-1259 . -47) 168896) ((-927 . -379) T) ((-59 . -663) 168880) ((-528 . -663) 168864) ((-493 . -915) 168841) ((-71 . -453) T) ((-71 . -407) T) ((-508 . -663) 168825) ((-59 . -384) 168809) ((-635 . -174) T) ((-528 . -384) 168793) ((-508 . -384) 168777) ((-839 . -720) 168761) ((-1191 . -317) 168740) ((-1197 . -132) T) ((-1161 . -1070) 168724) ((-118 . -174) T) ((-1161 . -652) 168656) ((-1165 . -319) 168594) ((-171 . -1236) T) ((-1298 . -132) T) ((-878 . -1070) 168564) ((-647 . -756) 168548) ((-619 . -756) 168532) ((-1271 . -937) 168511) ((-1250 . -937) 168490) ((-1250 . -832) NIL) ((-878 . -652) 168460) ((-706 . -729) 168410) ((-1249 . -926) 168363) ((-1043 . -1119) T) ((-883 . -388) 168340) ((-883 . -349) 168317) ((-922 . -1131) T) ((-171 . -897) 168301) ((-171 . -899) 168226) ((-1286 . -526) 168159) ((-1270 . -660) 168056) ((-1099 . -234) 167929) ((-499 . -1131) T) ((-365 . -1119) T) ((-219 . -1131) T) ((-76 . -453) T) ((-76 . -407) T) ((-171 . -1057) 167825) ((-304 . -909) 167782) ((-329 . -862) T) ((-1249 . -660) 167590) ((-884 . -806) 167569) ((-884 . -803) 167548) ((-884 . -738) T) ((-499 . -23) T) ((-370 . -234) 167521) ((-364 . -234) 167494) ((-356 . -234) 167467) ((-225 . -625) 167449) ((-176 . -464) T) ((-224 . -319) 167387) ((-86 . -453) T) ((-86 . -407) T) ((-108 . -234) 167374) ((-219 . -23) T) ((-1310 . -1303) 167353) ((-689 . -1057) 167337) ((-592 . -300) T) ((-576 . -300) T) ((-507 . -300) T) ((-137 . -482) 167292) ((-1259 . -1236) T) ((-666 . -658) 167251) ((-48 . -1119) T) ((-724 . -272) 167235) ((-724 . -232) 167219) ((-883 . -915) NIL) ((-1259 . -899) NIL) ((-902 . -102) T) ((-898 . -102) T) ((-400 . -1119) T) ((-171 . -388) 167203) ((-171 . -349) 167187) ((-1259 . -1057) 167067) ((-867 . -1057) 166963) ((-1161 . -102) T) ((-1018 . -917) 166886) ((-674 . -804) 166865) ((-665 . -132) T) ((-674 . -807) 166844) ((-118 . -526) 166752) ((-583 . -1057) 166734) ((-304 . -1293) 166704) ((-878 . -102) T) ((-980 . -568) 166683) ((-1230 . -1075) 166566) ((-1022 . -1070) 166511) ((-494 . -651) 166417) ((-921 . -1119) T) ((-1043 . -729) 166354) ((-723 . -1075) 166319) ((-1022 . -652) 166264) ((-629 . -102) T) ((-614 . -34) T) ((-1166 . -1236) T) ((-1230 . -111) 166133) ((-486 . -660) 166030) ((-365 . -729) 165975) ((-171 . -915) 165934) ((-711 . -300) T) ((-706 . -174) T) ((-723 . -111) 165890) ((-1315 . -1077) T) ((-1259 . -388) 165874) ((-430 . -1240) 165852) ((-1137 . -625) 165834) ((-323 . -860) NIL) ((-430 . -568) T) ((-227 . -317) T) ((-1249 . -803) 165787) ((-1249 . -806) 165740) ((-1270 . -738) T) ((-1249 . -738) T) ((-48 . -729) 165705) ((-227 . -1041) T) ((-1272 . -423) 165671) ((-362 . -1293) 165648) ((-1259 . -915) 165591) ((-730 . -738) T) ((-343 . -625) 165573) ((-1230 . -628) 165455) ((-1132 . -234) 165346) ((-112 . -625) 165328) ((-112 . -626) 165310) ((-730 . -485) T) ((-723 . -628) 165260) ((-1309 . -1070) 165244) ((-494 . -25) 165077) ((-128 . -501) 165061) ((-122 . -501) 165045) ((-494 . -21) 164956) ((-1309 . -652) 164926) ((-635 . -300) T) ((-598 . -1075) 164901) ((-449 . -1119) T) ((-1081 . -317) T) ((-118 . -300) T) ((-1123 . -102) T) ((-1022 . -102) T) ((-598 . -111) 164869) ((-1161 . -319) 164807) ((-1230 . -1068) T) ((-1081 . -1041) T) ((-66 . -1236) T) ((-1073 . -25) T) ((-1073 . -21) T) ((-723 . -1068) T) ((-396 . -21) T) ((-396 . -25) T) ((-706 . -526) NIL) ((-1043 . -174) T) ((-723 . -248) T) ((-1081 . -557) T) ((-724 . -658) 164717) ((-518 . -102) T) ((-514 . -102) T) ((-365 . -174) T) ((-354 . -625) 164699) ((-419 . -1070) 164651) ((-406 . -625) 164633) ((-1139 . -860) T) ((-486 . -738) T) ((-905 . -1057) 164601) ((-419 . -652) 164553) ((-108 . -862) T) ((-670 . -1075) 164537) ((-499 . -132) T) ((-1272 . -1077) T) ((-219 . -132) T) ((-1176 . -102) 164515) ((-99 . -1119) T) ((-250 . -678) 164499) ((-250 . -663) 164483) ((-670 . -111) 164462) ((-598 . -628) 164446) ((-326 . -423) 164430) ((-250 . -384) 164414) ((-1178 . -240) 164361) ((-1018 . -272) 164345) ((-1018 . -232) 164329) ((-74 . -1236) T) ((-48 . -174) T) ((-713 . -399) T) ((-713 . -144) T) ((-1309 . -102) T) ((-1216 . -628) 164311) ((-1107 . -1236) T) ((-1106 . -1075) 164154) ((-1095 . -1236) T) ((-273 . -926) 164133) ((-253 . -926) 164112) ((-794 . -1075) 163935) ((-792 . -1075) 163778) ((-620 . -1236) T) ((-1183 . -625) 163760) ((-1106 . -111) 163589) ((-1065 . -102) T) ((-487 . -1236) T) ((-473 . -1075) 163560) ((-466 . -1075) 163403) ((-676 . -660) 163387) ((-883 . -317) T) ((-794 . -111) 163196) ((-792 . -111) 163025) ((-366 . -660) 162977) ((-363 . -660) 162929) ((-355 . -660) 162881) ((-273 . -660) 162770) ((-253 . -660) 162659) ((-1177 . -862) T) ((-1107 . -1057) 162643) ((-473 . -111) 162604) ((-466 . -111) 162433) ((-1095 . -1057) 162410) ((-1019 . -34) T) ((-983 . -625) 162392) ((-975 . -1236) T) ((-127 . -1029) 162376) ((-980 . -1131) T) ((-883 . -1041) NIL) ((-747 . -1131) T) ((-727 . -1131) T) ((-670 . -628) 162294) ((-1286 . -501) 162278) ((-1161 . -38) 162238) ((-980 . -23) T) ((-927 . -660) 162203) ((-877 . -1119) T) ((-855 . -102) T) ((-829 . -21) T) ((-647 . -1070) 162187) ((-619 . -1070) 162171) ((-829 . -25) T) ((-747 . -23) T) ((-727 . -23) T) ((-647 . -652) 162155) ((-110 . -673) T) ((-619 . -652) 162139) ((-593 . -1075) 162104) ((-530 . -1075) 162049) ((-229 . -57) 162007) ((-465 . -23) T) ((-419 . -102) T) ((-270 . -102) T) ((-110 . -113) T) ((-706 . -300) T) ((-878 . -38) 161977) ((-593 . -111) 161933) ((-530 . -111) 161862) ((-1106 . -628) 161598) ((-430 . -1131) T) ((-326 . -1077) 161488) ((-323 . -1077) T) ((-129 . -1236) T) ((-794 . -628) 161236) ((-792 . -628) 161002) ((-670 . -1068) T) ((-1315 . -1119) T) ((-466 . -628) 160787) ((-171 . -317) 160718) ((-430 . -23) T) ((-40 . -625) 160700) ((-40 . -626) 160684) ((-108 . -1011) 160666) ((-117 . -881) 160650) ((-661 . -628) 160634) ((-48 . -526) 160600) ((-1222 . -1029) 160584) ((-1200 . -625) 160551) ((-1208 . -34) T) ((-971 . -625) 160517) ((-938 . -625) 160499) ((-1132 . -862) 160450) ((-783 . -625) 160432) ((-684 . -625) 160414) ((-1176 . -319) 160352) ((-491 . -34) T) ((-1111 . -1236) T) ((-489 . -464) T) ((-1160 . -34) T) ((-1106 . -1068) T) ((-50 . -628) 160321) ((-794 . -1068) T) ((-792 . -1068) T) ((-659 . -240) 160305) ((-644 . -240) 160251) ((-593 . -628) 160201) ((-530 . -628) 160131) ((-494 . -234) 160022) ((-1259 . -317) 160001) ((-1106 . -336) 159962) ((-466 . -1068) T) ((-1197 . -21) T) ((-1106 . -238) 159941) ((-794 . -336) 159918) ((-794 . -238) T) ((-792 . -336) 159890) ((-743 . -1240) 159869) ((-337 . -663) 159853) ((-1197 . -25) T) ((-59 . -34) T) ((-531 . -34) T) ((-528 . -34) T) ((-466 . -336) 159832) ((-337 . -384) 159816) ((-509 . -34) T) ((-508 . -34) T) ((-1022 . -1171) NIL) ((-743 . -568) 159747) ((-647 . -102) T) ((-619 . -102) T) ((-366 . -738) T) ((-363 . -738) T) ((-355 . -738) T) ((-273 . -738) T) ((-253 . -738) T) ((-390 . -1236) T) ((-1065 . -319) 159655) ((-1298 . -21) T) ((-918 . -1119) 159633) ((-830 . -234) 159620) ((-50 . -1068) T) ((-1298 . -25) T) ((-1193 . -568) 159599) ((-1192 . -1240) 159578) ((-1192 . -568) 159529) ((-1186 . -1240) 159508) ((-1186 . -568) 159459) ((-593 . -1068) T) ((-530 . -1068) T) ((-1043 . -300) T) ((-372 . -1057) 159443) ((-332 . -1057) 159427) ((-1022 . -38) 159372) ((-390 . -899) 159354) ((-1018 . -658) 159277) ((-848 . -1236) T) ((-839 . -1236) 159256) ((-811 . -1131) T) ((-927 . -738) T) ((-593 . -248) T) ((-593 . -238) T) ((-530 . -238) T) ((-530 . -248) T) ((-1145 . -568) 159235) ((-365 . -300) T) ((-659 . -707) 159219) ((-390 . -1057) 159179) ((-304 . -1070) 159100) ((-350 . -909) 159079) ((-1139 . -1077) T) ((-103 . -126) 159063) ((-304 . -652) 159005) ((-811 . -23) T) ((-1308 . -1303) 158981) ((-1306 . -1303) 158960) ((-1286 . -296) 158912) ((-419 . -319) 158877) ((-1272 . -1119) T) ((-1161 . -917) 158800) ((-882 . -625) 158782) ((-848 . -1057) 158751) ((-205 . -799) T) ((-204 . -799) T) ((-203 . -799) T) ((-202 . -799) T) ((-201 . -799) T) ((-200 . -799) T) ((-199 . -799) T) ((-198 . -799) T) ((-197 . -799) T) ((-196 . -799) T) ((-559 . -625) 158733) ((-507 . -1021) T) ((-283 . -851) T) ((-282 . -851) T) ((-281 . -851) T) ((-280 . -851) T) ((-48 . -300) T) ((-279 . -851) T) ((-278 . -851) T) ((-277 . -851) T) ((-195 . -799) T) ((-624 . -862) T) ((-666 . -423) 158717) ((-682 . -237) 158668) ((-225 . -628) 158630) ((-110 . -862) T) ((-665 . -21) T) ((-665 . -25) T) ((-1309 . -38) 158600) ((-118 . -296) 158551) ((-1286 . -19) 158535) ((-1286 . -616) 158512) ((-1299 . -1119) T) ((-362 . -1070) 158457) ((-1096 . -1119) T) ((-1006 . -1119) T) ((-980 . -132) T) ((-829 . -234) 158444) ((-749 . -1119) T) ((-362 . -652) 158389) ((-747 . -132) T) ((-727 . -132) T) ((-523 . -805) T) ((-523 . -806) T) ((-465 . -132) T) ((-419 . -1171) 158367) ((-225 . -1068) T) ((-304 . -102) 158149) ((-142 . -1119) T) ((-711 . -1021) T) ((-1124 . -296) 158105) ((-91 . -1236) T) ((-128 . -625) 158037) ((-122 . -625) 157969) ((-1315 . -174) T) ((-1192 . -374) 157948) ((-1186 . -374) 157927) ((-326 . -1119) T) ((-430 . -132) T) ((-323 . -1119) T) ((-419 . -38) 157879) ((-1152 . -102) T) ((-1272 . -729) 157771) ((-666 . -1077) T) ((-1154 . -1281) T) ((-329 . -146) 157750) ((-329 . -148) 157729) ((-140 . -1119) T) ((-137 . -1119) T) ((-115 . -1119) T) ((-870 . -102) T) ((-592 . -625) 157711) ((-576 . -626) 157610) ((-576 . -625) 157592) ((-507 . -625) 157574) ((-507 . -626) 157519) ((-497 . -23) T) ((-494 . -862) 157470) ((-499 . -651) 157452) ((-982 . -625) 157434) ((-1022 . -917) 157343) ((-219 . -651) 157325) ((-227 . -416) T) ((-674 . -660) 157309) ((-55 . -625) 157291) ((-1191 . -937) 157270) ((-743 . -1131) T) ((-362 . -102) T) ((-1235 . -1102) T) ((-1139 . -856) T) ((-830 . -862) T) ((-743 . -23) T) ((-354 . -1075) 157215) ((-1166 . -107) 157199) ((-1193 . -1131) T) ((-1192 . -1131) T) ((-527 . -1057) 157183) ((-1186 . -1131) T) ((-1145 . -1131) T) ((-354 . -111) 157112) ((-1023 . -1240) T) ((-127 . -1236) T) ((-931 . -1240) T) ((-1287 . -625) 157094) ((-706 . -296) NIL) ((-726 . -1236) T) ((-1193 . -23) T) ((-1192 . -23) T) ((-1186 . -23) T) ((-1161 . -272) 157078) ((-1161 . -232) 157062) ((-1023 . -568) T) ((-1145 . -23) T) ((-931 . -568) T) ((-1094 . -1119) T) ((-254 . -625) 157044) ((-827 . -237) 156941) ((-811 . -132) T) ((-722 . -625) 156923) ((-326 . -729) 156833) ((-323 . -729) 156762) ((-711 . -625) 156744) ((-711 . -626) 156689) ((-419 . -412) 156673) ((-450 . -1119) T) ((-499 . -25) T) ((-499 . -21) T) ((-1139 . -1119) T) ((-219 . -25) T) ((-219 . -21) T) ((-724 . -423) 156657) ((-726 . -1057) 156626) ((-1286 . -625) 156538) ((-1286 . -626) 156499) ((-1272 . -174) T) ((-1209 . -625) 156481) ((-250 . -34) T) ((-354 . -628) 156411) ((-406 . -628) 156393) ((-943 . -993) T) ((-1222 . -1236) T) ((-674 . -803) 156372) ((-674 . -806) 156351) ((-410 . -407) T) ((-535 . -102) 156329) ((-1054 . -1119) T) ((-419 . -917) 156252) ((-224 . -1014) 156236) ((-516 . -102) T) ((-635 . -625) 156218) ((-45 . -862) NIL) ((-635 . -626) 156195) ((-1054 . -622) 156170) ((-918 . -526) 156103) ((-329 . -237) 156055) ((-354 . -1068) T) ((-118 . -626) NIL) ((-118 . -625) 156037) ((-884 . -1236) T) ((-682 . -429) 156021) ((-682 . -1142) 155966) ((-512 . -152) 155948) ((-354 . -238) T) ((-354 . -248) T) ((-40 . -1075) 155893) ((-884 . -897) 155877) ((-884 . -899) 155802) ((-724 . -1077) T) ((-706 . -1021) NIL) ((-1270 . -47) 155772) ((-1249 . -47) 155749) ((-1160 . -1029) 155720) ((-1139 . -729) 155707) ((-3 . |UnionCategory|) T) ((-1124 . -625) 155689) ((-1099 . -148) 155668) ((-1099 . -146) 155619) ((-1023 . -374) T) ((-983 . -628) 155603) ((-227 . -937) T) ((-40 . -111) 155532) ((-884 . -1057) 155396) ((-1022 . -232) 155373) ((-1022 . -272) 155350) ((-713 . -1070) 155337) ((-931 . -374) T) ((-713 . -652) 155324) ((-329 . -1224) 155290) ((-390 . -317) T) ((-329 . -1221) 155256) ((-326 . -174) 155235) ((-323 . -174) T) ((-593 . -1305) 155222) ((-530 . -1305) 155199) ((-370 . -148) 155178) ((-117 . -1070) 155165) ((-370 . -146) 155116) ((-364 . -148) 155095) ((-364 . -146) 155046) ((-356 . -148) 155025) ((-620 . -1212) 155001) ((-117 . -652) 154988) ((-356 . -146) 154939) ((-329 . -35) 154905) ((-487 . -1212) 154884) ((0 . |EnumerationCategory|) T) ((-329 . -95) 154850) ((-390 . -1041) T) ((-108 . -148) T) ((-108 . -146) NIL) ((-45 . -240) 154800) ((-666 . -1119) T) ((-620 . -107) 154747) ((-497 . -132) T) ((-487 . -107) 154697) ((-245 . -1131) 154675) ((-884 . -388) 154659) ((-884 . -349) 154643) ((-245 . -23) 154495) ((-40 . -628) 154425) ((-1081 . -937) T) ((-1081 . -832) T) ((-593 . -379) T) ((-530 . -379) T) ((-1299 . -526) 154358) ((-1278 . -568) 154337) ((-1271 . -1240) 154316) ((-362 . -1171) T) ((-337 . -34) T) ((-44 . -429) 154300) ((-1200 . -628) 154236) ((-885 . -1236) T) ((-402 . -756) 154220) ((-1271 . -568) 154171) ((-1270 . -1236) T) ((-1161 . -658) 154130) ((-743 . -132) T) ((-684 . -628) 154114) ((-1250 . -1240) 154093) ((-1250 . -568) 154044) ((-1249 . -1236) T) ((-1249 . -899) 153917) ((-1249 . -897) 153887) ((-1193 . -132) T) ((-321 . -1102) T) ((-1192 . -132) T) ((-749 . -526) 153820) ((-1186 . -132) T) ((-1145 . -132) T) ((-906 . -1119) T) ((-145 . -856) T) ((-1043 . -1021) T) ((-703 . -625) 153802) ((-1023 . -23) T) ((-535 . -319) 153740) ((-1023 . -1131) T) ((-142 . -526) NIL) ((-878 . -658) 153685) ((-1022 . -360) NIL) ((-990 . -23) T) ((-931 . -1131) T) ((-362 . -38) 153650) ((-931 . -23) T) ((-884 . -915) 153609) ((-82 . -625) 153591) ((-40 . -1068) T) ((-882 . -1075) 153578) ((-882 . -111) 153563) ((-713 . -102) T) ((-706 . -625) 153545) ((-614 . -1236) T) ((-608 . -568) 153524) ((-439 . -1131) T) ((-350 . -1070) 153508) ((-215 . -1119) T) ((-176 . -1070) 153440) ((-486 . -47) 153410) ((-40 . -238) 153382) ((-40 . -248) T) ((-135 . -102) T) ((-117 . -102) T) ((-607 . -568) 153361) ((-350 . -652) 153345) ((-706 . -626) 153253) ((-326 . -526) 153219) ((-176 . -652) 153151) ((-323 . -526) 153043) ((-499 . -234) 153030) ((-1270 . -1057) 153014) ((-1249 . -1057) 152800) ((-1018 . -423) 152784) ((-219 . -234) 152771) ((-439 . -23) T) ((-1139 . -174) T) ((-1272 . -300) T) ((-666 . -729) 152741) ((-145 . -1119) T) ((-48 . -1021) T) ((-419 . -272) 152725) ((-419 . -232) 152709) ((-305 . -240) 152659) ((-883 . -937) T) ((-883 . -832) NIL) ((-882 . -628) 152631) ((-876 . -862) T) ((-1249 . -349) 152601) ((-1249 . -388) 152571) ((-1099 . -237) 152450) ((-224 . -1140) 152434) ((-304 . -917) 152393) ((-1286 . -298) 152370) ((-370 . -237) 152349) ((-364 . -237) 152328) ((-486 . -1236) T) ((-356 . -237) 152307) ((-108 . -237) T) ((-1230 . -660) 152232) ((-1022 . -658) 152162) ((-980 . -21) T) ((-980 . -25) T) ((-747 . -21) T) ((-747 . -25) T) ((-727 . -21) T) ((-727 . -25) T) ((-723 . -660) 152127) ((-465 . -21) T) ((-465 . -25) T) ((-350 . -102) T) ((-176 . -102) T) ((-1018 . -1077) T) ((-882 . -1068) T) ((-786 . -102) T) ((-1271 . -374) 152106) ((-1270 . -915) 152012) ((-1250 . -374) 151991) ((-1249 . -915) 151842) ((-1043 . -625) 151824) ((-419 . -840) 151777) ((-1193 . -505) 151743) ((-171 . -937) 151674) ((-1192 . -505) 151640) ((-1186 . -505) 151606) ((-724 . -1119) T) ((-1145 . -505) 151572) ((-592 . -1075) 151559) ((-576 . -1075) 151546) ((-507 . -1075) 151511) ((-326 . -300) 151490) ((-323 . -300) T) ((-365 . -625) 151472) ((-430 . -25) T) ((-430 . -21) T) ((-99 . -296) 151451) ((-592 . -111) 151436) ((-576 . -111) 151421) ((-507 . -111) 151377) ((-1195 . -899) 151344) ((-918 . -501) 151328) ((-48 . -625) 151310) ((-48 . -626) 151255) ((-245 . -132) 151126) ((-1309 . -658) 151085) ((-1259 . -937) 151064) ((-828 . -1240) 151043) ((-400 . -502) 151024) ((-1054 . -526) 150868) ((-400 . -625) 150834) ((-828 . -568) 150765) ((-598 . -660) 150740) ((-273 . -47) 150712) ((-253 . -47) 150669) ((-543 . -521) 150646) ((-592 . -628) 150618) ((-576 . -628) 150590) ((-507 . -628) 150523) ((-1093 . -1236) T) ((-1019 . -1236) T) ((-1278 . -23) T) ((-1278 . -1131) T) ((-1271 . -1131) T) ((-711 . -1075) 150488) ((-1271 . -23) T) ((-1250 . -1131) T) ((-1250 . -23) T) ((-1230 . -738) T) ((-1139 . -300) T) ((-1022 . -381) 150460) ((-112 . -379) T) ((-486 . -915) 150366) ((-1132 . -237) 150263) ((-921 . -625) 150245) ((-55 . -628) 150227) ((-91 . -107) 150211) ((-1023 . -132) T) ((-922 . -862) 150162) ((-713 . -1171) T) ((-711 . -111) 150118) ((-855 . -658) 150035) ((-608 . -1131) T) ((-607 . -1131) T) ((-724 . -729) 149864) ((-723 . -738) T) ((-990 . -132) T) ((-931 . -132) T) ((-499 . -862) T) ((-811 . -25) T) ((-811 . -21) T) ((-592 . -1068) T) ((-219 . -862) T) ((-419 . -658) 149801) ((-576 . -1068) T) ((-548 . -1236) T) ((-507 . -1068) T) ((-608 . -23) T) ((-354 . -1305) 149778) ((-329 . -464) 149757) ((-350 . -319) 149744) ((-607 . -23) T) ((-439 . -132) T) ((-670 . -660) 149718) ((-250 . -1029) 149702) ((-884 . -317) T) ((-1310 . -1300) 149686) ((-783 . -804) T) ((-783 . -807) T) ((-713 . -38) 149673) ((-576 . -238) T) ((-507 . -248) T) ((-507 . -238) T) ((-1169 . -240) 149623) ((-1106 . -926) 149602) ((-117 . -38) 149589) ((-211 . -812) T) ((-210 . -812) T) ((-209 . -812) T) ((-208 . -812) T) ((-884 . -1041) 149567) ((-1299 . -501) 149551) ((-794 . -926) 149530) ((-792 . -926) 149509) ((-1208 . -1236) T) ((-366 . -1236) 149488) ((-363 . -1236) 149467) ((-355 . -1236) 149446) ((-273 . -1236) T) ((-253 . -1236) T) ((-466 . -926) 149425) ((-749 . -501) 149409) ((-1106 . -660) 149298) ((-711 . -628) 149233) ((-794 . -660) 149122) ((-635 . -1075) 149109) ((-491 . -1236) T) ((-354 . -379) T) ((-142 . -501) 149091) ((-792 . -660) 148980) ((-1160 . -1236) T) ((-561 . -862) T) ((-473 . -660) 148951) ((-273 . -899) 148810) ((-253 . -899) NIL) ((-118 . -1075) 148755) ((-466 . -660) 148644) ((-676 . -1057) 148621) ((-635 . -111) 148606) ((-402 . -1070) 148590) ((-366 . -1057) 148574) ((-363 . -1057) 148558) ((-355 . -1057) 148542) ((-273 . -1057) 148386) ((-253 . -1057) 148262) ((-927 . -1236) T) ((-118 . -111) 148191) ((-59 . -1236) T) ((-402 . -652) 148175) ((-633 . -1070) 148159) ((-531 . -1236) T) ((-528 . -1236) T) ((-509 . -1236) T) ((-508 . -1236) T) ((-449 . -625) 148141) ((-446 . -625) 148123) ((-633 . -652) 148107) ((-3 . -102) T) ((-1046 . -1229) 148076) ((-845 . -102) T) ((-701 . -57) 148034) ((-711 . -1068) T) ((-647 . -658) 148003) ((-619 . -658) 147972) ((-50 . -660) 147946) ((-299 . -464) T) ((-488 . -1229) 147915) ((0 . -102) T) ((-593 . -660) 147880) ((-530 . -660) 147825) ((-49 . -102) T) ((-927 . -1057) 147812) ((-711 . -248) T) ((-1099 . -421) 147791) ((-743 . -651) 147739) ((-1018 . -1119) T) ((-724 . -174) 147630) ((-635 . -628) 147525) ((-499 . -1011) 147507) ((-430 . -234) 147452) ((-273 . -388) 147436) ((-253 . -388) 147420) ((-411 . -1119) T) ((-1045 . -102) 147398) ((-350 . -38) 147382) ((-219 . -1011) 147364) ((-118 . -628) 147294) ((-176 . -38) 147226) ((-1270 . -317) 147205) ((-1249 . -317) 147184) ((-670 . -738) T) ((-99 . -625) 147166) ((-489 . -1070) 147131) ((-1186 . -651) 147083) ((-489 . -652) 147048) ((-497 . -25) T) ((-497 . -21) T) ((-1249 . -1041) 147000) ((-1076 . -1236) T) ((-635 . -1068) T) ((-390 . -416) T) ((-402 . -102) T) ((-1124 . -630) 146915) ((-273 . -915) 146861) ((-253 . -915) 146838) ((-118 . -1068) T) ((-828 . -1131) T) ((-1106 . -738) T) ((-635 . -238) 146817) ((-633 . -102) T) ((-794 . -738) T) ((-792 . -738) T) ((-425 . -1131) T) ((-118 . -248) T) ((-40 . -379) NIL) ((-118 . -238) NIL) ((-1241 . -862) T) ((-466 . -738) T) ((-828 . -23) T) ((-743 . -25) T) ((-743 . -21) T) ((-682 . -909) 146738) ((-1096 . -296) 146717) ((-78 . -408) T) ((-78 . -407) T) ((-545 . -779) 146699) ((-706 . -1075) 146649) ((-1311 . -102) T) ((-1278 . -132) T) ((-1271 . -132) T) ((-1250 . -132) T) ((-1193 . -25) T) ((-1161 . -423) 146633) ((-647 . -378) 146565) ((-619 . -378) 146497) ((-1176 . -1168) 146481) ((-103 . -1119) 146459) ((-1193 . -21) T) ((-1192 . -21) T) ((-877 . -625) 146441) ((-1018 . -729) 146389) ((-225 . -660) 146356) ((-706 . -111) 146290) ((-50 . -738) T) ((-1192 . -25) T) ((-362 . -360) T) ((-1186 . -21) T) ((-1099 . -464) 146241) ((-1186 . -25) T) ((-724 . -526) 146188) ((-593 . -738) T) ((-530 . -738) T) ((-1145 . -21) T) ((-1145 . -25) T) ((-608 . -132) T) ((-607 . -132) T) ((-304 . -658) 145923) ((-494 . -237) 145820) ((-370 . -464) T) ((-364 . -464) T) ((-356 . -464) T) ((-486 . -317) 145799) ((-1244 . -102) T) ((-323 . -296) 145734) ((-108 . -464) T) ((-79 . -453) T) ((-79 . -407) T) ((-489 . -102) T) ((-703 . -628) 145718) ((-1315 . -625) 145700) ((-1315 . -626) 145682) ((-1099 . -414) 145661) ((-1054 . -501) 145592) ((-137 . -296) 145569) ((-576 . -807) T) ((-576 . -804) T) ((-1082 . -240) 145515) ((-370 . -414) 145466) ((-364 . -414) 145417) ((-356 . -414) 145368) ((-1301 . -1131) T) ((-1310 . -1070) 145352) ((-392 . -1070) 145336) ((-1310 . -652) 145306) ((-830 . -237) T) ((-392 . -652) 145276) ((-706 . -628) 145211) ((-1301 . -23) T) ((-1288 . -102) T) ((-350 . -917) 145192) ((-177 . -625) 145174) ((-1161 . -1077) T) ((-559 . -379) T) ((-682 . -756) 145158) ((-1197 . -146) 145137) ((-1197 . -148) 145116) ((-1165 . -1119) T) ((-1165 . -1090) 145085) ((-69 . -1236) T) ((-1043 . -1075) 145022) ((-362 . -658) 144952) ((-878 . -1077) T) ((-245 . -651) 144858) ((-706 . -1068) T) ((-365 . -1075) 144803) ((-61 . -1236) T) ((-1043 . -111) 144719) ((-918 . -625) 144630) ((-706 . -248) T) ((-706 . -238) NIL) ((-855 . -860) 144609) ((-711 . -807) T) ((-711 . -804) T) ((-1022 . -423) 144586) ((-365 . -111) 144515) ((-390 . -937) T) ((-419 . -860) 144494) ((-724 . -300) 144405) ((-225 . -738) T) ((-1278 . -505) 144371) ((-1271 . -505) 144337) ((-1250 . -505) 144303) ((-590 . -1119) T) ((-326 . -1021) 144282) ((-224 . -1119) 144260) ((-1243 . -856) T) ((-329 . -992) 144222) ((-105 . -102) T) ((-48 . -1075) 144187) ((-1310 . -102) T) ((-392 . -102) T) ((-48 . -111) 144143) ((-827 . -909) 144010) ((-1023 . -651) 143992) ((-1272 . -625) 143974) ((-543 . -102) T) ((-512 . -102) T) ((-1152 . -1153) 143958) ((-153 . -1293) 143942) ((-250 . -1236) T) ((-1235 . -102) T) ((-1043 . -628) 143879) ((-829 . -237) T) ((-1191 . -1240) 143858) ((-365 . -628) 143788) ((-1144 . -1240) 143767) ((-245 . -25) 143600) ((-245 . -21) 143511) ((-128 . -120) 143495) ((-122 . -120) 143479) ((-44 . -756) 143463) ((-1191 . -568) 143374) ((-1144 . -568) 143305) ((-1243 . -1119) T) ((-1054 . -296) 143280) ((-1185 . -1102) T) ((-1013 . -1102) T) ((-828 . -132) T) ((-118 . -807) NIL) ((-118 . -804) NIL) ((-366 . -317) T) ((-363 . -317) T) ((-355 . -317) T) ((-258 . -1131) 143258) ((-257 . -1131) 143236) ((-1043 . -1068) T) ((-1022 . -1077) T) ((-48 . -628) 143169) ((-354 . -660) 143114) ((-1299 . -625) 143076) ((-633 . -38) 143060) ((-1299 . -626) 143021) ((-1193 . -234) 142974) ((-1096 . -625) 142956) ((-1043 . -248) T) ((-365 . -1068) T) ((-827 . -1293) 142926) ((-258 . -23) T) ((-257 . -23) T) ((-1006 . -625) 142908) ((-1192 . -234) 142854) ((-1186 . -234) 142671) ((-749 . -626) 142632) ((-749 . -625) 142614) ((-1178 . -152) 142561) ((-811 . -862) 142540) ((-1023 . -25) T) ((-1018 . -526) 142452) ((-365 . -238) T) ((-365 . -248) T) ((-400 . -628) 142433) ((-927 . -317) T) ((-142 . -625) 142415) ((-142 . -626) 142374) ((-329 . -909) 142278) ((-1023 . -21) T) ((-990 . -25) T) ((-931 . -21) T) ((-931 . -25) T) ((-439 . -21) T) ((-439 . -25) T) ((-855 . -423) 142262) ((-48 . -1068) T) ((-1308 . -1300) 142246) ((-1306 . -1300) 142230) ((-1054 . -616) 142205) ((-326 . -626) 142066) ((-326 . -625) 142048) ((-323 . -626) NIL) ((-323 . -625) 142030) ((-48 . -248) T) ((-48 . -238) T) ((-666 . -296) 141991) ((-562 . -240) 141941) ((-140 . -625) 141908) ((-137 . -625) 141890) ((-115 . -625) 141872) ((-489 . -38) 141837) ((-1310 . -1307) 141816) ((-1301 . -132) T) ((-1309 . -1077) T) ((-1101 . -102) T) ((-88 . -1236) T) ((-512 . -319) NIL) ((-1019 . -107) 141800) ((-902 . -1119) T) ((-898 . -1119) T) ((-1286 . -663) 141784) ((-1286 . -384) 141768) ((-337 . -1236) T) ((-605 . -862) T) ((-1161 . -1119) T) ((-1161 . -1072) 141708) ((-103 . -526) 141641) ((-944 . -625) 141623) ((-354 . -738) T) ((-30 . -625) 141605) ((-878 . -1119) T) ((-855 . -1077) 141584) ((-40 . -660) 141491) ((-227 . -1240) T) ((-419 . -1077) T) ((-1177 . -152) 141473) ((-1018 . -300) 141424) ((-629 . -1119) T) ((-227 . -568) T) ((-329 . -1267) 141408) ((-329 . -1264) 141378) ((-713 . -658) 141350) ((-1208 . -1212) 141329) ((-1094 . -625) 141311) ((-1208 . -107) 141261) ((-659 . -152) 141245) ((-644 . -152) 141191) ((-117 . -658) 141163) ((-491 . -1212) 141142) ((-499 . -148) T) ((-499 . -146) NIL) ((-1139 . -626) 141057) ((-450 . -625) 141039) ((-219 . -148) T) ((-219 . -146) NIL) ((-1139 . -625) 141021) ((-130 . -102) T) ((-52 . -102) T) ((-1250 . -651) 140973) ((-491 . -107) 140923) ((-1012 . -23) T) ((-1310 . -38) 140893) ((-1191 . -1131) T) ((-1144 . -1131) T) ((-1081 . -1240) T) ((-245 . -234) 140784) ((-321 . -102) T) ((-866 . -1131) T) ((-969 . -1240) 140763) ((-493 . -1240) 140742) ((-1081 . -568) T) ((-969 . -568) 140673) ((-1191 . -23) T) ((-1170 . -1102) T) ((-1144 . -23) T) ((-866 . -23) T) ((-493 . -568) 140604) ((-1161 . -729) 140536) ((-682 . -1070) 140520) ((-1165 . -526) 140453) ((-682 . -652) 140437) ((-1054 . -626) NIL) ((-1054 . -625) 140419) ((-96 . -1102) T) ((-1315 . -1075) 140406) ((-878 . -729) 140376) ((-1315 . -111) 140361) ((-1230 . -47) 140330) ((-1186 . -862) NIL) ((-258 . -132) T) ((-257 . -132) T) ((-1123 . -1119) T) ((-1022 . -1119) T) ((-62 . -625) 140312) ((-1099 . -909) 140181) ((-1043 . -804) T) ((-1043 . -807) T) ((-1278 . -25) T) ((-1278 . -21) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-882 . -660) 140168) ((-1250 . -21) T) ((-1250 . -25) T) ((-1046 . -152) 140152) ((-1023 . -234) 140139) ((-884 . -832) 140118) ((-884 . -937) T) ((-724 . -296) 140045) ((-608 . -21) T) ((-350 . -658) 140004) ((-108 . -909) NIL) ((-608 . -25) T) ((-607 . -21) T) ((-176 . -658) 139921) ((-40 . -738) T) ((-224 . -526) 139854) ((-607 . -25) T) ((-488 . -152) 139838) ((-475 . -152) 139822) ((-938 . -806) T) ((-938 . -738) T) ((-783 . -805) T) ((-783 . -806) T) ((-518 . -1119) T) ((-514 . -1119) T) ((-783 . -738) T) ((-227 . -374) T) ((-1308 . -1070) 139806) ((-1306 . -1070) 139790) ((-1308 . -652) 139760) ((-1176 . -1119) 139738) ((-883 . -1240) T) ((-1306 . -652) 139708) ((-666 . -625) 139690) ((-883 . -568) T) ((-706 . -379) NIL) ((-44 . -1070) 139674) ((-1315 . -628) 139656) ((-1309 . -1119) T) ((-682 . -102) T) ((-370 . -1293) 139640) ((-364 . -1293) 139624) ((-44 . -652) 139608) ((-356 . -1293) 139592) ((-560 . -102) T) ((-1230 . -1236) T) ((-532 . -862) 139571) ((-499 . -237) T) ((-219 . -237) T) ((-1065 . -1119) T) ((-829 . -464) 139550) ((-153 . -1070) 139534) ((-1065 . -1090) 139463) ((-1046 . -995) 139432) ((-831 . -1131) T) ((-1022 . -729) 139377) ((-153 . -652) 139361) ((-398 . -1131) T) ((-488 . -995) 139330) ((-475 . -995) 139299) ((-110 . -152) 139281) ((-73 . -625) 139263) ((-906 . -625) 139245) ((-1099 . -736) 139224) ((-1315 . -1068) T) ((-828 . -651) 139172) ((-304 . -1077) 139114) ((-171 . -1240) 139019) ((-227 . -1131) T) ((-334 . -23) T) ((-1186 . -1011) 138971) ((-855 . -1119) T) ((-1272 . -1075) 138876) ((-1145 . -752) 138855) ((-1270 . -937) 138834) ((-1249 . -937) 138813) ((-882 . -738) T) ((-171 . -568) 138724) ((-592 . -660) 138711) ((-576 . -660) 138683) ((-419 . -1119) T) ((-270 . -1119) T) ((-215 . -625) 138665) ((-507 . -660) 138615) ((-227 . -23) T) ((-1249 . -832) 138568) ((-1308 . -102) T) ((-365 . -1305) 138545) ((-1306 . -102) T) ((-1272 . -111) 138437) ((-1132 . -909) 138304) ((-827 . -1070) 138205) ((-827 . -652) 138127) ((-145 . -625) 138109) ((-1012 . -132) T) ((-44 . -102) T) ((-245 . -862) 138060) ((-1259 . -1240) 138039) ((-103 . -501) 138023) ((-1309 . -729) 137993) ((-1106 . -47) 137954) ((-1081 . -1131) T) ((-969 . -1131) T) ((-128 . -34) T) ((-122 . -34) T) ((-794 . -47) 137931) ((-792 . -47) 137903) ((-1259 . -568) 137814) ((-365 . -379) T) ((-493 . -1131) T) ((-1191 . -132) T) ((-1144 . -132) T) ((-466 . -47) 137793) ((-883 . -374) T) ((-866 . -132) T) ((-153 . -102) T) ((-1081 . -23) T) ((-969 . -23) T) ((-583 . -568) T) ((-828 . -25) T) ((-828 . -21) T) ((-1161 . -526) 137726) ((-604 . -1102) T) ((-598 . -1057) 137710) ((-1272 . -628) 137584) ((-493 . -23) T) ((-362 . -1077) T) ((-1230 . -915) 137565) ((-682 . -319) 137503) ((-1132 . -1293) 137473) ((-711 . -660) 137438) ((-1023 . -862) T) ((-1022 . -174) T) ((-980 . -146) 137417) ((-647 . -1119) T) ((-619 . -1119) T) ((-980 . -148) 137396) ((-747 . -148) 137375) ((-747 . -146) 137354) ((-670 . -1236) T) ((-990 . -862) T) ((-1278 . -234) 137307) ((-1271 . -234) 137253) ((-1250 . -234) 137070) ((-845 . -658) 136987) ((-486 . -937) 136966) ((-329 . -1070) 136801) ((-326 . -1075) 136711) ((-323 . -1075) 136640) ((-1018 . -296) 136598) ((-419 . -729) 136550) ((-329 . -652) 136391) ((-607 . -234) 136344) ((-713 . -860) T) ((-1272 . -1068) T) ((-326 . -111) 136240) ((-323 . -111) 136153) ((-981 . -102) T) ((-827 . -102) 135905) ((-724 . -626) NIL) ((-724 . -625) 135887) ((-1272 . -336) 135831) ((-670 . -1057) 135727) ((-1106 . -1236) T) ((-1054 . -298) 135702) ((-592 . -738) T) ((-576 . -806) T) ((-171 . -374) 135653) ((-576 . -803) T) ((-576 . -738) T) ((-507 . -738) T) ((-794 . -1236) T) ((-792 . -1236) T) ((-1165 . -501) 135637) ((-466 . -1236) T) ((-1106 . -899) NIL) ((-883 . -1131) T) ((-118 . -926) NIL) ((-1308 . -1307) 135613) ((-1306 . -1307) 135592) ((-794 . -899) NIL) ((-792 . -899) 135451) ((-1301 . -25) T) ((-1301 . -21) T) ((-1233 . -102) 135429) ((-1125 . -407) T) ((-635 . -660) 135416) ((-466 . -899) NIL) ((-687 . -102) 135394) ((-1106 . -1057) 135221) ((-883 . -23) T) ((-794 . -1057) 135080) ((-792 . -1057) 134937) ((-118 . -660) 134882) ((-466 . -1057) 134758) ((-326 . -628) 134322) ((-323 . -628) 134205) ((-402 . -658) 134174) ((-661 . -1057) 134158) ((-639 . -102) T) ((-593 . -1236) T) ((-530 . -1236) T) ((-224 . -501) 134142) ((-1286 . -34) T) ((-633 . -658) 134101) ((-299 . -1070) 134088) ((-137 . -628) 134072) ((-299 . -652) 134059) ((-647 . -729) 134043) ((-619 . -729) 134027) ((-682 . -38) 133987) ((-329 . -102) T) ((-85 . -625) 133969) ((-50 . -1057) 133953) ((-1139 . -1075) 133940) ((-1106 . -388) 133924) ((-794 . -388) 133908) ((-711 . -738) T) ((-711 . -806) T) ((-711 . -803) T) ((-593 . -1057) 133895) ((-530 . -1057) 133872) ((-60 . -57) 133834) ((-334 . -132) T) ((-326 . -1068) 133724) ((-323 . -1068) T) ((-171 . -1131) T) ((-792 . -388) 133708) ((-45 . -152) 133658) ((-1023 . -1011) 133640) ((-466 . -388) 133624) ((-419 . -174) T) ((-326 . -248) 133603) ((-323 . -248) T) ((-323 . -238) NIL) ((-304 . -1119) 133385) ((-227 . -132) T) ((-1139 . -111) 133370) ((-171 . -23) T) ((-811 . -148) 133349) ((-811 . -146) 133328) ((-258 . -651) 133234) ((-257 . -651) 133140) ((-329 . -294) 133106) ((-1176 . -526) 133039) ((-489 . -658) 132989) ((-494 . -909) 132856) ((-1152 . -1119) T) ((-227 . -1079) T) ((-827 . -319) 132794) ((-1106 . -915) 132729) ((-794 . -915) 132672) ((-792 . -915) 132656) ((-1308 . -38) 132626) ((-1306 . -38) 132596) ((-1259 . -1131) T) ((-867 . -1131) T) ((-466 . -915) 132573) ((-870 . -1119) T) ((-1259 . -23) T) ((-1139 . -628) 132545) ((-1081 . -132) T) ((-583 . -1131) T) ((-867 . -23) T) ((-635 . -738) T) ((-366 . -937) T) ((-363 . -937) T) ((-299 . -102) T) ((-355 . -937) T) ((-989 . -1102) T) ((-969 . -132) T) ((-828 . -234) 132490) ((-118 . -806) NIL) ((-118 . -803) NIL) ((-118 . -738) T) ((-1065 . -526) 132391) ((-706 . -926) NIL) ((-583 . -23) T) ((-493 . -132) T) ((-430 . -237) 132342) ((-687 . -319) 132280) ((-647 . -773) T) ((-619 . -773) T) ((-1250 . -862) NIL) ((-1099 . -1070) 132190) ((-1022 . -300) T) ((-706 . -660) 132140) ((-258 . -25) T) ((-362 . -1119) T) ((-258 . -21) T) ((-257 . -25) T) ((-257 . -21) T) ((-153 . -38) 132124) ((-2 . -102) T) ((-927 . -937) T) ((-1099 . -652) 131992) ((-494 . -1293) 131962) ((-1139 . -1068) T) ((-723 . -317) T) ((-370 . -1070) 131914) ((-364 . -1070) 131866) ((-356 . -1070) 131818) ((-370 . -652) 131770) ((-225 . -1057) 131747) ((-364 . -652) 131699) ((-108 . -1070) 131649) ((-356 . -652) 131601) ((-304 . -729) 131543) ((-713 . -1077) T) ((-499 . -464) T) ((-419 . -526) 131455) ((-108 . -652) 131405) ((-219 . -464) T) ((-1139 . -238) T) ((-305 . -152) 131355) ((-1018 . -626) 131316) ((-1018 . -625) 131298) ((-1008 . -625) 131280) ((-117 . -1077) T) ((-666 . -1075) 131264) ((-227 . -505) T) ((-411 . -625) 131246) ((-411 . -626) 131223) ((-1073 . -1293) 131193) ((-666 . -111) 131172) ((-682 . -917) 131095) ((-1161 . -501) 131079) ((-1310 . -658) 131038) ((-392 . -658) 131007) ((-63 . -453) T) ((-63 . -407) T) ((-1178 . -102) T) ((-883 . -132) T) ((-496 . -102) 130985) ((-1315 . -379) T) ((-1099 . -102) T) ((-1080 . -102) T) ((-362 . -729) 130930) ((-743 . -148) 130909) ((-743 . -146) 130888) ((-666 . -628) 130806) ((-1043 . -660) 130743) ((-535 . -1119) 130721) ((-370 . -102) T) ((-364 . -102) T) ((-356 . -102) T) ((-108 . -102) T) ((-516 . -1119) T) ((-365 . -660) 130666) ((-1191 . -651) 130614) ((-1144 . -651) 130562) ((-396 . -521) 130541) ((-845 . -860) 130520) ((-390 . -1240) T) ((-706 . -738) T) ((-1250 . -1011) 130472) ((-350 . -1077) T) ((-112 . -1236) T) ((-176 . -1077) T) ((-103 . -625) 130404) ((-1193 . -146) 130383) ((-1193 . -148) 130362) ((-390 . -568) T) ((-1192 . -148) 130341) ((-1192 . -146) 130320) ((-1186 . -146) 130227) ((-419 . -300) T) ((-1186 . -148) 130134) ((-1145 . -148) 130113) ((-1145 . -146) 130092) ((-329 . -38) 129933) ((-171 . -132) T) ((-323 . -807) NIL) ((-323 . -804) NIL) ((-666 . -1068) T) ((-48 . -660) 129883) ((-1132 . -1070) 129784) ((-906 . -628) 129761) ((-1132 . -652) 129683) ((-1185 . -102) T) ((-1013 . -102) T) ((-1012 . -21) T) ((-128 . -1029) 129667) ((-122 . -1029) 129651) ((-1012 . -25) T) ((-918 . -120) 129635) ((-1177 . -102) T) ((-1259 . -132) T) ((-1191 . -25) T) ((-354 . -1236) T) ((-1191 . -21) T) ((-867 . -132) T) ((-1144 . -25) T) ((-1144 . -21) T) ((-866 . -25) T) ((-866 . -21) T) ((-794 . -317) 129614) ((-1178 . -319) 129409) ((-1176 . -501) 129393) ((-1169 . -152) 129343) ((-659 . -102) 129321) ((-644 . -102) T) ((-1165 . -625) 129283) ((-583 . -132) T) ((-633 . -860) 129262) ((-1165 . -626) 129223) ((-1043 . -803) T) ((-1043 . -806) T) ((-1043 . -738) T) ((-827 . -917) 129092) ((-724 . -1075) 128915) ((-496 . -319) 128853) ((-465 . -429) 128823) ((-362 . -174) T) ((-299 . -38) 128810) ((-258 . -234) 128701) ((-257 . -234) 128592) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-279 . -102) T) ((-278 . -102) T) ((-354 . -1057) 128569) ((-277 . -102) T) ((-214 . -102) T) ((-213 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-724 . -111) 128378) ((-365 . -738) T) ((-682 . -272) 128362) ((-682 . -232) 128346) ((-593 . -317) T) ((-530 . -317) T) ((-304 . -526) 128295) ((-108 . -319) NIL) ((-72 . -407) T) ((-1132 . -102) 128047) ((-845 . -423) 128031) ((-1139 . -807) T) ((-1139 . -804) T) ((-713 . -1119) T) ((-590 . -625) 128013) ((-390 . -374) T) ((-171 . -505) 127991) ((-224 . -625) 127923) ((-135 . -1119) T) ((-117 . -1119) T) ((-983 . -1236) T) ((-48 . -738) T) ((-1065 . -501) 127888) ((-142 . -437) 127870) ((-142 . -379) T) ((-1046 . -102) T) ((-524 . -521) 127849) ((-724 . -628) 127605) ((-1193 . -237) 127564) ((-488 . -102) T) ((-475 . -102) T) ((-1192 . -237) 127516) ((-1186 . -237) 127339) ((-1053 . -1131) T) ((-329 . -917) 127245) ((-1243 . -625) 127227) ((-1200 . -1057) 127163) ((-1193 . -35) 127129) ((-1193 . -95) 127095) ((-1193 . -1224) 127061) ((-1193 . -1221) 127027) ((-1192 . -1221) 126993) ((-1192 . -1224) 126959) ((-1177 . -319) NIL) ((-89 . -408) T) ((-89 . -407) T) ((-1099 . -1171) 126938) ((-40 . -1236) T) ((-1192 . -95) 126904) ((-1053 . -23) T) ((-1192 . -35) 126870) ((-583 . -505) T) ((-1186 . -1221) 126836) ((-1186 . -1224) 126802) ((-1186 . -95) 126768) ((-1186 . -35) 126734) ((-372 . -1131) T) ((-370 . -1171) 126713) ((-364 . -1171) 126692) ((-356 . -1171) 126671) ((-1123 . -296) 126627) ((-1145 . -35) 126593) ((-1145 . -95) 126559) ((-108 . -1171) T) ((-1145 . -1224) 126525) ((-845 . -1077) 126504) ((-659 . -319) 126442) ((-644 . -319) 126293) ((-1145 . -1221) 126259) ((-724 . -1068) T) ((-1081 . -651) 126241) ((-1099 . -38) 126109) ((-969 . -651) 126057) ((-1023 . -148) T) ((-1023 . -146) NIL) ((-390 . -1131) T) ((-334 . -25) T) ((-332 . -23) T) ((-960 . -862) 126036) ((-724 . -336) 126013) ((-493 . -651) 125961) ((-40 . -1057) 125849) ((-724 . -238) T) ((-713 . -729) 125836) ((-350 . -1119) T) ((-176 . -1119) T) ((-341 . -862) T) ((-430 . -464) 125786) ((-390 . -23) T) ((-370 . -38) 125751) ((-364 . -38) 125716) ((-356 . -38) 125681) ((-80 . -453) T) ((-80 . -407) T) ((-227 . -25) T) ((-227 . -21) T) ((-848 . -1131) T) ((-108 . -38) 125631) ((-839 . -1131) T) ((-786 . -1119) T) ((-117 . -729) 125618) ((-684 . -1057) 125602) ((-624 . -102) T) ((-848 . -23) T) ((-839 . -23) T) ((-1176 . -296) 125554) ((-1132 . -319) 125492) ((-494 . -1070) 125393) ((-1121 . -240) 125377) ((-64 . -408) T) ((-64 . -407) T) ((-1170 . -102) T) ((-110 . -102) T) ((-494 . -652) 125299) ((-40 . -388) 125276) ((-96 . -102) T) ((-665 . -864) 125260) ((-1191 . -234) 125247) ((-1154 . -1102) T) ((-1081 . -21) T) ((-1081 . -25) T) ((-1073 . -1070) 125231) ((-827 . -272) 125200) ((-827 . -232) 125169) ((-969 . -25) T) ((-969 . -21) T) ((-1073 . -652) 125111) ((-633 . -1077) T) ((-1139 . -379) T) ((-1046 . -319) 125049) ((-682 . -658) 125008) ((-493 . -25) T) ((-493 . -21) T) ((-396 . -1070) 124992) ((-902 . -625) 124974) ((-898 . -625) 124956) ((-535 . -526) 124889) ((-258 . -862) 124840) ((-257 . -862) 124791) ((-396 . -652) 124761) ((-883 . -651) 124738) ((-488 . -319) 124676) ((-475 . -319) 124614) ((-362 . -300) T) ((-1176 . -1274) 124598) ((-1161 . -625) 124560) ((-1161 . -626) 124521) ((-1159 . -102) T) ((-1018 . -1075) 124417) ((-40 . -915) 124369) ((-1176 . -616) 124346) ((-1315 . -660) 124333) ((-1082 . -152) 124279) ((-499 . -909) NIL) ((-878 . -502) 124256) ((-1018 . -111) 124138) ((-884 . -1240) T) ((-219 . -909) NIL) ((-350 . -729) 124122) ((-878 . -625) 124084) ((-176 . -729) 124016) ((-884 . -568) T) ((-419 . -296) 123974) ((-245 . -237) 123871) ((-108 . -412) 123853) ((-84 . -395) T) ((-84 . -407) T) ((-713 . -174) T) ((-629 . -625) 123835) ((-99 . -738) T) ((-494 . -102) 123587) ((-99 . -485) T) ((-117 . -174) T) ((-1308 . -658) 123546) ((-1306 . -658) 123505) ((-171 . -651) 123453) ((-1099 . -917) 123324) ((-1073 . -102) T) ((-1018 . -628) 123214) ((-883 . -25) T) ((-827 . -243) 123193) ((-883 . -21) T) ((-830 . -102) T) ((-44 . -658) 123136) ((-1023 . -237) T) ((-426 . -102) T) ((-396 . -102) T) ((-110 . -319) NIL) ((-229 . -102) 123114) ((-128 . -1236) T) ((-122 . -1236) T) ((-108 . -917) NIL) ((-829 . -1070) 123065) ((-829 . -652) 123007) ((-1053 . -132) T) ((-682 . -378) 122991) ((-153 . -658) 122950) ((-647 . -296) 122908) ((-619 . -296) 122866) ((-1315 . -738) T) ((-1018 . -1068) T) ((-1259 . -651) 122814) ((-1123 . -625) 122796) ((-1022 . -625) 122778) ((-576 . -1236) T) ((-507 . -1236) T) ((-527 . -23) T) ((-522 . -23) T) ((-354 . -317) T) ((-520 . -23) T) ((-332 . -132) T) ((-3 . -1119) T) ((-1022 . -626) 122762) ((-1018 . -248) 122741) ((-1018 . -238) 122720) ((-1278 . -146) 122699) ((-1278 . -148) 122678) ((-845 . -1119) T) ((-1271 . -148) 122657) ((-1271 . -146) 122636) ((-1270 . -1240) 122615) ((-1250 . -146) 122522) ((-1250 . -148) 122429) ((-1249 . -1240) 122408) ((-390 . -132) T) ((-227 . -234) 122395) ((-576 . -899) 122377) ((0 . -1119) T) ((-176 . -174) T) ((-171 . -21) T) ((-171 . -25) T) ((-49 . -1119) T) ((-1272 . -660) 122282) ((-1270 . -568) 122233) ((-726 . -1131) T) ((-1249 . -568) 122184) ((-576 . -1057) 122166) ((-607 . -148) 122145) ((-607 . -146) 122124) ((-507 . -1057) 122067) ((-1154 . -1156) T) ((-87 . -395) T) ((-87 . -407) T) ((-884 . -374) T) ((-848 . -132) T) ((-839 . -132) T) ((-981 . -658) 122011) ((-726 . -23) T) ((-518 . -625) 121977) ((-514 . -625) 121959) ((-827 . -658) 121738) ((-1310 . -1077) T) ((-390 . -1079) T) ((-1045 . -1119) 121716) ((-55 . -1057) 121698) ((-918 . -34) T) ((-494 . -319) 121636) ((-604 . -102) T) ((-1176 . -626) 121597) ((-1176 . -625) 121529) ((-1197 . -1070) 121412) ((-45 . -102) T) ((-829 . -102) T) ((-1197 . -652) 121309) ((-1259 . -25) T) ((-1259 . -21) T) ((-1081 . -234) 121296) ((-867 . -25) T) ((-44 . -378) 121280) ((-867 . -21) T) ((-743 . -464) 121231) ((-1309 . -625) 121213) ((-1298 . -1070) 121183) ((-1073 . -319) 121121) ((-683 . -1102) T) ((-618 . -1102) T) ((-402 . -1119) T) ((-583 . -25) T) ((-583 . -21) T) ((-182 . -1102) T) ((-162 . -1102) T) ((-157 . -1102) T) ((-155 . -1102) T) ((-1298 . -652) 121091) ((-633 . -1119) T) ((-711 . -899) 121073) ((-1286 . -1236) T) ((-229 . -319) 121011) ((-145 . -379) T) ((-1065 . -626) 120953) ((-1065 . -625) 120896) ((-323 . -926) NIL) ((-1244 . -856) T) ((-1132 . -917) 120765) ((-711 . -1057) 120710) ((-723 . -937) T) ((-486 . -1240) 120689) ((-1192 . -464) 120668) ((-1186 . -464) 120647) ((-340 . -102) T) ((-884 . -1131) T) ((-329 . -658) 120529) ((-326 . -660) 120258) ((-323 . -660) 120187) ((-486 . -568) 120138) ((-350 . -526) 120104) ((-562 . -152) 120054) ((-40 . -317) T) ((-855 . -625) 120036) ((-713 . -300) T) ((-884 . -23) T) ((-390 . -505) T) ((-1099 . -272) 120006) ((-1099 . -232) 119976) ((-524 . -102) T) ((-419 . -626) 119783) ((-419 . -625) 119765) ((-270 . -625) 119747) ((-117 . -300) T) ((-1272 . -738) T) ((-635 . -1236) T) ((-1311 . -1119) T) ((-1270 . -374) 119726) ((-1249 . -374) 119705) ((-1299 . -34) T) ((-1244 . -1119) T) ((-118 . -1236) T) ((-108 . -272) 119687) ((-108 . -232) 119669) ((-1197 . -102) T) ((-489 . -1119) T) ((-535 . -501) 119653) ((-749 . -34) T) ((-665 . -1070) 119637) ((-665 . -652) 119607) ((-883 . -234) NIL) ((-142 . -34) T) ((-118 . -897) 119584) ((-118 . -899) NIL) ((-635 . -1057) 119467) ((-1298 . -102) T) ((-1278 . -237) 119426) ((-656 . -862) 119405) ((-1271 . -237) 119357) ((-1250 . -237) 119180) ((-305 . -102) T) ((-724 . -379) 119159) ((-118 . -1057) 119136) ((-402 . -729) 119120) ((-607 . -237) 119079) ((-633 . -729) 119063) ((-1124 . -1236) T) ((-45 . -319) 118867) ((-828 . -146) 118846) ((-828 . -148) 118825) ((-299 . -658) 118797) ((-1309 . -393) 118776) ((-831 . -862) T) ((-1288 . -1119) T) ((-1178 . -231) 118723) ((-398 . -862) 118702) ((-1278 . -35) 118668) ((-1278 . -1224) 118634) ((-1278 . -1221) 118600) ((-1271 . -1221) 118566) ((-527 . -132) T) ((-1271 . -1224) 118532) ((-1250 . -1221) 118498) ((-1250 . -1224) 118464) ((-1278 . -95) 118430) ((-1271 . -95) 118396) ((-430 . -909) 118317) ((-647 . -625) 118286) ((-619 . -625) 118255) ((-227 . -862) T) ((-1271 . -35) 118221) ((-1270 . -1131) T) ((-1250 . -95) 118187) ((-1139 . -660) 118159) ((-1250 . -35) 118125) ((-1249 . -1131) T) ((-605 . -152) 118107) ((-1099 . -360) 118086) ((-176 . -300) T) ((-118 . -388) 118063) ((-118 . -349) 118040) ((-171 . -234) 117965) ((-882 . -317) T) ((-323 . -806) NIL) ((-323 . -803) NIL) ((-326 . -738) 117814) ((-323 . -738) T) ((-486 . -374) 117793) ((-370 . -360) 117772) ((-364 . -360) 117751) ((-356 . -360) 117730) ((-326 . -485) 117709) ((-1270 . -23) T) ((-1249 . -23) T) ((-730 . -1131) T) ((-726 . -132) T) ((-665 . -102) T) ((-489 . -729) 117674) ((-45 . -292) 117624) ((-105 . -1119) T) ((-68 . -625) 117606) ((-989 . -102) T) ((-876 . -102) T) ((-635 . -915) 117565) ((-1310 . -1119) T) ((-392 . -1119) T) ((-1259 . -234) 117552) ((-1235 . -1119) T) ((-82 . -1236) T) ((-1132 . -272) 117521) ((-1081 . -862) T) ((-118 . -915) NIL) ((-794 . -937) 117500) ((-725 . -862) T) ((-543 . -1119) T) ((-512 . -1119) T) ((-366 . -1240) T) ((-363 . -1240) T) ((-355 . -1240) T) ((-273 . -1240) 117479) ((-253 . -1240) 117458) ((-545 . -872) T) ((-1132 . -232) 117427) ((-1177 . -840) T) ((-1161 . -1075) 117411) ((-402 . -773) T) ((-706 . -1236) T) ((-703 . -1057) 117395) ((-366 . -568) T) ((-363 . -568) T) ((-355 . -568) T) ((-273 . -568) 117326) ((-253 . -568) 117257) ((-537 . -1102) T) ((-1161 . -111) 117236) ((-465 . -756) 117206) ((-878 . -1075) 117176) ((-829 . -38) 117118) ((-706 . -897) 117100) ((-706 . -899) 117082) ((-305 . -319) 116886) ((-1176 . -298) 116863) ((-927 . -1240) T) ((-1099 . -658) 116758) ((-1023 . -464) T) ((-682 . -423) 116742) ((-878 . -111) 116707) ((-931 . -464) T) ((-706 . -1057) 116652) ((-927 . -568) T) ((-545 . -625) 116634) ((-593 . -937) T) ((-499 . -1070) 116584) ((-486 . -1131) T) ((-530 . -937) T) ((-494 . -917) 116453) ((-65 . -625) 116435) ((-219 . -1070) 116385) ((-499 . -652) 116335) ((-370 . -658) 116272) ((-364 . -658) 116209) ((-356 . -658) 116146) ((-644 . -231) 116092) ((-219 . -652) 116042) ((-108 . -658) 115992) ((-486 . -23) T) ((-1139 . -806) T) ((-884 . -132) T) ((-1139 . -803) T) ((-1301 . -1303) 115971) ((-1139 . -738) T) ((-666 . -660) 115945) ((-304 . -625) 115686) ((-1161 . -628) 115604) ((-1054 . -34) T) ((-828 . -237) 115555) ((-592 . -317) T) ((-576 . -317) T) ((-507 . -317) T) ((-1310 . -729) 115525) ((-706 . -388) 115507) ((-706 . -349) 115489) ((-489 . -174) T) ((-392 . -729) 115459) ((-878 . -628) 115394) ((-883 . -862) NIL) ((-576 . -1041) T) ((-507 . -1041) T) ((-1152 . -625) 115376) ((-1132 . -243) 115355) ((-216 . -102) T) ((-1169 . -102) T) ((-71 . -625) 115337) ((-1161 . -1068) T) ((-1197 . -38) 115234) ((-870 . -625) 115216) ((-576 . -557) T) ((-682 . -1077) T) ((-743 . -966) 115169) ((-365 . -1236) T) ((-1161 . -238) 115148) ((-1101 . -1119) T) ((-1053 . -25) T) ((-1053 . -21) T) ((-1022 . -1075) 115093) ((-922 . -102) T) ((-878 . -1068) T) ((-706 . -915) NIL) ((-366 . -339) 115077) ((-366 . -374) T) ((-363 . -339) 115061) ((-363 . -374) T) ((-355 . -339) 115045) ((-355 . -374) T) ((-499 . -102) T) ((-1298 . -38) 115015) ((-558 . -862) T) ((-535 . -699) 114965) ((-219 . -102) T) ((-1043 . -1057) 114845) ((-1022 . -111) 114774) ((-1193 . -992) 114743) ((-1192 . -992) 114705) ((-532 . -152) 114689) ((-1099 . -381) 114668) ((-362 . -625) 114650) ((-332 . -21) T) ((-365 . -1057) 114627) ((-332 . -25) T) ((-1186 . -992) 114596) ((-48 . -1236) T) ((-76 . -625) 114578) ((-1145 . -992) 114545) ((-711 . -317) T) ((-130 . -856) T) ((-927 . -374) T) ((-390 . -25) T) ((-390 . -21) T) ((-927 . -339) 114532) ((-86 . -625) 114514) ((-711 . -1041) T) ((-689 . -862) T) ((-1270 . -132) T) ((-1249 . -132) T) ((-918 . -1029) 114498) ((-848 . -21) T) ((-48 . -1057) 114441) ((-848 . -25) T) ((-839 . -25) T) ((-839 . -21) T) ((-1132 . -658) 114220) ((-1308 . -1077) T) ((-561 . -102) T) ((-1306 . -1077) T) ((-666 . -738) T) ((-1123 . -630) 114123) ((-1022 . -628) 114053) ((-1309 . -1075) 114037) ((-827 . -423) 114006) ((-103 . -120) 113990) ((-130 . -1119) T) ((-52 . -1119) T) ((-943 . -625) 113972) ((-883 . -1011) 113949) ((-835 . -102) T) ((-1309 . -111) 113928) ((-743 . -909) 113903) ((-665 . -38) 113873) ((-583 . -862) T) ((-366 . -1131) T) ((-363 . -1131) T) ((-355 . -1131) T) ((-273 . -1131) T) ((-253 . -1131) T) ((-1169 . -319) 113677) ((-1107 . -234) 113664) ((-635 . -317) 113643) ((-676 . -23) T) ((-536 . -1102) T) ((-321 . -1119) T) ((-494 . -272) 113612) ((-494 . -232) 113581) ((-153 . -1077) T) ((-366 . -23) T) ((-363 . -23) T) ((-355 . -23) T) ((-118 . -317) T) ((-273 . -23) T) ((-253 . -23) T) ((-1022 . -1068) T) ((-724 . -926) 113560) ((-1193 . -909) 113448) ((-1192 . -909) 113329) ((-1186 . -909) 113065) ((-1176 . -628) 113042) ((-1022 . -238) 113014) ((-1022 . -248) T) ((-1145 . -909) 112996) ((-118 . -1041) NIL) ((-927 . -1131) T) ((-1271 . -464) 112975) ((-1250 . -464) 112954) ((-535 . -625) 112886) ((-724 . -660) 112775) ((-419 . -1075) 112727) ((-516 . -625) 112709) ((-927 . -23) T) ((-499 . -319) NIL) ((-1309 . -628) 112665) ((-486 . -132) T) ((-219 . -319) NIL) ((-419 . -111) 112603) ((-827 . -1077) 112581) ((-749 . -1117) 112565) ((-1270 . -505) 112531) ((-1249 . -505) 112497) ((-560 . -856) T) ((-142 . -1117) 112479) ((-489 . -300) T) ((-1309 . -1068) T) ((-258 . -237) 112376) ((-257 . -237) 112273) ((-1241 . -102) T) ((-1082 . -102) T) ((-855 . -628) 112141) ((-512 . -526) NIL) ((-494 . -243) 112120) ((-419 . -628) 112018) ((-980 . -1070) 111901) ((-747 . -1070) 111871) ((-980 . -652) 111768) ((-1191 . -146) 111747) ((-747 . -652) 111717) ((-465 . -1070) 111687) ((-1191 . -148) 111666) ((-1144 . -148) 111645) ((-1144 . -146) 111624) ((-647 . -1075) 111608) ((-619 . -1075) 111592) ((-465 . -652) 111562) ((-1193 . -1277) 111546) ((-1193 . -1264) 111523) ((-1192 . -1269) 111484) ((-682 . -1119) T) ((-682 . -1072) 111424) ((-1192 . -1264) 111394) ((-560 . -1119) T) ((-499 . -1171) T) ((-1192 . -1267) 111378) ((-1186 . -1248) 111339) ((-830 . -275) 111323) ((-219 . -1171) T) ((-354 . -937) T) ((-99 . -1236) T) ((-647 . -111) 111302) ((-619 . -111) 111281) ((-1186 . -1264) 111258) ((-855 . -1068) 111237) ((-1186 . -1246) 111221) ((-527 . -25) T) ((-507 . -312) T) ((-523 . -23) T) ((-522 . -25) T) ((-520 . -25) T) ((-519 . -23) T) ((-430 . -1070) 111195) ((-419 . -1068) T) ((-329 . -1077) T) ((-706 . -317) T) ((-430 . -652) 111169) ((-108 . -860) T) ((-724 . -738) T) ((-419 . -248) T) ((-419 . -238) 111148) ((-390 . -234) 111135) ((-499 . -38) 111085) ((-219 . -38) 111035) ((-486 . -505) 111001) ((-1243 . -379) T) ((-1177 . -1163) T) ((-1120 . -102) T) ((-839 . -234) 110974) ((-713 . -625) 110956) ((-713 . -626) 110871) ((-726 . -21) T) ((-726 . -25) T) ((-1154 . -102) T) ((-494 . -658) 110650) ((-245 . -909) 110517) ((-135 . -625) 110499) ((-117 . -625) 110481) ((-158 . -25) T) ((-1308 . -1119) T) ((-884 . -651) 110429) ((-1306 . -1119) T) ((-980 . -102) T) ((-747 . -102) T) ((-727 . -102) T) ((-465 . -102) T) ((-828 . -464) 110380) ((-44 . -1119) T) ((-1107 . -862) T) ((-1082 . -319) 110231) ((-676 . -132) T) ((-1073 . -658) 110200) ((-682 . -729) 110184) ((-299 . -1077) T) ((-366 . -132) T) ((-363 . -132) T) ((-355 . -132) T) ((-273 . -132) T) ((-253 . -132) T) ((-396 . -658) 110153) ((-430 . -102) T) ((-153 . -1119) T) ((-45 . -231) 110103) ((-1023 . -909) NIL) ((-811 . -1070) 110087) ((-975 . -862) 110066) ((-1018 . -660) 109968) ((-811 . -652) 109952) ((-245 . -1293) 109922) ((-1043 . -317) T) ((-304 . -1075) 109843) ((-927 . -132) T) ((-40 . -937) T) ((-499 . -412) 109825) ((-365 . -317) T) ((-219 . -412) 109807) ((-1099 . -423) 109791) ((-304 . -111) 109707) ((-1202 . -862) T) ((-1201 . -862) T) ((-884 . -25) T) ((-884 . -21) T) ((-1272 . -47) 109651) ((-350 . -625) 109633) ((-1191 . -237) T) ((-227 . -148) T) ((-176 . -625) 109615) ((-786 . -625) 109597) ((-129 . -862) T) ((-620 . -240) 109544) ((-487 . -240) 109494) ((-1308 . -729) 109464) ((-48 . -317) T) ((-1306 . -729) 109434) ((-65 . -628) 109363) ((-981 . -1119) T) ((-827 . -1119) 109115) ((-322 . -102) T) ((-918 . -1236) T) ((-48 . -1041) T) ((-1249 . -651) 109023) ((-701 . -102) 109001) ((-44 . -729) 108985) ((-562 . -102) T) ((-304 . -628) 108916) ((-67 . -394) T) ((-499 . -917) NIL) ((-67 . -407) T) ((-219 . -917) NIL) ((-674 . -23) T) ((-829 . -658) 108852) ((-682 . -773) T) ((-1233 . -1119) 108830) ((-362 . -1075) 108775) ((-687 . -1119) 108753) ((-1081 . -148) T) ((-969 . -148) 108732) ((-969 . -146) 108711) ((-811 . -102) T) ((-153 . -729) 108695) ((-493 . -148) 108674) ((-493 . -146) 108653) ((-362 . -111) 108582) ((-1099 . -1077) T) ((-332 . -862) 108561) ((-1278 . -992) 108530) ((-639 . -1119) T) ((-1271 . -992) 108492) ((-523 . -132) T) ((-519 . -132) T) ((-305 . -231) 108442) ((-370 . -1077) T) ((-364 . -1077) T) ((-356 . -1077) T) ((-304 . -1068) 108384) ((-1250 . -992) 108353) ((-390 . -862) T) ((-108 . -1077) T) ((-1018 . -738) T) ((-882 . -937) T) ((-855 . -807) 108332) ((-855 . -804) 108311) ((-430 . -319) 108250) ((-480 . -102) T) ((-607 . -992) 108219) ((-329 . -1119) T) ((-419 . -807) 108198) ((-419 . -804) 108177) ((-512 . -501) 108159) ((-1272 . -1057) 108125) ((-1270 . -21) T) ((-1270 . -25) T) ((-1249 . -21) T) ((-1249 . -25) T) ((-827 . -729) 108067) ((-362 . -628) 107997) ((-711 . -416) T) ((-1299 . -1236) T) ((-1132 . -423) 107966) ((-618 . -102) T) ((-1096 . -1236) T) ((-1022 . -379) NIL) ((-683 . -102) T) ((-182 . -102) T) ((-162 . -102) T) ((-157 . -102) T) ((-155 . -102) T) ((-103 . -34) T) ((-1197 . -658) 107876) ((-749 . -1236) T) ((-743 . -1070) 107719) ((-44 . -773) T) ((-743 . -652) 107568) ((-605 . -102) T) ((-665 . -668) 107552) ((-77 . -408) T) ((-77 . -407) T) ((-142 . -1236) T) ((-883 . -148) T) ((-883 . -146) NIL) ((-1298 . -658) 107497) ((-1278 . -909) 107385) ((-1235 . -93) T) ((-362 . -1068) T) ((-227 . -237) T) ((-70 . -394) T) ((-70 . -407) T) ((-1184 . -102) T) ((-682 . -526) 107318) ((-1271 . -909) 107199) ((-1250 . -909) 106935) ((-701 . -319) 106873) ((-980 . -38) 106770) ((-1199 . -625) 106752) ((-747 . -38) 106722) ((-562 . -319) 106526) ((-1193 . -1070) 106409) ((-326 . -1236) T) ((-362 . -238) T) ((-362 . -248) T) ((-323 . -1236) T) ((-299 . -1119) T) ((-1192 . -1070) 106244) ((-1186 . -1070) 106034) ((-1145 . -1070) 105917) ((-1193 . -652) 105814) ((-1192 . -652) 105655) ((-723 . -1240) T) ((-1186 . -652) 105451) ((-1176 . -663) 105435) ((-1145 . -652) 105332) ((-1230 . -568) 105311) ((-831 . -397) 105295) ((-723 . -568) T) ((-607 . -909) 105206) ((-326 . -897) 105190) ((-326 . -899) 105115) ((-137 . -1236) T) ((-323 . -897) 105076) ((-323 . -899) NIL) ((-811 . -319) 105041) ((-329 . -729) 104882) ((-398 . -397) 104866) ((-334 . -333) 104843) ((-497 . -102) T) ((-486 . -25) T) ((-486 . -21) T) ((-430 . -38) 104817) ((-326 . -1057) 104480) ((-227 . -1221) T) ((-227 . -1224) T) ((-3 . -625) 104462) ((-323 . -1057) 104392) ((-884 . -234) 104337) ((-2 . -1119) T) ((-2 . |RecordCategory|) T) ((-1132 . -1077) 104315) ((-845 . -625) 104297) ((-1081 . -237) T) ((-592 . -937) T) ((-576 . -832) T) ((-576 . -937) T) ((-507 . -937) T) ((-137 . -1057) 104281) ((-227 . -95) T) ((-171 . -148) 104260) ((-75 . -453) T) ((0 . -625) 104242) ((-75 . -407) T) ((-171 . -146) 104193) ((-227 . -35) T) ((-49 . -625) 104175) ((-489 . -1077) T) ((-499 . -272) 104157) ((-499 . -232) 104139) ((-496 . -987) 104123) ((-219 . -272) 104105) ((-219 . -232) 104087) ((-81 . -453) T) ((-81 . -407) T) ((-1165 . -34) T) ((-743 . -102) T) ((-665 . -658) 104046) ((-1045 . -625) 104013) ((-512 . -296) 103963) ((-326 . -388) 103932) ((-323 . -388) 103893) ((-323 . -349) 103854) ((-1104 . -625) 103836) ((-828 . -966) 103783) ((-674 . -132) T) ((-1259 . -146) 103762) ((-1259 . -148) 103741) ((-1193 . -102) T) ((-1192 . -102) T) ((-1186 . -102) T) ((-1178 . -1119) T) ((-1145 . -102) T) ((-224 . -34) T) ((-299 . -729) 103728) ((-1178 . -622) 103704) ((-605 . -319) NIL) ((-1278 . -1277) 103688) ((-496 . -1119) 103666) ((-1169 . -231) 103616) ((-402 . -625) 103598) ((-522 . -862) T) ((-1139 . -1236) T) ((-1278 . -1264) 103575) ((-1271 . -1269) 103536) ((-1271 . -1264) 103506) ((-1271 . -1267) 103490) ((-1250 . -1248) 103451) ((-1250 . -1264) 103428) ((-1250 . -1246) 103412) ((-633 . -625) 103394) ((-1193 . -294) 103360) ((-711 . -937) T) ((-1192 . -294) 103326) ((-1186 . -294) 103292) ((-1145 . -294) 103258) ((-1099 . -1119) T) ((-1080 . -1119) T) ((-48 . -312) T) ((-326 . -915) 103224) ((-323 . -915) NIL) ((-1080 . -1087) 103203) ((-1139 . -899) 103185) ((-811 . -38) 103169) ((-273 . -651) 103117) ((-253 . -651) 103065) ((-713 . -1075) 103052) ((-607 . -1264) 103029) ((-1139 . -1057) 103011) ((-329 . -174) 102942) ((-370 . -1119) T) ((-364 . -1119) T) ((-356 . -1119) T) ((-512 . -19) 102924) ((-1121 . -152) 102908) ((-883 . -237) NIL) ((-108 . -1119) T) ((-117 . -1075) 102895) ((-723 . -374) T) ((-512 . -616) 102870) ((-713 . -111) 102855) ((-1311 . -625) 102822) ((-1311 . -502) 102804) ((-1270 . -234) 102750) ((-1249 . -234) 102603) ((-448 . -102) T) ((-888 . -1281) T) ((-256 . -102) T) ((-45 . -1168) 102553) ((-117 . -111) 102538) ((-1288 . -625) 102520) ((-1259 . -237) T) ((-1244 . -625) 102502) ((-1242 . -862) T) ((-647 . -732) T) ((-619 . -732) T) ((-1230 . -1131) T) ((-1230 . -23) T) ((-1191 . -464) 102433) ((-1186 . -319) 102318) ((-1185 . -1119) T) ((-827 . -526) 102251) ((-1054 . -1236) T) ((-245 . -1070) 102152) ((-1177 . -1119) T) ((-1161 . -660) 102090) ((-960 . -152) 102074) ((-1145 . -319) 102061) ((-1144 . -464) 102012) ((-245 . -652) 101934) ((-1106 . -568) 101865) ((-1106 . -1240) 101844) ((-1099 . -729) 101712) ((-537 . -102) T) ((-532 . -102) 101662) ((-1023 . -1070) 101612) ((-1013 . -1119) T) ((-828 . -909) 101508) ((-794 . -1240) 101487) ((-792 . -1240) 101466) ((-62 . -1236) T) ((-489 . -625) 101418) ((-489 . -626) 101340) ((-794 . -568) 101251) ((-792 . -568) 101182) ((-743 . -319) 101169) ((-713 . -628) 101141) ((-494 . -423) 101110) ((-635 . -937) 101089) ((-466 . -1240) 101068) ((-687 . -526) 101001) ((-676 . -25) T) ((-410 . -625) 100983) ((-676 . -21) T) ((-466 . -568) 100914) ((-430 . -917) 100837) ((-366 . -25) T) ((-366 . -21) T) ((-363 . -25) T) ((-118 . -937) T) ((-118 . -832) NIL) ((-363 . -21) T) ((-355 . -25) T) ((-355 . -21) T) ((-273 . -25) T) ((-273 . -21) T) ((-253 . -25) T) ((-253 . -21) T) ((-171 . -237) 100768) ((-83 . -395) T) ((-83 . -407) T) ((-135 . -628) 100750) ((-117 . -628) 100722) ((-1023 . -652) 100672) ((-960 . -999) 100656) ((-931 . -652) 100608) ((-931 . -1070) 100560) ((-927 . -21) T) ((-927 . -25) T) ((-884 . -862) 100511) ((-878 . -660) 100471) ((-723 . -1131) T) ((-723 . -23) T) ((-713 . -1068) T) ((-713 . -238) T) ((-299 . -174) T) ((-666 . -1236) T) ((-321 . -93) T) ((-659 . -1119) 100449) ((-644 . -622) 100424) ((-644 . -1119) T) ((-593 . -1240) T) ((-593 . -568) T) ((-530 . -1240) T) ((-530 . -568) T) ((-499 . -658) 100374) ((-486 . -234) 100320) ((-439 . -1070) 100304) ((-439 . -652) 100288) ((-370 . -729) 100240) ((-364 . -729) 100192) ((-350 . -1075) 100176) ((-356 . -729) 100128) ((-350 . -111) 100107) ((-176 . -1075) 100039) ((-219 . -658) 99989) ((-176 . -111) 99900) ((-108 . -729) 99850) ((-283 . -1119) T) ((-282 . -1119) T) ((-281 . -1119) T) ((-280 . -1119) T) ((-279 . -1119) T) ((-278 . -1119) T) ((-277 . -1119) T) ((-214 . -1119) T) ((-213 . -1119) T) ((-171 . -1224) 99828) ((-171 . -1221) 99806) ((-211 . -1119) T) ((-210 . -1119) T) ((-117 . -1068) T) ((-209 . -1119) T) ((-208 . -1119) T) ((-205 . -1119) T) ((-204 . -1119) T) ((-203 . -1119) T) ((-202 . -1119) T) ((-201 . -1119) T) ((-200 . -1119) T) ((-199 . -1119) T) ((-198 . -1119) T) ((-197 . -1119) T) ((-196 . -1119) T) ((-195 . -1119) T) ((-245 . -102) 99558) ((-171 . -35) 99536) ((-171 . -95) 99514) ((-666 . -1057) 99410) ((-494 . -1077) 99388) ((-1132 . -1119) 99140) ((-1161 . -34) T) ((-682 . -501) 99124) ((-73 . -1236) T) ((-105 . -625) 99106) ((-1310 . -625) 99088) ((-392 . -625) 99070) ((-350 . -628) 99022) ((-176 . -628) 98939) ((-1235 . -502) 98920) ((-743 . -38) 98769) ((-583 . -1224) T) ((-583 . -1221) T) ((-543 . -625) 98751) ((-532 . -319) 98689) ((-512 . -625) 98671) ((-512 . -626) 98653) ((-1235 . -625) 98619) ((-1186 . -1171) NIL) ((-1046 . -1090) 98588) ((-1046 . -1119) T) ((-1023 . -102) T) ((-990 . -102) T) ((-931 . -102) T) ((-906 . -1057) 98565) ((-1161 . -738) T) ((-1022 . -660) 98472) ((-488 . -1119) T) ((-475 . -1119) T) ((-598 . -23) T) ((-583 . -35) T) ((-583 . -95) T) ((-439 . -102) T) ((-1082 . -231) 98418) ((-1193 . -38) 98315) ((-878 . -738) T) ((-706 . -937) T) ((-523 . -25) T) ((-519 . -21) T) ((-519 . -25) T) ((-1192 . -38) 98156) ((-350 . -1068) T) ((-1186 . -38) 97952) ((-1099 . -174) T) ((-176 . -1068) T) ((-1145 . -38) 97849) ((-724 . -47) 97826) ((-370 . -174) T) ((-364 . -174) T) ((-531 . -57) 97800) ((-509 . -57) 97750) ((-362 . -1305) 97727) ((-227 . -464) T) ((-329 . -300) 97678) ((-356 . -174) T) ((-176 . -248) T) ((-1249 . -862) 97577) ((-108 . -174) T) ((-884 . -1011) 97561) ((-670 . -1131) T) ((-593 . -374) T) ((-593 . -339) 97548) ((-530 . -339) 97525) ((-530 . -374) T) ((-326 . -317) 97504) ((-323 . -317) T) ((-614 . -862) 97483) ((-1132 . -729) 97425) ((-532 . -292) 97409) ((-670 . -23) T) ((-430 . -232) 97393) ((-430 . -272) 97377) ((-323 . -1041) NIL) ((-347 . -23) T) ((-103 . -1029) 97361) ((-45 . -36) 97340) ((-624 . -1119) T) ((-362 . -379) T) ((-536 . -102) T) ((-507 . -27) T) ((-245 . -319) 97278) ((-1106 . -1131) T) ((-1309 . -660) 97252) ((-794 . -1131) T) ((-792 . -1131) T) ((-1197 . -423) 97236) ((-466 . -1131) T) ((-1081 . -464) T) ((-1170 . -1119) T) ((-969 . -464) 97187) ((-1134 . -1102) T) ((-110 . -1119) T) ((-1106 . -23) T) ((-1178 . -526) 96970) ((-829 . -1077) T) ((-794 . -23) T) ((-792 . -23) T) ((-493 . -464) 96921) ((-473 . -23) T) ((-392 . -393) 96900) ((-366 . -234) 96873) ((-363 . -234) 96846) ((-355 . -234) 96819) ((-466 . -23) T) ((-273 . -234) 96764) ((-258 . -909) 96631) ((-257 . -909) 96498) ((-96 . -1119) T) ((-724 . -1236) T) ((-682 . -296) 96475) ((-496 . -526) 96408) ((-1278 . -1070) 96291) ((-1278 . -652) 96188) ((-1271 . -652) 96029) ((-1271 . -1070) 95864) ((-1250 . -652) 95660) ((-299 . -300) T) ((-1250 . -1070) 95450) ((-1101 . -625) 95432) ((-1101 . -626) 95413) ((-419 . -926) 95392) ((-1230 . -132) T) ((-50 . -1131) T) ((-1186 . -412) 95344) ((-1043 . -937) T) ((-1022 . -738) T) ((-855 . -660) 95317) ((-724 . -899) NIL) ((-608 . -1070) 95277) ((-593 . -1131) T) ((-530 . -1131) T) ((-607 . -1070) 95160) ((-1176 . -34) T) ((-1023 . -319) NIL) ((-827 . -501) 95144) ((-608 . -652) 95117) ((-365 . -937) T) ((-607 . -652) 95014) ((-927 . -234) 95001) ((-419 . -660) 94917) ((-50 . -23) T) ((-723 . -132) T) ((-724 . -1057) 94797) ((-593 . -23) T) ((-108 . -526) NIL) ((-530 . -23) T) ((-171 . -421) 94768) ((-1159 . -1119) T) ((-1301 . -1300) 94752) ((-743 . -917) 94729) ((-713 . -807) T) ((-713 . -804) T) ((-1139 . -317) T) ((-390 . -148) T) ((-290 . -625) 94711) ((-289 . -625) 94693) ((-1249 . -1011) 94663) ((-48 . -937) T) ((-687 . -501) 94647) ((-258 . -1293) 94617) ((-257 . -1293) 94587) ((-1107 . -237) T) ((-1195 . -862) T) ((-1139 . -1041) T) ((-1065 . -34) T) ((-848 . -148) 94566) ((-848 . -146) 94545) ((-749 . -107) 94529) ((-624 . -133) T) ((-1197 . -1077) T) ((-494 . -1119) 94281) ((-1193 . -917) 94194) ((-1192 . -917) 94100) ((-1186 . -917) 93861) ((-883 . -464) T) ((-85 . -1236) T) ((-142 . -107) 93843) ((-1145 . -917) 93827) ((-724 . -388) 93811) ((-845 . -628) 93679) ((-1309 . -738) T) ((-1298 . -1077) T) ((-1278 . -102) T) ((-1139 . -557) T) ((-591 . -102) T) ((-130 . -502) 93661) ((-1271 . -102) T) ((-402 . -1075) 93645) ((-1191 . -966) 93614) ((-44 . -296) 93591) ((-130 . -625) 93558) ((-52 . -625) 93540) ((-1144 . -966) 93507) ((-665 . -423) 93491) ((-1250 . -102) T) ((-1177 . -526) NIL) ((-674 . -25) T) ((-633 . -1075) 93475) ((-674 . -21) T) ((-980 . -658) 93385) ((-747 . -658) 93330) ((-727 . -658) 93302) ((-402 . -111) 93281) ((-224 . -261) 93265) ((-1073 . -1072) 93205) ((-1073 . -1119) T) ((-1023 . -1171) T) ((-830 . -1119) T) ((-465 . -658) 93120) ((-647 . -660) 93104) ((-354 . -1240) T) ((-633 . -111) 93083) ((-619 . -660) 93067) ((-608 . -102) T) ((-321 . -502) 93048) ((-598 . -132) T) ((-607 . -102) T) ((-426 . -1119) T) ((-396 . -1119) T) ((-321 . -625) 93014) ((-229 . -1119) 92992) ((-659 . -526) 92925) ((-644 . -526) 92769) ((-845 . -1068) 92748) ((-656 . -152) 92732) ((-354 . -568) T) ((-724 . -915) 92675) ((-562 . -231) 92625) ((-1278 . -294) 92591) ((-1271 . -294) 92557) ((-1099 . -300) 92508) ((-499 . -860) T) ((-225 . -1131) T) ((-1250 . -294) 92474) ((-1230 . -505) 92440) ((-1023 . -38) 92390) ((-219 . -860) T) ((-430 . -658) 92349) ((-931 . -38) 92301) ((-855 . -806) 92280) ((-855 . -803) 92259) ((-855 . -738) 92238) ((-370 . -300) T) ((-364 . -300) T) ((-356 . -300) T) ((-171 . -464) 92169) ((-439 . -38) 92153) ((-225 . -23) T) ((-108 . -300) T) ((-419 . -806) 92132) ((-419 . -803) 92111) ((-419 . -738) T) ((-512 . -298) 92086) ((-489 . -1075) 92051) ((-670 . -132) T) ((-633 . -628) 92020) ((-1132 . -526) 91953) ((-347 . -132) T) ((-171 . -414) 91932) ((-494 . -729) 91874) ((-827 . -296) 91851) ((-489 . -111) 91807) ((-665 . -1077) T) ((-1191 . -909) 91710) ((-1144 . -909) 91692) ((-828 . -1070) 91535) ((-1297 . -1102) T) ((-1259 . -464) 91466) ((-828 . -652) 91315) ((-1296 . -1102) T) ((-1106 . -132) T) ((-1073 . -729) 91257) ((-1046 . -526) 91190) ((-794 . -132) T) ((-792 . -132) T) ((-583 . -464) T) ((-633 . -1068) T) ((-604 . -1119) T) ((-545 . -175) T) ((-473 . -132) T) ((-466 . -132) T) ((-390 . -237) T) ((-1018 . -1236) T) ((-45 . -1119) T) ((-396 . -729) 91160) ((-829 . -1119) T) ((-488 . -526) 91093) ((-475 . -526) 91026) ((-1311 . -628) 91008) ((-465 . -378) 90978) ((-45 . -622) 90957) ((-411 . -1236) T) ((-326 . -312) T) ((-839 . -237) 90936) ((-489 . -628) 90886) ((-1250 . -319) 90771) ((-682 . -625) 90733) ((-59 . -862) 90712) ((-1023 . -412) 90694) ((-560 . -625) 90676) ((-811 . -658) 90635) ((-827 . -616) 90612) ((-528 . -862) 90591) ((-508 . -862) 90570) ((-1018 . -1057) 90466) ((-40 . -1240) T) ((-245 . -917) 90335) ((-50 . -132) T) ((-593 . -132) T) ((-530 . -132) T) ((-304 . -660) 90195) ((-354 . -339) 90172) ((-354 . -374) T) ((-332 . -333) 90149) ((-329 . -296) 90107) ((-40 . -568) T) ((-390 . -1221) T) ((-390 . -1224) T) ((-1054 . -1212) 90082) ((-1208 . -240) 90032) ((-1186 . -232) 89984) ((-1186 . -272) 89936) ((-340 . -1119) T) ((-390 . -95) T) ((-390 . -35) T) ((-1054 . -107) 89882) ((-489 . -1068) T) ((-1310 . -1075) 89866) ((-491 . -240) 89816) ((-1178 . -501) 89750) ((-1301 . -1070) 89734) ((-392 . -1075) 89718) ((-1301 . -652) 89688) ((-489 . -248) T) ((-828 . -102) T) ((-726 . -148) 89667) ((-726 . -146) 89646) ((-496 . -501) 89630) ((-497 . -346) 89599) ((-524 . -1119) T) ((-1310 . -111) 89578) ((-1018 . -388) 89562) ((-425 . -102) T) ((-392 . -111) 89541) ((-1018 . -349) 89525) ((-288 . -1002) 89509) ((-287 . -1002) 89493) ((-1023 . -917) NIL) ((-1308 . -625) 89475) ((-1306 . -625) 89457) ((-110 . -526) NIL) ((-1191 . -1262) 89441) ((-866 . -864) 89425) ((-1197 . -1119) T) ((-103 . -1236) T) ((-969 . -966) 89386) ((-829 . -729) 89328) ((-1250 . -1171) NIL) ((-493 . -966) 89273) ((-1081 . -144) T) ((-60 . -102) 89251) ((-44 . -625) 89233) ((-78 . -625) 89215) ((-362 . -660) 89160) ((-1298 . -1119) T) ((-523 . -862) T) ((-299 . -296) 89139) ((-354 . -1131) T) ((-305 . -1119) T) ((-1018 . -915) 89098) ((-305 . -622) 89077) ((-1310 . -628) 89026) ((-1278 . -38) 88923) ((-1271 . -38) 88764) ((-1250 . -38) 88560) ((-499 . -1077) T) ((-392 . -628) 88544) ((-219 . -1077) T) ((-354 . -23) T) ((-153 . -625) 88526) ((-845 . -807) 88505) ((-845 . -804) 88484) ((-1235 . -628) 88465) ((-608 . -38) 88438) ((-607 . -38) 88335) ((-882 . -568) T) ((-225 . -132) T) ((-329 . -1021) 88301) ((-79 . -625) 88283) ((-724 . -317) 88262) ((-304 . -738) 88164) ((-836 . -102) T) ((-876 . -856) T) ((-304 . -485) 88143) ((-1301 . -102) T) ((-40 . -374) T) ((-884 . -148) 88122) ((-497 . -658) 88104) ((-884 . -146) 88083) ((-1177 . -501) 88065) ((-1310 . -1068) T) ((-494 . -526) 87998) ((-1165 . -1236) T) ((-981 . -625) 87980) ((-659 . -501) 87964) ((-644 . -501) 87895) ((-827 . -625) 87588) ((-48 . -27) T) ((-1197 . -729) 87485) ((-969 . -909) 87464) ((-665 . -1119) T) ((-873 . -872) T) ((-448 . -375) 87438) ((-743 . -658) 87348) ((-493 . -909) 87323) ((-1121 . -102) T) ((-989 . -1119) T) ((-876 . -1119) T) ((-828 . -319) 87310) ((-545 . -539) T) ((-545 . -588) T) ((-1306 . -393) 87282) ((-1073 . -526) 87215) ((-1178 . -296) 87191) ((-245 . -232) 87160) ((-245 . -272) 87129) ((-258 . -1070) 87030) ((-257 . -1070) 86931) ((-1298 . -729) 86901) ((-1185 . -93) T) ((-1013 . -93) T) ((-829 . -174) 86880) ((-258 . -652) 86802) ((-257 . -652) 86724) ((-1233 . -502) 86701) ((-229 . -526) 86634) ((-633 . -807) 86613) ((-633 . -804) 86592) ((-1233 . -625) 86504) ((-224 . -1236) T) ((-687 . -625) 86436) ((-1193 . -658) 86346) ((-1176 . -1029) 86330) ((-960 . -102) 86280) ((-362 . -738) T) ((-873 . -625) 86262) ((-1192 . -658) 86144) ((-1186 . -658) 85981) ((-1145 . -658) 85891) ((-1250 . -412) 85843) ((-1132 . -501) 85827) ((-60 . -319) 85765) ((-341 . -102) T) ((-1230 . -21) T) ((-1230 . -25) T) ((-40 . -1131) T) ((-723 . -21) T) ((-639 . -625) 85747) ((-527 . -333) 85726) ((-723 . -25) T) ((-451 . -102) T) ((-108 . -296) NIL) ((-938 . -1131) T) ((-40 . -23) T) ((-783 . -1131) T) ((-576 . -1240) T) ((-507 . -1240) T) ((-1023 . -272) 85708) ((-329 . -625) 85690) ((-1023 . -232) 85672) ((-171 . -167) 85656) ((-592 . -568) T) ((-576 . -568) T) ((-507 . -568) T) ((-783 . -23) T) ((-1270 . -148) 85635) ((-1178 . -616) 85611) ((-1270 . -146) 85590) ((-1046 . -501) 85574) ((-1249 . -146) 85499) ((-1249 . -148) 85424) ((-1301 . -1307) 85403) ((-883 . -909) NIL) ((-488 . -501) 85387) ((-475 . -501) 85371) ((-535 . -34) T) ((-665 . -729) 85341) ((-1278 . -917) 85254) ((-1271 . -917) 85160) ((-1250 . -917) 84921) ((-112 . -986) T) ((-1197 . -174) 84872) ((-674 . -862) 84851) ((-376 . -102) T) ((-607 . -917) 84764) ((-245 . -243) 84743) ((-258 . -102) T) ((-257 . -102) T) ((-1259 . -966) 84712) ((-250 . -862) 84691) ((-828 . -38) 84540) ((-45 . -526) 84332) ((-1177 . -296) 84282) ((-216 . -1119) T) ((-1169 . -1119) T) ((-884 . -237) 84233) ((-1169 . -622) 84212) ((-598 . -25) T) ((-598 . -21) T) ((-1121 . -319) 84150) ((-980 . -423) 84134) ((-711 . -1240) T) ((-644 . -296) 84087) ((-1106 . -651) 84035) ((-922 . -1119) T) ((-794 . -651) 83983) ((-792 . -651) 83931) ((-354 . -132) T) ((-299 . -625) 83913) ((-882 . -1131) T) ((-711 . -568) T) ((-130 . -628) 83895) ((-466 . -651) 83843) ((-171 . -909) 83764) ((-922 . -920) 83748) ((-390 . -464) T) ((-499 . -1119) T) ((-960 . -319) 83686) ((-713 . -660) 83658) ((-561 . -856) T) ((-219 . -1119) T) ((-326 . -937) 83637) ((-323 . -937) T) ((-323 . -832) NIL) ((-402 . -732) T) ((-882 . -23) T) ((-117 . -660) 83624) ((-486 . -146) 83603) ((-430 . -423) 83587) ((-486 . -148) 83566) ((-110 . -501) 83548) ((-321 . -628) 83529) ((-2 . -625) 83511) ((-188 . -102) T) ((-1177 . -19) 83493) ((-1177 . -616) 83468) ((-670 . -21) T) ((-670 . -25) T) ((-605 . -1163) T) ((-1132 . -296) 83445) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -658) 83224) ((-507 . -374) T) ((-1308 . -1075) 83208) ((-1306 . -1075) 83192) ((-1301 . -38) 83162) ((-1270 . -1221) 83128) ((-1259 . -909) 83031) ((-1191 . -1070) 82854) ((-1161 . -1236) T) ((-1144 . -1070) 82697) ((-866 . -1070) 82681) ((-644 . -616) 82656) ((-1270 . -1224) 82622) ((-1270 . -95) 82588) ((-1270 . -237) 82540) ((-1191 . -652) 82369) ((-1144 . -652) 82218) ((-866 . -652) 82188) ((-1253 . -102) 82166) ((-1250 . -232) 82118) ((-561 . -1119) T) ((-1106 . -25) T) ((-1106 . -21) T) ((-543 . -804) T) ((-543 . -807) T) ((-118 . -1240) T) ((-980 . -1077) T) ((-635 . -568) T) ((-794 . -25) T) ((-794 . -21) T) ((-792 . -21) T) ((-792 . -25) T) ((-747 . -1077) T) ((-727 . -1077) T) ((-682 . -1075) 82102) ((-529 . -1102) T) ((-473 . -25) T) ((-118 . -568) T) ((-473 . -21) T) ((-466 . -25) T) ((-466 . -21) T) ((-1250 . -272) 82054) ((-1170 . -93) T) ((-1161 . -1057) 81950) ((-829 . -300) 81929) ((-1249 . -1221) 81895) ((-835 . -1119) T) ((-983 . -986) T) ((-682 . -111) 81874) ((-629 . -1236) T) ((-305 . -526) 81666) ((-1249 . -1224) 81632) ((-1249 . -237) 81491) ((-1244 . -379) T) ((-258 . -319) 81429) ((-257 . -319) 81367) ((-1241 . -856) T) ((-1178 . -626) NIL) ((-1178 . -625) 81349) ((-1161 . -388) 81333) ((-1139 . -832) T) ((-1139 . -937) T) ((-96 . -93) T) ((-1132 . -616) 81310) ((-1099 . -626) 81294) ((-1099 . -625) 81276) ((-1023 . -658) 81226) ((-931 . -658) 81163) ((-827 . -298) 81140) ((-496 . -625) 81072) ((-620 . -152) 81019) ((-499 . -729) 80969) ((-430 . -1077) T) ((-494 . -501) 80953) ((-439 . -658) 80912) ((-337 . -862) 80891) ((-350 . -660) 80865) ((-50 . -21) T) ((-50 . -25) T) ((-219 . -729) 80815) ((-171 . -736) 80786) ((-176 . -660) 80718) ((-593 . -21) T) ((-593 . -25) T) ((-530 . -25) T) ((-530 . -21) T) ((-487 . -152) 80668) ((-1080 . -625) 80650) ((-1012 . -102) T) ((-874 . -102) T) ((-828 . -917) 80550) ((-811 . -423) 80513) ((-40 . -132) T) ((-711 . -374) T) ((-713 . -738) T) ((-713 . -806) T) ((-713 . -803) T) ((-214 . -910) T) ((-592 . -1131) T) ((-576 . -1131) T) ((-507 . -1131) T) ((-370 . -625) 80495) ((-364 . -625) 80477) ((-356 . -625) 80459) ((-66 . -408) T) ((-66 . -407) T) ((-108 . -626) 80389) ((-108 . -625) 80331) ((-213 . -910) T) ((-975 . -152) 80315) ((-783 . -132) T) ((-682 . -628) 80233) ((-135 . -738) T) ((-117 . -738) T) ((-1270 . -35) 80199) ((-1073 . -501) 80183) ((-592 . -23) T) ((-576 . -23) T) ((-507 . -23) T) ((-1249 . -95) 80149) ((-1249 . -35) 80115) ((-1191 . -102) T) ((-1144 . -102) T) ((-866 . -102) T) ((-229 . -501) 80099) ((-1308 . -111) 80078) ((-1306 . -111) 80057) ((-44 . -1075) 80041) ((-1308 . -628) 79987) ((-1308 . -1068) T) ((-1259 . -1262) 79971) ((-867 . -864) 79955) ((-1197 . -300) 79934) ((-1123 . -1236) T) ((-110 . -296) 79884) ((-1022 . -1236) T) ((-129 . -152) 79866) ((-1161 . -915) 79825) ((-44 . -111) 79804) ((-1306 . -628) 79733) ((-1241 . -1119) T) ((-1200 . -1281) T) ((-1185 . -502) 79714) ((-682 . -1068) T) ((-1185 . -625) 79680) ((-1177 . -625) 79662) ((-486 . -237) 79614) ((-1082 . -622) 79589) ((-1013 . -502) 79570) ((-74 . -453) T) ((-74 . -407) T) ((-1082 . -1119) T) ((-153 . -1075) 79554) ((-1013 . -625) 79520) ((-682 . -238) 79499) ((-583 . -566) 79483) ((-366 . -148) 79462) ((-366 . -146) 79413) ((-363 . -148) 79392) ((-363 . -146) 79343) ((-355 . -148) 79322) ((-355 . -146) 79273) ((-273 . -146) 79252) ((-273 . -148) 79231) ((-253 . -148) 79210) ((-118 . -374) T) ((-253 . -146) 79189) ((-1177 . -626) NIL) ((-153 . -111) 79168) ((-1022 . -1057) 79056) ((-1186 . -860) NIL) ((-706 . -1240) T) ((-811 . -1077) T) ((-711 . -1131) T) ((-1306 . -1068) T) ((-1176 . -1236) T) ((-1022 . -388) 79033) ((-927 . -146) T) ((-927 . -148) 79015) ((-882 . -132) T) ((-827 . -1075) 78936) ((-711 . -23) T) ((-706 . -568) T) ((-227 . -1070) 78901) ((-659 . -625) 78833) ((-659 . -626) 78794) ((-644 . -626) NIL) ((-644 . -625) 78776) ((-499 . -174) T) ((-227 . -652) 78741) ((-225 . -21) T) ((-219 . -174) T) ((-225 . -25) T) ((-486 . -1224) 78707) ((-486 . -1221) 78673) ((-283 . -625) 78655) ((-282 . -625) 78637) ((-281 . -625) 78619) ((-280 . -625) 78601) ((-279 . -625) 78583) ((-512 . -663) 78565) ((-278 . -625) 78547) ((-350 . -738) T) ((-277 . -625) 78529) ((-110 . -19) 78511) ((-176 . -738) T) ((-512 . -384) 78493) ((-214 . -625) 78475) ((-532 . -1168) 78459) ((-512 . -124) T) ((-110 . -616) 78434) ((-213 . -625) 78416) ((-486 . -35) 78382) ((-486 . -95) 78348) ((-211 . -625) 78330) ((-210 . -625) 78312) ((-209 . -625) 78294) ((-208 . -625) 78276) ((-205 . -625) 78258) ((-204 . -625) 78240) ((-203 . -625) 78222) ((-202 . -625) 78204) ((-201 . -625) 78186) ((-200 . -625) 78168) ((-199 . -625) 78150) ((-548 . -1122) 78102) ((-198 . -625) 78084) ((-197 . -625) 78066) ((-45 . -501) 78003) ((-196 . -625) 77985) ((-195 . -625) 77967) ((-153 . -628) 77936) ((-1134 . -102) T) ((-827 . -111) 77852) ((-656 . -102) 77802) ((-494 . -296) 77779) ((-1309 . -1057) 77763) ((-1132 . -625) 77456) ((-1120 . -1119) T) ((-1065 . -1236) T) ((-1191 . -319) 77443) ((-1081 . -1070) 77430) ((-1154 . -1119) T) ((-969 . -1070) 77273) ((-1144 . -319) 77260) ((-1115 . -1102) T) ((-635 . -1131) T) ((-1081 . -652) 77247) ((-1109 . -1102) T) ((-969 . -652) 77096) ((-1106 . -234) 77041) ((-493 . -1070) 76884) ((-1092 . -1102) T) ((-1085 . -1102) T) ((-1055 . -1102) T) ((-1038 . -1102) T) ((-118 . -1131) T) ((-493 . -652) 76733) ((-794 . -234) 76720) ((-831 . -102) T) ((-638 . -1102) T) ((-635 . -23) T) ((-1169 . -526) 76512) ((-495 . -1102) T) ((-398 . -102) T) ((-334 . -102) T) ((-220 . -1102) T) ((-980 . -1119) T) ((-153 . -1068) T) ((-743 . -423) 76496) ((-118 . -23) T) ((-1022 . -915) 76448) ((-747 . -1119) T) ((-727 . -1119) T) ((-1278 . -658) 76358) ((-465 . -1119) T) ((-419 . -1236) T) ((-326 . -442) 76342) ((-604 . -93) T) ((-1271 . -658) 76224) ((-1046 . -626) 76185) ((-1043 . -1240) T) ((-227 . -102) T) ((-1046 . -625) 76147) ((-828 . -272) 76131) ((-828 . -232) 76115) ((-827 . -628) 75913) ((-1250 . -658) 75750) ((-1043 . -568) T) ((-845 . -660) 75723) ((-365 . -1240) T) ((-488 . -625) 75685) ((-488 . -626) 75646) ((-475 . -626) 75607) ((-475 . -625) 75569) ((-608 . -658) 75528) ((-419 . -897) 75512) ((-329 . -1075) 75347) ((-419 . -899) 75272) ((-607 . -658) 75182) ((-855 . -1057) 75078) ((-499 . -526) NIL) ((-494 . -616) 75055) ((-593 . -234) 75042) ((-365 . -568) T) ((-530 . -234) 75029) ((-219 . -526) NIL) ((-884 . -464) T) ((-430 . -1119) T) ((-419 . -1057) 74893) ((-329 . -111) 74714) ((-706 . -374) T) ((-227 . -294) T) ((-1233 . -628) 74691) ((-48 . -1240) T) ((-1191 . -1171) 74669) ((-1178 . -298) 74645) ((-1081 . -102) T) ((-969 . -102) T) ((-827 . -1068) 74623) ((-592 . -132) T) ((-576 . -132) T) ((-507 . -132) T) ((-366 . -237) 74602) ((-363 . -237) 74581) ((-355 . -237) 74560) ((-48 . -568) T) ((-883 . -1070) 74505) ((-273 . -237) 74456) ((-827 . -238) 74408) ((-326 . -27) 74387) ((-258 . -917) 74256) ((-257 . -917) 74125) ((-255 . -847) 74107) ((-189 . -847) 74089) ((-725 . -102) T) ((-305 . -501) 74026) ((-883 . -652) 73971) ((-493 . -102) T) ((-743 . -1077) T) ((-624 . -625) 73953) ((-624 . -626) 73814) ((-419 . -388) 73798) ((-419 . -349) 73782) ((-1191 . -38) 73611) ((-1144 . -38) 73460) ((-329 . -628) 73286) ((-927 . -237) T) ((-647 . -1236) 73260) ((-619 . -1236) 73234) ((-866 . -38) 73204) ((-402 . -660) 73188) ((-656 . -319) 73126) ((-1170 . -502) 73107) ((-1170 . -625) 73073) ((-980 . -729) 72970) ((-747 . -729) 72940) ((-224 . -107) 72924) ((-45 . -296) 72824) ((-633 . -660) 72798) ((-322 . -1119) T) ((-299 . -1075) 72785) ((-110 . -625) 72767) ((-110 . -626) 72749) ((-465 . -729) 72719) ((-828 . -260) 72658) ((-701 . -1119) 72636) ((-562 . -1119) T) ((-1193 . -1077) T) ((-1192 . -1077) T) ((-96 . -502) 72617) ((-1186 . -1077) T) ((-299 . -111) 72602) ((-1145 . -1077) T) ((-562 . -622) 72581) ((-96 . -625) 72547) ((-1023 . -860) T) ((-229 . -699) 72505) ((-706 . -1131) T) ((-1230 . -752) 72481) ((-1043 . -374) T) ((-850 . -847) 72463) ((-845 . -806) 72442) ((-419 . -915) 72401) ((-329 . -1068) T) ((-354 . -25) T) ((-354 . -21) T) ((-171 . -1070) 72311) ((-68 . -1236) T) ((-845 . -803) 72290) ((-430 . -729) 72264) ((-811 . -1119) T) ((-724 . -937) 72243) ((-711 . -132) T) ((-171 . -652) 72071) ((-706 . -23) T) ((-499 . -300) T) ((-845 . -738) 72050) ((-329 . -238) 72002) ((-329 . -248) 71981) ((-219 . -300) T) ((-130 . -379) T) ((-1270 . -464) 71960) ((-1249 . -464) 71939) ((-365 . -339) 71916) ((-365 . -374) T) ((-1159 . -625) 71898) ((-45 . -1274) 71848) ((-883 . -102) T) ((-656 . -292) 71832) ((-711 . -1079) T) ((-1297 . -102) T) ((-1296 . -102) T) ((-489 . -660) 71797) ((-480 . -1119) T) ((-45 . -616) 71722) ((-1177 . -298) 71697) ((-299 . -628) 71669) ((-40 . -651) 71608) ((-1259 . -1070) 71431) ((-867 . -1070) 71415) ((-48 . -374) T) ((-1125 . -625) 71397) ((-1259 . -652) 71226) ((-867 . -652) 71196) ((-644 . -298) 71171) ((-828 . -658) 71081) ((-583 . -1070) 71068) ((-494 . -625) 70761) ((-245 . -423) 70730) ((-969 . -319) 70717) ((-583 . -652) 70704) ((-65 . -1236) T) ((-1191 . -917) 70611) ((-1184 . -1119) T) ((-1082 . -526) 70455) ((-683 . -1119) T) ((-635 . -132) T) ((-493 . -319) 70442) ((-618 . -1119) T) ((-558 . -102) T) ((-118 . -132) T) ((-299 . -1068) T) ((-182 . -1119) T) ((-162 . -1119) T) ((-157 . -1119) T) ((-155 . -1119) T) ((-465 . -773) T) ((-31 . -1102) T) ((-980 . -174) 70393) ((-1144 . -917) 70377) ((-989 . -93) T) ((-1132 . -298) 70354) ((-1099 . -1075) 70264) ((-633 . -806) 70243) ((-605 . -1119) T) ((-633 . -803) 70222) ((-633 . -738) T) ((-305 . -296) 70201) ((-304 . -1236) T) ((-1073 . -625) 70163) ((-1073 . -626) 70124) ((-1043 . -1131) T) ((-171 . -102) T) ((-284 . -862) T) ((-1121 . -231) 70108) ((-830 . -625) 70090) ((-1099 . -111) 69986) ((-1043 . -23) T) ((-1022 . -317) T) ((-811 . -729) 69970) ((-370 . -1075) 69922) ((-365 . -1131) T) ((-364 . -1075) 69874) ((-426 . -625) 69856) ((-396 . -625) 69838) ((-356 . -1075) 69790) ((-229 . -625) 69722) ((-913 . -102) T) ((-853 . -102) T) ((-108 . -1075) 69672) ((-820 . -102) T) ((-781 . -102) T) ((-689 . -102) T) ((-486 . -464) 69651) ((-430 . -174) T) ((-370 . -111) 69589) ((-364 . -111) 69527) ((-356 . -111) 69465) ((-258 . -272) 69434) ((-258 . -232) 69403) ((-257 . -272) 69372) ((-257 . -232) 69341) ((-365 . -23) T) ((-71 . -1236) T) ((-227 . -38) 69306) ((-108 . -111) 69240) ((-40 . -25) T) ((-40 . -21) T) ((-682 . -732) T) ((-171 . -294) 69218) ((-48 . -1131) T) ((-938 . -25) T) ((-783 . -25) T) ((-1310 . -660) 69192) ((-1169 . -501) 69129) ((-497 . -1119) T) ((-1301 . -658) 69088) ((-1259 . -102) T) ((-1081 . -1171) T) ((-867 . -102) T) ((-245 . -1077) 69066) ((-981 . -804) 69019) ((-981 . -807) 68972) ((-392 . -660) 68956) ((-48 . -23) T) ((-827 . -807) 68935) ((-827 . -804) 68914) ((-560 . -379) T) ((-305 . -616) 68893) ((-489 . -738) T) ((-583 . -102) T) ((-1099 . -628) 68711) ((-255 . -187) T) ((-189 . -187) T) ((-883 . -319) 68668) ((-665 . -296) 68647) ((-112 . -673) T) ((-362 . -1236) T) ((-370 . -628) 68584) ((-364 . -628) 68521) ((-356 . -628) 68458) ((-76 . -1236) T) ((-108 . -628) 68408) ((-112 . -113) T) ((-1081 . -38) 68395) ((-676 . -385) 68374) ((-969 . -38) 68223) ((-743 . -1119) T) ((-493 . -38) 68072) ((-86 . -1236) T) ((-604 . -502) 68053) ((-1250 . -860) NIL) ((-583 . -294) T) ((-1193 . -1119) T) ((-604 . -625) 68019) ((-1192 . -1119) T) ((-1186 . -1119) T) ((-1099 . -1068) T) ((-362 . -1057) 67996) ((-829 . -502) 67980) ((-1023 . -1077) T) ((-45 . -625) 67962) ((-45 . -626) NIL) ((-931 . -1077) T) ((-829 . -625) 67931) ((-1166 . -102) 67909) ((-1099 . -248) 67860) ((-439 . -1077) T) ((-370 . -1068) T) ((-364 . -1068) T) ((-376 . -375) 67837) ((-356 . -1068) T) ((-354 . -234) 67824) ((-258 . -243) 67803) ((-257 . -243) 67782) ((-1099 . -238) 67707) ((-1145 . -1119) T) ((-304 . -915) 67666) ((-108 . -1068) T) ((-706 . -132) T) ((-430 . -526) 67508) ((-370 . -238) 67487) ((-370 . -248) T) ((-44 . -732) T) ((-364 . -238) 67466) ((-364 . -248) T) ((-356 . -238) 67445) ((-356 . -248) T) ((-1185 . -628) 67426) ((-171 . -319) 67391) ((-108 . -248) T) ((-108 . -238) T) ((-1013 . -628) 67372) ((-329 . -804) T) ((-882 . -21) T) ((-882 . -25) T) ((-419 . -317) T) ((-512 . -34) T) ((-110 . -298) 67347) ((-1132 . -1075) 67268) ((-883 . -1171) NIL) ((-340 . -625) 67250) ((-419 . -1041) 67228) ((-1132 . -111) 67144) ((-703 . -1281) T) ((-448 . -1119) T) ((-256 . -1119) T) ((-1310 . -738) T) ((-63 . -625) 67126) ((-883 . -38) 67071) ((-535 . -1236) T) ((-614 . -152) 67055) ((-524 . -625) 67037) ((-1259 . -319) 67024) ((-743 . -729) 66873) ((-543 . -805) T) ((-543 . -806) T) ((-576 . -651) 66855) ((-507 . -651) 66815) ((-366 . -464) T) ((-363 . -464) T) ((-355 . -464) T) ((-273 . -464) 66766) ((-537 . -1119) T) ((-532 . -1119) 66716) ((-253 . -464) 66667) ((-1169 . -296) 66646) ((-1197 . -625) 66628) ((-701 . -526) 66561) ((-980 . -300) 66540) ((-562 . -526) 66332) ((-258 . -658) 66180) ((-257 . -658) 66015) ((-1298 . -625) 65984) ((-1298 . -502) 65968) ((-1193 . -729) 65865) ((-1191 . -272) 65849) ((-1191 . -232) 65833) ((-1132 . -628) 65631) ((-171 . -1171) 65610) ((-1192 . -729) 65451) ((-1186 . -729) 65247) ((-983 . -113) T) ((-905 . -102) T) ((-1176 . -686) 65231) ((-1145 . -729) 65128) ((-1043 . -132) T) ((-366 . -414) 65079) ((-363 . -414) 65030) ((-355 . -414) 64981) ((-981 . -379) 64934) ((-811 . -526) 64846) ((-305 . -626) NIL) ((-305 . -625) 64828) ((-927 . -464) T) ((-922 . -296) 64807) ((-827 . -379) 64786) ((-522 . -521) 64765) ((-520 . -521) 64744) ((-884 . -909) 64665) ((-499 . -296) NIL) ((-494 . -298) 64642) ((-430 . -300) T) ((-365 . -132) T) ((-219 . -296) NIL) ((-706 . -505) NIL) ((-99 . -1131) T) ((-40 . -234) 64573) ((-171 . -38) 64401) ((-969 . -917) 64382) ((-1270 . -992) 64344) ((-1166 . -319) 64282) ((-493 . -917) 64259) ((-1249 . -992) 64228) ((-927 . -414) T) ((-1132 . -1068) 64206) ((-1272 . -568) T) ((-1169 . -616) 64185) ((-112 . -862) T) ((-1082 . -501) 64116) ((-592 . -21) T) ((-592 . -25) T) ((-576 . -21) T) ((-576 . -25) T) ((-507 . -25) T) ((-507 . -21) T) ((-1259 . -1171) 64094) ((-1132 . -238) 64046) ((-48 . -132) T) ((-1217 . -102) T) ((-245 . -1119) 63798) ((-883 . -412) 63775) ((-1107 . -102) T) ((-1095 . -102) T) ((-620 . -102) T) ((-487 . -102) T) ((-1259 . -38) 63604) ((-867 . -38) 63574) ((-1053 . -1070) 63548) ((-743 . -174) 63459) ((-665 . -625) 63441) ((-657 . -1102) T) ((-1053 . -652) 63425) ((-583 . -38) 63412) ((-989 . -502) 63393) ((-989 . -625) 63359) ((-975 . -102) 63309) ((-876 . -625) 63291) ((-876 . -626) 63213) ((-605 . -526) NIL) ((-1315 . -1131) T) ((-1278 . -1077) T) ((-1271 . -1077) T) ((-1270 . -909) 63117) ((-332 . -1070) 63099) ((-1250 . -1077) T) ((-1249 . -909) 62894) ((-1230 . -148) 62873) ((-1230 . -146) 62852) ((-1203 . -102) T) ((-332 . -652) 62834) ((-713 . -1236) T) ((-1202 . -102) T) ((-1201 . -102) T) ((-1193 . -174) 62785) ((-1192 . -174) 62716) ((-608 . -1077) T) ((-607 . -1077) T) ((-1186 . -174) 62647) ((-1170 . -628) 62628) ((-390 . -1070) 62593) ((-1145 . -174) 62544) ((-1023 . -1119) T) ((-990 . -1119) T) ((-931 . -1119) T) ((-883 . -917) NIL) ((-390 . -652) 62509) ((-811 . -809) 62493) ((-711 . -25) T) ((-711 . -21) T) ((-118 . -651) 62470) ((-713 . -899) 62452) ((-439 . -1119) T) ((-326 . -1240) 62431) ((-323 . -1240) T) ((-171 . -412) 62415) ((-848 . -1070) 62385) ((-486 . -992) 62347) ((-131 . -102) T) ((-129 . -102) T) ((-72 . -625) 62329) ((-839 . -1070) 62313) ((-108 . -807) T) ((-108 . -804) T) ((-713 . -1057) 62295) ((-326 . -568) 62274) ((-323 . -568) T) ((-848 . -652) 62244) ((-839 . -652) 62214) ((-1315 . -23) T) ((-135 . -1057) 62196) ((-96 . -628) 62177) ((-1012 . -658) 62159) ((-494 . -1075) 62080) ((-45 . -298) 62005) ((-245 . -729) 61947) ((-529 . -102) T) ((-494 . -111) 61863) ((-1111 . -102) 61833) ((-1053 . -102) T) ((-1191 . -658) 61743) ((-1144 . -658) 61653) ((-866 . -658) 61612) ((-656 . -840) 61591) ((-743 . -526) 61534) ((-1073 . -1075) 61518) ((-171 . -917) 61441) ((-1154 . -93) T) ((-1082 . -296) 61416) ((-635 . -21) T) ((-635 . -25) T) ((-536 . -1119) T) ((-682 . -660) 61354) ((-372 . -102) T) ((-332 . -102) T) ((-396 . -1075) 61338) ((-1073 . -111) 61317) ((-828 . -423) 61301) ((-118 . -25) T) ((-89 . -625) 61283) ((-118 . -21) T) ((-620 . -319) 61078) ((-487 . -319) 60882) ((-1169 . -626) NIL) ((-350 . -1236) T) ((-396 . -111) 60861) ((-390 . -102) T) ((-216 . -625) 60843) ((-1169 . -625) 60825) ((-1186 . -526) 60594) ((-1023 . -729) 60544) ((-1145 . -526) 60514) ((-931 . -729) 60466) ((-494 . -628) 60264) ((-362 . -317) T) ((-1208 . -152) 60214) ((-486 . -909) 60095) ((-975 . -319) 60033) ((-848 . -102) T) ((-439 . -729) 60017) ((-227 . -840) T) ((-839 . -102) T) ((-837 . -102) T) ((-1308 . -660) 59991) ((-1270 . -1269) 59970) ((-491 . -152) 59920) ((-1270 . -1264) 59890) ((-1139 . -1240) T) ((-350 . -1057) 59857) ((-1270 . -1267) 59841) ((-1259 . -917) 59748) ((-1249 . -1248) 59727) ((-80 . -625) 59709) ((-922 . -625) 59691) ((-1249 . -1264) 59668) ((-1139 . -568) T) ((-938 . -862) T) ((-783 . -862) T) ((-684 . -862) T) ((-499 . -626) 59598) ((-499 . -625) 59539) ((-390 . -294) T) ((-1249 . -1246) 59523) ((-1272 . -1131) T) ((-219 . -626) 59453) ((-219 . -625) 59394) ((-1082 . -616) 59369) ((-830 . -628) 59353) ((-576 . -234) 59340) ((-528 . -152) 59324) ((-59 . -152) 59308) ((-508 . -152) 59292) ((-507 . -234) 59279) ((-370 . -1305) 59263) ((-364 . -1305) 59247) ((-356 . -1305) 59231) ((-326 . -374) 59210) ((-323 . -374) T) ((-494 . -1068) 59188) ((-706 . -651) 59170) ((-1306 . -660) 59144) ((-129 . -319) NIL) ((-1272 . -23) T) ((-701 . -501) 59128) ((-64 . -625) 59110) ((-1132 . -807) 59089) ((-1132 . -804) 59068) ((-562 . -501) 59005) ((-682 . -34) T) ((-494 . -238) 58957) ((-305 . -298) 58936) ((-828 . -1077) T) ((-44 . -660) 58894) ((-1099 . -379) 58845) ((-743 . -300) 58776) ((-532 . -526) 58709) ((-829 . -1075) 58660) ((-1106 . -146) 58639) ((-561 . -625) 58621) ((-370 . -379) 58600) ((-364 . -379) 58579) ((-356 . -379) 58558) ((-1106 . -148) 58537) ((-985 . -1236) T) ((-883 . -272) 58514) ((-883 . -232) 58491) ((-829 . -111) 58433) ((-794 . -146) 58412) ((-273 . -966) 58379) ((-253 . -966) 58324) ((-794 . -148) 58303) ((-792 . -146) 58282) ((-792 . -148) 58261) ((-153 . -660) 58235) ((-591 . -1119) T) ((-465 . -296) 58198) ((-466 . -148) 58177) ((-466 . -146) 58156) ((-682 . -738) T) ((-835 . -625) 58138) ((-1278 . -1119) T) ((-1271 . -1119) T) ((-1250 . -1119) T) ((-1230 . -1224) 58104) ((-1230 . -1221) 58070) ((-1193 . -300) 58049) ((-1192 . -300) 58000) ((-1186 . -300) 57951) ((-1145 . -300) 57930) ((-350 . -915) 57911) ((-1023 . -174) T) ((-931 . -174) T) ((-706 . -21) T) ((-706 . -25) T) ((-227 . -658) 57861) ((-608 . -1119) T) ((-607 . -1119) T) ((-486 . -1267) 57845) ((-486 . -1264) 57815) ((-430 . -296) 57743) ((-559 . -862) T) ((-326 . -1131) 57592) ((-323 . -1131) T) ((-1230 . -35) 57558) ((-1230 . -95) 57524) ((-84 . -625) 57506) ((-91 . -102) 57484) ((-1315 . -132) T) ((-726 . -1070) 57454) ((-604 . -628) 57435) ((-593 . -146) T) ((-593 . -148) 57417) ((-530 . -148) 57399) ((-530 . -146) T) ((-726 . -652) 57369) ((-326 . -23) 57221) ((-40 . -353) 57195) ((-323 . -23) T) ((-829 . -628) 57109) ((-1177 . -663) 57091) ((-1301 . -1077) T) ((-1177 . -384) 57073) ((-1115 . -102) T) ((-827 . -660) 56906) ((-1109 . -102) T) ((-1092 . -102) T) ((-171 . -272) 56890) ((-171 . -232) 56874) ((-1085 . -102) T) ((-1055 . -102) T) ((-1038 . -102) T) ((-605 . -501) 56856) ((-638 . -102) T) ((-245 . -526) 56789) ((-495 . -102) T) ((-1308 . -738) T) ((-1306 . -738) T) ((-220 . -102) T) ((-1197 . -1075) 56672) ((-1081 . -658) 56644) ((-969 . -658) 56554) ((-1197 . -111) 56423) ((-888 . -1102) T) ((-873 . -175) T) ((-493 . -658) 56333) ((-273 . -909) 56239) ((-253 . -909) 56214) ((-829 . -1068) T) ((-693 . -1102) T) ((-688 . -1102) T) ((-635 . -234) 56159) ((-527 . -102) T) ((-522 . -102) T) ((-48 . -651) 56119) ((-520 . -102) T) ((-490 . -1102) T) ((-1298 . -1075) 56089) ((-118 . -234) NIL) ((-139 . -1102) T) ((-138 . -1102) T) ((-134 . -1102) T) ((-1053 . -38) 56073) ((-829 . -238) T) ((-829 . -248) 56052) ((-1298 . -111) 56017) ((-1278 . -729) 55914) ((-1271 . -729) 55755) ((-1259 . -272) 55739) ((-562 . -296) 55718) ((-1259 . -232) 55702) ((-1241 . -625) 55684) ((-618 . -93) T) ((-1082 . -626) NIL) ((-1082 . -625) 55666) ((-683 . -93) T) ((-182 . -93) T) ((-162 . -93) T) ((-157 . -93) T) ((-155 . -93) T) ((-1250 . -729) 55462) ((-1022 . -937) T) ((-153 . -738) T) ((-1197 . -628) 55315) ((-1132 . -379) 55294) ((-1043 . -25) T) ((-1023 . -526) NIL) ((-258 . -423) 55263) ((-257 . -423) 55232) ((-1043 . -21) T) ((-884 . -1070) 55184) ((-608 . -729) 55157) ((-607 . -729) 55054) ((-811 . -296) 55012) ((-127 . -102) 54990) ((-845 . -1057) 54886) ((-171 . -840) 54865) ((-329 . -660) 54762) ((-827 . -34) T) ((-726 . -102) T) ((-1139 . -1131) T) ((-1045 . -1236) T) ((-884 . -652) 54714) ((-390 . -38) 54679) ((-365 . -25) T) ((-365 . -21) T) ((-189 . -102) T) ((-163 . -102) T) ((-255 . -102) T) ((-158 . -102) T) ((-366 . -1293) 54663) ((-363 . -1293) 54647) ((-355 . -1293) 54631) ((-171 . -360) 54610) ((-576 . -862) T) ((-1106 . -237) 54561) ((-1139 . -23) T) ((-87 . -625) 54543) ((-794 . -237) T) ((-713 . -317) T) ((-848 . -38) 54513) ((-839 . -38) 54483) ((-1298 . -628) 54425) ((-1272 . -132) T) ((-1169 . -298) 54404) ((-981 . -738) 54303) ((-981 . -805) 54256) ((-981 . -806) 54209) ((-117 . -317) T) ((-91 . -319) 54147) ((-687 . -34) T) ((-562 . -616) 54126) ((-48 . -25) T) ((-48 . -21) T) ((-827 . -806) 54105) ((-827 . -805) 54084) ((-713 . -1041) T) ((-665 . -1075) 54068) ((-883 . -658) 53998) ((-827 . -738) 53976) ((-981 . -485) 53929) ((-494 . -807) 53908) ((-494 . -804) 53887) ((-927 . -1293) 53874) ((-1197 . -1068) T) ((-665 . -111) 53853) ((-1197 . -336) 53830) ((-1222 . -102) 53808) ((-1120 . -625) 53790) ((-713 . -557) T) ((-828 . -1119) T) ((-593 . -237) T) ((-530 . -237) T) ((-1298 . -1068) T) ((-1154 . -502) 53771) ((-1242 . -102) T) ((-425 . -1119) T) ((-1154 . -625) 53737) ((-258 . -1077) 53715) ((-257 . -1077) 53693) ((-850 . -102) T) ((-299 . -660) 53680) ((-605 . -296) 53630) ((-701 . -699) 53588) ((-980 . -625) 53570) ((-884 . -102) T) ((-747 . -625) 53552) ((-727 . -625) 53534) ((-1278 . -174) 53485) ((-1271 . -174) 53416) ((-1250 . -174) 53347) ((-711 . -862) T) ((-1023 . -300) T) ((-465 . -625) 53329) ((-639 . -738) T) ((-60 . -1119) 53307) ((-250 . -152) 53291) ((-931 . -300) T) ((-1043 . -1031) T) ((-639 . -485) T) ((-724 . -1240) 53270) ((-706 . -234) NIL) ((-665 . -628) 53188) ((-171 . -658) 53083) ((-1286 . -862) 53062) ((-608 . -174) 53041) ((-607 . -174) 52992) ((-1270 . -652) 52833) ((-1270 . -1070) 52668) ((-1249 . -652) 52482) ((-1249 . -1070) 52290) ((-724 . -568) 52201) ((-419 . -937) T) ((-419 . -832) 52180) ((-329 . -806) T) ((-989 . -628) 52161) ((-329 . -738) T) ((-656 . -1168) 52145) ((-430 . -625) 52127) ((-430 . -626) 52034) ((-110 . -663) 52016) ((-176 . -317) T) ((-127 . -319) 51954) ((-110 . -384) 51936) ((-410 . -1236) T) ((-326 . -132) 51807) ((-323 . -132) T) ((-69 . -407) T) ((-110 . -124) T) ((-532 . -501) 51791) ((-666 . -1131) T) ((-605 . -19) 51773) ((-61 . -453) T) ((-61 . -407) T) ((-836 . -1119) T) ((-605 . -616) 51748) ((-489 . -1057) 51708) ((-665 . -1068) T) ((-666 . -23) T) ((-1301 . -1119) T) ((-31 . -102) T) ((-1259 . -658) 51618) ((-867 . -658) 51577) ((-828 . -729) 51426) ((-589 . -872) T) ((-583 . -658) 51398) ((-118 . -862) NIL) ((-1191 . -423) 51382) ((-1144 . -423) 51366) ((-866 . -423) 51350) ((-885 . -102) 51301) ((-1270 . -102) T) ((-1250 . -526) 51070) ((-1249 . -102) T) ((-1222 . -319) 51008) ((-1193 . -296) 50973) ((-1192 . -296) 50931) ((-537 . -93) T) ((-1186 . -296) 50759) ((-322 . -625) 50741) ((-1121 . -1119) T) ((-1099 . -660) 50615) ((-723 . -464) T) ((-701 . -625) 50547) ((-299 . -738) T) ((-108 . -926) NIL) ((-701 . -626) 50508) ((-613 . -625) 50490) ((-589 . -625) 50472) ((-562 . -626) NIL) ((-562 . -625) 50454) ((-541 . -625) 50436) ((-523 . -521) 50415) ((-499 . -1075) 50365) ((-486 . -1070) 50200) ((-519 . -521) 50179) ((-486 . -652) 50020) ((-219 . -1075) 49970) ((-370 . -660) 49922) ((-364 . -660) 49874) ((-227 . -860) T) ((-356 . -660) 49826) ((-614 . -102) 49776) ((-499 . -111) 49710) ((-494 . -379) 49689) ((-108 . -660) 49639) ((-365 . -234) 49626) ((-245 . -501) 49610) ((-354 . -148) 49592) ((-354 . -146) T) ((-171 . -381) 49563) ((-960 . -1284) 49547) ((-219 . -111) 49481) ((-884 . -319) 49446) ((-960 . -1119) 49396) ((-811 . -626) 49357) ((-811 . -625) 49339) ((-730 . -102) T) ((-341 . -1119) T) ((-216 . -628) 49316) ((-1139 . -132) T) ((-726 . -38) 49286) ((-326 . -505) 49265) ((-512 . -1236) T) ((-1270 . -294) 49231) ((-1249 . -294) 49197) ((-337 . -152) 49181) ((-451 . -1119) T) ((-1082 . -298) 49156) ((-1301 . -729) 49126) ((-48 . -234) 49113) ((-1178 . -34) T) ((-1310 . -1057) 49090) ((-496 . -34) T) ((-480 . -625) 49072) ((-256 . -296) 49046) ((-392 . -1057) 49030) ((-1191 . -1077) T) ((-1144 . -1077) T) ((-866 . -1077) T) ((-1081 . -860) T) ((-499 . -628) 48980) ((-219 . -628) 48930) ((-828 . -174) 48841) ((-532 . -296) 48793) ((-1278 . -300) 48772) ((-1217 . -375) 48746) ((-1107 . -275) 48730) ((-683 . -502) 48711) ((-683 . -625) 48677) ((-618 . -502) 48658) ((-118 . -1011) 48635) ((-618 . -625) 48585) ((-486 . -102) T) ((-182 . -502) 48566) ((-182 . -625) 48532) ((-162 . -502) 48513) ((-162 . -625) 48479) ((-157 . -502) 48460) ((-155 . -502) 48441) ((-157 . -625) 48407) ((-376 . -1119) T) ((-258 . -1119) T) ((-257 . -1119) T) ((-155 . -625) 48373) ((-1271 . -300) 48324) ((-1250 . -300) 48275) ((-884 . -1171) 48253) ((-1193 . -1021) 48219) ((-620 . -375) 48159) ((-1192 . -1021) 48125) ((-620 . -231) 48072) ((-706 . -862) T) ((-605 . -625) 48054) ((-605 . -626) NIL) ((-487 . -231) 48004) ((-499 . -1068) T) ((-1186 . -1021) 47970) ((-88 . -452) T) ((-88 . -407) T) ((-219 . -1068) T) ((-1145 . -1021) 47936) ((-1099 . -738) T) ((-724 . -1131) T) ((-608 . -300) 47915) ((-607 . -300) 47894) ((-499 . -248) T) ((-499 . -238) T) ((-219 . -248) T) ((-219 . -238) T) ((-1184 . -625) 47876) ((-884 . -38) 47828) ((-370 . -738) T) ((-364 . -738) T) ((-356 . -738) T) ((-108 . -806) T) ((-108 . -803) T) ((-724 . -23) T) ((-108 . -738) T) ((-532 . -1274) 47812) ((-1315 . -25) T) ((-486 . -294) 47778) ((-1315 . -21) T) ((-1249 . -319) 47717) ((-1195 . -102) T) ((-40 . -146) 47689) ((-40 . -148) 47661) ((-532 . -616) 47638) ((-1132 . -660) 47471) ((-614 . -319) 47409) ((-45 . -663) 47359) ((-45 . -678) 47309) ((-45 . -384) 47259) ((-1177 . -34) T) ((-883 . -860) NIL) ((-666 . -132) T) ((-497 . -625) 47241) ((-245 . -296) 47218) ((-188 . -1119) T) ((-1106 . -464) 47169) ((-828 . -526) 47043) ((-794 . -464) 46974) ((-676 . -1070) 46958) ((-659 . -34) T) ((-644 . -34) T) ((-676 . -652) 46942) ((-366 . -1070) 46894) ((-354 . -237) T) ((-363 . -1070) 46846) ((-355 . -1070) 46798) ((-273 . -1070) 46641) ((-253 . -1070) 46484) ((-792 . -464) 46435) ((-366 . -652) 46387) ((-363 . -652) 46339) ((-355 . -652) 46291) ((-273 . -652) 46140) ((-253 . -652) 45989) ((-466 . -464) 45940) ((-969 . -423) 45924) ((-743 . -625) 45906) ((-258 . -729) 45848) ((-257 . -729) 45790) ((-743 . -626) 45651) ((-493 . -423) 45635) ((-350 . -312) T) ((-536 . -93) T) ((-362 . -937) T) ((-1019 . -102) 45613) ((-927 . -1070) 45578) ((-1043 . -862) T) ((-60 . -526) 45511) ((-927 . -652) 45476) ((-1249 . -1171) 45428) ((-1023 . -296) NIL) ((-227 . -1077) T) ((-390 . -840) T) ((-1132 . -34) T) ((-593 . -464) T) ((-530 . -464) T) ((-1253 . -1112) 45412) ((-1253 . -1119) 45390) ((-245 . -616) 45367) ((-1253 . -1114) 45324) ((-1193 . -625) 45306) ((-1192 . -625) 45288) ((-1186 . -625) 45270) ((-1186 . -626) NIL) ((-1145 . -625) 45252) ((-884 . -412) 45236) ((-609 . -102) T) ((-597 . -102) T) ((-548 . -102) T) ((-1270 . -38) 45077) ((-1249 . -38) 44891) ((-882 . -148) T) ((-593 . -414) T) ((-530 . -414) T) ((-1282 . -102) T) ((-1272 . -21) T) ((-1272 . -25) T) ((-1132 . -806) 44870) ((-1132 . -805) 44849) ((-1012 . -1119) T) ((-1046 . -34) T) ((-874 . -1119) T) ((-1132 . -738) 44827) ((-676 . -102) T) ((-657 . -102) T) ((-562 . -298) 44806) ((-1208 . -102) T) ((-488 . -34) T) ((-475 . -34) T) ((-366 . -102) T) ((-363 . -102) T) ((-355 . -102) T) ((-273 . -102) T) ((-253 . -102) T) ((-489 . -317) T) ((-1081 . -1077) T) ((-969 . -1077) T) ((-326 . -651) 44712) ((-323 . -651) 44673) ((-1191 . -1119) T) ((-493 . -1077) T) ((-491 . -102) T) ((-448 . -625) 44655) ((-1144 . -1119) T) ((-256 . -625) 44637) ((-866 . -1119) T) ((-1160 . -102) T) ((-828 . -300) 44568) ((-980 . -1075) 44451) ((-489 . -1041) T) ((-884 . -917) 44374) ((-747 . -1075) 44344) ((-1053 . -658) 44303) ((-1166 . -1140) 44287) ((-465 . -1075) 44257) ((-1121 . -526) 44190) ((-980 . -111) 44059) ((-927 . -102) T) ((-40 . -237) 43996) ((-747 . -111) 43961) ((-537 . -502) 43942) ((-537 . -625) 43908) ((-59 . -102) 43858) ((-532 . -626) 43819) ((-532 . -625) 43731) ((-531 . -102) 43709) ((-528 . -102) 43659) ((-509 . -102) 43637) ((-508 . -102) 43587) ((-465 . -111) 43550) ((-332 . -658) 43532) ((-430 . -1075) 43506) ((-1230 . -992) 43468) ((-1018 . -1131) T) ((-390 . -658) 43418) ((-1154 . -628) 43399) ((-960 . -526) 43332) ((-499 . -807) T) ((-486 . -38) 43173) ((-430 . -111) 43140) ((-499 . -804) T) ((-1019 . -319) 43078) ((-219 . -807) T) ((-219 . -804) T) ((-1018 . -23) T) ((-724 . -132) T) ((-1249 . -412) 43048) ((-848 . -658) 42993) ((-839 . -658) 42952) ((-326 . -25) 42804) ((-171 . -423) 42788) ((-326 . -21) 42659) ((-323 . -25) T) ((-323 . -21) T) ((-876 . -379) T) ((-980 . -628) 42512) ((-110 . -34) T) ((-747 . -628) 42468) ((-727 . -628) 42450) ((-494 . -660) 42283) ((-883 . -1077) T) ((-605 . -298) 42258) ((-592 . -148) T) ((-576 . -148) T) ((-507 . -148) T) ((-1191 . -729) 42087) ((-1076 . -102) 42065) ((-1144 . -729) 41914) ((-1139 . -651) 41896) ((-866 . -729) 41866) ((-682 . -1236) T) ((-1 . -102) T) ((-430 . -628) 41774) ((-245 . -625) 41467) ((-1134 . -1119) T) ((-1259 . -423) 41451) ((-1208 . -319) 41255) ((-980 . -1068) T) ((-747 . -1068) T) ((-727 . -1068) T) ((-656 . -1119) 41205) ((-1073 . -660) 41189) ((-867 . -423) 41173) ((-523 . -102) T) ((-519 . -102) T) ((-273 . -319) 41160) ((-253 . -319) 41147) ((-1270 . -917) 41053) ((-980 . -336) 41032) ((-1249 . -917) 40829) ((-396 . -660) 40813) ((-682 . -1057) 40709) ((-491 . -319) 40513) ((-258 . -526) 40446) ((-257 . -526) 40379) ((-1160 . -319) 40305) ((-1230 . -909) 40284) ((-831 . -1119) T) ((-811 . -1075) 40268) ((-1278 . -296) 40233) ((-1271 . -296) 40191) ((-1250 . -296) 40019) ((-398 . -1119) T) ((-334 . -1119) T) ((-430 . -1068) T) ((-171 . -1077) T) ((-59 . -319) 39957) ((-811 . -111) 39936) ((-607 . -296) 39901) ((-531 . -319) 39839) ((-528 . -319) 39777) ((-509 . -319) 39715) ((-508 . -319) 39653) ((-430 . -238) 39632) ((-494 . -34) T) ((-227 . -1119) T) ((-1023 . -626) 39562) ((-1023 . -625) 39522) ((-990 . -625) 39482) ((-931 . -625) 39464) ((-711 . -148) T) ((-713 . -937) T) ((-713 . -832) T) ((-439 . -625) 39446) ((-1139 . -21) T) ((-1139 . -25) T) ((-682 . -388) 39430) ((-117 . -937) T) ((-884 . -272) 39414) ((-884 . -232) 39398) ((-44 . -1236) T) ((-78 . -1236) T) ((-127 . -126) 39382) ((-1073 . -34) T) ((-1308 . -1057) 39356) ((-1306 . -1057) 39313) ((-1259 . -1077) T) ((-867 . -1077) T) ((-366 . -1171) 39292) ((-363 . -1171) 39271) ((-355 . -1171) 39250) ((-494 . -806) 39229) ((-494 . -805) 39208) ((-229 . -34) T) ((-494 . -738) 39186) ((-811 . -628) 39032) ((-674 . -1070) 39016) ((-60 . -501) 39000) ((-583 . -1077) T) ((-1191 . -174) 38891) ((-674 . -652) 38875) ((-486 . -917) 38781) ((-1144 . -174) 38692) ((-1081 . -1119) T) ((-1106 . -966) 38637) ((-969 . -1119) T) ((-829 . -660) 38588) ((-794 . -966) 38557) ((-725 . -1119) T) ((-792 . -966) 38524) ((-528 . -292) 38508) ((-682 . -915) 38467) ((-493 . -1119) T) ((-466 . -966) 38434) ((-79 . -1236) T) ((-366 . -38) 38399) ((-363 . -38) 38364) ((-355 . -38) 38329) ((-273 . -38) 38178) ((-253 . -38) 38027) ((-927 . -1171) T) ((-536 . -502) 38008) ((-635 . -148) 37987) ((-635 . -146) 37966) ((-536 . -625) 37932) ((-118 . -148) T) ((-118 . -146) NIL) ((-426 . -738) T) ((-811 . -1068) T) ((-576 . -237) T) ((-507 . -237) T) ((-354 . -464) T) ((-1278 . -1021) 37898) ((-1271 . -1021) 37864) ((-1250 . -1021) 37830) ((-927 . -38) 37795) ((-227 . -729) 37760) ((-329 . -47) 37730) ((-40 . -421) 37702) ((-141 . -625) 37684) ((-1018 . -132) T) ((-827 . -1236) T) ((-176 . -937) T) ((-561 . -379) T) ((-726 . -658) 37629) ((-618 . -628) 37610) ((-354 . -414) T) ((-683 . -628) 37591) ((-323 . -234) NIL) ((-182 . -628) 37572) ((-162 . -628) 37553) ((-157 . -628) 37534) ((-155 . -628) 37515) ((-532 . -298) 37492) ((-1249 . -232) 37462) ((-1249 . -272) 37432) ((-1197 . -660) 37357) ((-888 . -102) T) ((-827 . -1057) 37184) ((-45 . -34) T) ((-693 . -102) T) ((-688 . -102) T) ((-674 . -102) T) ((-666 . -21) T) ((-666 . -25) T) ((-1121 . -501) 37168) ((-687 . -1236) T) ((-490 . -102) T) ((-250 . -102) 37118) ((-558 . -856) T) ((-139 . -102) T) ((-138 . -102) T) ((-134 . -102) T) ((-1106 . -909) 37013) ((-883 . -1119) T) ((-1191 . -526) 36960) ((-1081 . -729) 36947) ((-794 . -909) 36850) ((-743 . -1075) 36693) ((-792 . -909) 36675) ((-969 . -729) 36524) ((-1144 . -526) 36476) ((-1297 . -1119) T) ((-1296 . -1119) T) ((-466 . -909) 36451) ((-493 . -729) 36300) ((-67 . -625) 36282) ((-743 . -111) 36111) ((-960 . -501) 36095) ((-1298 . -660) 36055) ((-1193 . -1075) 35938) ((-829 . -738) T) ((-1192 . -1075) 35773) ((-1186 . -1075) 35563) ((-329 . -1236) T) ((-1145 . -1075) 35446) ((-1022 . -1240) T) ((-1113 . -102) 35424) ((-827 . -388) 35393) ((-591 . -625) 35375) ((-558 . -1119) T) ((-1022 . -568) T) ((-1193 . -111) 35244) ((-1192 . -111) 35065) ((-1186 . -111) 34834) ((-1145 . -111) 34703) ((-1124 . -1122) 34667) ((-390 . -860) T) ((-1278 . -625) 34649) ((-1271 . -625) 34631) ((-884 . -658) 34568) ((-1250 . -625) 34550) ((-1250 . -626) NIL) ((-245 . -298) 34527) ((-40 . -464) T) ((-227 . -174) T) ((-171 . -1119) T) ((-743 . -628) 34312) ((-706 . -148) T) ((-706 . -146) NIL) ((-608 . -625) 34294) ((-607 . -625) 34276) ((-1139 . -234) 34263) ((-913 . -1119) T) ((-853 . -1119) T) ((-820 . -1119) T) ((-273 . -917) 34173) ((-253 . -917) 34150) ((-781 . -1119) T) ((-689 . -1119) T) ((-670 . -864) 34134) ((-635 . -237) 34085) ((-827 . -915) 34017) ((-1241 . -379) T) ((-40 . -414) NIL) ((-118 . -237) NIL) ((-1193 . -628) 33899) ((-1139 . -673) T) ((-883 . -729) 33844) ((-258 . -501) 33828) ((-257 . -501) 33812) ((-1192 . -628) 33555) ((-1186 . -628) 33350) ((-724 . -651) 33298) ((-665 . -660) 33272) ((-1145 . -628) 33154) ((-305 . -34) T) ((-1139 . -113) T) ((-743 . -1068) T) ((-593 . -1293) 33141) ((-530 . -1293) 33118) ((-1259 . -1119) T) ((-1191 . -300) 33029) ((-1144 . -300) 32960) ((-1081 . -174) T) ((-299 . -1236) T) ((-867 . -1119) T) ((-969 . -174) 32871) ((-794 . -1262) 32855) ((-656 . -526) 32788) ((-77 . -625) 32770) ((-743 . -336) 32735) ((-1197 . -738) T) ((-583 . -1119) T) ((-493 . -174) 32646) ((-250 . -319) 32584) ((-1161 . -1131) T) ((-70 . -625) 32566) ((-1298 . -738) T) ((-1193 . -1068) T) ((-1192 . -1068) T) ((-337 . -102) 32516) ((-1186 . -1068) T) ((-1161 . -23) T) ((-1145 . -1068) T) ((-91 . -1140) 32500) ((-878 . -1131) T) ((-1193 . -238) 32459) ((-1192 . -248) 32438) ((-1192 . -238) 32390) ((-1186 . -238) 32277) ((-1186 . -248) 32256) ((-329 . -915) 32162) ((-878 . -23) T) ((-171 . -729) 31990) ((-419 . -1240) T) ((-1120 . -379) T) ((-1022 . -374) T) ((-882 . -464) T) ((-1043 . -148) T) ((-960 . -296) 31942) ((-323 . -862) NIL) ((-1270 . -658) 31824) ((-886 . -102) T) ((-1249 . -658) 31679) ((-724 . -25) T) ((-419 . -568) T) ((-724 . -21) T) ((-537 . -628) 31660) ((-365 . -148) 31642) ((-365 . -146) T) ((-1166 . -1119) 31620) ((-465 . -732) T) ((-75 . -625) 31602) ((-115 . -862) T) ((-250 . -292) 31586) ((-245 . -1075) 31507) ((-81 . -625) 31489) ((-747 . -379) 31442) ((-1195 . -840) T) ((-749 . -240) 31426) ((-1178 . -1236) T) ((-142 . -240) 31408) ((-245 . -111) 31324) ((-1259 . -729) 31153) ((-48 . -148) T) ((-883 . -174) T) ((-867 . -729) 31123) ((-496 . -1236) T) ((-969 . -526) 31070) ((-665 . -738) T) ((-583 . -729) 31057) ((-1053 . -1077) T) ((-706 . -237) NIL) ((-493 . -526) 31000) ((-960 . -19) 30984) ((-960 . -616) 30961) ((-1099 . -1236) 30912) ((-828 . -626) NIL) ((-828 . -625) 30894) ((-1230 . -652) 30791) ((-1230 . -1070) 30674) ((-1023 . -1075) 30624) ((-425 . -625) 30606) ((-258 . -296) 30583) ((-370 . -1236) 30562) ((-364 . -1236) 30541) ((-356 . -1236) 30520) ((-257 . -296) 30497) ((-499 . -926) NIL) ((-326 . -29) 30467) ((-108 . -1236) T) ((-1022 . -1131) T) ((-219 . -926) NIL) ((-1099 . -1057) 30363) ((-931 . -1075) 30315) ((-1023 . -111) 30249) ((-1022 . -23) T) ((-723 . -1070) 30214) ((-931 . -111) 30152) ((-749 . -707) 30136) ((-723 . -652) 30101) ((-273 . -272) 30085) ((-273 . -232) 30069) ((-439 . -1075) 30053) ((-390 . -1077) T) ((-245 . -628) 29851) ((-706 . -1224) NIL) ((-499 . -660) 29801) ((-486 . -658) 29683) ((-108 . -897) 29665) ((-108 . -899) 29647) ((-706 . -1221) NIL) ((-219 . -660) 29597) ((-370 . -1057) 29581) ((-364 . -1057) 29565) ((-337 . -319) 29503) ((-356 . -1057) 29487) ((-227 . -300) T) ((-439 . -111) 29466) ((-60 . -625) 29398) ((-171 . -174) T) ((-1139 . -862) T) ((-108 . -1057) 29358) ((-905 . -1119) T) ((-848 . -1077) T) ((-839 . -1077) T) ((-706 . -35) NIL) ((-706 . -95) NIL) ((-323 . -1011) 29319) ((-185 . -102) T) ((-592 . -464) T) ((-576 . -464) T) ((-507 . -464) T) ((-419 . -374) T) ((-245 . -1068) 29297) ((-1169 . -34) T) ((-489 . -937) T) ((-1018 . -651) 29245) ((-258 . -616) 29222) ((-257 . -616) 29199) ((-1099 . -388) 29183) ((-883 . -526) 29091) ((-245 . -238) 29043) ((-1177 . -1236) T) ((-1023 . -628) 28993) ((-931 . -628) 28930) ((-836 . -625) 28912) ((-1309 . -1131) T) ((-1301 . -625) 28894) ((-1259 . -174) 28785) ((-439 . -628) 28754) ((-108 . -388) 28736) ((-108 . -349) 28718) ((-1081 . -300) T) ((-969 . -300) 28649) ((-811 . -379) 28628) ((-659 . -1236) T) ((-644 . -1236) T) ((-1309 . -23) T) ((-598 . -1070) 28603) ((-493 . -300) 28534) ((-583 . -174) T) ((-337 . -292) 28518) ((-365 . -237) T) ((-1230 . -102) T) ((-1217 . -1119) T) ((-1107 . -1119) T) ((-1095 . -1119) T) ((-598 . -652) 28493) ((-83 . -625) 28475) ((-1202 . -856) T) ((-1201 . -856) T) ((-723 . -102) T) ((-366 . -360) 28454) ((-620 . -1119) T) ((-363 . -360) 28433) ((-355 . -360) 28412) ((-487 . -1119) T) ((-1208 . -231) 28362) ((-273 . -260) 28324) ((-1161 . -132) T) ((-620 . -622) 28300) ((-1099 . -915) 28233) ((-1023 . -1068) T) ((-931 . -1068) T) ((-487 . -622) 28212) ((-1186 . -804) NIL) ((-1186 . -807) NIL) ((-1121 . -626) 28173) ((-1121 . -625) 28155) ((-491 . -231) 28105) ((-1023 . -248) T) ((-1023 . -238) T) ((-975 . -1119) 28055) ((-439 . -1068) T) ((-931 . -248) T) ((-878 . -132) T) ((-48 . -237) T) ((-711 . -464) T) ((-855 . -1131) 28034) ((-108 . -915) NIL) ((-1230 . -294) 28000) ((-1132 . -1236) T) ((-884 . -860) 27979) ((-1018 . -25) T) ((-922 . -738) T) ((-171 . -526) 27891) ((-1018 . -21) T) ((-922 . -485) T) ((-419 . -1131) T) ((-499 . -806) T) ((-499 . -803) T) ((-927 . -360) T) ((-499 . -738) T) ((-219 . -806) T) ((-219 . -803) T) ((-724 . -234) 27878) ((-219 . -738) T) ((-855 . -23) 27830) ((-1203 . -1119) T) ((-670 . -1070) 27814) ((-1202 . -1119) T) ((-536 . -628) 27795) ((-1201 . -1119) T) ((-329 . -317) 27774) ((-1054 . -240) 27720) ((-670 . -652) 27690) ((-419 . -23) T) ((-960 . -626) 27651) ((-960 . -625) 27563) ((-656 . -501) 27547) ((-45 . -1029) 27497) ((-1132 . -1057) 27324) ((-629 . -986) T) ((-503 . -102) T) ((-341 . -625) 27306) ((-1012 . -296) 27273) ((-605 . -663) 27255) ((-131 . -1119) T) ((-129 . -1119) T) ((-605 . -384) 27237) ((-354 . -1293) 27214) ((-451 . -625) 27196) ((-1259 . -526) 27143) ((-1106 . -1070) 26986) ((-1046 . -1236) T) ((-883 . -300) T) ((-1191 . -296) 26913) ((-1106 . -652) 26762) ((-1019 . -1014) 26746) ((-794 . -1070) 26569) ((-792 . -1070) 26412) ((-794 . -652) 26241) ((-792 . -652) 26090) ((-488 . -1236) T) ((-475 . -1236) T) ((-598 . -102) T) ((-473 . -1070) 26061) ((-466 . -1070) 25904) ((-676 . -658) 25873) ((-635 . -464) 25852) ((-473 . -652) 25823) ((-466 . -652) 25672) ((-366 . -658) 25609) ((-363 . -658) 25546) ((-355 . -658) 25483) ((-273 . -658) 25393) ((-253 . -658) 25303) ((-1301 . -393) 25275) ((-529 . -1119) T) ((-118 . -464) T) ((-1216 . -102) T) ((-1111 . -1119) 25245) ((-1053 . -1119) T) ((-1134 . -93) T) ((-906 . -862) T) ((-1278 . -111) 25114) ((-362 . -1240) T) ((-1278 . -1075) 24997) ((-1132 . -388) 24966) ((-1271 . -1075) 24801) ((-1250 . -1075) 24591) ((-1271 . -111) 24412) ((-1250 . -111) 24181) ((-1230 . -319) 24168) ((-1022 . -132) T) ((-927 . -658) 24118) ((-376 . -625) 24100) ((-362 . -568) T) ((-299 . -317) T) ((-608 . -1075) 24060) ((-607 . -1075) 23943) ((-593 . -1070) 23908) ((-530 . -1070) 23853) ((-372 . -1119) T) ((-332 . -1119) T) ((-258 . -625) 23814) ((-257 . -625) 23775) ((-593 . -652) 23740) ((-530 . -652) 23685) ((-706 . -421) 23652) ((-647 . -23) T) ((-619 . -23) T) ((-40 . -909) 23559) ((-670 . -102) T) ((-608 . -111) 23512) ((-607 . -111) 23381) ((-390 . -1119) T) ((-347 . -102) T) ((-171 . -300) 23292) ((-1249 . -860) 23245) ((-726 . -1077) T) ((-1166 . -526) 23178) ((-1209 . -847) 23162) ((-1132 . -915) 23094) ((-848 . -1119) T) ((-839 . -1119) T) ((-837 . -1119) T) ((-97 . -102) T) ((-145 . -862) T) ((-624 . -897) 23078) ((-110 . -1236) T) ((-1106 . -102) T) ((-1082 . -34) T) ((-794 . -102) T) ((-792 . -102) T) ((-1278 . -628) 22960) ((-1271 . -628) 22703) ((-473 . -102) T) ((-466 . -102) T) ((-1250 . -628) 22498) ((-245 . -807) 22477) ((-245 . -804) 22456) ((-661 . -102) T) ((-608 . -628) 22414) ((-607 . -628) 22296) ((-1259 . -300) 22207) ((-676 . -646) 22191) ((-188 . -625) 22173) ((-656 . -296) 22125) ((-1053 . -729) 22109) ((-583 . -300) T) ((-980 . -660) 22034) ((-1309 . -132) T) ((-747 . -660) 21994) ((-727 . -660) 21981) ((-284 . -102) T) ((-465 . -660) 21911) ((-50 . -102) T) ((-593 . -102) T) ((-530 . -102) T) ((-1278 . -1068) T) ((-1271 . -1068) T) ((-1250 . -1068) T) ((-519 . -658) 21893) ((-332 . -729) 21875) ((-1278 . -238) 21834) ((-1271 . -248) 21813) ((-1271 . -238) 21765) ((-1250 . -238) 21652) ((-1250 . -248) 21631) ((-1230 . -38) 21528) ((-608 . -1068) T) ((-607 . -1068) T) ((-1023 . -807) T) ((-1023 . -804) T) ((-990 . -807) T) ((-990 . -804) T) ((-884 . -1077) T) ((-109 . -625) 21510) ((-706 . -464) T) ((-390 . -729) 21475) ((-430 . -660) 21449) ((-882 . -881) 21433) ((-723 . -38) 21398) ((-607 . -238) 21357) ((-40 . -736) 21329) ((-362 . -339) 21306) ((-362 . -374) T) ((-1099 . -317) 21257) ((-304 . -1131) 21138) ((-1125 . -1236) T) ((-1018 . -234) 21083) ((-173 . -102) T) ((-1253 . -625) 21050) ((-855 . -132) 21002) ((-848 . -729) 20972) ((-656 . -1274) 20956) ((-839 . -729) 20926) ((-656 . -616) 20903) ((-494 . -1236) T) ((-370 . -317) T) ((-364 . -317) T) ((-356 . -317) T) ((-411 . -234) 20890) ((-419 . -132) T) ((-532 . -678) 20874) ((-108 . -317) T) ((-304 . -23) 20757) ((-532 . -663) 20741) ((-706 . -414) NIL) ((-532 . -384) 20725) ((-301 . -625) 20707) ((-91 . -1119) 20685) ((-108 . -1041) T) ((-576 . -144) T) ((-1286 . -152) 20669) ((-494 . -1057) 20496) ((-1272 . -146) 20457) ((-1272 . -148) 20418) ((-1073 . -1236) T) ((-1012 . -625) 20400) ((-830 . -1236) T) ((-874 . -625) 20382) ((-828 . -1075) 20225) ((-1297 . -93) T) ((-1296 . -93) T) ((-1191 . -626) NIL) ((-1115 . -1119) T) ((-1109 . -1119) T) ((-1106 . -319) 20212) ((-1092 . -1119) T) ((-229 . -1236) T) ((-1085 . -1119) T) ((-1055 . -1119) T) ((-1038 . -1119) T) ((-794 . -319) 20199) ((-792 . -319) 20186) ((-1191 . -625) 20168) ((-828 . -111) 19997) ((-1144 . -625) 19979) ((-638 . -1119) T) ((-589 . -175) T) ((-541 . -175) T) ((-466 . -319) 19966) ((-495 . -1119) T) ((-1144 . -626) 19714) ((-1053 . -174) T) ((-960 . -298) 19691) ((-220 . -1119) T) ((-866 . -625) 19673) ((-620 . -526) 19456) ((-81 . -628) 19397) ((-830 . -1057) 19381) ((-487 . -526) 19173) ((-980 . -738) T) ((-747 . -738) T) ((-727 . -738) T) ((-362 . -1131) T) ((-1198 . -625) 19155) ((-225 . -102) T) ((-494 . -388) 19124) ((-527 . -1119) T) ((-522 . -1119) T) ((-520 . -1119) T) ((-811 . -660) 19098) ((-1043 . -464) T) ((-975 . -526) 19031) ((-362 . -23) T) ((-647 . -132) T) ((-619 . -132) T) ((-365 . -464) T) ((-245 . -379) 19010) ((-390 . -174) T) ((-1270 . -1077) T) ((-1249 . -1077) T) ((-227 . -1021) T) ((-828 . -628) 18747) ((-711 . -399) T) ((-430 . -738) T) ((-713 . -1240) T) ((-1161 . -651) 18695) ((-592 . -881) 18679) ((-1301 . -1075) 18663) ((-1178 . -1212) 18639) ((-713 . -568) T) ((-127 . -1119) 18617) ((-726 . -1119) T) ((-670 . -38) 18587) ((-494 . -915) 18519) ((-255 . -1119) T) ((-189 . -1119) T) ((-365 . -414) T) ((-326 . -148) 18498) ((-326 . -146) 18477) ((-129 . -526) NIL) ((-117 . -568) T) ((-323 . -148) 18433) ((-323 . -146) 18389) ((-48 . -464) T) ((-163 . -1119) T) ((-158 . -1119) T) ((-1178 . -107) 18336) ((-794 . -1171) 18314) ((-701 . -34) T) ((-1301 . -111) 18293) ((-562 . -34) T) ((-496 . -107) 18277) ((-258 . -298) 18254) ((-257 . -298) 18231) ((-1242 . -856) T) ((-883 . -296) 18182) ((-45 . -1236) T) ((-1230 . -917) 18163) ((-829 . -1236) T) ((-828 . -1068) T) ((-674 . -658) 18132) ((-1197 . -47) 18109) ((-828 . -336) 18071) ((-1106 . -38) 17920) ((-828 . -238) 17899) ((-794 . -38) 17728) ((-792 . -38) 17577) ((-1134 . -502) 17558) ((-466 . -38) 17407) ((-1134 . -625) 17373) ((-1137 . -102) T) ((-656 . -626) 17334) ((-656 . -625) 17246) ((-593 . -1171) T) ((-530 . -1171) T) ((-1166 . -501) 17230) ((-354 . -1070) 17175) ((-1222 . -1119) 17153) ((-1161 . -25) T) ((-1161 . -21) T) ((-354 . -652) 17098) ((-1301 . -628) 17047) ((-486 . -1077) T) ((-1242 . -1119) T) ((-1250 . -804) NIL) ((-1250 . -807) NIL) ((-1018 . -862) 17026) ((-850 . -1119) T) ((-831 . -625) 17008) ((-878 . -21) T) ((-878 . -25) T) ((-811 . -738) T) ((-176 . -1240) T) ((-593 . -38) 16973) ((-530 . -38) 16938) ((-398 . -625) 16920) ((-343 . -102) T) ((-334 . -625) 16902) ((-171 . -296) 16860) ((-63 . -1236) T) ((-112 . -102) T) ((-884 . -1119) T) ((-176 . -568) T) ((-726 . -729) 16830) ((-304 . -132) 16713) ((-227 . -625) 16695) ((-227 . -626) 16625) ((-1022 . -651) 16564) ((-1301 . -1068) T) ((-1139 . -148) T) ((-644 . -1212) 16539) ((-743 . -926) 16518) ((-605 . -34) T) ((-659 . -107) 16502) ((-644 . -107) 16448) ((-635 . -909) 16369) ((-1259 . -296) 16296) ((-743 . -660) 16185) ((-305 . -1236) T) ((-1197 . -1057) 16081) ((-960 . -630) 16058) ((-589 . -588) T) ((-589 . -539) T) ((-541 . -539) T) ((-118 . -909) NIL) ((-1186 . -926) NIL) ((-1081 . -626) 15973) ((-1081 . -625) 15955) ((-969 . -625) 15937) ((-725 . -502) 15887) ((-354 . -102) T) ((-258 . -1075) 15808) ((-257 . -1075) 15729) ((-406 . -102) T) ((-31 . -1119) T) ((-969 . -626) 15590) ((-725 . -625) 15525) ((-1299 . -1229) 15494) ((-493 . -625) 15476) ((-493 . -626) 15337) ((-273 . -423) 15321) ((-253 . -423) 15305) ((-323 . -237) NIL) ((-258 . -111) 15221) ((-257 . -111) 15137) ((-1193 . -660) 15062) ((-1192 . -660) 14959) ((-1186 . -660) 14811) ((-1145 . -660) 14736) ((-362 . -132) T) ((-82 . -453) T) ((-82 . -407) T) ((-1022 . -25) T) ((-1022 . -21) T) ((-885 . -1119) 14687) ((-40 . -1070) 14632) ((-884 . -729) 14584) ((-40 . -652) 14529) ((-390 . -300) T) ((-171 . -1021) 14480) ((-1106 . -917) 14379) ((-706 . -399) T) ((-1018 . -1016) 14363) ((-713 . -1131) T) ((-706 . -167) 14345) ((-794 . -917) 14252) ((-792 . -917) 14236) ((-1270 . -1119) T) ((-1249 . -1119) T) ((-1183 . -102) T) ((-326 . -1221) 14215) ((-326 . -1224) 14194) ((-466 . -917) 14171) ((-326 . -976) 14150) ((-135 . -1131) T) ((-117 . -1131) T) ((-665 . -1236) T) ((-614 . -1284) 14134) ((-713 . -23) T) ((-614 . -1119) 14084) ((-326 . -95) 14063) ((-91 . -526) 13996) ((-176 . -374) T) ((-258 . -628) 13794) ((-257 . -628) 13592) ((-326 . -35) 13571) ((-620 . -501) 13505) ((-135 . -23) T) ((-117 . -23) T) ((-983 . -102) T) ((-730 . -1119) T) ((-487 . -501) 13442) ((-419 . -651) 13390) ((-665 . -1057) 13286) ((-975 . -501) 13270) ((-366 . -1077) T) ((-363 . -1077) T) ((-355 . -1077) T) ((-273 . -1077) T) ((-253 . -1077) T) ((-883 . -626) NIL) ((-883 . -625) 13252) ((-1297 . -502) 13233) ((-1296 . -502) 13214) ((-1309 . -21) T) ((-1297 . -625) 13180) ((-1296 . -625) 13146) ((-583 . -1021) T) ((-743 . -738) T) ((-1309 . -25) T) ((-258 . -1068) 13124) ((-257 . -1068) 13102) ((-72 . -1236) T) ((-1161 . -234) 13047) ((-258 . -238) 12999) ((-257 . -238) 12951) ((-1139 . -237) T) ((-40 . -102) T) ((-927 . -1077) T) ((-706 . -909) NIL) ((-1200 . -102) T) ((-129 . -501) 12933) ((-1193 . -738) T) ((-1192 . -738) T) ((-1186 . -738) T) ((-1186 . -803) NIL) ((-1186 . -806) NIL) ((-971 . -102) T) ((-938 . -102) T) ((-882 . -1070) 12920) ((-1145 . -738) T) ((-783 . -102) T) ((-684 . -102) T) ((-882 . -652) 12907) ((-558 . -625) 12889) ((-486 . -1119) T) ((-350 . -1131) T) ((-176 . -1131) T) ((-329 . -937) 12868) ((-1270 . -729) 12709) ((-884 . -174) T) ((-1249 . -729) 12523) ((-855 . -21) 12475) ((-855 . -25) 12427) ((-250 . -1168) 12411) ((-127 . -526) 12344) ((-419 . -25) T) ((-419 . -21) T) ((-350 . -23) T) ((-171 . -626) 12110) ((-171 . -625) 12092) ((-176 . -23) T) ((-656 . -298) 12069) ((-532 . -34) T) ((-913 . -625) 12051) ((-89 . -1236) T) ((-853 . -625) 12033) ((-820 . -625) 12015) ((-781 . -625) 11997) ((-689 . -625) 11979) ((-245 . -660) 11812) ((-629 . -113) T) ((-1195 . -1119) T) ((-1191 . -1075) 11635) ((-1169 . -1236) T) ((-1144 . -1075) 11478) ((-866 . -1075) 11462) ((-1253 . -630) 11446) ((-1191 . -111) 11255) ((-1144 . -111) 11084) ((-866 . -111) 11063) ((-1243 . -862) T) ((-1259 . -626) NIL) ((-1259 . -625) 11045) ((-354 . -1171) T) ((-867 . -625) 11027) ((-1095 . -296) 11006) ((-1230 . -658) 10916) ((-80 . -1236) T) ((-922 . -1236) T) ((-1222 . -526) 10849) ((-1023 . -926) NIL) ((-1106 . -272) 10833) ((-620 . -296) 10809) ((-1106 . -232) 10793) ((-499 . -1236) T) ((-583 . -625) 10775) ((-487 . -296) 10754) ((-1023 . -660) 10704) ((-529 . -93) T) ((-1022 . -234) 10635) ((-219 . -1236) T) ((-975 . -296) 10587) ((-882 . -102) T) ((-299 . -937) T) ((-829 . -317) 10566) ((-794 . -272) 10550) ((-794 . -232) 10534) ((-931 . -660) 10486) ((-723 . -658) 10436) ((-706 . -736) 10403) ((-647 . -21) T) ((-647 . -25) T) ((-619 . -21) T) ((-559 . -102) T) ((-354 . -38) 10368) ((-499 . -897) 10350) ((-499 . -899) 10332) ((-486 . -729) 10173) ((-219 . -897) 10155) ((-64 . -1236) T) ((-219 . -899) 10137) ((-619 . -25) T) ((-439 . -660) 10111) ((-1191 . -628) 9880) ((-499 . -1057) 9840) ((-884 . -526) 9752) ((-1144 . -628) 9544) ((-866 . -628) 9462) ((-219 . -1057) 9422) ((-245 . -34) T) ((-1019 . -1119) 9400) ((-592 . -1070) 9387) ((-576 . -1070) 9374) ((-507 . -1070) 9339) ((-1270 . -174) 9270) ((-1249 . -174) 9201) ((-592 . -652) 9188) ((-576 . -652) 9175) ((-507 . -652) 9140) ((-724 . -146) 9119) ((-724 . -148) 9098) ((-713 . -132) T) ((-137 . -477) 9075) ((-1166 . -625) 9007) ((-670 . -668) 8991) ((-129 . -296) 8941) ((-117 . -132) T) ((-489 . -1240) T) ((-620 . -616) 8917) ((-487 . -616) 8896) ((-347 . -346) 8865) ((-609 . -1119) T) ((-597 . -1119) T) ((-548 . -1119) T) ((-489 . -568) T) ((-1191 . -1068) T) ((-1144 . -1068) T) ((-866 . -1068) T) ((-245 . -806) 8844) ((-245 . -805) 8823) ((-1191 . -336) 8800) ((-245 . -738) 8778) ((-975 . -19) 8762) ((-499 . -388) 8744) ((-499 . -349) 8726) ((-1144 . -336) 8698) ((-365 . -1293) 8675) ((-219 . -388) 8657) ((-219 . -349) 8639) ((-975 . -616) 8616) ((-1191 . -238) T) ((-1282 . -1119) T) ((-676 . -1119) T) ((-657 . -1119) T) ((-1208 . -1119) T) ((-1106 . -260) 8553) ((-598 . -658) 8513) ((-366 . -1119) T) ((-363 . -1119) T) ((-355 . -1119) T) ((-273 . -1119) T) ((-253 . -1119) T) ((-84 . -1236) T) ((-128 . -102) 8491) ((-122 . -102) 8469) ((-1249 . -526) 8329) ((-1208 . -622) 8308) ((-1160 . -1119) T) ((-1134 . -628) 8289) ((-1099 . -937) 8240) ((-491 . -1119) T) ((-1023 . -806) T) ((-1023 . -803) T) ((-491 . -622) 8219) ((-258 . -807) 8198) ((-258 . -804) 8177) ((-257 . -807) 8156) ((-40 . -1171) NIL) ((-257 . -804) 8135) ((-1023 . -738) T) ((-129 . -19) 8117) ((-990 . -806) T) ((-711 . -1070) 8082) ((-931 . -738) T) ((-927 . -1119) T) ((-905 . -625) 8064) ((-129 . -616) 8039) ((-711 . -652) 8004) ((-91 . -501) 7988) ((-499 . -915) NIL) ((-884 . -300) T) ((-227 . -1075) 7953) ((-848 . -296) 7932) ((-219 . -915) NIL) ((-845 . -1131) 7911) ((-59 . -1119) 7861) ((-531 . -1119) 7839) ((-528 . -1119) 7789) ((-509 . -1119) 7767) ((-508 . -1119) 7717) ((-592 . -102) T) ((-576 . -102) T) ((-507 . -102) T) ((-486 . -174) 7648) ((-370 . -937) T) ((-364 . -937) T) ((-356 . -937) T) ((-227 . -111) 7604) ((-845 . -23) 7556) ((-439 . -738) T) ((-108 . -937) T) ((-40 . -38) 7501) ((-108 . -832) T) ((-593 . -360) T) ((-530 . -360) T) ((-670 . -658) 7460) ((-326 . -464) 7439) ((-323 . -464) T) ((-614 . -526) 7372) ((-419 . -234) 7317) ((-350 . -132) T) ((-176 . -132) T) ((-304 . -25) 7181) ((-304 . -21) 7064) ((-45 . -1212) 7043) ((-66 . -625) 7025) ((-55 . -102) T) ((-347 . -658) 7007) ((-1287 . -102) T) ((-1286 . -102) 6957) ((-45 . -107) 6907) ((-831 . -628) 6891) ((-1278 . -660) 6816) ((-1271 . -660) 6713) ((-1250 . -660) 6565) ((-1250 . -926) NIL) ((-1217 . -625) 6547) ((-1121 . -437) 6531) ((-1121 . -379) 6510) ((-398 . -628) 6494) ((-334 . -628) 6478) ((-1209 . -102) T) ((-1115 . -93) T) ((-1082 . -1236) T) ((-1106 . -658) 6388) ((-1081 . -1075) 6375) ((-1081 . -111) 6360) ((-969 . -1075) 6203) ((-969 . -111) 6032) ((-794 . -658) 5942) ((-792 . -658) 5852) ((-635 . -1070) 5839) ((-676 . -729) 5823) ((-635 . -652) 5810) ((-493 . -1075) 5653) ((-489 . -374) T) ((-473 . -658) 5609) ((-466 . -658) 5519) ((-227 . -628) 5469) ((-366 . -729) 5421) ((-363 . -729) 5373) ((-118 . -1070) 5318) ((-355 . -729) 5270) ((-273 . -729) 5119) ((-253 . -729) 4968) ((-1109 . -93) T) ((-1092 . -93) T) ((-118 . -652) 4913) ((-1085 . -93) T) ((-960 . -663) 4897) ((-1076 . -1119) 4875) ((-493 . -111) 4704) ((-1055 . -93) T) ((-1038 . -93) T) ((-960 . -384) 4688) ((-254 . -102) T) ((-980 . -47) 4667) ((-74 . -625) 4649) ((-724 . -237) T) ((-722 . -102) T) ((-711 . -102) T) ((-1 . -1119) T) ((-633 . -1131) T) ((-1107 . -625) 4631) ((-638 . -93) T) ((-1095 . -625) 4613) ((-927 . -729) 4578) ((-127 . -501) 4562) ((-495 . -93) T) ((-633 . -23) T) ((-402 . -23) T) ((-87 . -1236) T) ((-220 . -93) T) ((-620 . -625) 4544) ((-620 . -626) NIL) ((-487 . -626) NIL) ((-487 . -625) 4526) ((-362 . -25) T) ((-362 . -21) T) ((-50 . -658) 4485) ((-523 . -1119) T) ((-519 . -1119) T) ((-128 . -319) 4423) ((-122 . -319) 4361) ((-608 . -660) 4335) ((-607 . -660) 4260) ((-593 . -658) 4210) ((-227 . -1068) T) ((-530 . -658) 4140) ((-390 . -1021) T) ((-227 . -248) T) ((-227 . -238) T) ((-1081 . -628) 4112) ((-1081 . -630) 4093) ((-975 . -626) 4054) ((-975 . -625) 3966) ((-969 . -628) 3755) ((-882 . -38) 3742) ((-725 . -628) 3692) ((-1270 . -300) 3643) ((-1249 . -300) 3594) ((-493 . -628) 3379) ((-1139 . -464) T) ((-514 . -862) T) ((-326 . -1158) 3358) ((-1018 . -148) 3337) ((-1018 . -146) 3316) ((-507 . -319) 3303) ((-305 . -1212) 3282) ((-1203 . -625) 3264) ((-1202 . -625) 3246) ((-1201 . -625) 3228) ((-883 . -1075) 3173) ((-489 . -1131) T) ((-140 . -847) 3155) ((-115 . -847) 3136) ((-635 . -102) T) ((-1222 . -501) 3120) ((-258 . -379) 3099) ((-257 . -379) 3078) ((-1081 . -1068) T) ((-305 . -107) 3028) ((-131 . -625) 3010) ((-129 . -626) NIL) ((-129 . -625) 2954) ((-118 . -102) T) ((-969 . -1068) T) ((-883 . -111) 2883) ((-489 . -23) T) ((-465 . -1236) T) ((-493 . -1068) T) ((-1081 . -238) T) ((-969 . -336) 2852) ((-40 . -917) 2761) ((-493 . -336) 2718) ((-366 . -174) T) ((-363 . -174) T) ((-355 . -174) T) ((-273 . -174) 2629) ((-253 . -174) 2540) ((-980 . -1057) 2436) ((-529 . -502) 2417) ((-747 . -1057) 2388) ((-529 . -625) 2354) ((-430 . -1236) T) ((-1124 . -102) T) ((-1111 . -625) 2313) ((-1053 . -625) 2295) ((-706 . -1070) 2245) ((-1299 . -152) 2229) ((-1297 . -628) 2210) ((-1296 . -628) 2191) ((-1291 . -625) 2173) ((-1278 . -738) T) ((-706 . -652) 2123) ((-1271 . -738) T) ((-1250 . -803) NIL) ((-1250 . -806) NIL) ((-171 . -1075) 2033) ((-927 . -174) T) ((-883 . -628) 1963) ((-1250 . -738) T) ((-1022 . -353) 1937) ((-225 . -658) 1889) ((-1019 . -526) 1822) ((-855 . -862) 1801) ((-576 . -1171) T) ((-486 . -300) 1752) ((-608 . -738) T) ((-372 . -625) 1734) ((-332 . -625) 1716) ((-430 . -1057) 1612) ((-607 . -738) T) ((-419 . -862) 1563) ((-171 . -111) 1459) ((-845 . -132) 1411) ((-749 . -152) 1395) ((-1286 . -319) 1333) ((-499 . -317) T) ((-390 . -625) 1300) ((-532 . -1029) 1284) ((-390 . -626) 1198) ((-219 . -317) T) ((-142 . -152) 1180) ((-726 . -296) 1159) ((-499 . -1041) T) ((-592 . -38) 1146) ((-576 . -38) 1133) ((-507 . -38) 1098) ((-219 . -1041) T) ((-883 . -1068) T) ((-848 . -625) 1080) ((-839 . -625) 1062) ((-837 . -625) 1044) ((-828 . -926) 1023) ((-1310 . -1131) T) ((-1259 . -1075) 846) ((-867 . -1075) 830) ((-883 . -248) T) ((-883 . -238) NIL) ((-701 . -1236) T) ((-1310 . -23) T) ((-828 . -660) 719) ((-562 . -1236) T) ((-430 . -349) 703) ((-583 . -1075) 690) ((-1259 . -111) 499) ((-713 . -651) 481) ((-867 . -111) 460) ((-392 . -23) T) ((-171 . -628) 238) ((-1208 . -526) 30) ((-888 . -1119) T) ((-693 . -1119) T) ((-688 . -1119) T) ((-674 . -1119) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 8abfc6e6..03c94a1d 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3486501422) -(4465 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3486517508) +(4464 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -430,7 +430,7 @@ |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepAst| |StepThrough| |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2| - |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable| + |StreamFunctions3| |Stream| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctionsNonCommutative| |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| @@ -488,665 +488,671 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |YoungDiagram| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |changeThreshhold| |imagK| |setleft!| |property| - |length| |OMserve| |string?| |toseSquareFreePart| |primeFrobenius| - |basisOfCentroid| |extendedEuclidean| |kernels| |linearDependence| - |getProperties| |leftScalarTimes!| |scripts| |ord| |reorder| |linear?| - |df2mf| |overbar| |maxrank| |ocf2ocdf| |operator| |acoshIfCan| - |clipParametric| LODO2FUN |const| |tanh2coth| |leadingExponent| - |resultantEuclideannaif| |dequeue| |componentUpperBound| |delta| - |changeName| |dfRange| |multiset| |doubleRank| |alternatingGroup| - |semiLastSubResultantEuclidean| |commutator| |reify| |primitivePart| - |univariate| |direction| |arg1| |zeroSquareMatrix| |po| - |viewDeltaXDefault| |modifyPoint| |leftAlternative?| |scale| - |gcdPrimitive| |arg2| |denominators| |subspace| |applyRules| - |categoryMode| |pair?| |stoseInvertibleSet| |realRoots| |digamma| - |interval| |push| |putProperty| |fortranReal| |wholeRagits| |element?| - |unvectorise| |monicRightDivide| |subresultantSequence| |factor| - |drawCurves| |conditions| |pToDmp| |trim| |OMgetEndApp| |cycleTail| - |aromberg| |exponentialOrder| |euclideanGroebner| |c02agf| |sqrt| - |match| |ran| |internalSubPolSet?| |expressIdealMember| |userOrdered?| - |removeRoughlyRedundantFactorsInPol| |setPoly| |squareFreePrim| |is?| - |totalfract| |algDsolve| |real| |increment| |complete| - |readLineIfCan!| |more?| |tree| |lazyResidueClass| |read!| |makeEq| - |leftRegularRepresentation| |e02bef| |lambda| |algebraicOf| |imag| - |radicalOfLeftTraceForm| |viewSizeDefault| |doubleResultant| - |curryRight| |list?| |nthFlag| Y |OMParseError?| |removeZeroes| - |padecf| |maxRowIndex| |directProduct| |harmonic| |inverseColeman| - |critM| |tanSum| |linearlyDependent?| |getProperty| |asinIfCan| - |solve1| |monicDecomposeIfCan| |alternative?| |isAnd| |fibonacci| - |noValueMode| |listexp| |csc2sin| |tubePlot| |branchPoint?| |swap| - |curve?| |brace| |pointColor| |quasiRegular?| |polyRicDE| |B1solve| - |d03faf| |rarrow| |meshPar1Var| |cosh2sech| |basisOfRightNucloid| - |expPot| |destruct| |absolutelyIrreducible?| |ip4Address| - |semiResultantEuclidean2| |repeating| |OMputBind| |polygon| - |setTopPredicate| |extendIfCan| |hypergeometric0F1| - |showTheSymbolTable| |nonLinearPart| |localIntegralBasis| |cotIfCan| - |antisymmetric?| |tValues| |evaluate| |genericRightTraceForm| - |iterationVar| |denominator| |RittWuCompare| |ptree| - |commutativeEquality| |mightHaveRoots| |edf2df| |relativeApprox| - |minordet| |flatten| |finiteBound| |showAllElements| |rootBound| - |component| |plus| |rename| |convert| |upperCase?| |iiasec| |d01apf| - |s18adf| |modTree| |euclideanNormalForm| |unaryFunction| |f07fef| - |hasTopPredicate?| |getCurve| |lp| |options| |monomial| |readUInt8!| - |fortranTypeOf| |expint| |power| |mainExpression| |divideIfCan!| - |laguerreL| |pointData| |eigenMatrix| |subscript| |multivariate| - |s13aaf| |before?| |traceMatrix| |isOr| |numericIfCan| |variable?| - |univariatePolynomialsGcds| |simplifyLog| |order| |times| - |currentScope| |variables| |elliptic?| |sechIfCan| |sylvesterMatrix| - |s20adf| |failed?| |curve| |multiple?| |viewDefaults| |chebyshevT| - |semiIndiceSubResultantEuclidean| |string| |f02aff| |primitiveElement| - |continuedFraction| |cycleSplit!| |schwerpunkt| |iiasin| |zerosOf| - |fortranComplex| |completeHensel| |outputList| |tanAn| |prologue| - |perfectNthRoot| |evenInfiniteProduct| |modulus| |compactFraction| - |OMputSymbol| |setAdaptive| |showScalarValues| |rur| |swapRows!| - |rewriteSetWithReduction| |genericRightDiscriminant| |cyclicEqual?| - |environment| |f07adf| |acotIfCan| |rightRank| |realEigenvalues| - |roughEqualIdeals?| |part?| |completeHermite| |monom| |divisor| - |squareFreePart| |sin?| |squareFreePolynomial| |poisson| |elliptic| - |rotatey| |sturmSequence| |inR?| |dominantTerm| |taylor| |reduction| - |kmax| |alternating| |ldf2vmf| |solveInField| |outerProduct| - |OMputEndObject| |atoms| |selectPDERoutines| |collectUpper| |open?| - |laurent| |ddFact| |mix| |randomLC| |e02zaf| |printingInfo?| - |isobaric?| |variable| |pade| |headRemainder| |startTableGcd!| - |common| |clipSurface| |puiseux| |measure2Result| |rspace| |npcoef| - |numberOfVariables| |separateFactors| |close| |e02ajf| |iterators| - |stopTable!| |laurentIfCan| |iibinom| |euler| F2FG |nextColeman| - |factorset| |hostByteOrder| |constantToUnaryFunction| - |rewriteIdealWithHeadRemainder| |s14baf| |OMsend| |setEpilogue!| - |monicRightFactorIfCan| |inv| |df2ef| |minGbasis| |leastPower| - |chebyshevU| |outputBinaryFile| |display| |iifact| |An| - |rationalIfCan| |insertionSort!| |terms| |countable?| |ground?| - |declare!| |nullity| |dot| |iiatanh| |f01ref| - |primPartElseUnitCanonical| |leviCivitaSymbol| |s17def| |arity| - |computeInt| |getIdentifier| |zeroOf| |ground| |f2df| |primlimintfrac| - |polarCoordinates| |makeYoungTableau| |nextsubResultant2| - |fortranDouble| |rischNormalize| |startTableInvSet!| |extract!| - |eulerPhi| |leadingMonomial| |mapExpon| |rk4f| - |leftCharacteristicPolynomial| |middle| |integralMatrix| |scan| - |rootProduct| |problemPoints| |removeDuplicates| |c06fqf| - |leadingCoefficient| |d01akf| |fortranCompilerName| |power!| - |setStatus| |cTanh| |showSummary| |irreducibleFactor| - |SturmHabichtCoefficients| |stronglyReduced?| |basisOfLeftNucloid| - |btwFact| |primitiveMonomials| |zero| |skewSFunction| |lex| - |stoseSquareFreePart| |epilogue| |input| |pastel| |rdHack1| - |flagFactor| |leftRecip| |oddintegers| |lazyGintegrate| |reductum| - |OMgetFloat| |probablyZeroDim?| |quotient| |triangularSystems| - |library| |abelianGroup| |fixedDivisor| |ScanFloatIgnoreSpaces| - |OMputApp| |lflimitedint| |complexExpand| |And| |setnext!| |value| - |semiResultantEuclidean1| |tryFunctionalDecomposition| |triangSolve| - |addPoint2| |totalDegree| |getSyntaxFormsFromFile| - |univariatePolynomial| |sortConstraints| |f01maf| |Or| - |integralDerivationMatrix| |localAbs| |limitedint| |segment| - |OMgetEndObject| |optimize| |trigs2explogs| |showAttributes| |members| - |crushedSet| |purelyAlgebraicLeadingMonomial?| |numberOfDivisors| - |myDegree| |Not| |subst| |linGenPos| |copy!| |findConstructor| - |binomial| |degreeSubResultantEuclidean| |column| |qfactor| - |testModulus| |factorial| |selectAndPolynomials| |iomode| - |clipPointsDefault| |ranges| |kernel| |e01bff| |singularitiesOf| - |binaryTree| |hasSolution?| |OMgetEndAttr| |root| |assert| |getOrder| - |copies| |integralBasisAtInfinity| |selectODEIVPRoutines| |groebSolve| - |list| |routines| |colorFunction| |iicsc| |euclideanSize| |ode1| - |conditionP| |lhs| |draw| |putColorInfo| |mappingMode| - |numberOfCycles| |f04qaf| |insertMatch| |cAcot| |denomLODE| |getCode| - |coerceImages| |d02bbf| |Beta| |f01qcf| |rhs| |iiatan| |setColumn!| - |scripted?| |nextNormalPrimitivePoly| |UP2ifCan| |one?| |coordinate| - |leadingIdeal| |orbits| |unmakeSUP| |cAsinh| - |indicialEquationAtInfinity| |distdfact| |leftZero| - |branchPointAtInfinity?| |updatF| |li| |radicalRoots| |currentEnv| - |packageCall| |c05pbf| |wordsForStrongGenerators| |integerIfCan| - |resultantEuclidean| |objects| |iiacosh| |numberOfMonomials| - |cyclotomicFactorization| |dictionary| |regime| |numberOfComponents| - |elColumn2!| |resultantReduit| |goto| |OMsupportsCD?| |makeObject| - |base| |e04fdf| |solve| |printCode| |normalize| |fractionPart| - |pushup| |critB| |PDESolve| |charClass| |invertible?| |GospersMethod| - |uniform| |realSolve| |closed| |coef| |readable?| |nextPartition| - |messagePrint| |solveRetract| |iiacot| |gcdprim| |find| |iitanh| - |inputBinaryFile| |cPower| |permutations| |mkIntegral| |rubiksGroup| - |unrankImproperPartitions0| |scalarTypeOf| |constantIfCan| - |constructor| |stoseLastSubResultant| |headReduced?| - |listRepresentation| |LazardQuotient2| |splitSquarefree| |newLine| - |OMputEndApp| |realZeros| |viewThetaDefault| |musserTrials| - |interpretString| |highCommonTerms| |s20acf| |normDeriv2| - |createRandomElement| |wrregime| |OMgetBind| |leftNorm| - |semiResultantReduitEuclidean| |rectangularMatrix| |lazyPseudoDivide| - |algebraicVariables| |integralCoordinates| |merge!| |digit| - |magnitude| |coerceListOfPairs| |pascalTriangle| |Si| |f02wef| - |topPredicate| |eq?| |flexibleArray| |s18def| |useSingleFactorBound| - |integral| |safeFloor| |twist| |test| |c02aff| |coth2trigh| - |minimumDegree| |vectorise| |c06gcf| |numberOfFractionalTerms| - |writable?| UTS2UP |OMmakeConn| |universe| |realElementary| |d03edf| - |bivariate?| |meatAxe| |ParCond| |isAbsolutelyIrreducible?| - |oneDimensionalArray| |exponents| |droot| |s17ahf| |sayLength| |width| - |rootOf| |trunc| |dim| |externalList| |bits| |lazyIrreducibleFactors| - |critMonD1| |ksec| |compiledFunction| |e02baf| |pureLex| |OMgetAtp| - |compose| |innerEigenvectors| |outputForm| |numberOfNormalPoly| - |rightQuotient| |exteriorDifferential| |partialFraction| |partitions| - |discriminant| |d01fcf| |s13acf| |cCosh| |startStats!| - |pmComplexintegrate| |minColIndex| |zero?| |secIfCan| |rootSimp| - |compound?| |critpOrder| |OMencodingXML| |type| |indicialEquation| - |exponential| |makeMulti| |expt| |prefix| |setRealSteps| |rem| - |e02akf| |complexIntegrate| |plus!| |number?| |table| |blankSeparate| - |predicate| |showFortranOutputStack| |octon| |setLabelValue| |quo| - |infix| |drawComplexVectorField| |removeSinSq| |scopes| - |stopTableInvSet!| |new| |antisymmetricTensors| |splitNodeOf!| - |readInt32!| |nil?| |viewPosDefault| |obj| |basis| - |representationType| |f02agf| |squareFreeLexTriangular| |optional| - |subCase?| |rules| |inverseIntegralMatrixAtInfinity| - |OMUnknownSymbol?| |getlo| |deepExpand| |rCoord| |chineseRemainder| - |div| |index?| |cache| |even?| |isPlus| |substitute| |slash| |d01alf| - |intensity| |e01saf| |exquo| |internalIntegrate| |setScreenResolution| - |f01qef| |sh| |zeroDimensional?| |diagonals| |logGamma| |prevPrime| - |binding| |OMgetAttr| |stiffnessAndStabilityOfODEIF| ~= |hMonic| - |palginfieldint| |erf| |directSum| |monicModulo| |purelyAlgebraic?| - |yCoordinates| |subQuasiComponent?| |children| |lyndonIfCan| - |cyclicCopy| |unknown| |cAtan| |#| |reducedQPowers| |palgint| |iExquo| - |pattern| |printTypes| |removeSinhSq| |meshFun2Var| |getGraph| - |primeFactor| |determinant| |symmetricSquare| ~ |OMgetSymbol| - |fortranInteger| |commaSeparate| |getRef| |closed?| |hconcat| - |integers| |formula| |infieldint| |dilog| |rightMult| |d01aqf| - |bracket| |solveLinearPolynomialEquation| |cot2trig| |lowerCase?| - |minIndex| |f01mcf| |getPickedPoints| |torsion?| |physicalLength| - |dequeue!| |nextItem| |sin| |points| |s17dhf| |outputArgs| - |parameters| |closedCurve| |resetNew| |leftDivide| |isList| - |lfinfieldint| |/\\| |e04ycf| |level| |realEigenvectors| |message| - |cos| |squareFree| |ratDsolve| |tanhIfCan| |acschIfCan| - |LazardQuotient| |minrank| |initials| |\\/| |chvar| |OMReadError?| - |mapUnivariateIfCan| |tan| |appendPoint| |cAcosh| |left| - |currentCategoryFrame| |concat!| |addMatchRestricted| |setref| - |conical| |exprHasWeightCosWXorSinWX| |sPol| |s17dlf| |cot| |cot2tan| - |hasoln| |nrows| |complementaryBasis| |right| |mkAnswer| |OMgetBVar| - |search| |isImplies| |ideal| |deleteProperty!| |permutation| |pow| - |linearMatrix| |sec| |zeroDimPrimary?| |ncols| |lowerPolynomial| - |fixedPoint| |iprint| |squareTop| |readUInt32!| |toScale| |cschIfCan| - |d02kef| |csc| |nextPrimitivePoly| |anticoord| |heapSort| - |perfectSqrt| |airyAi| |OMgetEndBind| |pop!| |withPredicates| |lazy?| - |polyred| |d01amf| |asin| |central?| |fprindINFO| |critMTonD1| - |palgLODE0| |setPrologue!| |lazyIntegrate| |karatsubaDivide| |dual| - |balancedFactorisation| |iisqrt3| |normal?| |acos| |dihedral| - |pseudoRemainder| |just| |changeWeightLevel| - |tableForDiscreteLogarithm| |getOperands| |conditionsForIdempotents| - |contains?| |e02aef| |companionBlocks| |atan| |linearPart| - |integralBasis| |symbolTable| |univariate?| |makeSUP| |any?| |paren| - |algint| |double?| |chiSquare| |acot| |autoReduced?| |att2Result| - |refine| |iilog| |cscIfCan| |OMgetEndBVar| |quartic| |hasPredicate?| - |quadraticNorm| |setMaxPoints3D| |incrementKthElement| |asec| - |mapCoef| |lfextlimint| |complexRoots| |pushFortranOutputStack| - |cycleLength| |localReal?| |cardinality| |mat| |external?| |powmod| - |SturmHabichtMultiple| |outputAsTex| |acsc| F |primintegrate| - |lazyPseudoQuotient| |irreducible?| |popFortranOutputStack| - |increasePrecision| |bombieriNorm| |bright| |setAttributeButtonStep| - |showTheIFTable| |outputSpacing| |algintegrate| |divide| |mainContent| - |deepestInitial| |sinh| |hermiteH| |wordInStrongGenerators| - |basisOfRightNucleus| |oblateSpheroidal| |toseLastSubResultant| - |curryLeft| |readLine!| |checkPrecision| |selectIntegrationRoutines| - |hspace| |size| |pol| |substring?| |precision| |cycleEntry| - |normalizedDivide| |cosh| |systemCommand| |truncate| - |integralAtInfinity?| |c06ebf| |symbol| |eval| |hitherPlane| - |commutative?| |adaptive| |bringDown| |mindegTerm| |mainForm| |tanh| - |lquo| |invmod| |torsionIfCan| |thenBranch| |expression| - |expextendedint| |createGenericMatrix| |palgintegrate| - |stripCommentsAndBlanks| |binarySearchTree| |suffix?| |sumOfSquares| - |lllip| |expIfCan| |coth| |removeRoughlyRedundantFactorsInContents| - |shape| |integer| |elRow1!| |pushucoef| |expintfldpoly| |f04atf| - |separant| |iisin| |pomopo!| |minimize| |orthonormalBasis| |sech| - |inverse| |normal| |error| |OMopenFile| |weierstrass| |setleaves!| - |laguerre| |binary| |prefix?| |prepareDecompose| - |numericalOptimization| |linearPolynomials| |csch| |dimensionsOf| - |removeCoshSq| |brillhartIrreducible?| |primaryDecomp| |OMgetError| - |viewpoint| |ParCondList| |stirling1| |oddlambert| |asinh| - |listOfLists| |redPo| |lazyEvaluate| |pr2dmp| |stFunc2| |s15aef| - |splitDenominator| |generateIrredPoly| |iicos| |deepestTail| FG2F - |acosh| |OMclose| |OMsupportsSymbol?| |edf2efi| |collectUnder| - |inrootof| |subresultantVector| |f01rdf| |numberOfHues| |listLoops| - |stoseIntegralLastSubResultant| |atanh| |dualSignature| |mathieu11| - |imagJ| |lift| |whitePoint| |d01bbf| |cyclicParents| - |permutationGroup| |extractTop!| |makeSeries| |pseudoQuotient| |acoth| - |rightFactorIfCan| |df2fi| |viewPhiDefault| |node| |LyndonBasis| - |stFuncN| |reduce| |optional?| |insert!| |bandedJacobian| - |extractIfCan| |keys| |stoseInvertible?reg| |bernoulli| |color| - |asech| |degree| |nextLatticePermutation| |key| |s17agf| |prod| - |createNormalPrimitivePoly| |identityMatrix| |s18aef| |infix?| - |retract| |rightTrace| |elseBranch| |setelt!| |removeConstantTerm| - |e04gcf| |byteBuffer| |radPoly| |s19aaf| |redpps| |unravel| |filename| - |shrinkable| |mask| |vark| |numeric| |d02cjf| |multiple| - |constantLeft| |node?| |sort| |padicFraction| |aLinear| |newReduc| - |elem?| |clip| |tanQ| |radical| |qPot| |applyQuote| |setDifference| - |sequences| |selectMultiDimensionalRoutines| |e01bhf| |baseRDE| - |cycle| |schema| |genericRightMinimalPolynomial| |leftUnits| - |intcompBasis| |gcdcofact| |returnTypeOf| |OMgetString| |parse| |null| - |genericLeftTraceForm| |setTex!| |shanksDiscLogAlgorithm| - |complexLimit| |light| |point?| |getMatch| |coefficient| - |HermiteIntegrate| |singRicDE| |not| |module| |primextendedint| - |computeCycleLength| |horizConcat| |cAcoth| |qualifier| |pToHdmp| - |tanIfCan| |ruleset| |createLowComplexityTable| |inverseLaplace| |and| - |random| |createMultiplicationTable| |ptFunc| |swap!| |totalLex| - |measure| |birth| |multinomial| |symmetric?| |idealiserMatrix| - |airyBi| |or| |jokerMode| |mainVariable?| |elementary| - |internalInfRittWu?| |subscriptedVariables| |makeViewport2D| |resize| - |palgextint0| |setfirst!| |gensym| |e04naf| |shellSort| |delete| - |characteristic| |leftTraceMatrix| |drawStyle| |doubleDisc| - |setLegalFortranSourceExtensions| |taylorQuoByVar| |map| |square?| - |suchThat| |karatsuba| |SturmHabicht| |loopPoints| |weight| - |solveLinear| |cartesian| |recolor| |setStatus!| |subResultantGcd| - |retractable?| |dmpToP| |hostPlatform| |cyclic?| |byte| ** |bindings| - |e01sff| |LagrangeInterpolation| |hdmpToDmp| |callForm?| |imaginary| - |removeCosSq| |void| |monomials| |pquo| |sincos| |createNormalElement| - |lexTriangular| |scaleRoots| |stFunc1| |equation| |clikeUniv| - |zeroSetSplitIntoTriangularSystems| |freeOf?| |rationalPower| |e02def| - |rightFactorCandidate| |totalDifferential| |complexSolve| |var2Steps| - |getZechTable| |imagE| |partialDenominators| |d02gaf| |say| |minPoly| - |ODESolve| |rotate!| |idealSimplify| |computeBasis| |firstNumer| - |delete!| |OMputInteger| |OMputError| |noLinearFactor?| - |divisorCascade| |groebnerIdeal| |removeRedundantFactorsInPols| - |ef2edf| |jacobian| |sqfrFactor| |addPointLast| |LiePoly| |approxSqrt| - |iipow| |normalDenom| |socf2socdf| |discreteLog| |rightDiscriminant| - |PollardSmallFactor| |index| |reset| |s17aef| |center| |nullary| - |fractRadix| |d01gaf| |opeval| |decrease| |c06ecf| - |leadingCoefficientRicDE| |completeSmith| |parseString| - |extractClosed| |unparse| |mvar| |equiv| |zeroSetSplit| - |hyperelliptic| |omError| |write| |scanOneDimSubspaces| - |rootDirectory| |unitCanonical| |components| |fullPartialFraction| - |int| |taylorIfCan| |in?| |shiftLeft| |maxdeg| |identity| |generator| - |pdf2df| |save| |irreducibleRepresentation| |pair| |move| - |extensionDegree| |tRange| |boundOfCauchy| |unary?| |ReduceOrder| - |setEmpty!| |nextsousResultant2| |rischDEsys| |leftPower| |setvalue!| - |subTriSet?| |positiveSolve| |rightLcm| |setMaxPoints| - |exportedOperators| |goodPoint| |pushNewContour| |numerators| - |evaluateInverse| |iicosh| |moebius| |nextIrreduciblePoly| |OMputAttr| - |pointLists| |s17akf| |green| |jordanAlgebra?| |s14abf| |log10| - |OMgetApp| |reducedDiscriminant| SEGMENT |setMinPoints| |besselK| - |OMgetVariable| |roughSubIdeal?| |besselI| |interactiveEnv| - |fixedPoints| |decomposeFunc| |fintegrate| |nextPrime| |lifting| - |indiceSubResultant| |inf| |split!| |stoseInternalLastSubResultant| - |OMputEndAttr| |usingTable?| |partialNumerators| |BasicMethod| - |integralLastSubResultant| |space| |e02dcf| |isMult| |empty| - |printInfo!| |transpose| |shiftRoots| |setIntersection| |f02aaf| - |showArrayValues| |lazyPremWithDefault| |multiEuclidean| |failed| - |indicialEquations| |whatInfinity| |quoted?| |parametric?| |minus!| - |parabolic| |adaptive?| |cosIfCan| |incr| |moduleSum| |delay| - |rowEchelon| |tab| |rotate| |permutationRepresentation| |sec2cos| - |isOpen?| |constant| |sn| |hi| |cSin| |shufflein| |eigenvectors| - |halfExtendedSubResultantGcd1| |varList| |innerSolve1| |reflect| - |OMread| |fortran| |getOperator| |makeCrit| |nand| - |combineFeatureCompatibility| |groebner| |symmetricGroup| |makeSin| - |zCoord| |apply| |squareFreeFactors| |iitan| RF2UTS |degreePartition| - |s17acf| |bivariatePolynomials| |OMcloseConn| |sin2csc| |singular?| - |nil| |first| |imports| |log| |explimitedint| |printInfo| - |rewriteSetByReducingWithParticularGenerators| |ref| |lazyPrem| - |rootNormalize| |createIrreduciblePoly| |invertibleElseSplit?| |rest| - |intermediateResultsIF| |bumptab| |f2st| |degreeSubResultant| - |variationOfParameters| |OMreadStr| |numFunEvals3D| |setClosed| - |basisOfCommutingElements| |exQuo| |associative?| |graeffe| |prime?| - |max| |coHeight| |approximate| |setright!| |s18acf| |mainMonomials| - |completeEchelonBasis| |float| |kovacic| |prindINFO| |OMgetEndAtp| - |algebraicDecompose| |complex| |newSubProgram| |quasiComponent| - |tubePointsDefault| |standardBasisOfCyclicSubmodule| |maxColIndex| - |prinpolINFO| |inverseIntegralMatrix| |sup| |pushdterm| |ode| |f01bsf| - |approximants| |basicSet| |curveColor| |subNode?| |meshPar2Var| - |mappingAst| |showIntensityFunctions| |getBadValues| |vedf2vef| - |explicitEntries?| |semiSubResultantGcdEuclidean1| |sorted?| |e02ddf| - |graphStates| |dAndcExp| |removeRoughlyRedundantFactorsInPols| - |ffactor| |linearlyDependentOverZ?| |uncouplingMatrices| - |listBranches| |tensorProduct| |chiSquare1| |explicitlyEmpty?| - |recoverAfterFail| |fortranLiteral| |intPatternMatch| |over| |fTable| - |OMputEndAtp| |diagonalMatrix| |sizePascalTriangle| |s21baf| |iiGamma| - |iiabs| |f04faf| |gradient| |cCoth| |f04axf| |iisech| |gbasis| - |generate| |cCot| |collectQuasiMonic| |times!| |semicolonSeparate| - |extendedSubResultantGcd| |setValue!| |countRealRootsMultiple| - |closedCurve?| |tanintegrate| |optpair| |OMputEndBVar| |maxPoints3D| - |associatedEquations| |sncndn| |trace2PowMod| |infiniteProduct| - |transcendentalDecompose| |printHeader| |dihedralGroup| |vspace| - |rootPower| |incrementBy| |algebraicCoefficients?| |powern| - |setImagSteps| GE |typeList| |hermite| |argument| |simplifyExp| - |irCtor| |tanNa| |HenselLift| |expand| |lfunc| |divergence| |rroot| GT - |linSolve| |tablePow| |makeResult| |sech2cosh| |eulerE| |findBinding| - |size?| |f01brf| |numericalIntegration| |contours| LE - |definingPolynomial| UP2UTS |tanh2trigh| |extend| |digit?| |midpoints| - |logical?| |d03eef| |leastMonomial| |diagonal?| LT |concat| - |trapezoidal| |symbolIfCan| |errorInfo| |wordInGenerators| |maxrow| - |imagj| |f01qdf| |polygon?| |OMencodingSGML| |rightGcd| |minset| - |monic?| |OMputAtp| |extractIndex| |lieAdmissible?| |infinite?| - |complex?| |e01daf| |expr| |getConstant| |infinityNorm| - |explogs2trigs| |isQuotient| |collect| |tracePowMod| |low| - |binaryFunction| |OMunhandledSymbol| |alphanumeric| - |definingEquations| |pushdown| |cCos| |matrixConcat3D| |symFunc| - |raisePolynomial| |cSinh| |diagonalProduct| |outputMeasure| |dmp2rfi| - |createLowComplexityNormalBasis| |remove| |KrullNumber| |aQuartic| - |OMputBVar| |mathieu12| |exprToXXP| |useEisensteinCriterion?| - |factorOfDegree| |entry| |tubePoints| |subResultantGcdEuclidean| - |spherical| |overlap| |initializeGroupForWordProblem| - |viewDeltaYDefault| |thetaCoord| |submod| |pointColorDefault| - |quasiAlgebraicSet| |inconsistent?| |last| |rk4a| |stoseInvertible?| - |mapUnivariate| |cross| |Gamma| |fill!| |stronglyReduce| |range| - |rowEchLocal| |assoc| |infieldIntegrate| |stoseInvertible?sqfreg| - |writeByte!| |eyeDistance| |height| |script| |headAst| - |axesColorDefault| |compdegd| |triangular?| |f02fjf| - |var2StepsDefault| |rewriteIdealWithQuasiMonicGenerators| - |invmultisect| |fortranCharacter| |roughBasicSet| - |reciprocalPolynomial| |zeroDim?| |f04mcf| |s15adf| |OMgetInteger| - |semiDegreeSubResultantEuclidean| |heap| |satisfy?| |associates?| - |reduceByQuasiMonic| |lexico| |writeInt8!| |zoom| |elements| - |halfExtendedSubResultantGcd2| |id| |permanent| |Lazard| |untab| - |fixedPointExquo| |tex| |polar| |rischDE| |d02ejf| |f01rcf| - |mainVariables| |denomRicDE| |call| |addmod| |mergeDifference| |lo| - |rightExactQuotient| |parents| |singleFactorBound| |simpson| - |retractIfCan| |bumprow| |selectfirst| |constantCoefficientRicDE| - |d02bhf| |car| |localUnquote| |minPoints| |figureUnits| |duplicates| - |c05nbf| |cup| |youngGroup| |whileLoop| |exprHasAlgebraicWeight| - |jacobiIdentity?| |basisOfNucleus| |replaceKthElement| |exptMod| - |cAcsc| |ListOfTerms| |UnVectorise| |resultant| |radicalEigenvalues| - |rootRadius| |beauzamyBound| |showTheFTable| |unitVector| - |unitNormalize| |mainValue| |subset?| |top| |represents| |lepol| - |randomR| |isTimes| |leadingTerm| |prefixRagits| |iisinh| |hue| - |continue| |expandTrigProducts| |rightTraceMatrix| |setAdaptive3D| - |genericLeftTrace| |totolex| |explicitlyFinite?| |function| - |OMconnInDevice| |derivative| |convergents| |noKaratsuba| |s19adf| - |directory| |tube| |factorSquareFree| |minPol| |bat| |setchildren!| - |asinhIfCan| |supRittWu?| |palgint0| |prolateSpheroidal| |lighting| - |ipow| |rightScalarTimes!| |cyclotomicDecomposition| |lintgcd| - |diophantineSystem| |mesh| |radicalSimplify| |exprToGenUPS| - |rightRecip| |extractBottom!| |OMlistCDs| |cAsech| |palglimint| - |simpsono| |numberOfChildren| |tail| |makeUnit| |factorsOfDegree| - |quadraticForm| |reverseLex| |factorSFBRlcUnit| |replace| |entries| - |internalLastSubResultant| |transcendenceDegree| |rightUnits| - |lagrange| |iisec| |factorList| |declare| |coerceS| - |encodingDirectory| |fixPredicate| |integral?| |nsqfree| |label| - |areEquivalent?| |frobenius| |coefficients| |mulmod| |maxPoints| - |multiplyCoefficients| |supDimElseRittWu?| |typeForm| |odd?| - |BumInSepFFE| |traverse| |setVariableOrder| |bytes| |super| - |principalAncestors| |removeRedundantFactorsInContents| |putGraph| EQ - |setFieldInfo| |cSech| |bezoutMatrix| |plot| |hasHi| GF2FG - |prepareSubResAlgo| |createZechTable| |symmetricPower| - |matrixDimensions| |quadratic?| |less?| |functorData| |f04arf| - |atrapezoidal| |makeprod| |addBadValue| - |removeIrreducibleRedundantFactors| |palglimint0| |conjunction| - |polyRDE| |cAtanh| |preprocess| |mapBivariate| |iicsch| |lcm| - |viewZoomDefault| |distFact| |conjugates| |cAsin| - |unrankImproperPartitions1| |viewport2D| |OMgetEndError| |OMputString| - |nthr| |s17adf| |normFactors| |reverse!| |gethi| |adjoint| - |solveLinearPolynomialEquationByRecursion| |rootSplit| |sub| |iiacoth| - |distance| |option?| |append| |hash| |changeVar| |binomThmExpt| - |gcdPolynomial| |signAround| |option| |rightCharacteristicPolynomial| - |clearTheFTable| |outlineRender| |perfectNthPower?| |gcd| |count| - |category| |diag| |Vectorise| |changeBase| |rangePascalTriangle| - |basisOfCenter| |nonSingularModel| |nthFactor| |false| |cfirst| - |domain| |fractionFreeGauss!| |box| |minimalPolynomial| |lambert| - |positiveRemainder| |ldf2lst| |e02bcf| |exp1| |useEisensteinCriterion| - |package| |lookupFunction| |choosemon| |quasiMonicPolynomials| - |exponent| |exprToUPS| |limitPlus| |isExpt| |recip| |isEquiv| - |consnewpol| |difference| |write!| |drawToScale| |setMinPoints3D| - |intChoose| |e01baf| |radicalEigenvector| |region| |signatureAst| - |normalizeAtInfinity| |exprex| |condition| |largest| |laurentRep| - |print| |symmetricProduct| |dark| |readIfCan!| |dimensions| |belong?| - |numberOfOperations| |factorGroebnerBasis| |outputAsScript| - |decompose| |redPol| |vertConcat| |resolve| |expenseOfEvaluationIF| - |laplacian| |voidMode| |showTheRoutinesTable| |getExplanations| - |prinb| |groebner?| |makeFR| |f04adf| |useNagFunctions| |quote| - |coshIfCan| |yCoord| |clearTable!| |unitsColorDefault| |outputFixed| - |lookup| |basisOfMiddleNucleus| |anfactor| |LyndonWordsList| - |exactQuotient!| |mapGen| |OMencodingBinary| |checkRur| - |resultantnaif| |debug3D| |possiblyInfinite?| |createThreeSpace| - |fullDisplay| |badValues| |updatD| |readInt16!| |checkForZero| - |screenResolution| |subHeight| |morphism| |toseInvertibleSet| - |clearCache| |findCycle| |powerSum| |cCsc| |nodeOf?| |SFunction| - |quasiRegular| |deleteRoutine!| |isConnected?| |sum| |drawComplex| - |merge| |simplifyPower| |relationsIdeal| |nthRootIfCan| |iiasech| - |decreasePrecision| |atom?| |fortranCarriageReturn| |cosSinInfo| - |notelem| |iFTable| |coleman| |coercePreimagesImages| |disjunction| - |initTable!| |clipBoolean| |dec| |normalizeIfCan| |Is| - |patternVariable| |dimensionOfIrreducibleRepresentation| |eq| - |seriesSolve| |blue| |setButtonValue| |factorPolynomial| - |resetVariableOrder| |iter| |cothIfCan| |someBasis| |coordinates| - |latex| |rightDivide| |dmpToHdmp| |reducedContinuedFraction| |every?| - |perfectSquare?| |style| |modularFactor| |elRow2!| |matrix| |shift| - |stoseInvertibleSetsqfreg| |c06frf| |f02akf| |bfKeys| |mainMonomial| - |step| |characteristicSerie| |decimal| |imagI| |solid| |ignore?| - |yellow| |ScanRoman| |f04maf| |mirror| |setErrorBound| |has?| - |partialQuotients| |ravel| |operation| |makeop| - |unprotectedRemoveRedundantFactors| |sinhcosh| |htrigs| |f07fdf| - |ScanFloatIgnoreSpacesIfCan| |supersub| |ratDenom| |rangeIsFinite| - |cn| |compile| |approxNthRoot| |red| |reshape| - |factorSquareFreeByRecursion| |check| |leftUnit| |UpTriBddDenomInv| - |pointColorPalette| |outputFloating| |makeTerm| |OMbindTCP| |mapdiv| - |systemSizeIF| |create| |setRow!| |complexNumericIfCan| |logpart| - |roughBase?| |branchIfCan| |cSec| |sinh2csch| |zeroDimPrime?| - |separate| |exp| |leftFactor| |nthRoot| |stoseInvertibleSetreg| - |second| |linkToFortran| |sumOfDivisors| |inRadical?| |connect| - |sort!| |trailingCoefficient| |acosIfCan| |internalSubQuasiComponent?| - |deref| |third| |generic| |leadingSupport| |subResultantChain| - |insert| |empty?| |makeFloatFunction| |units| |nullary?| - |extractSplittingLeaf| |inGroundField?| |medialSet| |genus| |romberg| - |polygamma| |update| |enterInCache| |hex| |iiexp| |f02axf| - |controlPanel| |specialTrigs| |iiperm| |product| |double| - |linearAssociatedOrder| |shallowExpand| |mainCoefficients| |tableau| - |d01asf| |startTable!| |fglmIfCan| |selectOrPolynomials| |besselY| - |generalizedInverse| |upperCase| |mainVariable| |signature| - |graphState| |palgLODE| |leftExtendedGcd| |d01ajf| |rk4qc| - |symmetricTensors| |s01eaf| |bumptab1| |cyclePartition| |edf2fi| |Ci| - |setOrder| |changeNameToObjf| |point| |makeSketch| |factor1| - |generalizedEigenvector| |polCase| |abs| |code| |roughUnitIdeal?| - |character?| |s19acf| |zag| |complexZeros| |sumOfKthPowerDivisors| - |create3Space| |irreducibleFactors| |position| |c06ekf| |filterWhile| - |viewWriteAvailable| |reducedForm| |startPolynomial| |zeroVector| - |noncommutativeJordanAlgebra?| |critBonD| |iidprod| - |solveLinearPolynomialEquationByFractions| |parametersOf| - |filterUntil| |leader| |df2st| |getMultiplicationMatrix| - |lastSubResultantEuclidean| |hexDigit?| |series| - |rationalApproximation| |colorDef| |critT| |cAcsch| |cdr| |select| - |cycles| |f02adf| |baseRDEsys| |sizeMultiplication| |setProperty| - |shallowCopy| |e02ahf| |uniform01| |graphImage| - |univariatePolynomials| |inHallBasis?| |showAll?| |sqfree| - |multiEuclideanTree| |outputAsFortran| |initial| |block| |FormatRoman| - |setlast!| |coth2tanh| |f02bjf| |plotPolar| |powers| - |basisOfLeftNucleus| |setsubMatrix!| |scalarMatrix| |rightZero| - |setOfMinN| |alphabetic?| |neglist| |lazyVariations| |integerBound| - |reopen!| |lifting1| |min| |wreath| |toseInvertible?| |e02bbf| - |tubeRadiusDefault| |corrPoly| |fmecg| |fortranLiteralLine| |unit| - |LowTriBddDenomInv| |badNum| |init| |addiag| |endSubProgram| - |primitive?| |surface| |vconcat| |cAcos| |seriesToOutputForm| |s21bdf| - |e02adf| |normalForm| |inputOutputBinaryFile| |cylindrical| - |clearTheIFTable| |leftRankPolynomial| |compBound| |makeRecord| - |rightRemainder| |OMgetObject| |trivialIdeal?| |maxint| - |ellipticCylindrical| |imagi| |lowerBound| |lSpaceBasis| |unitNormal| - |getButtonValue| |quasiMonic?| |cond| |reduced?| |mapDown!| - |internal?| |functionIsFracPolynomial?| |setPredicates| |pmintegrate| - |minPoints3D| |ode2| |d01anf| |addMatch| |argumentList!| - |constantOperator| |readInt8!| |asimpson| |lprop| |algSplitSimple| - |OMconnectTCP| |enterPointData| |matrixGcd| |youngDiagram| |nlde| - |shuffle| |halfExtendedResultant1| |pdf2ef| |domainTemplate| - |functionIsOscillatory| |associatorDependence| |c06gbf| |normalDeriv| - |indiceSubResultantEuclidean| |irForm| |csch2sinh| |splitLinear| - |semiResultantEuclideannaif| |isAtom| |positive?| |moduloP| |depth| - |separateDegrees| |nativeModuleExtension| |goodnessOfFit| - |patternMatchTimes| |tryFunctionalDecomposition?| |minimumExponent| - |inspect| |stosePrepareSubResAlgo| |equality| |radicalSolve| - |listYoungTableaus| |output| |copyInto!| |subNodeOf?| - |radicalEigenvectors| |geometric| |intersect| |polyPart| |primes| - |support| |sinIfCan| |attributeData| |genericPosition| - |initiallyReduced?| |leastAffineMultiple| |duplicates?| |generators| - |integrate| |primitivePart!| |palgRDE0| |isOp| |reduceBasisAtInfinity| - |vector| |close!| |nthFractionalTerm| |f02bbf| |s17dgf| |midpoint| - |xn| |nothing| |increase| |connectTo| |charthRoot| |groebnerFactorize| - |differentiate| |s18aff| |linearDependenceOverZ| |e01bgf| |normalise| - |integralMatrixAtInfinity| |complexEigenvectors| |host| - |exprHasLogarithmicWeights| |wronskianMatrix| |assign| - |rightExtendedGcd| |overlabel| |laplace| |lazyPquo| |c06fpf| |cyclic| - |shade| |nary?| |FormatArabic| |commonDenominator| |constantKernel| - |constant?| |monomialIntPoly| |purelyTranscendental?| |mesh?| - |polynomialZeros| |numberOfPrimitivePoly| |dioSolve| |listOfMonoms| - |rotatex| |bitTruth| |conjugate| |countRealRoots| - |numberOfComputedEntries| |OMlistSymbols| |zeroMatrix| |d02gbf| - |viewWriteDefault| |leftTrace| |eisensteinIrreducible?| |dom| |sample| - |alphanumeric?| |rootPoly| |nextNormalPoly| |moreAlgebraic?| - |stopTableGcd!| |set| |multMonom| |errorKind| |iisqrt2| |expintegrate| - |dimension| |monicLeftDivide| |properties| |nthExpon| |asechIfCan| - |palgRDE| |seed| |normalizedAssociate| |bitLength| BY |rootKerSimp| - |Aleph| |addPoint| |tubeRadius| |translate| |child?| |cos2sec| - |homogeneous?| |quadratic| |cRationalPower| |reducedSystem| |bag| - |jacobi| |linears| |leftMinimalPolynomial| |innerSolve| - |rowEchelonLocal| |bandedHessian| |enumerate| |build| |c05adf| - |stirling2| |leaves| |key?| |back| |genericLeftNorm| |limit| - |mainCharacterization| |relerror| |sts2stst| |restorePrecision| - |bottom!| |open| |charpol| |infRittWu?| |child| |negative?| |content| - |title| |simpleBounds?| |virtualDegree| |mdeg| |bezoutResultant| - |s19abf| |setLength!| |high| |setprevious!| |distribute| |expandLog| - |cyclicEntries| |removeSuperfluousCases| |rootOfIrreduciblePoly| - |OMputObject| |firstUncouplingMatrix| |cCsch| |rst| |s21bcf| |aCubic| - |complexForm| |nonQsign| |complement| |integer?| |bsolve| |OMgetType| - |roman| |modularGcdPrimitive| |numberOfComposites| |setrest!| - |internalIntegrate0| |computePowers| |subPolSet?| |limitedIntegrate| - |getVariableOrder| |e| |powerAssociative?| |result| NOT - |regularRepresentation| |oddInfiniteProduct| |ramified?| |getDatabase| - |redmat| |mkPrim| |operations| |totalGroebner| |coefChoose| - |triangulate| |identification| OR |c06gsf| |f02ajf| |setFormula!| - |partition| |numberOfIrreduciblePoly| |antiCommutator| |iicot| - |elaborateFile| |OMwrite| |discriminantEuclidean| |setPosition| AND - |numberOfImproperPartitions| |show| |calcRanges| |leaf?| - |complexElementary| |normalElement| |moebiusMu| |mapMatrixIfCan| - |c06fuf| |nextSubsetGray| |subtractIfCan| |makeVariable| - |bivariateSLPEBR| |factors| |e02agf| |arbitrary| - |characteristicPolynomial| |clearFortranOutputStack| |inc| |sequence| - |LyndonCoordinates| |coerceP| |dflist| |e02daf| |psolve| |trace| - |OMsetEncoding| |ScanArabic| |capacity| |setClipValue| - |normInvertible?| |complexNormalize| |jordanAdmissible?| - |knownInfBasis| |fortranLogical| |selectFiniteRoutines| |interpret| - |factorByRecursion| |enqueue!| |qelt| |gcdcofactprim| |squareMatrix| - |rotatez| |bothWays| |finiteBasis| |expandPower| |iidsum| |orbit| - |monomRDE| |qsetelt| |validExponential| |arguments| |invertIfCan| - |select!| |pile| |push!| |generic?| |quickSort| - |halfExtendedResultant2| |bitand| |char| |e01sef| |pole?| |xRange| - |var1StepsDefault| |primlimitedint| |returnType!| |readUInt16!| |lllp| - |Frobenius| |Ei| |algebraicSort| |bitior| |computeCycleEntry| - |strongGenerators| |coord| |yRange| |biRank| |e04mbf| |e04ucf| - |aspFilename| |readBytes!| |invertibleSet| |cubic| - |setScreenResolution3D| |rational?| |zRange| |nullSpace| |c06gqf| - |makingStats?| |irDef| |internalAugment| |createPrimitiveElement| - |normalized?| |defineProperty| |shiftRight| |map!| |taylorRep| - |bfEntry| |littleEndian| |null?| |Hausdorff| |LiePolyIfCan| - |nilFactor| |s17dcf| * |imagk| |doubleComplex?| |showRegion| - |bipolarCylindrical| |qsetelt!| |topFortranOutputStack| |mathieu23| - |fillPascalTriangle| |floor| |constantRight| |numer| |overset?| - |radix| |irVar| |setUnion| |multisect| |previous| |unexpand| |nthCoef| - |lieAlgebra?| |s13adf| |denom| |repeatUntilLoop| |linear| |categories| - |firstDenom| |readByte!| |associator| |identitySquareMatrix| - |normal01| |s21bbf| |fracPart| |e01sbf| |isNot| |lastSubResultant| = - |exponential1| |s17aff| |mr| |splitConstant| |nextSublist| - |structuralConstants| |pi| |kind| |polynomial| |e02bdf| |split| - |leadingIndex| |getGoodPrime| |c06eaf| |sign| |selectsecond| - |henselFact| |infinity| |parent| |complexEigenvalues| |op| |presub| - |wholePart| |updateStatus!| < |acsch| |graphCurves| |OMopenString| - |logIfCan| |fractRagits| |loadNativeModule| |useSingleFactorBound?| - |rightPower| |revert| |primPartElseUnitCanonical!| > |rombergo| - |generalizedContinuumHypothesisAssumed| |currentSubProgram| - |comparison| |genericLeftDiscriminant| |sdf2lst| |genericRightTrace| - |digits| |slex| |ricDsolve| <= |symbolTableOf| |mapExponents| - |monomRDEsys| |stopMusserTrials| |mathieu22| |typeLists| - |binaryTournament| |bitCoef| |subResultantsChain| |e04jaf| >= - |twoFactor| |OMputVariable| |legendre| |position!| |mpsode| - |upperCase!| |quotedOperators| |monicCompleteDecompose| |quotientByP| - |headReduce| |cLog| |head| |member?| |characteristicSet| |buildSyntax| - |sumSquares| |credPol| |pushuconst| |removeZero| |setProperties| - |writeLine!| |primextintfrac| |semiSubResultantGcdEuclidean2| - |selectPolynomials| |factorsOfCyclicGroupSize| |derivationCoordinates| - |getMeasure| |monicDivide| |union| + |recur| |f02aef| |coerceL| - |evenlambert| |generalTwoFactor| |comp| |idealiser| |ratpart| - |selectSumOfSquaresRoutines| |composites| - |OMputFloat| - |singularAtInfinity?| |safeCeiling| |gderiv| |extendedIntegrate| - |mkcomm| |accuracyIF| |dn| |iicoth| / |llprop| |leftRemainder| - |bounds| |argscript| |infLex?| |generalizedEigenvectors| |finite?| - |leftFactorIfCan| |cons| |makeViewport3D| |superHeight| |simplify| - |basisOfLeftAnnihilator| |factorFraction| |trueEqual| |insertTop!| - |rightNorm| |e02dff| |f02xef| |phiCoord| |rank| |stack| |arrayStack| - |getMultiplicationTable| |e02gaf| |iroot| |doublyTransitive?| - |leftQuotient| |associatedSystem| |tan2trig| |row| |completeEval| - |ratPoly| |leftOne| |elaborate| |principalIdeal| |rquo| |queue| - |generalLambert| |paraboloidal| |OMputEndBind| |extendedint| - |padicallyExpand| |monomialIntegrate| |alphabetic| |root?| |cAsec| - |asecIfCan| |clearDenominator| |f02abf| |brillhartTrials| - |adaptive3D?| |next| |printStats!| |cycleRagits| |newTypeLists| - |conjug| |quatern| |exists?| |augment| |allRootsOf| |divideIfCan| - |qroot| |coerce| |weakBiRank| |categoryFrame| |makeGraphImage| - |s14aaf| |source| |cTan| |univcase| |printStatement| |algebraic?| - |diff| |construct| |createNormalPoly| |varselect| |unknownEndian| - |atanIfCan| |implies| |log2| |predicates| |numberOfFactors| |reverse| - |lfintegrate| |rightRegularRepresentation| |perspective| |iiacsc| - |resultantReduitEuclidean| |lists| |weighted| |mainPrimitivePart| - |genericLeftMinimalPolynomial| |upperBound| |wholeRadix| |name| - |crest| |RemainderList| |ramifiedAtInfinity?| |pointPlot| - |interReduce| |lowerCase| |safetyMargin| |bat1| |rightOne| |hexDigit| - |rewriteIdealWithRemainder| |body| |fi2df| - |removeSuperfluousQuasiComponents| |aQuadratic| |backOldPos| |bipolar| - |e01bef| |eigenvector| |factorials| |testDim| |acothIfCan| - |extendedResultant| |target| |mapSolve| |clearTheSymbolTable| - |iflist2Result| |endOfFile?| |principal?| |innerint| |returns| - |entry?| |modifyPointData| |trapezoidalo| |OMconnOutDevice| - |nthExponent| |OMUnknownCD?| |generalPosition| |rightUnit| - |leftExactQuotient| |prime| |extractProperty| |leftDiscriminant| - |rename!| |maximumExponent| |gramschmidt| |showClipRegion| |solveid| - |cyclicGroup| |top!| |subMatrix| |lexGroebner| |se2rfi| - |basisOfRightAnnihilator| |ceiling| |semiDiscriminantEuclidean| - |s17ajf| |cyclicSubmodule| |leadingBasisTerm| |changeMeasure| - |contract| |primintfldpoly| |definingInequation| - |generalInfiniteProduct| |rootsOf| |rule| |lazyPseudoRemainder| - |isPower| |fortranDoubleComplex| |mainSquareFreePart| |insertRoot!| - |hessian| |createPrimitivePoly| |internalZeroSetSplit| |besselJ| - |functionIsContinuousAtEndPoints| |prinshINFO| |port| |lyndon| - |lastSubResultantElseSplit| |doubleFloatFormat| |extension| - |flexible?| |mathieu24| |multiplyExponents| |curry| |float?| - |linearAssociatedLog| |groebgen| |ridHack1| |pseudoDivide| - |linearAssociatedExp| |minRowIndex| |nextPrimitiveNormalPoly| - |writeBytes!| |t| |csubst| |hclf| |OMreadFile| |argumentListOf| - |generalSqFr| |e04dgf| |repeating?| |internalDecompose| - |rationalPoints| |swapColumns!| |iiacsch| |constDsolve| |quoByVar| - |OMencodingUnknown| |genericRightNorm| |leftLcm| |superscript| - |rightRankPolynomial| |sinhIfCan| |atanhIfCan| |reseed| - |chainSubResultants| |leftRank| |macroExpand| |OMreceive| |viewport3D| - |rationalFunction| |setelt| |putProperties| |LyndonWordsList1| - |forLoop| |norm| |symmetricRemainder| |factorSquareFreePolynomial| - |clipWithRanges| |sparsityIF| |mapmult| |modularGcd| - |mainDefiningPolynomial| |parts| |eof?| |lowerCase!| |mergeFactors| - |expenseOfEvaluation| |rowEch| |rational| |interpolate| |copy| |any| - |iiasinh| |xCoord| |numerator| |transcendent?| |numFunEvals| |debug| - |bit?| |firstSubsetGray| |exactQuotient| |xor| |hdmpToP| |Lazard2| - |closeComponent| |reindex| |pleskenSplit| |symbol?| D - |constantOpIfCan| |SturmHabichtSequence| |setCondition!| |bigEndian| - |case| |escape| |outputGeneral| |pdct| |subSet| |f02awf| - |OMputEndError| |extractPoint| |tan2cot| |Zero| |mindeg| |saturate| - |nodes| |cap| |univariateSolve| |unit?| |iCompose| |edf2ef| |tab1| - |One| |janko2| |mapUp!| |stiffnessAndStabilityFactor| |Nul| |maxIndex| - |true| |match?| |selectOptimizationRoutines| |lyndon?| |froot| - |selectNonFiniteRoutines| |cycleElt| |autoCoerce| - |parabolicCylindrical| |rdregime| |bezoutDiscriminant| |round| - |balancedBinaryTree| |removeDuplicates!| |axes| |monomial?| - |differentialVariables| |var1Steps| |removeSquaresIfCan| - |upDateBranches| |graphs| |lineColorDefault| |plusInfinity| |qqq| - |antiAssociative?| |pointSizeDefault| |karatsubaOnce| |divisors| - |insertBottom!| |contractSolve| |rationalPoint?| |palgextint| - |mainKernel| |operators| |f04mbf| |minusInfinity| |composite| - |solveLinearlyOverQ| |curveColorPalette| |frst| |eigenvalues| - |lfextendedint| |summation| |optAttributes| |factorAndSplit| - |datalist| |physicalLength!| |removeRedundantFactors| |leftMult| - |bubbleSort!| |createPrimitiveNormalPoly| |elt| |iteratedInitials| - |symmetricDifference| |plenaryPower| |front| |s18dcf| |comment| - |qinterval| |patternMatch| |remove!| |deriv| |rightMinimalPolynomial| - |makeCos| |elaboration| |particularSolution| |integralRepresents| - |iiacos| |reduceLODE| |tower| |f04asf| |diagonal| |smith| |transform| - |resetBadValues| |stop| |presuper| |antiCommutative?| |postfix| - |initiallyReduce| |deepCopy| |solid?| |real?| |listConjugateBases| - |remainder| |nor| |d02raf| |hcrf| |leftGcd| |fortranLinkerArgs| - |weights| |sizeLess?| |screenResolution3D| |randnum| - |sturmVariationsOf| |writeUInt8!| |f04jgf| |possiblyNewVariety?| - |getStream| |mantissa| |repSq| |prem| |kroneckerDelta| - |resetAttributeButtons| |createMultiplicationMatrix| |f07aef| - |bernoulliB| |pack!| |acscIfCan| |rightTrim| |processTemplate| - |sylvesterSequence| |indices| |rightAlternative?| |legendreP| |trigs| - |complexNumeric| |certainlySubVariety?| |cyclotomic| |status| - |leftTrim| |generalizedContinuumHypothesisAssumed?| |d01gbf| - |toroidal| |rk4| |cExp| |divideExponents| |nil| |infinite| - |arbitraryExponent| |approximate| |complex| |shallowMutable| - |canonical| |noetherian| |central| |partiallyOrderedSet| - |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| - |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| - |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| - |shallowlyMutable| |commutative|)
\ No newline at end of file + |Record| |Union| |bottom!| |checkRur| |qfactor| |lighting| + |fortranLiteralLine| |nothing| |e02def| |inR?| |string| |color| + |f02fjf| |squareTop| |showArrayValues| |neglist| |zeroMatrix| + |ratDenom| |HermiteIntegrate| |internalZeroSetSplit| |rquo| + |factorList| |factorPolynomial| |predicate| |iisech| |rischNormalize| + |gcdcofact| |rischDEsys| |top| |toseLastSubResultant| |upperBound| + |logGamma| |expressIdealMember| |minColIndex| |autoReduced?| + |OMsupportsSymbol?| |algebraicSort| |log2| |pade| |title| |continue| + |listexp| |pushdown| |tableForDiscreteLogarithm| |s17adf| + |interactiveEnv| |lieAlgebra?| |packageCall| |leftExtendedGcd| + |subtractIfCan| |invmod| |symmetricGroup| |cosSinInfo| |cos2sec| + |definingPolynomial| |readInt8!| |antisymmetricTensors| |critM| + |roughBase?| |Si| |predicates| |doubleComplex?| |roman| |tab1| + |d02bhf| |SturmHabicht| |hasHi| |bitCoef| |minIndex| |e| + |makeVariable| |parseString| |zeroSquareMatrix| |tanNa| |romberg| + |headReduced?| |leftDiscriminant| |charpol| |subResultantGcdEuclidean| + |limitPlus| |constant| |leftRank| |tanSum| |s18dcf| |messagePrint| + |outputBinaryFile| |genericPosition| |ipow| |prindINFO| |f01mcf| + |part?| |inspect| |leftRecip| |stirling2| |prepareDecompose| + |OMputInteger| |one?| |e01bef| |s17ahf| |OMgetEndApp| |setErrorBound| + |isExpt| |iidprod| |rightFactorCandidate| |space| + |derivationCoordinates| |pseudoDivide| |expenseOfEvaluationIF| + |reduced?| |repSq| |leftPower| |showTheIFTable| |OMgetEndAtp| + |mantissa| |besselJ| |degree| |var2StepsDefault| |parameters| + |continuedFraction| |currentCategoryFrame| |setfirst!| |d02gbf| + |digamma| |getConstant| |cycleTail| |coerceS| |att2Result| |hash| + |firstSubsetGray| |bothWays| |testModulus| |exactQuotient| |interval| + |presub| |firstUncouplingMatrix| |normalized?| |zero?| ** |count| + |resetVariableOrder| |removeRoughlyRedundantFactorsInPols| LODO2FUN + |lazyVariations| |headRemainder| |lepol| |prem| |optAttributes| + |fractionPart| |homogeneous?| |s13adf| |tValues| + |primPartElseUnitCanonical| |substring?| |torsionIfCan| |returnTypeOf| + |factorial| |f02wef| |monomials| |SturmHabichtCoefficients| + |balancedBinaryTree| |fixedPoints| UP2UTS |OMgetBVar| |rightRemainder| + |integerBound| |wronskianMatrix| |complexZeros| |csch2sinh| + |listRepresentation| |simplifyLog| |janko2| |stFunc2| |yCoord| + |symmetric?| |suffix?| |positiveRemainder| |invertibleElseSplit?| + |OMgetString| |extractClosed| |df2fi| |primintfldpoly| |iifact| + |extendedIntegrate| |car| |eigenvector| |quickSort| |postfix| + |closed?| |numberOfFactors| |OMreceive| |doublyTransitive?| + |divideIfCan!| |numericalOptimization| |fTable| |OMputError| + |laplacian| |prefix?| |setPosition| |OMputEndObject| + |linearlyDependent?| |completeHermite| |deleteRoutine!| |pair?| + |initiallyReduced?| |coordinate| |concat!| |associative?| |quatern| + |has?| |aromberg| |iicsch| |setPrologue!| |constantToUnaryFunction| + |linearAssociatedExp| |mapDown!| |finiteBasis| |s19adf| + |fortranLinkerArgs| |numer| |outputSpacing| |init| |retractIfCan| + |bivariateSLPEBR| |slash| |dihedralGroup| |iisin| |cycleSplit!| + |ffactor| |gensym| |OMmakeConn| |purelyAlgebraicLeadingMonomial?| + |denom| |infinityNorm| |recip| |eigenvectors| |defineProperty| + |generic| |cothIfCan| |leviCivitaSymbol| |evaluate| + |intermediateResultsIF| |f02bjf| |wholePart| |getPickedPoints| + |splitLinear| |cCsch| |sumSquares| |refine| |idealiserMatrix| + |isImplies| |c06gsf| |sequences| |pi| |unparse| |algebraicDecompose| + |factorAndSplit| |pushup| |rowEchLocal| |formula| |repeatUntilLoop| + |OMgetObject| |infix?| |clearTable!| |univcase| |initiallyReduce| + |infinity| |kroneckerDelta| |topPredicate| |pquo| |stronglyReduced?| + |exteriorDifferential| |factorials| |tanh2trigh| |mask| + |halfExtendedResultant2| |graeffe| |atoms| |ptree| |randomR| + |selectAndPolynomials| |sumOfKthPowerDivisors| |definingInequation| + |reverseLex| |localUnquote| |voidMode| |OMputEndAtp| + |pointColorPalette| |curryRight| |reopen!| |assign| |laguerreL| + |viewPhiDefault| |jordanAlgebra?| |LazardQuotient2| |leadingIdeal| + |addMatchRestricted| |ldf2lst| |truncate| |kernel| + |genericLeftTraceForm| |viewport3D| |isConnected?| |leftQuotient| + |palgRDE| |nrows| |noLinearFactor?| |e04naf| |expandPower| |exists?| + |hconcat| |list| |divisor| |lfintegrate| |d01alf| |map| + |lazyIntegrate| |clearCache| |tan2cot| |ncols| |lhs| + |leastAffineMultiple| |internal?| |linearlyDependentOverZ?| |weights| + |universe| |draw| |partialQuotients| |monicRightDivide| |vspace| + |viewZoomDefault| |rewriteIdealWithHeadRemainder| |rhs| |minRowIndex| + |step| |s17def| |modifyPointData| |numberOfImproperPartitions| |tube| + |getProperty| |algintegrate| |rst| |shiftRight| |pomopo!| |concat| + |schwerpunkt| |safeCeiling| |genericRightTraceForm| |trivialIdeal?| + |f02ajf| |stoseInvertibleSet| |exponentialOrder| |explogs2trigs| + |critB| |halfExtendedSubResultantGcd1| |leadingSupport| |iilog| + |currentEnv| |ideal| |numberOfDivisors| |bumptab| |airyBi| + |reduceByQuasiMonic| |currentScope| |updateStatus!| |torsion?| + |physicalLength!| |semiResultantEuclideannaif| |credPol| |someBasis| + |testDim| |s15aef| |unitsColorDefault| |plotPolar| |deepCopy| + |makeObject| |eq?| |isEquiv| |basisOfLeftNucloid| |sincos| + |infieldIntegrate| |qelt| |uncouplingMatrices| |e01sef| |firstDenom| + |selectMultiDimensionalRoutines| |selectPDERoutines| |linear| + |selectOrPolynomials| |coef| |factors| |isTimes| |LyndonBasis| + |generalInfiniteProduct| |qsetelt| |factorSFBRlcUnit| |iidsum| + |extend| |mkcomm| |diagonalMatrix| |printStatement| + |integralAtInfinity?| |rightExtendedGcd| |newSubProgram| |drawComplex| + |create3Space| |partialFraction| |xRange| |functionIsFracPolynomial?| + |pr2dmp| |sizeLess?| |splitSquarefree| |outputFloating| |arity| + |polynomial| |zoom| |resetAttributeButtons| |mvar| |associatedSystem| + |pointData| |s14abf| |yRange| |startTable!| |gcdprim| |minPoints| + |jokerMode| |orbits| |augment| |list?| |iomode| |rationalFunction| + |distFact| |karatsubaDivide| |zRange| |seed| |divisorCascade| + |realElementary| |shellSort| |maxint| |e02bcf| |f01rcf| |sort| + |lifting1| |squareFreePart| |rootPower| |intensity| |map!| |mindeg| + |genericLeftNorm| |duplicates?| |trapezoidalo| |acothIfCan| |integers| + |factorSquareFree| |dec| |makeop| |setTex!| |innerSolve1| |taylorRep| + |qsetelt!| |s14baf| |nextPrimitiveNormalPoly| |number?| |iterationVar| + |f2st| |calcRanges| |rightRegularRepresentation| |divide| |s21bcf| + |PDESolve| |minimize| |iiasin| |deleteProperty!| |traverse| + |setFormula!| |prime?| |euclideanGroebner| |collect| + |createNormalElement| |removeRedundantFactors| |subResultantChain| + |cscIfCan| |outputFixed| |orbit| |solid?| |realRoots| |random| + |asinIfCan| |graphCurves| |btwFact| |isAtom| |pushuconst| + |coordinates| |sizePascalTriangle| |listBranches| |myDegree| + |collectUpper| |leadingTerm| |physicalLength| |rootsOf| + |irreducibleFactors| |stoseInvertible?sqfreg| |digit?| |kind| + |computeInt| |pole?| |makeTerm| |e01bhf| |flexibleArray| |consnewpol| + |eigenMatrix| |stFuncN| |partitions| |acsch| |readByte!| |op| + |ellipticCylindrical| |unmakeSUP| |c06ebf| |powers| |e02agf| + |overlabel| |factor| |dual| |tan2trig| |replace| |newLine| + |setPredicates| |mainVariable?| |allRootsOf| |algebraic?| |comp| + |e01saf| SEGMENT |equiv| |quasiComponent| |sqrt| |merge| + |normalizedAssociate| |figureUnits| |extendedResultant| + |characteristic| |nthFlag| |minPol| |bfEntry| |putProperties| + |createMultiplicationMatrix| |real| |conjugates| |OMgetApp| |rules| + |groebnerIdeal| |OMconnOutDevice| |blankSeparate| |exp1| |d03edf| + |reflect| |sin?| |clipPointsDefault| |imag| |algebraicCoefficients?| + |saturate| |generators| |denominator| |setVariableOrder| |infieldint| + |real?| |charClass| |wreath| |unprotectedRemoveRedundantFactors| + |directProduct| |aCubic| |OMsend| |writeBytes!| |permutation| + |monomRDE| |max| |open?| |shanksDiscLogAlgorithm| |mainContent| + |lexTriangular| |leftMult| |orthonormalBasis| |zerosOf| |union| + |lookup| |tensorProduct| |OMbindTCP| |leaf?| |skewSFunction| + |tracePowMod| |perspective| |brace| |positive?| |empty?| |arguments| + |getIdentifier| |OMgetEndBVar| |s21baf| |numeric| |screenResolution3D| + |hitherPlane| |arbitrary| |c06ekf| |OMopenString| + |lazyPseudoRemainder| |destruct| |stirling1| |writeByte!| |elementary| + |latex| |radical| |var1StepsDefault| |linGenPos| |divideIfCan| + |solve1| |laplace| |optional?| |subscript| |linearAssociatedOrder| + |removeZero| |associator| |cAsinh| |imagi| |basisOfLeftNucleus| + |bivariate?| |s18def| |dequeue!| |balancedFactorisation| |row| + |entries| |selectSumOfSquaresRoutines| |midpoints| |leftTraceMatrix| + |mapSolve| |baseRDE| |bat| |copy| |prefixRagits| |difference| + |simplifyPower| |internalIntegrate| |semiDegreeSubResultantEuclidean| + |discriminant| |duplicates| |showFortranOutputStack| |pmintegrate| + |rotatex| |diff| |littleEndian| |c02agf| |zeroSetSplit| |cAsin| + |monomial| |setRealSteps| |bitLength| |OMputEndApp| |nthExponent| + |bytes| |OMParseError?| |tRange| |LyndonWordsList1| + |tubePointsDefault| |multivariate| |OMread| |powern| |bandedHessian| + |reducedDiscriminant| |validExponential| |RittWuCompare| + |useEisensteinCriterion| |listConjugateBases| |f07aef| + |squareFreePolynomial| |variables| |invertible?| |complexForm| |nodes| + |multiplyCoefficients| |rightExactQuotient| |basisOfMiddleNucleus| + |chiSquare1| |rightMult| |ddFact| |scaleRoots| |ranges| + |makeFloatFunction| |deepestInitial| |bubbleSort!| |condition| + |usingTable?| |match?| |ODESolve| |zeroOf| |pow| |commutative?| + |complexElementary| |autoCoerce| |complexLimit| |sinhcosh| |dequeue| + |moduloP| |parabolicCylindrical| |setEpilogue!| |intersect| |iiGamma| + |clearTheSymbolTable| |mapdiv| |coHeight| |shallowExpand| |isPower| + |lex| |interpret| |inverse| |lineColorDefault| |principalAncestors| + |primlimitedint| |qroot| |randnum| |solid| |makeRecord| |s13aaf| + |debug| |insert!| |setProperties| |oddlambert| |any?| |octon| + |indicialEquationAtInfinity| |copy!| |setchildren!| |iisqrt3| + |primintegrate| |heap| D |taylor| |viewWriteAvailable| |eyeDistance| + |close| |multiple?| |push| |setsubMatrix!| |minPoints3D| F |meatAxe| + |c06eaf| |completeEval| |relationsIdeal| |laurent| |d01fcf| + |composites| |patternVariable| |bitTruth| |cycle| |OMputAtp| + |setImagSteps| |e02akf| |puiseux| |setScreenResolution| |display| + |internalLastSubResultant| |polar| |iiasinh| |vedf2vef| + |createNormalPoly| |boundOfCauchy| |showTheFTable| |null?| + |unrankImproperPartitions1| |rootKerSimp| |supDimElseRittWu?| + |argscript| |df2mf| |fortranLogical| |remainder| |removeZeroes| + |merge!| |GospersMethod| |inv| |getOperator| |partialNumerators| + |setMinPoints| |singleFactorBound| |hypergeometric0F1| |cExp| + |lookupFunction| |mix| |e01bgf| |ground?| |cap| |enumerate| + |rubiksGroup| |sPol| |conditionP| |systemSizeIF| |d01aqf| |opeval| + |distribute| |nullSpace| |ground| |nullary?| |rdregime| |polyPart| + |createMultiplicationTable| |groebner?| |setright!| |adaptive| + |fortran| |rightRankPolynomial| |goto| |tab| |input| |leadingMonomial| + |numericIfCan| |monicRightFactorIfCan| |rotate!| |mapExponents| + |e02adf| |weakBiRank| |normalElement| |leadingExponent| |f07adf| + |writeInt8!| |solveLinearlyOverQ| |library| |leadingCoefficient| + |OMopenFile| |mainCoefficients| |gcdPrimitive| |OMputBVar| + |rewriteIdealWithRemainder| |size| EQ |ignore?| + |functionIsOscillatory| |d01akf| |primitiveMonomials| |print| + |headAst| |listOfLists| |qqq| |iiatan| |meshPar1Var| |f02abf| + |showAll?| |lazyPseudoQuotient| |polCase| |e01sff| |resolve| + |reductum| |OMputFloat| |writeLine!| |viewDefaults| + |numberOfOperations| |internalInfRittWu?| |groebgen| |lyndonIfCan| + |extractIndex| |semiDiscriminantEuclidean| |cyclicParents| |s13acf| + |satisfy?| |dimensionOfIrreducibleRepresentation| |lowerBound| + |initials| |makeEq| |gcdPolynomial| |sign| |f02xef| |getCurve| |set| + |paren| |explicitEntries?| |overbar| |nonSingularModel| + |explimitedint| |digit| |curveColorPalette| |polyred| |headReduce| + |simpson| |xCoord| |selectFiniteRoutines| |getDatabase| |determinant| + |generator| |palglimint0| |unitVector| |categories| |findCycle| + |palglimint| |unrankImproperPartitions0| |showTheSymbolTable| + |divideExponents| |numberOfIrreduciblePoly| |diagonal| |decrease| + |associatedEquations| |rCoord| |OMgetAtp| |primes| |makeFR| + |putColorInfo| |variationOfParameters| |dominantTerm| |normalise| + |c06gqf| |expandLog| |iisqrt2| |idealSimplify| |ptFunc| |s17dlf| + |radPoly| |localAbs| |sinhIfCan| |OMsupportsCD?| |rotate| |moebius| + |denominators| |mathieu12| |normalForm| |newReduc| |f02adf| |node| + |acotIfCan| |fortranCompilerName| |resultantEuclideannaif| + |outputGeneral| |fi2df| |seriesSolve| |monomRDEsys| |true| + |brillhartTrials| |sqfree| |category| |yellow| |associatorDependence| + |permutationGroup| |euler| |antiAssociative?| |setColumn!| |cosh2sech| + |signAround| |ridHack1| |domain| |irreducible?| + |LagrangeInterpolation| |abs| |sort!| |chebyshevT| |chvar| + |subscriptedVariables| |leftRegularRepresentation| |cyclicCopy| + |package| |lieAdmissible?| |s17ajf| |phiCoord| |elRow1!| |isQuotient| + |insert| |wholeRagits| |lSpaceBasis| |factorGroebnerBasis| |nthFactor| + |redmat| |selectsecond| |readUInt8!| |chineseRemainder| |cLog| + |search| |show| |algint| |factorByRecursion| |maxrank| + |symmetricSquare| |rewriteSetByReducingWithParticularGenerators| + |incr| |unitNormalize| |powerSum| |conjunction| |script| |cross| + |f01brf| |semiSubResultantGcdEuclidean1| |numerator| |antiCommutator| + |smith| |hi| |magnitude| |d01amf| |permutationRepresentation| + |simpsono| |trace| |multisect| |nonLinearPart| |mappingMode| + |reduction| |OMreadStr| |directory| |integralMatrixAtInfinity| + |sncndn| |cyclicEntries| |compose| |scalarTypeOf| + |inputOutputBinaryFile| |f04adf| |limitedint| |s19aaf| + |nextIrreduciblePoly| |c06ecf| |frst| |makingStats?| |tex| |height| + |bumprow| |swap!| |cot2tan| |multiEuclideanTree| |baseRDEsys| + |atanhIfCan| |power!| |c06gbf| |expintegrate| |computeBasis| + |exprToXXP| |removeSuperfluousQuasiComponents| |elem?| |adaptive3D?| + |rightRank| |extractTop!| |e04fdf| |pdct| |units| |outerProduct| + |support| |stopMusserTrials| |OMReadError?| + |rightCharacteristicPolynomial| |e02bef| |increasePrecision| + |hdmpToDmp| |roughUnitIdeal?| F2FG |pointSizeDefault| |unitNormal| + |outputAsScript| |cAtan| |OMgetSymbol| |equation| |ScanRoman| |point| + |arrayStack| |cyclicSubmodule| |trailingCoefficient| |element?| + |sorted?| |scripted?| |mkPrim| |cfirst| |infinite?| |index?| + |fortranTypeOf| |pushucoef| |comment| + |semiIndiceSubResultantEuclidean| |enqueue!| |unvectorise| |iicot| + |ref| |center| |henselFact| |central?| |polyRDE| |head| |double?| + |numberOfCycles| |makeViewport2D| |transform| |numFunEvals3D| + |coerceListOfPairs| |series| |cCsc| |removeSuperfluousCases| |code| + |Gamma| |blue| |cylindrical| |ocf2ocdf| |kmax| |OMgetEndObject| + |declare| |mainValue| |trace2PowMod| |sec2cos| |innerEigenvectors| + |numericalIntegration| |totalLex| |transcendent?| |clip| + |sizeMultiplication| |complexEigenvectors| |eigenvalues| |irDef| + |numberOfChildren| |block| |log10| |unexpand| |aQuadratic| + |localIntegralBasis| |redpps| |rule| |generate| |build| + |leadingCoefficientRicDE| |callForm?| |setStatus| |OMputAttr| + |constantIfCan| |bitand| |useNagFunctions| |mapUnivariateIfCan| + |categoryFrame| |printStats!| |BasicMethod| |min| |reseed| + |character?| |solve| |dimension| |bitior| |selectfirst| |hasoln| + |decompose| |totalGroebner| |algebraicOf| |incrementBy| |normalDeriv| + |realEigenvalues| |makeSeries| |matrix| |subSet| |firstNumer| + |nextNormalPrimitivePoly| |gcdcofactprim| |fortranInteger| |lazyPrem| + |tail| |expand| |leadingBasisTerm| |bombieriNorm| + |getMultiplicationTable| |printInfo| |nextColeman| |sinIfCan| + |getButtonValue| |e02ddf| |fractionFreeGauss!| |resetBadValues| + |filterWhile| |f04maf| |cAtanh| |expint| |expintfldpoly| + |karatsubaOnce| |f04qaf| |resize| |elaborateFile| |alternating| + |filterUntil| |complex?| |fprindINFO| |even?| |acosIfCan| + |setButtonValue| |clearTheIFTable| |numFunEvals| |setProperty| + |setClosed| |select| |parent| |rootOfIrreduciblePoly| |nodeOf?| + |fill!| |f02aff| |measure| |acoshIfCan| |unravel| |tanQ| |properties| + |pascalTriangle| |isOpen?| |internalAugment| |lift| |member?| + |chiSquare| |backOldPos| |cotIfCan| |trigs2explogs| |cycleRagits| + |host| |lfextendedint| |infiniteProduct| |translate| |reduce| + |makeUnit| |nthCoef| |complementaryBasis| |redPol| |result| + |derivative| |FormatRoman| |subset?| |printCode| |cTanh| |outputForm| + |contours| |appendPoint| |quote| |makeGraphImage| + |numberOfFractionalTerms| |completeSmith| |imaginary| |s19acf| + |pointLists| |constantCoefficientRicDE| |intPatternMatch| + |squareMatrix| |radicalOfLeftTraceForm| |rootNormalize| + |chainSubResultants| |indiceSubResultantEuclidean| |pseudoQuotient| + |monicLeftDivide| |stoseLastSubResultant| |push!| |graphStates| + |minimalPolynomial| |coefChoose| |roughEqualIdeals?| |e02gaf| + |changeMeasure| |f02awf| |delete!| |UP2ifCan| |insertMatch| + |commaSeparate| |presuper| Y |setAttributeButtonStep| |isPlus| |power| + |factorset| |attributeData| |leftRankPolynomial| |palgextint0| + |basisOfCommutingElements| |ldf2vmf| |mirror| |SFunction| |preprocess| + |f04atf| |shrinkable| |primitiveElement| |quasiMonic?| |birth| |label| + |OMwrite| |e01daf| |critMTonD1| |cSin| |internalSubQuasiComponent?| + |clipParametric| |bipolar| |members| |shallowCopy| + |complexEigenvalues| |createPrimitiveElement| |OMputObject| + |stronglyReduce| |empty| |rotatez| |bit?| |qPot| |newTypeLists| + |exprHasLogarithmicWeights| |summation| |transcendentalDecompose| + |characteristicSet| |monomial?| |parents| |cAcosh| |antisymmetric?| + |convergents| |setlast!| |represents| |irreducibleFactor| |normalize| + |numberOfNormalPoly| |elliptic?| |mkAnswer| |vertConcat| |writable?| + |s14aaf| |byte| |irForm| |zag| |factorsOfDegree| |accuracyIF| + |dAndcExp| |coshIfCan| |createIrreduciblePoly| |viewSizeDefault| + |increase| |removeCosSq| |rightFactorIfCan| |nthExpon| |elements| + |multinomial| |over| |getRef| |triangulate| |rightDiscriminant| + |iroot| |contract| |constructor| |s17akf| |find| |compBound| + |generic?| |antiCommutative?| |lambert| |constDsolve| |categoryMode| + |mainExpression| |OMputEndError| |mainVariables| |option| |exQuo| + |solveInField| |subspace| |showSummary| |mapBivariate| |palgLODE0| + |outputList| |hostByteOrder| |limit| |primitive?| |linearDependence| + |vark| |discriminantEuclidean| |bfKeys| |substitute| |quasiRegular| + |separant| |stack| |printInfo!| |cAcoth| |lowerCase!| |e02ahf| + |double| |crushedSet| |rur| |showAttributes| |shufflein| |printHeader| + |deref| |differentialVariables| |semiResultantEuclidean2| + |interReduce| |setDifference| |conjug| |mat| |int| |range| + |leftAlternative?| |setClipValue| |leftUnit| |coth2tanh| |noKaratsuba| + |structuralConstants| |updatD| |f02agf| |pointColor| |rightTrim| + |buildSyntax| |round| |sechIfCan| |cycleEntry| |name| |signature| + |cTan| UTS2UP |polygon?| |aspFilename| |less?| |sdf2lst| + |rightQuotient| |leftTrim| |univariatePolynomialsGcds| |disjunction| + |laurentRep| |body| |doubleResultant| |identification| |dim| + |UnVectorise| |vector| |parabolic| |setValue!| |redPo| |output| + |quadraticForm| |companionBlocks| |diagonalProduct| |squareFree| + |null| |semiResultantReduitEuclidean| |differentiate| + |cyclotomicFactorization| |mdeg| |tableau| |asechIfCan| |dn| + |identity| |subNode?| |s18aef| |addPoint2| |shift| |not| + |PollardSmallFactor| |rationalPoint?| |subResultantGcd| |green| BY + |halfExtendedSubResultantGcd2| |denomLODE| |status| + |monomialIntegrate| |d02gaf| |declare!| |and| |connectTo| + |integralMatrix| |youngDiagram| |extractPoint| |iitanh| + |getProperties| |routines| |directSum| |radicalEigenvectors| |or| + |quoByVar| |top!| |Ci| |denomRicDE| |surface| |mesh?| |flexible?| + |sub| |xor| |applyRules| |s18adf| |stoseIntegralLastSubResultant| + |rootPoly| |mainCharacterization| |mergeFactors| |qualifier| + |increment| |limitedIntegrate| |case| |basisOfLeftAnnihilator| + |swapRows!| |readInt16!| |assert| |symbol?| |transpose| |port| + |lowerCase| |repeating| |perfectNthPower?| |s17acf| |pattern| |Zero| + |external?| |functorData| |perfectSqrt| |numberOfVariables| + |var1Steps| |outputMeasure| |quasiRegular?| |elaboration| |iExquo| + |One| |mainMonomial| |readBytes!| |squareFreeLexTriangular| + |binarySearchTree| |symmetricProduct| |scale| |normalizedDivide| |t| + |abelianGroup| |overset?| |linears| NOT |e02bdf| |bezoutResultant| + |countRealRootsMultiple| |nthRoot| |sylvesterMatrix| |rightTrace| + |ratDsolve| |UpTriBddDenomInv| |lyndon?| |sech2cosh| |rischDE| + |segment| OR |OMencodingSGML| |dictionary| |adaptive?| |mpsode| + |linearPart| |cond| |rationalApproximation| |delta| + |genericRightTrace| |meshPar2Var| |totalDegree| |message| + |solveRetract| |nullity| AND |rectangularMatrix| |palgextint| + |retractable?| |pointColorDefault| |initTable!| |getCode| + |normInvertible?| |alphabetic| |mathieu24| |specialTrigs| |resultant| + |dualSignature| |nlde| |exprToGenUPS| |iicoth| + |generalizedContinuumHypothesisAssumed?| |polynomialZeros| |iiacoth| + |complete| |OMgetError| |elt| |s17aef| |subMatrix| |scan| |critMonD1| + |permanent| |colorFunction| |pdf2df| |diag| |monicModulo| |f04mcf| + |second| |charthRoot| |modTree| |setOrder| |goodPoint| |suchThat| + |call| |expenseOfEvaluation| |vconcat| |bivariatePolynomials| + |printTypes| |third| |generalTwoFactor| |OMencodingUnknown| + |checkForZero| |factorFraction| |nextNormalPoly| |inputBinaryFile| + |leftScalarTimes!| |pToHdmp| |eulerE| |getVariableOrder| + |leftMinimalPolynomial| |rewriteSetWithReduction| |f04arf| |airyAi| + |constantOpIfCan| |cons| |void| |relerror| |safetyMargin| |OMputBind| + |radix| |particularSolution| |exponential| |powmod| |invertibleSet| + |subCase?| |sumOfSquares| |shiftRoots| |systemCommand| |polyRicDE| + |digits| |getSyntaxFormsFromFile| |fixedDivisor| |coefficients| + |characteristicSerie| |s19abf| |closedCurve?| |separateFactors| + |removeSquaresIfCan| |dark| |dmp2rfi| |elseBranch| |d02cjf| |key?| + |split!| |rightGcd| |regime| |cosIfCan| |leaves| + |stoseInvertibleSetreg| |s20adf| |coerceImages| |tanhIfCan| + |uniform01| |colorDef| |e02dcf| |froot| * |split| |mainKernel| + |shuffle| |quasiAlgebraicSet| |ord| |clipBoolean| |mappingAst| + |Vectorise| |normal| |root?| |dot| |rootProduct| |radicalEigenvalues| + |macroExpand| |dmpToP| |iiacot| |upperCase!| |integralBasis| + |numberOfPrimitivePoly| |complexNormalize| |distance| + |multiplyExponents| |iiperm| |expr| |lazyPseudoDivide| + |changeNameToObjf| |lexGroebner| |ksec| |source| |Lazard| + |irreducibleRepresentation| |d01gbf| |purelyAlgebraic?| + |primitivePart| |viewpoint| |groebnerFactorize| = + |euclideanNormalForm| |mathieu11| |rightRecip| |llprop| |iicsc| + |rowEch| |powerAssociative?| |readLineIfCan!| |idealiser| |nullary| + |trueEqual| |OMgetEndBind| |pushNewContour| |addmod| |plusInfinity| + |cAcos| |polygon| |OMcloseConn| |removeSinhSq| |s15adf| + |genericRightNorm| < |inverseIntegralMatrixAtInfinity| + |screenResolution| |moreAlgebraic?| |cPower| |minusInfinity| + |tanIfCan| |setref| |integralRepresents| |irVar| |mulmod| |char| + |variable| |genericRightDiscriminant| > |tanintegrate| |atrapezoidal| + |singularAtInfinity?| |SturmHabichtSequence| |upDateBranches| + |showTheRoutinesTable| |bat1| |ScanFloatIgnoreSpaces| |findBinding| + |makeMulti| |iterators| |decimal| <= |setLength!| |cubic| + |associates?| |e02ajf| |target| |failed?| + |createLowComplexityNormalBasis| |B1solve| |critT| + |univariatePolynomial| |innerSolve| >= |SturmHabichtMultiple| + |moduleSum| |numberOfComponents| |linkToFortran| |normalizeIfCan| + |acschIfCan| |slex| |graphImage| |setelt!| + |stoseInternalLastSubResultant| |leadingIndex| |operators| + |halfExtendedResultant1| |lllip| |univariate?| |d02bbf| |readIfCan!| + |cAsec| |constantLeft| |selectNonFiniteRoutines| |minset| |makeSketch| + |hostPlatform| |inconsistent?| |type| |leftRemainder| |dioSolve| + |jordanAdmissible?| |option?| |curry| |iiatanh| |id| |rootRadius| + + |problemPoints| |se2rfi| |quotedOperators| |untab| + |showIntensityFunctions| |move| |yCoordinates| |meshFun2Var| + |ParCondList| |lo| |algebraicVariables| - |float| |unaryFunction| + |imagJ| |extractBottom!| |mergeDifference| |toroidal| |reorder| + |regularRepresentation| |direction| |product| |s18aff| / |insertTop!| + |subHeight| |compiledFunction| |permutations| |euclideanSize| + |rational| |sin2csc| |more?| |ratpart| |fractRadix| |OMUnknownSymbol?| + |pop!| |numerators| |minPoly| |createLowComplexityTable| + |setTopPredicate| |iiacos| |changeBase| |OMgetInteger| |leftLcm| + |optpair| |makeprod| |stopTableGcd!| |size?| |geometric| |conical| + |seriesToOutputForm| |keys| |OMputApp| |maxPoints| |cyclicEqual?| + |setScreenResolution3D| |high| |setCondition!| |value| |symbolTable| + |graphs| |rightOne| |getExplanations| |removeConstantTerm| |setUnion| + |expt| |imagI| |elColumn2!| |delay| |stopTable!| |curve| |d03faf| + |ricDsolve| |sortConstraints| |cAcsch| |rowEchelonLocal| |outputAsTex| + |pdf2ef| |f04mbf| |sumOfDivisors| |pushFortranOutputStack| |Is| + |LazardQuotient| |KrullNumber| |univariatePolynomials| |asecIfCan| + |OMputEndAttr| |getGoodPrime| |removeDuplicates| |cyclic?| |expIfCan| + |popFortranOutputStack| |makeSUP| |Beta| |dimensions| |changeVar| + |node?| |cycleElt| |monic?| GE |basisOfRightAnnihilator| |factor1| + |rk4a| |bounds| |outputAsFortran| |knownInfBasis| |listOfMonoms| + |changeName| |subQuasiComponent?| |f01ref| |integralCoordinates| GT + |f07fef| |whitePoint| |monicCompleteDecompose| |fixedPointExquo| + |getBadValues| |extensionDegree| |singular?| |float?| |beauzamyBound| + LE |morphism| |rightNorm| |e02baf| |mkIntegral| |rk4| |linear?| + |lazyResidueClass| |oddInfiniteProduct| |d01gaf| LT |getlo| + |withPredicates| |OMlistCDs| |interpolate| |ode1| + |rangePascalTriangle| |reduceLODE| |open| |linearDependenceOverZ| + |OMputEndBVar| |addBadValue| |multMonom| |inverseLaplace| + |extendIfCan| |lflimitedint| |getGraph| |tree| |superscript| + |setprevious!| |rational?| |evaluateInverse| + |exprHasWeightCosWXorSinWX| |s21bdf| |const| |f01maf| |environment| + |resultantReduit| |rowEchelon| |bigEndian| |hexDigit| |sn| |prinb| + |inHallBasis?| |e04gcf| |bindings| |composite| |laurentIfCan| |rarrow| + |aQuartic| |padicFraction| |cdr| |index| |symbolIfCan| |operations| + |generalizedEigenvector| |domainTemplate| |inRadical?| |belong?| + |symbolTableOf| |dfRange| |clearDenominator| |isNot| |precision| + |c06fqf| |ceiling| |removeRoughlyRedundantFactorsInContents| |f01qcf| + |minrank| |binomThmExpt| |linearAssociatedLog| |jacobiIdentity?| + |lazy?| |d01bbf| |quotientByP| |read!| |children| |pair| |s20acf| + |e02dff| |hasTopPredicate?| |stoseInvertible?| |bright| + |radicalEigenvector| |primPartElseUnitCanonical!| |basisOfCenter| + |ramified?| |approxSqrt| |deepExpand| |toseInvertibleSet| |cAsech| + |genericLeftTrace| |resetNew| |primeFactor| |imports| + |nthFractionalTerm| |maxPoints3D| |removeIrreducibleRedundantFactors| + |pureLex| |dflist| |FormatArabic| |eval| |f04asf| |degreeSubResultant| + |width| |repeating?| |iicosh| |pushdterm| |coth2trigh| |byteBuffer| + |removeDuplicates!| |partition| |modularFactor| |lazyPremWithDefault| + |showAllElements| |errorKind| |indices| |components| + |integralDerivationMatrix| |cycles| |modulus| |readUInt32!| + |startTableInvSet!| |escape| |checkPrecision| |sparsityIF| |error| + |root| |order| |aLinear| |tanh2coth| |lfextlimint| |edf2efi| + |resultantnaif| |iibinom| |subst| |unit| |string?| |fglmIfCan| + |errorInfo| |computeCycleEntry| |d01ajf| |connect| |optimize| |mr| + |rangeIsFinite| |singRicDE| |queue| |userOrdered?| |gbasis| + |lastSubResultant| |function| |infLex?| |shape| |curryLeft| + |wholeRadix| |notelem| |normFactors| |optional| |viewDeltaXDefault| + GF2FG |c05pbf| |mapUnivariate| |cCos| |csc2sin| |prevPrime| + |getOperands| |basisOfNucleus| |asimpson| |splitNodeOf!| |rombergo| + |leftDivide| |HenselLift| |alternatingGroup| |any| |normDeriv2| + |multiEuclidean| |loopPoints| |branchIfCan| |fullPartialFraction| + |region| |makeSin| |showRegion| |varList| |iipow| |rename!| + |infRittWu?| |spherical| |objects| |totolex| |e02daf| + |totalDifferential| |modularGcdPrimitive| |f02bbf| |extract!| + |rootBound| |subResultantsChain| |base| |minimumDegree| |ode| + |qinterval| |stosePrepareSubResAlgo| |internalDecompose| |toScale| + |rk4qc| |sayLength| |rightAlternative?| |commonDenominator| + |functionIsContinuousAtEndPoints| |po| |polygamma| |complexRoots| + |debug3D| |collectUnder| |rightScalarTimes!| |rem| + |toseSquareFreePart| |getOrder| |removeRoughlyRedundantFactorsInPol| + |oddintegers| |rewriteIdealWithQuasiMonicGenerators| |compactFraction| + |generalizedEigenvectors| |cCot| |setvalue!| |flatten| |quo| |module| + |mapmult| |conditionsForIdempotents| + |solveLinearPolynomialEquationByFractions| |getMeasure| |elRow2!| + |readInt32!| |strongGenerators| |viewWriteDefault| + |basisOfRightNucloid| |LowTriBddDenomInv| |iFTable| + |nextLatticePermutation| |encodingDirectory| |wordInGenerators| + |wordsForStrongGenerators| |prepareSubResAlgo| |hdmpToP| |div| + |approxNthRoot| |crest| |bipolarCylindrical| |generalLambert| |ravel| + |secIfCan| |weight| |exponential1| |lcm| |indicialEquations| + |startTableGcd!| |tubePlot| |exquo| |delete| |readLine!| |binding| + |lfunc| |reshape| |quadratic| |modifyPoint| |lprop| |child| + |thenBranch| ~= |generalizedContinuumHypothesisAssumed| |isList| + |complexExpand| |reverse!| |decomposeFunc| |eulerPhi| + |createRandomElement| |append| |maximumExponent| |cSec| |#| + |matrixConcat3D| |signatureAst| |equality| + |semiLastSubResultantEuclidean| |mapUp!| |apply| |inrootof| + |replaceKthElement| |component| |gcd| |overlap| |zero| ~ + |primeFrobenius| |f01bsf| |complexSolve| |zCoord| |An| |first| + |normalDenom| |false| |cschIfCan| |symmetricTensors| |e04jaf| + |constantKernel| |psolve| |prinshINFO| |numberOfComposites| + |linearPolynomials| |rest| |s17dgf| |finite?| |possiblyInfinite?| + |cyclotomicDecomposition| |previous| |And| |plus| |legendreP| + |explicitlyFinite?| |setPoly| |patternMatch| |enterInCache| |update| + |rationalPoints| |createZechTable| |coord| |rootOf| |Or| |/\\| + |copies| |vectorise| |contains?| |lazyGintegrate| |monicDivide| |next| + |OMputSymbol| |nil?| |collectQuasiMonic| |leftTrace| |Not| |\\/| + |primextendedint| |taylorIfCan| |s17agf| |coleman| |invmultisect| + |datalist| |stoseInvertibleSetsqfreg| |algSplitSimple| |whatInfinity| + |subTriSet?| |modularGcd| |badNum| |topFortranOutputStack| + |parametersOf| |rootSimp| |times| |coerce| |cycleLength| + |integerIfCan| |negative?| |Lazard2| |expPot| |RemainderList| + |paraboloidal| |divergence| |fixPredicate| |construct| |s17aff| + |solveLinear| |mapExpon| |clipSurface| |lexico| |branchPoint?| |red| + |setnext!| |gethi| |cRationalPower| |position| |maxrow| |s01eaf| + |gramschmidt| |expextendedint| |gderiv| |normalizeAtInfinity| + |selectIntegrationRoutines| |var2Steps| |OMgetAttr| |fintegrate| + |exptMod| |rename| |subresultantVector| |sinh2csch| |lambda| + |lfinfieldint| |symFunc| |squareFreeFactors| |radicalSolve| + |stiffnessAndStabilityFactor| |monom| |rank| |wrregime| |d02kef| + |leftFactorIfCan| |initializeGroupForWordProblem| |approximants| + |currentSubProgram| |lyndon| |setrest!| |rationalIfCan| |socf2socdf| + |symmetricPower| |createThreeSpace| |twoFactor| |c06gcf| + |OMsetEncoding| |squareFreePrim| |remove!| |hex| |midpoint| |biRank| + |viewPosDefault| |lintgcd| |OMconnInDevice| |trigs| |e02aef| + |OMgetFloat| |common| |dimensionsOf| |bezoutDiscriminant| + |swapColumns!| |times!| |quoted?| |trunc| |integralBasisAtInfinity| + |in?| |df2st| |coercePreimagesImages| |fortranCharacter| |variable?| + |localReal?| |d02ejf| |content| |resultantEuclidean| + |eisensteinIrreducible?| |computeCycleLength| |constant?| |prod| + |mathieu23| |recur| |isMult| |setAdaptive| |cartesian| |divisors| + |positiveSolve| |basisOfCentroid| |addiag| |OMputEndBind| |rroot| + |integral?| |splitConstant| |back| |rk4f| |OMconnectTCP| + |closeComponent| |ramifiedAtInfinity?| |mainDefiningPolynomial| + |stiffnessAndStabilityOfODEIF| |semiResultantEuclidean1| |compound?| + |loadNativeModule| |lists| |c06frf| |axes| |f01rdf| |showClipRegion| + |measure2Result| |swap| |absolutelyIrreducible?| |getZechTable| + |adjoint| |reducedSystem| |imagj| |upperCase?| |bumptab1| + |zeroDimPrime?| |exprex| |hspace| |iitan| |listYoungTableaus| + |lazyEvaluate| |nextPrime| |cAcsc| |nextPrimitivePoly| + |makeViewport3D| |createGenericMatrix| |erf| |plus!| |e04ycf| + |factorSquareFreeByRecursion| |internalIntegrate0| + |lastSubResultantElseSplit| |Nul| |d01asf| |log| |OMgetBind| + |fullDisplay| |basis| |OMputVariable| |comparison| |ScanArabic| + |BumInSepFFE| |is?| |deriv| |insertionSort!| |discreteLog| + |matrixDimensions| |e04mbf| |li| |viewDeltaYDefault| |raisePolynomial| + |basicSet| |fillPascalTriangle| |probablyZeroDim?| |iiexp| |setelt| + |xn| |reverse| |simpleBounds?| |semicolonSeparate| |diophantineSystem| + |dilog| |extendedEuclidean| |certainlySubVariety?| + |getMultiplicationMatrix| |linSolve| |removeCoshSq| |iiacsch| + |iiacosh| |parametric?| |externalList| |sin| |monomialIntPoly| + |selectODEIVPRoutines| |createNormalPrimitivePoly| + |tryFunctionalDecomposition| |f02aef| |showScalarValues| + |insertBottom!| |recolor| |rightLcm| |cos| |horizConcat| |shiftLeft| + |copyInto!| |extendedint| |roughBasicSet| |cardinality| + |leftCharacteristicPolynomial| |enterPointData| |unknown| |sample| + |tan| |eof?| |endSubProgram| |hMonic| |imagE| |bag| |f02akf| + |numberOfHues| |solveid| |reindex| |cot| |ip4Address| |pointPlot| + |doubleFloatFormat| |solveLinearPolynomialEquationByRecursion| + |critpOrder| |f01qdf| |iiasec| |cyclePartition| |rspace| |sec| |pol| + |curve?| |computePowers| |totalfract| |nsqfree| |nextSublist| + |anticoord| |superHeight| |palgintegrate| |csc| |realEigenvectors| + |check| |reducedQPowers| RF2UTS |lifting| |leftNorm| |quadratic?| + |badValues| |separate| |asin| |test| |genericLeftDiscriminant| + |largest| |rightMinimalPolynomial| |clearTheFTable| |maxIndex| + |representationType| |ListOfTerms| |complexIntegrate| |e04ucf| + |legendre| |acos| |capacity| |cSinh| |tablePow| |quotient| |parts| + |terms| |virtualDegree| |odd?| |extendedSubResultantGcd| |thetaCoord| + |atan| |curveColor| |cAcot| |identityMatrix| |floor| + |brillhartIrreducible?| |removeRedundantFactorsInPols| |minus!| + |numberOfMonomials| |bits| |acot| |operation| |cyclotomic| + |purelyTranscendental?| |lastSubResultantEuclidean| |triangSolve| + |f02axf| |integrate| |matrixGcd| |contractSolve| |mesh| |asec| + |groebSolve| |maxdeg| |partialDenominators| |padicallyExpand| + |reciprocalPolynomial| |csubst| |middle| |setStatus!| |alphanumeric?| + |cn| |acsc| |rootSplit| |subNodeOf?| |coerceL| |fortranComplex| + |edf2fi| |cyclicGroup| |prefix| |setMaxPoints| |sinh| |logIfCan| + |toseInvertible?| |extension| |palginfieldint| |OMencodingXML| + |rightDivide| |d01apf| |listLoops| |pleskenSplit| |cosh| |iiacsc| + |low| |degreePartition| |algDsolve| |tower| |areEquivalent?| |quartic| + |heapSort| |simplify| |npcoef| |iisinh| |tanh| |ran| |eq| |leader| + |palgint| |subPolSet?| |jacobi| |identitySquareMatrix| |remove| + |leftFactor| |hyperelliptic| |coth| |iter| |monicDecomposeIfCan| + |makeCos| |outlineRender| |indiceSubResultant| |logical?| + |explicitlyEmpty?| |drawStyle| |obj| |stripCommentsAndBlanks| |sech| + |write!| |useSingleFactorBound| |constantRight| |triangularSystems| + |selectOptimizationRoutines| |c05nbf| |last| |invertIfCan| + |OMUnknownCD?| |position!| |cache| |csch| |lazyPquo| |nextItem| + |hexDigit?| |makeResult| |countable?| |assoc| |realZeros| |f2df| + |commutativeEquality| |submod| |asinh| |forLoop| + |characteristicPolynomial| |primaryDecomp| |complexNumeric| |ef2edf| + |linearMatrix| |besselY| |lazyIrreducibleFactors| |acosh| + |standardBasisOfCyclicSubmodule| |changeThreshhold| |separateDegrees| + |nonQsign| |controlPanel| |primitivePart!| |anfactor| + |splitDenominator| |radicalSimplify| |atanh| |bernoulliB| |poisson| + |createPrimitiveNormalPoly| |stFunc1| |kernels| |zeroDim?| |hclf| + |iflist2Result| |iiabs| |exportedOperators| |acoth| |e01bff| + |hermiteH| |fortranDoubleComplex| |componentUpperBound| |operator| + |evenlambert| |completeHensel| |setLabelValue| |returnType!| |c05adf| + |e02bbf| |asech| |level| |htrigs| |exp| |before?| + |stoseSquareFreePart| |inf| |hasPredicate?| |distdfact| + |removeRedundantFactorsInContents| |ParCond| |sturmVariationsOf| + |binaryFunction| |light| |integralLastSubResultant| |normal?| + |subresultantSequence| |frobenius| |univariate| |dmpToHdmp| |select!| + |doubleDisc| |findConstructor| |asinhIfCan| |multiple| + |resultantReduitEuclidean| |fractRagits| |reducedForm| |nthRootIfCan| + |indicialEquation| |d03eef| |recoverAfterFail| |ode2| |unary?| + |schema| |alternative?| |applyQuote| |compile| |integral| + |bandedJacobian| |typeList| |table| |normal01| |generalPosition| + |primlimintfrac| |conjugate| |scalarMatrix| |drawToScale| |hue| + |ratPoly| |Hausdorff| |transcendenceDegree| |new| |cup| + |zeroDimPrimary?| |generalizedInverse| |nor| |varselect| |c06fpf| + |points| |f01qef| |uniform| |Aleph| |viewThetaDefault| + |generateIrredPoly| |mightHaveRoots| |randomLC| |padecf| |ruleset| + |clearFortranOutputStack| |omError| |nativeModuleExtension| + |viewport2D| |besselK| |palgRDE0| |retract| |LyndonWordsList| + |endOfFile?| |bringDown| |choosemon| |imagK| |maxColIndex| + |complement| |clikeUniv| |univariateSolve| |jacobian| |readUInt16!| + |infix| |bracket| |create| |pack!| |norm| |makeCrit| + |mainSquareFreePart| |df2ef| |convert| |OMreadFile| |f04faf| + |putGraph| |moebiusMu| |commutator| |singularitiesOf| |elliptic| + |traceMatrix| |iteratedInitials| |extractSplittingLeaf| |tanAn| + |putProperty| |leftZero| |s18acf| |isAbsolutelyIrreducible?| + |typeForm| |nil| |f07fdf| |point?| |dihedral| |epilogue| |weierstrass| + |reducedContinuedFraction| |setLegalFortranSourceExtensions| + |fortranLiteral| |box| |writeUInt8!| |supRittWu?| + |wordInStrongGenerators| |tubeRadiusDefault| |iiasech| |drawCurves| + |primextintfrac| |quadraticNorm| |d01anf| |pile| |ReduceOrder| + |binomial| |useSingleFactorBound?| |multiset| |startPolynomial| + |hermite| |axesColorDefault| |s21bbf| |polarCoordinates| |rightUnit| + |rightZero| |countRealRoots| |approximate| |OMunhandledSymbol| + |weighted| |extractIfCan| |LiePolyIfCan| |rightUnits| |leastMonomial| + |iicos| |edf2df| |genericRightMinimalPolynomial| |d02raf| |complex| + |leftOne| |safeFloor| |isAnd| |stop| |realSolve| |cCosh| |left| + |musserTrials| |lowerPolynomial| |upperCase| |unknownEndian| |e02zaf| + |s17dhf| |expandTrigProducts| |OMgetEndError| |goodnessOfFit| + |OMgetVariable| |right| |youngGroup| |principal?| |exactQuotient!| + |setRow!| |maxRowIndex| |cyclic| |setMinPoints3D| + |zeroSetSplitIntoTriangularSystems| |sh| |addPoint| |sqfrFactor| + |drawComplexVectorField| |gradient| |solveLinearPolynomialEquation| + |mindegTerm| |failed| |insertRoot!| |prinpolINFO| + |scanOneDimSubspaces| |nand| |initial| |unit?| |isOp| |setFieldInfo| + |lllp| |useEisensteinCriterion?| |quasiMonicPolynomials| |setleft!| + |sequence| |decreasePrecision| |integer?| |minGbasis| |argumentListOf| + |branchPointAtInfinity?| |fortranReal| |mapMatrixIfCan| |mathieu22| + |symmetricRemainder| |acscIfCan| |isOr| |symmetricDifference| + |setleaves!| |prologue| |taylorQuoByVar| |makeYoungTableau| + |oneDimensionalArray| |mainMonomials| |binaryTree| |rotatey| + |nilFactor| |pastel| |inGroundField?| |every?| |addMatch| + |mainVariable| |reify| |f04jgf| |basisOfRightNucleus| |corrPoly| + |pToDmp| |pseudoRemainder| |compdegd| |setMaxPoints3D| + |leftExactQuotient| |deepestTail| |palgint0| + |degreeSubResultantEuclidean| |ScanFloatIgnoreSpacesIfCan| |getMatch| + |zeroVector| |argument| |semiSubResultantGcdEuclidean2| |fracPart| + |innerint| |relativeApprox| |leftUnits| |numberOfComputedEntries| + |doubleRank| |alphanumeric| |closed| |stoseInvertible?reg| + |startStats!| |diagonal?| |cSech| |mapGen| |setOfMinN| |setEmpty!| + |rightPower| |mainPrimitivePart| |elaborate| |freeOf?| |lagrange| + |whileLoop| |fixedPoint| |removeSinSq| |hcrf| |atanIfCan| + |rightTraceMatrix| |fibonacci| |zeroDimensional?| |patternMatchTimes| + |tubeRadius| |symbol| |reduceBasisAtInfinity| |cCoth| + |setIntersection| |length| |harmonic| |printingInfo?| |twist| + |intChoose| |hessian| |OMputString| |roughSubIdeal?| |expression| + |scripts| |interpretString| |sts2stst| |Frobenius| |exponent| + |complexNumericIfCan| |outputArgs| |shade| + |combineFeatureCompatibility| |just| |iCompose| |integer| |key| + |addPointLast| |updatF| FG2F |mainForm| |cot2trig| + |inverseIntegralMatrix| |rootDirectory| |bsolve| |atom?| |leastPower| + |generalSqFr| |square?| |nextsubResultant2| |factorOfDegree| |c06fuf| + |LyndonCoordinates| |factorSquareFreePolynomial| |plenaryPower| + |s17dcf| |laguerre| |filename| |super| |perfectNthRoot| + |argumentList!| |graphState| |completeEchelonBasis| |typeLists| + |processTemplate| |property| |rdHack1| |simplifyExp| |medialSet| + |perfectSquare?| |returns| |prime| |prolateSpheroidal| + |possiblyNewVariety?| |hasSolution?| |sturmSequence| |readable?| + |trim| |triangular?| |parse| |bezoutMatrix| |incrementKthElement| + |depth| |minordet| |exponents| |column| |oblateSpheroidal| + |coefficient| |noncommutativeJordanAlgebra?| + |tryFunctionalDecomposition?| |selectPolynomials| |e01sbf| |scopes| + |iprint| |alphabetic?| |OMlistSymbols| |supersub| |fmecg| |bernoulli| + |rationalPower| |iisec| |trapezoidal| |f02aaf| |OMencodingBinary| + |intcompBasis| |nextsousResultant2| |genericLeftMinimalPolynomial| + |entry| |definingEquations| |createPrimitivePoly| |principalIdeal| + |say| |pmComplexintegrate| |exprHasAlgebraicWeight| |Ei| + |restorePrecision| |leftGcd| |implies| |arg1| |noValueMode| |revert| + |nthr| |internalSubPolSet?| |child?| |highCommonTerms| |fortranDouble| + |f04axf| |lowerCase?| |isobaric?| |nary?| |arg2| + |fortranCarriageReturn| |e01baf| |reset| |diagonals| |besselI| + |close!| |palgLODE| |radicalRoots| |logpart| |inverseColeman| |sum| + |c02aff| |closedCurve| |groebner| |changeWeightLevel| |edf2ef| |inc| + |LiePoly| |constantOperator| |OMclose| |exprToUPS| |lquo| |coerceP| + |conditions| |irCtor| |setAdaptive3D| |OMgetType| |write| |chebyshevU| + |e04dgf| |entry?| |karatsuba| |binaryTournament| |nextSubsetGray| + |save| |unitCanonical| |match| |imagk| |sup| |front| |options| |genus| + |lp| |evenInfiniteProduct| |plot| |extractProperty| |tubePoints| + |kovacic| |dom| |clipWithRanges| |sylvesterSequence| |flagFactor| + |nextPartition| |binary| |style| |finiteBound| |stopTableInvSet!| + |droot| |getStream| |OMgetEndAttr| |OMserve| |critBonD| + |minimumExponent| |factorsOfCyclicGroupSize| |mapCoef| |nil| + |infinite| |arbitraryExponent| |approximate| |complex| + |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index fc260836..7bbc482c 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5427 +1,5422 @@ -(3266712 . 3486501441) -((-2761 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-3362 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4248 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1254 (-576)) |#2|) 44)) (-3129 (($ $) 80)) (-2359 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3433 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-4260 (((-656 |#2|) $) 13)) (-3257 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3874 (($ (-1 |#2| |#2|) $) 37)) (-2477 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-3371 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-1863 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3292 (((-112) (-1 (-112) |#2|) $) 23)) (-4367 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1254 (-576))) 66)) (-2470 (($ $ (-576)) 76) (($ $ (-1254 (-576))) 75)) (-3150 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-3582 (($ $ $ (-576)) 69)) (-4268 (($ $) 68)) (-4103 (($ (-656 |#2|)) 73)) (-2851 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-4092 (((-874) $) 92)) (-2190 (((-112) (-1 (-112) |#2|) $) 22)) (-3919 (((-112) $ $) 95)) (-3944 (((-112) $ $) 99))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3919 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3944 ((-112) |#1| |#1|)) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -3582 (|#1| |#1| |#1| (-576))) (-15 -2761 ((-112) |#1|)) (-15 -3257 (|#1| |#1| |#1|)) (-15 -3433 ((-576) |#2| |#1| (-576))) (-15 -3433 ((-576) |#2| |#1|)) (-15 -3433 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2761 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3257 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4248 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -3371 (|#1| |#1| |#1| (-576))) (-15 -3371 (|#1| |#2| |#1| (-576))) (-15 -2470 (|#1| |#1| (-1254 (-576)))) (-15 -2470 (|#1| |#1| (-576))) (-15 -2477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2851 (|#1| (-656 |#1|))) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#2|)) (-15 -4367 (|#1| |#1| (-1254 (-576)))) (-15 -4103 (|#1| (-656 |#2|))) (-15 -1863 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4367 (|#2| |#1| (-576))) (-15 -4367 (|#2| |#1| (-576) |#2|)) (-15 -4248 (|#2| |#1| (-576) |#2|)) (-15 -3150 ((-783) |#2| |#1|)) (-15 -4260 ((-656 |#2|) |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3874 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4268 (|#1| |#1|))) (-19 |#2|) (-1237)) (T -18)) +(3261385 . 3486517534) +((-2373 (((-112) (-1 (-112) |#2| |#2|) $) 86) (((-112) $) NIL)) (-2265 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3731 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-1253 (-576)) |#2|) 44)) (-3478 (($ $) 80)) (-2521 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3584 (((-576) (-1 (-112) |#2|) $) 27) (((-576) |#2| $) NIL) (((-576) |#2| $ (-576)) 96)) (-3825 (((-656 |#2|) $) 13)) (-1854 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-1763 (($ (-1 |#2| |#2|) $) 37)) (-1632 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2277 (($ |#2| $ (-576)) NIL) (($ $ $ (-576)) 67)) (-2644 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-4207 (((-112) (-1 (-112) |#2|) $) 23)) (-2871 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL) (($ $ (-1253 (-576))) 66)) (-3464 (($ $ (-576)) 76) (($ $ (-1253 (-576))) 75)) (-1456 (((-783) (-1 (-112) |#2|) $) 34) (((-783) |#2| $) NIL)) (-3760 (($ $ $ (-576)) 69)) (-1954 (($ $) 68)) (-3573 (($ (-656 |#2|)) 73)) (-1661 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 87) (($ (-656 $)) 85)) (-3563 (((-874) $) 92)) (-2043 (((-112) (-1 (-112) |#2|) $) 22)) (-2988 (((-112) $ $) 95)) (-3010 (((-112) $ $) 99))) +(((-18 |#1| |#2|) (-10 -8 (-15 -2988 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -3010 ((-112) |#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3760 (|#1| |#1| |#1| (-576))) (-15 -2373 ((-112) |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -3584 ((-576) |#2| |#1| (-576))) (-15 -3584 ((-576) |#2| |#1|)) (-15 -3584 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2373 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1854 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3731 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -2277 (|#1| |#1| |#1| (-576))) (-15 -2277 (|#1| |#2| |#1| (-576))) (-15 -3464 (|#1| |#1| (-1253 (-576)))) (-15 -3464 (|#1| |#1| (-576))) (-15 -1632 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1661 (|#1| (-656 |#1|))) (-15 -1661 (|#1| |#1| |#1|)) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#2|)) (-15 -2871 (|#1| |#1| (-1253 (-576)))) (-15 -3573 (|#1| (-656 |#2|))) (-15 -2644 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2871 (|#2| |#1| (-576))) (-15 -2871 (|#2| |#1| (-576) |#2|)) (-15 -3731 (|#2| |#1| (-576) |#2|)) (-15 -1456 ((-783) |#2| |#1|)) (-15 -3825 ((-656 |#2|) |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1763 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1954 (|#1| |#1|))) (-19 |#2|) (-1236)) (T -18)) NIL -(-10 -8 (-15 -3919 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3944 ((-112) |#1| |#1|)) (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -3582 (|#1| |#1| |#1| (-576))) (-15 -2761 ((-112) |#1|)) (-15 -3257 (|#1| |#1| |#1|)) (-15 -3433 ((-576) |#2| |#1| (-576))) (-15 -3433 ((-576) |#2| |#1|)) (-15 -3433 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2761 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3257 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4248 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -3371 (|#1| |#1| |#1| (-576))) (-15 -3371 (|#1| |#2| |#1| (-576))) (-15 -2470 (|#1| |#1| (-1254 (-576)))) (-15 -2470 (|#1| |#1| (-576))) (-15 -2477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2851 (|#1| (-656 |#1|))) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#2|)) (-15 -4367 (|#1| |#1| (-1254 (-576)))) (-15 -4103 (|#1| (-656 |#2|))) (-15 -1863 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4367 (|#2| |#1| (-576))) (-15 -4367 (|#2| |#1| (-576) |#2|)) (-15 -4248 (|#2| |#1| (-576) |#2|)) (-15 -3150 ((-783) |#2| |#1|)) (-15 -4260 ((-656 |#2|) |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3874 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4268 (|#1| |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2449 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) 8)) (-4248 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-3129 (($ $) 93 (|has| $ (-6 -4463)))) (-4112 (($ $) 103)) (-1690 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 52)) (-3433 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1992 (($ (-783) |#1|) 70)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 44 (|has| (-576) (-862)))) (-3492 (($ $ $) 90 (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 45 (|has| (-576) (-862)))) (-2726 (($ $ $) 89 (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4428 (((-656 (-576)) $) 47)) (-2013 (((-112) (-576) $) 48)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2701 ((|#1| $) 43 (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2918 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-2470 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3582 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-4268 (($ $) 13)) (-1505 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 72)) (-2851 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3955 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3966 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3944 (((-112) $ $) 85 (|has| |#1| (-862)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-19 |#1|) (-141) (-1237)) (T -19)) +(-10 -8 (-15 -2988 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -3010 ((-112) |#1| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3478 (|#1| |#1|)) (-15 -3760 (|#1| |#1| |#1| (-576))) (-15 -2373 ((-112) |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -3584 ((-576) |#2| |#1| (-576))) (-15 -3584 ((-576) |#2| |#1|)) (-15 -3584 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2373 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1854 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3731 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -2277 (|#1| |#1| |#1| (-576))) (-15 -2277 (|#1| |#2| |#1| (-576))) (-15 -3464 (|#1| |#1| (-1253 (-576)))) (-15 -3464 (|#1| |#1| (-576))) (-15 -1632 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1661 (|#1| (-656 |#1|))) (-15 -1661 (|#1| |#1| |#1|)) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#2|)) (-15 -2871 (|#1| |#1| (-1253 (-576)))) (-15 -3573 (|#1| (-656 |#2|))) (-15 -2644 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2871 (|#2| |#1| (-576))) (-15 -2871 (|#2| |#1| (-576) |#2|)) (-15 -3731 (|#2| |#1| (-576) |#2|)) (-15 -1456 ((-783) |#2| |#1|)) (-15 -3825 ((-656 |#2|) |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1763 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1954 (|#1| |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2333 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) 8)) (-3731 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3478 (($ $) 93 (|has| $ (-6 -4462)))) (-3733 (($ $) 103)) (-3172 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 52)) (-3584 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-4033 (($ (-783) |#1|) 70)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 44 (|has| (-576) (-862)))) (-2442 (($ $ $) 90 (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 45 (|has| (-576) (-862)))) (-1893 (($ $ $) 89 (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3321 (((-656 (-576)) $) 47)) (-2378 (((-112) (-576) $) 48)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3504 ((|#1| $) 43 (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2500 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-3464 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3760 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-1954 (($ $) 13)) (-4076 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 72)) (-1661 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 86 (|has| |#1| (-862)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3037 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3010 (((-112) $ $) 85 (|has| |#1| (-862)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-19 |#1|) (-141) (-1236)) (T -19)) NIL -(-13 (-384 |t#1|) (-10 -7 (-6 -4463))) -(((-34) . T) ((-102) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1237) . T)) -((-3788 (((-3 $ "failed") $ $) 12)) (-4018 (($ $) NIL) (($ $ $) 9)) (* (($ (-938) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26))) -(((-20 |#1|) (-10 -8 (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3788 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-21)) (T -20)) +(-13 (-384 |t#1|) (-10 -7 (-6 -4462))) +(((-34) . T) ((-102) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1236) . T)) +((-1367 (((-3 $ "failed") $ $) 12)) (-3095 (($ $) NIL) (($ $ $) 9)) (* (($ (-938) $) NIL) (($ (-783) $) 16) (($ (-576) $) 26))) +(((-20 |#1|) (-10 -8 (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -1367 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3788 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) +(-10 -8 (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -1367 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) (((-21) (-141)) (T -21)) -((-4018 (*1 *1 *1) (-4 *1 (-21))) (-4018 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-132) (-658 (-576)) (-10 -8 (-15 -4018 ($ $)) (-15 -4018 ($ $ $)))) +((-3095 (*1 *1 *1) (-4 *1 (-21))) (-3095 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-132) (-658 (-576)) (-10 -8 (-15 -3095 ($ $)) (-15 -3095 ($ $ $)))) (((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1119) . T)) -((-1962 (((-112) $) 10)) (-3656 (($) 15)) (* (($ (-938) $) 14) (($ (-783) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -1962 ((-112) |#1|)) (-15 -3656 (|#1|)) (-15 * (|#1| (-938) |#1|))) (-23)) (T -22)) +((-1454 (((-112) $) 10)) (-3767 (($) 15)) (* (($ (-938) $) 14) (($ (-783) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -1454 ((-112) |#1|)) (-15 -3767 (|#1|)) (-15 * (|#1| (-938) |#1|))) (-23)) (T -22)) NIL -(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -1962 ((-112) |#1|)) (-15 -3656 (|#1|)) (-15 * (|#1| (-938) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16))) +(-10 -8 (-15 * (|#1| (-783) |#1|)) (-15 -1454 ((-112) |#1|)) (-15 -3767 (|#1|)) (-15 * (|#1| (-938) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16))) (((-23) (-141)) (T -23)) -((-4300 (*1 *1) (-4 *1 (-23))) (-3656 (*1 *1) (-4 *1 (-23))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))) -(-13 (-25) (-10 -8 (-15 (-4300) ($) -2670) (-15 -3656 ($) -2670) (-15 -1962 ((-112) $)) (-15 * ($ (-783) $)))) +((-2800 (*1 *1) (-4 *1 (-23))) (-3767 (*1 *1) (-4 *1 (-23))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783))))) +(-13 (-25) (-10 -8 (-15 (-2800) ($) -1398) (-15 -3767 ($) -1398) (-15 -1454 ((-112) $)) (-15 * ($ (-783) $)))) (((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) ((* (($ (-938) $) 10))) (((-24 |#1|) (-10 -8 (-15 * (|#1| (-938) |#1|))) (-25)) (T -24)) NIL (-10 -8 (-15 * (|#1| (-938) |#1|))) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14))) (((-25) (-141)) (T -25)) -((-4007 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-938))))) -(-13 (-1119) (-10 -8 (-15 -4007 ($ $ $)) (-15 * ($ (-938) $)))) +((-3083 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-938))))) +(-13 (-1119) (-10 -8 (-15 -3083 ($ $ $)) (-15 * ($ (-938) $)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-1559 (((-656 $) (-969 $)) 32) (((-656 $) (-1192 $)) 16) (((-656 $) (-1192 $) (-1196)) 20)) (-1669 (($ (-969 $)) 30) (($ (-1192 $)) 11) (($ (-1192 $) (-1196)) 60)) (-4189 (((-656 $) (-969 $)) 33) (((-656 $) (-1192 $)) 18) (((-656 $) (-1192 $) (-1196)) 19)) (-1935 (($ (-969 $)) 31) (($ (-1192 $)) 13) (($ (-1192 $) (-1196)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1559 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -1559 ((-656 |#1|) (-1192 |#1|))) (-15 -1559 ((-656 |#1|) (-969 |#1|))) (-15 -1669 (|#1| (-1192 |#1|) (-1196))) (-15 -1669 (|#1| (-1192 |#1|))) (-15 -1669 (|#1| (-969 |#1|))) (-15 -4189 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -4189 ((-656 |#1|) (-1192 |#1|))) (-15 -4189 ((-656 |#1|) (-969 |#1|))) (-15 -1935 (|#1| (-1192 |#1|) (-1196))) (-15 -1935 (|#1| (-1192 |#1|))) (-15 -1935 (|#1| (-969 |#1|)))) (-27)) (T -26)) +((-1900 (((-656 $) (-969 $)) 32) (((-656 $) (-1191 $)) 16) (((-656 $) (-1191 $) (-1195)) 20)) (-2010 (($ (-969 $)) 30) (($ (-1191 $)) 11) (($ (-1191 $) (-1195)) 60)) (-1816 (((-656 $) (-969 $)) 33) (((-656 $) (-1191 $)) 18) (((-656 $) (-1191 $) (-1195)) 19)) (-3532 (($ (-969 $)) 31) (($ (-1191 $)) 13) (($ (-1191 $) (-1195)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1900 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -1900 ((-656 |#1|) (-1191 |#1|))) (-15 -1900 ((-656 |#1|) (-969 |#1|))) (-15 -2010 (|#1| (-1191 |#1|) (-1195))) (-15 -2010 (|#1| (-1191 |#1|))) (-15 -2010 (|#1| (-969 |#1|))) (-15 -1816 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -1816 ((-656 |#1|) (-1191 |#1|))) (-15 -1816 ((-656 |#1|) (-969 |#1|))) (-15 -3532 (|#1| (-1191 |#1|) (-1195))) (-15 -3532 (|#1| (-1191 |#1|))) (-15 -3532 (|#1| (-969 |#1|)))) (-27)) (T -26)) NIL -(-10 -8 (-15 -1559 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -1559 ((-656 |#1|) (-1192 |#1|))) (-15 -1559 ((-656 |#1|) (-969 |#1|))) (-15 -1669 (|#1| (-1192 |#1|) (-1196))) (-15 -1669 (|#1| (-1192 |#1|))) (-15 -1669 (|#1| (-969 |#1|))) (-15 -4189 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -4189 ((-656 |#1|) (-1192 |#1|))) (-15 -4189 ((-656 |#1|) (-969 |#1|))) (-15 -1935 (|#1| (-1192 |#1|) (-1196))) (-15 -1935 (|#1| (-1192 |#1|))) (-15 -1935 (|#1| (-969 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1559 (((-656 $) (-969 $)) 88) (((-656 $) (-1192 $)) 87) (((-656 $) (-1192 $) (-1196)) 86)) (-1669 (($ (-969 $)) 91) (($ (-1192 $)) 90) (($ (-1192 $) (-1196)) 89)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-1403 (($ $) 100)) (-4407 (((-112) $ $) 65)) (-3656 (($) 18 T CONST)) (-4189 (((-656 $) (-969 $)) 94) (((-656 $) (-1192 $)) 93) (((-656 $) (-1192 $) (-1196)) 92)) (-1935 (($ (-969 $)) 97) (($ (-1192 $)) 96) (($ (-1192 $) (-1196)) 95)) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-2725 (((-112) $) 79)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 99)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 78)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1392 (((-430 $) $) 82)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +(-10 -8 (-15 -1900 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -1900 ((-656 |#1|) (-1191 |#1|))) (-15 -1900 ((-656 |#1|) (-969 |#1|))) (-15 -2010 (|#1| (-1191 |#1|) (-1195))) (-15 -2010 (|#1| (-1191 |#1|))) (-15 -2010 (|#1| (-969 |#1|))) (-15 -1816 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -1816 ((-656 |#1|) (-1191 |#1|))) (-15 -1816 ((-656 |#1|) (-969 |#1|))) (-15 -3532 (|#1| (-1191 |#1|) (-1195))) (-15 -3532 (|#1| (-1191 |#1|))) (-15 -3532 (|#1| (-969 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1900 (((-656 $) (-969 $)) 88) (((-656 $) (-1191 $)) 87) (((-656 $) (-1191 $) (-1195)) 86)) (-2010 (($ (-969 $)) 91) (($ (-1191 $)) 90) (($ (-1191 $) (-1195)) 89)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-1853 (($ $) 100)) (-1727 (((-112) $ $) 65)) (-3767 (($) 18 T CONST)) (-1816 (((-656 $) (-969 $)) 94) (((-656 $) (-1191 $)) 93) (((-656 $) (-1191 $) (-1195)) 92)) (-3532 (($ (-969 $)) 97) (($ (-1191 $)) 96) (($ (-1191 $) (-1195)) 95)) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-1792 (((-112) $) 79)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 99)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 78)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-1839 (((-430 $) $) 82)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 73)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-27) (-141)) (T -27)) -((-1935 (*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) (-1935 (*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) (-1935 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-4189 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1669 (*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) (-1669 (*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) (-1669 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) (-5 *2 (-656 *1))))) -(-13 (-374) (-1021) (-10 -8 (-15 -1935 ($ (-969 $))) (-15 -1935 ($ (-1192 $))) (-15 -1935 ($ (-1192 $) (-1196))) (-15 -4189 ((-656 $) (-969 $))) (-15 -4189 ((-656 $) (-1192 $))) (-15 -4189 ((-656 $) (-1192 $) (-1196))) (-15 -1669 ($ (-969 $))) (-15 -1669 ($ (-1192 $))) (-15 -1669 ($ (-1192 $) (-1196))) (-15 -1559 ((-656 $) (-969 $))) (-15 -1559 ((-656 $) (-1192 $))) (-15 -1559 ((-656 $) (-1192 $) (-1196))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1021) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T)) -((-1559 (((-656 $) (-969 $)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-1192 $) (-1196)) 55) (((-656 $) $) 22) (((-656 $) $ (-1196)) 46)) (-1669 (($ (-969 $)) NIL) (($ (-1192 $)) NIL) (($ (-1192 $) (-1196)) 57) (($ $) 20) (($ $ (-1196)) 40)) (-4189 (((-656 $) (-969 $)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-1192 $) (-1196)) 53) (((-656 $) $) 18) (((-656 $) $ (-1196)) 48)) (-1935 (($ (-969 $)) NIL) (($ (-1192 $)) NIL) (($ (-1192 $) (-1196)) NIL) (($ $) 15) (($ $ (-1196)) 42))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1559 ((-656 |#1|) |#1| (-1196))) (-15 -1669 (|#1| |#1| (-1196))) (-15 -1559 ((-656 |#1|) |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -4189 ((-656 |#1|) |#1| (-1196))) (-15 -1935 (|#1| |#1| (-1196))) (-15 -4189 ((-656 |#1|) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -1559 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -1559 ((-656 |#1|) (-1192 |#1|))) (-15 -1559 ((-656 |#1|) (-969 |#1|))) (-15 -1669 (|#1| (-1192 |#1|) (-1196))) (-15 -1669 (|#1| (-1192 |#1|))) (-15 -1669 (|#1| (-969 |#1|))) (-15 -4189 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -4189 ((-656 |#1|) (-1192 |#1|))) (-15 -4189 ((-656 |#1|) (-969 |#1|))) (-15 -1935 (|#1| (-1192 |#1|) (-1196))) (-15 -1935 (|#1| (-1192 |#1|))) (-15 -1935 (|#1| (-969 |#1|)))) (-29 |#2|) (-568)) (T -28)) -NIL -(-10 -8 (-15 -1559 ((-656 |#1|) |#1| (-1196))) (-15 -1669 (|#1| |#1| (-1196))) (-15 -1559 ((-656 |#1|) |#1|)) (-15 -1669 (|#1| |#1|)) (-15 -4189 ((-656 |#1|) |#1| (-1196))) (-15 -1935 (|#1| |#1| (-1196))) (-15 -4189 ((-656 |#1|) |#1|)) (-15 -1935 (|#1| |#1|)) (-15 -1559 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -1559 ((-656 |#1|) (-1192 |#1|))) (-15 -1559 ((-656 |#1|) (-969 |#1|))) (-15 -1669 (|#1| (-1192 |#1|) (-1196))) (-15 -1669 (|#1| (-1192 |#1|))) (-15 -1669 (|#1| (-969 |#1|))) (-15 -4189 ((-656 |#1|) (-1192 |#1|) (-1196))) (-15 -4189 ((-656 |#1|) (-1192 |#1|))) (-15 -4189 ((-656 |#1|) (-969 |#1|))) (-15 -1935 (|#1| (-1192 |#1|) (-1196))) (-15 -1935 (|#1| (-1192 |#1|))) (-15 -1935 (|#1| (-969 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1559 (((-656 $) (-969 $)) 88) (((-656 $) (-1192 $)) 87) (((-656 $) (-1192 $) (-1196)) 86) (((-656 $) $) 138) (((-656 $) $ (-1196)) 136)) (-1669 (($ (-969 $)) 91) (($ (-1192 $)) 90) (($ (-1192 $) (-1196)) 89) (($ $) 139) (($ $ (-1196)) 137)) (-1962 (((-112) $) 17)) (-1541 (((-656 (-1196)) $) 207)) (-1364 (((-419 (-1192 $)) $ (-624 $)) 239 (|has| |#1| (-568)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-4385 (((-656 (-624 $)) $) 170)) (-3788 (((-3 $ "failed") $ $) 20)) (-1756 (($ $ (-656 (-624 $)) (-656 $)) 160) (($ $ (-656 (-304 $))) 159) (($ $ (-304 $)) 158)) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-1403 (($ $) 100)) (-4407 (((-112) $ $) 65)) (-3656 (($) 18 T CONST)) (-4189 (((-656 $) (-969 $)) 94) (((-656 $) (-1192 $)) 93) (((-656 $) (-1192 $) (-1196)) 92) (((-656 $) $) 142) (((-656 $) $ (-1196)) 140)) (-1935 (($ (-969 $)) 97) (($ (-1192 $)) 96) (($ (-1192 $) (-1196)) 95) (($ $) 143) (($ $ (-1196)) 141)) (-2974 (((-3 (-969 |#1|) "failed") $) 258 (|has| |#1| (-1068))) (((-3 (-419 (-969 |#1|)) "failed") $) 241 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 203) (((-3 (-576) "failed") $) 200 (|has| |#1| (-1057 (-576)))) (((-3 (-1196) "failed") $) 194) (((-3 (-624 $) "failed") $) 145) (((-3 (-419 (-576)) "failed") $) 133 (-3765 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-2378 (((-969 |#1|) $) 257 (|has| |#1| (-1068))) (((-419 (-969 |#1|)) $) 240 (|has| |#1| (-568))) ((|#1| $) 202) (((-576) $) 201 (|has| |#1| (-1057 (-576)))) (((-1196) $) 193) (((-624 $) $) 144) (((-419 (-576)) $) 134 (-3765 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-1975 (($ $ $) 61)) (-3687 (((-701 |#1|) (-1287 $)) 248 (|has| |#1| (-1068))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 247 (|has| |#1| (-1068))) (((-701 |#1|) (-701 $)) 246 (|has| |#1| (-1068))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 245 (|has| |#1| (-1068))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 132 (-3765 (-2445 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-2445 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (((-701 (-576)) (-701 $)) 131 (-3765 (-2445 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-2445 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 130 (-3765 (-2445 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-2445 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (((-701 (-576)) (-1287 $)) 129 (-3765 (-2445 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-2445 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-2725 (((-112) $) 79)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 199 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 198 (|has| |#1| (-899 (-576))))) (-2191 (($ (-656 $)) 164) (($ $) 163)) (-4349 (((-656 (-115)) $) 171)) (-1344 (((-115) (-115)) 172)) (-1810 (((-112) $) 35)) (-3082 (((-112) $) 192 (|has| $ (-1057 (-576))))) (-4272 (($ $) 224 (|has| |#1| (-1068)))) (-3894 (((-1144 |#1| (-624 $)) $) 223 (|has| |#1| (-1068)))) (-3355 (($ $ (-576)) 99)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2525 (((-1192 $) (-624 $)) 189 (|has| $ (-1068)))) (-2477 (($ (-1 $ $) (-624 $)) 178)) (-4348 (((-3 (-624 $) "failed") $) 168)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1332 (((-656 (-624 $)) $) 169)) (-1770 (($ (-115) (-656 $)) 177) (($ (-115) $) 176)) (-3009 (((-3 (-656 $) "failed") $) 218 (|has| |#1| (-1131)))) (-4192 (((-3 (-2 (|:| |val| $) (|:| -3175 (-576))) "failed") $) 227 (|has| |#1| (-1068)))) (-2016 (((-3 (-656 $) "failed") $) 220 (|has| |#1| (-25)))) (-2642 (((-3 (-2 (|:| -1856 (-576)) (|:| |var| (-624 $))) "failed") $) 221 (|has| |#1| (-25)))) (-3178 (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-1196)) 226 (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-115)) 225 (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $) 219 (|has| |#1| (-1131)))) (-1412 (((-112) $ (-1196)) 175) (((-112) $ (-115)) 174)) (-1644 (($ $) 78)) (-2927 (((-783) $) 167)) (-3139 (((-1139) $) 11)) (-1657 (((-112) $) 205)) (-1670 ((|#1| $) 206)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-2513 (((-112) $ (-1196)) 180) (((-112) $ $) 179)) (-1392 (((-430 $) $) 82)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2015 (((-112) $) 191 (|has| $ (-1057 (-576))))) (-2259 (($ $ (-1196) (-783) (-1 $ $)) 231 (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ (-656 $))) 230 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 229 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) 228 (|has| |#1| (-1068))) (($ $ (-656 (-115)) (-656 $) (-1196)) 217 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1196)) 216 (|has| |#1| (-626 (-548)))) (($ $) 215 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196))) 214 (|has| |#1| (-626 (-548)))) (($ $ (-1196)) 213 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-656 $))) 187) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 186) (($ $ (-656 (-115)) (-656 (-1 $ $))) 185) (($ $ (-1196) (-1 $ $)) 184) (($ $ (-1196) (-1 $ (-656 $))) 183) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 182) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 181) (($ $ (-656 $) (-656 $)) 152) (($ $ $ $) 151) (($ $ (-304 $)) 150) (($ $ (-656 (-304 $))) 149) (($ $ (-656 (-624 $)) (-656 $)) 148) (($ $ (-624 $) $) 147)) (-1787 (((-783) $) 64)) (-4367 (($ (-115) (-656 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-3724 (($ $ $) 166) (($ $) 165)) (-3614 (($ $ (-656 (-1196)) (-656 (-783))) 253 (|has| |#1| (-1068))) (($ $ (-1196) (-783)) 252 (|has| |#1| (-1068))) (($ $ (-656 (-1196))) 251 (|has| |#1| (-1068))) (($ $ (-1196)) 249 (|has| |#1| (-1068)))) (-1490 (($ $) 234 (|has| |#1| (-568)))) (-3905 (((-1144 |#1| (-624 $)) $) 233 (|has| |#1| (-568)))) (-2840 (($ $) 190 (|has| $ (-1068)))) (-1505 (((-548) $) 262 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 232 (|has| |#1| (-568))) (((-905 (-390)) $) 197 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 196 (|has| |#1| (-626 (-905 (-576)))))) (-3646 (($ $ $) 261 (|has| |#1| (-485)))) (-1361 (($ $ $) 260 (|has| |#1| (-485)))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-969 |#1|)) 259 (|has| |#1| (-1068))) (($ (-419 (-969 |#1|))) 242 (|has| |#1| (-568))) (($ (-419 (-969 (-419 |#1|)))) 238 (|has| |#1| (-568))) (($ (-969 (-419 |#1|))) 237 (|has| |#1| (-568))) (($ (-419 |#1|)) 236 (|has| |#1| (-568))) (($ (-1144 |#1| (-624 $))) 222 (|has| |#1| (-1068))) (($ |#1|) 204) (($ (-1196)) 195) (($ (-624 $)) 146)) (-3612 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-3163 (($ (-656 $)) 162) (($ $) 161)) (-3201 (((-112) (-115)) 173)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-2407 (($ (-1196) (-656 $)) 212) (($ (-1196) $ $ $ $) 211) (($ (-1196) $ $ $) 210) (($ (-1196) $ $) 209) (($ (-1196) $) 208)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-656 (-1196)) (-656 (-783))) 256 (|has| |#1| (-1068))) (($ $ (-1196) (-783)) 255 (|has| |#1| (-1068))) (($ $ (-656 (-1196))) 254 (|has| |#1| (-1068))) (($ $ (-1196)) 250 (|has| |#1| (-1068)))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 73) (($ (-1144 |#1| (-624 $)) (-1144 |#1| (-624 $))) 235 (|has| |#1| (-568)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1068))))) +((-3532 (*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) (-3532 (*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) (-3532 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1816 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) (-2010 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) (-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) (-5 *2 (-656 *1))))) +(-13 (-374) (-1021) (-10 -8 (-15 -3532 ($ (-969 $))) (-15 -3532 ($ (-1191 $))) (-15 -3532 ($ (-1191 $) (-1195))) (-15 -1816 ((-656 $) (-969 $))) (-15 -1816 ((-656 $) (-1191 $))) (-15 -1816 ((-656 $) (-1191 $) (-1195))) (-15 -2010 ($ (-969 $))) (-15 -2010 ($ (-1191 $))) (-15 -2010 ($ (-1191 $) (-1195))) (-15 -1900 ((-656 $) (-969 $))) (-15 -1900 ((-656 $) (-1191 $))) (-15 -1900 ((-656 $) (-1191 $) (-1195))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1021) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1240) . T)) +((-1900 (((-656 $) (-969 $)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-1191 $) (-1195)) 55) (((-656 $) $) 22) (((-656 $) $ (-1195)) 46)) (-2010 (($ (-969 $)) NIL) (($ (-1191 $)) NIL) (($ (-1191 $) (-1195)) 57) (($ $) 20) (($ $ (-1195)) 40)) (-1816 (((-656 $) (-969 $)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-1191 $) (-1195)) 53) (((-656 $) $) 18) (((-656 $) $ (-1195)) 48)) (-3532 (($ (-969 $)) NIL) (($ (-1191 $)) NIL) (($ (-1191 $) (-1195)) NIL) (($ $) 15) (($ $ (-1195)) 42))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1900 ((-656 |#1|) |#1| (-1195))) (-15 -2010 (|#1| |#1| (-1195))) (-15 -1900 ((-656 |#1|) |#1|)) (-15 -2010 (|#1| |#1|)) (-15 -1816 ((-656 |#1|) |#1| (-1195))) (-15 -3532 (|#1| |#1| (-1195))) (-15 -1816 ((-656 |#1|) |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -1900 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -1900 ((-656 |#1|) (-1191 |#1|))) (-15 -1900 ((-656 |#1|) (-969 |#1|))) (-15 -2010 (|#1| (-1191 |#1|) (-1195))) (-15 -2010 (|#1| (-1191 |#1|))) (-15 -2010 (|#1| (-969 |#1|))) (-15 -1816 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -1816 ((-656 |#1|) (-1191 |#1|))) (-15 -1816 ((-656 |#1|) (-969 |#1|))) (-15 -3532 (|#1| (-1191 |#1|) (-1195))) (-15 -3532 (|#1| (-1191 |#1|))) (-15 -3532 (|#1| (-969 |#1|)))) (-29 |#2|) (-568)) (T -28)) +NIL +(-10 -8 (-15 -1900 ((-656 |#1|) |#1| (-1195))) (-15 -2010 (|#1| |#1| (-1195))) (-15 -1900 ((-656 |#1|) |#1|)) (-15 -2010 (|#1| |#1|)) (-15 -1816 ((-656 |#1|) |#1| (-1195))) (-15 -3532 (|#1| |#1| (-1195))) (-15 -1816 ((-656 |#1|) |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -1900 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -1900 ((-656 |#1|) (-1191 |#1|))) (-15 -1900 ((-656 |#1|) (-969 |#1|))) (-15 -2010 (|#1| (-1191 |#1|) (-1195))) (-15 -2010 (|#1| (-1191 |#1|))) (-15 -2010 (|#1| (-969 |#1|))) (-15 -1816 ((-656 |#1|) (-1191 |#1|) (-1195))) (-15 -1816 ((-656 |#1|) (-1191 |#1|))) (-15 -1816 ((-656 |#1|) (-969 |#1|))) (-15 -3532 (|#1| (-1191 |#1|) (-1195))) (-15 -3532 (|#1| (-1191 |#1|))) (-15 -3532 (|#1| (-969 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1900 (((-656 $) (-969 $)) 88) (((-656 $) (-1191 $)) 87) (((-656 $) (-1191 $) (-1195)) 86) (((-656 $) $) 138) (((-656 $) $ (-1195)) 136)) (-2010 (($ (-969 $)) 91) (($ (-1191 $)) 90) (($ (-1191 $) (-1195)) 89) (($ $) 139) (($ $ (-1195)) 137)) (-1454 (((-112) $) 17)) (-1991 (((-656 (-1195)) $) 207)) (-3999 (((-419 (-1191 $)) $ (-624 $)) 239 (|has| |#1| (-568)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-3887 (((-656 (-624 $)) $) 170)) (-1367 (((-3 $ "failed") $ $) 20)) (-3340 (($ $ (-656 (-624 $)) (-656 $)) 160) (($ $ (-656 (-304 $))) 159) (($ $ (-304 $)) 158)) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-1853 (($ $) 100)) (-1727 (((-112) $ $) 65)) (-3767 (($) 18 T CONST)) (-1816 (((-656 $) (-969 $)) 94) (((-656 $) (-1191 $)) 93) (((-656 $) (-1191 $) (-1195)) 92) (((-656 $) $) 142) (((-656 $) $ (-1195)) 140)) (-3532 (($ (-969 $)) 97) (($ (-1191 $)) 96) (($ (-1191 $) (-1195)) 95) (($ $) 143) (($ $ (-1195)) 141)) (-1539 (((-3 (-969 |#1|) "failed") $) 258 (|has| |#1| (-1068))) (((-3 (-419 (-969 |#1|)) "failed") $) 241 (|has| |#1| (-568))) (((-3 |#1| "failed") $) 203) (((-3 (-576) "failed") $) 200 (|has| |#1| (-1057 (-576)))) (((-3 (-1195) "failed") $) 194) (((-3 (-624 $) "failed") $) 145) (((-3 (-419 (-576)) "failed") $) 133 (-2835 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-4056 (((-969 |#1|) $) 257 (|has| |#1| (-1068))) (((-419 (-969 |#1|)) $) 240 (|has| |#1| (-568))) ((|#1| $) 202) (((-576) $) 201 (|has| |#1| (-1057 (-576)))) (((-1195) $) 193) (((-624 $) $) 144) (((-419 (-576)) $) 134 (-2835 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-3420 (($ $ $) 61)) (-3687 (((-701 |#1|) (-1286 $)) 248 (|has| |#1| (-1068))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 247 (|has| |#1| (-1068))) (((-701 |#1|) (-701 $)) 246 (|has| |#1| (-1068))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 245 (|has| |#1| (-1068))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 132 (-2835 (-2758 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-2758 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (((-701 (-576)) (-701 $)) 131 (-2835 (-2758 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-2758 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 130 (-2835 (-2758 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-2758 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (((-701 (-576)) (-1286 $)) 129 (-2835 (-2758 (|has| |#1| (-1068)) (|has| |#1| (-651 (-576)))) (-2758 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-1792 (((-112) $) 79)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 199 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 198 (|has| |#1| (-899 (-576))))) (-2188 (($ (-656 $)) 164) (($ $) 163)) (-3061 (((-656 (-115)) $) 171)) (-3974 (((-115) (-115)) 172)) (-1414 (((-112) $) 35)) (-3828 (((-112) $) 192 (|has| $ (-1057 (-576))))) (-2302 (($ $) 224 (|has| |#1| (-1068)))) (-1536 (((-1144 |#1| (-624 $)) $) 223 (|has| |#1| (-1068)))) (-2826 (($ $ (-576)) 99)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3121 (((-1191 $) (-624 $)) 189 (|has| $ (-1068)))) (-1632 (($ (-1 $ $) (-624 $)) 178)) (-2953 (((-3 (-624 $) "failed") $) 168)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-3963 (((-656 (-624 $)) $) 169)) (-1616 (($ (-115) (-656 $)) 177) (($ (-115) $) 176)) (-1708 (((-3 (-656 $) "failed") $) 218 (|has| |#1| (-1131)))) (-2027 (((-3 (-2 (|:| |val| $) (|:| -4274 (-576))) "failed") $) 227 (|has| |#1| (-1068)))) (-2567 (((-3 (-656 $) "failed") $) 220 (|has| |#1| (-25)))) (-3656 (((-3 (-2 (|:| -1706 (-576)) (|:| |var| (-624 $))) "failed") $) 221 (|has| |#1| (-25)))) (-1419 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-1195)) 226 (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-115)) 225 (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $) 219 (|has| |#1| (-1131)))) (-3718 (((-112) $ (-1195)) 175) (((-112) $ (-115)) 174)) (-2095 (($ $) 78)) (-2331 (((-783) $) 167)) (-1445 (((-1139) $) 11)) (-2105 (((-112) $) 205)) (-2116 ((|#1| $) 206)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-4245 (((-112) $ (-1195)) 180) (((-112) $ $) 179)) (-1839 (((-430 $) $) 82)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2489 (((-112) $) 191 (|has| $ (-1057 (-576))))) (-3306 (($ $ (-1195) (-783) (-1 $ $)) 231 (|has| |#1| (-1068))) (($ $ (-1195) (-783) (-1 $ (-656 $))) 230 (|has| |#1| (-1068))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 229 (|has| |#1| (-1068))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) 228 (|has| |#1| (-1068))) (($ $ (-656 (-115)) (-656 $) (-1195)) 217 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1195)) 216 (|has| |#1| (-626 (-548)))) (($ $) 215 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195))) 214 (|has| |#1| (-626 (-548)))) (($ $ (-1195)) 213 (|has| |#1| (-626 (-548)))) (($ $ (-115) (-1 $ $)) 188) (($ $ (-115) (-1 $ (-656 $))) 187) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 186) (($ $ (-656 (-115)) (-656 (-1 $ $))) 185) (($ $ (-1195) (-1 $ $)) 184) (($ $ (-1195) (-1 $ (-656 $))) 183) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 182) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 181) (($ $ (-656 $) (-656 $)) 152) (($ $ $ $) 151) (($ $ (-304 $)) 150) (($ $ (-656 (-304 $))) 149) (($ $ (-656 (-624 $)) (-656 $)) 148) (($ $ (-624 $) $) 147)) (-3112 (((-783) $) 64)) (-2871 (($ (-115) (-656 $)) 157) (($ (-115) $ $ $ $) 156) (($ (-115) $ $ $) 155) (($ (-115) $ $) 154) (($ (-115) $) 153)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-2114 (($ $ $) 166) (($ $) 165)) (-2735 (($ $ (-656 (-1195)) (-656 (-783))) 253 (|has| |#1| (-1068))) (($ $ (-1195) (-783)) 252 (|has| |#1| (-1068))) (($ $ (-656 (-1195))) 251 (|has| |#1| (-1068))) (($ $ (-1195)) 249 (|has| |#1| (-1068)))) (-1880 (($ $) 234 (|has| |#1| (-568)))) (-1549 (((-1144 |#1| (-624 $)) $) 233 (|has| |#1| (-568)))) (-1372 (($ $) 190 (|has| $ (-1068)))) (-4076 (((-548) $) 262 (|has| |#1| (-626 (-548)))) (($ (-430 $)) 232 (|has| |#1| (-568))) (((-905 (-390)) $) 197 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 196 (|has| |#1| (-626 (-905 (-576)))))) (-4026 (($ $ $) 261 (|has| |#1| (-485)))) (-4081 (($ $ $) 260 (|has| |#1| (-485)))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-969 |#1|)) 259 (|has| |#1| (-1068))) (($ (-419 (-969 |#1|))) 242 (|has| |#1| (-568))) (($ (-419 (-969 (-419 |#1|)))) 238 (|has| |#1| (-568))) (($ (-969 (-419 |#1|))) 237 (|has| |#1| (-568))) (($ (-419 |#1|)) 236 (|has| |#1| (-568))) (($ (-1144 |#1| (-624 $))) 222 (|has| |#1| (-1068))) (($ |#1|) 204) (($ (-1195)) 195) (($ (-624 $)) 146)) (-2883 (((-3 $ "failed") $) 244 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-4102 (($ (-656 $)) 162) (($ $) 161)) (-3263 (((-112) (-115)) 173)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-4017 (($ (-1195) (-656 $)) 212) (($ (-1195) $ $ $ $) 211) (($ (-1195) $ $ $) 210) (($ (-1195) $ $) 209) (($ (-1195) $) 208)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-656 (-1195)) (-656 (-783))) 256 (|has| |#1| (-1068))) (($ $ (-1195) (-783)) 255 (|has| |#1| (-1068))) (($ $ (-656 (-1195))) 254 (|has| |#1| (-1068))) (($ $ (-1195)) 250 (|has| |#1| (-1068)))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 73) (($ (-1144 |#1| (-624 $)) (-1144 |#1| (-624 $))) 235 (|has| |#1| (-568)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 98)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 243 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1068))))) (((-29 |#1|) (-141) (-568)) (T -29)) -((-1935 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-4189 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-4189 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-1669 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1559 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-1669 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1559 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -1935 ($ $)) (-15 -4189 ((-656 $) $)) (-15 -1935 ($ $ (-1196))) (-15 -4189 ((-656 $) $ (-1196))) (-15 -1669 ($ $)) (-15 -1559 ((-656 $) $)) (-15 -1669 ($ $ (-1196))) (-15 -1559 ((-656 $) $ (-1196))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-969 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-969 |#1|)) |has| |#1| (-1068)) ((-628 #4=(-1196)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1068)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -3765 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-660 |#1|) -3765 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-651 |#1|) |has| |#1| (-1068)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-909 $ #6=(-1196)) |has| |#1| (-1068)) ((-915 #6#) |has| |#1| (-1068)) ((-917 #6#) |has| |#1| (-1068)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-937) . T) ((-1021) . T) ((-1057 (-419 (-576))) -3765 (|has| |#1| (-1057 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) ((-1057 #1#) |has| |#1| (-568)) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #2#) . T) ((-1057 #3#) |has| |#1| (-1068)) ((-1057 #4#) . T) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) |has| |#1| (-174)) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) |has| |#1| (-174)) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-1241) . T)) -((-3854 (((-1113 (-227)) $) NIL)) (-3841 (((-1113 (-227)) $) NIL)) (-2198 (($ $ (-227)) 164)) (-3419 (($ (-969 (-576)) (-1196) (-1196) (-1113 (-419 (-576))) (-1113 (-419 (-576)))) 104)) (-2769 (((-656 (-656 (-960 (-227)))) $) 180)) (-4092 (((-874) $) 194))) -(((-30) (-13 (-972) (-10 -8 (-15 -3419 ($ (-969 (-576)) (-1196) (-1196) (-1113 (-419 (-576))) (-1113 (-419 (-576))))) (-15 -2198 ($ $ (-227)))))) (T -30)) -((-3419 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-969 (-576))) (-5 *3 (-1196)) (-5 *4 (-1113 (-419 (-576)))) (-5 *1 (-30)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) -(-13 (-972) (-10 -8 (-15 -3419 ($ (-969 (-576)) (-1196) (-1196) (-1113 (-419 (-576))) (-1113 (-419 (-576))))) (-15 -2198 ($ $ (-227))))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-1154) $) 11)) (-1531 (((-112) $ $) NIL)) (-1841 (((-1154) $) 9)) (-3919 (((-112) $ $) NIL))) -(((-31) (-13 (-1102) (-10 -8 (-15 -1841 ((-1154) $)) (-15 -4136 ((-1154) $))))) (T -31)) -((-1841 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31))))) -(-13 (-1102) (-10 -8 (-15 -1841 ((-1154) $)) (-15 -4136 ((-1154) $)))) -((-1935 ((|#2| (-1192 |#2|) (-1196)) 41)) (-1344 (((-115) (-115)) 55)) (-2525 (((-1192 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1057 (-576))))) (-4054 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1057 (-576))))) (-2334 ((|#2| (-1192 |#2|) |#2|) 29)) (-1931 (((-874) (-656 |#2|)) 86)) (-2840 ((|#2| |#2|) 144 (|has| |#1| (-1057 (-576))))) (-3201 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1057 (-576)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -1935 (|#2| (-1192 |#2|) (-1196))) (-15 -1344 ((-115) (-115))) (-15 -3201 ((-112) (-115))) (-15 -2334 (|#2| (-1192 |#2|) |#2|)) (-15 -1931 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1057 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -2525 ((-1192 |#2|) (-624 |#2|))) (-15 -2840 (|#2| |#2|)) (-15 -4054 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) -((-4054 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1057 *4)) (-4 *3 (-568)))) (-2840 (*1 *2 *2) (-12 (-4 *3 (-1057 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-2525 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1057 (-576))) (-4 *4 (-568)) (-5 *2 (-1192 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1057 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-874)) (-5 *1 (-32 *4 *5)))) (-2334 (*1 *2 *3 *2) (-12 (-5 *3 (-1192 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-1344 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *2)) (-5 *4 (-1196)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) -(-10 -7 (-15 -1935 (|#2| (-1192 |#2|) (-1196))) (-15 -1344 ((-115) (-115))) (-15 -3201 ((-112) (-115))) (-15 -2334 (|#2| (-1192 |#2|) |#2|)) (-15 -1931 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1057 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -2525 ((-1192 |#2|) (-624 |#2|))) (-15 -2840 (|#2| |#2|)) (-15 -4054 (|#2| |#1| (-576)))) |%noBranch|)) -((-2835 (((-112) $ (-783)) 20)) (-3656 (($) 10)) (-1419 (((-112) $ (-783)) 19)) (-3103 (((-112) $ (-783)) 17)) (-1905 (((-112) $ $) 8)) (-3372 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -3656 (|#1|)) (-15 -2835 ((-112) |#1| (-783))) (-15 -1419 ((-112) |#1| (-783))) (-15 -3103 ((-112) |#1| (-783))) (-15 -3372 ((-112) |#1|)) (-15 -1905 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3656 (|#1|)) (-15 -2835 ((-112) |#1| (-783))) (-15 -1419 ((-112) |#1| (-783))) (-15 -3103 ((-112) |#1| (-783))) (-15 -3372 ((-112) |#1|)) (-15 -1905 ((-112) |#1| |#1|))) -((-2835 (((-112) $ (-783)) 8)) (-3656 (($) 7 T CONST)) (-1419 (((-112) $ (-783)) 9)) (-3103 (((-112) $ (-783)) 10)) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4268 (($ $) 13)) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-3532 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1816 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-3532 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1816 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4)))) (-2010 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) (-1900 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) (-2010 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) (-1900 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-442 |t#1|) (-10 -8 (-15 -3532 ($ $)) (-15 -1816 ((-656 $) $)) (-15 -3532 ($ $ (-1195))) (-15 -1816 ((-656 $) $ (-1195))) (-15 -2010 ($ $)) (-15 -1900 ((-656 $) $)) (-15 -2010 ($ $ (-1195))) (-15 -1900 ((-656 $) $ (-1195))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 #1=(-419 (-969 |#1|))) |has| |#1| (-568)) ((-628 (-576)) . T) ((-628 #2=(-624 $)) . T) ((-628 #3=(-969 |#1|)) |has| |#1| (-1068)) ((-628 #4=(-1195)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-248) . T) ((-300) . T) ((-317) . T) ((-319 $) . T) ((-312) . T) ((-374) . T) ((-388 |#1|) |has| |#1| (-1068)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-442 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) -2835 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-658 $) . T) ((-660 #0#) . T) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-660 |#1|) -2835 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) . T) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-651 |#1|) |has| |#1| (-1068)) ((-729 #0#) . T) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) . T) ((-738) . T) ((-909 $ #6=(-1195)) |has| |#1| (-1068)) ((-915 #6#) |has| |#1| (-1068)) ((-917 #6#) |has| |#1| (-1068)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-937) . T) ((-1021) . T) ((-1057 (-419 (-576))) -2835 (|has| |#1| (-1057 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) ((-1057 #1#) |has| |#1| (-568)) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #2#) . T) ((-1057 #3#) |has| |#1| (-1068)) ((-1057 #4#) . T) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) |has| |#1| (-174)) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) |has| |#1| (-174)) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T) ((-1240) . T)) +((-1738 (((-1113 (-227)) $) NIL)) (-1724 (((-1113 (-227)) $) NIL)) (-1565 (($ $ (-227)) 164)) (-3071 (($ (-969 (-576)) (-1195) (-1195) (-1113 (-419 (-576))) (-1113 (-419 (-576)))) 104)) (-1811 (((-656 (-656 (-960 (-227)))) $) 180)) (-3563 (((-874) $) 194))) +(((-30) (-13 (-972) (-10 -8 (-15 -3071 ($ (-969 (-576)) (-1195) (-1195) (-1113 (-419 (-576))) (-1113 (-419 (-576))))) (-15 -1565 ($ $ (-227)))))) (T -30)) +((-3071 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-969 (-576))) (-5 *3 (-1195)) (-5 *4 (-1113 (-419 (-576)))) (-5 *1 (-30)))) (-1565 (*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30))))) +(-13 (-972) (-10 -8 (-15 -3071 ($ (-969 (-576)) (-1195) (-1195) (-1113 (-419 (-576))) (-1113 (-419 (-576))))) (-15 -1565 ($ $ (-227))))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-1154) $) 11)) (-3985 (((-112) $ $) NIL)) (-3402 (((-1154) $) 9)) (-2988 (((-112) $ $) NIL))) +(((-31) (-13 (-1102) (-10 -8 (-15 -3402 ((-1154) $)) (-15 -2719 ((-1154) $))))) (T -31)) +((-3402 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31))))) +(-13 (-1102) (-10 -8 (-15 -3402 ((-1154) $)) (-15 -2719 ((-1154) $)))) +((-3532 ((|#2| (-1191 |#2|) (-1195)) 41)) (-3974 (((-115) (-115)) 55)) (-3121 (((-1191 |#2|) (-624 |#2|)) 149 (|has| |#1| (-1057 (-576))))) (-2640 ((|#2| |#1| (-576)) 137 (|has| |#1| (-1057 (-576))))) (-3492 ((|#2| (-1191 |#2|) |#2|) 29)) (-4434 (((-874) (-656 |#2|)) 86)) (-1372 ((|#2| |#2|) 144 (|has| |#1| (-1057 (-576))))) (-3263 (((-112) (-115)) 17)) (** ((|#2| |#2| (-419 (-576))) 103 (|has| |#1| (-1057 (-576)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3532 (|#2| (-1191 |#2|) (-1195))) (-15 -3974 ((-115) (-115))) (-15 -3263 ((-112) (-115))) (-15 -3492 (|#2| (-1191 |#2|) |#2|)) (-15 -4434 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1057 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3121 ((-1191 |#2|) (-624 |#2|))) (-15 -1372 (|#2| |#2|)) (-15 -2640 (|#2| |#1| (-576)))) |%noBranch|)) (-568) (-442 |#1|)) (T -32)) +((-2640 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1057 *4)) (-4 *3 (-568)))) (-1372 (*1 *2 *2) (-12 (-4 *3 (-1057 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) (-4 *2 (-442 *3)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1057 (-576))) (-4 *4 (-568)) (-5 *2 (-1191 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1057 (-576))) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) (-4434 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) (-5 *2 (-874)) (-5 *1 (-32 *4 *5)))) (-3492 (*1 *2 *3 *2) (-12 (-5 *3 (-1191 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-32 *4 *2)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-442 *4)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) (-4 *4 (-442 *3)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *2)) (-5 *4 (-1195)) (-4 *2 (-442 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-568))))) +(-10 -7 (-15 -3532 (|#2| (-1191 |#2|) (-1195))) (-15 -3974 ((-115) (-115))) (-15 -3263 ((-112) (-115))) (-15 -3492 (|#2| (-1191 |#2|) |#2|)) (-15 -4434 ((-874) (-656 |#2|))) (IF (|has| |#1| (-1057 (-576))) (PROGN (-15 ** (|#2| |#2| (-419 (-576)))) (-15 -3121 ((-1191 |#2|) (-624 |#2|))) (-15 -1372 (|#2| |#2|)) (-15 -2640 (|#2| |#1| (-576)))) |%noBranch|)) +((-3131 (((-112) $ (-783)) 20)) (-3767 (($) 10)) (-3115 (((-112) $ (-783)) 19)) (-2712 (((-112) $ (-783)) 17)) (-1693 (((-112) $ $) 8)) (-1911 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -3767 (|#1|)) (-15 -3131 ((-112) |#1| (-783))) (-15 -3115 ((-112) |#1| (-783))) (-15 -2712 ((-112) |#1| (-783))) (-15 -1911 ((-112) |#1|)) (-15 -1693 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3767 (|#1|)) (-15 -3131 ((-112) |#1| (-783))) (-15 -3115 ((-112) |#1| (-783))) (-15 -2712 ((-112) |#1| (-783))) (-15 -1911 ((-112) |#1|)) (-15 -1693 ((-112) |#1| |#1|))) +((-3131 (((-112) $ (-783)) 8)) (-3767 (($) 7 T CONST)) (-3115 (((-112) $ (-783)) 9)) (-2712 (((-112) $ (-783)) 10)) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1954 (($ $) 13)) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-34) (-141)) (T -34)) -((-1905 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4268 (*1 *1 *1) (-4 *1 (-34))) (-2643 (*1 *1) (-4 *1 (-34))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3103 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-1419 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-2835 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3656 (*1 *1) (-4 *1 (-34))) (-2048 (*1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-34)) (-5 *2 (-783))))) -(-13 (-1237) (-10 -8 (-15 -1905 ((-112) $ $)) (-15 -4268 ($ $)) (-15 -2643 ($)) (-15 -3372 ((-112) $)) (-15 -3103 ((-112) $ (-783))) (-15 -1419 ((-112) $ (-783))) (-15 -2835 ((-112) $ (-783))) (-15 -3656 ($) -2670) (IF (|has| $ (-6 -4462)) (-15 -2048 ((-783) $)) |%noBranch|))) -(((-1237) . T)) -((-2340 (($ $) 11)) (-2317 (($ $) 10)) (-2368 (($ $) 9)) (-3945 (($ $) 8)) (-2352 (($ $) 7)) (-2329 (($ $) 6))) +((-1693 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1954 (*1 *1 *1) (-4 *1 (-34))) (-2597 (*1 *1) (-4 *1 (-34))) (-1911 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2712 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3115 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3131 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) (-3767 (*1 *1) (-4 *1 (-34))) (-3485 (*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-34)) (-5 *2 (-783))))) +(-13 (-1236) (-10 -8 (-15 -1693 ((-112) $ $)) (-15 -1954 ($ $)) (-15 -2597 ($)) (-15 -1911 ((-112) $)) (-15 -2712 ((-112) $ (-783))) (-15 -3115 ((-112) $ (-783))) (-15 -3131 ((-112) $ (-783))) (-15 -3767 ($) -1398) (IF (|has| $ (-6 -4461)) (-15 -3485 ((-783) $)) |%noBranch|))) +(((-1236) . T)) +((-3958 (($ $) 11)) (-3939 (($ $) 10)) (-3981 (($ $) 9)) (-1830 (($ $) 8)) (-3969 (($ $) 7)) (-3948 (($ $) 6))) (((-35) (-141)) (T -35)) -((-2340 (*1 *1 *1) (-4 *1 (-35))) (-2317 (*1 *1 *1) (-4 *1 (-35))) (-2368 (*1 *1 *1) (-4 *1 (-35))) (-3945 (*1 *1 *1) (-4 *1 (-35))) (-2352 (*1 *1 *1) (-4 *1 (-35))) (-2329 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -2329 ($ $)) (-15 -2352 ($ $)) (-15 -3945 ($ $)) (-15 -2368 ($ $)) (-15 -2317 ($ $)) (-15 -2340 ($ $)))) -((-2034 (((-112) $ $) 19 (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-1731 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 127)) (-3367 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 150)) (-3053 (($ $) 148)) (-1980 (($) 73) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 72)) (-2449 (((-1292) $ |#1| |#1|) 100 (|has| $ (-6 -4463))) (((-1292) $ (-576) (-576)) 180 (|has| $ (-6 -4463)))) (-2633 (($ $ (-576)) 161 (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3362 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 202 (|has| $ (-6 -4463))) (($ $) 201 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)) (|has| $ (-6 -4463))))) (-2398 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-2835 (((-112) $ (-783)) 8)) (-2597 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 136 (|has| $ (-6 -4463)))) (-3744 (($ $ $) 157 (|has| $ (-6 -4463)))) (-3476 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 159 (|has| $ (-6 -4463)))) (-2466 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 155 (|has| $ (-6 -4463)))) (-4248 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 191 (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-1254 (-576)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 162 (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "last" (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 160 (|has| $ (-6 -4463))) (($ $ "rest" $) 158 (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "first" (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 156 (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "value" (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 135 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 134 (|has| $ (-6 -4463)))) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 46 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 218)) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 56 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 177 (|has| $ (-6 -4462)))) (-3357 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 149)) (-2131 (((-3 |#2| "failed") |#1| $) 62)) (-3656 (($) 7 T CONST)) (-3129 (($ $) 203 (|has| $ (-6 -4463)))) (-4112 (($ $) 213)) (-2712 (($ $ (-783)) 144) (($ $) 142)) (-4329 (($ $) 216 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-1690 (($ $) 59 (-3765 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462))) (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 47 (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 222) (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 217 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 55 (|has| $ (-6 -4462))) (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 179 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 176 (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 57 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 54 (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 53 (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 178 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 175 (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 174 (|has| $ (-6 -4462)))) (-3888 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 192 (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) 89) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) 190)) (-3235 (((-112) $) 194)) (-3433 (((-576) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 210) (((-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 209 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) (((-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 31 (|has| $ (-6 -4462))) (((-656 |#2|) $) 80 (|has| $ (-6 -4462))) (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 116 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 125)) (-2397 (((-112) $ $) 133 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-1992 (($ (-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 170)) (-1419 (((-112) $ (-783)) 9)) (-2077 ((|#1| $) 97 (|has| |#1| (-862))) (((-576) $) 182 (|has| (-576) (-862)))) (-3492 (($ $ $) 200 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-1897 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3257 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 30 (|has| $ (-6 -4462))) (((-656 |#2|) $) 81 (|has| $ (-6 -4462))) (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 117 (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462)))) (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 119 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-4315 ((|#1| $) 96 (|has| |#1| (-862))) (((-576) $) 183 (|has| (-576) (-862)))) (-2726 (($ $ $) 199 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 35 (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4463))) (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 112 (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 111)) (-1783 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 227)) (-3103 (((-112) $ (-783)) 10)) (-3699 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 130)) (-3781 (((-112) $) 126)) (-3288 (((-1178) $) 22 (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-2912 (($ $ (-783)) 147) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 145)) (-2364 (((-656 |#1|) $) 64)) (-3700 (((-112) |#1| $) 65)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 40)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 41) (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-3371 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-4428 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-2013 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-3139 (((-1139) $) 21 (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-2701 ((|#2| $) 98 (|has| |#1| (-862))) (($ $ (-783)) 141) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 139)) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 52) (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 173)) (-2918 (($ $ |#2|) 99 (|has| $ (-6 -4463))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 181 (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 42)) (-3020 (((-112) $) 193)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 33 (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 114 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) 27 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 26 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 25 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 24 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 123 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 122 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 121 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) 120 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 184 (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-3060 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 187)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 189) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) 188) (($ $ (-1254 (-576))) 171) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "first") 140) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "value") 128)) (-3136 (((-576) $ $) 131)) (-1833 (($) 50) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 49)) (-2531 (($ $ (-576)) 224) (($ $ (-1254 (-576))) 223)) (-2470 (($ $ (-576)) 166) (($ $ (-1254 (-576))) 165)) (-2492 (((-112) $) 129)) (-1398 (($ $) 153)) (-1556 (($ $) 154 (|has| $ (-6 -4463)))) (-2212 (((-783) $) 152)) (-2251 (($ $) 151)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 32 (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 115 (|has| $ (-6 -4462)))) (-3582 (($ $ $ (-576)) 204 (|has| $ (-6 -4463)))) (-4268 (($ $) 13)) (-1505 (((-548) $) 60 (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548)))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 51) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 172)) (-2116 (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 226) (($ $ $) 225)) (-2851 (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 138) (($ $ $) 137)) (-4092 (((-874) $) 18 (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874)))))) (-2043 (((-656 $) $) 124)) (-3682 (((-112) $ $) 132 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-1531 (((-112) $ $) 23 (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 43)) (-2922 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") |#1| $) 110)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 34 (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 113 (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) 197 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3955 (((-112) $ $) 196 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3919 (((-112) $ $) 20 (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-3966 (((-112) $ $) 198 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3944 (((-112) $ $) 195 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-3958 (*1 *1 *1) (-4 *1 (-35))) (-3939 (*1 *1 *1) (-4 *1 (-35))) (-3981 (*1 *1 *1) (-4 *1 (-35))) (-1830 (*1 *1 *1) (-4 *1 (-35))) (-3969 (*1 *1 *1) (-4 *1 (-35))) (-3948 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3948 ($ $)) (-15 -3969 ($ $)) (-15 -1830 ($ $)) (-15 -3981 ($ $)) (-15 -3939 ($ $)) (-15 -3958 ($ $)))) +((-3474 (((-112) $ $) 19 (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3142 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 127)) (-2893 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 150)) (-2464 (($ $) 148)) (-4022 (($) 73) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 72)) (-2333 (((-1291) $ |#1| |#1|) 100 (|has| $ (-6 -4462))) (((-1291) $ (-576) (-576)) 180 (|has| $ (-6 -4462)))) (-2938 (($ $ (-576)) 161 (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 211) (((-112) $) 205 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-2265 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 202 (|has| $ (-6 -4462))) (($ $) 201 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)) (|has| $ (-6 -4462))))) (-1758 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 212) (($ $) 206 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-3131 (((-112) $ (-783)) 8)) (-3429 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 136 (|has| $ (-6 -4462)))) (-3614 (($ $ $) 157 (|has| $ (-6 -4462)))) (-2611 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 159 (|has| $ (-6 -4462)))) (-1438 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 155 (|has| $ (-6 -4462)))) (-3731 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 191 (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-1253 (-576)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 162 (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "last" (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 160 (|has| $ (-6 -4462))) (($ $ "rest" $) 158 (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "first" (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 156 (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "value" (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 135 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 134 (|has| $ (-6 -4462)))) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 46 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 218)) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 56 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 177 (|has| $ (-6 -4461)))) (-2882 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 149)) (-2287 (((-3 |#2| "failed") |#1| $) 62)) (-3767 (($) 7 T CONST)) (-3478 (($ $) 203 (|has| $ (-6 -4462)))) (-3733 (($ $) 213)) (-3515 (($ $ (-783)) 144) (($ $) 142)) (-3315 (($ $) 216 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3172 (($ $) 59 (-2835 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461))) (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 47 (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 222) (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 217 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 55 (|has| $ (-6 -4461))) (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 179 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 176 (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 57 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 54 (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 53 (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 178 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 175 (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 174 (|has| $ (-6 -4461)))) (-1776 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 192 (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) 89) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) 190)) (-3518 (((-112) $) 194)) (-3584 (((-576) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 210) (((-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 209 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) (((-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) 208 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 31 (|has| $ (-6 -4461))) (((-656 |#2|) $) 80 (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 116 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 125)) (-3180 (((-112) $ $) 133 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-4033 (($ (-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 170)) (-3115 (((-112) $ (-783)) 9)) (-1386 ((|#1| $) 97 (|has| |#1| (-862))) (((-576) $) 182 (|has| (-576) (-862)))) (-2442 (($ $ $) 200 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-2093 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ $) 219) (($ $ $) 215 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-1854 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ $) 214) (($ $ $) 207 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 30 (|has| $ (-6 -4461))) (((-656 |#2|) $) 81 (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 117 (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461)))) (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 119 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461))))) (-3814 ((|#1| $) 96 (|has| |#1| (-862))) (((-576) $) 183 (|has| (-576) (-862)))) (-1893 (($ $ $) 199 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 35 (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4462))) (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 112 (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 111)) (-1628 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 227)) (-2712 (((-112) $ (-783)) 10)) (-2942 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 130)) (-1905 (((-112) $) 126)) (-1927 (((-1177) $) 22 (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3923 (($ $ (-783)) 147) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 145)) (-3135 (((-656 |#1|) $) 64)) (-2937 (((-112) |#1| $) 65)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 40)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 41) (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) 221) (($ $ $ (-576)) 220)) (-2277 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) 164) (($ $ $ (-576)) 163)) (-3321 (((-656 |#1|) $) 94) (((-656 (-576)) $) 185)) (-2378 (((-112) |#1| $) 93) (((-112) (-576) $) 186)) (-1445 (((-1139) $) 21 (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3504 ((|#2| $) 98 (|has| |#1| (-862))) (($ $ (-783)) 141) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 139)) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 52) (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 173)) (-2500 (($ $ |#2|) 99 (|has| $ (-6 -4462))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 181 (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 42)) (-3524 (((-112) $) 193)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 33 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 114 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) 27 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 26 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 25 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 24 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 123 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 122 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 121 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) 120 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 184 (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-1947 (((-656 |#2|) $) 92) (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 187)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 189) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) 188) (($ $ (-1253 (-576))) 171) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "last") 146) (($ $ "rest") 143) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "first") 140) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "value") 128)) (-2972 (((-576) $ $) 131)) (-2837 (($) 50) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 49)) (-2560 (($ $ (-576)) 224) (($ $ (-1253 (-576))) 223)) (-3464 (($ $ (-576)) 166) (($ $ (-1253 (-576))) 165)) (-3173 (((-112) $) 129)) (-1442 (($ $) 153)) (-1544 (($ $) 154 (|has| $ (-6 -4462)))) (-3564 (((-783) $) 152)) (-2705 (($ $) 151)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 32 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 118 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 115 (|has| $ (-6 -4461)))) (-3760 (($ $ $ (-576)) 204 (|has| $ (-6 -4462)))) (-1954 (($ $) 13)) (-4076 (((-548) $) 60 (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548)))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 51) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 172)) (-1523 (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 226) (($ $ $) 225)) (-1661 (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 169) (($ (-656 $)) 168) (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 138) (($ $ $) 137)) (-3563 (((-874) $) 18 (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874)))))) (-3281 (((-656 $) $) 124)) (-4369 (((-112) $ $) 132 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3985 (((-112) $ $) 23 (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 43)) (-3934 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") |#1| $) 110)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 34 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 113 (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) 197 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-3024 (((-112) $ $) 196 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-2988 (((-112) $ $) 20 (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3037 (((-112) $ $) 198 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-3010 (((-112) $ $) 195 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-36 |#1| |#2|) (-141) (-1119) (-1119)) (T -36)) -((-2922 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| -2371 *3) (|:| -2900 *4)))))) -(-13 (-1213 |t#1| |t#2|) (-678 (-2 (|:| -2371 |t#1|) (|:| -2900 |t#2|))) (-10 -8 (-15 -2922 ((-3 (-2 (|:| -2371 |t#1|) (|:| -2900 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T) ((-102) -3765 (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862))) ((-625 (-874)) -3765 (|has| |#2| (-1119)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874)))) ((-152 #1=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1254 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-862) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)) ((-1029 #1#) . T) ((-1119) -3765 (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862))) ((-1168 #1#) . T) ((-1213 |#1| |#2|) . T) ((-1237) . T) ((-1275 #1#) . T)) -((-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) (-38 |#2|) (-174)) (T -37)) -NIL -(-10 -8 (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-3934 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| -4282 *3) (|:| -4353 *4)))))) +(-13 (-1212 |t#1| |t#2|) (-678 (-2 (|:| -4282 |t#1|) (|:| -4353 |t#2|))) (-10 -8 (-15 -3934 ((-3 (-2 (|:| -4282 |t#1|) (|:| -4353 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T) ((-102) -2835 (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862))) ((-625 (-874)) -2835 (|has| |#2| (-1119)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874)))) ((-152 #1=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T) ((-626 (-548)) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 #2=(-576) #1#) . T) ((-296 (-1253 (-576)) $) . T) ((-296 |#1| |#2|) . T) ((-298 #2# #1#) . T) ((-298 |#1| |#2|) . T) ((-319 #1#) -12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-292 #1#) . T) ((-384 #1#) . T) ((-501 #1#) . T) ((-501 |#2|) . T) ((-616 #2# #1#) . T) ((-616 |#1| |#2|) . T) ((-526 #1# #1#) -12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-622 |#1| |#2|) . T) ((-663 #1#) . T) ((-678 #1#) . T) ((-862) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)) ((-1029 #1#) . T) ((-1119) -2835 (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862))) ((-1168 #1#) . T) ((-1212 |#1| |#2|) . T) ((-1236) . T) ((-1274 #1#) . T)) +((-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) (-38 |#2|) (-174)) (T -37)) +NIL +(-10 -8 (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-38 |#1|) (-141) (-174)) (T -38)) NIL (-13 (-1068) (-729 |t#1|) (-628 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-3930 (((-430 |#1|) |#1|) 41)) (-1392 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-4055 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -1392 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -3930 ((-430 |#1|) |#1|)) (-15 -4055 ((-112) |#1|))) (-1263 (-48))) (T -39)) -((-4055 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-3930 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48)))))) -(-10 -7 (-15 -1392 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -3930 ((-430 |#1|) |#1|)) (-15 -4055 ((-112) |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2041 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2573 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4306 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-1532 (((-701 (-419 |#2|)) (-1287 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-3803 (((-419 |#2|) $) NIL)) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2100 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4407 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2247 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-4020 (((-112)) NIL)) (-2699 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-3006 (($ (-1287 (-419 |#2|)) (-1287 $)) NIL) (($ (-1287 (-419 |#2|))) 61) (($ (-1287 |#2|) |#2|) 131)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-1975 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3754 (((-701 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-701 $) (-1287 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-1287 $) $) NIL) (((-701 (-419 |#2|)) (-1287 $)) NIL)) (-3601 (((-1287 $) (-1287 $)) NIL)) (-2359 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3179 (((-3 $ "failed") $) NIL)) (-4229 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-4346 (((-112) |#1| |#1|) NIL)) (-4049 (((-938)) NIL)) (-2446 (($) NIL (|has| (-419 |#2|) (-379)))) (-4127 (((-112)) NIL)) (-3756 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1986 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-1363 (($ $) NIL)) (-1554 (($) NIL (|has| (-419 |#2|) (-360)))) (-3506 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-1329 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-2725 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-1538 (((-938) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-938)) $) NIL (|has| (-419 |#2|) (-360)))) (-1810 (((-112) $) NIL)) (-1835 (((-783)) NIL)) (-3191 (((-1287 $) (-1287 $)) 106)) (-4252 (((-419 |#2|) $) NIL)) (-3157 (((-656 (-969 |#1|)) (-1196)) NIL (|has| |#1| (-374)))) (-2083 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3164 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-3225 (((-938) $) NIL (|has| (-419 |#2|) (-379)))) (-2344 ((|#3| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3288 (((-1178) $) NIL)) (-3811 (((-1292) (-783)) 84)) (-2006 (((-701 (-419 |#2|))) 56)) (-2745 (((-701 (-419 |#2|))) 49)) (-1644 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4382 (($ (-1287 |#2|) |#2|) 132)) (-3619 (((-701 (-419 |#2|))) 50)) (-1686 (((-701 (-419 |#2|))) 48)) (-1742 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-1896 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 68)) (-1780 (((-1287 $)) 47)) (-2186 (((-1287 $)) 46)) (-2256 (((-112) $) NIL)) (-3071 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3503 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-2550 (($ (-938)) NIL (|has| (-419 |#2|) (-379)))) (-2568 (((-3 |#2| "failed")) NIL)) (-3139 (((-1139) $) NIL)) (-3379 (((-783)) NIL)) (-2582 (($) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-419 |#2|) (-374)))) (-3149 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1392 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2022 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1787 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-4367 ((|#1| $ |#1| |#1|) NIL)) (-1591 (((-3 |#2| "failed")) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1955 (((-419 |#2|) (-1287 $)) NIL) (((-419 |#2|)) 44)) (-2547 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-3614 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3765 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4003 (((-701 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-2840 ((|#3|) 55)) (-3870 (($) NIL (|has| (-419 |#2|) (-360)))) (-3287 (((-1287 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) (-1287 $) (-1287 $)) NIL) (((-1287 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1287 $)) 107)) (-1505 (((-1287 (-419 |#2|)) $) NIL) (($ (-1287 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2127 (((-1287 $) (-1287 $)) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3765 (|has| (-419 |#2|) (-1057 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3612 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-3794 ((|#3| $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1819 (((-112)) 42)) (-1457 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL)) (-2947 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3547 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1472 (((-112)) NIL)) (-4300 (($) 17 T CONST)) (-4310 (($) 27 T CONST)) (-4286 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3765 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3811 ((-1292) (-783))))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) |#3|) (T -40)) -((-3811 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *2 (-1292)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1263 (-419 *5))) (-14 *7 *6)))) -(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3811 ((-1292) (-783))))) -((-3133 ((|#2| |#2|) 47)) (-1964 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-1688 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-2811 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-3677 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-4061 (((-1192 |#2|) |#2|) 44)) (-3326 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3133 (|#2| |#2|)) (-15 -3326 (|#2| |#2|)) (-15 -3326 (|#2| |#2| |#2|)) (-15 -3326 (|#2| |#2| (-656 |#2|))) (-15 -3326 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -4061 ((-1192 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1057 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -2811 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1964 (|#2| |#2|)) (-15 -3677 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 |#1| (-624 $)) $)) (-15 -3905 ((-1144 |#1| (-624 $)) $)) (-15 -4092 ($ (-1144 |#1| (-624 $))))))) (T -41)) -((-3677 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1057 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *5 (-624 $)) $)) (-15 -3905 ((-1144 *5 (-624 $)) $)) (-15 -4092 ($ (-1144 *5 (-624 $))))))))) (-1964 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) (-15 -3905 ((-1144 *3 (-624 $)) $)) (-15 -4092 ($ (-1144 *3 (-624 $))))))))) (-1688 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) (-15 -3905 ((-1144 *3 (-624 $)) $)) (-15 -4092 ($ (-1144 *3 (-624 $))))))))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) (-15 -3905 ((-1144 *3 (-624 $)) $)) (-15 -4092 ($ (-1144 *3 (-624 $))))))))) (-4061 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1192 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *4 (-624 $)) $)) (-15 -3905 ((-1144 *4 (-624 $)) $)) (-15 -4092 ($ (-1144 *4 (-624 $))))))))) (-3326 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *4 (-624 $)) $)) (-15 -3905 ((-1144 *4 (-624 $)) $)) (-15 -4092 ($ (-1144 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3326 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *4 (-624 $)) $)) (-15 -3905 ((-1144 *4 (-624 $)) $)) (-15 -4092 ($ (-1144 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-3326 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) (-15 -3905 ((-1144 *3 (-624 $)) $)) (-15 -4092 ($ (-1144 *3 (-624 $))))))))) (-3326 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) (-15 -3905 ((-1144 *3 (-624 $)) $)) (-15 -4092 ($ (-1144 *3 (-624 $))))))))) (-3133 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) (-15 -3905 ((-1144 *3 (-624 $)) $)) (-15 -4092 ($ (-1144 *3 (-624 $)))))))))) -(-10 -7 (-15 -3133 (|#2| |#2|)) (-15 -3326 (|#2| |#2|)) (-15 -3326 (|#2| |#2| |#2|)) (-15 -3326 (|#2| |#2| (-656 |#2|))) (-15 -3326 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -4061 ((-1192 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1057 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -2811 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1964 (|#2| |#2|)) (-15 -3677 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) -((-1392 (((-430 (-1192 |#3|)) (-1192 |#3|) (-656 (-48))) 23) (((-430 |#3|) |#3| (-656 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1392 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1392 ((-430 (-1192 |#3|)) (-1192 |#3|) (-656 (-48))))) (-862) (-805) (-966 (-48) |#2| |#1|)) (T -42)) -((-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *7 (-966 (-48) *6 *5)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-966 (-48) *6 *5))))) -(-10 -7 (-15 -1392 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1392 ((-430 (-1192 |#3|)) (-1192 |#3|) (-656 (-48))))) -((-4093 (((-783) |#2|) 70)) (-1580 (((-783) |#2|) 74)) (-1429 (((-656 |#2|)) 37)) (-4243 (((-783) |#2|) 73)) (-1358 (((-783) |#2|) 69)) (-3855 (((-783) |#2|) 72)) (-1469 (((-656 (-701 |#1|))) 65)) (-2239 (((-656 |#2|)) 60)) (-4178 (((-656 |#2|) |#2|) 48)) (-2990 (((-656 |#2|)) 62)) (-3226 (((-656 |#2|)) 61)) (-1702 (((-656 (-701 |#1|))) 53)) (-3481 (((-656 |#2|)) 59)) (-4041 (((-656 |#2|) |#2|) 47)) (-2721 (((-656 |#2|)) 55)) (-1330 (((-656 (-701 |#1|))) 66)) (-3156 (((-656 |#2|)) 64)) (-1999 (((-1287 |#2|) (-1287 |#2|)) 99 (|has| |#1| (-317))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -4243 ((-783) |#2|)) (-15 -1580 ((-783) |#2|)) (-15 -1358 ((-783) |#2|)) (-15 -4093 ((-783) |#2|)) (-15 -3855 ((-783) |#2|)) (-15 -2721 ((-656 |#2|))) (-15 -4041 ((-656 |#2|) |#2|)) (-15 -4178 ((-656 |#2|) |#2|)) (-15 -3481 ((-656 |#2|))) (-15 -2239 ((-656 |#2|))) (-15 -3226 ((-656 |#2|))) (-15 -2990 ((-656 |#2|))) (-15 -3156 ((-656 |#2|))) (-15 -1702 ((-656 (-701 |#1|)))) (-15 -1469 ((-656 (-701 |#1|)))) (-15 -1330 ((-656 (-701 |#1|)))) (-15 -1429 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -1999 ((-1287 |#2|) (-1287 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) -((-1999 (*1 *2 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-1429 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1330 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1469 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1702 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3156 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2990 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3226 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-2239 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3481 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4178 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-4041 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2721 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-4093 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1358 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1580 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-4243 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) -(-10 -7 (-15 -4243 ((-783) |#2|)) (-15 -1580 ((-783) |#2|)) (-15 -1358 ((-783) |#2|)) (-15 -4093 ((-783) |#2|)) (-15 -3855 ((-783) |#2|)) (-15 -2721 ((-656 |#2|))) (-15 -4041 ((-656 |#2|) |#2|)) (-15 -4178 ((-656 |#2|) |#2|)) (-15 -3481 ((-656 |#2|))) (-15 -2239 ((-656 |#2|))) (-15 -3226 ((-656 |#2|))) (-15 -2990 ((-656 |#2|))) (-15 -3156 ((-656 |#2|))) (-15 -1702 ((-656 (-701 |#1|)))) (-15 -1469 ((-656 (-701 |#1|)))) (-15 -1330 ((-656 (-701 |#1|)))) (-15 -1429 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -1999 ((-1287 |#2|) (-1287 |#2|))) |%noBranch|)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3500 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3925 (((-1287 (-701 |#1|)) (-1287 $)) NIL) (((-1287 (-701 |#1|))) 24)) (-3286 (((-1287 $)) 52)) (-3656 (($) NIL T CONST)) (-3063 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-4163 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-3016 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) NIL)) (-2379 ((|#1| $) NIL)) (-4114 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-3046 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-4238 (((-1192 (-969 |#1|))) NIL (|has| |#1| (-374)))) (-3952 (($ $ (-938)) NIL)) (-4045 ((|#1| $) NIL)) (-4378 (((-1192 |#1|) $) NIL (|has| |#1| (-568)))) (-2548 ((|#1| (-1287 $)) NIL) ((|#1|) NIL)) (-3145 (((-1192 |#1|) $) NIL)) (-4429 (((-112)) 99)) (-3006 (($ (-1287 |#1|) (-1287 $)) NIL) (($ (-1287 |#1|)) NIL)) (-3179 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-4049 (((-938)) 53)) (-3751 (((-112)) NIL)) (-4370 (($ $ (-938)) NIL)) (-3440 (((-112)) NIL)) (-3903 (((-112)) NIL)) (-2866 (((-112)) 101)) (-2416 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-3335 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-2472 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) NIL)) (-3653 ((|#1| $) NIL)) (-1424 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-1714 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-3517 (((-1192 (-969 |#1|))) NIL (|has| |#1| (-374)))) (-2596 (($ $ (-938)) NIL)) (-1891 ((|#1| $) NIL)) (-3691 (((-1192 |#1|) $) NIL (|has| |#1| (-568)))) (-4167 ((|#1| (-1287 $)) NIL) ((|#1|) NIL)) (-1684 (((-1192 |#1|) $) NIL)) (-1371 (((-112)) 98)) (-3288 (((-1178) $) NIL)) (-2614 (((-112)) 106)) (-3810 (((-112)) 105)) (-2989 (((-112)) 107)) (-3139 (((-1139) $) NIL)) (-4207 (((-112)) 100)) (-4367 ((|#1| $ (-576)) 55)) (-3287 (((-1287 |#1|) $ (-1287 $)) 48) (((-701 |#1|) (-1287 $) (-1287 $)) NIL) (((-1287 |#1|) $) 28) (((-701 |#1|) (-1287 $)) NIL)) (-1505 (((-1287 |#1|) $) NIL) (($ (-1287 |#1|)) NIL)) (-2180 (((-656 (-969 |#1|)) (-1287 $)) NIL) (((-656 (-969 |#1|))) NIL)) (-1361 (($ $ $) NIL)) (-2261 (((-112)) 95)) (-4092 (((-874) $) 71) (($ (-1287 |#1|)) 22)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) 51)) (-3558 (((-656 (-1287 |#1|))) NIL (|has| |#1| (-568)))) (-3911 (($ $ $ $) NIL)) (-2723 (((-112)) 91)) (-2690 (($ (-701 |#1|) $) 18)) (-3771 (($ $ $) NIL)) (-4393 (((-112)) 97)) (-4340 (((-112)) 92)) (-1450 (((-112)) 90)) (-4300 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1161 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1161 |#2| |#1|)) (-10 -8 (-15 -4092 ($ (-1287 |#1|))))) (-374) (-938) (-656 (-1196)) (-1287 (-701 |#1|))) (T -44)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-14 *6 (-1287 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-656 (-1196)))))) -(-13 (-429 |#1|) (-660 (-1161 |#2| |#1|)) (-10 -8 (-15 -4092 ($ (-1287 |#1|))))) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1731 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-3367 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-3053 (($ $) NIL)) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2449 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463))) (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2633 (($ $ (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3362 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862))))) (-2398 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-2597 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4463)))) (-3744 (($ $ $) 33 (|has| $ (-6 -4463)))) (-3476 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4463)))) (-2466 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 35 (|has| $ (-6 -4463)))) (-4248 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-1254 (-576)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "last" (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4463))) (($ $ "rest" $) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "first" (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "value" (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3357 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-2131 (((-3 |#2| "failed") |#1| $) 43)) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-2712 (($ $ (-783)) NIL) (($ $) 29)) (-4329 (($ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) NIL) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) NIL)) (-3235 (((-112) $) NIL)) (-3433 (((-576) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (((-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) (((-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 20 (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462))) (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 20 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-1992 (($ (-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 38 (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-1897 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3257 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462))) (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-4315 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 40 (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-1783 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3699 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-3781 (((-112) $) NIL)) (-3288 (((-1178) $) 49 (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2912 (($ $ (-783)) NIL) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-2364 (((-656 |#1|) $) 22)) (-3700 (((-112) |#1| $) NIL)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL) (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3371 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-2013 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2701 ((|#2| $) NIL (|has| |#1| (-862))) (($ $ (-783)) NIL) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 27)) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-3020 (((-112) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-3060 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 19)) (-3372 (((-112) $) 18)) (-2643 (($) 14)) (-4367 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ (-576)) NIL) (($ $ (-1254 (-576))) NIL) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "first") NIL) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $ "value") NIL)) (-3136 (((-576) $ $) NIL)) (-1833 (($) 13) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2531 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2492 (((-112) $) NIL)) (-1398 (($ $) NIL)) (-1556 (($ $) NIL (|has| $ (-6 -4463)))) (-2212 (((-783) $) NIL)) (-2251 (($ $) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2116 (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL) (($ $ $) NIL)) (-2851 (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 31) (($ $ $) NIL)) (-4092 (((-874) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2922 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") |#1| $) 51)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3966 (((-112) $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-3944 (((-112) $ $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-862)))) (-2048 (((-783) $) 25 (|has| $ (-6 -4462))))) +((-2952 (((-430 |#1|) |#1|) 41)) (-1839 (((-430 |#1|) |#1|) 30) (((-430 |#1|) |#1| (-656 (-48))) 33)) (-1508 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -1839 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -2952 ((-430 |#1|) |#1|)) (-15 -1508 ((-112) |#1|))) (-1262 (-48))) (T -39)) +((-1508 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-2952 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48)))))) +(-10 -7 (-15 -1839 ((-430 |#1|) |#1| (-656 (-48)))) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -2952 ((-430 |#1|) |#1|)) (-15 -1508 ((-112) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3090 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4412 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4176 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-4084 (((-701 (-419 |#2|)) (-1286 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-2310 (((-419 |#2|) $) NIL)) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2732 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1727 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2148 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-3027 (((-112)) NIL)) (-3202 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2612 (($ (-1286 (-419 |#2|)) (-1286 $)) NIL) (($ (-1286 (-419 |#2|))) 61) (($ (-1286 |#2|) |#2|) 131)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3420 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3103 (((-701 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-701 $) (-1286 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-1286 $) $) NIL) (((-701 (-419 |#2|)) (-1286 $)) NIL)) (-4258 (((-1286 $) (-1286 $)) NIL)) (-2521 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-1551 (((-3 $ "failed") $) NIL)) (-3529 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2748 (((-112) |#1| |#1|) NIL)) (-3606 (((-938)) NIL)) (-1803 (($) NIL (|has| (-419 |#2|) (-379)))) (-3671 (((-112)) NIL)) (-3291 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3431 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-2985 (($ $) NIL)) (-2580 (($) NIL (|has| (-419 |#2|) (-360)))) (-2664 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-3499 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-1792 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3333 (((-938) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-938)) $) NIL (|has| (-419 |#2|) (-360)))) (-1414 (((-112) $) NIL)) (-3052 (((-783)) NIL)) (-3590 (((-1286 $) (-1286 $)) 106)) (-4072 (((-419 |#2|) $) NIL)) (-2191 (((-656 (-969 |#1|)) (-1195)) NIL (|has| |#1| (-374)))) (-3930 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2554 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-1902 (((-938) $) NIL (|has| (-419 |#2|) (-379)))) (-2510 ((|#3| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1927 (((-1177) $) NIL)) (-3189 (((-1291) (-783)) 84)) (-3011 (((-701 (-419 |#2|))) 56)) (-4288 (((-701 (-419 |#2|))) 49)) (-2095 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3018 (($ (-1286 |#2|) |#2|) 132)) (-2317 (((-701 (-419 |#2|))) 50)) (-2760 (((-701 (-419 |#2|))) 48)) (-3323 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130)) (-3194 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 68)) (-3640 (((-1286 $)) 47)) (-2969 (((-1286 $)) 46)) (-1718 (((-112) $) NIL)) (-3665 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1538 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3257 (($ (-938)) NIL (|has| (-419 |#2|) (-379)))) (-3904 (((-3 |#2| "failed")) NIL)) (-1445 (((-1139) $) NIL)) (-4418 (((-783)) NIL)) (-2202 (($) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-419 |#2|) (-374)))) (-3495 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1839 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3463 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3112 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2871 ((|#1| $ |#1| |#1|) NIL)) (-4083 (((-3 |#2| "failed")) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1960 (((-419 |#2|) (-1286 $)) NIL) (((-419 |#2|)) 44)) (-3721 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2735 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 126) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2835 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-1423 (((-701 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1372 ((|#3|) 55)) (-2594 (($) NIL (|has| (-419 |#2|) (-360)))) (-1809 (((-1286 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) (-1286 $) (-1286 $)) NIL) (((-1286 (-419 |#2|)) $) 62) (((-701 (-419 |#2|)) (-1286 $)) 107)) (-4076 (((-1286 (-419 |#2|)) $) NIL) (($ (-1286 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2524 (((-1286 $) (-1286 $)) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2835 (|has| (-419 |#2|) (-1057 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2883 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-3941 ((|#3| $) NIL)) (-1858 (((-783)) NIL T CONST)) (-4188 (((-112)) 42)) (-3579 (((-112) |#1|) 54) (((-112) |#2|) 138)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL)) (-3040 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3554 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3684 (((-112)) NIL)) (-2800 (($) 17 T CONST)) (-2810 (($) 27 T CONST)) (-2051 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2835 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3189 ((-1291) (-783))))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) |#3|) (T -40)) +((-3189 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *2 (-1291)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1262 (-419 *5))) (-14 *7 *6)))) +(-13 (-353 |#1| |#2| |#3|) (-10 -7 (-15 -3189 ((-1291) (-783))))) +((-3864 ((|#2| |#2|) 47)) (-3561 ((|#2| |#2|) 139 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-2963 ((|#2| |#2|) 100 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-1761 ((|#2| |#2|) 101 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-2086 ((|#2| (-115) |#2| (-783)) 135 (-12 (|has| |#2| (-442 |#1|)) (|has| |#1| (-13 (-464) (-1057 (-576))))))) (-4030 (((-1191 |#2|) |#2|) 44)) (-1335 ((|#2| |#2| (-656 (-624 |#2|))) 18) ((|#2| |#2| (-656 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -3864 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -1335 (|#2| |#2| |#2|)) (-15 -1335 (|#2| |#2| (-656 |#2|))) (-15 -1335 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -4030 ((-1191 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1057 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -1761 (|#2| |#2|)) (-15 -2963 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -2086 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) (-568) (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 |#1| (-624 $)) $)) (-15 -1549 ((-1144 |#1| (-624 $)) $)) (-15 -3563 ($ (-1144 |#1| (-624 $))))))) (T -41)) +((-2086 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1057 (-576)))) (-4 *5 (-568)) (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *5 (-624 $)) $)) (-15 -1549 ((-1144 *5 (-624 $)) $)) (-15 -3563 ($ (-1144 *5 (-624 $))))))))) (-3561 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) (-15 -1549 ((-1144 *3 (-624 $)) $)) (-15 -3563 ($ (-1144 *3 (-624 $))))))))) (-2963 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) (-15 -1549 ((-1144 *3 (-624 $)) $)) (-15 -3563 ($ (-1144 *3 (-624 $))))))))) (-1761 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) (-15 -1549 ((-1144 *3 (-624 $)) $)) (-15 -3563 ($ (-1144 *3 (-624 $))))))))) (-4030 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1191 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *4 (-624 $)) $)) (-15 -1549 ((-1144 *4 (-624 $)) $)) (-15 -3563 ($ (-1144 *4 (-624 $))))))))) (-1335 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-624 *2))) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *4 (-624 $)) $)) (-15 -1549 ((-1144 *4 (-624 $)) $)) (-15 -3563 ($ (-1144 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-1335 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *4 (-624 $)) $)) (-15 -1549 ((-1144 *4 (-624 $)) $)) (-15 -3563 ($ (-1144 *4 (-624 $))))))) (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) (-1335 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) (-15 -1549 ((-1144 *3 (-624 $)) $)) (-15 -3563 ($ (-1144 *3 (-624 $))))))))) (-1335 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) (-15 -1549 ((-1144 *3 (-624 $)) $)) (-15 -3563 ($ (-1144 *3 (-624 $))))))))) (-3864 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-374) (-312) (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) (-15 -1549 ((-1144 *3 (-624 $)) $)) (-15 -3563 ($ (-1144 *3 (-624 $)))))))))) +(-10 -7 (-15 -3864 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -1335 (|#2| |#2| |#2|)) (-15 -1335 (|#2| |#2| (-656 |#2|))) (-15 -1335 (|#2| |#2| (-656 (-624 |#2|)))) (-15 -4030 ((-1191 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1057 (-576)))) (IF (|has| |#2| (-442 |#1|)) (PROGN (-15 -1761 (|#2| |#2|)) (-15 -2963 (|#2| |#2|)) (-15 -3561 (|#2| |#2|)) (-15 -2086 (|#2| (-115) |#2| (-783)))) |%noBranch|) |%noBranch|)) +((-1839 (((-430 (-1191 |#3|)) (-1191 |#3|) (-656 (-48))) 23) (((-430 |#3|) |#3| (-656 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -1839 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1839 ((-430 (-1191 |#3|)) (-1191 |#3|) (-656 (-48))))) (-862) (-805) (-966 (-48) |#2| |#1|)) (T -42)) +((-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *7 (-966 (-48) *6 *5)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-966 (-48) *6 *5))))) +(-10 -7 (-15 -1839 ((-430 |#3|) |#3| (-656 (-48)))) (-15 -1839 ((-430 (-1191 |#3|)) (-1191 |#3|) (-656 (-48))))) +((-2135 (((-783) |#2|) 70)) (-2346 (((-783) |#2|) 74)) (-2545 (((-656 |#2|)) 37)) (-1399 (((-783) |#2|) 73)) (-4232 (((-783) |#2|) 69)) (-3626 (((-783) |#2|) 72)) (-3441 (((-656 (-701 |#1|))) 65)) (-4212 (((-656 |#2|)) 60)) (-3184 (((-656 |#2|) |#2|) 48)) (-3372 (((-656 |#2|)) 62)) (-1997 (((-656 |#2|)) 61)) (-1695 (((-656 (-701 |#1|))) 53)) (-1941 (((-656 |#2|)) 59)) (-2788 (((-656 |#2|) |#2|) 47)) (-2573 (((-656 |#2|)) 55)) (-3661 (((-656 (-701 |#1|))) 66)) (-3290 (((-656 |#2|)) 64)) (-3713 (((-1286 |#2|) (-1286 |#2|)) 99 (|has| |#1| (-317))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1399 ((-783) |#2|)) (-15 -2346 ((-783) |#2|)) (-15 -4232 ((-783) |#2|)) (-15 -2135 ((-783) |#2|)) (-15 -3626 ((-783) |#2|)) (-15 -2573 ((-656 |#2|))) (-15 -2788 ((-656 |#2|) |#2|)) (-15 -3184 ((-656 |#2|) |#2|)) (-15 -1941 ((-656 |#2|))) (-15 -4212 ((-656 |#2|))) (-15 -1997 ((-656 |#2|))) (-15 -3372 ((-656 |#2|))) (-15 -3290 ((-656 |#2|))) (-15 -1695 ((-656 (-701 |#1|)))) (-15 -3441 ((-656 (-701 |#1|)))) (-15 -3661 ((-656 (-701 |#1|)))) (-15 -2545 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -3713 ((-1286 |#2|) (-1286 |#2|))) |%noBranch|)) (-568) (-429 |#1|)) (T -43)) +((-3713 (*1 *2 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) (-2545 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3661 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3441 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1695 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3290 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3372 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1997 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-4212 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-1941 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3184 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2788 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2573 (*1 *2) (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-429 *3)))) (-3626 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2135 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-4232 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-2346 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4)))) (-1399 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) +(-10 -7 (-15 -1399 ((-783) |#2|)) (-15 -2346 ((-783) |#2|)) (-15 -4232 ((-783) |#2|)) (-15 -2135 ((-783) |#2|)) (-15 -3626 ((-783) |#2|)) (-15 -2573 ((-656 |#2|))) (-15 -2788 ((-656 |#2|) |#2|)) (-15 -3184 ((-656 |#2|) |#2|)) (-15 -1941 ((-656 |#2|))) (-15 -4212 ((-656 |#2|))) (-15 -1997 ((-656 |#2|))) (-15 -3372 ((-656 |#2|))) (-15 -3290 ((-656 |#2|))) (-15 -1695 ((-656 (-701 |#1|)))) (-15 -3441 ((-656 (-701 |#1|)))) (-15 -3661 ((-656 (-701 |#1|)))) (-15 -2545 ((-656 |#2|))) (IF (|has| |#1| (-317)) (-15 -3713 ((-1286 |#2|) (-1286 |#2|))) |%noBranch|)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3341 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-2697 (((-1286 (-701 |#1|)) (-1286 $)) NIL) (((-1286 (-701 |#1|))) 24)) (-1686 (((-1286 $)) 52)) (-3767 (($) NIL T CONST)) (-4130 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-4122 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-4252 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) NIL)) (-2828 ((|#1| $) NIL)) (-1783 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-2991 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-2125 (((-1191 (-969 |#1|))) NIL (|has| |#1| (-374)))) (-4242 (($ $ (-938)) NIL)) (-3207 ((|#1| $) NIL)) (-3812 (((-1191 |#1|) $) NIL (|has| |#1| (-568)))) (-2639 ((|#1| (-1286 $)) NIL) ((|#1|) NIL)) (-2355 (((-1191 |#1|) $) NIL)) (-3411 (((-112)) 99)) (-2612 (($ (-1286 |#1|) (-1286 $)) NIL) (($ (-1286 |#1|)) NIL)) (-1551 (((-3 $ "failed") $) 14 (|has| |#1| (-568)))) (-3606 (((-938)) 53)) (-2995 (((-112)) NIL)) (-4300 (($ $ (-938)) NIL)) (-4334 (((-112)) NIL)) (-1364 (((-112)) NIL)) (-2272 (((-112)) 101)) (-4230 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL (|has| |#1| (-568)))) (-2694 (((-3 $ "failed")) NIL (|has| |#1| (-568)))) (-1950 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) NIL)) (-3544 ((|#1| $) NIL)) (-2269 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-1410 (((-3 $ "failed") $) NIL (|has| |#1| (-568)))) (-2571 (((-1191 (-969 |#1|))) NIL (|has| |#1| (-374)))) (-1428 (($ $ (-938)) NIL)) (-3804 ((|#1| $) NIL)) (-2904 (((-1191 |#1|) $) NIL (|has| |#1| (-568)))) (-1394 ((|#1| (-1286 $)) NIL) ((|#1|) NIL)) (-3764 (((-1191 |#1|) $) NIL)) (-2692 (((-112)) 98)) (-1927 (((-1177) $) NIL)) (-1610 (((-112)) 106)) (-3077 (((-112)) 105)) (-3276 (((-112)) 107)) (-1445 (((-1139) $) NIL)) (-2775 (((-112)) 100)) (-2871 ((|#1| $ (-576)) 55)) (-1809 (((-1286 |#1|) $ (-1286 $)) 48) (((-701 |#1|) (-1286 $) (-1286 $)) NIL) (((-1286 |#1|) $) 28) (((-701 |#1|) (-1286 $)) NIL)) (-4076 (((-1286 |#1|) $) NIL) (($ (-1286 |#1|)) NIL)) (-3434 (((-656 (-969 |#1|)) (-1286 $)) NIL) (((-656 (-969 |#1|))) NIL)) (-4081 (($ $ $) NIL)) (-2012 (((-112)) 95)) (-3563 (((-874) $) 71) (($ (-1286 |#1|)) 22)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) 51)) (-2253 (((-656 (-1286 |#1|))) NIL (|has| |#1| (-568)))) (-1938 (($ $ $ $) NIL)) (-1524 (((-112)) 91)) (-3491 (($ (-701 |#1|) $) 18)) (-2303 (($ $ $) NIL)) (-2647 (((-112)) 97)) (-2256 (((-112)) 92)) (-4016 (((-112)) 90)) (-2800 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1161 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-429 |#1|) (-660 (-1161 |#2| |#1|)) (-10 -8 (-15 -3563 ($ (-1286 |#1|))))) (-374) (-938) (-656 (-1195)) (-1286 (-701 |#1|))) (T -44)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-14 *6 (-1286 (-701 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-656 (-1195)))))) +(-13 (-429 |#1|) (-660 (-1161 |#2| |#1|)) (-10 -8 (-15 -3563 ($ (-1286 |#1|))))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3142 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2893 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2464 (($ $) NIL)) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2333 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462))) (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2938 (($ $ (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-2265 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862))))) (-1758 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3429 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4462)))) (-3614 (($ $ $) 33 (|has| $ (-6 -4462)))) (-2611 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4462)))) (-1438 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 35 (|has| $ (-6 -4462)))) (-3731 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-1253 (-576)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "last" (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4462))) (($ $ "rest" $) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "first" (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "value" (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2882 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2287 (((-3 |#2| "failed") |#1| $) 43)) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3515 (($ $ (-783)) NIL) (($ $) 29)) (-3315 (($ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) NIL) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) NIL)) (-3518 (((-112) $) NIL)) (-3584 (((-576) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (((-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) (((-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 20 (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 20 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-4033 (($ (-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 38 (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-2093 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-1854 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3814 ((|#1| $) NIL (|has| |#1| (-862))) (((-576) $) 40 (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-1628 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-2942 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-1905 (((-112) $) NIL)) (-1927 (((-1177) $) 49 (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3923 (($ $ (-783)) NIL) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-3135 (((-656 |#1|) $) 22)) (-2937 (((-112) |#1| $) NIL)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL) (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-2277 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 |#1|) $) NIL) (((-656 (-576)) $) NIL)) (-2378 (((-112) |#1| $) NIL) (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3504 ((|#2| $) NIL (|has| |#1| (-862))) (($ $ (-783)) NIL) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 27)) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-3524 (((-112) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-1947 (((-656 |#2|) $) NIL) (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 19)) (-1911 (((-112) $) 18)) (-2597 (($) 14)) (-2871 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ (-576)) NIL) (($ $ (-1253 (-576))) NIL) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "first") NIL) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $ "value") NIL)) (-2972 (((-576) $ $) NIL)) (-2837 (($) 13) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2560 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3173 (((-112) $) NIL)) (-1442 (($ $) NIL)) (-1544 (($ $) NIL (|has| $ (-6 -4462)))) (-3564 (((-783) $) NIL)) (-2705 (($ $) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-1523 (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL) (($ $ $) NIL)) (-1661 (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL) (($ (-656 $)) NIL) (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 31) (($ $ $) NIL)) (-3563 (((-874) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-3934 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") |#1| $) 51)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3037 (((-112) $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-3010 (((-112) $ $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-862)))) (-3485 (((-783) $) 25 (|has| $ (-6 -4461))))) (((-45 |#1| |#2|) (-36 |#1| |#2|) (-1119) (-1119)) (T -45)) NIL (-36 |#1| |#2|) -((-4331 (((-112) $) 12)) (-2477 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4331 ((-112) |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-47 |#2| |#3|) (-1068) (-804)) (T -46)) +((-2606 (((-112) $) 12)) (-1632 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-419 (-576)) $) 25) (($ $ (-419 (-576))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2606 ((-112) |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-47 |#2| |#3|) (-1068) (-804)) (T -46)) NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4331 ((-112) |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2573 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-1717 (($ $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-4331 (((-112) $) 74)) (-1518 (($ |#1| |#2|) 73)) (-2477 (($ (-1 |#1| |#1|) $) 75)) (-1681 (($ $) 77)) (-1692 ((|#1| $) 78)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2022 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2369 ((|#2| $) 76)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2430 ((|#1| $ |#2|) 71)) (-3612 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -2606 ((-112) |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4412 (($ $) 64 (|has| |#1| (-568)))) (-4176 (((-112) $) 66 (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-2166 (($ $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-2606 (((-112) $) 74)) (-1970 (($ |#1| |#2|) 73)) (-1632 (($ (-1 |#1| |#1|) $) 75)) (-2129 (($ $) 77)) (-2142 ((|#1| $) 78)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3463 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1433 ((|#2| $) 76)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4333 ((|#1| $ |#2|) 71)) (-2883 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-47 |#1| |#2|) (-141) (-1068) (-804)) (T -47)) -((-1692 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-1681 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) (-4331 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1518 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-1717 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-2430 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-374))))) -(-13 (-1068) (-111 |t#1| |t#1|) (-10 -8 (-15 -1692 (|t#1| $)) (-15 -1681 ($ $)) (-15 -2369 (|t#2| $)) (-15 -2477 ($ (-1 |t#1| |t#1|) $)) (-15 -4331 ((-112) $)) (-15 -1518 ($ |t#1| |t#2|)) (-15 -1717 ($ $)) (-15 -2430 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -4028 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1559 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-969 $)) NIL)) (-1669 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-969 $)) NIL)) (-1962 (((-112) $) 9)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4385 (((-656 (-624 $)) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1756 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-1403 (($ $) NIL)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-4189 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-969 $)) NIL)) (-1935 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-969 $)) NIL)) (-2974 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2378 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-1975 (($ $ $) NIL)) (-3687 (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-701 $) (-1287 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-1287 $) $) NIL) (((-701 (-419 (-576))) (-1287 $)) NIL)) (-2359 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-2191 (($ $) NIL) (($ (-656 $)) NIL)) (-4349 (((-656 (-115)) $) NIL)) (-1344 (((-115) (-115)) NIL)) (-1810 (((-112) $) 11)) (-3082 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3894 (((-1144 (-576) (-624 $)) $) NIL)) (-3355 (($ $ (-576)) NIL)) (-4252 (((-1192 $) (-1192 $) (-624 $)) NIL) (((-1192 $) (-1192 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2525 (((-1192 $) (-624 $)) NIL (|has| $ (-1068)))) (-2477 (($ (-1 $ $) (-624 $)) NIL)) (-4348 (((-3 (-624 $) "failed") $) NIL)) (-3117 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-1332 (((-656 (-624 $)) $) NIL)) (-1770 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-1412 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) NIL)) (-1644 (($ $) NIL)) (-2927 (((-783) $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2513 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2015 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-2259 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1787 (((-783) $) NIL)) (-4367 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3724 (($ $) NIL) (($ $ $) NIL)) (-3614 (($ $) NIL) (($ $ (-783)) NIL)) (-3905 (((-1144 (-576) (-624 $)) $) NIL)) (-2840 (($ $) NIL (|has| $ (-1068)))) (-1505 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-4092 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1144 (-576) (-624 $))) NIL)) (-2471 (((-783)) NIL T CONST)) (-3163 (($ $) NIL) (($ (-656 $)) NIL)) (-3201 (((-112) (-115)) NIL)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-4300 (($) 6 T CONST)) (-4310 (($) 10 T CONST)) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-3919 (((-112) $ $) 13)) (-4028 (($ $ $) NIL)) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL))) -(((-48) (-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4092 ($ (-1144 (-576) (-624 $)))) (-15 -3894 ((-1144 (-576) (-624 $)) $)) (-15 -3905 ((-1144 (-576) (-624 $)) $)) (-15 -2359 ($ $)) (-15 -4252 ((-1192 $) (-1192 $) (-624 $))) (-15 -4252 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -4252 ($ $ (-624 $))) (-15 -4252 ($ $ (-656 (-624 $))))))) (T -48)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2359 (*1 *1 *1) (-5 *1 (-48))) (-4252 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-4252 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-4252 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-4252 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))) -(-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4092 ($ (-1144 (-576) (-624 $)))) (-15 -3894 ((-1144 (-576) (-624 $)) $)) (-15 -3905 ((-1144 (-576) (-624 $)) $)) (-15 -2359 ($ $)) (-15 -4252 ((-1192 $) (-1192 $) (-624 $))) (-15 -4252 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -4252 ($ $ (-624 $))) (-15 -4252 ($ $ (-656 (-624 $)))))) -((-2034 (((-112) $ $) NIL)) (-2088 (((-656 (-518)) $) 17)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 7)) (-4136 (((-1201) $) 18)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-49) (-13 (-1119) (-10 -8 (-15 -2088 ((-656 (-518)) $)) (-15 -4136 ((-1201) $))))) (T -49)) -((-2088 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-49))))) -(-13 (-1119) (-10 -8 (-15 -2088 ((-656 (-518)) $)) (-15 -4136 ((-1201) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 85)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2489 (((-112) $) 30)) (-2974 (((-3 |#1| "failed") $) 33)) (-2378 ((|#1| $) 34)) (-1717 (($ $) 40)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-1692 ((|#1| $) 31)) (-4183 (($ $) 74)) (-3288 (((-1178) $) NIL)) (-3684 (((-112) $) 43)) (-3139 (((-1139) $) NIL)) (-2582 (($ (-783)) 72)) (-3353 (($ (-656 (-576))) 73)) (-2369 (((-783) $) 44)) (-4092 (((-874) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-2430 ((|#1| $ $) 28)) (-2471 (((-783)) 71 T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 45 T CONST)) (-4310 (($) 17 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 64)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) -(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1057 |#1|) (-10 -8 (-15 -1692 (|#1| $)) (-15 -4183 ($ $)) (-15 -1717 ($ $)) (-15 -2430 (|#1| $ $)) (-15 -2582 ($ (-783))) (-15 -3353 ($ (-656 (-576)))) (-15 -3684 ((-112) $)) (-15 -2489 ((-112) $)) (-15 -2369 ((-783) $)) (-15 -2477 ($ (-1 |#1| |#1|) $)))) (-1068) (-656 (-1196))) (T -50)) -((-1692 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) (-4183 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196))))) (-1717 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196))))) (-2430 (*1 *2 *1 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-3353 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1196))))) (-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1196)))))) -(-13 (-632 |#1|) (-1057 |#1|) (-10 -8 (-15 -1692 (|#1| $)) (-15 -4183 ($ $)) (-15 -1717 ($ $)) (-15 -2430 (|#1| $ $)) (-15 -2582 ($ (-783))) (-15 -3353 ($ (-656 (-576)))) (-15 -3684 ((-112) $)) (-15 -2489 ((-112) $)) (-15 -2369 ((-783) $)) (-15 -2477 ($ (-1 |#1| |#1|) $)))) -((-2489 (((-112) (-52)) 18)) (-2974 (((-3 |#1| "failed") (-52)) 20)) (-2378 ((|#1| (-52)) 21)) (-4092 (((-52) |#1|) 14))) -(((-51 |#1|) (-10 -7 (-15 -4092 ((-52) |#1|)) (-15 -2974 ((-3 |#1| "failed") (-52))) (-15 -2489 ((-112) (-52))) (-15 -2378 (|#1| (-52)))) (-1237)) (T -51)) -((-2378 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1237)))) (-2974 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1237))))) -(-10 -7 (-15 -4092 ((-52) |#1|)) (-15 -2974 ((-3 |#1| "failed") (-52))) (-15 -2489 ((-112) (-52))) (-15 -2378 (|#1| (-52)))) -((-2034 (((-112) $ $) NIL)) (-1998 (((-786) $) 8)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3655 (((-1123) $) 10)) (-4092 (((-874) $) 15)) (-1531 (((-112) $ $) NIL)) (-4269 (($ (-1123) (-786)) 16)) (-3919 (((-112) $ $) 12))) -(((-52) (-13 (-1119) (-10 -8 (-15 -4269 ($ (-1123) (-786))) (-15 -3655 ((-1123) $)) (-15 -1998 ((-786) $))))) (T -52)) -((-4269 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-786)) (-5 *1 (-52)))) (-3655 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-52)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(-13 (-1119) (-10 -8 (-15 -4269 ($ (-1123) (-786))) (-15 -3655 ((-1123) $)) (-15 -1998 ((-786) $)))) -((-2690 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2690 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1068) (-660 |#1|) (-864 |#1|)) (T -53)) -((-2690 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1068)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5))))) -(-10 -7 (-15 -2690 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-2980 ((|#3| |#3| (-656 (-1196))) 44)) (-1377 ((|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3| (-938)) 32) ((|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1377 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3|)) (-15 -1377 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3| (-938))) (-15 -2980 (|#3| |#3| (-656 (-1196))))) (-1119) (-13 (-1068) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -54)) -((-2980 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-1377 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1095 *5 *6 *2))) (-5 *4 (-938)) (-4 *5 (-1119)) (-4 *6 (-13 (-1068) (-899 *5) (-626 (-905 *5)))) (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1377 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1095 *4 *5 *2))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1377 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3|)) (-15 -1377 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3| (-938))) (-15 -2980 (|#3| |#3| (-656 (-1196))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 14)) (-2974 (((-3 (-783) "failed") $) 34)) (-2378 (((-783) $) NIL)) (-1810 (((-112) $) 16)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) 18)) (-4092 (((-874) $) 23) (($ (-783)) 29)) (-1531 (((-112) $ $) NIL)) (-3793 (($) 11 T CONST)) (-3919 (((-112) $ $) 20))) -(((-55) (-13 (-1119) (-1057 (-783)) (-10 -8 (-15 -3793 ($) -2670) (-15 -1962 ((-112) $)) (-15 -1810 ((-112) $))))) (T -55)) -((-3793 (*1 *1) (-5 *1 (-55))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) -(-13 (-1119) (-1057 (-783)) (-10 -8 (-15 -3793 ($) -2670) (-15 -1962 ((-112) $)) (-15 -1810 ((-112) $)))) -((-2835 (((-112) $ (-783)) 27)) (-3344 (($ $ (-576) |#3|) 66)) (-1806 (($ $ (-576) |#4|) 70)) (-4059 ((|#3| $ (-576)) 79)) (-4260 (((-656 |#2|) $) 47)) (-1419 (((-112) $ (-783)) 31)) (-3990 (((-112) |#2| $) 74)) (-3874 (($ (-1 |#2| |#2|) $) 55)) (-2477 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-3103 (((-112) $ (-783)) 29)) (-2918 (($ $ |#2|) 52)) (-3292 (((-112) (-1 (-112) |#2|) $) 21)) (-4367 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-3150 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-4268 (($ $) 51)) (-1762 ((|#4| $ (-576)) 82)) (-4092 (((-874) $) 88)) (-2190 (((-112) (-1 (-112) |#2|) $) 20)) (-3919 (((-112) $ $) 73)) (-2048 (((-783) $) 32))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3874 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1806 (|#1| |#1| (-576) |#4|)) (-15 -3344 (|#1| |#1| (-576) |#3|)) (-15 -4260 ((-656 |#2|) |#1|)) (-15 -1762 (|#4| |#1| (-576))) (-15 -4059 (|#3| |#1| (-576))) (-15 -4367 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576) (-576))) (-15 -2918 (|#1| |#1| |#2|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -3990 ((-112) |#2| |#1|)) (-15 -3150 ((-783) |#2| |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2048 ((-783) |#1|)) (-15 -2835 ((-112) |#1| (-783))) (-15 -1419 ((-112) |#1| (-783))) (-15 -3103 ((-112) |#1| (-783))) (-15 -4268 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1237) (-384 |#2|) (-384 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3874 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1806 (|#1| |#1| (-576) |#4|)) (-15 -3344 (|#1| |#1| (-576) |#3|)) (-15 -4260 ((-656 |#2|) |#1|)) (-15 -1762 (|#4| |#1| (-576))) (-15 -4059 (|#3| |#1| (-576))) (-15 -4367 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576) (-576))) (-15 -2918 (|#1| |#1| |#2|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -3990 ((-112) |#2| |#1|)) (-15 -3150 ((-783) |#2| |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2048 ((-783) |#1|)) (-15 -2835 ((-112) |#1| (-783))) (-15 -1419 ((-112) |#1| (-783))) (-15 -3103 ((-112) |#1| (-783))) (-15 -4268 (|#1| |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-4248 ((|#1| $ (-576) (-576) |#1|) 45)) (-3344 (($ $ (-576) |#2|) 43)) (-1806 (($ $ (-576) |#3|) 42)) (-3656 (($) 7 T CONST)) (-4059 ((|#2| $ (-576)) 47)) (-3888 ((|#1| $ (-576) (-576) |#1|) 44)) (-3817 ((|#1| $ (-576) (-576)) 49)) (-4260 (((-656 |#1|) $) 31)) (-2126 (((-783) $) 52)) (-1992 (($ (-783) (-783) |#1|) 58)) (-2140 (((-783) $) 51)) (-1419 (((-112) $ (-783)) 9)) (-4217 (((-576) $) 56)) (-1961 (((-576) $) 54)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-1439 (((-576) $) 55)) (-2743 (((-576) $) 53)) (-3874 (($ (-1 |#1| |#1|) $) 35)) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2918 (($ $ |#1|) 57)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1762 ((|#3| $ (-576)) 46)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-57 |#1| |#2| |#3|) (-141) (-1237) (-384 |t#1|) (-384 |t#1|)) (T -57)) -((-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1992 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1237)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2918 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-4367 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1237)))) (-3817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1237)))) (-4367 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-4059 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1237)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1237)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-4260 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-4248 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-3888 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-3344 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-1806 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1237)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-3874 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2477 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2477 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -1992 ($ (-783) (-783) |t#1|)) (-15 -2918 ($ $ |t#1|)) (-15 -4217 ((-576) $)) (-15 -1439 ((-576) $)) (-15 -1961 ((-576) $)) (-15 -2743 ((-576) $)) (-15 -2126 ((-783) $)) (-15 -2140 ((-783) $)) (-15 -4367 (|t#1| $ (-576) (-576))) (-15 -3817 (|t#1| $ (-576) (-576))) (-15 -4367 (|t#1| $ (-576) (-576) |t#1|)) (-15 -4059 (|t#2| $ (-576))) (-15 -1762 (|t#3| $ (-576))) (-15 -4260 ((-656 |t#1|) $)) (-15 -4248 (|t#1| $ (-576) (-576) |t#1|)) (-15 -3888 (|t#1| $ (-576) (-576) |t#1|)) (-15 -3344 ($ $ (-576) |t#2|)) (-15 -1806 ($ $ (-576) |t#3|)) (-15 -2477 ($ (-1 |t#1| |t#1|) $)) (-15 -3874 ($ (-1 |t#1| |t#1|) $)) (-15 -2477 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2477 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-1687 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2359 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2477 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -1687 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2359 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2477 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1237) (-1237)) (T -58)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2359 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-58 *5 *2)))) (-1687 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -1687 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2359 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2477 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3433 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1929 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-1992 (($ (-783) |#1|) 13)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2701 ((|#1| $) NIL (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 10)) (-2851 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1929 ($ (-656 |#1|))) (-15 -1929 ($ (-783) |#1|)))) (-1237)) (T -59)) -((-1929 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-59 *3)))) (-1929 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1237))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1929 ($ (-656 |#1|))) (-15 -1929 ($ (-783) |#1|)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3344 (($ $ (-576) (-59 |#1|)) NIL)) (-1806 (($ $ (-576) (-59 |#1|)) NIL)) (-3656 (($) NIL T CONST)) (-4059 (((-59 |#1|) $ (-576)) NIL)) (-3888 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3817 ((|#1| $ (-576) (-576)) NIL)) (-4260 (((-656 |#1|) $) NIL)) (-2126 (((-783) $) NIL)) (-1992 (($ (-783) (-783) |#1|) NIL)) (-2140 (((-783) $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-4217 (((-576) $) NIL)) (-1961 (((-576) $) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-1439 (((-576) $) NIL)) (-2743 (((-576) $) NIL)) (-3874 (($ (-1 |#1| |#1|) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2918 (($ $ |#1|) NIL)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-1762 (((-59 |#1|) $ (-576)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4463))) (-1237)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4463))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 74) (((-3 $ "failed") (-1287 (-326 (-576)))) 63) (((-3 $ "failed") (-1287 (-969 (-390)))) 94) (((-3 $ "failed") (-1287 (-969 (-576)))) 84) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 52) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 39)) (-2378 (($ (-1287 (-326 (-390)))) 70) (($ (-1287 (-326 (-576)))) 59) (($ (-1287 (-969 (-390)))) 90) (($ (-1287 (-969 (-576)))) 80) (($ (-1287 (-419 (-969 (-390))))) 48) (($ (-1287 (-419 (-969 (-576))))) 32)) (-3472 (((-1292) $) 124)) (-4092 (((-874) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 101) (($ (-1287 (-350 (-4103 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4103) (-711)))) 31))) -(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4103) (-711))))))) (-1196)) (T -61)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4103) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4103) (-711))))))) -((-3472 (((-1292) $) 54) (((-1292)) 55)) (-4092 (((-874) $) 51))) -(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -3472 ((-1292))))) (-1196)) (T -62)) -((-3472 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-62 *3)) (-14 *3 (-1196))))) -(-13 (-407) (-10 -7 (-15 -3472 ((-1292))))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 150) (((-3 $ "failed") (-1287 (-326 (-576)))) 140) (((-3 $ "failed") (-1287 (-969 (-390)))) 170) (((-3 $ "failed") (-1287 (-969 (-576)))) 160) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 129) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 117)) (-2378 (($ (-1287 (-326 (-390)))) 146) (($ (-1287 (-326 (-576)))) 136) (($ (-1287 (-969 (-390)))) 166) (($ (-1287 (-969 (-576)))) 156) (($ (-1287 (-419 (-969 (-390))))) 125) (($ (-1287 (-419 (-969 (-576))))) 110)) (-3472 (((-1292) $) 103)) (-4092 (((-874) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 33) (($ (-1287 (-350 (-4103) (-4103 (QUOTE XC)) (-711)))) 95))) -(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103) (-4103 (QUOTE XC)) (-711))))))) (-1196)) (T -63)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103) (-4103 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103) (-4103 (QUOTE XC)) (-711))))))) -((-2974 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-969 (-390))) 50) (((-3 $ "failed") (-969 (-576))) 54) (((-3 $ "failed") (-419 (-969 (-390)))) 36) (((-3 $ "failed") (-419 (-969 (-576)))) 29)) (-2378 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-969 (-390))) 48) (($ (-969 (-576))) 52) (($ (-419 (-969 (-390)))) 34) (($ (-419 (-969 (-576)))) 26)) (-3472 (((-1292) $) 76)) (-4092 (((-874) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 64) (($ (-350 (-4103 (QUOTE X)) (-4103) (-711))) 25))) -(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103 (QUOTE X)) (-4103) (-711)))))) (-1196)) (T -64)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-350 (-4103 (QUOTE X)) (-4103) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103 (QUOTE X)) (-4103) (-711)))))) -((-2974 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-969 (-390)))) 133) (((-3 $ "failed") (-701 (-969 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 73)) (-2378 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-969 (-390)))) 129) (($ (-701 (-969 (-576)))) 118) (($ (-701 (-419 (-969 (-390))))) 83) (($ (-701 (-419 (-969 (-576))))) 66)) (-3472 (((-1292) $) 141)) (-4092 (((-874) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 32) (($ (-701 (-350 (-4103) (-4103 (QUOTE X) (QUOTE HESS)) (-711)))) 56))) -(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-4103) (-4103 (QUOTE X) (QUOTE HESS)) (-711))))) (-1196)) (T -65)) -NIL -(-13 (-395) (-628 (-701 (-350 (-4103) (-4103 (QUOTE X) (QUOTE HESS)) (-711))))) -((-2974 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-969 (-390))) 69) (((-3 $ "failed") (-969 (-576))) 73) (((-3 $ "failed") (-419 (-969 (-390)))) 55) (((-3 $ "failed") (-419 (-969 (-576)))) 48)) (-2378 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-969 (-390))) 67) (($ (-969 (-576))) 71) (($ (-419 (-969 (-390)))) 53) (($ (-419 (-969 (-576)))) 45)) (-3472 (((-1292) $) 82)) (-4092 (((-874) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 32) (($ (-350 (-4103) (-4103 (QUOTE XC)) (-711))) 40))) -(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103) (-4103 (QUOTE XC)) (-711)))))) (-1196)) (T -66)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-350 (-4103) (-4103 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103) (-4103 (QUOTE XC)) (-711)))))) -((-3472 (((-1292) $) 65)) (-4092 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 55))) -(((-67 |#1|) (-394) (-1196)) (T -67)) +((-2142 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-2129 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1970 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-2166 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-4333 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-374))))) +(-13 (-1068) (-111 |t#1| |t#1|) (-10 -8 (-15 -2142 (|t#1| $)) (-15 -2129 ($ $)) (-15 -1433 (|t#2| $)) (-15 -1632 ($ (-1 |t#1| |t#1|) $)) (-15 -2606 ((-112) $)) (-15 -1970 ($ |t#1| |t#2|)) (-15 -2166 ($ $)) (-15 -4333 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-374)) (-15 -3107 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-6 (-174)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-568)) (-6 (-568)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-6 (-38 (-419 (-576)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) +((-3474 (((-112) $ $) NIL)) (-1900 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-969 $)) NIL)) (-2010 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-969 $)) NIL)) (-1454 (((-112) $) 9)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-3887 (((-656 (-624 $)) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3340 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1853 (($ $) NIL)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-1816 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-969 $)) NIL)) (-3532 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-969 $)) NIL)) (-1539 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-4056 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3420 (($ $ $) NIL)) (-3687 (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-419 (-576)))) (|:| |vec| (-1286 (-419 (-576))))) (-701 $) (-1286 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-419 (-576)))) (|:| |vec| (-1286 (-419 (-576))))) (-1286 $) $) NIL) (((-701 (-419 (-576))) (-1286 $)) NIL)) (-2521 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-2188 (($ $) NIL) (($ (-656 $)) NIL)) (-3061 (((-656 (-115)) $) NIL)) (-3974 (((-115) (-115)) NIL)) (-1414 (((-112) $) 11)) (-3828 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-1536 (((-1144 (-576) (-624 $)) $) NIL)) (-2826 (($ $ (-576)) NIL)) (-4072 (((-1191 $) (-1191 $) (-624 $)) NIL) (((-1191 $) (-1191 $) (-656 (-624 $))) NIL) (($ $ (-624 $)) NIL) (($ $ (-656 (-624 $))) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3121 (((-1191 $) (-624 $)) NIL (|has| $ (-1068)))) (-1632 (($ (-1 $ $) (-624 $)) NIL)) (-2953 (((-3 (-624 $) "failed") $) NIL)) (-3459 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-3963 (((-656 (-624 $)) $) NIL)) (-1616 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-3718 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) NIL)) (-2095 (($ $) NIL)) (-2331 (((-783) $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ (-656 $)) NIL) (($ $ $) NIL)) (-4245 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2489 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3306 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3112 (((-783) $) NIL)) (-2871 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2114 (($ $) NIL) (($ $ $) NIL)) (-2735 (($ $) NIL) (($ $ (-783)) NIL)) (-1549 (((-1144 (-576) (-624 $)) $) NIL)) (-1372 (($ $) NIL (|has| $ (-1068)))) (-4076 (((-390) $) NIL) (((-227) $) NIL) (((-171 (-390)) $) NIL)) (-3563 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1144 (-576) (-624 $))) NIL)) (-1858 (((-783)) NIL T CONST)) (-4102 (($ $) NIL) (($ (-656 $)) NIL)) (-3263 (((-112) (-115)) NIL)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2800 (($) 6 T CONST)) (-2810 (($) 10 T CONST)) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-2988 (((-112) $ $) 13)) (-3107 (($ $ $) NIL)) (-3095 (($ $ $) NIL) (($ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) NIL) (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL))) +(((-48) (-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3563 ($ (-1144 (-576) (-624 $)))) (-15 -1536 ((-1144 (-576) (-624 $)) $)) (-15 -1549 ((-1144 (-576) (-624 $)) $)) (-15 -2521 ($ $)) (-15 -4072 ((-1191 $) (-1191 $) (-624 $))) (-15 -4072 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -4072 ($ $ (-624 $))) (-15 -4072 ($ $ (-656 (-624 $))))))) (T -48)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) (-2521 (*1 *1 *1) (-5 *1 (-48))) (-4072 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) (-4072 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) (-4072 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) (-4072 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48))))) +(-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3563 ($ (-1144 (-576) (-624 $)))) (-15 -1536 ((-1144 (-576) (-624 $)) $)) (-15 -1549 ((-1144 (-576) (-624 $)) $)) (-15 -2521 ($ $)) (-15 -4072 ((-1191 $) (-1191 $) (-624 $))) (-15 -4072 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -4072 ($ $ (-624 $))) (-15 -4072 ($ $ (-656 (-624 $)))))) +((-3474 (((-112) $ $) NIL)) (-1435 (((-656 (-518)) $) 17)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 7)) (-2719 (((-1200) $) 18)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-49) (-13 (-1119) (-10 -8 (-15 -1435 ((-656 (-518)) $)) (-15 -2719 ((-1200) $))))) (T -49)) +((-1435 (*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-49))))) +(-13 (-1119) (-10 -8 (-15 -1435 ((-656 (-518)) $)) (-15 -2719 ((-1200) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 85)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2853 (((-112) $) 30)) (-1539 (((-3 |#1| "failed") $) 33)) (-4056 ((|#1| $) 34)) (-2166 (($ $) 40)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2142 ((|#1| $) 31)) (-2466 (($ $) 74)) (-1927 (((-1177) $) NIL)) (-1466 (((-112) $) 43)) (-1445 (((-1139) $) NIL)) (-2202 (($ (-783)) 72)) (-3984 (($ (-656 (-576))) 73)) (-1433 (((-783) $) 44)) (-3563 (((-874) $) 91) (($ (-576)) 69) (($ |#1|) 67)) (-4333 ((|#1| $ $) 28)) (-1858 (((-783)) 71 T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 45 T CONST)) (-2810 (($) 17 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 64)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ |#1| $) 58))) +(((-50 |#1| |#2|) (-13 (-632 |#1|) (-1057 |#1|) (-10 -8 (-15 -2142 (|#1| $)) (-15 -2466 ($ $)) (-15 -2166 ($ $)) (-15 -4333 (|#1| $ $)) (-15 -2202 ($ (-783))) (-15 -3984 ($ (-656 (-576)))) (-15 -1466 ((-112) $)) (-15 -2853 ((-112) $)) (-15 -1433 ((-783) $)) (-15 -1632 ($ (-1 |#1| |#1|) $)))) (-1068) (-656 (-1195))) (T -50)) +((-2142 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) (-2466 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1195))))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1195))))) (-4333 (*1 *2 *1 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1195))))) (-3984 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1195))))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1195))))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1195))))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) (-14 *4 (-656 (-1195))))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-50 *3 *4)) (-14 *4 (-656 (-1195)))))) +(-13 (-632 |#1|) (-1057 |#1|) (-10 -8 (-15 -2142 (|#1| $)) (-15 -2466 ($ $)) (-15 -2166 ($ $)) (-15 -4333 (|#1| $ $)) (-15 -2202 ($ (-783))) (-15 -3984 ($ (-656 (-576)))) (-15 -1466 ((-112) $)) (-15 -2853 ((-112) $)) (-15 -1433 ((-783) $)) (-15 -1632 ($ (-1 |#1| |#1|) $)))) +((-2853 (((-112) (-52)) 18)) (-1539 (((-3 |#1| "failed") (-52)) 20)) (-4056 ((|#1| (-52)) 21)) (-3563 (((-52) |#1|) 14))) +(((-51 |#1|) (-10 -7 (-15 -3563 ((-52) |#1|)) (-15 -1539 ((-3 |#1| "failed") (-52))) (-15 -2853 ((-112) (-52))) (-15 -4056 (|#1| (-52)))) (-1236)) (T -51)) +((-4056 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1236)))) (-1539 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) (-3563 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1236))))) +(-10 -7 (-15 -3563 ((-52) |#1|)) (-15 -1539 ((-3 |#1| "failed") (-52))) (-15 -2853 ((-112) (-52))) (-15 -4056 (|#1| (-52)))) +((-3474 (((-112) $ $) NIL)) (-3914 (((-786) $) 8)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4425 (((-1123) $) 10)) (-3563 (((-874) $) 15)) (-3985 (((-112) $ $) NIL)) (-3379 (($ (-1123) (-786)) 16)) (-2988 (((-112) $ $) 12))) +(((-52) (-13 (-1119) (-10 -8 (-15 -3379 ($ (-1123) (-786))) (-15 -4425 ((-1123) $)) (-15 -3914 ((-786) $))))) (T -52)) +((-3379 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-786)) (-5 *1 (-52)))) (-4425 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-52)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) +(-13 (-1119) (-10 -8 (-15 -3379 ($ (-1123) (-786))) (-15 -4425 ((-1123) $)) (-15 -3914 ((-786) $)))) +((-3491 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3491 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1068) (-660 |#1|) (-864 |#1|)) (T -53)) +((-3491 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1068)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5))))) +(-10 -7 (-15 -3491 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1601 ((|#3| |#3| (-656 (-1195))) 44)) (-2778 ((|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3| (-938)) 32) ((|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -2778 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3|)) (-15 -2778 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3| (-938))) (-15 -1601 (|#3| |#3| (-656 (-1195))))) (-1119) (-13 (-1068) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -54)) +((-1601 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-2778 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 (-1095 *5 *6 *2))) (-5 *4 (-938)) (-4 *5 (-1119)) (-4 *6 (-13 (-1068) (-899 *5) (-626 (-905 *5)))) (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-2778 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-1095 *4 *5 *2))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -2778 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3|)) (-15 -2778 (|#3| (-656 (-1095 |#1| |#2| |#3|)) |#3| (-938))) (-15 -1601 (|#3| |#3| (-656 (-1195))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 14)) (-1539 (((-3 (-783) "failed") $) 34)) (-4056 (((-783) $) NIL)) (-1414 (((-112) $) 16)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) 18)) (-3563 (((-874) $) 23) (($ (-783)) 29)) (-3985 (((-112) $ $) NIL)) (-1919 (($) 11 T CONST)) (-2988 (((-112) $ $) 20))) +(((-55) (-13 (-1119) (-1057 (-783)) (-10 -8 (-15 -1919 ($) -1398) (-15 -1454 ((-112) $)) (-15 -1414 ((-112) $))))) (T -55)) +((-1919 (*1 *1) (-5 *1 (-55))) (-1454 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))) +(-13 (-1119) (-1057 (-783)) (-10 -8 (-15 -1919 ($) -1398) (-15 -1454 ((-112) $)) (-15 -1414 ((-112) $)))) +((-3131 (((-112) $ (-783)) 27)) (-4158 (($ $ (-576) |#3|) 66)) (-2257 (($ $ (-576) |#4|) 70)) (-1946 ((|#3| $ (-576)) 79)) (-3825 (((-656 |#2|) $) 47)) (-3115 (((-112) $ (-783)) 31)) (-2511 (((-112) |#2| $) 74)) (-1763 (($ (-1 |#2| |#2|) $) 55)) (-1632 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-2712 (((-112) $ (-783)) 29)) (-2500 (($ $ |#2|) 52)) (-4207 (((-112) (-1 (-112) |#2|) $) 21)) (-2871 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) 35)) (-1456 (((-783) (-1 (-112) |#2|) $) 41) (((-783) |#2| $) 76)) (-1954 (($ $) 51)) (-4331 ((|#4| $ (-576)) 82)) (-3563 (((-874) $) 88)) (-2043 (((-112) (-1 (-112) |#2|) $) 20)) (-2988 (((-112) $ $) 73)) (-3485 (((-783) $) 32))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1632 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1763 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2257 (|#1| |#1| (-576) |#4|)) (-15 -4158 (|#1| |#1| (-576) |#3|)) (-15 -3825 ((-656 |#2|) |#1|)) (-15 -4331 (|#4| |#1| (-576))) (-15 -1946 (|#3| |#1| (-576))) (-15 -2871 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576) (-576))) (-15 -2500 (|#1| |#1| |#2|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2511 ((-112) |#2| |#1|)) (-15 -1456 ((-783) |#2| |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3485 ((-783) |#1|)) (-15 -3131 ((-112) |#1| (-783))) (-15 -3115 ((-112) |#1| (-783))) (-15 -2712 ((-112) |#1| (-783))) (-15 -1954 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1236) (-384 |#2|) (-384 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1632 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1763 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2257 (|#1| |#1| (-576) |#4|)) (-15 -4158 (|#1| |#1| (-576) |#3|)) (-15 -3825 ((-656 |#2|) |#1|)) (-15 -4331 (|#4| |#1| (-576))) (-15 -1946 (|#3| |#1| (-576))) (-15 -2871 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576) (-576))) (-15 -2500 (|#1| |#1| |#2|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2511 ((-112) |#2| |#1|)) (-15 -1456 ((-783) |#2| |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3485 ((-783) |#1|)) (-15 -3131 ((-112) |#1| (-783))) (-15 -3115 ((-112) |#1| (-783))) (-15 -2712 ((-112) |#1| (-783))) (-15 -1954 (|#1| |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-3731 ((|#1| $ (-576) (-576) |#1|) 45)) (-4158 (($ $ (-576) |#2|) 43)) (-2257 (($ $ (-576) |#3|) 42)) (-3767 (($) 7 T CONST)) (-1946 ((|#2| $ (-576)) 47)) (-1776 ((|#1| $ (-576) (-576) |#1|) 44)) (-1698 ((|#1| $ (-576) (-576)) 49)) (-3825 (((-656 |#1|) $) 31)) (-1622 (((-783) $) 52)) (-4033 (($ (-783) (-783) |#1|) 58)) (-1636 (((-783) $) 51)) (-3115 (((-112) $ (-783)) 9)) (-1650 (((-576) $) 56)) (-1351 (((-576) $) 54)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-4159 (((-576) $) 55)) (-4062 (((-576) $) 53)) (-1763 (($ (-1 |#1| |#1|) $) 35)) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2500 (($ $ |#1|) 57)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4331 ((|#3| $ (-576)) 46)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-57 |#1| |#2| |#3|) (-141) (-1236) (-384 |t#1|) (-384 |t#1|)) (T -57)) +((-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4033 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1236)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2500 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1236)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-4062 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-783)))) (-2871 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1236)))) (-1698 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-1236)))) (-2871 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1946 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1236)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-4331 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1236)) (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) (-3731 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-1776 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) (-4158 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1236)) (-4 *3 (-384 *4)) (-4 *5 (-384 *4)))) (-2257 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1236)) (-4 *5 (-384 *4)) (-4 *3 (-384 *4)))) (-1763 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1632 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1632 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -4033 ($ (-783) (-783) |t#1|)) (-15 -2500 ($ $ |t#1|)) (-15 -1650 ((-576) $)) (-15 -4159 ((-576) $)) (-15 -1351 ((-576) $)) (-15 -4062 ((-576) $)) (-15 -1622 ((-783) $)) (-15 -1636 ((-783) $)) (-15 -2871 (|t#1| $ (-576) (-576))) (-15 -1698 (|t#1| $ (-576) (-576))) (-15 -2871 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1946 (|t#2| $ (-576))) (-15 -4331 (|t#3| $ (-576))) (-15 -3825 ((-656 |t#1|) $)) (-15 -3731 (|t#1| $ (-576) (-576) |t#1|)) (-15 -1776 (|t#1| $ (-576) (-576) |t#1|)) (-15 -4158 ($ $ (-576) |t#2|)) (-15 -2257 ($ $ (-576) |t#3|)) (-15 -1632 ($ (-1 |t#1| |t#1|) $)) (-15 -1763 ($ (-1 |t#1| |t#1|) $)) (-15 -1632 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1632 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-2874 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2521 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-1632 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -2874 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1632 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1236) (-1236)) (T -58)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-58 *5 *2)))) (-2874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -2874 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1632 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3584 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-4200 (($ (-656 |#1|)) 11) (($ (-783) |#1|) 14)) (-4033 (($ (-783) |#1|) 13)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3504 ((|#1| $) NIL (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 10)) (-1661 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4200 ($ (-656 |#1|))) (-15 -4200 ($ (-783) |#1|)))) (-1236)) (T -59)) +((-4200 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-59 *3)))) (-4200 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1236))))) +(-13 (-19 |#1|) (-10 -8 (-15 -4200 ($ (-656 |#1|))) (-15 -4200 ($ (-783) |#1|)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4158 (($ $ (-576) (-59 |#1|)) NIL)) (-2257 (($ $ (-576) (-59 |#1|)) NIL)) (-3767 (($) NIL T CONST)) (-1946 (((-59 |#1|) $ (-576)) NIL)) (-1776 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1698 ((|#1| $ (-576) (-576)) NIL)) (-3825 (((-656 |#1|) $) NIL)) (-1622 (((-783) $) NIL)) (-4033 (($ (-783) (-783) |#1|) NIL)) (-1636 (((-783) $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1650 (((-576) $) NIL)) (-1351 (((-576) $) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-4159 (((-576) $) NIL)) (-4062 (((-576) $) NIL)) (-1763 (($ (-1 |#1| |#1|) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2500 (($ $ |#1|) NIL)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-4331 (((-59 |#1|) $ (-576)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4462))) (-1236)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4462))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 74) (((-3 $ "failed") (-1286 (-326 (-576)))) 63) (((-3 $ "failed") (-1286 (-969 (-390)))) 94) (((-3 $ "failed") (-1286 (-969 (-576)))) 84) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 52) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 39)) (-4056 (($ (-1286 (-326 (-390)))) 70) (($ (-1286 (-326 (-576)))) 59) (($ (-1286 (-969 (-390)))) 90) (($ (-1286 (-969 (-576)))) 80) (($ (-1286 (-419 (-969 (-390))))) 48) (($ (-1286 (-419 (-969 (-576))))) 32)) (-3188 (((-1291) $) 124)) (-3563 (((-874) $) 118) (($ (-656 (-340))) 103) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 101) (($ (-1286 (-350 (-3573 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3573) (-711)))) 31))) +(((-61 |#1|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3573) (-711))))))) (-1195)) (T -61)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3573) (-711)))) (-5 *1 (-61 *3)) (-14 *3 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3573) (-711))))))) +((-3188 (((-1291) $) 54) (((-1291)) 55)) (-3563 (((-874) $) 51))) +(((-62 |#1|) (-13 (-407) (-10 -7 (-15 -3188 ((-1291))))) (-1195)) (T -62)) +((-3188 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-62 *3)) (-14 *3 (-1195))))) +(-13 (-407) (-10 -7 (-15 -3188 ((-1291))))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 150) (((-3 $ "failed") (-1286 (-326 (-576)))) 140) (((-3 $ "failed") (-1286 (-969 (-390)))) 170) (((-3 $ "failed") (-1286 (-969 (-576)))) 160) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 129) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 117)) (-4056 (($ (-1286 (-326 (-390)))) 146) (($ (-1286 (-326 (-576)))) 136) (($ (-1286 (-969 (-390)))) 166) (($ (-1286 (-969 (-576)))) 156) (($ (-1286 (-419 (-969 (-390))))) 125) (($ (-1286 (-419 (-969 (-576))))) 110)) (-3188 (((-1291) $) 103)) (-3563 (((-874) $) 97) (($ (-656 (-340))) 30) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 33) (($ (-1286 (-350 (-3573) (-3573 (QUOTE XC)) (-711)))) 95))) +(((-63 |#1|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573) (-3573 (QUOTE XC)) (-711))))))) (-1195)) (T -63)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573) (-3573 (QUOTE XC)) (-711)))) (-5 *1 (-63 *3)) (-14 *3 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573) (-3573 (QUOTE XC)) (-711))))))) +((-1539 (((-3 $ "failed") (-326 (-390))) 41) (((-3 $ "failed") (-326 (-576))) 46) (((-3 $ "failed") (-969 (-390))) 50) (((-3 $ "failed") (-969 (-576))) 54) (((-3 $ "failed") (-419 (-969 (-390)))) 36) (((-3 $ "failed") (-419 (-969 (-576)))) 29)) (-4056 (($ (-326 (-390))) 39) (($ (-326 (-576))) 44) (($ (-969 (-390))) 48) (($ (-969 (-576))) 52) (($ (-419 (-969 (-390)))) 34) (($ (-419 (-969 (-576)))) 26)) (-3188 (((-1291) $) 76)) (-3563 (((-874) $) 69) (($ (-656 (-340))) 61) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 64) (($ (-350 (-3573 (QUOTE X)) (-3573) (-711))) 25))) +(((-64 |#1|) (-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573 (QUOTE X)) (-3573) (-711)))))) (-1195)) (T -64)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-350 (-3573 (QUOTE X)) (-3573) (-711))) (-5 *1 (-64 *3)) (-14 *3 (-1195))))) +(-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573 (QUOTE X)) (-3573) (-711)))))) +((-1539 (((-3 $ "failed") (-701 (-326 (-390)))) 111) (((-3 $ "failed") (-701 (-326 (-576)))) 99) (((-3 $ "failed") (-701 (-969 (-390)))) 133) (((-3 $ "failed") (-701 (-969 (-576)))) 122) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 87) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 73)) (-4056 (($ (-701 (-326 (-390)))) 107) (($ (-701 (-326 (-576)))) 95) (($ (-701 (-969 (-390)))) 129) (($ (-701 (-969 (-576)))) 118) (($ (-701 (-419 (-969 (-390))))) 83) (($ (-701 (-419 (-969 (-576))))) 66)) (-3188 (((-1291) $) 141)) (-3563 (((-874) $) 135) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 32) (($ (-701 (-350 (-3573) (-3573 (QUOTE X) (QUOTE HESS)) (-711)))) 56))) +(((-65 |#1|) (-13 (-395) (-628 (-701 (-350 (-3573) (-3573 (QUOTE X) (QUOTE HESS)) (-711))))) (-1195)) (T -65)) +NIL +(-13 (-395) (-628 (-701 (-350 (-3573) (-3573 (QUOTE X) (QUOTE HESS)) (-711))))) +((-1539 (((-3 $ "failed") (-326 (-390))) 60) (((-3 $ "failed") (-326 (-576))) 65) (((-3 $ "failed") (-969 (-390))) 69) (((-3 $ "failed") (-969 (-576))) 73) (((-3 $ "failed") (-419 (-969 (-390)))) 55) (((-3 $ "failed") (-419 (-969 (-576)))) 48)) (-4056 (($ (-326 (-390))) 58) (($ (-326 (-576))) 63) (($ (-969 (-390))) 67) (($ (-969 (-576))) 71) (($ (-419 (-969 (-390)))) 53) (($ (-419 (-969 (-576)))) 45)) (-3188 (((-1291) $) 82)) (-3563 (((-874) $) 76) (($ (-656 (-340))) 29) (($ (-340)) 34) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 32) (($ (-350 (-3573) (-3573 (QUOTE XC)) (-711))) 40))) +(((-66 |#1|) (-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573) (-3573 (QUOTE XC)) (-711)))))) (-1195)) (T -66)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-350 (-3573) (-3573 (QUOTE XC)) (-711))) (-5 *1 (-66 *3)) (-14 *3 (-1195))))) +(-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573) (-3573 (QUOTE XC)) (-711)))))) +((-3188 (((-1291) $) 65)) (-3563 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 50) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 55))) +(((-67 |#1|) (-394) (-1195)) (T -67)) NIL (-394) -((-3472 (((-1292) $) 66)) (-4092 (((-874) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 57))) -(((-68 |#1|) (-394) (-1196)) (T -68)) +((-3188 (((-1291) $) 66)) (-3563 (((-874) $) 60) (($ (-701 (-711))) 52) (($ (-656 (-340))) 51) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 57))) +(((-68 |#1|) (-394) (-1195)) (T -68)) NIL (-394) -((-3472 (((-1292) $) NIL) (((-1292)) 33)) (-4092 (((-874) $) NIL))) -(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -3472 ((-1292))))) (-1196)) (T -69)) -((-3472 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-69 *3)) (-14 *3 (-1196))))) -(-13 (-407) (-10 -7 (-15 -3472 ((-1292))))) -((-3472 (((-1292) $) 75)) (-4092 (((-874) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 60))) -(((-70 |#1|) (-394) (-1196)) (T -70)) +((-3188 (((-1291) $) NIL) (((-1291)) 33)) (-3563 (((-874) $) NIL))) +(((-69 |#1|) (-13 (-407) (-10 -7 (-15 -3188 ((-1291))))) (-1195)) (T -69)) +((-3188 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-69 *3)) (-14 *3 (-1195))))) +(-13 (-407) (-10 -7 (-15 -3188 ((-1291))))) +((-3188 (((-1291) $) 75)) (-3563 (((-874) $) 69) (($ (-701 (-711))) 61) (($ (-656 (-340))) 63) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 60))) +(((-70 |#1|) (-394) (-1195)) (T -70)) NIL (-394) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 109) (((-3 $ "failed") (-1287 (-326 (-576)))) 98) (((-3 $ "failed") (-1287 (-969 (-390)))) 129) (((-3 $ "failed") (-1287 (-969 (-576)))) 119) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 87) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 74)) (-2378 (($ (-1287 (-326 (-390)))) 105) (($ (-1287 (-326 (-576)))) 94) (($ (-1287 (-969 (-390)))) 125) (($ (-1287 (-969 (-576)))) 115) (($ (-1287 (-419 (-969 (-390))))) 83) (($ (-1287 (-419 (-969 (-576))))) 67)) (-3472 (((-1292) $) 142)) (-4092 (((-874) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 59) (($ (-1287 (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711)))) 60))) -(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711))))))) (-1196)) (T -71)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711))))))) -((-3472 (((-1292) $) 33) (((-1292)) 32)) (-4092 (((-874) $) 36))) -(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -3472 ((-1292))))) (-1196)) (T -72)) -((-3472 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-72 *3)) (-14 *3 (-1196))))) -(-13 (-407) (-10 -7 (-15 -3472 ((-1292))))) -((-3472 (((-1292) $) 65)) (-4092 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 50))) -(((-73 |#1|) (-394) (-1196)) (T -73)) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 109) (((-3 $ "failed") (-1286 (-326 (-576)))) 98) (((-3 $ "failed") (-1286 (-969 (-390)))) 129) (((-3 $ "failed") (-1286 (-969 (-576)))) 119) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 87) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 74)) (-4056 (($ (-1286 (-326 (-390)))) 105) (($ (-1286 (-326 (-576)))) 94) (($ (-1286 (-969 (-390)))) 125) (($ (-1286 (-969 (-576)))) 115) (($ (-1286 (-419 (-969 (-390))))) 83) (($ (-1286 (-419 (-969 (-576))))) 67)) (-3188 (((-1291) $) 142)) (-3563 (((-874) $) 136) (($ (-656 (-340))) 131) (($ (-340)) 134) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 59) (($ (-1286 (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711)))) 60))) +(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711))))))) (-1195)) (T -71)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711)))) (-5 *1 (-71 *3)) (-14 *3 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711))))))) +((-3188 (((-1291) $) 33) (((-1291)) 32)) (-3563 (((-874) $) 36))) +(((-72 |#1|) (-13 (-407) (-10 -7 (-15 -3188 ((-1291))))) (-1195)) (T -72)) +((-3188 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-72 *3)) (-14 *3 (-1195))))) +(-13 (-407) (-10 -7 (-15 -3188 ((-1291))))) +((-3188 (((-1291) $) 65)) (-3563 (((-874) $) 59) (($ (-701 (-711))) 51) (($ (-656 (-340))) 53) (($ (-340)) 56) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 50))) +(((-73 |#1|) (-394) (-1195)) (T -73)) NIL (-394) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 127) (((-3 $ "failed") (-1287 (-326 (-576)))) 117) (((-3 $ "failed") (-1287 (-969 (-390)))) 147) (((-3 $ "failed") (-1287 (-969 (-576)))) 137) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 107) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 95)) (-2378 (($ (-1287 (-326 (-390)))) 123) (($ (-1287 (-326 (-576)))) 113) (($ (-1287 (-969 (-390)))) 143) (($ (-1287 (-969 (-576)))) 133) (($ (-1287 (-419 (-969 (-390))))) 103) (($ (-1287 (-419 (-969 (-576))))) 88)) (-3472 (((-1292) $) 80)) (-4092 (((-874) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 73) (($ (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711)))) 67))) -(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711))))))) (-1196)) (T -74)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711))))))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 132) (((-3 $ "failed") (-1287 (-326 (-576)))) 121) (((-3 $ "failed") (-1287 (-969 (-390)))) 152) (((-3 $ "failed") (-1287 (-969 (-576)))) 142) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 110) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 97)) (-2378 (($ (-1287 (-326 (-390)))) 128) (($ (-1287 (-326 (-576)))) 117) (($ (-1287 (-969 (-390)))) 148) (($ (-1287 (-969 (-576)))) 138) (($ (-1287 (-419 (-969 (-390))))) 106) (($ (-1287 (-419 (-969 (-576))))) 90)) (-3472 (((-1292) $) 82)) (-4092 (((-874) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) NIL) (($ (-1287 (-350 (-4103 (QUOTE X) (QUOTE EPS)) (-4103 (QUOTE -1435)) (-711)))) 69))) -(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X) (QUOTE EPS)) (-4103 (QUOTE -1435)) (-711))))))) (-1196) (-1196) (-1196)) (T -75)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103 (QUOTE X) (QUOTE EPS)) (-4103 (QUOTE -1435)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X) (QUOTE EPS)) (-4103 (QUOTE -1435)) (-711))))))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 138) (((-3 $ "failed") (-1287 (-326 (-576)))) 127) (((-3 $ "failed") (-1287 (-969 (-390)))) 158) (((-3 $ "failed") (-1287 (-969 (-576)))) 148) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 116) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 103)) (-2378 (($ (-1287 (-326 (-390)))) 134) (($ (-1287 (-326 (-576)))) 123) (($ (-1287 (-969 (-390)))) 154) (($ (-1287 (-969 (-576)))) 144) (($ (-1287 (-419 (-969 (-390))))) 112) (($ (-1287 (-419 (-969 (-576))))) 96)) (-3472 (((-1292) $) 88)) (-4092 (((-874) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) NIL) (($ (-1287 (-350 (-4103 (QUOTE EPS)) (-4103 (QUOTE YA) (QUOTE YB)) (-711)))) 75))) -(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE EPS)) (-4103 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1196) (-1196) (-1196)) (T -76)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103 (QUOTE EPS)) (-4103 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) (-14 *5 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE EPS)) (-4103 (QUOTE YA) (QUOTE YB)) (-711))))))) -((-2974 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-969 (-390))) 92) (((-3 $ "failed") (-969 (-576))) 96) (((-3 $ "failed") (-419 (-969 (-390)))) 78) (((-3 $ "failed") (-419 (-969 (-576)))) 71)) (-2378 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-969 (-390))) 90) (($ (-969 (-576))) 94) (($ (-419 (-969 (-390)))) 76) (($ (-419 (-969 (-576)))) 68)) (-3472 (((-1292) $) 63)) (-4092 (((-874) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 55) (($ (-350 (-4103) (-4103 (QUOTE X)) (-711))) 48))) -(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103) (-4103 (QUOTE X)) (-711)))))) (-1196)) (T -77)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-350 (-4103) (-4103 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103) (-4103 (QUOTE X)) (-711)))))) -((-2974 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-969 (-390))) 56) (((-3 $ "failed") (-969 (-576))) 60) (((-3 $ "failed") (-419 (-969 (-390)))) 42) (((-3 $ "failed") (-419 (-969 (-576)))) 35)) (-2378 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-969 (-390))) 54) (($ (-969 (-576))) 58) (($ (-419 (-969 (-390)))) 40) (($ (-419 (-969 (-576)))) 32)) (-3472 (((-1292) $) 81)) (-4092 (((-874) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 70) (($ (-350 (-4103) (-4103 (QUOTE X)) (-711))) 31))) -(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103) (-4103 (QUOTE X)) (-711)))))) (-1196)) (T -78)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-350 (-4103) (-4103 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103) (-4103 (QUOTE X)) (-711)))))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 90) (((-3 $ "failed") (-1287 (-326 (-576)))) 79) (((-3 $ "failed") (-1287 (-969 (-390)))) 110) (((-3 $ "failed") (-1287 (-969 (-576)))) 100) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 68) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 55)) (-2378 (($ (-1287 (-326 (-390)))) 86) (($ (-1287 (-326 (-576)))) 75) (($ (-1287 (-969 (-390)))) 106) (($ (-1287 (-969 (-576)))) 96) (($ (-1287 (-419 (-969 (-390))))) 64) (($ (-1287 (-419 (-969 (-576))))) 48)) (-3472 (((-1292) $) 126)) (-4092 (((-874) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 116) (($ (-1287 (-350 (-4103) (-4103 (QUOTE XC)) (-711)))) 39))) -(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103) (-4103 (QUOTE XC)) (-711))))))) (-1196)) (T -79)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103) (-4103 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103) (-4103 (QUOTE XC)) (-711))))))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 151) (((-3 $ "failed") (-1287 (-326 (-576)))) 141) (((-3 $ "failed") (-1287 (-969 (-390)))) 171) (((-3 $ "failed") (-1287 (-969 (-576)))) 161) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 131) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 119)) (-2378 (($ (-1287 (-326 (-390)))) 147) (($ (-1287 (-326 (-576)))) 137) (($ (-1287 (-969 (-390)))) 167) (($ (-1287 (-969 (-576)))) 157) (($ (-1287 (-419 (-969 (-390))))) 127) (($ (-1287 (-419 (-969 (-576))))) 112)) (-3472 (((-1292) $) 105)) (-4092 (((-874) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 95) (($ (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711)))) 91))) -(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711))))))) (-1196)) (T -80)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711))))))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 79) (((-3 $ "failed") (-1287 (-326 (-576)))) 68) (((-3 $ "failed") (-1287 (-969 (-390)))) 99) (((-3 $ "failed") (-1287 (-969 (-576)))) 89) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 57) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 44)) (-2378 (($ (-1287 (-326 (-390)))) 75) (($ (-1287 (-326 (-576)))) 64) (($ (-1287 (-969 (-390)))) 95) (($ (-1287 (-969 (-576)))) 85) (($ (-1287 (-419 (-969 (-390))))) 53) (($ (-1287 (-419 (-969 (-576))))) 37)) (-3472 (((-1292) $) 125)) (-4092 (((-874) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 114) (($ (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711)))) 36))) -(((-81 |#1|) (-13 (-453) (-628 (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711))))) (-1196)) (T -81)) -NIL -(-13 (-453) (-628 (-1287 (-350 (-4103) (-4103 (QUOTE X)) (-711))))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 98) (((-3 $ "failed") (-1287 (-326 (-576)))) 87) (((-3 $ "failed") (-1287 (-969 (-390)))) 118) (((-3 $ "failed") (-1287 (-969 (-576)))) 108) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 76) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 63)) (-2378 (($ (-1287 (-326 (-390)))) 94) (($ (-1287 (-326 (-576)))) 83) (($ (-1287 (-969 (-390)))) 114) (($ (-1287 (-969 (-576)))) 104) (($ (-1287 (-419 (-969 (-390))))) 72) (($ (-1287 (-419 (-969 (-576))))) 56)) (-3472 (((-1292) $) 48)) (-4092 (((-874) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 38) (($ (-1287 (-350 (-4103 (QUOTE X) (QUOTE -1435)) (-4103) (-711)))) 33))) -(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X) (QUOTE -1435)) (-4103) (-711))))))) (-1196)) (T -82)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103 (QUOTE X) (QUOTE -1435)) (-4103) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X) (QUOTE -1435)) (-4103) (-711))))))) -((-2974 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-969 (-390)))) 140) (((-3 $ "failed") (-701 (-969 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 83)) (-2378 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-969 (-390)))) 136) (($ (-701 (-969 (-576)))) 125) (($ (-701 (-419 (-969 (-390))))) 92) (($ (-701 (-419 (-969 (-576))))) 76)) (-3472 (((-1292) $) 66)) (-4092 (((-874) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 58) (($ (-701 (-350 (-4103 (QUOTE X) (QUOTE -1435)) (-4103) (-711)))) 50))) -(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -4092 ($ (-701 (-350 (-4103 (QUOTE X) (QUOTE -1435)) (-4103) (-711))))))) (-1196)) (T -83)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-4103 (QUOTE X) (QUOTE -1435)) (-4103) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1196))))) -(-13 (-395) (-10 -8 (-15 -4092 ($ (-701 (-350 (-4103 (QUOTE X) (QUOTE -1435)) (-4103) (-711))))))) -((-2974 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-969 (-390)))) 135) (((-3 $ "failed") (-701 (-969 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 75)) (-2378 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-969 (-390)))) 131) (($ (-701 (-969 (-576)))) 120) (($ (-701 (-419 (-969 (-390))))) 85) (($ (-701 (-419 (-969 (-576))))) 68)) (-3472 (((-1292) $) 60)) (-4092 (((-874) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 45) (($ (-701 (-350 (-4103 (QUOTE X)) (-4103) (-711)))) 46))) -(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -4092 ($ (-701 (-350 (-4103 (QUOTE X)) (-4103) (-711))))))) (-1196)) (T -84)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-4103 (QUOTE X)) (-4103) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1196))))) -(-13 (-395) (-10 -8 (-15 -4092 ($ (-701 (-350 (-4103 (QUOTE X)) (-4103) (-711))))))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 105) (((-3 $ "failed") (-1287 (-326 (-576)))) 94) (((-3 $ "failed") (-1287 (-969 (-390)))) 125) (((-3 $ "failed") (-1287 (-969 (-576)))) 115) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 83) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 70)) (-2378 (($ (-1287 (-326 (-390)))) 101) (($ (-1287 (-326 (-576)))) 90) (($ (-1287 (-969 (-390)))) 121) (($ (-1287 (-969 (-576)))) 111) (($ (-1287 (-419 (-969 (-390))))) 79) (($ (-1287 (-419 (-969 (-576))))) 63)) (-3472 (((-1292) $) 47)) (-4092 (((-874) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 53) (($ (-1287 (-350 (-4103 (QUOTE X)) (-4103) (-711)))) 38))) -(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X)) (-4103) (-711))))))) (-1196)) (T -85)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103 (QUOTE X)) (-4103) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X)) (-4103) (-711))))))) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 80) (((-3 $ "failed") (-1287 (-326 (-576)))) 69) (((-3 $ "failed") (-1287 (-969 (-390)))) 100) (((-3 $ "failed") (-1287 (-969 (-576)))) 90) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 58) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 45)) (-2378 (($ (-1287 (-326 (-390)))) 76) (($ (-1287 (-326 (-576)))) 65) (($ (-1287 (-969 (-390)))) 96) (($ (-1287 (-969 (-576)))) 86) (($ (-1287 (-419 (-969 (-390))))) 54) (($ (-1287 (-419 (-969 (-576))))) 38)) (-3472 (((-1292) $) 126)) (-4092 (((-874) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 115) (($ (-1287 (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711)))) 37))) -(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711))))))) (-1196)) (T -86)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1196))))) -(-13 (-453) (-10 -8 (-15 -4092 ($ (-1287 (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711))))))) -((-2974 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-969 (-390)))) 139) (((-3 $ "failed") (-701 (-969 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 79)) (-2378 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-969 (-390)))) 135) (($ (-701 (-969 (-576)))) 124) (($ (-701 (-419 (-969 (-390))))) 89) (($ (-701 (-419 (-969 (-576))))) 72)) (-3472 (((-1292) $) 63)) (-4092 (((-874) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 52) (($ (-701 (-350 (-4103 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4103) (-711)))) 48))) -(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -4092 ($ (-701 (-350 (-4103 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4103) (-711))))))) (-1196)) (T -87)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-4103 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4103) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1196))))) -(-13 (-395) (-10 -8 (-15 -4092 ($ (-701 (-350 (-4103 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4103) (-711))))))) -((-3472 (((-1292) $) 45)) (-4092 (((-874) $) 39) (($ (-1287 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 34))) -(((-88 |#1|) (-452) (-1196)) (T -88)) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 127) (((-3 $ "failed") (-1286 (-326 (-576)))) 117) (((-3 $ "failed") (-1286 (-969 (-390)))) 147) (((-3 $ "failed") (-1286 (-969 (-576)))) 137) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 107) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 95)) (-4056 (($ (-1286 (-326 (-390)))) 123) (($ (-1286 (-326 (-576)))) 113) (($ (-1286 (-969 (-390)))) 143) (($ (-1286 (-969 (-576)))) 133) (($ (-1286 (-419 (-969 (-390))))) 103) (($ (-1286 (-419 (-969 (-576))))) 88)) (-3188 (((-1291) $) 80)) (-3563 (((-874) $) 28) (($ (-656 (-340))) 70) (($ (-340)) 66) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 73) (($ (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711)))) 67))) +(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711))))))) (-1195)) (T -74)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711)))) (-5 *1 (-74 *3)) (-14 *3 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711))))))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 132) (((-3 $ "failed") (-1286 (-326 (-576)))) 121) (((-3 $ "failed") (-1286 (-969 (-390)))) 152) (((-3 $ "failed") (-1286 (-969 (-576)))) 142) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 110) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 97)) (-4056 (($ (-1286 (-326 (-390)))) 128) (($ (-1286 (-326 (-576)))) 117) (($ (-1286 (-969 (-390)))) 148) (($ (-1286 (-969 (-576)))) 138) (($ (-1286 (-419 (-969 (-390))))) 106) (($ (-1286 (-419 (-969 (-576))))) 90)) (-3188 (((-1291) $) 82)) (-3563 (((-874) $) 74) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) NIL) (($ (-1286 (-350 (-3573 (QUOTE X) (QUOTE EPS)) (-3573 (QUOTE -2565)) (-711)))) 69))) +(((-75 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X) (QUOTE EPS)) (-3573 (QUOTE -2565)) (-711))))))) (-1195) (-1195) (-1195)) (T -75)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573 (QUOTE X) (QUOTE EPS)) (-3573 (QUOTE -2565)) (-711)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) (-14 *5 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X) (QUOTE EPS)) (-3573 (QUOTE -2565)) (-711))))))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 138) (((-3 $ "failed") (-1286 (-326 (-576)))) 127) (((-3 $ "failed") (-1286 (-969 (-390)))) 158) (((-3 $ "failed") (-1286 (-969 (-576)))) 148) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 116) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 103)) (-4056 (($ (-1286 (-326 (-390)))) 134) (($ (-1286 (-326 (-576)))) 123) (($ (-1286 (-969 (-390)))) 154) (($ (-1286 (-969 (-576)))) 144) (($ (-1286 (-419 (-969 (-390))))) 112) (($ (-1286 (-419 (-969 (-576))))) 96)) (-3188 (((-1291) $) 88)) (-3563 (((-874) $) 80) (($ (-656 (-340))) NIL) (($ (-340)) NIL) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) NIL) (($ (-1286 (-350 (-3573 (QUOTE EPS)) (-3573 (QUOTE YA) (QUOTE YB)) (-711)))) 75))) +(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE EPS)) (-3573 (QUOTE YA) (QUOTE YB)) (-711))))))) (-1195) (-1195) (-1195)) (T -76)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573 (QUOTE EPS)) (-3573 (QUOTE YA) (QUOTE YB)) (-711)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) (-14 *5 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE EPS)) (-3573 (QUOTE YA) (QUOTE YB)) (-711))))))) +((-1539 (((-3 $ "failed") (-326 (-390))) 83) (((-3 $ "failed") (-326 (-576))) 88) (((-3 $ "failed") (-969 (-390))) 92) (((-3 $ "failed") (-969 (-576))) 96) (((-3 $ "failed") (-419 (-969 (-390)))) 78) (((-3 $ "failed") (-419 (-969 (-576)))) 71)) (-4056 (($ (-326 (-390))) 81) (($ (-326 (-576))) 86) (($ (-969 (-390))) 90) (($ (-969 (-576))) 94) (($ (-419 (-969 (-390)))) 76) (($ (-419 (-969 (-576)))) 68)) (-3188 (((-1291) $) 63)) (-3563 (((-874) $) 51) (($ (-656 (-340))) 47) (($ (-340)) 57) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 55) (($ (-350 (-3573) (-3573 (QUOTE X)) (-711))) 48))) +(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573) (-3573 (QUOTE X)) (-711)))))) (-1195)) (T -77)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-350 (-3573) (-3573 (QUOTE X)) (-711))) (-5 *1 (-77 *3)) (-14 *3 (-1195))))) +(-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573) (-3573 (QUOTE X)) (-711)))))) +((-1539 (((-3 $ "failed") (-326 (-390))) 47) (((-3 $ "failed") (-326 (-576))) 52) (((-3 $ "failed") (-969 (-390))) 56) (((-3 $ "failed") (-969 (-576))) 60) (((-3 $ "failed") (-419 (-969 (-390)))) 42) (((-3 $ "failed") (-419 (-969 (-576)))) 35)) (-4056 (($ (-326 (-390))) 45) (($ (-326 (-576))) 50) (($ (-969 (-390))) 54) (($ (-969 (-576))) 58) (($ (-419 (-969 (-390)))) 40) (($ (-419 (-969 (-576)))) 32)) (-3188 (((-1291) $) 81)) (-3563 (((-874) $) 75) (($ (-656 (-340))) 67) (($ (-340)) 72) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 70) (($ (-350 (-3573) (-3573 (QUOTE X)) (-711))) 31))) +(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573) (-3573 (QUOTE X)) (-711)))))) (-1195)) (T -78)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-350 (-3573) (-3573 (QUOTE X)) (-711))) (-5 *1 (-78 *3)) (-14 *3 (-1195))))) +(-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573) (-3573 (QUOTE X)) (-711)))))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 90) (((-3 $ "failed") (-1286 (-326 (-576)))) 79) (((-3 $ "failed") (-1286 (-969 (-390)))) 110) (((-3 $ "failed") (-1286 (-969 (-576)))) 100) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 68) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 55)) (-4056 (($ (-1286 (-326 (-390)))) 86) (($ (-1286 (-326 (-576)))) 75) (($ (-1286 (-969 (-390)))) 106) (($ (-1286 (-969 (-576)))) 96) (($ (-1286 (-419 (-969 (-390))))) 64) (($ (-1286 (-419 (-969 (-576))))) 48)) (-3188 (((-1291) $) 126)) (-3563 (((-874) $) 120) (($ (-656 (-340))) 113) (($ (-340)) 38) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 116) (($ (-1286 (-350 (-3573) (-3573 (QUOTE XC)) (-711)))) 39))) +(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573) (-3573 (QUOTE XC)) (-711))))))) (-1195)) (T -79)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573) (-3573 (QUOTE XC)) (-711)))) (-5 *1 (-79 *3)) (-14 *3 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573) (-3573 (QUOTE XC)) (-711))))))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 151) (((-3 $ "failed") (-1286 (-326 (-576)))) 141) (((-3 $ "failed") (-1286 (-969 (-390)))) 171) (((-3 $ "failed") (-1286 (-969 (-576)))) 161) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 131) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 119)) (-4056 (($ (-1286 (-326 (-390)))) 147) (($ (-1286 (-326 (-576)))) 137) (($ (-1286 (-969 (-390)))) 167) (($ (-1286 (-969 (-576)))) 157) (($ (-1286 (-419 (-969 (-390))))) 127) (($ (-1286 (-419 (-969 (-576))))) 112)) (-3188 (((-1291) $) 105)) (-3563 (((-874) $) 99) (($ (-656 (-340))) 90) (($ (-340)) 97) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 95) (($ (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711)))) 91))) +(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711))))))) (-1195)) (T -80)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711)))) (-5 *1 (-80 *3)) (-14 *3 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711))))))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 79) (((-3 $ "failed") (-1286 (-326 (-576)))) 68) (((-3 $ "failed") (-1286 (-969 (-390)))) 99) (((-3 $ "failed") (-1286 (-969 (-576)))) 89) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 57) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 44)) (-4056 (($ (-1286 (-326 (-390)))) 75) (($ (-1286 (-326 (-576)))) 64) (($ (-1286 (-969 (-390)))) 95) (($ (-1286 (-969 (-576)))) 85) (($ (-1286 (-419 (-969 (-390))))) 53) (($ (-1286 (-419 (-969 (-576))))) 37)) (-3188 (((-1291) $) 125)) (-3563 (((-874) $) 119) (($ (-656 (-340))) 110) (($ (-340)) 116) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 114) (($ (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711)))) 36))) +(((-81 |#1|) (-13 (-453) (-628 (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711))))) (-1195)) (T -81)) +NIL +(-13 (-453) (-628 (-1286 (-350 (-3573) (-3573 (QUOTE X)) (-711))))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 98) (((-3 $ "failed") (-1286 (-326 (-576)))) 87) (((-3 $ "failed") (-1286 (-969 (-390)))) 118) (((-3 $ "failed") (-1286 (-969 (-576)))) 108) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 76) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 63)) (-4056 (($ (-1286 (-326 (-390)))) 94) (($ (-1286 (-326 (-576)))) 83) (($ (-1286 (-969 (-390)))) 114) (($ (-1286 (-969 (-576)))) 104) (($ (-1286 (-419 (-969 (-390))))) 72) (($ (-1286 (-419 (-969 (-576))))) 56)) (-3188 (((-1291) $) 48)) (-3563 (((-874) $) 42) (($ (-656 (-340))) 32) (($ (-340)) 35) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 38) (($ (-1286 (-350 (-3573 (QUOTE X) (QUOTE -2565)) (-3573) (-711)))) 33))) +(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X) (QUOTE -2565)) (-3573) (-711))))))) (-1195)) (T -82)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573 (QUOTE X) (QUOTE -2565)) (-3573) (-711)))) (-5 *1 (-82 *3)) (-14 *3 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X) (QUOTE -2565)) (-3573) (-711))))))) +((-1539 (((-3 $ "failed") (-701 (-326 (-390)))) 118) (((-3 $ "failed") (-701 (-326 (-576)))) 107) (((-3 $ "failed") (-701 (-969 (-390)))) 140) (((-3 $ "failed") (-701 (-969 (-576)))) 129) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 96) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 83)) (-4056 (($ (-701 (-326 (-390)))) 114) (($ (-701 (-326 (-576)))) 103) (($ (-701 (-969 (-390)))) 136) (($ (-701 (-969 (-576)))) 125) (($ (-701 (-419 (-969 (-390))))) 92) (($ (-701 (-419 (-969 (-576))))) 76)) (-3188 (((-1291) $) 66)) (-3563 (((-874) $) 53) (($ (-656 (-340))) 60) (($ (-340)) 49) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 58) (($ (-701 (-350 (-3573 (QUOTE X) (QUOTE -2565)) (-3573) (-711)))) 50))) +(((-83 |#1|) (-13 (-395) (-10 -8 (-15 -3563 ($ (-701 (-350 (-3573 (QUOTE X) (QUOTE -2565)) (-3573) (-711))))))) (-1195)) (T -83)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3573 (QUOTE X) (QUOTE -2565)) (-3573) (-711)))) (-5 *1 (-83 *3)) (-14 *3 (-1195))))) +(-13 (-395) (-10 -8 (-15 -3563 ($ (-701 (-350 (-3573 (QUOTE X) (QUOTE -2565)) (-3573) (-711))))))) +((-1539 (((-3 $ "failed") (-701 (-326 (-390)))) 113) (((-3 $ "failed") (-701 (-326 (-576)))) 101) (((-3 $ "failed") (-701 (-969 (-390)))) 135) (((-3 $ "failed") (-701 (-969 (-576)))) 124) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 89) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 75)) (-4056 (($ (-701 (-326 (-390)))) 109) (($ (-701 (-326 (-576)))) 97) (($ (-701 (-969 (-390)))) 131) (($ (-701 (-969 (-576)))) 120) (($ (-701 (-419 (-969 (-390))))) 85) (($ (-701 (-419 (-969 (-576))))) 68)) (-3188 (((-1291) $) 60)) (-3563 (((-874) $) 54) (($ (-656 (-340))) 48) (($ (-340)) 51) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 45) (($ (-701 (-350 (-3573 (QUOTE X)) (-3573) (-711)))) 46))) +(((-84 |#1|) (-13 (-395) (-10 -8 (-15 -3563 ($ (-701 (-350 (-3573 (QUOTE X)) (-3573) (-711))))))) (-1195)) (T -84)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3573 (QUOTE X)) (-3573) (-711)))) (-5 *1 (-84 *3)) (-14 *3 (-1195))))) +(-13 (-395) (-10 -8 (-15 -3563 ($ (-701 (-350 (-3573 (QUOTE X)) (-3573) (-711))))))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 105) (((-3 $ "failed") (-1286 (-326 (-576)))) 94) (((-3 $ "failed") (-1286 (-969 (-390)))) 125) (((-3 $ "failed") (-1286 (-969 (-576)))) 115) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 83) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 70)) (-4056 (($ (-1286 (-326 (-390)))) 101) (($ (-1286 (-326 (-576)))) 90) (($ (-1286 (-969 (-390)))) 121) (($ (-1286 (-969 (-576)))) 111) (($ (-1286 (-419 (-969 (-390))))) 79) (($ (-1286 (-419 (-969 (-576))))) 63)) (-3188 (((-1291) $) 47)) (-3563 (((-874) $) 41) (($ (-656 (-340))) 50) (($ (-340)) 37) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 53) (($ (-1286 (-350 (-3573 (QUOTE X)) (-3573) (-711)))) 38))) +(((-85 |#1|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X)) (-3573) (-711))))))) (-1195)) (T -85)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573 (QUOTE X)) (-3573) (-711)))) (-5 *1 (-85 *3)) (-14 *3 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X)) (-3573) (-711))))))) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 80) (((-3 $ "failed") (-1286 (-326 (-576)))) 69) (((-3 $ "failed") (-1286 (-969 (-390)))) 100) (((-3 $ "failed") (-1286 (-969 (-576)))) 90) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 58) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 45)) (-4056 (($ (-1286 (-326 (-390)))) 76) (($ (-1286 (-326 (-576)))) 65) (($ (-1286 (-969 (-390)))) 96) (($ (-1286 (-969 (-576)))) 86) (($ (-1286 (-419 (-969 (-390))))) 54) (($ (-1286 (-419 (-969 (-576))))) 38)) (-3188 (((-1291) $) 126)) (-3563 (((-874) $) 120) (($ (-656 (-340))) 111) (($ (-340)) 117) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 115) (($ (-1286 (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711)))) 37))) +(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711))))))) (-1195)) (T -86)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711)))) (-5 *1 (-86 *3)) (-14 *3 (-1195))))) +(-13 (-453) (-10 -8 (-15 -3563 ($ (-1286 (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711))))))) +((-1539 (((-3 $ "failed") (-701 (-326 (-390)))) 117) (((-3 $ "failed") (-701 (-326 (-576)))) 105) (((-3 $ "failed") (-701 (-969 (-390)))) 139) (((-3 $ "failed") (-701 (-969 (-576)))) 128) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 93) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 79)) (-4056 (($ (-701 (-326 (-390)))) 113) (($ (-701 (-326 (-576)))) 101) (($ (-701 (-969 (-390)))) 135) (($ (-701 (-969 (-576)))) 124) (($ (-701 (-419 (-969 (-390))))) 89) (($ (-701 (-419 (-969 (-576))))) 72)) (-3188 (((-1291) $) 63)) (-3563 (((-874) $) 57) (($ (-656 (-340))) 47) (($ (-340)) 54) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 52) (($ (-701 (-350 (-3573 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3573) (-711)))) 48))) +(((-87 |#1|) (-13 (-395) (-10 -8 (-15 -3563 ($ (-701 (-350 (-3573 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3573) (-711))))))) (-1195)) (T -87)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-701 (-350 (-3573 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3573) (-711)))) (-5 *1 (-87 *3)) (-14 *3 (-1195))))) +(-13 (-395) (-10 -8 (-15 -3563 ($ (-701 (-350 (-3573 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3573) (-711))))))) +((-3188 (((-1291) $) 45)) (-3563 (((-874) $) 39) (($ (-1286 (-711))) 100) (($ (-656 (-340))) 31) (($ (-340)) 36) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 34))) +(((-88 |#1|) (-452) (-1195)) (T -88)) NIL (-452) -((-2974 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-969 (-390))) 57) (((-3 $ "failed") (-969 (-576))) 61) (((-3 $ "failed") (-419 (-969 (-390)))) 43) (((-3 $ "failed") (-419 (-969 (-576)))) 36)) (-2378 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-969 (-390))) 55) (($ (-969 (-576))) 59) (($ (-419 (-969 (-390)))) 41) (($ (-419 (-969 (-576)))) 33)) (-3472 (((-1292) $) 91)) (-4092 (((-874) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 77) (($ (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711))) 32))) -(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711)))))) (-1196)) (T -89)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1196))))) -(-13 (-408) (-10 -8 (-15 -4092 ($ (-350 (-4103 (QUOTE X)) (-4103 (QUOTE -1435)) (-711)))))) -((-2768 (((-1287 (-701 |#1|)) (-701 |#1|)) 61)) (-4057 (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 (-656 (-938))))) |#2| (-938)) 49)) (-2803 (((-2 (|:| |minor| (-656 (-938))) (|:| -3278 |#2|) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 |#2|))) |#2| (-938)) 72 (|has| |#1| (-374))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -4057 ((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 (-656 (-938))))) |#2| (-938))) (-15 -2768 ((-1287 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2803 ((-2 (|:| |minor| (-656 (-938))) (|:| -3278 |#2|) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 |#2|))) |#2| (-938))) |%noBranch|)) (-568) (-668 |#1|)) (T -90)) -((-2803 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-938))) (|:| -3278 *3) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5)))) (-2768 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-4057 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -2215 (-701 *5)) (|:| |vec| (-1287 (-656 (-938)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -4057 ((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 (-656 (-938))))) |#2| (-938))) (-15 -2768 ((-1287 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2803 ((-2 (|:| |minor| (-656 (-938))) (|:| -3278 |#2|) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 |#2|))) |#2| (-938))) |%noBranch|)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3005 ((|#1| $) 40)) (-2835 (((-112) $ (-783)) NIL)) (-3656 (($) NIL T CONST)) (-3833 ((|#1| |#1| $) 35)) (-2156 ((|#1| $) 33)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3576 ((|#1| $) NIL)) (-2361 (($ |#1| $) 36)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1679 ((|#1| $) 34)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 18)) (-2643 (($) 45)) (-3569 (((-783) $) 31)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) 17)) (-4092 (((-874) $) 30 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) NIL)) (-4051 (($ (-656 |#1|)) 42)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 15 (|has| |#1| (-1119)))) (-2048 (((-783) $) 12 (|has| $ (-6 -4462))))) -(((-91 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -4051 ($ (-656 |#1|))))) (-1119)) (T -91)) -((-4051 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-91 *3))))) -(-13 (-1140 |#1|) (-10 -8 (-15 -4051 ($ (-656 |#1|))))) -((-4092 (((-874) $) 13) (($ (-1201)) 9) (((-1201) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -4092 ((-1201) |#1|)) (-15 -4092 (|#1| (-1201))) (-15 -4092 ((-874) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -4092 ((-1201) |#1|)) (-15 -4092 (|#1| (-1201))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-1201)) 17) (((-1201) $) 16)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-1539 (((-3 $ "failed") (-326 (-390))) 48) (((-3 $ "failed") (-326 (-576))) 53) (((-3 $ "failed") (-969 (-390))) 57) (((-3 $ "failed") (-969 (-576))) 61) (((-3 $ "failed") (-419 (-969 (-390)))) 43) (((-3 $ "failed") (-419 (-969 (-576)))) 36)) (-4056 (($ (-326 (-390))) 46) (($ (-326 (-576))) 51) (($ (-969 (-390))) 55) (($ (-969 (-576))) 59) (($ (-419 (-969 (-390)))) 41) (($ (-419 (-969 (-576)))) 33)) (-3188 (((-1291) $) 91)) (-3563 (((-874) $) 85) (($ (-656 (-340))) 79) (($ (-340)) 82) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 77) (($ (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711))) 32))) +(((-89 |#1|) (-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711)))))) (-1195)) (T -89)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711))) (-5 *1 (-89 *3)) (-14 *3 (-1195))))) +(-13 (-408) (-10 -8 (-15 -3563 ($ (-350 (-3573 (QUOTE X)) (-3573 (QUOTE -2565)) (-711)))))) +((-1699 (((-1286 (-701 |#1|)) (-701 |#1|)) 61)) (-1735 (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 (-656 (-938))))) |#2| (-938)) 49)) (-2214 (((-2 (|:| |minor| (-656 (-938))) (|:| -3896 |#2|) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 |#2|))) |#2| (-938)) 72 (|has| |#1| (-374))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1735 ((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 (-656 (-938))))) |#2| (-938))) (-15 -1699 ((-1286 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2214 ((-2 (|:| |minor| (-656 (-938))) (|:| -3896 |#2|) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 |#2|))) |#2| (-938))) |%noBranch|)) (-568) (-668 |#1|)) (T -90)) +((-2214 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |minor| (-656 (-938))) (|:| -3896 *3) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5)))) (-1699 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-701 *4)) (-4 *5 (-668 *4)))) (-1735 (*1 *2 *3 *4) (-12 (-4 *5 (-568)) (-5 *2 (-2 (|:| -2689 (-701 *5)) (|:| |vec| (-1286 (-656 (-938)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5))))) +(-10 -7 (-15 -1735 ((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 (-656 (-938))))) |#2| (-938))) (-15 -1699 ((-1286 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-374)) (-15 -2214 ((-2 (|:| |minor| (-656 (-938))) (|:| -3896 |#2|) (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 |#2|))) |#2| (-938))) |%noBranch|)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1346 ((|#1| $) 40)) (-3131 (((-112) $ (-783)) NIL)) (-3767 (($) NIL T CONST)) (-2552 ((|#1| |#1| $) 35)) (-3119 ((|#1| $) 33)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1409 ((|#1| $) NIL)) (-2040 (($ |#1| $) 36)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3399 ((|#1| $) 34)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 18)) (-2597 (($) 45)) (-4328 (((-783) $) 31)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) 17)) (-3563 (((-874) $) 30 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) NIL)) (-2369 (($ (-656 |#1|)) 42)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 15 (|has| |#1| (-1119)))) (-3485 (((-783) $) 12 (|has| $ (-6 -4461))))) +(((-91 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -2369 ($ (-656 |#1|))))) (-1119)) (T -91)) +((-2369 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-91 *3))))) +(-13 (-1140 |#1|) (-10 -8 (-15 -2369 ($ (-656 |#1|))))) +((-3563 (((-874) $) 13) (($ (-1200)) 9) (((-1200) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -3563 ((-1200) |#1|)) (-15 -3563 (|#1| (-1200))) (-15 -3563 ((-874) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3563 ((-1200) |#1|)) (-15 -3563 (|#1| (-1200))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-1200)) 17) (((-1200) $) 16)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-93) (-141)) (T -93)) NIL -(-13 (-1119) (-502 (-1201))) -(((-102) . T) ((-628 #0=(-1201)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T)) -((-2207 (($ $) 10)) (-2220 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -2220 (|#1| |#1|)) (-15 -2207 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1119) (-502 (-1200))) +(((-102) . T) ((-628 #0=(-1200)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T)) +((-3852 (($ $) 10)) (-3863 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -3863 (|#1| |#1|)) (-15 -3852 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -2220 (|#1| |#1|)) (-15 -2207 (|#1| |#1|))) -((-2184 (($ $) 11)) (-2161 (($ $) 10)) (-2207 (($ $) 9)) (-2220 (($ $) 8)) (-2195 (($ $) 7)) (-2173 (($ $) 6))) +(-10 -8 (-15 -3863 (|#1| |#1|)) (-15 -3852 (|#1| |#1|))) +((-3831 (($ $) 11)) (-3808 (($ $) 10)) (-3852 (($ $) 9)) (-3863 (($ $) 8)) (-3841 (($ $) 7)) (-3820 (($ $) 6))) (((-95) (-141)) (T -95)) -((-2184 (*1 *1 *1) (-4 *1 (-95))) (-2161 (*1 *1 *1) (-4 *1 (-95))) (-2207 (*1 *1 *1) (-4 *1 (-95))) (-2220 (*1 *1 *1) (-4 *1 (-95))) (-2195 (*1 *1 *1) (-4 *1 (-95))) (-2173 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -2173 ($ $)) (-15 -2195 ($ $)) (-15 -2220 ($ $)) (-15 -2207 ($ $)) (-15 -2161 ($ $)) (-15 -2184 ($ $)))) -((-2034 (((-112) $ $) NIL)) (-4124 (((-1154) $) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-96) (-13 (-1102) (-10 -8 (-15 -4124 ((-1154) $))))) (T -96)) -((-4124 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-96))))) -(-13 (-1102) (-10 -8 (-15 -4124 ((-1154) $)))) -((-2034 (((-112) $ $) NIL)) (-3281 (((-390) (-1178) (-390)) 46) (((-390) (-1178) (-1178) (-390)) 44)) (-2229 (((-390) (-390)) 35)) (-4419 (((-1292)) 37)) (-3288 (((-1178) $) NIL)) (-3610 (((-390) (-1178) (-1178)) 50) (((-390) (-1178)) 52)) (-3139 (((-1139) $) NIL)) (-3529 (((-390) (-1178) (-1178)) 51)) (-2558 (((-390) (-1178) (-1178)) 53) (((-390) (-1178)) 54)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-97) (-13 (-1119) (-10 -7 (-15 -3610 ((-390) (-1178) (-1178))) (-15 -3610 ((-390) (-1178))) (-15 -2558 ((-390) (-1178) (-1178))) (-15 -2558 ((-390) (-1178))) (-15 -3529 ((-390) (-1178) (-1178))) (-15 -4419 ((-1292))) (-15 -2229 ((-390) (-390))) (-15 -3281 ((-390) (-1178) (-390))) (-15 -3281 ((-390) (-1178) (-1178) (-390))) (-6 -4462)))) (T -97)) -((-3610 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2558 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2558 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-3529 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) (-4419 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-97)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-3281 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97)))) (-3281 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97))))) -(-13 (-1119) (-10 -7 (-15 -3610 ((-390) (-1178) (-1178))) (-15 -3610 ((-390) (-1178))) (-15 -2558 ((-390) (-1178) (-1178))) (-15 -2558 ((-390) (-1178))) (-15 -3529 ((-390) (-1178) (-1178))) (-15 -4419 ((-1292))) (-15 -2229 ((-390) (-390))) (-15 -3281 ((-390) (-1178) (-390))) (-15 -3281 ((-390) (-1178) (-1178) (-390))) (-6 -4462))) +((-3831 (*1 *1 *1) (-4 *1 (-95))) (-3808 (*1 *1 *1) (-4 *1 (-95))) (-3852 (*1 *1 *1) (-4 *1 (-95))) (-3863 (*1 *1 *1) (-4 *1 (-95))) (-3841 (*1 *1 *1) (-4 *1 (-95))) (-3820 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3820 ($ $)) (-15 -3841 ($ $)) (-15 -3863 ($ $)) (-15 -3852 ($ $)) (-15 -3808 ($ $)) (-15 -3831 ($ $)))) +((-3474 (((-112) $ $) NIL)) (-2706 (((-1154) $) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-96) (-13 (-1102) (-10 -8 (-15 -2706 ((-1154) $))))) (T -96)) +((-2706 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-96))))) +(-13 (-1102) (-10 -8 (-15 -2706 ((-1154) $)))) +((-3474 (((-112) $ $) NIL)) (-2491 (((-390) (-1177) (-390)) 46) (((-390) (-1177) (-1177) (-390)) 44)) (-2566 (((-390) (-390)) 35)) (-1733 (((-1291)) 37)) (-1927 (((-1177) $) NIL)) (-2630 (((-390) (-1177) (-1177)) 50) (((-390) (-1177)) 52)) (-1445 (((-1139) $) NIL)) (-2472 (((-390) (-1177) (-1177)) 51)) (-2213 (((-390) (-1177) (-1177)) 53) (((-390) (-1177)) 54)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-97) (-13 (-1119) (-10 -7 (-15 -2630 ((-390) (-1177) (-1177))) (-15 -2630 ((-390) (-1177))) (-15 -2213 ((-390) (-1177) (-1177))) (-15 -2213 ((-390) (-1177))) (-15 -2472 ((-390) (-1177) (-1177))) (-15 -1733 ((-1291))) (-15 -2566 ((-390) (-390))) (-15 -2491 ((-390) (-1177) (-390))) (-15 -2491 ((-390) (-1177) (-1177) (-390))) (-6 -4461)))) (T -97)) +((-2630 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2213 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-2472 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) (-1733 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-97)))) (-2566 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97)))) (-2491 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97)))) (-2491 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97))))) +(-13 (-1119) (-10 -7 (-15 -2630 ((-390) (-1177) (-1177))) (-15 -2630 ((-390) (-1177))) (-15 -2213 ((-390) (-1177) (-1177))) (-15 -2213 ((-390) (-1177))) (-15 -2472 ((-390) (-1177) (-1177))) (-15 -1733 ((-1291))) (-15 -2566 ((-390) (-390))) (-15 -2491 ((-390) (-1177) (-390))) (-15 -2491 ((-390) (-1177) (-1177) (-390))) (-6 -4461))) NIL (((-98) (-141)) (T -98)) NIL -(-13 (-10 -7 (-6 -4462) (-6 (-4464 "*")) (-6 -4463) (-6 -4459) (-6 -4457) (-6 -4456) (-6 -4455) (-6 -4460) (-6 -4454) (-6 -4453) (-6 -4452) (-6 -4451) (-6 -4450) (-6 -4458) (-6 -4461) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4449))) -((-2034 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-3244 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 16)) (-3139 (((-1139) $) NIL)) (-4367 ((|#1| $ |#1|) 13)) (-3646 (($ $ $) NIL)) (-1361 (($ $ $) NIL)) (-4092 (((-874) $) 22)) (-1531 (((-112) $ $) NIL)) (-4310 (($) 8 T CONST)) (-3919 (((-112) $ $) 10)) (-4028 (($ $ $) NIL)) (** (($ $ (-938)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) -(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3244 ($ (-1 |#1| |#1|))) (-15 -3244 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3244 ($ (-1 |#1| |#1| (-576)))))) (-1068)) (T -99)) -((-3244 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) (-3244 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-99 *3))))) -(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3244 ($ (-1 |#1| |#1|))) (-15 -3244 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3244 ($ (-1 |#1| |#1| (-576)))))) -((-2170 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -2170 ((-430 |#2|) |#2| |#2|)) (-15 -2170 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1263 |#1|)) (T -100)) -((-2170 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-2170 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -2170 ((-430 |#2|) |#2| |#2|)) (-15 -2170 ((-430 |#2|) |#2| (-656 |#2|)))) -((-2034 (((-112) $ $) 10))) -(((-101 |#1|) (-10 -8 (-15 -2034 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2034 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-3919 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4461) (-6 (-4463 "*")) (-6 -4462) (-6 -4458) (-6 -4456) (-6 -4455) (-6 -4454) (-6 -4459) (-6 -4453) (-6 -4452) (-6 -4451) (-6 -4450) (-6 -4449) (-6 -4457) (-6 -4460) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4448))) +((-3474 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-3206 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-576))) 24)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 16)) (-1445 (((-1139) $) NIL)) (-2871 ((|#1| $ |#1|) 13)) (-4026 (($ $ $) NIL)) (-4081 (($ $ $) NIL)) (-3563 (((-874) $) 22)) (-3985 (((-112) $ $) NIL)) (-2810 (($) 8 T CONST)) (-2988 (((-112) $ $) 10)) (-3107 (($ $ $) NIL)) (** (($ $ (-938)) 32) (($ $ (-783)) NIL) (($ $ (-576)) 18)) (* (($ $ $) 33))) +(((-99 |#1|) (-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3206 ($ (-1 |#1| |#1|))) (-15 -3206 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3206 ($ (-1 |#1| |#1| (-576)))))) (-1068)) (T -99)) +((-3206 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) (-3206 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) (-3206 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-99 *3))))) +(-13 (-485) (-296 |#1| |#1|) (-10 -8 (-15 -3206 ($ (-1 |#1| |#1|))) (-15 -3206 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3206 ($ (-1 |#1| |#1| (-576)))))) +((-1945 (((-430 |#2|) |#2| (-656 |#2|)) 10) (((-430 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -1945 ((-430 |#2|) |#2| |#2|)) (-15 -1945 ((-430 |#2|) |#2| (-656 |#2|)))) (-13 (-464) (-148)) (-1262 |#1|)) (T -100)) +((-1945 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3)))) (-1945 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -1945 ((-430 |#2|) |#2| |#2|)) (-15 -1945 ((-430 |#2|) |#2| (-656 |#2|)))) +((-3474 (((-112) $ $) 10))) +(((-101 |#1|) (-10 -8 (-15 -3474 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -3474 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-2988 (((-112) $ $) 6))) (((-102) (-141)) (T -102)) -((-2034 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3919 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -3919 ((-112) $ $)) (-15 -2034 ((-112) $ $)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-2597 ((|#1| $ |#1|) 24 (|has| $ (-6 -4463)))) (-2729 (($ $ $) NIL (|has| $ (-6 -4463)))) (-1323 (($ $ $) NIL (|has| $ (-6 -4463)))) (-2300 (($ $ (-656 |#1|)) 30)) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2128 (($ $) 12)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2356 (($ $ |#1| $) 32)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4312 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-3533 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-2114 (($ $) 11)) (-3699 (((-656 |#1|) $) NIL)) (-3781 (((-112) $) 13)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 9)) (-2643 (($) 31)) (-4367 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3136 (((-576) $ $) NIL)) (-2492 (((-112) $) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4328 (($ (-783) |#1|) 33)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -4328 ($ (-783) |#1|)) (-15 -2300 ($ $ (-656 |#1|))) (-15 -4312 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4312 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3533 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3533 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1119)) (T -103)) -((-4328 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1119)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1119)))) (-4312 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3)))) (-3533 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (-5 *1 (-103 *2)))) (-3533 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1119)) (-5 *1 (-103 *2))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -4328 ($ (-783) |#1|)) (-15 -2300 ($ $ (-656 |#1|))) (-15 -4312 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4312 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3533 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3533 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) -((-1544 ((|#3| |#2| |#2|) 34)) (-3719 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4464 "*"))))) (-3094 ((|#3| |#2| |#2|) 36)) (-4326 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4464 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1544 (|#3| |#2| |#2|)) (-15 -3094 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4464 "*"))) (PROGN (-15 -3719 (|#1| |#2| |#2|)) (-15 -4326 (|#1| |#2|))) |%noBranch|)) (-1068) (-1263 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) -((-4326 (*1 *2 *3) (-12 (|has| *2 (-6 (-4464 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3719 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4464 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) (-4 *4 (-699 *2 *5 *6)))) (-3094 (*1 *2 *3 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-1544 (*1 *2 *3 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) -(-10 -7 (-15 -1544 (|#3| |#2| |#2|)) (-15 -3094 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4464 "*"))) (PROGN (-15 -3719 (|#1| |#2| |#2|)) (-15 -4326 (|#1| |#2|))) |%noBranch|)) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-3302 (((-656 (-1196))) 37)) (-3876 (((-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227)))) (-1196)) 39)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-105) (-13 (-1119) (-10 -7 (-15 -3302 ((-656 (-1196)))) (-15 -3876 ((-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227)))) (-1196))) (-6 -4462)))) (T -105)) -((-3302 (*1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-105)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227))))) (-5 *1 (-105))))) -(-13 (-1119) (-10 -7 (-15 -3302 ((-656 (-1196)))) (-15 -3876 ((-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227)))) (-1196))) (-6 -4462))) -((-3688 (($ (-656 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -3688 (|#1| (-656 |#2|)))) (-107 |#2|) (-1237)) (T -106)) -NIL -(-10 -8 (-15 -3688 (|#1| (-656 |#2|)))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-3656 (($) 7 T CONST)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 43)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-107 |#1|) (-141) (-1237)) (T -107)) -((-3688 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-107 *3)))) (-1679 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) (-2361 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4463) (-15 -3688 ($ (-656 |t#1|))) (-15 -1679 (|t#1| $)) (-15 -2361 ($ |t#1| $)) (-15 -3576 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 (((-576) $) NIL (|has| (-576) (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL (|has| (-576) (-832)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1057 (-576))))) (-2378 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-576) (-557)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-576) (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-3894 (((-576) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3713 (((-112) $) NIL (|has| (-576) (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| (-576) (-862)))) (-2477 (($ (-1 (-576) (-576)) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-576) (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3892 (((-576) $) NIL (|has| (-576) (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2259 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-1787 (((-783) $) NIL)) (-4367 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-1490 (($ $) NIL)) (-3905 (((-576) $) NIL)) (-1505 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1196)) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL) (((-1023 2) $) 10)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-2471 (((-783)) NIL T CONST)) (-4179 (((-576) $) NIL (|has| (-576) (-557)))) (-2302 (($ (-419 (-576))) 9)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3423 (($ $) NIL (|has| (-576) (-832)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3977 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3944 (((-112) $ $) NIL (|has| (-576) (-862)))) (-4028 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-108) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 2)) (-10 -8 (-15 -1846 ((-419 (-576)) $)) (-15 -2302 ($ (-419 (-576))))))) (T -108)) -((-1846 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-2302 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) -(-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 2)) (-10 -8 (-15 -1846 ((-419 (-576)) $)) (-15 -2302 ($ (-419 (-576)))))) -((-3669 (((-656 (-982)) $) 13)) (-4124 (((-518) $) 9)) (-4092 (((-874) $) 20)) (-2031 (($ (-518) (-656 (-982))) 15))) -(((-109) (-13 (-625 (-874)) (-10 -8 (-15 -4124 ((-518) $)) (-15 -3669 ((-656 (-982)) $)) (-15 -2031 ($ (-518) (-656 (-982))))))) (T -109)) -((-4124 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-656 (-982))) (-5 *1 (-109)))) (-2031 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-109))))) -(-13 (-625 (-874)) (-10 -8 (-15 -4124 ((-518) $)) (-15 -3669 ((-656 (-982)) $)) (-15 -2031 ($ (-518) (-656 (-982)))))) -((-2034 (((-112) $ $) NIL)) (-2060 (($ $) NIL)) (-4279 (($ $ $) NIL)) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3362 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2398 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-4248 (((-112) $ (-1254 (-576)) (-112)) NIL (|has| $ (-6 -4463))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-2892 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-2359 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3888 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4463)))) (-3817 (((-112) $ (-576)) NIL)) (-3433 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1119))) (((-576) (-112) $) NIL (|has| (-112) (-1119))) (((-576) (-1 (-112) (-112)) $) NIL)) (-4260 (((-656 (-112)) $) NIL (|has| $ (-6 -4462)))) (-2457 (($ $ $) NIL)) (-2433 (($ $) NIL)) (-4401 (($ $ $) NIL)) (-1992 (($ (-783) (-112)) 10)) (-2684 (($ $ $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL)) (-3257 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1750 (((-656 (-112)) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL)) (-3874 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-3371 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 (((-112) $) NIL (|has| (-576) (-862)))) (-1863 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2918 (($ $ (-112)) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3060 (((-656 (-112)) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 (($ $ (-1254 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-2470 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3150 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-4103 (($ (-656 (-112))) NIL)) (-2851 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4092 (((-874) $) NIL)) (-1939 (($ (-783) (-112)) 11)) (-1531 (((-112) $ $) NIL)) (-2190 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2445 (($ $ $) NIL)) (-2107 (($ $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-2094 (($ $ $) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-110) (-13 (-124) (-10 -8 (-15 -1939 ($ (-783) (-112)))))) (T -110)) -((-1939 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-124) (-10 -8 (-15 -1939 ($ (-783) (-112))))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) +((-3474 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2988 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -2988 ((-112) $ $)) (-15 -3474 ((-112) $ $)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-3429 ((|#1| $ |#1|) 24 (|has| $ (-6 -4462)))) (-2122 (($ $ $) NIL (|has| $ (-6 -4462)))) (-4182 (($ $ $) NIL (|has| $ (-6 -4462)))) (-4196 (($ $ (-656 |#1|)) 30)) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-4154 (($ $) 12)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2240 (($ $ |#1| $) 32)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3490 ((|#1| $ (-1 |#1| |#1| |#1|)) 40) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45)) (-1532 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46) (($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|)) 49)) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-4143 (($ $) 11)) (-2942 (((-656 |#1|) $) NIL)) (-1905 (((-112) $) 13)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 9)) (-2597 (($) 31)) (-2871 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2972 (((-576) $ $) NIL)) (-3173 (((-112) $) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1477 (($ (-783) |#1|) 33)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-103 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -1477 ($ (-783) |#1|)) (-15 -4196 ($ $ (-656 |#1|))) (-15 -3490 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3490 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1532 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1532 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) (-1119)) (T -103)) +((-1477 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1119)))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3)))) (-3490 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1119)))) (-3490 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3)))) (-1532 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (-5 *1 (-103 *2)))) (-1532 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1119)) (-5 *1 (-103 *2))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -1477 ($ (-783) |#1|)) (-15 -4196 ($ $ (-656 |#1|))) (-15 -3490 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3490 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1532 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1532 ($ $ |#1| (-1 (-656 |#1|) |#1| |#1| |#1|))))) +((-2827 ((|#3| |#2| |#2|) 34)) (-2824 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4463 "*"))))) (-4326 ((|#3| |#2| |#2|) 36)) (-3635 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4463 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2827 (|#3| |#2| |#2|)) (-15 -4326 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4463 "*"))) (PROGN (-15 -2824 (|#1| |#2| |#2|)) (-15 -3635 (|#1| |#2|))) |%noBranch|)) (-1068) (-1262 |#1|) (-699 |#1| |#4| |#5|) (-384 |#1|) (-384 |#1|)) (T -104)) +((-3635 (*1 *2 *3) (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) (-4 *4 (-699 *2 *5 *6)))) (-2824 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) (-4 *4 (-699 *2 *5 *6)))) (-4326 (*1 *2 *3 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)))) (-2827 (*1 *2 *3 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4))))) +(-10 -7 (-15 -2827 (|#3| |#2| |#2|)) (-15 -4326 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4463 "*"))) (PROGN (-15 -2824 (|#1| |#2| |#2|)) (-15 -3635 (|#1| |#2|))) |%noBranch|)) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-2668 (((-656 (-1195))) 37)) (-1861 (((-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227)))) (-1195)) 39)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-105) (-13 (-1119) (-10 -7 (-15 -2668 ((-656 (-1195)))) (-15 -1861 ((-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227)))) (-1195))) (-6 -4461)))) (T -105)) +((-2668 (*1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-105)))) (-1861 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227))))) (-5 *1 (-105))))) +(-13 (-1119) (-10 -7 (-15 -2668 ((-656 (-1195)))) (-15 -1861 ((-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) (|:| |singularities| (-1176 (-227)))) (-1195))) (-6 -4461))) +((-3773 (($ (-656 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -3773 (|#1| (-656 |#2|)))) (-107 |#2|) (-1236)) (T -106)) +NIL +(-10 -8 (-15 -3773 (|#1| (-656 |#2|)))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-3767 (($) 7 T CONST)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 43)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-107 |#1|) (-141) (-1236)) (T -107)) +((-3773 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-107 *3)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) (-2040 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4462) (-15 -3773 ($ (-656 |t#1|))) (-15 -3399 (|t#1| $)) (-15 -2040 ($ |t#1| $)) (-15 -1409 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 (((-576) $) NIL (|has| (-576) (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL (|has| (-576) (-832)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1057 (-576))))) (-4056 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1057 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-576) (-557)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1910 (((-112) $) NIL (|has| (-576) (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL)) (-1536 (((-576) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3566 (((-112) $) NIL (|has| (-576) (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| (-576) (-862)))) (-1632 (($ (-1 (-576) (-576)) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-576) (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3835 (((-576) $) NIL (|has| (-576) (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3306 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-3112 (((-783) $) NIL)) (-2871 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-917 (-1195)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-1880 (($ $) NIL)) (-1549 (((-576) $) NIL)) (-4076 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1195)) NIL (|has| (-576) (-1057 (-1195)))) (((-419 (-576)) $) NIL) (((-1023 2) $) 10)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-1858 (((-783)) NIL T CONST)) (-3270 (((-576) $) NIL (|has| (-576) (-557)))) (-4430 (($ (-419 (-576))) 9)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2264 (($ $) NIL (|has| (-576) (-832)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-917 (-1195)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3049 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3010 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3107 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-108) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 2)) (-10 -8 (-15 -1465 ((-419 (-576)) $)) (-15 -4430 ($ (-419 (-576))))))) (T -108)) +((-1465 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) (-4430 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108))))) +(-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 2)) (-10 -8 (-15 -1465 ((-419 (-576)) $)) (-15 -4430 ($ (-419 (-576)))))) +((-2506 (((-656 (-982)) $) 13)) (-2706 (((-518) $) 9)) (-3563 (((-874) $) 20)) (-3466 (($ (-518) (-656 (-982))) 15))) +(((-109) (-13 (-625 (-874)) (-10 -8 (-15 -2706 ((-518) $)) (-15 -2506 ((-656 (-982)) $)) (-15 -3466 ($ (-518) (-656 (-982))))))) (T -109)) +((-2706 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-656 (-982))) (-5 *1 (-109)))) (-3466 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-109))))) +(-13 (-625 (-874)) (-10 -8 (-15 -2706 ((-518) $)) (-15 -2506 ((-656 (-982)) $)) (-15 -3466 ($ (-518) (-656 (-982)))))) +((-3474 (((-112) $ $) NIL)) (-3498 (($ $) NIL)) (-2777 (($ $ $) NIL)) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2265 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-1758 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-3731 (((-112) $ (-1253 (-576)) (-112)) NIL (|has| $ (-6 -4462))) (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-3902 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-2521 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-1776 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4462)))) (-1698 (((-112) $ (-576)) NIL)) (-3584 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1119))) (((-576) (-112) $) NIL (|has| (-112) (-1119))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3825 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-2768 (($ $ $) NIL)) (-2746 (($ $) NIL)) (-4037 (($ $ $) NIL)) (-4033 (($ (-783) (-112)) 10)) (-4174 (($ $ $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL)) (-1854 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2591 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL)) (-1763 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-2277 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 (((-112) $) NIL (|has| (-576) (-862)))) (-2644 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2500 (($ $ (-112)) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-1947 (((-656 (-112)) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 (($ $ (-1253 (-576))) NIL) (((-112) $ (-576)) NIL) (((-112) $ (-576) (-112)) NIL)) (-3464 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-1456 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3573 (($ (-656 (-112))) NIL)) (-1661 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3563 (((-874) $) NIL)) (-3840 (($ (-783) (-112)) 11)) (-3985 (((-112) $ $) NIL)) (-2043 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2758 (($ $ $) NIL)) (-3546 (($ $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL)) (-3534 (($ $ $) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-110) (-13 (-124) (-10 -8 (-15 -3840 ($ (-783) (-112)))))) (T -110)) +((-3840 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-124) (-10 -8 (-15 -3840 ($ (-783) (-112))))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31))) (((-111 |#1| |#2|) (-141) (-1068) (-1068)) (T -111)) NIL -(-13 (-660 |t#1|) (-1075 |t#2|) (-10 -7 (-6 -4457) (-6 -4456))) +(-13 (-660 |t#1|) (-1075 |t#2|) (-10 -7 (-6 -4456) (-6 -4455))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-2060 (($ $) 10)) (-4279 (($ $ $) 15)) (-4316 (($) 7 T CONST)) (-1912 (($ $) 6)) (-2247 (((-783)) 24)) (-2446 (($) 32)) (-2457 (($ $ $) 13)) (-2433 (($ $) 9)) (-4401 (($ $ $) 16)) (-2684 (($ $ $) 17)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) 30)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) 28)) (-4108 (($ $ $) 20)) (-3139 (((-1139) $) NIL)) (-3159 (($) 8 T CONST)) (-2566 (($ $ $) 21)) (-1505 (((-548) $) 34)) (-4092 (((-874) $) 36)) (-1531 (((-112) $ $) NIL)) (-2445 (($ $ $) 11)) (-2107 (($ $ $) 14)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 19)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 22)) (-2094 (($ $ $) 12))) -(((-112) (-13 (-856) (-673) (-986) (-626 (-548)) (-10 -8 (-15 -4279 ($ $ $)) (-15 -2684 ($ $ $)) (-15 -4401 ($ $ $)) (-15 -1912 ($ $))))) (T -112)) -((-4279 (*1 *1 *1 *1) (-5 *1 (-112))) (-2684 (*1 *1 *1 *1) (-5 *1 (-112))) (-4401 (*1 *1 *1 *1) (-5 *1 (-112))) (-1912 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-856) (-673) (-986) (-626 (-548)) (-10 -8 (-15 -4279 ($ $ $)) (-15 -2684 ($ $ $)) (-15 -4401 ($ $ $)) (-15 -1912 ($ $)))) -((-2457 (($ $ $) 6)) (-2433 (($ $) 8)) (-2445 (($ $ $) 7))) +((-3474 (((-112) $ $) NIL)) (-3498 (($ $) 10)) (-2777 (($ $ $) 15)) (-2248 (($) 7 T CONST)) (-3809 (($ $) 6)) (-2148 (((-783)) 24)) (-1803 (($) 32)) (-2768 (($ $ $) 13)) (-2746 (($ $) 9)) (-4037 (($ $ $) 16)) (-4174 (($ $ $) 17)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) 30)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) 28)) (-4363 (($ $ $) 20)) (-1445 (((-1139) $) NIL)) (-3506 (($) 8 T CONST)) (-1851 (($ $ $) 21)) (-4076 (((-548) $) 34)) (-3563 (((-874) $) 36)) (-3985 (((-112) $ $) NIL)) (-2758 (($ $ $) 11)) (-3546 (($ $ $) 14)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 19)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 22)) (-3534 (($ $ $) 12))) +(((-112) (-13 (-856) (-673) (-986) (-626 (-548)) (-10 -8 (-15 -2777 ($ $ $)) (-15 -4174 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -3809 ($ $))))) (T -112)) +((-2777 (*1 *1 *1 *1) (-5 *1 (-112))) (-4174 (*1 *1 *1 *1) (-5 *1 (-112))) (-4037 (*1 *1 *1 *1) (-5 *1 (-112))) (-3809 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-856) (-673) (-986) (-626 (-548)) (-10 -8 (-15 -2777 ($ $ $)) (-15 -4174 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -3809 ($ $)))) +((-2768 (($ $ $) 6)) (-2746 (($ $) 8)) (-2758 (($ $ $) 7))) (((-113) (-141)) (T -113)) -((-2433 (*1 *1 *1) (-4 *1 (-113))) (-2445 (*1 *1 *1 *1) (-4 *1 (-113))) (-2457 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-1237) (-10 -8 (-15 -2433 ($ $)) (-15 -2445 ($ $ $)) (-15 -2457 ($ $ $)))) -(((-1237) . T)) -((-1487 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-3023 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-3543 (((-115) |#1|) 63)) (-4287 (((-3 |#1| "failed") (-115)) 58))) -(((-114 |#1|) (-10 -7 (-15 -1487 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -1487 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -1487 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1487 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -3023 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3023 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3023 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -3543 ((-115) |#1|)) (-15 -4287 ((-3 |#1| "failed") (-115)))) (-1119)) (T -114)) -((-4287 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1119)))) (-3543 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1119)))) (-3023 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1119)))) (-3023 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-3023 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-1487 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1119)))) (-1487 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-1487 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-1487 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1119))))) -(-10 -7 (-15 -1487 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -1487 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -1487 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1487 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -3023 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3023 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3023 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -3543 ((-115) |#1|)) (-15 -4287 ((-3 |#1| "failed") (-115)))) -((-2034 (((-112) $ $) NIL)) (-2483 (((-783) $) 91) (($ $ (-783)) 37)) (-2591 (((-112) $) 41)) (-3462 (($ $ (-1178) (-786)) 58) (($ $ (-518) (-786)) 33)) (-3997 (($ $ (-45 (-1178) (-786))) 16)) (-1324 (((-3 (-786) "failed") $ (-1178)) 27) (((-703 (-786)) $ (-518)) 32)) (-3669 (((-45 (-1178) (-786)) $) 15)) (-1344 (($ (-1196)) 20) (($ (-1196) (-783)) 23) (($ (-1196) (-55)) 24)) (-3375 (((-112) $) 39)) (-3632 (((-112) $) 43)) (-4124 (((-1196) $) 8)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-1412 (((-112) $ (-1196)) 11)) (-1710 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-3139 (((-1139) $) NIL)) (-3315 (((-112) $ (-518)) 36)) (-3578 (($ $ (-1 (-112) $ $)) 45)) (-1650 (((-3 (-1 (-874) (-656 (-874))) "failed") $) 69) (($ $ (-1 (-874) (-656 (-874)))) 51) (($ $ (-1 (-874) (-874))) 53)) (-2134 (($ $ (-1178)) 55) (($ $ (-518)) 56)) (-4268 (($ $) 77)) (-3959 (($ $ (-1 (-112) $ $)) 46)) (-4092 (((-874) $) 60)) (-1531 (((-112) $ $) NIL)) (-1777 (($ $ (-518)) 34)) (-1666 (((-55) $) 72)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 89)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 103))) -(((-115) (-13 (-862) (-847 (-1196)) (-10 -8 (-15 -3669 ((-45 (-1178) (-786)) $)) (-15 -4268 ($ $)) (-15 -1344 ($ (-1196))) (-15 -1344 ($ (-1196) (-783))) (-15 -1344 ($ (-1196) (-55))) (-15 -3375 ((-112) $)) (-15 -2591 ((-112) $)) (-15 -3632 ((-112) $)) (-15 -2483 ((-783) $)) (-15 -2483 ($ $ (-783))) (-15 -3578 ($ $ (-1 (-112) $ $))) (-15 -3959 ($ $ (-1 (-112) $ $))) (-15 -1650 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -1650 ($ $ (-1 (-874) (-656 (-874))))) (-15 -1650 ($ $ (-1 (-874) (-874)))) (-15 -1710 ($ $ (-1 (-548) (-656 (-548))))) (-15 -1710 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3315 ((-112) $ (-518))) (-15 -1777 ($ $ (-518))) (-15 -2134 ($ $ (-1178))) (-15 -2134 ($ $ (-518))) (-15 -1324 ((-3 (-786) "failed") $ (-1178))) (-15 -1324 ((-703 (-786)) $ (-518))) (-15 -3462 ($ $ (-1178) (-786))) (-15 -3462 ($ $ (-518) (-786))) (-15 -3997 ($ $ (-45 (-1178) (-786))))))) (T -115)) -((-3669 (*1 *2 *1) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115)))) (-4268 (*1 *1 *1) (-5 *1 (-115))) (-1344 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-115)))) (-1344 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *1 (-115)))) (-1344 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-55)) (-5 *1 (-115)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-2483 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-2483 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-3578 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3959 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-1650 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-1650 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-1650 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115)))) (-1710 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-1710 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-3315 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-1777 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-2134 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-115)))) (-2134 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-1324 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-786)) (-5 *1 (-115)))) (-1324 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-3462 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-786)) (-5 *1 (-115)))) (-3462 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-3997 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115))))) -(-13 (-862) (-847 (-1196)) (-10 -8 (-15 -3669 ((-45 (-1178) (-786)) $)) (-15 -4268 ($ $)) (-15 -1344 ($ (-1196))) (-15 -1344 ($ (-1196) (-783))) (-15 -1344 ($ (-1196) (-55))) (-15 -3375 ((-112) $)) (-15 -2591 ((-112) $)) (-15 -3632 ((-112) $)) (-15 -2483 ((-783) $)) (-15 -2483 ($ $ (-783))) (-15 -3578 ($ $ (-1 (-112) $ $))) (-15 -3959 ($ $ (-1 (-112) $ $))) (-15 -1650 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -1650 ($ $ (-1 (-874) (-656 (-874))))) (-15 -1650 ($ $ (-1 (-874) (-874)))) (-15 -1710 ($ $ (-1 (-548) (-656 (-548))))) (-15 -1710 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -3315 ((-112) $ (-518))) (-15 -1777 ($ $ (-518))) (-15 -2134 ($ $ (-1178))) (-15 -2134 ($ $ (-518))) (-15 -1324 ((-3 (-786) "failed") $ (-1178))) (-15 -1324 ((-703 (-786)) $ (-518))) (-15 -3462 ($ $ (-1178) (-786))) (-15 -3462 ($ $ (-518) (-786))) (-15 -3997 ($ $ (-45 (-1178) (-786)))))) -((-3489 (((-576) |#2|) 41))) -(((-116 |#1| |#2|) (-10 -7 (-15 -3489 ((-576) |#2|))) (-13 (-374) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -116)) -((-3489 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1057 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -3489 ((-576) |#2|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $ (-576)) NIL)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-1776 (($ (-1192 (-576)) (-576)) NIL)) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-3986 (($ $) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1538 (((-783) $) NIL)) (-1810 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1567 (((-576)) NIL)) (-3568 (((-576) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2843 (($ $ (-576)) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3963 (((-1176 (-576)) $) NIL)) (-1417 (($ $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2728 (((-576) $ (-576)) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +((-2746 (*1 *1 *1) (-4 *1 (-113))) (-2758 (*1 *1 *1 *1) (-4 *1 (-113))) (-2768 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-1236) (-10 -8 (-15 -2746 ($ $)) (-15 -2758 ($ $ $)) (-15 -2768 ($ $ $)))) +(((-1236) . T)) +((-1557 (((-3 (-1 |#1| (-656 |#1|)) "failed") (-115)) 23) (((-115) (-115) (-1 |#1| |#1|)) 13) (((-115) (-115) (-1 |#1| (-656 |#1|))) 11) (((-3 |#1| "failed") (-115) (-656 |#1|)) 25)) (-2527 (((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115)) 29) (((-115) (-115) (-1 |#1| |#1|)) 33) (((-115) (-115) (-656 (-1 |#1| (-656 |#1|)))) 30)) (-4395 (((-115) |#1|) 63)) (-2908 (((-3 |#1| "failed") (-115)) 58))) +(((-114 |#1|) (-10 -7 (-15 -1557 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -1557 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -1557 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1557 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2527 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2527 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2527 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -4395 ((-115) |#1|)) (-15 -2908 ((-3 |#1| "failed") (-115)))) (-1119)) (T -114)) +((-2908 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1119)))) (-4395 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1119)))) (-2527 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1119)))) (-2527 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-2527 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-1557 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1119)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-1557 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1119)) (-5 *1 (-114 *4)))) (-1557 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1119))))) +(-10 -7 (-15 -1557 ((-3 |#1| "failed") (-115) (-656 |#1|))) (-15 -1557 ((-115) (-115) (-1 |#1| (-656 |#1|)))) (-15 -1557 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1557 ((-3 (-1 |#1| (-656 |#1|)) "failed") (-115))) (-15 -2527 ((-115) (-115) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2527 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2527 ((-3 (-656 (-1 |#1| (-656 |#1|))) "failed") (-115))) (-15 -4395 ((-115) |#1|)) (-15 -2908 ((-3 |#1| "failed") (-115)))) +((-3474 (((-112) $ $) NIL)) (-3457 (((-783) $) 91) (($ $ (-783)) 37)) (-4014 (((-112) $) 41)) (-2494 (($ $ (-1177) (-786)) 58) (($ $ (-518) (-786)) 33)) (-2041 (($ $ (-45 (-1177) (-786))) 16)) (-4311 (((-3 (-786) "failed") $ (-1177)) 27) (((-703 (-786)) $ (-518)) 32)) (-2506 (((-45 (-1177) (-786)) $) 15)) (-3974 (($ (-1195)) 20) (($ (-1195) (-783)) 23) (($ (-1195) (-55)) 24)) (-2117 (((-112) $) 39)) (-4375 (((-112) $) 43)) (-2706 (((-1195) $) 8)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-3718 (((-112) $ (-1195)) 11)) (-2128 (($ $ (-1 (-548) (-656 (-548)))) 64) (((-3 (-1 (-548) (-656 (-548))) "failed") $) 71)) (-1445 (((-1139) $) NIL)) (-1526 (((-112) $ (-518)) 36)) (-3488 (($ $ (-1 (-112) $ $)) 45)) (-2076 (((-3 (-1 (-874) (-656 (-874))) "failed") $) 69) (($ $ (-1 (-874) (-656 (-874)))) 51) (($ $ (-1 (-874) (-874))) 53)) (-1789 (($ $ (-1177)) 55) (($ $ (-518)) 56)) (-1954 (($ $) 77)) (-3715 (($ $ (-1 (-112) $ $)) 46)) (-3563 (((-874) $) 60)) (-3985 (((-112) $ $) NIL)) (-2791 (($ $ (-518)) 34)) (-1730 (((-55) $) 72)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 89)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 103))) +(((-115) (-13 (-862) (-847 (-1195)) (-10 -8 (-15 -2506 ((-45 (-1177) (-786)) $)) (-15 -1954 ($ $)) (-15 -3974 ($ (-1195))) (-15 -3974 ($ (-1195) (-783))) (-15 -3974 ($ (-1195) (-55))) (-15 -2117 ((-112) $)) (-15 -4014 ((-112) $)) (-15 -4375 ((-112) $)) (-15 -3457 ((-783) $)) (-15 -3457 ($ $ (-783))) (-15 -3488 ($ $ (-1 (-112) $ $))) (-15 -3715 ($ $ (-1 (-112) $ $))) (-15 -2076 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -2076 ($ $ (-1 (-874) (-656 (-874))))) (-15 -2076 ($ $ (-1 (-874) (-874)))) (-15 -2128 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2128 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -1526 ((-112) $ (-518))) (-15 -2791 ($ $ (-518))) (-15 -1789 ($ $ (-1177))) (-15 -1789 ($ $ (-518))) (-15 -4311 ((-3 (-786) "failed") $ (-1177))) (-15 -4311 ((-703 (-786)) $ (-518))) (-15 -2494 ($ $ (-1177) (-786))) (-15 -2494 ($ $ (-518) (-786))) (-15 -2041 ($ $ (-45 (-1177) (-786))))))) (T -115)) +((-2506 (*1 *2 *1) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115)))) (-1954 (*1 *1 *1) (-5 *1 (-115))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-115)))) (-3974 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *1 (-115)))) (-3974 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-55)) (-5 *1 (-115)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-3457 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) (-3488 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115)))) (-2076 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-2076 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) (-2076 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115)))) (-2128 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-2128 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) (-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115)))) (-2791 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-1789 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-115)))) (-1789 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-4311 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-786)) (-5 *1 (-115)))) (-4311 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) (-2494 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-786)) (-5 *1 (-115)))) (-2494 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115))))) +(-13 (-862) (-847 (-1195)) (-10 -8 (-15 -2506 ((-45 (-1177) (-786)) $)) (-15 -1954 ($ $)) (-15 -3974 ($ (-1195))) (-15 -3974 ($ (-1195) (-783))) (-15 -3974 ($ (-1195) (-55))) (-15 -2117 ((-112) $)) (-15 -4014 ((-112) $)) (-15 -4375 ((-112) $)) (-15 -3457 ((-783) $)) (-15 -3457 ($ $ (-783))) (-15 -3488 ($ $ (-1 (-112) $ $))) (-15 -3715 ($ $ (-1 (-112) $ $))) (-15 -2076 ((-3 (-1 (-874) (-656 (-874))) "failed") $)) (-15 -2076 ($ $ (-1 (-874) (-656 (-874))))) (-15 -2076 ($ $ (-1 (-874) (-874)))) (-15 -2128 ($ $ (-1 (-548) (-656 (-548))))) (-15 -2128 ((-3 (-1 (-548) (-656 (-548))) "failed") $)) (-15 -1526 ((-112) $ (-518))) (-15 -2791 ($ $ (-518))) (-15 -1789 ($ $ (-1177))) (-15 -1789 ($ $ (-518))) (-15 -4311 ((-3 (-786) "failed") $ (-1177))) (-15 -4311 ((-703 (-786)) $ (-518))) (-15 -2494 ($ $ (-1177) (-786))) (-15 -2494 ($ $ (-518) (-786))) (-15 -2041 ($ $ (-45 (-1177) (-786)))))) +((-1482 (((-576) |#2|) 41))) +(((-116 |#1| |#2|) (-10 -7 (-15 -1482 ((-576) |#2|))) (-13 (-374) (-1057 (-419 (-576)))) (-1262 |#1|)) (T -116)) +((-1482 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-1057 (-419 *2)))) (-5 *2 (-576)) (-5 *1 (-116 *4 *3)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -1482 ((-576) |#2|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1853 (($ $ (-576)) NIL)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-3332 (($ (-1191 (-576)) (-576)) NIL)) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3279 (($ $) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-3333 (((-783) $) NIL)) (-1414 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3325 (((-576)) NIL)) (-2018 (((-576) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1714 (($ $ (-576)) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2924 (((-1176 (-576)) $) NIL)) (-2869 (($ $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-4125 (((-576) $ (-576)) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) (((-117 |#1|) (-881 |#1|) (-576)) (T -117)) NIL (-881 |#1|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-926)))) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-926)))) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-117 |#1|) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1057 (-576))))) (-2378 (((-117 |#1|) $) NIL) (((-1196) $) NIL (|has| (-117 |#1|) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1057 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1057 (-576))))) (-1437 (($ $) NIL) (($ (-576) $) NIL)) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-117 |#1|))) (|:| |vec| (-1287 (-117 |#1|)))) (-701 $) (-1287 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-117 |#1|))) (|:| |vec| (-1287 (-117 |#1|)))) (-1287 $) $) NIL) (((-701 (-117 |#1|)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-117 |#1|) (-557)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-117 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-117 |#1|) (-899 (-390))))) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-3894 (((-117 |#1|) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1171)))) (-3713 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-2726 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-2477 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-117 |#1|) (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-3892 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-117 |#1|) (-926)))) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2259 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1196)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1196) (-117 |#1|)))) (($ $ (-1196) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1196) (-117 |#1|))))) (-1787 (((-783) $) NIL)) (-4367 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-1490 (($ $) NIL)) (-3905 (((-117 |#1|) $) NIL)) (-1505 (((-905 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1041))) (((-227) $) NIL (|has| (-117 |#1|) (-1041)))) (-1555 (((-176 (-419 (-576))) $) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1196)) NIL (|has| (-117 |#1|) (-1057 (-1196))))) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-926))) (|has| (-117 |#1|) (-146))))) (-2471 (((-783)) NIL T CONST)) (-4179 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2728 (((-419 (-576)) $ (-576)) NIL)) (-3423 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-117 |#1|) (-917 (-1196)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-3977 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3944 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-4028 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) -(((-118 |#1|) (-13 (-1011 (-117 |#1|)) (-10 -8 (-15 -2728 ((-419 (-576)) $ (-576))) (-15 -1555 ((-176 (-419 (-576))) $)) (-15 -1437 ($ $)) (-15 -1437 ($ (-576) $)))) (-576)) (T -118)) -((-2728 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-1437 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-1437 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) -(-13 (-1011 (-117 |#1|)) (-10 -8 (-15 -2728 ((-419 (-576)) $ (-576))) (-15 -1555 ((-176 (-419 (-576))) $)) (-15 -1437 ($ $)) (-15 -1437 ($ (-576) $)))) -((-4248 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-4303 (((-656 $) $) 31)) (-2397 (((-112) $ $) 36)) (-3990 (((-112) |#2| $) 40)) (-3699 (((-656 |#2|) $) 25)) (-3781 (((-112) $) 18)) (-4367 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2492 (((-112) $) 57)) (-4092 (((-874) $) 47)) (-2043 (((-656 $) $) 32)) (-3919 (((-112) $ $) 38)) (-2048 (((-783) $) 50))) -(((-119 |#1| |#2|) (-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -4248 (|#1| |#1| "right" |#1|)) (-15 -4248 (|#1| |#1| "left" |#1|)) (-15 -4367 (|#1| |#1| "right")) (-15 -4367 (|#1| |#1| "left")) (-15 -4248 (|#2| |#1| "value" |#2|)) (-15 -2397 ((-112) |#1| |#1|)) (-15 -3699 ((-656 |#2|) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -4367 (|#2| |#1| "value")) (-15 -3781 ((-112) |#1|)) (-15 -4303 ((-656 |#1|) |#1|)) (-15 -2043 ((-656 |#1|) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -3990 ((-112) |#2| |#1|)) (-15 -2048 ((-783) |#1|))) (-120 |#2|) (-1237)) (T -119)) -NIL -(-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -4248 (|#1| |#1| "right" |#1|)) (-15 -4248 (|#1| |#1| "left" |#1|)) (-15 -4367 (|#1| |#1| "right")) (-15 -4367 (|#1| |#1| "left")) (-15 -4248 (|#2| |#1| "value" |#2|)) (-15 -2397 ((-112) |#1| |#1|)) (-15 -3699 ((-656 |#2|) |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -4367 (|#2| |#1| "value")) (-15 -3781 ((-112) |#1|)) (-15 -4303 ((-656 |#1|) |#1|)) (-15 -2043 ((-656 |#1|) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -3990 ((-112) |#2| |#1|)) (-15 -2048 ((-783) |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1731 ((|#1| $) 49)) (-2835 (((-112) $ (-783)) 8)) (-2597 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-2729 (($ $ $) 53 (|has| $ (-6 -4463)))) (-1323 (($ $ $) 55 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) (($ $ "left" $) 56 (|has| $ (-6 -4463))) (($ $ "right" $) 54 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3656 (($) 7 T CONST)) (-2128 (($ $) 58)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 51)) (-2397 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-2114 (($ $) 60)) (-3699 (((-656 |#1|) $) 46)) (-3781 (((-112) $) 50)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3136 (((-576) $ $) 45)) (-2492 (((-112) $) 47)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) 52)) (-3682 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-120 |#1|) (-141) (-1237)) (T -120)) -((-2114 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-2128 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-4248 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4463)) (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-1323 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-120 *2)) (-4 *2 (-1237)))) (-4248 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4463)) (-4 *1 (-120 *3)) (-4 *3 (-1237)))) (-2729 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-120 *2)) (-4 *2 (-1237))))) -(-13 (-1029 |t#1|) (-10 -8 (-15 -2114 ($ $)) (-15 -4367 ($ $ "left")) (-15 -2128 ($ $)) (-15 -4367 ($ $ "right")) (IF (|has| $ (-6 -4463)) (PROGN (-15 -4248 ($ $ "left" $)) (-15 -1323 ($ $ $)) (-15 -4248 ($ $ "right" $)) (-15 -2729 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-2534 (((-112) |#1|) 29)) (-4079 (((-783) (-783)) 28) (((-783)) 27)) (-2310 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-121 |#1|) (-10 -7 (-15 -2310 ((-112) |#1|)) (-15 -2310 ((-112) |#1| (-112))) (-15 -4079 ((-783))) (-15 -4079 ((-783) (-783))) (-15 -2534 ((-112) |#1|))) (-1263 (-576))) (T -121)) -((-2534 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-4079 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-4079 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-2310 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) (-2310 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))) -(-10 -7 (-15 -2310 ((-112) |#1|)) (-15 -2310 ((-112) |#1| (-112))) (-15 -4079 ((-783))) (-15 -4079 ((-783) (-783))) (-15 -2534 ((-112) |#1|))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) 18)) (-3930 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2835 (((-112) $ (-783)) NIL)) (-2597 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2729 (($ $ $) 21 (|has| $ (-6 -4463)))) (-1323 (($ $ $) 23 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2128 (($ $) 20)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2356 (($ $ |#1| $) 27)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-2114 (($ $) 22)) (-3699 (((-656 |#1|) $) NIL)) (-3781 (((-112) $) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-4195 (($ |#1| $) 28)) (-2361 (($ |#1| $) 15)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 17)) (-2643 (($) 11)) (-4367 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3136 (((-576) $ $) NIL)) (-2492 (((-112) $) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2276 (($ (-656 |#1|)) 16)) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -2276 ($ (-656 |#1|))) (-15 -2361 ($ |#1| $)) (-15 -4195 ($ |#1| $)) (-15 -3930 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-862)) (T -122)) -((-2276 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3)))) (-2361 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-4195 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-3930 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-862))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -2276 ($ (-656 |#1|))) (-15 -2361 ($ |#1| $)) (-15 -4195 ($ |#1| $)) (-15 -3930 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-2060 (($ $) 13)) (-2433 (($ $) 11)) (-4401 (($ $ $) 23)) (-2684 (($ $ $) 21)) (-2107 (($ $ $) 19)) (-2094 (($ $ $) 17))) -(((-123 |#1|) (-10 -8 (-15 -4401 (|#1| |#1| |#1|)) (-15 -2684 (|#1| |#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|)) (-15 -2433 (|#1| |#1|))) (-124)) (T -123)) -NIL -(-10 -8 (-15 -4401 (|#1| |#1| |#1|)) (-15 -2684 (|#1| |#1| |#1|)) (-15 -2060 (|#1| |#1|)) (-15 -2094 (|#1| |#1| |#1|)) (-15 -2107 (|#1| |#1| |#1|)) (-15 -2433 (|#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-2060 (($ $) 103)) (-4279 (($ $ $) 28)) (-2449 (((-1292) $ (-576) (-576)) 66 (|has| $ (-6 -4463)))) (-2761 (((-112) $) 98 (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-3362 (($ $) 102 (-12 (|has| (-112) (-862)) (|has| $ (-6 -4463)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4463)))) (-2398 (($ $) 97 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2835 (((-112) $ (-783)) 37)) (-4248 (((-112) $ (-1254 (-576)) (-112)) 88 (|has| $ (-6 -4463))) (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4462)))) (-3656 (($) 38 T CONST)) (-3129 (($ $) 100 (|has| $ (-6 -4463)))) (-4112 (($ $) 90)) (-1690 (($ $) 68 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4462))) (($ (-112) $) 69 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462))))) (-2359 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462))))) (-3888 (((-112) $ (-576) (-112)) 53 (|has| $ (-6 -4463)))) (-3817 (((-112) $ (-576)) 55)) (-3433 (((-576) (-112) $ (-576)) 95 (|has| (-112) (-1119))) (((-576) (-112) $) 94 (|has| (-112) (-1119))) (((-576) (-1 (-112) (-112)) $) 93)) (-4260 (((-656 (-112)) $) 45 (|has| $ (-6 -4462)))) (-2457 (($ $ $) 108)) (-2433 (($ $) 106)) (-4401 (($ $ $) 29)) (-1992 (($ (-783) (-112)) 78)) (-2684 (($ $ $) 30)) (-1419 (((-112) $ (-783)) 36)) (-2077 (((-576) $) 63 (|has| (-576) (-862)))) (-3492 (($ $ $) 14)) (-3257 (($ $ $) 96 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1750 (((-656 (-112)) $) 46 (|has| $ (-6 -4462)))) (-3990 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 62 (|has| (-576) (-862)))) (-2726 (($ $ $) 15)) (-3874 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-3103 (((-112) $ (-783)) 35)) (-3288 (((-1178) $) 10)) (-3371 (($ $ $ (-576)) 87) (($ (-112) $ (-576)) 86)) (-4428 (((-656 (-576)) $) 60)) (-2013 (((-112) (-576) $) 59)) (-3139 (((-1139) $) 11)) (-2701 (((-112) $) 64 (|has| (-576) (-862)))) (-1863 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2918 (($ $ (-112)) 65 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-112)) (-656 (-112))) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-304 (-112))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-656 (-304 (-112)))) 49 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))))) (-1905 (((-112) $ $) 31)) (-4156 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3060 (((-656 (-112)) $) 58)) (-3372 (((-112) $) 34)) (-2643 (($) 33)) (-4367 (($ $ (-1254 (-576))) 77) (((-112) $ (-576)) 57) (((-112) $ (-576) (-112)) 56)) (-2470 (($ $ (-1254 (-576))) 85) (($ $ (-576)) 84)) (-3150 (((-783) (-112) $) 47 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4462)))) (-3582 (($ $ $ (-576)) 99 (|has| $ (-6 -4463)))) (-4268 (($ $) 32)) (-1505 (((-548) $) 67 (|has| (-112) (-626 (-548))))) (-4103 (($ (-656 (-112))) 76)) (-2851 (($ (-656 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-2190 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4462)))) (-2445 (($ $ $) 107)) (-2107 (($ $ $) 105)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19)) (-2094 (($ $ $) 104)) (-2048 (((-783) $) 39 (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-926)))) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-926)))) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL (|has| (-117 |#1|) (-832)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-117 |#1|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-117 |#1|) (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-117 |#1|) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-117 |#1|) (-1057 (-576))))) (-4056 (((-117 |#1|) $) NIL) (((-1195) $) NIL (|has| (-117 |#1|) (-1057 (-1195)))) (((-419 (-576)) $) NIL (|has| (-117 |#1|) (-1057 (-576)))) (((-576) $) NIL (|has| (-117 |#1|) (-1057 (-576))))) (-2092 (($ $) NIL) (($ (-576) $) NIL)) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-117 |#1|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-117 |#1|))) (|:| |vec| (-1286 (-117 |#1|)))) (-701 $) (-1286 $)) NIL) (((-701 (-117 |#1|)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-117 |#1|))) (|:| |vec| (-1286 (-117 |#1|)))) (-1286 $) $) NIL) (((-701 (-117 |#1|)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-117 |#1|) (-557)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1910 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-117 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-117 |#1|) (-899 (-390))))) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL)) (-1536 (((-117 |#1|) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| (-117 |#1|) (-1171)))) (-3566 (((-112) $) NIL (|has| (-117 |#1|) (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-1893 (($ $ $) NIL (|has| (-117 |#1|) (-862)))) (-1632 (($ (-1 (-117 |#1|) (-117 |#1|)) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-117 |#1|) (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL (|has| (-117 |#1|) (-317)))) (-3835 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-117 |#1|) (-926)))) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3306 (($ $ (-656 (-117 |#1|)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-117 |#1|) (-117 |#1|)) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-304 (-117 |#1|))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-304 (-117 |#1|)))) NIL (|has| (-117 |#1|) (-319 (-117 |#1|)))) (($ $ (-656 (-1195)) (-656 (-117 |#1|))) NIL (|has| (-117 |#1|) (-526 (-1195) (-117 |#1|)))) (($ $ (-1195) (-117 |#1|)) NIL (|has| (-117 |#1|) (-526 (-1195) (-117 |#1|))))) (-3112 (((-783) $) NIL)) (-2871 (($ $ (-117 |#1|)) NIL (|has| (-117 |#1|) (-296 (-117 |#1|) (-117 |#1|))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-117 |#1|) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-117 |#1|) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-117 |#1|) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-117 |#1|) (-917 (-1195)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-1880 (($ $) NIL)) (-1549 (((-117 |#1|) $) NIL)) (-4076 (((-905 (-576)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-117 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-117 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-117 |#1|) (-1041))) (((-227) $) NIL (|has| (-117 |#1|) (-1041)))) (-1436 (((-176 (-419 (-576))) $) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-117 |#1|)) NIL) (($ (-1195)) NIL (|has| (-117 |#1|) (-1057 (-1195))))) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| (-117 |#1|) (-926))) (|has| (-117 |#1|) (-146))))) (-1858 (((-783)) NIL T CONST)) (-3270 (((-117 |#1|) $) NIL (|has| (-117 |#1|) (-557)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-4125 (((-419 (-576)) $ (-576)) NIL)) (-2264 (($ $) NIL (|has| (-117 |#1|) (-832)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1 (-117 |#1|) (-117 |#1|))) NIL) (($ $ (-1 (-117 |#1|) (-117 |#1|)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-117 |#1|) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-117 |#1|) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-117 |#1|) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-117 |#1|) (-917 (-1195)))) (($ $) NIL (|has| (-117 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-117 |#1|) (-237)))) (-3049 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3010 (((-112) $ $) NIL (|has| (-117 |#1|) (-862)))) (-3107 (($ $ $) NIL) (($ (-117 |#1|) (-117 |#1|)) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-117 |#1|) $) NIL) (($ $ (-117 |#1|)) NIL))) +(((-118 |#1|) (-13 (-1011 (-117 |#1|)) (-10 -8 (-15 -4125 ((-419 (-576)) $ (-576))) (-15 -1436 ((-176 (-419 (-576))) $)) (-15 -2092 ($ $)) (-15 -2092 ($ (-576) $)))) (-576)) (T -118)) +((-4125 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) (-2092 (*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) (-2092 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2)))) +(-13 (-1011 (-117 |#1|)) (-10 -8 (-15 -4125 ((-419 (-576)) $ (-576))) (-15 -1436 ((-176 (-419 (-576))) $)) (-15 -2092 ($ $)) (-15 -2092 ($ (-576) $)))) +((-3731 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-1994 (((-656 $) $) 31)) (-3180 (((-112) $ $) 36)) (-2511 (((-112) |#2| $) 40)) (-2942 (((-656 |#2|) $) 25)) (-1905 (((-112) $) 18)) (-2871 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3173 (((-112) $) 57)) (-3563 (((-874) $) 47)) (-3281 (((-656 $) $) 32)) (-2988 (((-112) $ $) 38)) (-3485 (((-783) $) 50))) +(((-119 |#1| |#2|) (-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -3731 (|#1| |#1| "right" |#1|)) (-15 -3731 (|#1| |#1| "left" |#1|)) (-15 -2871 (|#1| |#1| "right")) (-15 -2871 (|#1| |#1| "left")) (-15 -3731 (|#2| |#1| "value" |#2|)) (-15 -3180 ((-112) |#1| |#1|)) (-15 -2942 ((-656 |#2|) |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -2871 (|#2| |#1| "value")) (-15 -1905 ((-112) |#1|)) (-15 -1994 ((-656 |#1|) |#1|)) (-15 -3281 ((-656 |#1|) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2511 ((-112) |#2| |#1|)) (-15 -3485 ((-783) |#1|))) (-120 |#2|) (-1236)) (T -119)) +NIL +(-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -3731 (|#1| |#1| "right" |#1|)) (-15 -3731 (|#1| |#1| "left" |#1|)) (-15 -2871 (|#1| |#1| "right")) (-15 -2871 (|#1| |#1| "left")) (-15 -3731 (|#2| |#1| "value" |#2|)) (-15 -3180 ((-112) |#1| |#1|)) (-15 -2942 ((-656 |#2|) |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -2871 (|#2| |#1| "value")) (-15 -1905 ((-112) |#1|)) (-15 -1994 ((-656 |#1|) |#1|)) (-15 -3281 ((-656 |#1|) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2511 ((-112) |#2| |#1|)) (-15 -3485 ((-783) |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3142 ((|#1| $) 49)) (-3131 (((-112) $ (-783)) 8)) (-3429 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-2122 (($ $ $) 53 (|has| $ (-6 -4462)))) (-4182 (($ $ $) 55 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) (($ $ "left" $) 56 (|has| $ (-6 -4462))) (($ $ "right" $) 54 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-3767 (($) 7 T CONST)) (-4154 (($ $) 58)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 51)) (-3180 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-4143 (($ $) 60)) (-2942 (((-656 |#1|) $) 46)) (-1905 (((-112) $) 50)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2972 (((-576) $ $) 45)) (-3173 (((-112) $) 47)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) 52)) (-4369 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-120 |#1|) (-141) (-1236)) (T -120)) +((-4143 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) (-2871 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-4154 (*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) (-2871 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-3731 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-4182 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236)))) (-3731 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) (-4 *3 (-1236)))) (-2122 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236))))) +(-13 (-1029 |t#1|) (-10 -8 (-15 -4143 ($ $)) (-15 -2871 ($ $ "left")) (-15 -4154 ($ $)) (-15 -2871 ($ $ "right")) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3731 ($ $ "left" $)) (-15 -4182 ($ $ $)) (-15 -3731 ($ $ "right" $)) (-15 -2122 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-1623 (((-112) |#1|) 29)) (-2249 (((-783) (-783)) 28) (((-783)) 27)) (-3836 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-121 |#1|) (-10 -7 (-15 -3836 ((-112) |#1|)) (-15 -3836 ((-112) |#1| (-112))) (-15 -2249 ((-783))) (-15 -2249 ((-783) (-783))) (-15 -1623 ((-112) |#1|))) (-1262 (-576))) (T -121)) +((-1623 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-2249 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-2249 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-3836 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) (-3836 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))) +(-10 -7 (-15 -3836 ((-112) |#1|)) (-15 -3836 ((-112) |#1| (-112))) (-15 -2249 ((-783))) (-15 -2249 ((-783) (-783))) (-15 -1623 ((-112) |#1|))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) 18)) (-2952 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-3131 (((-112) $ (-783)) NIL)) (-3429 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-2122 (($ $ $) 21 (|has| $ (-6 -4462)))) (-4182 (($ $ $) 23 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-4154 (($ $) 20)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2240 (($ $ |#1| $) 27)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-4143 (($ $) 22)) (-2942 (((-656 |#1|) $) NIL)) (-1905 (((-112) $) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-4171 (($ |#1| $) 28)) (-2040 (($ |#1| $) 15)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 17)) (-2597 (($) 11)) (-2871 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2972 (((-576) $ $) NIL)) (-3173 (((-112) $) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2814 (($ (-656 |#1|)) 16)) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-122 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -2814 ($ (-656 |#1|))) (-15 -2040 ($ |#1| $)) (-15 -4171 ($ |#1| $)) (-15 -2952 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-862)) (T -122)) +((-2814 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3)))) (-2040 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-4171 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) (-2952 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-862))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -2814 ($ (-656 |#1|))) (-15 -2040 ($ |#1| $)) (-15 -4171 ($ |#1| $)) (-15 -2952 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3498 (($ $) 13)) (-2746 (($ $) 11)) (-4037 (($ $ $) 23)) (-4174 (($ $ $) 21)) (-3546 (($ $ $) 19)) (-3534 (($ $ $) 17))) +(((-123 |#1|) (-10 -8 (-15 -4037 (|#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3534 (|#1| |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -2746 (|#1| |#1|))) (-124)) (T -123)) +NIL +(-10 -8 (-15 -4037 (|#1| |#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1|)) (-15 -3534 (|#1| |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -2746 (|#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-3498 (($ $) 103)) (-2777 (($ $ $) 28)) (-2333 (((-1291) $ (-576) (-576)) 66 (|has| $ (-6 -4462)))) (-2373 (((-112) $) 98 (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2265 (($ $) 102 (-12 (|has| (-112) (-862)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4462)))) (-1758 (($ $) 97 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3131 (((-112) $ (-783)) 37)) (-3731 (((-112) $ (-1253 (-576)) (-112)) 88 (|has| $ (-6 -4462))) (((-112) $ (-576) (-112)) 54 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4461)))) (-3767 (($) 38 T CONST)) (-3478 (($ $) 100 (|has| $ (-6 -4462)))) (-3733 (($ $) 90)) (-3172 (($ $) 68 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4461))) (($ (-112) $) 69 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4461))))) (-2521 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4461))))) (-1776 (((-112) $ (-576) (-112)) 53 (|has| $ (-6 -4462)))) (-1698 (((-112) $ (-576)) 55)) (-3584 (((-576) (-112) $ (-576)) 95 (|has| (-112) (-1119))) (((-576) (-112) $) 94 (|has| (-112) (-1119))) (((-576) (-1 (-112) (-112)) $) 93)) (-3825 (((-656 (-112)) $) 45 (|has| $ (-6 -4461)))) (-2768 (($ $ $) 108)) (-2746 (($ $) 106)) (-4037 (($ $ $) 29)) (-4033 (($ (-783) (-112)) 78)) (-4174 (($ $ $) 30)) (-3115 (((-112) $ (-783)) 36)) (-1386 (((-576) $) 63 (|has| (-576) (-862)))) (-2442 (($ $ $) 14)) (-1854 (($ $ $) 96 (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2591 (((-656 (-112)) $) 46 (|has| $ (-6 -4461)))) (-2511 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 62 (|has| (-576) (-862)))) (-1893 (($ $ $) 15)) (-1763 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 40)) (-2712 (((-112) $ (-783)) 35)) (-1927 (((-1177) $) 10)) (-2277 (($ $ $ (-576)) 87) (($ (-112) $ (-576)) 86)) (-3321 (((-656 (-576)) $) 60)) (-2378 (((-112) (-576) $) 59)) (-1445 (((-1139) $) 11)) (-3504 (((-112) $) 64 (|has| (-576) (-862)))) (-2644 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2500 (($ $ (-112)) 65 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-112)) (-656 (-112))) 52 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-304 (-112))) 50 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-656 (-304 (-112)))) 49 (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))))) (-1693 (((-112) $ $) 31)) (-4407 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-1947 (((-656 (-112)) $) 58)) (-1911 (((-112) $) 34)) (-2597 (($) 33)) (-2871 (($ $ (-1253 (-576))) 77) (((-112) $ (-576)) 57) (((-112) $ (-576) (-112)) 56)) (-3464 (($ $ (-1253 (-576))) 85) (($ $ (-576)) 84)) (-1456 (((-783) (-112) $) 47 (-12 (|has| (-112) (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4461)))) (-3760 (($ $ $ (-576)) 99 (|has| $ (-6 -4462)))) (-1954 (($ $) 32)) (-4076 (((-548) $) 67 (|has| (-112) (-626 (-548))))) (-3573 (($ (-656 (-112))) 76)) (-1661 (($ (-656 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2043 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4461)))) (-2758 (($ $ $) 107)) (-3546 (($ $ $) 105)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19)) (-3534 (($ $ $) 104)) (-3485 (((-783) $) 39 (|has| $ (-6 -4461))))) (((-124) (-141)) (T -124)) -((-2684 (*1 *1 *1 *1) (-4 *1 (-124))) (-4401 (*1 *1 *1 *1) (-4 *1 (-124))) (-4279 (*1 *1 *1 *1) (-4 *1 (-124)))) -(-13 (-862) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -2684 ($ $ $)) (-15 -4401 ($ $ $)) (-15 -4279 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))) ((-663 #0#) . T) ((-673) . T) ((-19 #0#) . T) ((-862) . T) ((-1119) . T) ((-1237) . T)) -((-3874 (($ (-1 |#2| |#2|) $) 22)) (-4268 (($ $) 16)) (-2048 (((-783) $) 25))) -(((-125 |#1| |#2|) (-10 -8 (-15 -3874 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2048 ((-783) |#1|)) (-15 -4268 (|#1| |#1|))) (-126 |#2|) (-1119)) (T -125)) -NIL -(-10 -8 (-15 -3874 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2048 ((-783) |#1|)) (-15 -4268 (|#1| |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1731 ((|#1| $) 49)) (-2835 (((-112) $ (-783)) 8)) (-2597 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-2729 (($ $ $) 53 (|has| $ (-6 -4463)))) (-1323 (($ $ $) 55 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) (($ $ "left" $) 56 (|has| $ (-6 -4463))) (($ $ "right" $) 54 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3656 (($) 7 T CONST)) (-2128 (($ $) 58)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 51)) (-2397 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-2356 (($ $ |#1| $) 61)) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-2114 (($ $) 60)) (-3699 (((-656 |#1|) $) 46)) (-3781 (((-112) $) 50)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-3136 (((-576) $ $) 45)) (-2492 (((-112) $) 47)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) 52)) (-3682 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-4174 (*1 *1 *1 *1) (-4 *1 (-124))) (-4037 (*1 *1 *1 *1) (-4 *1 (-124))) (-2777 (*1 *1 *1 *1) (-4 *1 (-124)))) +(-13 (-862) (-113) (-673) (-19 (-112)) (-10 -8 (-15 -4174 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -2777 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-152 #0=(-112)) . T) ((-626 (-548)) |has| (-112) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))) ((-663 #0#) . T) ((-673) . T) ((-19 #0#) . T) ((-862) . T) ((-1119) . T) ((-1236) . T)) +((-1763 (($ (-1 |#2| |#2|) $) 22)) (-1954 (($ $) 16)) (-3485 (((-783) $) 25))) +(((-125 |#1| |#2|) (-10 -8 (-15 -1763 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3485 ((-783) |#1|)) (-15 -1954 (|#1| |#1|))) (-126 |#2|) (-1119)) (T -125)) +NIL +(-10 -8 (-15 -1763 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3485 ((-783) |#1|)) (-15 -1954 (|#1| |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3142 ((|#1| $) 49)) (-3131 (((-112) $ (-783)) 8)) (-3429 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-2122 (($ $ $) 53 (|has| $ (-6 -4462)))) (-4182 (($ $ $) 55 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) (($ $ "left" $) 56 (|has| $ (-6 -4462))) (($ $ "right" $) 54 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-3767 (($) 7 T CONST)) (-4154 (($ $) 58)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 51)) (-3180 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-2240 (($ $ |#1| $) 61)) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-4143 (($ $) 60)) (-2942 (((-656 |#1|) $) 46)) (-1905 (((-112) $) 50)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-2972 (((-576) $ $) 45)) (-3173 (((-112) $) 47)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) 52)) (-4369 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-126 |#1|) (-141) (-1119)) (T -126)) -((-2356 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1119))))) -(-13 (-120 |t#1|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -2356 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-120 |#1|) . T) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) 18)) (-2835 (((-112) $ (-783)) NIL)) (-2597 ((|#1| $ |#1|) 22 (|has| $ (-6 -4463)))) (-2729 (($ $ $) 23 (|has| $ (-6 -4463)))) (-1323 (($ $ $) 21 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2128 (($ $) 24)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2356 (($ $ |#1| $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-2114 (($ $) NIL)) (-3699 (((-656 |#1|) $) NIL)) (-3781 (((-112) $) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2361 (($ |#1| $) 15)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 17)) (-2643 (($) 11)) (-4367 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3136 (((-576) $ $) NIL)) (-2492 (((-112) $) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) 20)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3973 (($ (-656 |#1|)) 16)) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4463) (-15 -3973 ($ (-656 |#1|))) (-15 -2361 ($ |#1| $)))) (-862)) (T -127)) -((-3973 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3)))) (-2361 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862))))) -(-13 (-126 |#1|) (-10 -8 (-6 -4463) (-15 -3973 ($ (-656 |#1|))) (-15 -2361 ($ |#1| $)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) 30)) (-2835 (((-112) $ (-783)) NIL)) (-2597 ((|#1| $ |#1|) 32 (|has| $ (-6 -4463)))) (-2729 (($ $ $) 36 (|has| $ (-6 -4463)))) (-1323 (($ $ $) 34 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2128 (($ $) 23)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2356 (($ $ |#1| $) 16)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-2114 (($ $) 22)) (-3699 (((-656 |#1|) $) NIL)) (-3781 (((-112) $) 25)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 20)) (-2643 (($) 11)) (-4367 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3136 (((-576) $ $) NIL)) (-2492 (((-112) $) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1773 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 10 (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -1773 ($ |#1|)) (-15 -1773 ($ $ |#1| $)))) (-1119)) (T -128)) -((-1773 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119)))) (-1773 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119))))) -(-13 (-126 |#1|) (-10 -8 (-15 -1773 ($ |#1|)) (-15 -1773 ($ $ |#1| $)))) -((-2034 (((-112) $ $) NIL (|has| (-130) (-1119)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-862)))) (-3362 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-130) (-862))))) (-2398 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4463))) (((-130) $ (-1254 (-576)) (-130)) NIL (|has| $ (-6 -4463)))) (-3721 (((-783) $ (-783)) 34)) (-3457 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119))))) (-2892 (($ (-130) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4462))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4462)))) (-3888 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4463)))) (-3817 (((-130) $ (-576)) 20)) (-3433 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1119))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1119)))) (-4260 (((-656 (-130)) $) NIL (|has| $ (-6 -4462)))) (-1992 (($ (-783) (-130)) 14)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) 27 (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| (-130) (-862)))) (-3257 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-862)))) (-1750 (((-656 (-130)) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119))))) (-4315 (((-576) $) 30 (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| (-130) (-862)))) (-3874 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| (-130) (-1119)))) (-3371 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| (-130) (-1119)))) (-2701 (((-130) $) NIL (|has| (-576) (-862)))) (-1863 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-2918 (($ $ (-130)) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119))))) (-3060 (((-656 (-130)) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) 12)) (-4367 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1254 (-576))) NIL)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3150 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-4103 (($ (-656 (-130))) 46)) (-2851 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-4092 (((-975 (-130)) $) 35) (((-1178) $) 43) (((-874) $) NIL (|has| (-130) (-625 (-874))))) (-3806 (((-783) $) 18)) (-2384 (($ (-783)) 8)) (-1531 (((-112) $ $) NIL (|has| (-130) (-1119)))) (-2190 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3919 (((-112) $ $) 32 (|has| (-130) (-1119)))) (-3966 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3944 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2048 (((-783) $) 15 (|has| $ (-6 -4462))))) -(((-129) (-13 (-19 (-130)) (-625 (-975 (-130))) (-625 (-1178)) (-10 -8 (-15 -2384 ($ (-783))) (-15 -3806 ((-783) $)) (-15 -3721 ((-783) $ (-783))) (-6 -4462)))) (T -129)) -((-2384 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-3721 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(-13 (-19 (-130)) (-625 (-975 (-130))) (-625 (-1178)) (-10 -8 (-15 -2384 ($ (-783))) (-15 -3806 ((-783) $)) (-15 -3721 ((-783) $ (-783))) (-6 -4462))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) 26)) (-3656 (($) NIL T CONST)) (-2446 (($) 35)) (-3492 (($ $ $) NIL) (($) 24 T CONST)) (-2726 (($ $ $) NIL) (($) 25 T CONST)) (-3225 (((-938) $) 33)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) 31)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2493 (($ (-783)) 8)) (-3850 (($ $ $) 37)) (-3837 (($ $ $) 36)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) 22)) (-3955 (((-112) $ $) 20)) (-3919 (((-112) $ $) 18)) (-3966 (((-112) $ $) 21)) (-3944 (((-112) $ $) 19))) -(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -2493 ($ (-783))) (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670)))) (T -130)) -((-2493 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-3837 (*1 *1 *1 *1) (-5 *1 (-130))) (-3850 (*1 *1 *1 *1) (-5 *1 (-130))) (-3656 (*1 *1) (-5 *1 (-130)))) -(-13 (-856) (-502 (-145)) (-10 -8 (-15 -2493 ($ (-783))) (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670))) +((-2240 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1119))))) +(-13 (-120 |t#1|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -2240 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-120 |#1|) . T) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) 18)) (-3131 (((-112) $ (-783)) NIL)) (-3429 ((|#1| $ |#1|) 22 (|has| $ (-6 -4462)))) (-2122 (($ $ $) 23 (|has| $ (-6 -4462)))) (-4182 (($ $ $) 21 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-4154 (($ $) 24)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2240 (($ $ |#1| $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-4143 (($ $) NIL)) (-2942 (((-656 |#1|) $) NIL)) (-1905 (((-112) $) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2040 (($ |#1| $) 15)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 17)) (-2597 (($) 11)) (-2871 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2972 (((-576) $ $) NIL)) (-3173 (((-112) $) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) 20)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4409 (($ (-656 |#1|)) 16)) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-127 |#1|) (-13 (-126 |#1|) (-10 -8 (-6 -4462) (-15 -4409 ($ (-656 |#1|))) (-15 -2040 ($ |#1| $)))) (-862)) (T -127)) +((-4409 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3)))) (-2040 (*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862))))) +(-13 (-126 |#1|) (-10 -8 (-6 -4462) (-15 -4409 ($ (-656 |#1|))) (-15 -2040 ($ |#1| $)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) 30)) (-3131 (((-112) $ (-783)) NIL)) (-3429 ((|#1| $ |#1|) 32 (|has| $ (-6 -4462)))) (-2122 (($ $ $) 36 (|has| $ (-6 -4462)))) (-4182 (($ $ $) 34 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-4154 (($ $) 23)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2240 (($ $ |#1| $) 16)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-4143 (($ $) 22)) (-2942 (((-656 |#1|) $) NIL)) (-1905 (((-112) $) 25)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 20)) (-2597 (($) 11)) (-2871 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2972 (((-576) $ $) NIL)) (-3173 (((-112) $) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4202 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 10 (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-128 |#1|) (-13 (-126 |#1|) (-10 -8 (-15 -4202 ($ |#1|)) (-15 -4202 ($ $ |#1| $)))) (-1119)) (T -128)) +((-4202 (*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119)))) (-4202 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119))))) +(-13 (-126 |#1|) (-10 -8 (-15 -4202 ($ |#1|)) (-15 -4202 ($ $ |#1| $)))) +((-3474 (((-112) $ $) NIL (|has| (-130) (-1119)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) (-130) (-130)) $) NIL) (((-112) $) NIL (|has| (-130) (-862)))) (-2265 (($ (-1 (-112) (-130) (-130)) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-130) (-862))))) (-1758 (($ (-1 (-112) (-130) (-130)) $) NIL) (($ $) NIL (|has| (-130) (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 (((-130) $ (-576) (-130)) 26 (|has| $ (-6 -4462))) (((-130) $ (-1253 (-576)) (-130)) NIL (|has| $ (-6 -4462)))) (-3038 (((-783) $ (-783)) 34)) (-2496 (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1119))))) (-3902 (($ (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1119)))) (($ (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1119)))) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4461))) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4461)))) (-1776 (((-130) $ (-576) (-130)) 25 (|has| $ (-6 -4462)))) (-1698 (((-130) $ (-576)) 20)) (-3584 (((-576) (-1 (-112) (-130)) $) NIL) (((-576) (-130) $) NIL (|has| (-130) (-1119))) (((-576) (-130) $ (-576)) NIL (|has| (-130) (-1119)))) (-3825 (((-656 (-130)) $) NIL (|has| $ (-6 -4461)))) (-4033 (($ (-783) (-130)) 14)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) 27 (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| (-130) (-862)))) (-1854 (($ (-1 (-112) (-130) (-130)) $ $) NIL) (($ $ $) NIL (|has| (-130) (-862)))) (-2591 (((-656 (-130)) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1119))))) (-3814 (((-576) $) 30 (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| (-130) (-862)))) (-1763 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-130) (-130)) $) NIL) (($ (-1 (-130) (-130) (-130)) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| (-130) (-1119)))) (-2277 (($ (-130) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| (-130) (-1119)))) (-3504 (((-130) $) NIL (|has| (-576) (-862)))) (-2644 (((-3 (-130) "failed") (-1 (-112) (-130)) $) NIL)) (-2500 (($ $ (-130)) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-130)))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119)))) (($ $ (-304 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119)))) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119)))) (($ $ (-656 (-130)) (-656 (-130))) NIL (-12 (|has| (-130) (-319 (-130))) (|has| (-130) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1119))))) (-1947 (((-656 (-130)) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) 12)) (-2871 (((-130) $ (-576) (-130)) NIL) (((-130) $ (-576)) 23) (($ $ (-1253 (-576))) NIL)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1456 (((-783) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461))) (((-783) (-130) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-130) (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-130) (-626 (-548))))) (-3573 (($ (-656 (-130))) 46)) (-1661 (($ $ (-130)) NIL) (($ (-130) $) NIL) (($ $ $) 47) (($ (-656 $)) NIL)) (-3563 (((-975 (-130)) $) 35) (((-1177) $) 43) (((-874) $) NIL (|has| (-130) (-625 (-874))))) (-3821 (((-783) $) 18)) (-3314 (($ (-783)) 8)) (-3985 (((-112) $ $) NIL (|has| (-130) (-1119)))) (-2043 (((-112) (-1 (-112) (-130)) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-130) (-862)))) (-2988 (((-112) $ $) 32 (|has| (-130) (-1119)))) (-3037 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3010 (((-112) $ $) NIL (|has| (-130) (-862)))) (-3485 (((-783) $) 15 (|has| $ (-6 -4461))))) +(((-129) (-13 (-19 (-130)) (-625 (-975 (-130))) (-625 (-1177)) (-10 -8 (-15 -3314 ($ (-783))) (-15 -3821 ((-783) $)) (-15 -3038 ((-783) $ (-783))) (-6 -4461)))) (T -129)) +((-3314 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129)))) (-3038 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) +(-13 (-19 (-130)) (-625 (-975 (-130))) (-625 (-1177)) (-10 -8 (-15 -3314 ($ (-783))) (-15 -3821 ((-783) $)) (-15 -3038 ((-783) $ (-783))) (-6 -4461))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) 26)) (-3767 (($) NIL T CONST)) (-1803 (($) 35)) (-2442 (($ $ $) NIL) (($) 24 T CONST)) (-1893 (($ $ $) NIL) (($) 25 T CONST)) (-1902 (((-938) $) 33)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) 31)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL) (($ (-145)) 15) (((-145) $) 17)) (-2621 (($ (-783)) 8)) (-2447 (($ $ $) 37)) (-2436 (($ $ $) 36)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) 22)) (-3024 (((-112) $ $) 20)) (-2988 (((-112) $ $) 18)) (-3037 (((-112) $ $) 21)) (-3010 (((-112) $ $) 19))) +(((-130) (-13 (-856) (-502 (-145)) (-10 -8 (-15 -2621 ($ (-783))) (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398)))) (T -130)) +((-2621 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130)))) (-2436 (*1 *1 *1 *1) (-5 *1 (-130))) (-2447 (*1 *1 *1 *1) (-5 *1 (-130))) (-3767 (*1 *1) (-5 *1 (-130)))) +(-13 (-856) (-502 (-145)) (-10 -8 (-15 -2621 ($ (-783))) (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398))) ((|NonNegativeInteger|) (|%ilt| |#1| 256)) -((-2034 (((-112) $ $) NIL)) (-4106 (($) 6 T CONST)) (-3877 (($) 7 T CONST)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 14)) (-4290 (($) 8 T CONST)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 10))) -(((-131) (-13 (-1119) (-10 -8 (-15 -3877 ($) -2670) (-15 -4290 ($) -2670) (-15 -4106 ($) -2670)))) (T -131)) -((-3877 (*1 *1) (-5 *1 (-131))) (-4290 (*1 *1) (-5 *1 (-131))) (-4106 (*1 *1) (-5 *1 (-131)))) -(-13 (-1119) (-10 -8 (-15 -3877 ($) -2670) (-15 -4290 ($) -2670) (-15 -4106 ($) -2670))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16))) +((-3474 (((-112) $ $) NIL)) (-4147 (($) 6 T CONST)) (-1966 (($) 7 T CONST)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 14)) (-3244 (($) 8 T CONST)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 10))) +(((-131) (-13 (-1119) (-10 -8 (-15 -1966 ($) -1398) (-15 -3244 ($) -1398) (-15 -4147 ($) -1398)))) (T -131)) +((-1966 (*1 *1) (-5 *1 (-131))) (-3244 (*1 *1) (-5 *1 (-131))) (-4147 (*1 *1) (-5 *1 (-131)))) +(-13 (-1119) (-10 -8 (-15 -1966 ($) -1398) (-15 -3244 ($) -1398) (-15 -4147 ($) -1398))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16))) (((-132) (-141)) (T -132)) -((-3788 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(-13 (-23) (-10 -8 (-15 -3788 ((-3 $ "failed") $ $)))) +((-1367 (*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(-13 (-23) (-10 -8 (-15 -1367 ((-3 $ "failed") $ $)))) (((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 7)) (-3776 (((-1292) $ (-783)) 14)) (-3433 (((-783) $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-3474 (((-112) $ $) 7)) (-1515 (((-1291) $ (-783)) 14)) (-3584 (((-783) $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-133) (-141)) (T -133)) -((-3433 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-3776 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1292))))) -(-13 (-1119) (-10 -8 (-15 -3433 ((-783) $)) (-15 -3776 ((-1292) $ (-783))))) +((-3584 (*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) (-1515 (*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1291))))) +(-13 (-1119) (-10 -8 (-15 -3584 ((-783) $)) (-15 -1515 ((-1291) $ (-783))))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-656 (-1154)) $) 10)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-134) (-13 (-1102) (-10 -8 (-15 -4136 ((-656 (-1154)) $))))) (T -134)) -((-4136 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-134))))) -(-13 (-1102) (-10 -8 (-15 -4136 ((-656 (-1154)) $)))) -((-2034 (((-112) $ $) 49)) (-1962 (((-112) $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-783) "failed") $) 58)) (-2378 (((-783) $) 56)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) 37)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4437 (((-112)) 59)) (-3957 (((-112) (-112)) 61)) (-4035 (((-112) $) 30)) (-1656 (((-112) $) 55)) (-4092 (((-874) $) 28) (($ (-783)) 20)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 18 T CONST)) (-4310 (($) 19 T CONST)) (-3678 (($ (-783)) 21)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) 40)) (-3919 (((-112) $ $) 32)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 35)) (-4018 (((-3 $ "failed") $ $) 42)) (-4007 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-938) $) NIL) (($ $ $) 45))) -(((-135) (-13 (-862) (-23) (-738) (-1057 (-783)) (-10 -8 (-6 (-4464 "*")) (-15 -4018 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3678 ($ (-783))) (-15 -4035 ((-112) $)) (-15 -1656 ((-112) $)) (-15 -4437 ((-112))) (-15 -3957 ((-112) (-112)))))) (T -135)) -((-4018 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-3678 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-4437 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3957 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(-13 (-862) (-23) (-738) (-1057 (-783)) (-10 -8 (-6 (-4464 "*")) (-15 -4018 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3678 ($ (-783))) (-15 -4035 ((-112) $)) (-15 -1656 ((-112) $)) (-15 -4437 ((-112))) (-15 -3957 ((-112) (-112))))) -((-3332 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-2477 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) -(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3332 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2477 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) -(-10 -7 (-15 -3332 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2477 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) -((-2034 (((-112) $ $) NIL)) (-2388 (($ (-656 |#3|)) 61)) (-2645 (($ $) 123) (($ $ (-576) (-576)) 122)) (-3656 (($) 20)) (-2974 (((-3 |#3| "failed") $) 83)) (-2378 ((|#3| $) NIL)) (-4283 (($ $ (-656 (-576))) 124)) (-3317 (((-656 |#3|) $) 56)) (-4049 (((-783) $) 66)) (-3390 (($ $ $) 117)) (-1664 (($) 65)) (-3288 (((-1178) $) NIL)) (-4418 (($) 19)) (-3139 (((-1139) $) NIL)) (-4367 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-2369 (((-783) $) 67)) (-4185 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-4092 (((-874) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1161 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 93 T CONST)) (-4310 (($) 94 T CONST)) (-3919 (((-112) $ $) 104)) (-4018 (($ $) 110) (($ $ $) 108)) (-4007 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) -(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -4092 ($ (-245 |#2| |#3|))) (-15 -4092 ($ (-1161 |#2| |#3|))) (-15 -4092 ($ (-656 |#3|))) (-15 -4092 ($ (-656 $))) (-15 -4049 ((-783) $)) (-15 -4367 (|#3| $)) (-15 -4367 (|#3| $ (-576) (-576))) (-15 -4367 (|#3| $ (-576) (-576) (-576))) (-15 -4367 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -4367 (|#3| $ (-656 (-576)))) (-15 -3390 ($ $ $)) (-15 * ($ $ $)) (-15 -4185 ($ $ (-576) $ (-576))) (-15 -4185 ($ $ (-576) (-576))) (-15 -2645 ($ $)) (-15 -2645 ($ $ (-576) (-576))) (-15 -4283 ($ $ (-656 (-576)))) (-15 -4418 ($)) (-15 -1664 ($)) (-15 -3317 ((-656 |#3|) $)) (-15 -2388 ($ (-656 |#3|))) (-15 -3656 ($)))) (-576) (-783) (-174)) (T -137)) -((-3390 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-1161 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-4367 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-4367 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-4367 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-4367 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-4367 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-4185 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-4185 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2645 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2645 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-4283 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-4418 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-1664 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3656 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174))))) -(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -4092 ($ (-245 |#2| |#3|))) (-15 -4092 ($ (-1161 |#2| |#3|))) (-15 -4092 ($ (-656 |#3|))) (-15 -4092 ($ (-656 $))) (-15 -4049 ((-783) $)) (-15 -4367 (|#3| $)) (-15 -4367 (|#3| $ (-576) (-576))) (-15 -4367 (|#3| $ (-576) (-576) (-576))) (-15 -4367 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -4367 (|#3| $ (-656 (-576)))) (-15 -3390 ($ $ $)) (-15 * ($ $ $)) (-15 -4185 ($ $ (-576) $ (-576))) (-15 -4185 ($ $ (-576) (-576))) (-15 -2645 ($ $)) (-15 -2645 ($ $ (-576) (-576))) (-15 -4283 ($ $ (-656 (-576)))) (-15 -4418 ($)) (-15 -1664 ($)) (-15 -3317 ((-656 |#3|) $)) (-15 -2388 ($ (-656 |#3|))) (-15 -3656 ($)))) -((-2034 (((-112) $ $) NIL)) (-1804 (((-1154) $) 11)) (-1790 (((-1154) $) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-138) (-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1154) $))))) (T -138)) -((-1790 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138))))) -(-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1154) $)))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3927 (((-188) $) 10)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-656 (-1154)) $) 13)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-139) (-13 (-1102) (-10 -8 (-15 -3927 ((-188) $)) (-15 -4136 ((-656 (-1154)) $))))) (T -139)) -((-3927 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-139))))) -(-13 (-1102) (-10 -8 (-15 -3927 ((-188) $)) (-15 -4136 ((-656 (-1154)) $)))) -((-2034 (((-112) $ $) NIL)) (-3760 (((-656 (-877)) $) NIL)) (-4124 (((-518) $) NIL)) (-3288 (((-1178) $) NIL)) (-3927 (((-188) $) NIL)) (-1412 (((-112) $ (-518)) NIL)) (-3139 (((-1139) $) NIL)) (-2341 (((-656 (-112)) $) NIL)) (-4092 (((-874) $) NIL) (((-189) $) 6)) (-1531 (((-112) $ $) NIL)) (-1666 (((-55) $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-656 (-1154)) $) 10)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-134) (-13 (-1102) (-10 -8 (-15 -2719 ((-656 (-1154)) $))))) (T -134)) +((-2719 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-134))))) +(-13 (-1102) (-10 -8 (-15 -2719 ((-656 (-1154)) $)))) +((-3474 (((-112) $ $) 49)) (-1454 (((-112) $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-783) "failed") $) 58)) (-4056 (((-783) $) 56)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) 37)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2866 (((-112)) 59)) (-3475 (((-112) (-112)) 61)) (-3517 (((-112) $) 30)) (-3933 (((-112) $) 55)) (-3563 (((-874) $) 28) (($ (-783)) 20)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 18 T CONST)) (-2810 (($) 19 T CONST)) (-4043 (($ (-783)) 21)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) 40)) (-2988 (((-112) $ $) 32)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 35)) (-3095 (((-3 $ "failed") $ $) 42)) (-3083 (($ $ $) 38)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL) (($ $ $) 54)) (* (($ (-783) $) 48) (($ (-938) $) NIL) (($ $ $) 45))) +(((-135) (-13 (-862) (-23) (-738) (-1057 (-783)) (-10 -8 (-6 (-4463 "*")) (-15 -3095 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4043 ($ (-783))) (-15 -3517 ((-112) $)) (-15 -3933 ((-112) $)) (-15 -2866 ((-112))) (-15 -3475 ((-112) (-112)))))) (T -135)) +((-3095 (*1 *1 *1 *1) (|partial| -5 *1 (-135))) (** (*1 *1 *1 *1) (-5 *1 (-135))) (-4043 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-2866 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(-13 (-862) (-23) (-738) (-1057 (-783)) (-10 -8 (-6 (-4463 "*")) (-15 -3095 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -4043 ($ (-783))) (-15 -3517 ((-112) $)) (-15 -3933 ((-112) $)) (-15 -2866 ((-112))) (-15 -3475 ((-112) (-112))))) +((-3468 (((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|)) 14)) (-1632 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18))) +(((-136 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3468 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1632 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-576) (-783) (-174) (-174)) (T -136)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8))))) +(-10 -7 (-15 -3468 ((-137 |#1| |#2| |#4|) (-656 |#4|) (-137 |#1| |#2| |#3|))) (-15 -1632 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) +((-3474 (((-112) $ $) NIL)) (-2504 (($ (-656 |#3|)) 61)) (-2793 (($ $) 123) (($ $ (-576) (-576)) 122)) (-3767 (($) 20)) (-1539 (((-3 |#3| "failed") $) 83)) (-4056 ((|#3| $) NIL)) (-3777 (($ $ (-656 (-576))) 124)) (-3455 (((-656 |#3|) $) 56)) (-3606 (((-783) $) 66)) (-3105 (($ $ $) 117)) (-1556 (($) 65)) (-1927 (((-1177) $) NIL)) (-1584 (($) 19)) (-1445 (((-1139) $) NIL)) (-2871 ((|#3| $ (-576)) 69) ((|#3| $) 68) ((|#3| $ (-576) (-576)) 70) ((|#3| $ (-576) (-576) (-576)) 71) ((|#3| $ (-576) (-576) (-576) (-576)) 72) ((|#3| $ (-656 (-576))) 73)) (-1433 (((-783) $) 67)) (-2641 (($ $ (-576) $ (-576)) 118) (($ $ (-576) (-576)) 120)) (-3563 (((-874) $) 91) (($ |#3|) 92) (($ (-245 |#2| |#3|)) 99) (($ (-1161 |#2| |#3|)) 102) (($ (-656 |#3|)) 74) (($ (-656 $)) 80)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 93 T CONST)) (-2810 (($) 94 T CONST)) (-2988 (((-112) $ $) 104)) (-3095 (($ $) 110) (($ $ $) 108)) (-3083 (($ $ $) 106)) (* (($ |#3| $) 115) (($ $ |#3|) 116) (($ $ (-576)) 113) (($ (-576) $) 112) (($ $ $) 119))) +(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -3563 ($ (-245 |#2| |#3|))) (-15 -3563 ($ (-1161 |#2| |#3|))) (-15 -3563 ($ (-656 |#3|))) (-15 -3563 ($ (-656 $))) (-15 -3606 ((-783) $)) (-15 -2871 (|#3| $)) (-15 -2871 (|#3| $ (-576) (-576))) (-15 -2871 (|#3| $ (-576) (-576) (-576))) (-15 -2871 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2871 (|#3| $ (-656 (-576)))) (-15 -3105 ($ $ $)) (-15 * ($ $ $)) (-15 -2641 ($ $ (-576) $ (-576))) (-15 -2641 ($ $ (-576) (-576))) (-15 -2793 ($ $)) (-15 -2793 ($ $ (-576) (-576))) (-15 -3777 ($ $ (-656 (-576)))) (-15 -1584 ($)) (-15 -1556 ($)) (-15 -3455 ((-656 |#3|) $)) (-15 -2504 ($ (-656 |#3|))) (-15 -3767 ($)))) (-576) (-783) (-174)) (T -137)) +((-3105 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1161 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 *2) (-4 *5 (-174)))) (-2871 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) (-14 *4 (-783)))) (-2871 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2871 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2871 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-783)))) (-2871 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-576)) (-14 *5 (-783)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2641 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2641 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-2793 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-2793 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-783)) (-4 *5 (-174)))) (-3777 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-1584 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-1556 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174)))) (-3455 (*1 *2 *1) (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)))) (-3767 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) (-4 *4 (-174))))) +(-13 (-477 |#3| (-783)) (-482 (-576) (-783)) (-296 (-576) |#3|) (-10 -8 (-15 -3563 ($ (-245 |#2| |#3|))) (-15 -3563 ($ (-1161 |#2| |#3|))) (-15 -3563 ($ (-656 |#3|))) (-15 -3563 ($ (-656 $))) (-15 -3606 ((-783) $)) (-15 -2871 (|#3| $)) (-15 -2871 (|#3| $ (-576) (-576))) (-15 -2871 (|#3| $ (-576) (-576) (-576))) (-15 -2871 (|#3| $ (-576) (-576) (-576) (-576))) (-15 -2871 (|#3| $ (-656 (-576)))) (-15 -3105 ($ $ $)) (-15 * ($ $ $)) (-15 -2641 ($ $ (-576) $ (-576))) (-15 -2641 ($ $ (-576) (-576))) (-15 -2793 ($ $)) (-15 -2793 ($ $ (-576) (-576))) (-15 -3777 ($ $ (-656 (-576)))) (-15 -1584 ($)) (-15 -1556 ($)) (-15 -3455 ((-656 |#3|) $)) (-15 -2504 ($ (-656 |#3|))) (-15 -3767 ($)))) +((-3474 (((-112) $ $) NIL)) (-1649 (((-1154) $) 11)) (-1637 (((-1154) $) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-138) (-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1154) $))))) (T -138)) +((-1637 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138))))) +(-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1154) $)))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1820 (((-188) $) 10)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-656 (-1154)) $) 13)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-139) (-13 (-1102) (-10 -8 (-15 -1820 ((-188) $)) (-15 -2719 ((-656 (-1154)) $))))) (T -139)) +((-1820 (*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-139))))) +(-13 (-1102) (-10 -8 (-15 -1820 ((-188) $)) (-15 -2719 ((-656 (-1154)) $)))) +((-3474 (((-112) $ $) NIL)) (-3259 (((-656 (-877)) $) NIL)) (-2706 (((-518) $) NIL)) (-1927 (((-1177) $) NIL)) (-1820 (((-188) $) NIL)) (-3718 (((-112) $ (-518)) NIL)) (-1445 (((-1139) $) NIL)) (-2862 (((-656 (-112)) $) NIL)) (-3563 (((-874) $) NIL) (((-189) $) 6)) (-3985 (((-112) $ $) NIL)) (-1730 (((-55) $) NIL)) (-2988 (((-112) $ $) NIL))) (((-140) (-13 (-187) (-625 (-189)))) (T -140)) NIL (-13 (-187) (-625 (-189))) -((-3088 (((-656 (-185 (-140))) $) 13)) (-2971 (((-656 (-185 (-140))) $) 14)) (-2602 (((-656 (-850)) $) 10)) (-1873 (((-140) $) 7)) (-4092 (((-874) $) 16))) -(((-141) (-13 (-625 (-874)) (-10 -8 (-15 -1873 ((-140) $)) (-15 -2602 ((-656 (-850)) $)) (-15 -3088 ((-656 (-185 (-140))) $)) (-15 -2971 ((-656 (-185 (-140))) $))))) (T -141)) -((-1873 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-2602 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-3088 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(-13 (-625 (-874)) (-10 -8 (-15 -1873 ((-140) $)) (-15 -2602 ((-656 (-850)) $)) (-15 -3088 ((-656 (-185 (-140))) $)) (-15 -2971 ((-656 (-185 (-140))) $)))) -((-2034 (((-112) $ $) NIL)) (-3402 (($) 17 T CONST)) (-1922 (($) NIL (|has| (-145) (-379)))) (-4006 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-4369 (($ $ $) NIL)) (-3004 (((-112) $ $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-2247 (((-783)) NIL (|has| (-145) (-379)))) (-3662 (($) NIL) (($ (-656 (-145))) NIL)) (-3831 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-4376 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462))) (($ (-145) $) 60 (|has| $ (-6 -4462)))) (-2892 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-2359 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-2446 (($) NIL (|has| (-145) (-379)))) (-4260 (((-656 (-145)) $) 69 (|has| $ (-6 -4462)))) (-1583 (((-112) $ $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-3492 (((-145) $) NIL (|has| (-145) (-862)))) (-1750 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-2726 (((-145) $) NIL (|has| (-145) (-862)))) (-3874 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-145) (-145)) $) 64)) (-4130 (($) 18 T CONST)) (-3225 (((-938) $) NIL (|has| (-145) (-379)))) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-3586 (($ $ $) 30)) (-3576 (((-145) $) 61)) (-2361 (($ (-145) $) 59)) (-2550 (($ (-938)) NIL (|has| (-145) (-379)))) (-4134 (($) 16 T CONST)) (-3139 (((-1139) $) NIL)) (-1863 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-1679 (((-145) $) 62)) (-3292 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) 57)) (-1898 (($) 15 T CONST)) (-3182 (($ $ $) 32) (($ $ (-145)) NIL)) (-1833 (($ (-656 (-145))) NIL) (($) NIL)) (-3150 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-1178) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-4103 (($ (-656 (-145))) NIL)) (-3737 (($ $) 33 (|has| (-145) (-379)))) (-4092 (((-874) $) 53)) (-1850 (($ (-1178)) 14) (($ (-656 (-145))) 50)) (-2214 (((-783) $) NIL)) (-1460 (($) 58) (($ (-656 (-145))) NIL)) (-1531 (((-112) $ $) NIL)) (-3688 (($ (-656 (-145))) NIL)) (-2190 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2880 (($) 21 T CONST)) (-4073 (($) 20 T CONST)) (-3919 (((-112) $ $) 24)) (-2048 (((-783) $) 56 (|has| $ (-6 -4462))))) -(((-142) (-13 (-1119) (-626 (-1178)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -1850 ($ (-1178))) (-15 -1850 ($ (-656 (-145)))) (-15 -1898 ($) -2670) (-15 -4134 ($) -2670) (-15 -3402 ($) -2670) (-15 -4130 ($) -2670) (-15 -4073 ($) -2670) (-15 -2880 ($) -2670)))) (T -142)) -((-1850 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-142)))) (-1850 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-1898 (*1 *1) (-5 *1 (-142))) (-4134 (*1 *1) (-5 *1 (-142))) (-3402 (*1 *1) (-5 *1 (-142))) (-4130 (*1 *1) (-5 *1 (-142))) (-4073 (*1 *1) (-5 *1 (-142))) (-2880 (*1 *1) (-5 *1 (-142)))) -(-13 (-1119) (-626 (-1178)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -1850 ($ (-1178))) (-15 -1850 ($ (-656 (-145)))) (-15 -1898 ($) -2670) (-15 -4134 ($) -2670) (-15 -3402 ($) -2670) (-15 -4130 ($) -2670) (-15 -4073 ($) -2670) (-15 -2880 ($) -2670))) -((-2324 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3634 ((|#1| |#3|) 9)) (-4077 ((|#3| |#3|) 15))) -(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3634 (|#1| |#3|)) (-15 -4077 (|#3| |#3|)) (-15 -2324 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1011 |#1|) (-384 |#2|)) (T -143)) -((-2324 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-3634 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -3634 (|#1| |#3|)) (-15 -4077 (|#3| |#3|)) (-15 -2324 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2135 (($ $ $) 8)) (-1765 (($ $) 7)) (-1760 (($ $ $) 6))) +((-2032 (((-656 (-185 (-140))) $) 13)) (-2607 (((-656 (-185 (-140))) $) 14)) (-3968 (((-656 (-850)) $) 10)) (-2642 (((-140) $) 7)) (-3563 (((-874) $) 16))) +(((-141) (-13 (-625 (-874)) (-10 -8 (-15 -2642 ((-140) $)) (-15 -3968 ((-656 (-850)) $)) (-15 -2032 ((-656 (-185 (-140))) $)) (-15 -2607 ((-656 (-185 (-140))) $))))) (T -141)) +((-2642 (*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) +(-13 (-625 (-874)) (-10 -8 (-15 -2642 ((-140) $)) (-15 -3968 ((-656 (-850)) $)) (-15 -2032 ((-656 (-185 (-140))) $)) (-15 -2607 ((-656 (-185 (-140))) $)))) +((-3474 (((-112) $ $) NIL)) (-4146 (($) 17 T CONST)) (-1642 (($) NIL (|has| (-145) (-379)))) (-1901 (($ $ $) 19) (($ $ (-145)) NIL) (($ (-145) $) NIL)) (-4195 (($ $ $) NIL)) (-2529 (((-112) $ $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2148 (((-783)) NIL (|has| (-145) (-379)))) (-2187 (($) NIL) (($ (-656 (-145))) NIL)) (-4001 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-3623 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (($ (-145) $) 60 (|has| $ (-6 -4461)))) (-3902 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (($ (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-2521 (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-1803 (($) NIL (|has| (-145) (-379)))) (-3825 (((-656 (-145)) $) 69 (|has| $ (-6 -4461)))) (-1408 (((-112) $ $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-2442 (((-145) $) NIL (|has| (-145) (-862)))) (-2591 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-145) $) 27 (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-1893 (((-145) $) NIL (|has| (-145) (-862)))) (-1763 (($ (-1 (-145) (-145)) $) 68 (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-145) (-145)) $) 64)) (-2795 (($) 18 T CONST)) (-1902 (((-938) $) NIL (|has| (-145) (-379)))) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-2021 (($ $ $) 30)) (-1409 (((-145) $) 61)) (-2040 (($ (-145) $) 59)) (-3257 (($ (-938)) NIL (|has| (-145) (-379)))) (-3245 (($) 16 T CONST)) (-1445 (((-1139) $) NIL)) (-2644 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-3399 (((-145) $) 62)) (-4207 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) 57)) (-2193 (($) 15 T CONST)) (-1956 (($ $ $) 32) (($ $ (-145)) NIL)) (-2837 (($ (-656 (-145))) NIL) (($) NIL)) (-1456 (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119)))) (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-1177) $) 37) (((-548) $) NIL (|has| (-145) (-626 (-548)))) (((-656 (-145)) $) 35)) (-3573 (($ (-656 (-145))) NIL)) (-4063 (($ $) 33 (|has| (-145) (-379)))) (-3563 (((-874) $) 53)) (-1884 (($ (-1177)) 14) (($ (-656 (-145))) 50)) (-3763 (((-783) $) NIL)) (-1909 (($) 58) (($ (-656 (-145))) NIL)) (-3985 (((-112) $ $) NIL)) (-3773 (($ (-656 (-145))) NIL)) (-2043 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-4233 (($) 21 T CONST)) (-2858 (($) 20 T CONST)) (-2988 (((-112) $ $) 24)) (-3485 (((-783) $) 56 (|has| $ (-6 -4461))))) +(((-142) (-13 (-1119) (-626 (-1177)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -1884 ($ (-1177))) (-15 -1884 ($ (-656 (-145)))) (-15 -2193 ($) -1398) (-15 -3245 ($) -1398) (-15 -4146 ($) -1398) (-15 -2795 ($) -1398) (-15 -2858 ($) -1398) (-15 -4233 ($) -1398)))) (T -142)) +((-1884 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-142)))) (-1884 (*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) (-2193 (*1 *1) (-5 *1 (-142))) (-3245 (*1 *1) (-5 *1 (-142))) (-4146 (*1 *1) (-5 *1 (-142))) (-2795 (*1 *1) (-5 *1 (-142))) (-2858 (*1 *1) (-5 *1 (-142))) (-4233 (*1 *1) (-5 *1 (-142)))) +(-13 (-1119) (-626 (-1177)) (-437 (-145)) (-626 (-656 (-145))) (-10 -8 (-15 -1884 ($ (-1177))) (-15 -1884 ($ (-656 (-145)))) (-15 -2193 ($) -1398) (-15 -3245 ($) -1398) (-15 -4146 ($) -1398) (-15 -2795 ($) -1398) (-15 -2858 ($) -1398) (-15 -4233 ($) -1398))) +((-3956 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3412 ((|#1| |#3|) 9)) (-3266 ((|#3| |#3|) 15))) +(((-143 |#1| |#2| |#3|) (-10 -7 (-15 -3412 (|#1| |#3|)) (-15 -3266 (|#3| |#3|)) (-15 -3956 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1011 |#1|) (-384 |#2|)) (T -143)) +((-3956 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) (-4 *3 (-384 *5)))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) (-4 *3 (-384 *4))))) +(-10 -7 (-15 -3412 (|#1| |#3|)) (-15 -3266 (|#3| |#3|)) (-15 -3956 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1891 (($ $ $) 8)) (-1473 (($ $) 7)) (-4114 (($ $ $) 6))) (((-144) (-141)) (T -144)) -((-2135 (*1 *1 *1 *1) (-4 *1 (-144))) (-1765 (*1 *1 *1) (-4 *1 (-144))) (-1760 (*1 *1 *1 *1) (-4 *1 (-144)))) -(-13 (-10 -8 (-15 -1760 ($ $ $)) (-15 -1765 ($ $)) (-15 -2135 ($ $ $)))) -((-2034 (((-112) $ $) NIL)) (-1506 (((-112) $) 39)) (-3402 (($ $) 55)) (-2640 (($) 26 T CONST)) (-2247 (((-783)) 13)) (-2446 (($) 25)) (-3219 (($) 27 T CONST)) (-1337 (((-783) $) 21)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-2076 (((-112) $) 41)) (-4130 (($ $) 56)) (-3225 (((-938) $) 23)) (-3288 (((-1178) $) 49)) (-2550 (($ (-938)) 20)) (-3450 (((-112) $) 37)) (-3139 (((-1139) $) NIL)) (-4292 (($) 28 T CONST)) (-2844 (((-112) $) 35)) (-4092 (((-874) $) 30)) (-3838 (($ (-783)) 19) (($ (-1178)) 54)) (-1531 (((-112) $ $) NIL)) (-3657 (((-112) $) 45)) (-3486 (((-112) $) 43)) (-3977 (((-112) $ $) 11)) (-3955 (((-112) $ $) 9)) (-3919 (((-112) $ $) 7)) (-3966 (((-112) $ $) 10)) (-3944 (((-112) $ $) 8))) -(((-145) (-13 (-856) (-10 -8 (-15 -1337 ((-783) $)) (-15 -3838 ($ (-783))) (-15 -3838 ($ (-1178))) (-15 -2640 ($) -2670) (-15 -3219 ($) -2670) (-15 -4292 ($) -2670) (-15 -3402 ($ $)) (-15 -4130 ($ $)) (-15 -2844 ((-112) $)) (-15 -3450 ((-112) $)) (-15 -3486 ((-112) $)) (-15 -1506 ((-112) $)) (-15 -2076 ((-112) $)) (-15 -3657 ((-112) $))))) (T -145)) -((-1337 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-3838 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-145)))) (-2640 (*1 *1) (-5 *1 (-145))) (-3219 (*1 *1) (-5 *1 (-145))) (-4292 (*1 *1) (-5 *1 (-145))) (-3402 (*1 *1 *1) (-5 *1 (-145))) (-4130 (*1 *1 *1) (-5 *1 (-145))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3657 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(-13 (-856) (-10 -8 (-15 -1337 ((-783) $)) (-15 -3838 ($ (-783))) (-15 -3838 ($ (-1178))) (-15 -2640 ($) -2670) (-15 -3219 ($) -2670) (-15 -4292 ($) -2670) (-15 -3402 ($ $)) (-15 -4130 ($ $)) (-15 -2844 ((-112) $)) (-15 -3450 ((-112) $)) (-15 -3486 ((-112) $)) (-15 -1506 ((-112) $)) (-15 -2076 ((-112) $)) (-15 -3657 ((-112) $)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 33)) (-3612 (((-3 $ "failed") $) 39)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-1891 (*1 *1 *1 *1) (-4 *1 (-144))) (-1473 (*1 *1 *1) (-4 *1 (-144))) (-4114 (*1 *1 *1 *1) (-4 *1 (-144)))) +(-13 (-10 -8 (-15 -4114 ($ $ $)) (-15 -1473 ($ $)) (-15 -1891 ($ $ $)))) +((-3474 (((-112) $ $) NIL)) (-3689 (((-112) $) 39)) (-4146 (($ $) 55)) (-1422 (($) 26 T CONST)) (-2148 (((-783)) 13)) (-1803 (($) 25)) (-2535 (($) 27 T CONST)) (-2956 (((-783) $) 21)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-4373 (((-112) $) 41)) (-2795 (($ $) 56)) (-1902 (((-938) $) 23)) (-1927 (((-1177) $) 49)) (-3257 (($ (-938)) 20)) (-3931 (((-112) $) 37)) (-1445 (((-1139) $) NIL)) (-3328 (($) 28 T CONST)) (-1819 (((-112) $) 35)) (-3563 (((-874) $) 30)) (-3021 (($ (-783)) 19) (($ (-1177)) 54)) (-3985 (((-112) $ $) NIL)) (-3861 (((-112) $) 45)) (-4340 (((-112) $) 43)) (-3049 (((-112) $ $) 11)) (-3024 (((-112) $ $) 9)) (-2988 (((-112) $ $) 7)) (-3037 (((-112) $ $) 10)) (-3010 (((-112) $ $) 8))) +(((-145) (-13 (-856) (-10 -8 (-15 -2956 ((-783) $)) (-15 -3021 ($ (-783))) (-15 -3021 ($ (-1177))) (-15 -1422 ($) -1398) (-15 -2535 ($) -1398) (-15 -3328 ($) -1398) (-15 -4146 ($ $)) (-15 -2795 ($ $)) (-15 -1819 ((-112) $)) (-15 -3931 ((-112) $)) (-15 -4340 ((-112) $)) (-15 -3689 ((-112) $)) (-15 -4373 ((-112) $)) (-15 -3861 ((-112) $))))) (T -145)) +((-2956 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145)))) (-3021 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-145)))) (-1422 (*1 *1) (-5 *1 (-145))) (-2535 (*1 *1) (-5 *1 (-145))) (-3328 (*1 *1) (-5 *1 (-145))) (-4146 (*1 *1 *1) (-5 *1 (-145))) (-2795 (*1 *1 *1) (-5 *1 (-145))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4340 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-4373 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(-13 (-856) (-10 -8 (-15 -2956 ((-783) $)) (-15 -3021 ($ (-783))) (-15 -3021 ($ (-1177))) (-15 -1422 ($) -1398) (-15 -2535 ($) -1398) (-15 -3328 ($) -1398) (-15 -4146 ($ $)) (-15 -2795 ($ $)) (-15 -1819 ((-112) $)) (-15 -3931 ((-112) $)) (-15 -4340 ((-112) $)) (-15 -3689 ((-112) $)) (-15 -4373 ((-112) $)) (-15 -3861 ((-112) $)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 33)) (-2883 (((-3 $ "failed") $) 39)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-146) (-141)) (T -146)) -((-3612 (*1 *1 *1) (|partial| -4 *1 (-146)))) -(-13 (-1068) (-10 -8 (-15 -3612 ((-3 $ "failed") $)))) +((-2883 (*1 *1 *1) (|partial| -4 *1 (-146)))) +(-13 (-1068) (-10 -8 (-15 -2883 ((-3 $ "failed") $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-3794 ((|#1| (-701 |#1|) |#1|) 19))) -(((-147 |#1|) (-10 -7 (-15 -3794 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147)) -((-3794 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) -(-10 -7 (-15 -3794 (|#1| (-701 |#1|) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 33)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3941 ((|#1| (-701 |#1|) |#1|) 19))) +(((-147 |#1|) (-10 -7 (-15 -3941 (|#1| (-701 |#1|) |#1|))) (-174)) (T -147)) +((-3941 (*1 *2 *3 *2) (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2))))) +(-10 -7 (-15 -3941 (|#1| (-701 |#1|) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 33)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-148) (-141)) (T -148)) NIL (-13 (-1068)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-3658 (((-2 (|:| -3175 (-783)) (|:| -1856 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-2385 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-1868 (((-2 (|:| -1856 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2603 ((|#1| |#3| |#3|) 44)) (-2259 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-2108 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53))) -(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -1868 ((-2 (|:| -1856 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2385 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -3658 ((-2 (|:| -3175 (-783)) (|:| -1856 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2603 (|#1| |#3| |#3|)) (-15 -2259 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2108 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1241) (-1263 |#1|) (-1263 (-419 |#2|))) (T -149)) -((-2108 (*1 *2 *3 *3) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))) (-2259 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1263 *3)))) (-2603 (*1 *2 *3 *3) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1241)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-3658 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1263 *3)))) (-2385 (*1 *2 *3) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))) (-1868 (*1 *2 *3) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -1856 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) -(-10 -7 (-15 -1868 ((-2 (|:| -1856 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2385 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -3658 ((-2 (|:| -3175 (-783)) (|:| -1856 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2603 (|#1| |#3| |#3|)) (-15 -2259 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2108 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) -((-2074 (((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)) 35))) -(((-150 |#1| |#2|) (-10 -7 (-15 -2074 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)))) (-557) (-167 |#1|)) (T -150)) -((-2074 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) -(-10 -7 (-15 -2074 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)))) -((-3457 (($ (-1 (-112) |#2|) $) 37)) (-1690 (($ $) 44)) (-2892 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2359 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-1863 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-3292 (((-112) (-1 (-112) |#2|) $) 24)) (-3150 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-2190 (((-112) (-1 (-112) |#2|) $) 21)) (-2048 (((-783) $) 12))) -(((-151 |#1| |#2|) (-10 -8 (-15 -1690 (|#1| |#1|)) (-15 -2892 (|#1| |#2| |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3457 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2892 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1863 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3150 ((-783) |#2| |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2048 ((-783) |#1|))) (-152 |#2|) (-1237)) (T -151)) -NIL -(-10 -8 (-15 -1690 (|#1| |#1|)) (-15 -2892 (|#1| |#2| |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3457 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2892 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1863 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3150 ((-783) |#2| |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2048 ((-783) |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-3457 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-1690 (($ $) 42 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462))) (($ |#1| $) 43 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 50)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-152 |#1|) (-141) (-1237)) (T -152)) -((-4103 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-152 *3)))) (-1863 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2359 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2359 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2892 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *3)) (-4 *3 (-1237)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *3)) (-4 *3 (-1237)))) (-2359 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)))) (-2892 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) (-4 *2 (-1119)))) (-1690 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) (-4 *2 (-1119))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -4103 ($ (-656 |t#1|))) (-15 -1863 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -2359 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2359 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2892 ($ (-1 (-112) |t#1|) $)) (-15 -3457 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -2359 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2892 ($ |t#1| $)) (-15 -1690 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) 111)) (-1810 (((-112) $) NIL)) (-1518 (($ |#2| (-656 (-938))) 71)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3750 (($ (-938)) 57)) (-3667 (((-135)) 23)) (-4092 (((-874) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-2430 ((|#2| $ (-656 (-938))) 74)) (-2471 (((-783)) 20 T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 47 T CONST)) (-4310 (($) 51 T CONST)) (-3919 (((-112) $ $) 33)) (-4028 (($ $ |#2|) NIL)) (-4018 (($ $) 42) (($ $ $) 40)) (-4007 (($ $ $) 38)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) -(((-153 |#1| |#2| |#3|) (-13 (-1068) (-38 |#2|) (-1294 |#2|) (-10 -8 (-15 -3750 ($ (-938))) (-15 -1518 ($ |#2| (-656 (-938)))) (-15 -2430 (|#2| $ (-656 (-938)))) (-15 -3179 ((-3 $ "failed") $)))) (-938) (-374) (-1012 |#1| |#2|)) (T -153)) -((-3179 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-938)) (-4 *3 (-374)) (-14 *4 (-1012 *2 *3)))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1012 *3 *4)))) (-1518 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-938)) (-4 *2 (-374)) (-14 *5 (-1012 *4 *2)))) (-2430 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-938))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-938)) (-14 *5 (-1012 *4 *2))))) -(-13 (-1068) (-38 |#2|) (-1294 |#2|) (-10 -8 (-15 -3750 ($ (-938))) (-15 -1518 ($ |#2| (-656 (-938)))) (-15 -2430 (|#2| $ (-656 (-938)))) (-15 -3179 ((-3 $ "failed") $)))) -((-4255 (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-1346 (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944)) 96)) (-2403 (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-960 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944)) 91))) -(((-154) (-10 -7 (-15 -2403 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -2403 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -1346 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -1346 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -4255 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2403 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-960 (-227))))) (-15 -2403 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))))))) (T -154)) -((-2403 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 (-227))))))) (-2403 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-960 (-227)))))) (-4255 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 *4)))) (|:| |xValues| (-1113 *4)) (|:| |yValues| (-1113 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 *4)))))) (-1346 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))) (-2403 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154))))) -(-10 -7 (-15 -2403 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -2403 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -1346 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -1346 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -4255 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2403 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-960 (-227))))) (-15 -2403 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227))))))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-1629 (((-656 (-1154)) $) 20)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 27) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-1154) $) 9)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-155) (-13 (-1102) (-10 -8 (-15 -1629 ((-656 (-1154)) $)) (-15 -4136 ((-1154) $))))) (T -155)) -((-1629 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-155)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-155))))) -(-13 (-1102) (-10 -8 (-15 -1629 ((-656 (-1154)) $)) (-15 -4136 ((-1154) $)))) -((-3429 (((-656 (-171 |#2|)) |#1| |#2|) 50))) -(((-156 |#1| |#2|) (-10 -7 (-15 -3429 ((-656 (-171 |#2|)) |#1| |#2|))) (-1263 (-171 (-576))) (-13 (-374) (-860))) (T -156)) -((-3429 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1263 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3429 ((-656 (-171 |#2|)) |#1| |#2|))) -((-2034 (((-112) $ $) NIL)) (-1804 (((-1236) $) 12)) (-1790 (((-1154) $) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-157) (-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1236) $))))) (T -157)) -((-1790 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-157)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-157))))) -(-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1236) $)))) -((-2034 (((-112) $ $) NIL)) (-3310 (($) 41)) (-3331 (($) 40)) (-2337 (((-938)) 46)) (-3288 (((-1178) $) NIL)) (-3013 (((-576) $) 44)) (-3139 (((-1139) $) NIL)) (-2613 (($) 42)) (-2367 (($ (-576)) 47)) (-4092 (((-874) $) 53)) (-3280 (($) 43)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 38)) (-4007 (($ $ $) 35)) (* (($ (-938) $) 45) (($ (-227) $) 11))) -(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-938) $)) (-15 * ($ (-227) $)) (-15 -4007 ($ $ $)) (-15 -3331 ($)) (-15 -3310 ($)) (-15 -2613 ($)) (-15 -3280 ($)) (-15 -3013 ((-576) $)) (-15 -2337 ((-938))) (-15 -2367 ($ (-576)))))) (T -158)) -((-4007 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-3331 (*1 *1) (-5 *1 (-158))) (-3310 (*1 *1) (-5 *1 (-158))) (-2613 (*1 *1) (-5 *1 (-158))) (-3280 (*1 *1) (-5 *1 (-158))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-2337 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-158)))) (-2367 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) -(-13 (-25) (-10 -8 (-15 * ($ (-938) $)) (-15 * ($ (-227) $)) (-15 -4007 ($ $ $)) (-15 -3331 ($)) (-15 -3310 ($)) (-15 -2613 ($)) (-15 -3280 ($)) (-15 -3013 ((-576) $)) (-15 -2337 ((-938))) (-15 -2367 ($ (-576))))) -((-4358 ((|#2| |#2| (-1111 |#2|)) 98) ((|#2| |#2| (-1196)) 75)) (-3390 ((|#2| |#2| (-1111 |#2|)) 97) ((|#2| |#2| (-1196)) 74)) (-2135 ((|#2| |#2| |#2|) 25)) (-1344 (((-115) (-115)) 111)) (-3038 ((|#2| (-656 |#2|)) 130)) (-2544 ((|#2| (-656 |#2|)) 151)) (-3389 ((|#2| (-656 |#2|)) 138)) (-1651 ((|#2| |#2|) 136)) (-3824 ((|#2| (-656 |#2|)) 124)) (-3442 ((|#2| (-656 |#2|)) 125)) (-1632 ((|#2| (-656 |#2|)) 149)) (-4144 ((|#2| |#2| (-1196)) 63) ((|#2| |#2|) 62)) (-1765 ((|#2| |#2|) 21)) (-1760 ((|#2| |#2| |#2|) 24)) (-3201 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-159 |#1| |#2|) (-10 -7 (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1760 (|#2| |#2| |#2|)) (-15 -2135 (|#2| |#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -4144 (|#2| |#2|)) (-15 -4144 (|#2| |#2| (-1196))) (-15 -4358 (|#2| |#2| (-1196))) (-15 -4358 (|#2| |#2| (-1111 |#2|))) (-15 -3390 (|#2| |#2| (-1196))) (-15 -3390 (|#2| |#2| (-1111 |#2|))) (-15 -1651 (|#2| |#2|)) (-15 -1632 (|#2| (-656 |#2|))) (-15 -3389 (|#2| (-656 |#2|))) (-15 -2544 (|#2| (-656 |#2|))) (-15 -3824 (|#2| (-656 |#2|))) (-15 -3442 (|#2| (-656 |#2|))) (-15 -3038 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159)) -((-3038 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1632 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1651 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3390 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3390 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4358 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-4358 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4144 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-4144 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-2135 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1760 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1344 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -1760 (|#2| |#2| |#2|)) (-15 -2135 (|#2| |#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -4144 (|#2| |#2|)) (-15 -4144 (|#2| |#2| (-1196))) (-15 -4358 (|#2| |#2| (-1196))) (-15 -4358 (|#2| |#2| (-1111 |#2|))) (-15 -3390 (|#2| |#2| (-1196))) (-15 -3390 (|#2| |#2| (-1111 |#2|))) (-15 -1651 (|#2| |#2|)) (-15 -1632 (|#2| (-656 |#2|))) (-15 -3389 (|#2| (-656 |#2|))) (-15 -2544 (|#2| (-656 |#2|))) (-15 -3824 (|#2| (-656 |#2|))) (-15 -3442 (|#2| (-656 |#2|))) (-15 -3038 (|#2| (-656 |#2|)))) -((-3698 ((|#1| |#1| |#1|) 64)) (-2315 ((|#1| |#1| |#1|) 61)) (-2135 ((|#1| |#1| |#1|) 55)) (-3769 ((|#1| |#1|) 42)) (-2453 ((|#1| |#1| (-656 |#1|)) 53)) (-1765 ((|#1| |#1|) 46)) (-1760 ((|#1| |#1| |#1|) 49))) -(((-160 |#1|) (-10 -7 (-15 -1760 (|#1| |#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -2453 (|#1| |#1| (-656 |#1|))) (-15 -3769 (|#1| |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -2315 (|#1| |#1| |#1|)) (-15 -3698 (|#1| |#1| |#1|))) (-557)) (T -160)) -((-3698 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2315 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2135 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3769 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2453 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-1765 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1760 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(-10 -7 (-15 -1760 (|#1| |#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -2453 (|#1| |#1| (-656 |#1|))) (-15 -3769 (|#1| |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -2315 (|#1| |#1| |#1|)) (-15 -3698 (|#1| |#1| |#1|))) -((-4358 (($ $ (-1196)) 12) (($ $ (-1111 $)) 11)) (-3390 (($ $ (-1196)) 10) (($ $ (-1111 $)) 9)) (-2135 (($ $ $) 8)) (-4144 (($ $) 14) (($ $ (-1196)) 13)) (-1765 (($ $) 7)) (-1760 (($ $ $) 6))) +((-2781 (((-2 (|:| -4274 (-783)) (|:| -1706 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783)) 76)) (-2229 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|) 56)) (-3209 (((-2 (|:| -1706 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2886 ((|#1| |#3| |#3|) 44)) (-3306 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20)) (-2267 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|) 53))) +(((-149 |#1| |#2| |#3|) (-10 -7 (-15 -3209 ((-2 (|:| -1706 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2229 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -2781 ((-2 (|:| -4274 (-783)) (|:| -1706 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2886 (|#1| |#3| |#3|)) (-15 -3306 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2267 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) (-1240) (-1262 |#1|) (-1262 (-419 |#2|))) (T -149)) +((-2267 (*1 *2 *3 *3) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))) (-3306 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1262 *3)))) (-2886 (*1 *2 *3 *3) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1240)) (-5 *1 (-149 *2 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *3) (|:| |radicand| *6))) (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1262 *3)))) (-2229 (*1 *2 *3) (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5))))) (-3209 (*1 *2 *3) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -1706 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) +(-10 -7 (-15 -3209 ((-2 (|:| -1706 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2229 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-783))) "failed") |#3|)) (-15 -2781 ((-2 (|:| -4274 (-783)) (|:| -1706 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-783))) (-15 -2886 (|#1| |#3| |#3|)) (-15 -3306 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -2267 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-783))) |#3| |#3|))) +((-4168 (((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)) 35))) +(((-150 |#1| |#2|) (-10 -7 (-15 -4168 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)))) (-557) (-167 |#1|)) (T -150)) +((-4168 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5))))) +(-10 -7 (-15 -4168 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)))) +((-2496 (($ (-1 (-112) |#2|) $) 37)) (-3172 (($ $) 44)) (-3902 (($ (-1 (-112) |#2|) $) 35) (($ |#2| $) 40)) (-2521 ((|#2| (-1 |#2| |#2| |#2|) $) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42)) (-2644 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 27)) (-4207 (((-112) (-1 (-112) |#2|) $) 24)) (-1456 (((-783) (-1 (-112) |#2|) $) 18) (((-783) |#2| $) NIL)) (-2043 (((-112) (-1 (-112) |#2|) $) 21)) (-3485 (((-783) $) 12))) +(((-151 |#1| |#2|) (-10 -8 (-15 -3172 (|#1| |#1|)) (-15 -3902 (|#1| |#2| |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2496 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3902 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2644 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1456 ((-783) |#2| |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3485 ((-783) |#1|))) (-152 |#2|) (-1236)) (T -151)) +NIL +(-10 -8 (-15 -3172 (|#1| |#1|)) (-15 -3902 (|#1| |#2| |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2496 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3902 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2644 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1456 ((-783) |#2| |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3485 ((-783) |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-2496 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3172 (($ $) 42 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461))) (($ |#1| $) 43 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 41 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 50)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-152 |#1|) (-141) (-1236)) (T -152)) +((-3573 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-152 *3)))) (-2644 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-2521 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-2521 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) (-4 *3 (-1236)))) (-2496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) (-4 *3 (-1236)))) (-2521 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)))) (-3902 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) (-4 *2 (-1119)))) (-3172 (*1 *1 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) (-4 *2 (-1119))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -3573 ($ (-656 |t#1|))) (-15 -2644 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2521 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2521 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3902 ($ (-1 (-112) |t#1|) $)) (-15 -2496 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -2521 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3902 ($ |t#1| $)) (-15 -3172 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) 111)) (-1414 (((-112) $) NIL)) (-1970 (($ |#2| (-656 (-938))) 71)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-1387 (($ (-938)) 57)) (-2446 (((-135)) 23)) (-3563 (((-874) $) 86) (($ (-576)) 53) (($ |#2|) 54)) (-4333 ((|#2| $ (-656 (-938))) 74)) (-1858 (((-783)) 20 T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 47 T CONST)) (-2810 (($) 51 T CONST)) (-2988 (((-112) $ $) 33)) (-3107 (($ $ |#2|) NIL)) (-3095 (($ $) 42) (($ $ $) 40)) (-3083 (($ $ $) 38)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 63) (($ |#2| $) 46) (($ $ |#2|) NIL))) +(((-153 |#1| |#2| |#3|) (-13 (-1068) (-38 |#2|) (-1293 |#2|) (-10 -8 (-15 -1387 ($ (-938))) (-15 -1970 ($ |#2| (-656 (-938)))) (-15 -4333 (|#2| $ (-656 (-938)))) (-15 -1551 ((-3 $ "failed") $)))) (-938) (-374) (-1012 |#1| |#2|)) (T -153)) +((-1551 (*1 *1 *1) (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-938)) (-4 *3 (-374)) (-14 *4 (-1012 *2 *3)))) (-1387 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-374)) (-14 *5 (-1012 *3 *4)))) (-1970 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-938)) (-4 *2 (-374)) (-14 *5 (-1012 *4 *2)))) (-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-938))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-938)) (-14 *5 (-1012 *4 *2))))) +(-13 (-1068) (-38 |#2|) (-1293 |#2|) (-10 -8 (-15 -1387 ($ (-938))) (-15 -1970 ($ |#2| (-656 (-938)))) (-15 -4333 (|#2| $ (-656 (-938)))) (-15 -1551 ((-3 $ "failed") $)))) +((-4426 (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))) (-227) (-227) (-227) (-227)) 59)) (-2589 (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576))) 95) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944)) 96)) (-2416 (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227))))) 99) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-960 (-227)))) 98) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576))) 90) (((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944)) 91))) +(((-154) (-10 -7 (-15 -2416 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -2416 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -2589 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -2589 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -4426 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2416 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-960 (-227))))) (-15 -2416 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))))))) (T -154)) +((-2416 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 (-227))))))) (-2416 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)) (-5 *3 (-656 (-960 (-227)))))) (-4426 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-227)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 *4)))) (|:| |xValues| (-1113 *4)) (|:| |yValues| (-1113 *4)))) (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 *4)))))) (-2589 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))) (-2589 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))) (-2416 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) (-5 *1 (-154))))) +(-10 -7 (-15 -2416 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -2416 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -2589 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944))) (-15 -2589 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-944) (-419 (-576)) (-419 (-576)))) (-15 -4426 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227)))) (-227) (-227) (-227) (-227))) (-15 -2416 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-960 (-227))))) (-15 -2416 ((-2 (|:| |brans| (-656 (-656 (-960 (-227))))) (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227)))) (-656 (-656 (-960 (-227))))))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-3035 (((-656 (-1154)) $) 20)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 27) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-1154) $) 9)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-155) (-13 (-1102) (-10 -8 (-15 -3035 ((-656 (-1154)) $)) (-15 -2719 ((-1154) $))))) (T -155)) +((-3035 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-155)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-155))))) +(-13 (-1102) (-10 -8 (-15 -3035 ((-656 (-1154)) $)) (-15 -2719 ((-1154) $)))) +((-1484 (((-656 (-171 |#2|)) |#1| |#2|) 50))) +(((-156 |#1| |#2|) (-10 -7 (-15 -1484 ((-656 (-171 |#2|)) |#1| |#2|))) (-1262 (-171 (-576))) (-13 (-374) (-860))) (T -156)) +((-1484 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) (-4 *3 (-1262 (-171 (-576)))) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -1484 ((-656 (-171 |#2|)) |#1| |#2|))) +((-3474 (((-112) $ $) NIL)) (-1649 (((-1235) $) 12)) (-1637 (((-1154) $) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-157) (-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1235) $))))) (T -157)) +((-1637 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-157)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-157))))) +(-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1235) $)))) +((-3474 (((-112) $ $) NIL)) (-2252 (($) 41)) (-3580 (($) 40)) (-3775 (((-938)) 46)) (-1927 (((-1177) $) NIL)) (-4029 (((-576) $) 44)) (-1445 (((-1139) $) NIL)) (-2750 (($) 42)) (-1329 (($ (-576)) 47)) (-3563 (((-874) $) 53)) (-2403 (($) 43)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 38)) (-3083 (($ $ $) 35)) (* (($ (-938) $) 45) (($ (-227) $) 11))) +(((-158) (-13 (-25) (-10 -8 (-15 * ($ (-938) $)) (-15 * ($ (-227) $)) (-15 -3083 ($ $ $)) (-15 -3580 ($)) (-15 -2252 ($)) (-15 -2750 ($)) (-15 -2403 ($)) (-15 -4029 ((-576) $)) (-15 -3775 ((-938))) (-15 -1329 ($ (-576)))))) (T -158)) +((-3083 (*1 *1 *1 *1) (-5 *1 (-158))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-158)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) (-3580 (*1 *1) (-5 *1 (-158))) (-2252 (*1 *1) (-5 *1 (-158))) (-2750 (*1 *1) (-5 *1 (-158))) (-2403 (*1 *1) (-5 *1 (-158))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) (-3775 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-158)))) (-1329 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158))))) +(-13 (-25) (-10 -8 (-15 * ($ (-938) $)) (-15 * ($ (-227) $)) (-15 -3083 ($ $ $)) (-15 -3580 ($)) (-15 -2252 ($)) (-15 -2750 ($)) (-15 -2403 ($)) (-15 -4029 ((-576) $)) (-15 -3775 ((-938))) (-15 -1329 ($ (-576))))) +((-2603 ((|#2| |#2| (-1111 |#2|)) 98) ((|#2| |#2| (-1195)) 75)) (-3105 ((|#2| |#2| (-1111 |#2|)) 97) ((|#2| |#2| (-1195)) 74)) (-1891 ((|#2| |#2| |#2|) 25)) (-3974 (((-115) (-115)) 111)) (-1405 ((|#2| (-656 |#2|)) 130)) (-3389 ((|#2| (-656 |#2|)) 151)) (-2974 ((|#2| (-656 |#2|)) 138)) (-1499 ((|#2| |#2|) 136)) (-1713 ((|#2| (-656 |#2|)) 124)) (-1420 ((|#2| (-656 |#2|)) 125)) (-3339 ((|#2| (-656 |#2|)) 149)) (-1589 ((|#2| |#2| (-1195)) 63) ((|#2| |#2|) 62)) (-1473 ((|#2| |#2|) 21)) (-4114 ((|#2| |#2| |#2|) 24)) (-3263 (((-112) (-115)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-159 |#1| |#2|) (-10 -7 (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -4114 (|#2| |#2| |#2|)) (-15 -1891 (|#2| |#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1589 (|#2| |#2| (-1195))) (-15 -2603 (|#2| |#2| (-1195))) (-15 -2603 (|#2| |#2| (-1111 |#2|))) (-15 -3105 (|#2| |#2| (-1195))) (-15 -3105 (|#2| |#2| (-1111 |#2|))) (-15 -1499 (|#2| |#2|)) (-15 -3339 (|#2| (-656 |#2|))) (-15 -2974 (|#2| (-656 |#2|))) (-15 -3389 (|#2| (-656 |#2|))) (-15 -1713 (|#2| (-656 |#2|))) (-15 -1420 (|#2| (-656 |#2|))) (-15 -1405 (|#2| (-656 |#2|)))) (-568) (-442 |#1|)) (T -159)) +((-1405 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3389 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) (-4 *4 (-568)))) (-1499 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3105 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-3105 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-2603 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)))) (-2603 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-1589 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) (-4 *2 (-442 *4)))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1473 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-1891 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-4114 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) (-4 *4 (-442 *3)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4))))) +(-10 -7 (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -4114 (|#2| |#2| |#2|)) (-15 -1891 (|#2| |#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1589 (|#2| |#2| (-1195))) (-15 -2603 (|#2| |#2| (-1195))) (-15 -2603 (|#2| |#2| (-1111 |#2|))) (-15 -3105 (|#2| |#2| (-1195))) (-15 -3105 (|#2| |#2| (-1111 |#2|))) (-15 -1499 (|#2| |#2|)) (-15 -3339 (|#2| (-656 |#2|))) (-15 -2974 (|#2| (-656 |#2|))) (-15 -3389 (|#2| (-656 |#2|))) (-15 -1713 (|#2| (-656 |#2|))) (-15 -1420 (|#2| (-656 |#2|))) (-15 -1405 (|#2| (-656 |#2|)))) +((-1411 ((|#1| |#1| |#1|) 64)) (-1924 ((|#1| |#1| |#1|) 61)) (-1891 ((|#1| |#1| |#1|) 55)) (-3316 ((|#1| |#1|) 42)) (-2635 ((|#1| |#1| (-656 |#1|)) 53)) (-1473 ((|#1| |#1|) 46)) (-4114 ((|#1| |#1| |#1|) 49))) +(((-160 |#1|) (-10 -7 (-15 -4114 (|#1| |#1| |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -2635 (|#1| |#1| (-656 |#1|))) (-15 -3316 (|#1| |#1|)) (-15 -1891 (|#1| |#1| |#1|)) (-15 -1924 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1| |#1|))) (-557)) (T -160)) +((-1411 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1924 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-1891 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-3316 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-2635 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2)))) (-1473 (*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) (-4114 (*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(-10 -7 (-15 -4114 (|#1| |#1| |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -2635 (|#1| |#1| (-656 |#1|))) (-15 -3316 (|#1| |#1|)) (-15 -1891 (|#1| |#1| |#1|)) (-15 -1924 (|#1| |#1| |#1|)) (-15 -1411 (|#1| |#1| |#1|))) +((-2603 (($ $ (-1195)) 12) (($ $ (-1111 $)) 11)) (-3105 (($ $ (-1195)) 10) (($ $ (-1111 $)) 9)) (-1891 (($ $ $) 8)) (-1589 (($ $) 14) (($ $ (-1195)) 13)) (-1473 (($ $) 7)) (-4114 (($ $ $) 6))) (((-161) (-141)) (T -161)) -((-4144 (*1 *1 *1) (-4 *1 (-161))) (-4144 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) (-4358 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161)))) (-3390 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) (-3390 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161))))) -(-13 (-144) (-10 -8 (-15 -4144 ($ $)) (-15 -4144 ($ $ (-1196))) (-15 -4358 ($ $ (-1196))) (-15 -4358 ($ $ (-1111 $))) (-15 -3390 ($ $ (-1196))) (-15 -3390 ($ $ (-1111 $))))) +((-1589 (*1 *1 *1) (-4 *1 (-161))) (-1589 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) (-2603 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) (-2603 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161)))) (-3105 (*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) (-3105 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161))))) +(-13 (-144) (-10 -8 (-15 -1589 ($ $)) (-15 -1589 ($ $ (-1195))) (-15 -2603 ($ $ (-1195))) (-15 -2603 ($ $ (-1111 $))) (-15 -3105 ($ $ (-1195))) (-15 -3105 ($ $ (-1111 $))))) (((-144) . T)) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-656 (-1154)) $) 10)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-162) (-13 (-1102) (-10 -8 (-15 -4136 ((-656 (-1154)) $))))) (T -162)) -((-4136 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-162))))) -(-13 (-1102) (-10 -8 (-15 -4136 ((-656 (-1154)) $)))) -((-2034 (((-112) $ $) NIL)) (-4024 (($ (-576)) 14) (($ $ $) 15)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 18)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 9))) -(((-163) (-13 (-1119) (-10 -8 (-15 -4024 ($ (-576))) (-15 -4024 ($ $ $))))) (T -163)) -((-4024 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-4024 (*1 *1 *1 *1) (-5 *1 (-163)))) -(-13 (-1119) (-10 -8 (-15 -4024 ($ (-576))) (-15 -4024 ($ $ $)))) -((-1344 (((-115) (-1196)) 102))) -(((-164) (-10 -7 (-15 -1344 ((-115) (-1196))))) (T -164)) -((-1344 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-115)) (-5 *1 (-164))))) -(-10 -7 (-15 -1344 ((-115) (-1196)))) -((-1458 ((|#3| |#3|) 19))) -(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -1458 (|#3| |#3|))) (-1068) (-1263 |#1|) (-1263 |#2|)) (T -165)) -((-1458 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-4 *4 (-1263 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1263 *4))))) -(-10 -7 (-15 -1458 (|#3| |#3|))) -((-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 223)) (-3803 ((|#2| $) 102)) (-2266 (($ $) 256)) (-2111 (($ $) 250)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 47)) (-2236 (($ $) 254)) (-2084 (($ $) 248)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-2378 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-1975 (($ $ $) 229)) (-3687 (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 160) (((-701 |#2|) (-701 $)) 154) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-2359 (($ (-1192 |#2|)) 125) (((-3 $ "failed") (-419 (-1192 |#2|))) NIL)) (-3179 (((-3 $ "failed") $) 214)) (-1653 (((-3 (-419 (-576)) "failed") $) 204)) (-3863 (((-112) $) 199)) (-4266 (((-419 (-576)) $) 202)) (-4049 (((-938)) 96)) (-1986 (($ $ $) 231)) (-1673 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-3926 (($) 245)) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 193) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 198)) (-4252 ((|#2| $) 100)) (-3164 (((-1192 |#2|) $) 127)) (-2477 (($ (-1 |#2| |#2|) $) 108)) (-2703 (($ $) 247)) (-2344 (((-1192 |#2|) $) 126)) (-1644 (($ $) 207)) (-2500 (($) 103)) (-4254 (((-430 (-1192 $)) (-1192 $)) 95)) (-3282 (((-430 (-1192 $)) (-1192 $)) 64)) (-2022 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3353 (($ $) 246)) (-1787 (((-783) $) 226)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 236)) (-1955 ((|#2| (-1287 $)) NIL) ((|#2|) 98)) (-3614 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2840 (((-1192 |#2|)) 120)) (-2253 (($ $) 255)) (-2099 (($ $) 249)) (-3287 (((-1287 |#2|) $ (-1287 $)) 136) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $) 116) (((-701 |#2|) (-1287 $)) NIL)) (-1505 (((-1287 |#2|) $) NIL) (($ (-1287 |#2|)) NIL) (((-1192 |#2|) $) NIL) (($ (-1192 |#2|)) NIL) (((-905 (-576)) $) 184) (((-905 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-3646 (($ $) 104)) (-4092 (((-874) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-3794 (((-1192 |#2|) $) 32)) (-2471 (((-783)) 106)) (-1531 (((-112) $ $) 13)) (-2340 (($ $) 259)) (-2184 (($ $) 253)) (-2317 (($ $) 257)) (-2161 (($ $) 251)) (-2819 ((|#2| $) 242)) (-2329 (($ $) 258)) (-2173 (($ $) 252)) (-3423 (($ $) 162)) (-3919 (((-112) $ $) 110)) (-4018 (($ $) 112) (($ $ $) NIL)) (-4007 (($ $ $) 111)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-166 |#1| |#2|) (-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4092 (|#1| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3528 ((-2 (|:| -3500 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1787 ((-783) |#1|)) (-15 -2233 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -1975 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -1505 ((-548) |#1|)) (-15 -1505 ((-171 (-227)) |#1|)) (-15 -1505 ((-171 (-390)) |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2317 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3353 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3926 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3282 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4254 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -2074 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -1673 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3646 (|#1| |#1|)) (-15 -2500 (|#1|)) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -4375 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2359 ((-3 |#1| "failed") (-419 (-1192 |#2|)))) (-15 -2344 ((-1192 |#2|) |#1|)) (-15 -1505 (|#1| (-1192 |#2|))) (-15 -2359 (|#1| (-1192 |#2|))) (-15 -2840 ((-1192 |#2|))) (-15 -3687 ((-701 |#2|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -1505 ((-1192 |#2|) |#1|)) (-15 -1955 (|#2|)) (-15 -1505 (|#1| (-1287 |#2|))) (-15 -1505 ((-1287 |#2|) |#1|)) (-15 -3287 ((-701 |#2|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1|)) (-15 -3164 ((-1192 |#2|) |#1|)) (-15 -3794 ((-1192 |#2|) |#1|)) (-15 -1955 (|#2| (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4252 (|#2| |#1|)) (-15 -3803 (|#2| |#1|)) (-15 -4049 ((-938))) (-15 -4092 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -3179 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -1531 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) -((-2471 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-4049 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-938)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1955 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-2840 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1192 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) -(-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4092 (|#1| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3528 ((-2 (|:| -3500 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1787 ((-783) |#1|)) (-15 -2233 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -1975 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -1505 ((-548) |#1|)) (-15 -1505 ((-171 (-227)) |#1|)) (-15 -1505 ((-171 (-390)) |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2317 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3353 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3926 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3282 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4254 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -2074 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -1673 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2819 (|#2| |#1|)) (-15 -3423 (|#1| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3646 (|#1| |#1|)) (-15 -2500 (|#1|)) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -4375 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2359 ((-3 |#1| "failed") (-419 (-1192 |#2|)))) (-15 -2344 ((-1192 |#2|) |#1|)) (-15 -1505 (|#1| (-1192 |#2|))) (-15 -2359 (|#1| (-1192 |#2|))) (-15 -2840 ((-1192 |#2|))) (-15 -3687 ((-701 |#2|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -1505 ((-1192 |#2|) |#1|)) (-15 -1955 (|#2|)) (-15 -1505 (|#1| (-1287 |#2|))) (-15 -1505 ((-1287 |#2|) |#1|)) (-15 -3287 ((-701 |#2|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1|)) (-15 -3164 ((-1192 |#2|) |#1|)) (-15 -3794 ((-1192 |#2|) |#1|)) (-15 -1955 (|#2| (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4252 (|#2| |#1|)) (-15 -3803 (|#2| |#1|)) (-15 -4049 ((-938))) (-15 -4092 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -3179 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -1531 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 105 (-3765 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-2573 (($ $) 106 (-3765 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-4306 (((-112) $) 108 (-3765 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-1532 (((-701 |#1|) (-1287 $)) 53) (((-701 |#1|)) 68)) (-3803 ((|#1| $) 59)) (-2266 (($ $) 236 (|has| |#1| (-1222)))) (-2111 (($ $) 219 (|has| |#1| (-1222)))) (-2178 (((-1209 (-938) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-3788 (((-3 $ "failed") $ $) 20)) (-1589 (((-430 (-1192 $)) (-1192 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1587 (($ $) 125 (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-2100 (((-430 $) $) 126 (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1403 (($ $) 249 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 253 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-4407 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2247 (((-783)) 99 (|has| |#1| (-379)))) (-2236 (($ $) 235 (|has| |#1| (-1222)))) (-2084 (($ $) 220 (|has| |#1| (-1222)))) (-2294 (($ $) 234 (|has| |#1| (-1222)))) (-2138 (($ $) 221 (|has| |#1| (-1222)))) (-3656 (($) 18 T CONST)) (-2974 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2378 (((-576) $) 184 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 181)) (-3006 (($ (-1287 |#1|) (-1287 $)) 55) (($ (-1287 |#1|)) 71)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-1975 (($ $ $) 120 (|has| |#1| (-317)))) (-3754 (((-701 |#1|) $ (-1287 $)) 60) (((-701 |#1|) $) 66)) (-3687 (((-701 (-576)) (-1287 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 178 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 175) (((-701 |#1|) (-701 $)) 174) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 173) (((-701 |#1|) (-1287 $)) 172)) (-2359 (($ (-1192 |#1|)) 169) (((-3 $ "failed") (-419 (-1192 |#1|))) 166 (|has| |#1| (-374)))) (-3179 (((-3 $ "failed") $) 37)) (-1415 ((|#1| $) 261)) (-1653 (((-3 (-419 (-576)) "failed") $) 254 (|has| |#1| (-557)))) (-3863 (((-112) $) 256 (|has| |#1| (-557)))) (-4266 (((-419 (-576)) $) 255 (|has| |#1| (-557)))) (-4049 (((-938)) 61)) (-2446 (($) 102 (|has| |#1| (-379)))) (-1986 (($ $ $) 119 (|has| |#1| (-317)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 114 (|has| |#1| (-317)))) (-1554 (($) 160 (|has| |#1| (-360)))) (-3506 (((-112) $) 161 (|has| |#1| (-360)))) (-1329 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-2725 (((-112) $) 127 (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1673 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1222))))) (-3926 (($) 246 (|has| |#1| (-1222)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 269 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 268 (|has| |#1| (-899 (-390))))) (-1538 (((-938) $) 163 (|has| |#1| (-360))) (((-845 (-938)) $) 149 (|has| |#1| (-360)))) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 248 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))))) (-4252 ((|#1| $) 58)) (-2083 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-317)))) (-3164 (((-1192 |#1|) $) 51 (|has| |#1| (-374)))) (-2477 (($ (-1 |#1| |#1|) $) 270)) (-3225 (((-938) $) 101 (|has| |#1| (-379)))) (-2703 (($ $) 243 (|has| |#1| (-1222)))) (-2344 (((-1192 |#1|) $) 167)) (-3117 (($ (-656 $)) 112 (-3765 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (($ $ $) 111 (-3765 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-3288 (((-1178) $) 10)) (-1644 (($ $) 128 (|has| |#1| (-374)))) (-3503 (($) 154 (|has| |#1| (-360)) CONST)) (-2550 (($ (-938)) 100 (|has| |#1| (-379)))) (-2500 (($) 265)) (-1428 ((|#1| $) 262)) (-3139 (((-1139) $) 11)) (-2582 (($) 171)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 113 (-3765 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-3149 (($ (-656 $)) 110 (-3765 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (($ $ $) 109 (-3765 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) 157 (|has| |#1| (-360)))) (-4254 (((-430 (-1192 $)) (-1192 $)) 252 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-3282 (((-430 (-1192 $)) (-1192 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1392 (((-430 $) $) 124 (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 121 (|has| |#1| (-317)))) (-2022 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-3765 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-317)))) (-3353 (($ $) 244 (|has| |#1| (-1222)))) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) 276 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 273 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 272 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 271 (|has| |#1| (-526 (-1196) |#1|)))) (-1787 (((-783) $) 117 (|has| |#1| (-317)))) (-4367 (($ $ |#1|) 277 (|has| |#1| (-296 |#1| |#1|)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 118 (|has| |#1| (-317)))) (-1955 ((|#1| (-1287 $)) 54) ((|#1|) 67)) (-2547 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-3614 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-656 (-1196)) (-656 (-783))) 141 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) 140 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) 139 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) 137 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-783)) 147 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2445 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2445 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-4003 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-2840 (((-1192 |#1|)) 170)) (-2307 (($ $) 233 (|has| |#1| (-1222)))) (-2149 (($ $) 222 (|has| |#1| (-1222)))) (-3870 (($) 159 (|has| |#1| (-360)))) (-2281 (($ $) 232 (|has| |#1| (-1222)))) (-2123 (($ $) 223 (|has| |#1| (-1222)))) (-2253 (($ $) 231 (|has| |#1| (-1222)))) (-2099 (($ $) 224 (|has| |#1| (-1222)))) (-3287 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56) (((-1287 |#1|) $) 73) (((-701 |#1|) (-1287 $)) 72)) (-1505 (((-1287 |#1|) $) 70) (($ (-1287 |#1|)) 69) (((-1192 |#1|) $) 186) (($ (-1192 |#1|)) 168) (((-905 (-576)) $) 267 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 266 (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) 218 (|has| |#1| (-1041))) (((-171 (-227)) $) 217 (|has| |#1| (-1041))) (((-548) $) 216 (|has| |#1| (-626 (-548))))) (-3646 (($ $) 264)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 156 (-3765 (-2445 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (|has| |#1| (-360))))) (-2738 (($ |#1| |#1|) 263)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-3765 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) 103 (-3765 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-3612 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-3765 (-2445 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (|has| |#1| (-146))))) (-3794 (((-1192 |#1|) $) 52)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-1999 (((-1287 $)) 74)) (-2340 (($ $) 242 (|has| |#1| (-1222)))) (-2184 (($ $) 230 (|has| |#1| (-1222)))) (-2947 (((-112) $ $) 107 (-3765 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-2317 (($ $) 241 (|has| |#1| (-1222)))) (-2161 (($ $) 229 (|has| |#1| (-1222)))) (-2368 (($ $) 240 (|has| |#1| (-1222)))) (-2207 (($ $) 228 (|has| |#1| (-1222)))) (-2819 ((|#1| $) 258 (|has| |#1| (-1222)))) (-3945 (($ $) 239 (|has| |#1| (-1222)))) (-2220 (($ $) 227 (|has| |#1| (-1222)))) (-2352 (($ $) 238 (|has| |#1| (-1222)))) (-2195 (($ $) 226 (|has| |#1| (-1222)))) (-2329 (($ $) 237 (|has| |#1| (-1222)))) (-2173 (($ $) 225 (|has| |#1| (-1222)))) (-3423 (($ $) 259 (|has| |#1| (-1079)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-656 (-1196)) (-656 (-783))) 144 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) 143 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) 142 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) 138 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-783)) 148 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2445 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-3765 (-2445 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2445 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2445 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 132 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 247 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222)))) (($ $ $) 245 (|has| |#1| (-1222))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-656 (-1154)) $) 10)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-162) (-13 (-1102) (-10 -8 (-15 -2719 ((-656 (-1154)) $))))) (T -162)) +((-2719 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-162))))) +(-13 (-1102) (-10 -8 (-15 -2719 ((-656 (-1154)) $)))) +((-3474 (((-112) $ $) NIL)) (-1715 (($ (-576)) 14) (($ $ $) 15)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 18)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 9))) +(((-163) (-13 (-1119) (-10 -8 (-15 -1715 ($ (-576))) (-15 -1715 ($ $ $))))) (T -163)) +((-1715 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163)))) (-1715 (*1 *1 *1 *1) (-5 *1 (-163)))) +(-13 (-1119) (-10 -8 (-15 -1715 ($ (-576))) (-15 -1715 ($ $ $)))) +((-3974 (((-115) (-1195)) 102))) +(((-164) (-10 -7 (-15 -3974 ((-115) (-1195))))) (T -164)) +((-3974 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-115)) (-5 *1 (-164))))) +(-10 -7 (-15 -3974 ((-115) (-1195)))) +((-3683 ((|#3| |#3|) 19))) +(((-165 |#1| |#2| |#3|) (-10 -7 (-15 -3683 (|#3| |#3|))) (-1068) (-1262 |#1|) (-1262 |#2|)) (T -165)) +((-3683 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-4 *4 (-1262 *3)) (-5 *1 (-165 *3 *4 *2)) (-4 *2 (-1262 *4))))) +(-10 -7 (-15 -3683 (|#3| |#3|))) +((-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 223)) (-2310 ((|#2| $) 102)) (-3894 (($ $) 256)) (-3768 (($ $) 250)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 47)) (-3872 (($ $) 254)) (-3747 (($ $) 248)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-4056 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 144)) (-3420 (($ $ $) 229)) (-3687 (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 160) (((-701 |#2|) (-701 $)) 154) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-2521 (($ (-1191 |#2|)) 125) (((-3 $ "failed") (-419 (-1191 |#2|))) NIL)) (-1551 (((-3 $ "failed") $) 214)) (-3615 (((-3 (-419 (-576)) "failed") $) 204)) (-3235 (((-112) $) 199)) (-3113 (((-419 (-576)) $) 202)) (-3606 (((-938)) 96)) (-3431 (($ $ $) 231)) (-4121 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269)) (-1570 (($) 245)) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 193) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 198)) (-4072 ((|#2| $) 100)) (-2554 (((-1191 |#2|) $) 127)) (-1632 (($ (-1 |#2| |#2|) $) 108)) (-3710 (($ $) 247)) (-2510 (((-1191 |#2|) $) 126)) (-2095 (($ $) 207)) (-2539 (($) 103)) (-4299 (((-430 (-1191 $)) (-1191 $)) 95)) (-1340 (((-430 (-1191 $)) (-1191 $)) 64)) (-3463 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-3984 (($ $) 246)) (-3112 (((-783) $) 226)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 236)) (-1960 ((|#2| (-1286 $)) NIL) ((|#2|) 98)) (-2735 (($ $ (-1 |#2| |#2|)) 119) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-1372 (((-1191 |#2|)) 120)) (-3882 (($ $) 255)) (-3757 (($ $) 249)) (-1809 (((-1286 |#2|) $ (-1286 $)) 136) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $) 116) (((-701 |#2|) (-1286 $)) NIL)) (-4076 (((-1286 |#2|) $) NIL) (($ (-1286 |#2|)) NIL) (((-1191 |#2|) $) NIL) (($ (-1191 |#2|)) NIL) (((-905 (-576)) $) 184) (((-905 (-390)) $) 188) (((-171 (-390)) $) 172) (((-171 (-227)) $) 167) (((-548) $) 180)) (-4026 (($ $) 104)) (-3563 (((-874) $) 143) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-419 (-576))) NIL) (($ $) NIL)) (-3941 (((-1191 |#2|) $) 32)) (-1858 (((-783)) 106)) (-3985 (((-112) $ $) 13)) (-3958 (($ $) 259)) (-3831 (($ $) 253)) (-3939 (($ $) 257)) (-3808 (($ $) 251)) (-4225 ((|#2| $) 242)) (-3948 (($ $) 258)) (-3820 (($ $) 252)) (-2264 (($ $) 162)) (-2988 (((-112) $ $) 110)) (-3095 (($ $) 112) (($ $ $) NIL)) (-3083 (($ $ $) 111)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) 276) (($ $ $) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) +(((-166 |#1| |#2|) (-10 -8 (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3563 (|#1| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2362 ((-2 (|:| -3341 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3112 ((-783) |#1|)) (-15 -1784 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -2095 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -4076 ((-548) |#1|)) (-15 -4076 ((-171 (-227)) |#1|)) (-15 -4076 ((-171 (-390)) |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3747 (|#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1570 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -1340 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4299 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4168 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -4121 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4225 (|#2| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4026 (|#1| |#1|)) (-15 -2539 (|#1|)) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -3526 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2521 ((-3 |#1| "failed") (-419 (-1191 |#2|)))) (-15 -2510 ((-1191 |#2|) |#1|)) (-15 -4076 (|#1| (-1191 |#2|))) (-15 -2521 (|#1| (-1191 |#2|))) (-15 -1372 ((-1191 |#2|))) (-15 -3687 ((-701 |#2|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4076 ((-1191 |#2|) |#1|)) (-15 -1960 (|#2|)) (-15 -4076 (|#1| (-1286 |#2|))) (-15 -4076 ((-1286 |#2|) |#1|)) (-15 -1809 ((-701 |#2|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1|)) (-15 -2554 ((-1191 |#2|) |#1|)) (-15 -3941 ((-1191 |#2|) |#1|)) (-15 -1960 (|#2| (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4072 (|#2| |#1|)) (-15 -2310 (|#2| |#1|)) (-15 -3606 ((-938))) (-15 -3563 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -3985 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) (-167 |#2|) (-174)) (T -166)) +((-1858 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-3606 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-938)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4)))) (-1960 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) (-1372 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1191 *4)) (-5 *1 (-166 *3 *4)) (-4 *3 (-167 *4))))) +(-10 -8 (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3563 (|#1| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2362 ((-2 (|:| -3341 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3112 ((-783) |#1|)) (-15 -1784 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -2095 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -4076 ((-548) |#1|)) (-15 -4076 ((-171 (-227)) |#1|)) (-15 -4076 ((-171 (-390)) |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3747 (|#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1570 (|#1|)) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -1340 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4299 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4168 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -4121 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -4225 (|#2| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4026 (|#1| |#1|)) (-15 -2539 (|#1|)) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -3526 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2521 ((-3 |#1| "failed") (-419 (-1191 |#2|)))) (-15 -2510 ((-1191 |#2|) |#1|)) (-15 -4076 (|#1| (-1191 |#2|))) (-15 -2521 (|#1| (-1191 |#2|))) (-15 -1372 ((-1191 |#2|))) (-15 -3687 ((-701 |#2|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4076 ((-1191 |#2|) |#1|)) (-15 -1960 (|#2|)) (-15 -4076 (|#1| (-1286 |#2|))) (-15 -4076 ((-1286 |#2|) |#1|)) (-15 -1809 ((-701 |#2|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1|)) (-15 -2554 ((-1191 |#2|) |#1|)) (-15 -3941 ((-1191 |#2|) |#1|)) (-15 -1960 (|#2| (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -4072 (|#2| |#1|)) (-15 -2310 (|#2| |#1|)) (-15 -3606 ((-938))) (-15 -3563 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -3985 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 105 (-2835 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-4412 (($ $) 106 (-2835 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-4176 (((-112) $) 108 (-2835 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-4084 (((-701 |#1|) (-1286 $)) 53) (((-701 |#1|)) 68)) (-2310 ((|#1| $) 59)) (-3894 (($ $) 236 (|has| |#1| (-1221)))) (-3768 (($ $) 219 (|has| |#1| (-1221)))) (-1361 (((-1208 (-938) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-1367 (((-3 $ "failed") $ $) 20)) (-1990 (((-430 (-1191 $)) (-1191 $)) 250 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1760 (($ $) 125 (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-2732 (((-430 $) $) 126 (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1853 (($ $) 249 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1221))))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 253 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1727 (((-112) $ $) 116 (|has| |#1| (-317)))) (-2148 (((-783)) 99 (|has| |#1| (-379)))) (-3872 (($ $) 235 (|has| |#1| (-1221)))) (-3747 (($ $) 220 (|has| |#1| (-1221)))) (-3916 (($ $) 234 (|has| |#1| (-1221)))) (-3788 (($ $) 221 (|has| |#1| (-1221)))) (-3767 (($) 18 T CONST)) (-1539 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-4056 (((-576) $) 184 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 181)) (-2612 (($ (-1286 |#1|) (-1286 $)) 55) (($ (-1286 |#1|)) 71)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3420 (($ $ $) 120 (|has| |#1| (-317)))) (-3103 (((-701 |#1|) $ (-1286 $)) 60) (((-701 |#1|) $) 66)) (-3687 (((-701 (-576)) (-1286 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 178 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 175) (((-701 |#1|) (-701 $)) 174) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 173) (((-701 |#1|) (-1286 $)) 172)) (-2521 (($ (-1191 |#1|)) 169) (((-3 $ "failed") (-419 (-1191 |#1|))) 166 (|has| |#1| (-374)))) (-1551 (((-3 $ "failed") $) 37)) (-1864 ((|#1| $) 261)) (-3615 (((-3 (-419 (-576)) "failed") $) 254 (|has| |#1| (-557)))) (-3235 (((-112) $) 256 (|has| |#1| (-557)))) (-3113 (((-419 (-576)) $) 255 (|has| |#1| (-557)))) (-3606 (((-938)) 61)) (-1803 (($) 102 (|has| |#1| (-379)))) (-3431 (($ $ $) 119 (|has| |#1| (-317)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 114 (|has| |#1| (-317)))) (-2580 (($) 160 (|has| |#1| (-360)))) (-2664 (((-112) $) 161 (|has| |#1| (-360)))) (-3499 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-1792 (((-112) $) 127 (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-4121 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1079)) (|has| |#1| (-1221))))) (-1570 (($) 246 (|has| |#1| (-1221)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 269 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 268 (|has| |#1| (-899 (-390))))) (-3333 (((-938) $) 163 (|has| |#1| (-360))) (((-845 (-938)) $) 149 (|has| |#1| (-360)))) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 248 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1221))))) (-4072 ((|#1| $) 58)) (-3930 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-317)))) (-2554 (((-1191 |#1|) $) 51 (|has| |#1| (-374)))) (-1632 (($ (-1 |#1| |#1|) $) 270)) (-1902 (((-938) $) 101 (|has| |#1| (-379)))) (-3710 (($ $) 243 (|has| |#1| (-1221)))) (-2510 (((-1191 |#1|) $) 167)) (-3459 (($ (-656 $)) 112 (-2835 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (($ $ $) 111 (-2835 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-1927 (((-1177) $) 10)) (-2095 (($ $) 128 (|has| |#1| (-374)))) (-1538 (($) 154 (|has| |#1| (-360)) CONST)) (-3257 (($ (-938)) 100 (|has| |#1| (-379)))) (-2539 (($) 265)) (-1876 ((|#1| $) 262)) (-1445 (((-1139) $) 11)) (-2202 (($) 171)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 113 (-2835 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-3495 (($ (-656 $)) 110 (-2835 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (($ $ $) 109 (-2835 (|has| |#1| (-317)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) 157 (|has| |#1| (-360)))) (-4299 (((-430 (-1191 $)) (-1191 $)) 252 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1340 (((-430 (-1191 $)) (-1191 $)) 251 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1839 (((-430 $) $) 124 (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 121 (|has| |#1| (-317)))) (-3463 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 104 (-2835 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-317)))) (-3984 (($ $) 244 (|has| |#1| (-1221)))) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) 276 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 275 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 274 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 273 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 272 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 271 (|has| |#1| (-526 (-1195) |#1|)))) (-3112 (((-783) $) 117 (|has| |#1| (-317)))) (-2871 (($ $ |#1|) 277 (|has| |#1| (-296 |#1| |#1|)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 118 (|has| |#1| (-317)))) (-1960 ((|#1| (-1286 $)) 54) ((|#1|) 67)) (-3721 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2735 (($ $ (-1 |#1| |#1|)) 136) (($ $ (-1 |#1| |#1|) (-783)) 135) (($ $ (-656 (-1195)) (-656 (-783))) 141 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-1195) (-783)) 140 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-656 (-1195))) 139 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-1195)) 137 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-783)) 147 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2758 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 145 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2758 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-1423 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-1372 (((-1191 |#1|)) 170)) (-3928 (($ $) 233 (|has| |#1| (-1221)))) (-3798 (($ $) 222 (|has| |#1| (-1221)))) (-2594 (($) 159 (|has| |#1| (-360)))) (-3905 (($ $) 232 (|has| |#1| (-1221)))) (-3778 (($ $) 223 (|has| |#1| (-1221)))) (-3882 (($ $) 231 (|has| |#1| (-1221)))) (-3757 (($ $) 224 (|has| |#1| (-1221)))) (-1809 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56) (((-1286 |#1|) $) 73) (((-701 |#1|) (-1286 $)) 72)) (-4076 (((-1286 |#1|) $) 70) (($ (-1286 |#1|)) 69) (((-1191 |#1|) $) 186) (($ (-1191 |#1|)) 168) (((-905 (-576)) $) 267 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 266 (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) 218 (|has| |#1| (-1041))) (((-171 (-227)) $) 217 (|has| |#1| (-1041))) (((-548) $) 216 (|has| |#1| (-626 (-548))))) (-4026 (($ $) 264)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 156 (-2835 (-2758 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (|has| |#1| (-360))))) (-4136 (($ |#1| |#1|) 263)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (-2835 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) 103 (-2835 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-2883 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (-2835 (-2758 (|has| $ (-146)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))) (|has| |#1| (-146))))) (-3941 (((-1191 |#1|) $) 52)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3713 (((-1286 $)) 74)) (-3958 (($ $) 242 (|has| |#1| (-1221)))) (-3831 (($ $) 230 (|has| |#1| (-1221)))) (-3040 (((-112) $ $) 107 (-2835 (|has| |#1| (-568)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926)))))) (-3939 (($ $) 241 (|has| |#1| (-1221)))) (-3808 (($ $) 229 (|has| |#1| (-1221)))) (-3981 (($ $) 240 (|has| |#1| (-1221)))) (-3852 (($ $) 228 (|has| |#1| (-1221)))) (-4225 ((|#1| $) 258 (|has| |#1| (-1221)))) (-1830 (($ $) 239 (|has| |#1| (-1221)))) (-3863 (($ $) 227 (|has| |#1| (-1221)))) (-3969 (($ $) 238 (|has| |#1| (-1221)))) (-3841 (($ $) 226 (|has| |#1| (-1221)))) (-3948 (($ $) 237 (|has| |#1| (-1221)))) (-3820 (($ $) 225 (|has| |#1| (-1221)))) (-2264 (($ $) 259 (|has| |#1| (-1079)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1 |#1| |#1|)) 134) (($ $ (-1 |#1| |#1|) (-783)) 133) (($ $ (-656 (-1195)) (-656 (-783))) 144 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-1195) (-783)) 143 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-656 (-1195))) 142 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-1195)) 138 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-783)) 148 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2758 (|has| |#1| (-237)) (|has| |#1| (-374))))) (($ $) 146 (-2835 (-2758 (|has| |#1| (-374)) (|has| |#1| (-237))) (-2758 (|has| |#1| (-374)) (|has| |#1| (-238))) (|has| |#1| (-237)) (-2758 (|has| |#1| (-237)) (|has| |#1| (-374)))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 132 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-419 (-576))) 247 (-12 (|has| |#1| (-1021)) (|has| |#1| (-1221)))) (($ $ $) 245 (|has| |#1| (-1221))) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) (((-167 |#1|) (-141) (-174)) (T -167)) -((-4252 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2500 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3646 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2738 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1428 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2022 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3423 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1222)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1079)) (-4 *3 (-1222)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-4266 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1653 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-736 |t#1| (-1192 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-897 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -2738) (-15 -2500 ($)) (-15 -3646 ($ $)) (-15 -2738 ($ |t#1| |t#1|)) (-15 -1428 (|t#1| $)) (-15 -1415 (|t#1| $)) (-15 -4252 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -2022 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4461)) (-6 -4461) |%noBranch|) (IF (|has| |t#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1041)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3423 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1222)) (PROGN (-6 (-1222)) (-15 -2819 (|t#1| $)) (IF (|has| |t#1| (-1021)) (-6 (-1021)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -1673 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-926)) (IF (|has| |t#1| (-317)) (-6 (-926)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1222)) ((-95) |has| |#1| (-1222)) ((-102) . T) ((-111 #0# #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-874)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1041)) ((-626 (-171 (-390))) |has| |#1| (-1041)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-626 #1=(-1192 |#1|)) . T) ((-234 $) -3765 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -3765 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -3765 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1222)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3765 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -3765 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3765 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -3765 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1222)) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -3765 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-909 $ #3=(-1196)) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #3#) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-926) -12 (|has| |#1| (-317)) (|has| |#1| (-926))) ((-937) -3765 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1021) -12 (|has| |#1| (-1021)) (|has| |#1| (-1222))) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-360)) ((-1222) |has| |#1| (-1222)) ((-1225) |has| |#1| (-1222)) ((-1237) . T) ((-1241) -3765 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) -((-1392 (((-430 |#2|) |#2|) 67))) -(((-168 |#1| |#2|) (-10 -7 (-15 -1392 ((-430 |#2|) |#2|))) (-317) (-1263 (-171 |#1|))) (T -168)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(-10 -7 (-15 -1392 ((-430 |#2|) |#2|))) -((-4244 (((-1154) (-1154) (-301)) 8)) (-3773 (((-656 (-703 (-290))) (-1178)) 81)) (-4063 (((-703 (-290)) (-1154)) 76))) -(((-169) (-13 (-1237) (-10 -7 (-15 -4244 ((-1154) (-1154) (-301))) (-15 -4063 ((-703 (-290)) (-1154))) (-15 -3773 ((-656 (-703 (-290))) (-1178)))))) (T -169)) -((-4244 (*1 *2 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-301)) (-5 *1 (-169)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(-13 (-1237) (-10 -7 (-15 -4244 ((-1154) (-1154) (-301))) (-15 -4063 ((-703 (-290)) (-1154))) (-15 -3773 ((-656 (-703 (-290))) (-1178))))) -((-2477 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) -(((-170 |#1| |#2|) (-10 -7 (-15 -2477 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) -(-10 -7 (-15 -2477 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 34)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-2573 (($ $) NIL (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-4306 (((-112) $) NIL (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-1532 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) NIL)) (-3803 ((|#1| $) NIL)) (-2266 (($ $) NIL (|has| |#1| (-1222)))) (-2111 (($ $) NIL (|has| |#1| (-1222)))) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1587 (($ $) NIL (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-2100 (((-430 $) $) NIL (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1403 (($ $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-4407 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2247 (((-783)) NIL (|has| |#1| (-379)))) (-2236 (($ $) NIL (|has| |#1| (-1222)))) (-2084 (($ $) NIL (|has| |#1| (-1222)))) (-2294 (($ $) NIL (|has| |#1| (-1222)))) (-2138 (($ $) NIL (|has| |#1| (-1222)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-3006 (($ (-1287 |#1|) (-1287 $)) NIL) (($ (-1287 |#1|)) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1975 (($ $ $) NIL (|has| |#1| (-317)))) (-3754 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-2359 (($ (-1192 |#1|)) NIL) (((-3 $ "failed") (-419 (-1192 |#1|))) NIL (|has| |#1| (-374)))) (-3179 (((-3 $ "failed") $) NIL)) (-1415 ((|#1| $) 13)) (-1653 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3863 (((-112) $) NIL (|has| |#1| (-557)))) (-4266 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-4049 (((-938)) NIL)) (-2446 (($) NIL (|has| |#1| (-379)))) (-1986 (($ $ $) NIL (|has| |#1| (-317)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-1554 (($) NIL (|has| |#1| (-360)))) (-3506 (((-112) $) NIL (|has| |#1| (-360)))) (-1329 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-2725 (((-112) $) NIL (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1673 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1079)) (|has| |#1| (-1222))))) (-3926 (($) NIL (|has| |#1| (-1222)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-1538 (((-938) $) NIL (|has| |#1| (-360))) (((-845 (-938)) $) NIL (|has| |#1| (-360)))) (-1810 (((-112) $) 36)) (-3355 (($ $ (-576)) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222))))) (-4252 ((|#1| $) 47)) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-3164 (((-1192 |#1|) $) NIL (|has| |#1| (-374)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3225 (((-938) $) NIL (|has| |#1| (-379)))) (-2703 (($ $) NIL (|has| |#1| (-1222)))) (-2344 (((-1192 |#1|) $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-3503 (($) NIL (|has| |#1| (-360)) CONST)) (-2550 (($ (-938)) NIL (|has| |#1| (-379)))) (-2500 (($) NIL)) (-1428 ((|#1| $) 15)) (-3139 (((-1139) $) NIL)) (-2582 (($) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-317)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| |#1| (-360)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1392 (((-430 $) $) NIL (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-317)))) (-2022 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-3353 (($ $) NIL (|has| |#1| (-1222)))) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-1787 (((-783) $) NIL (|has| |#1| (-317)))) (-4367 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-317)))) (-1955 ((|#1| (-1287 $)) NIL) ((|#1|) NIL)) (-2547 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-3614 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-783)) NIL (-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-4003 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-2840 (((-1192 |#1|)) NIL)) (-2307 (($ $) NIL (|has| |#1| (-1222)))) (-2149 (($ $) NIL (|has| |#1| (-1222)))) (-3870 (($) NIL (|has| |#1| (-360)))) (-2281 (($ $) NIL (|has| |#1| (-1222)))) (-2123 (($ $) NIL (|has| |#1| (-1222)))) (-2253 (($ $) NIL (|has| |#1| (-1222)))) (-2099 (($ $) NIL (|has| |#1| (-1222)))) (-3287 (((-1287 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) (-1287 $) (-1287 $)) NIL) (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1505 (((-1287 |#1|) $) NIL) (($ (-1287 |#1|)) NIL) (((-1192 |#1|) $) NIL) (($ (-1192 |#1|)) NIL) (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1041))) (((-171 (-227)) $) NIL (|has| |#1| (-1041))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3646 (($ $) 46)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-360))))) (-2738 (($ |#1| |#1|) 38)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-3612 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-3794 (((-1192 |#1|) $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL)) (-2340 (($ $) NIL (|has| |#1| (-1222)))) (-2184 (($ $) NIL (|has| |#1| (-1222)))) (-2947 (((-112) $ $) NIL (-3765 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-2317 (($ $) NIL (|has| |#1| (-1222)))) (-2161 (($ $) NIL (|has| |#1| (-1222)))) (-2368 (($ $) NIL (|has| |#1| (-1222)))) (-2207 (($ $) NIL (|has| |#1| (-1222)))) (-2819 ((|#1| $) NIL (|has| |#1| (-1222)))) (-3945 (($ $) NIL (|has| |#1| (-1222)))) (-2220 (($ $) NIL (|has| |#1| (-1222)))) (-2352 (($ $) NIL (|has| |#1| (-1222)))) (-2195 (($ $) NIL (|has| |#1| (-1222)))) (-2329 (($ $) NIL (|has| |#1| (-1222)))) (-2173 (($ $) NIL (|has| |#1| (-1222)))) (-3423 (($ $) NIL (|has| |#1| (-1079)))) (-4300 (($) 28 T CONST)) (-4310 (($) 30 T CONST)) (-3774 (((-1178) $) 23 (|has| |#1| (-840))) (((-1178) $ (-112)) 25 (|has| |#1| (-840))) (((-1292) (-834) $) 26 (|has| |#1| (-840))) (((-1292) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-4286 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) (|has| |#1| (-917 (-1196))))) (($ $ (-783)) NIL (-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-3765 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 40)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1222)))) (($ $ $) NIL (|has| |#1| (-1222))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) +((-4072 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-2539 (*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4026 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-4136 (*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1876 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2264 (*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1221)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1079)) (-4 *3 (-1221)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3615 (*1 *2 *1) (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) +(-13 (-736 |t#1| (-1191 |t#1|)) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-412 |t#1|) (-897 |t#1|) (-388 |t#1|) (-174) (-10 -8 (-6 -4136) (-15 -2539 ($)) (-15 -4026 ($ $)) (-15 -4136 ($ |t#1| |t#1|)) (-15 -1876 (|t#1| $)) (-15 -1864 (|t#1| $)) (-15 -4072 (|t#1| $)) (IF (|has| |t#1| (-568)) (PROGN (-6 (-568)) (-15 -3463 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-317)) (-6 (-317)) |%noBranch|) (IF (|has| |t#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |t#1| (-6 -4457)) (-6 -4457) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1041)) (PROGN (-6 (-626 (-171 (-227)))) (-6 (-626 (-171 (-390))))) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -2264 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1221)) (PROGN (-6 (-1221)) (-15 -4225 (|t#1| $)) (IF (|has| |t#1| (-1021)) (-6 (-1021)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -4121 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-926)) (IF (|has| |t#1| (-317)) (-6 (-926)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-35) |has| |#1| (-1221)) ((-95) |has| |#1| (-1221)) ((-102) . T) ((-111 #0# #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2835 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-625 (-874)) . T) ((-174) . T) ((-626 (-171 (-227))) |has| |#1| (-1041)) ((-626 (-171 (-390))) |has| |#1| (-1041)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-626 #1=(-1191 |#1|)) . T) ((-234 $) -2835 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) -2835 (|has| |#1| (-360)) (|has| |#1| (-238))) ((-237) -2835 (|has| |#1| (-360)) (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-294) |has| |#1| (-1221)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2835 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-317) -2835 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2835 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| #1#) . T) ((-421 |#1| #1#) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) -2835 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-505) |has| |#1| (-1221)) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) -2835 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-658 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-736 |#1| #1#) . T) ((-738) . T) ((-909 $ #3=(-1195)) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-915 (-1195)) |has| |#1| (-915 (-1195))) ((-917 #3#) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-926) -12 (|has| |#1| (-317)) (|has| |#1| (-926))) ((-937) -2835 (|has| |#1| (-360)) (|has| |#1| (-374)) (|has| |#1| (-317))) ((-1021) -12 (|has| |#1| (-1021)) (|has| |#1| (-1221))) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-360)) ((-1221) |has| |#1| (-1221)) ((-1224) |has| |#1| (-1221)) ((-1236) . T) ((-1240) -2835 (|has| |#1| (-360)) (|has| |#1| (-374)) (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) +((-1839 (((-430 |#2|) |#2|) 67))) +(((-168 |#1| |#2|) (-10 -7 (-15 -1839 ((-430 |#2|) |#2|))) (-317) (-1262 (-171 |#1|))) (T -168)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) +(-10 -7 (-15 -1839 ((-430 |#2|) |#2|))) +((-2965 (((-1154) (-1154) (-301)) 8)) (-2484 (((-656 (-703 (-290))) (-1177)) 81)) (-4244 (((-703 (-290)) (-1154)) 76))) +(((-169) (-13 (-1236) (-10 -7 (-15 -2965 ((-1154) (-1154) (-301))) (-15 -4244 ((-703 (-290)) (-1154))) (-15 -2484 ((-656 (-703 (-290))) (-1177)))))) (T -169)) +((-2965 (*1 *2 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-301)) (-5 *1 (-169)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-1154)) (-5 *2 (-703 (-290))) (-5 *1 (-169)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) +(-13 (-1236) (-10 -7 (-15 -2965 ((-1154) (-1154) (-301))) (-15 -4244 ((-703 (-290)) (-1154))) (-15 -2484 ((-656 (-703 (-290))) (-1177))))) +((-1632 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14))) +(((-170 |#1| |#2|) (-10 -7 (-15 -1632 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-174) (-174)) (T -170)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6))))) +(-10 -7 (-15 -1632 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 34)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-4412 (($ $) NIL (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-4176 (((-112) $) NIL (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-4084 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) NIL)) (-2310 ((|#1| $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-1221)))) (-3768 (($ $) NIL (|has| |#1| (-1221)))) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1760 (($ $) NIL (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-2732 (((-430 $) $) NIL (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-1853 (($ $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1221))))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1727 (((-112) $ $) NIL (|has| |#1| (-317)))) (-2148 (((-783)) NIL (|has| |#1| (-379)))) (-3872 (($ $) NIL (|has| |#1| (-1221)))) (-3747 (($ $) NIL (|has| |#1| (-1221)))) (-3916 (($ $) NIL (|has| |#1| (-1221)))) (-3788 (($ $) NIL (|has| |#1| (-1221)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2612 (($ (-1286 |#1|) (-1286 $)) NIL) (($ (-1286 |#1|)) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3420 (($ $ $) NIL (|has| |#1| (-317)))) (-3103 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2521 (($ (-1191 |#1|)) NIL) (((-3 $ "failed") (-419 (-1191 |#1|))) NIL (|has| |#1| (-374)))) (-1551 (((-3 $ "failed") $) NIL)) (-1864 ((|#1| $) 13)) (-3615 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3235 (((-112) $) NIL (|has| |#1| (-557)))) (-3113 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-3606 (((-938)) NIL)) (-1803 (($) NIL (|has| |#1| (-379)))) (-3431 (($ $ $) NIL (|has| |#1| (-317)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-317)))) (-2580 (($) NIL (|has| |#1| (-360)))) (-2664 (((-112) $) NIL (|has| |#1| (-360)))) (-3499 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-1792 (((-112) $) NIL (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-4121 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1079)) (|has| |#1| (-1221))))) (-1570 (($) NIL (|has| |#1| (-1221)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-3333 (((-938) $) NIL (|has| |#1| (-360))) (((-845 (-938)) $) NIL (|has| |#1| (-360)))) (-1414 (((-112) $) 36)) (-2826 (($ $ (-576)) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1221))))) (-4072 ((|#1| $) 47)) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-2554 (((-1191 |#1|) $) NIL (|has| |#1| (-374)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-938) $) NIL (|has| |#1| (-379)))) (-3710 (($ $) NIL (|has| |#1| (-1221)))) (-2510 (((-1191 |#1|) $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-1538 (($) NIL (|has| |#1| (-360)) CONST)) (-3257 (($ (-938)) NIL (|has| |#1| (-379)))) (-2539 (($) NIL)) (-1876 ((|#1| $) 15)) (-1445 (((-1139) $) NIL)) (-2202 (($) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-317)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-317))) (($ $ $) NIL (|has| |#1| (-317)))) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| |#1| (-360)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-317)) (|has| |#1| (-926))))) (-1839 (((-430 $) $) NIL (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-374))))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-317)))) (-3463 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 48 (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-317)))) (-3984 (($ $) NIL (|has| |#1| (-1221)))) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-3112 (((-783) $) NIL (|has| |#1| (-317)))) (-2871 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-317)))) (-1960 ((|#1| (-1286 $)) NIL) ((|#1|) NIL)) (-3721 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2735 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-783)) NIL (-2835 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2835 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-1423 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1372 (((-1191 |#1|)) NIL)) (-3928 (($ $) NIL (|has| |#1| (-1221)))) (-3798 (($ $) NIL (|has| |#1| (-1221)))) (-2594 (($) NIL (|has| |#1| (-360)))) (-3905 (($ $) NIL (|has| |#1| (-1221)))) (-3778 (($ $) NIL (|has| |#1| (-1221)))) (-3882 (($ $) NIL (|has| |#1| (-1221)))) (-3757 (($ $) NIL (|has| |#1| (-1221)))) (-1809 (((-1286 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) (-1286 $) (-1286 $)) NIL) (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-4076 (((-1286 |#1|) $) NIL) (($ (-1286 |#1|)) NIL) (((-1191 |#1|) $) NIL) (($ (-1191 |#1|)) NIL) (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-171 (-390)) $) NIL (|has| |#1| (-1041))) (((-171 (-227)) $) NIL (|has| |#1| (-1041))) (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4026 (($ $) 46)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-360))))) (-4136 (($ |#1| |#1|) 38)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 37) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-2883 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-3941 (((-1191 |#1|) $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL)) (-3958 (($ $) NIL (|has| |#1| (-1221)))) (-3831 (($ $) NIL (|has| |#1| (-1221)))) (-3040 (((-112) $ $) NIL (-2835 (-12 (|has| |#1| (-317)) (|has| |#1| (-926))) (|has| |#1| (-568))))) (-3939 (($ $) NIL (|has| |#1| (-1221)))) (-3808 (($ $) NIL (|has| |#1| (-1221)))) (-3981 (($ $) NIL (|has| |#1| (-1221)))) (-3852 (($ $) NIL (|has| |#1| (-1221)))) (-4225 ((|#1| $) NIL (|has| |#1| (-1221)))) (-1830 (($ $) NIL (|has| |#1| (-1221)))) (-3863 (($ $) NIL (|has| |#1| (-1221)))) (-3969 (($ $) NIL (|has| |#1| (-1221)))) (-3841 (($ $) NIL (|has| |#1| (-1221)))) (-3948 (($ $) NIL (|has| |#1| (-1221)))) (-3820 (($ $) NIL (|has| |#1| (-1221)))) (-2264 (($ $) NIL (|has| |#1| (-1079)))) (-2800 (($) 28 T CONST)) (-2810 (($) 30 T CONST)) (-2584 (((-1177) $) 23 (|has| |#1| (-840))) (((-1177) $ (-112)) 25 (|has| |#1| (-840))) (((-1291) (-834) $) 26 (|has| |#1| (-840))) (((-1291) (-834) $ (-112)) 27 (|has| |#1| (-840)))) (-2051 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) (|has| |#1| (-917 (-1195))))) (($ $ (-783)) NIL (-2835 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237)))) (($ $) NIL (-2835 (-12 (|has| |#1| (-238)) (|has| |#1| (-374))) (|has| |#1| (-237))))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 40)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-419 (-576))) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1221)))) (($ $ $) NIL (|has| |#1| (-1221))) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) (((-171 |#1|) (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-174)) (T -171)) NIL (-13 (-167 |#1|) (-10 -7 (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-1505 (((-905 |#1|) |#3|) 22))) -(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -1505 ((-905 |#1|) |#3|))) (-1119) (-13 (-626 (-905 |#1|)) (-174)) (-167 |#2|)) (T -172)) -((-1505 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1119)) (-4 *3 (-167 *5))))) -(-10 -7 (-15 -1505 ((-905 |#1|) |#3|))) -((-2034 (((-112) $ $) NIL)) (-4397 (((-112) $) 9)) (-3308 (((-112) $ (-112)) 11)) (-1992 (($) 13)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4268 (($ $) 14)) (-4092 (((-874) $) 18)) (-2065 (((-112) $) 8)) (-1627 (((-112) $ (-112)) 10)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-173) (-13 (-1119) (-10 -8 (-15 -1992 ($)) (-15 -2065 ((-112) $)) (-15 -4397 ((-112) $)) (-15 -1627 ((-112) $ (-112))) (-15 -3308 ((-112) $ (-112))) (-15 -4268 ($ $))))) (T -173)) -((-1992 (*1 *1) (-5 *1 (-173))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4397 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1627 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-3308 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-4268 (*1 *1 *1) (-5 *1 (-173)))) -(-13 (-1119) (-10 -8 (-15 -1992 ($)) (-15 -2065 ((-112) $)) (-15 -4397 ((-112) $)) (-15 -1627 ((-112) $ (-112))) (-15 -3308 ((-112) $ (-112))) (-15 -4268 ($ $)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 33)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-4076 (((-905 |#1|) |#3|) 22))) +(((-172 |#1| |#2| |#3|) (-10 -7 (-15 -4076 ((-905 |#1|) |#3|))) (-1119) (-13 (-626 (-905 |#1|)) (-174)) (-167 |#2|)) (T -172)) +((-4076 (*1 *2 *3) (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4)) (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1119)) (-4 *3 (-167 *5))))) +(-10 -7 (-15 -4076 ((-905 |#1|) |#3|))) +((-3474 (((-112) $ $) NIL)) (-1801 (((-112) $) 9)) (-2036 (((-112) $ (-112)) 11)) (-4033 (($) 13)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-1954 (($ $) 14)) (-3563 (((-874) $) 18)) (-1505 (((-112) $) 8)) (-2055 (((-112) $ (-112)) 10)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-173) (-13 (-1119) (-10 -8 (-15 -4033 ($)) (-15 -1505 ((-112) $)) (-15 -1801 ((-112) $)) (-15 -2055 ((-112) $ (-112))) (-15 -2036 ((-112) $ (-112))) (-15 -1954 ($ $))))) (T -173)) +((-4033 (*1 *1) (-5 *1 (-173))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2055 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-2036 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) (-1954 (*1 *1 *1) (-5 *1 (-173)))) +(-13 (-1119) (-10 -8 (-15 -4033 ($)) (-15 -1505 ((-112) $)) (-15 -1801 ((-112) $)) (-15 -2055 ((-112) $ (-112))) (-15 -2036 ((-112) $ (-112))) (-15 -1954 ($ $)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 33)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-174) (-141)) (T -174)) NIL -(-13 (-1068) (-111 $ $) (-10 -7 (-6 (-4464 "*")))) +(-13 (-1068) (-111 $ $) (-10 -7 (-6 (-4463 "*")))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-3603 (($ $) 6))) +((-4382 (($ $) 6))) (((-175) (-141)) (T -175)) -((-3603 (*1 *1 *1) (-4 *1 (-175)))) -(-13 (-10 -8 (-15 -3603 ($ $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 ((|#1| $) 81)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-1975 (($ $ $) NIL)) (-3437 (($ $) 21)) (-3291 (($ |#1| (-1176 |#1|)) 50)) (-3179 (((-3 $ "failed") $) 123)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3316 (((-1176 |#1|) $) 88)) (-2637 (((-1176 |#1|) $) 85)) (-2522 (((-1176 |#1|) $) 86)) (-1810 (((-112) $) NIL)) (-2605 (((-1176 |#1|) $) 94)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3117 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL)) (-2843 (($ $ (-576)) 97)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-1375 (((-1176 |#1|) $) 95)) (-3024 (((-1176 (-419 |#1|)) $) 14)) (-1555 (($ (-419 |#1|)) 17) (($ |#1| (-1176 |#1|) (-1176 |#1|)) 40)) (-1417 (($ $) 99)) (-4092 (((-874) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-2471 (((-783)) 69 T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2750 (((-1176 (-419 |#1|)) $) 20)) (-4300 (($) 27 T CONST)) (-4310 (($) 30 T CONST)) (-3919 (((-112) $ $) 37)) (-4028 (($ $ $) 121)) (-4018 (($ $) 112) (($ $ $) 109)) (-4007 (($ $ $) 107)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) -(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -1555 ($ (-419 |#1|))) (-15 -1555 ($ |#1| (-1176 |#1|) (-1176 |#1|))) (-15 -3291 ($ |#1| (-1176 |#1|))) (-15 -2637 ((-1176 |#1|) $)) (-15 -2522 ((-1176 |#1|) $)) (-15 -3316 ((-1176 |#1|) $)) (-15 -3942 (|#1| $)) (-15 -3437 ($ $)) (-15 -2750 ((-1176 (-419 |#1|)) $)) (-15 -3024 ((-1176 (-419 |#1|)) $)) (-15 -2605 ((-1176 |#1|) $)) (-15 -1375 ((-1176 |#1|) $)) (-15 -2843 ($ $ (-576))) (-15 -1417 ($ $)))) (-317)) (T -176)) -((-1555 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-1555 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-3291 (*1 *1 *2 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2522 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3942 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-2750 (*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3024 (*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1417 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -1555 ($ (-419 |#1|))) (-15 -1555 ($ |#1| (-1176 |#1|) (-1176 |#1|))) (-15 -3291 ($ |#1| (-1176 |#1|))) (-15 -2637 ((-1176 |#1|) $)) (-15 -2522 ((-1176 |#1|) $)) (-15 -3316 ((-1176 |#1|) $)) (-15 -3942 (|#1| $)) (-15 -3437 ($ $)) (-15 -2750 ((-1176 (-419 |#1|)) $)) (-15 -3024 ((-1176 (-419 |#1|)) $)) (-15 -2605 ((-1176 |#1|) $)) (-15 -1375 ((-1176 |#1|) $)) (-15 -2843 ($ $ (-576))) (-15 -1417 ($ $)))) -((-1384 (($ (-109) $) 15)) (-2834 (((-703 (-109)) (-518) $) 14)) (-4092 (((-874) $) 18)) (-2495 (((-656 (-109)) $) 8))) -(((-177) (-13 (-625 (-874)) (-10 -8 (-15 -2495 ((-656 (-109)) $)) (-15 -1384 ($ (-109) $)) (-15 -2834 ((-703 (-109)) (-518) $))))) (T -177)) -((-2495 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-1384 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-2834 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2495 ((-656 (-109)) $)) (-15 -1384 ($ (-109) $)) (-15 -2834 ((-703 (-109)) (-518) $)))) -((-4439 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 38)) (-2903 (((-960 |#1|) (-960 |#1|)) 22)) (-3036 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 34)) (-2960 (((-960 |#1|) (-960 |#1|)) 20)) (-4068 (((-960 |#1|) (-960 |#1|)) 28)) (-4324 (((-960 |#1|) (-960 |#1|)) 27)) (-2658 (((-960 |#1|) (-960 |#1|)) 26)) (-2240 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 35)) (-3524 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 33)) (-1591 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 32)) (-3515 (((-960 |#1|) (-960 |#1|)) 21)) (-2119 (((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|) 41)) (-2485 (((-960 |#1|) (-960 |#1|)) 8)) (-3887 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 37)) (-4141 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 36))) -(((-178 |#1|) (-10 -7 (-15 -2485 ((-960 |#1|) (-960 |#1|))) (-15 -2960 ((-960 |#1|) (-960 |#1|))) (-15 -3515 ((-960 |#1|) (-960 |#1|))) (-15 -2903 ((-960 |#1|) (-960 |#1|))) (-15 -2658 ((-960 |#1|) (-960 |#1|))) (-15 -4324 ((-960 |#1|) (-960 |#1|))) (-15 -4068 ((-960 |#1|) (-960 |#1|))) (-15 -1591 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3524 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3036 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2240 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -4141 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3887 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -4439 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2119 ((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|))) (-13 (-374) (-1222) (-1021))) (T -178)) -((-2119 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-4439 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-3887 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-4141 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-2240 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-3036 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-3524 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-1591 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-2903 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-2960 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) (-5 *1 (-178 *3))))) -(-10 -7 (-15 -2485 ((-960 |#1|) (-960 |#1|))) (-15 -2960 ((-960 |#1|) (-960 |#1|))) (-15 -3515 ((-960 |#1|) (-960 |#1|))) (-15 -2903 ((-960 |#1|) (-960 |#1|))) (-15 -2658 ((-960 |#1|) (-960 |#1|))) (-15 -4324 ((-960 |#1|) (-960 |#1|))) (-15 -4068 ((-960 |#1|) (-960 |#1|))) (-15 -1591 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3524 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3036 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2240 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -4141 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3887 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -4439 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2119 ((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|))) -((-3794 ((|#2| |#3|) 28))) -(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -3794 (|#2| |#3|))) (-174) (-1263 |#1|) (-736 |#1| |#2|)) (T -179)) -((-3794 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1263 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2))))) -(-10 -7 (-15 -3794 (|#2| |#3|))) -((-4375 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 44 (|has| (-969 |#2|) (-899 |#1|))))) -(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-969 |#2|) (-899 |#1|)) (-15 -4375 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|)) (-1119) (-13 (-899 |#1|) (-174)) (-167 |#2|)) (T -180)) -((-4375 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *3 (-167 *6)) (-4 (-969 *6) (-899 *5)) (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) -(-10 -7 (IF (|has| (-969 |#2|) (-899 |#1|)) (-15 -4375 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|)) -((-3471 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-1510 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-2011 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32))) -(((-181 |#1|) (-10 -7 (-15 -1510 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -2011 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -2011 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -3471 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181)) -((-3471 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-2011 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-2011 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-1510 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(-10 -7 (-15 -1510 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -2011 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -2011 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -3471 ((-656 |#1|) (-656 |#1|) |#1|))) -((-2034 (((-112) $ $) NIL)) (-4148 (((-1236) $) 13)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2271 (((-1154) $) 10)) (-4092 (((-874) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-182) (-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)) (-15 -4148 ((-1236) $))))) (T -182)) -((-2271 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-182)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-182))))) -(-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)) (-15 -4148 ((-1236) $)))) -((-3438 (((-2 (|:| |start| |#2|) (|:| -3791 (-430 |#2|))) |#2|) 66)) (-3314 ((|#1| |#1|) 58)) (-1557 (((-171 |#1|) |#2|) 93)) (-2998 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-2939 ((|#2| |#2|) 91)) (-4284 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-4252 ((|#1| |#2|) 117)) (-2724 ((|#2| |#2|) 130)) (-1392 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-2535 (((-656 (-2 (|:| -3791 (-656 |#2|)) (|:| -2297 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -3791 (-656 |#2|)) (|:| -2297 |#1|))) |#2| |#2| (-112)) 81)) (-3429 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43))) -(((-183 |#1| |#2|) (-10 -7 (-15 -3429 ((-656 (-171 |#1|)) |#2|)) (-15 -3429 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -2535 ((-656 (-2 (|:| -3791 (-656 |#2|)) (|:| -2297 |#1|))) |#2| |#2| (-112))) (-15 -2535 ((-656 (-2 (|:| -3791 (-656 |#2|)) (|:| -2297 |#1|))) |#2| |#2|)) (-15 -1392 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1392 ((-430 |#2|) |#2| |#1|)) (-15 -1392 ((-430 |#2|) |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -4252 (|#1| |#2|)) (-15 -4284 ((-430 |#2|) |#2| |#1| (-112))) (-15 -4284 ((-430 |#2|) |#2| |#1|)) (-15 -2939 (|#2| |#2|)) (-15 -2998 (|#1| |#2| |#1|)) (-15 -2998 (|#1| |#2|)) (-15 -1557 ((-171 |#1|) |#2|)) (-15 -3314 (|#1| |#1|)) (-15 -3438 ((-2 (|:| |start| |#2|) (|:| -3791 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1263 (-171 |#1|))) (T -183)) -((-3438 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -3791 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-3314 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-1557 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1263 *2)))) (-2998 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-2998 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-2939 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1263 (-171 *3))))) (-4284 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-4284 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-4252 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-2724 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1263 (-171 *3))))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1392 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1392 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-2535 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -3791 (-656 *3)) (|:| -2297 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-2535 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -3791 (-656 *3)) (|:| -2297 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1263 (-171 *5))))) (-3429 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-3429 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(-10 -7 (-15 -3429 ((-656 (-171 |#1|)) |#2|)) (-15 -3429 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -2535 ((-656 (-2 (|:| -3791 (-656 |#2|)) (|:| -2297 |#1|))) |#2| |#2| (-112))) (-15 -2535 ((-656 (-2 (|:| -3791 (-656 |#2|)) (|:| -2297 |#1|))) |#2| |#2|)) (-15 -1392 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1392 ((-430 |#2|) |#2| |#1|)) (-15 -1392 ((-430 |#2|) |#2|)) (-15 -2724 (|#2| |#2|)) (-15 -4252 (|#1| |#2|)) (-15 -4284 ((-430 |#2|) |#2| |#1| (-112))) (-15 -4284 ((-430 |#2|) |#2| |#1|)) (-15 -2939 (|#2| |#2|)) (-15 -2998 (|#1| |#2| |#1|)) (-15 -2998 (|#1| |#2|)) (-15 -1557 ((-171 |#1|) |#2|)) (-15 -3314 (|#1| |#1|)) (-15 -3438 ((-2 (|:| |start| |#2|) (|:| -3791 (-430 |#2|))) |#2|))) -((-4322 (((-3 |#2| "failed") |#2|) 16)) (-2436 (((-783) |#2|) 18)) (-3851 ((|#2| |#2| |#2|) 20))) -(((-184 |#1| |#2|) (-10 -7 (-15 -4322 ((-3 |#2| "failed") |#2|)) (-15 -2436 ((-783) |#2|)) (-15 -3851 (|#2| |#2| |#2|))) (-1237) (-686 |#1|)) (T -184)) -((-3851 (*1 *2 *2 *2) (-12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-2436 (*1 *2 *3) (-12 (-4 *4 (-1237)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-4322 (*1 *2 *2) (|partial| -12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(-10 -7 (-15 -4322 ((-3 |#2| "failed") |#2|)) (-15 -2436 ((-783) |#2|)) (-15 -3851 (|#2| |#2| |#2|))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1873 ((|#1| $) 7)) (-4092 (((-874) $) 14)) (-1531 (((-112) $ $) NIL)) (-3829 (((-656 (-1201)) $) 10)) (-3919 (((-112) $ $) 12))) -(((-185 |#1|) (-13 (-1119) (-10 -8 (-15 -1873 (|#1| $)) (-15 -3829 ((-656 (-1201)) $)))) (-187)) (T -185)) -((-1873 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(-13 (-1119) (-10 -8 (-15 -1873 (|#1| $)) (-15 -3829 ((-656 (-1201)) $)))) -((-3760 (((-656 (-877)) $) 16)) (-3927 (((-188) $) 8)) (-2341 (((-656 (-112)) $) 13)) (-1666 (((-55) $) 10))) -(((-186 |#1|) (-10 -8 (-15 -3760 ((-656 (-877)) |#1|)) (-15 -2341 ((-656 (-112)) |#1|)) (-15 -3927 ((-188) |#1|)) (-15 -1666 ((-55) |#1|))) (-187)) (T -186)) -NIL -(-10 -8 (-15 -3760 ((-656 (-877)) |#1|)) (-15 -2341 ((-656 (-112)) |#1|)) (-15 -3927 ((-188) |#1|)) (-15 -1666 ((-55) |#1|))) -((-2034 (((-112) $ $) 7)) (-3760 (((-656 (-877)) $) 19)) (-4124 (((-518) $) 16)) (-3288 (((-1178) $) 10)) (-3927 (((-188) $) 21)) (-1412 (((-112) $ (-518)) 14)) (-3139 (((-1139) $) 11)) (-2341 (((-656 (-112)) $) 20)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-1666 (((-55) $) 15)) (-3919 (((-112) $ $) 6))) +((-4382 (*1 *1 *1) (-4 *1 (-175)))) +(-13 (-10 -8 (-15 -4382 ($ $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 ((|#1| $) 81)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-3420 (($ $ $) NIL)) (-4008 (($ $) 21)) (-4099 (($ |#1| (-1176 |#1|)) 50)) (-1551 (((-3 $ "failed") $) 123)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1644 (((-1176 |#1|) $) 88)) (-2097 (((-1176 |#1|) $) 85)) (-3855 (((-1176 |#1|) $) 86)) (-1414 (((-112) $) NIL)) (-3120 (((-1176 |#1|) $) 94)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3459 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL)) (-1714 (($ $ (-576)) 97)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2235 (((-1176 |#1|) $) 95)) (-2610 (((-1176 (-419 |#1|)) $) 14)) (-1436 (($ (-419 |#1|)) 17) (($ |#1| (-1176 |#1|) (-1176 |#1|)) 40)) (-2869 (($ $) 99)) (-3563 (((-874) $) 139) (($ (-576)) 53) (($ |#1|) 54) (($ (-419 |#1|)) 38) (($ (-419 (-576))) NIL) (($ $) NIL)) (-1858 (((-783)) 69 T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-3611 (((-1176 (-419 |#1|)) $) 20)) (-2800 (($) 27 T CONST)) (-2810 (($) 30 T CONST)) (-2988 (((-112) $ $) 37)) (-3107 (($ $ $) 121)) (-3095 (($ $) 112) (($ $ $) 109)) (-3083 (($ $ $) 107)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-419 |#1|) $) 117) (($ $ (-419 |#1|)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL))) +(((-176 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -1436 ($ (-419 |#1|))) (-15 -1436 ($ |#1| (-1176 |#1|) (-1176 |#1|))) (-15 -4099 ($ |#1| (-1176 |#1|))) (-15 -2097 ((-1176 |#1|) $)) (-15 -3855 ((-1176 |#1|) $)) (-15 -1644 ((-1176 |#1|) $)) (-15 -1560 (|#1| $)) (-15 -4008 ($ $)) (-15 -3611 ((-1176 (-419 |#1|)) $)) (-15 -2610 ((-1176 (-419 |#1|)) $)) (-15 -3120 ((-1176 |#1|) $)) (-15 -2235 ((-1176 |#1|) $)) (-15 -1714 ($ $ (-576))) (-15 -2869 ($ $)))) (-317)) (T -176)) +((-1436 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) (-1436 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-4099 (*1 *1 *2 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) (-2097 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1560 (*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-4008 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-1714 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) (-2869 (*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) +(-13 (-38 |#1|) (-38 (-419 |#1|)) (-374) (-10 -8 (-15 -1436 ($ (-419 |#1|))) (-15 -1436 ($ |#1| (-1176 |#1|) (-1176 |#1|))) (-15 -4099 ($ |#1| (-1176 |#1|))) (-15 -2097 ((-1176 |#1|) $)) (-15 -3855 ((-1176 |#1|) $)) (-15 -1644 ((-1176 |#1|) $)) (-15 -1560 (|#1| $)) (-15 -4008 ($ $)) (-15 -3611 ((-1176 (-419 |#1|)) $)) (-15 -2610 ((-1176 (-419 |#1|)) $)) (-15 -3120 ((-1176 |#1|) $)) (-15 -2235 ((-1176 |#1|) $)) (-15 -1714 ($ $ (-576))) (-15 -2869 ($ $)))) +((-2057 (($ (-109) $) 15)) (-3033 (((-703 (-109)) (-518) $) 14)) (-3563 (((-874) $) 18)) (-3250 (((-656 (-109)) $) 8))) +(((-177) (-13 (-625 (-874)) (-10 -8 (-15 -3250 ((-656 (-109)) $)) (-15 -2057 ($ (-109) $)) (-15 -3033 ((-703 (-109)) (-518) $))))) (T -177)) +((-3250 (*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177)))) (-2057 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177)))) (-3033 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177))))) +(-13 (-625 (-874)) (-10 -8 (-15 -3250 ((-656 (-109)) $)) (-15 -2057 ($ (-109) $)) (-15 -3033 ((-703 (-109)) (-518) $)))) +((-3101 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 38)) (-3392 (((-960 |#1|) (-960 |#1|)) 22)) (-4318 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 34)) (-2078 (((-960 |#1|) (-960 |#1|)) 20)) (-3570 (((-960 |#1|) (-960 |#1|)) 28)) (-2019 (((-960 |#1|) (-960 |#1|)) 27)) (-2725 (((-960 |#1|) (-960 |#1|)) 26)) (-4332 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 35)) (-1833 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 33)) (-4083 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 32)) (-2404 (((-960 |#1|) (-960 |#1|)) 21)) (-3133 (((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|) 41)) (-3658 (((-960 |#1|) (-960 |#1|)) 8)) (-3453 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 37)) (-2590 (((-1 (-960 |#1|) (-960 |#1|)) |#1|) 36))) +(((-178 |#1|) (-10 -7 (-15 -3658 ((-960 |#1|) (-960 |#1|))) (-15 -2078 ((-960 |#1|) (-960 |#1|))) (-15 -2404 ((-960 |#1|) (-960 |#1|))) (-15 -3392 ((-960 |#1|) (-960 |#1|))) (-15 -2725 ((-960 |#1|) (-960 |#1|))) (-15 -2019 ((-960 |#1|) (-960 |#1|))) (-15 -3570 ((-960 |#1|) (-960 |#1|))) (-15 -4083 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1833 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -4318 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -4332 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2590 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3453 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3101 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3133 ((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|))) (-13 (-374) (-1221) (-1021))) (T -178)) +((-3133 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))))) (-3101 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))))) (-3453 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))))) (-2590 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))))) (-4332 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))))) (-4318 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))))) (-1833 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))))) (-4083 (*1 *2 *3) (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) (-5 *1 (-178 *3)))) (-2019 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) (-5 *1 (-178 *3)))) (-2725 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) (-5 *1 (-178 *3)))) (-3392 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) (-5 *1 (-178 *3)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) (-5 *1 (-178 *3)))) (-2078 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) (-5 *1 (-178 *3)))) (-3658 (*1 *2 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) (-5 *1 (-178 *3))))) +(-10 -7 (-15 -3658 ((-960 |#1|) (-960 |#1|))) (-15 -2078 ((-960 |#1|) (-960 |#1|))) (-15 -2404 ((-960 |#1|) (-960 |#1|))) (-15 -3392 ((-960 |#1|) (-960 |#1|))) (-15 -2725 ((-960 |#1|) (-960 |#1|))) (-15 -2019 ((-960 |#1|) (-960 |#1|))) (-15 -3570 ((-960 |#1|) (-960 |#1|))) (-15 -4083 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -1833 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -4318 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -4332 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -2590 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3453 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3101 ((-1 (-960 |#1|) (-960 |#1|)) |#1|)) (-15 -3133 ((-1 (-960 |#1|) (-960 |#1|)) |#1| |#1|))) +((-3941 ((|#2| |#3|) 28))) +(((-179 |#1| |#2| |#3|) (-10 -7 (-15 -3941 (|#2| |#3|))) (-174) (-1262 |#1|) (-736 |#1| |#2|)) (T -179)) +((-3941 (*1 *2 *3) (-12 (-4 *4 (-174)) (-4 *2 (-1262 *4)) (-5 *1 (-179 *4 *2 *3)) (-4 *3 (-736 *4 *2))))) +(-10 -7 (-15 -3941 (|#2| |#3|))) +((-3526 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 44 (|has| (-969 |#2|) (-899 |#1|))))) +(((-180 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-969 |#2|) (-899 |#1|)) (-15 -3526 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|)) (-1119) (-13 (-899 |#1|) (-174)) (-167 |#2|)) (T -180)) +((-3526 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *3 (-167 *6)) (-4 (-969 *6) (-899 *5)) (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3))))) +(-10 -7 (IF (|has| (-969 |#2|) (-899 |#1|)) (-15 -3526 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) |%noBranch|)) +((-2335 (((-656 |#1|) (-656 |#1|) |#1|) 41)) (-2884 (((-656 |#1|) |#1| (-656 |#1|)) 20)) (-2285 (((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|)) 36) ((|#1| (-656 |#1|) (-656 |#1|)) 32))) +(((-181 |#1|) (-10 -7 (-15 -2884 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -2285 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -2285 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -2335 ((-656 |#1|) (-656 |#1|) |#1|))) (-317)) (T -181)) +((-2335 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3)))) (-2285 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) (-5 *1 (-181 *4)))) (-2285 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) (-2884 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(-10 -7 (-15 -2884 ((-656 |#1|) |#1| (-656 |#1|))) (-15 -2285 (|#1| (-656 |#1|) (-656 |#1|))) (-15 -2285 ((-656 |#1|) (-656 (-656 |#1|)) (-656 |#1|))) (-15 -2335 ((-656 |#1|) (-656 |#1|) |#1|))) +((-3474 (((-112) $ $) NIL)) (-3042 (((-1235) $) 13)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4269 (((-1154) $) 10)) (-3563 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-182) (-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)) (-15 -3042 ((-1235) $))))) (T -182)) +((-4269 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-182)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-182))))) +(-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)) (-15 -3042 ((-1235) $)))) +((-4117 (((-2 (|:| |start| |#2|) (|:| -1707 (-430 |#2|))) |#2|) 66)) (-1418 ((|#1| |#1|) 58)) (-1662 (((-171 |#1|) |#2|) 93)) (-3082 ((|#1| |#2|) 136) ((|#1| |#2| |#1|) 90)) (-3857 ((|#2| |#2|) 91)) (-3881 (((-430 |#2|) |#2| |#1|) 118) (((-430 |#2|) |#2| |#1| (-112)) 88)) (-4072 ((|#1| |#2|) 117)) (-1593 ((|#2| |#2|) 130)) (-1839 (((-430 |#2|) |#2|) 153) (((-430 |#2|) |#2| |#1|) 33) (((-430 |#2|) |#2| |#1| (-112)) 152)) (-1752 (((-656 (-2 (|:| -1707 (-656 |#2|)) (|:| -3331 |#1|))) |#2| |#2|) 151) (((-656 (-2 (|:| -1707 (-656 |#2|)) (|:| -3331 |#1|))) |#2| |#2| (-112)) 81)) (-1484 (((-656 (-171 |#1|)) |#2| |#1|) 42) (((-656 (-171 |#1|)) |#2|) 43))) +(((-183 |#1| |#2|) (-10 -7 (-15 -1484 ((-656 (-171 |#1|)) |#2|)) (-15 -1484 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -1752 ((-656 (-2 (|:| -1707 (-656 |#2|)) (|:| -3331 |#1|))) |#2| |#2| (-112))) (-15 -1752 ((-656 (-2 (|:| -1707 (-656 |#2|)) (|:| -3331 |#1|))) |#2| |#2|)) (-15 -1839 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1839 ((-430 |#2|) |#2| |#1|)) (-15 -1839 ((-430 |#2|) |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -4072 (|#1| |#2|)) (-15 -3881 ((-430 |#2|) |#2| |#1| (-112))) (-15 -3881 ((-430 |#2|) |#2| |#1|)) (-15 -3857 (|#2| |#2|)) (-15 -3082 (|#1| |#2| |#1|)) (-15 -3082 (|#1| |#2|)) (-15 -1662 ((-171 |#1|) |#2|)) (-15 -1418 (|#1| |#1|)) (-15 -4117 ((-2 (|:| |start| |#2|) (|:| -1707 (-430 |#2|))) |#2|))) (-13 (-374) (-860)) (-1262 (-171 |#1|))) (T -183)) +((-4117 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -1707 (-430 *3)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1418 (*1 *2 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-1662 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1262 *2)))) (-3082 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-3082 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-3857 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1262 (-171 *3))))) (-3881 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-3881 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-4072 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) (-4 *3 (-1262 (-171 *2))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) (-4 *2 (-1262 (-171 *3))))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1839 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1839 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1752 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -1707 (-656 *3)) (|:| -3331 *4)))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1752 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) (-5 *2 (-656 (-2 (|:| -1707 (-656 *3)) (|:| -3331 *5)))) (-5 *1 (-183 *5 *3)) (-4 *3 (-1262 (-171 *5))))) (-1484 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) (-1484 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) +(-10 -7 (-15 -1484 ((-656 (-171 |#1|)) |#2|)) (-15 -1484 ((-656 (-171 |#1|)) |#2| |#1|)) (-15 -1752 ((-656 (-2 (|:| -1707 (-656 |#2|)) (|:| -3331 |#1|))) |#2| |#2| (-112))) (-15 -1752 ((-656 (-2 (|:| -1707 (-656 |#2|)) (|:| -3331 |#1|))) |#2| |#2|)) (-15 -1839 ((-430 |#2|) |#2| |#1| (-112))) (-15 -1839 ((-430 |#2|) |#2| |#1|)) (-15 -1839 ((-430 |#2|) |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -4072 (|#1| |#2|)) (-15 -3881 ((-430 |#2|) |#2| |#1| (-112))) (-15 -3881 ((-430 |#2|) |#2| |#1|)) (-15 -3857 (|#2| |#2|)) (-15 -3082 (|#1| |#2| |#1|)) (-15 -3082 (|#1| |#2|)) (-15 -1662 ((-171 |#1|) |#2|)) (-15 -1418 (|#1| |#1|)) (-15 -4117 ((-2 (|:| |start| |#2|) (|:| -1707 (-430 |#2|))) |#2|))) +((-3181 (((-3 |#2| "failed") |#2|) 16)) (-3651 (((-783) |#2|) 18)) (-3345 ((|#2| |#2| |#2|) 20))) +(((-184 |#1| |#2|) (-10 -7 (-15 -3181 ((-3 |#2| "failed") |#2|)) (-15 -3651 ((-783) |#2|)) (-15 -3345 (|#2| |#2| |#2|))) (-1236) (-686 |#1|)) (T -184)) +((-3345 (*1 *2 *2 *2) (-12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3)))) (-3651 (*1 *2 *3) (-12 (-4 *4 (-1236)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) (-4 *3 (-686 *4)))) (-3181 (*1 *2 *2) (|partial| -12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) +(-10 -7 (-15 -3181 ((-3 |#2| "failed") |#2|)) (-15 -3651 ((-783) |#2|)) (-15 -3345 (|#2| |#2| |#2|))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2642 ((|#1| $) 7)) (-3563 (((-874) $) 14)) (-3985 (((-112) $ $) NIL)) (-1912 (((-656 (-1200)) $) 10)) (-2988 (((-112) $ $) 12))) +(((-185 |#1|) (-13 (-1119) (-10 -8 (-15 -2642 (|#1| $)) (-15 -1912 ((-656 (-1200)) $)))) (-187)) (T -185)) +((-2642 (*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(-13 (-1119) (-10 -8 (-15 -2642 (|#1| $)) (-15 -1912 ((-656 (-1200)) $)))) +((-3259 (((-656 (-877)) $) 16)) (-1820 (((-188) $) 8)) (-2862 (((-656 (-112)) $) 13)) (-1730 (((-55) $) 10))) +(((-186 |#1|) (-10 -8 (-15 -3259 ((-656 (-877)) |#1|)) (-15 -2862 ((-656 (-112)) |#1|)) (-15 -1820 ((-188) |#1|)) (-15 -1730 ((-55) |#1|))) (-187)) (T -186)) +NIL +(-10 -8 (-15 -3259 ((-656 (-877)) |#1|)) (-15 -2862 ((-656 (-112)) |#1|)) (-15 -1820 ((-188) |#1|)) (-15 -1730 ((-55) |#1|))) +((-3474 (((-112) $ $) 7)) (-3259 (((-656 (-877)) $) 19)) (-2706 (((-518) $) 16)) (-1927 (((-1177) $) 10)) (-1820 (((-188) $) 21)) (-3718 (((-112) $ (-518)) 14)) (-1445 (((-1139) $) 11)) (-2862 (((-656 (-112)) $) 20)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-1730 (((-55) $) 15)) (-2988 (((-112) $ $) 6))) (((-187) (-141)) (T -187)) -((-3927 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877)))))) -(-13 (-847 (-518)) (-10 -8 (-15 -3927 ((-188) $)) (-15 -2341 ((-656 (-112)) $)) (-15 -3760 ((-656 (-877)) $)))) +((-1820 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188)))) (-2862 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112))))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877)))))) +(-13 (-847 (-518)) (-10 -8 (-15 -1820 ((-188) $)) (-15 -2862 ((-656 (-112)) $)) (-15 -3259 ((-656 (-877)) $)))) (((-102) . T) ((-625 (-874)) . T) ((-847 (-518)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-8 (($) 7 T CONST)) (-4092 (((-874) $) 12)) (-9 (($) 6 T CONST)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 10))) -(((-188) (-13 (-1119) (-10 -8 (-15 -9 ($) -2670) (-15 -8 ($) -2670) (-15 -7 ($) -2670)))) (T -188)) +((-3474 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-8 (($) 7 T CONST)) (-3563 (((-874) $) 12)) (-9 (($) 6 T CONST)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 10))) +(((-188) (-13 (-1119) (-10 -8 (-15 -9 ($) -1398) (-15 -8 ($) -1398) (-15 -7 ($) -1398)))) (T -188)) ((-9 (*1 *1) (-5 *1 (-188))) (-8 (*1 *1) (-5 *1 (-188))) (-7 (*1 *1) (-5 *1 (-188)))) -(-13 (-1119) (-10 -8 (-15 -9 ($) -2670) (-15 -8 ($) -2670) (-15 -7 ($) -2670))) -((-2034 (((-112) $ $) NIL)) (-3760 (((-656 (-877)) $) NIL)) (-4124 (((-518) $) 8)) (-3288 (((-1178) $) NIL)) (-3927 (((-188) $) 10)) (-1412 (((-112) $ (-518)) NIL)) (-3139 (((-1139) $) NIL)) (-1759 (((-703 $) (-518)) 17)) (-2341 (((-656 (-112)) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-1666 (((-55) $) 12)) (-3919 (((-112) $ $) NIL))) -(((-189) (-13 (-187) (-10 -8 (-15 -1759 ((-703 $) (-518)))))) (T -189)) -((-1759 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(-13 (-187) (-10 -8 (-15 -1759 ((-703 $) (-518))))) -((-4431 ((|#2| |#2|) 28)) (-4398 (((-112) |#2|) 19)) (-1415 (((-326 |#1|) |#2|) 12)) (-1428 (((-326 |#1|) |#2|) 14)) (-3809 ((|#2| |#2| (-1196)) 69) ((|#2| |#2|) 70)) (-3735 (((-171 (-326 |#1|)) |#2|) 10)) (-3782 ((|#2| |#2| (-1196)) 66) ((|#2| |#2|) 60))) -(((-190 |#1| |#2|) (-10 -7 (-15 -3809 (|#2| |#2|)) (-15 -3809 (|#2| |#2| (-1196))) (-15 -3782 (|#2| |#2|)) (-15 -3782 (|#2| |#2| (-1196))) (-15 -1415 ((-326 |#1|) |#2|)) (-15 -1428 ((-326 |#1|) |#2|)) (-15 -4398 ((-112) |#2|)) (-15 -4431 (|#2| |#2|)) (-15 -3735 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1057 (-576))) (-13 (-27) (-1222) (-442 (-171 |#1|)))) (T -190)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-4431 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) (-4398 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-1428 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-1415 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3782 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3782 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) (-3809 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3))))))) -(-10 -7 (-15 -3809 (|#2| |#2|)) (-15 -3809 (|#2| |#2| (-1196))) (-15 -3782 (|#2| |#2|)) (-15 -3782 (|#2| |#2| (-1196))) (-15 -1415 ((-326 |#1|) |#2|)) (-15 -1428 ((-326 |#1|) |#2|)) (-15 -4398 ((-112) |#2|)) (-15 -4431 (|#2| |#2|)) (-15 -3735 ((-171 (-326 |#1|)) |#2|))) -((-3799 (((-1287 (-701 (-969 |#1|))) (-1287 (-701 |#1|))) 26)) (-4092 (((-1287 (-701 (-419 (-969 |#1|)))) (-1287 (-701 |#1|))) 37))) -(((-191 |#1|) (-10 -7 (-15 -3799 ((-1287 (-701 (-969 |#1|))) (-1287 (-701 |#1|)))) (-15 -4092 ((-1287 (-701 (-419 (-969 |#1|)))) (-1287 (-701 |#1|))))) (-174)) (T -191)) -((-4092 (*1 *2 *3) (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1287 (-701 (-419 (-969 *4))))) (-5 *1 (-191 *4)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1287 (-701 (-969 *4)))) (-5 *1 (-191 *4))))) -(-10 -7 (-15 -3799 ((-1287 (-701 (-969 |#1|))) (-1287 (-701 |#1|)))) (-15 -4092 ((-1287 (-701 (-419 (-969 |#1|)))) (-1287 (-701 |#1|))))) -((-3493 (((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576)))) 93)) (-1706 (((-1198 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-3248 (((-1198 (-419 (-576))) (-938)) 54)) (-4336 (((-1198 (-419 (-576))) (-938)) 79)) (-2259 (((-419 (-576)) (-1198 (-419 (-576)))) 89)) (-2460 (((-1198 (-419 (-576))) (-938)) 37)) (-2174 (((-1198 (-419 (-576))) (-938)) 66)) (-3630 (((-1198 (-419 (-576))) (-938)) 61)) (-2985 (((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576)))) 87)) (-1417 (((-1198 (-419 (-576))) (-938)) 29)) (-4304 (((-419 (-576)) (-1198 (-419 (-576))) (-1198 (-419 (-576)))) 91)) (-1599 (((-1198 (-419 (-576))) (-938)) 35)) (-3251 (((-1198 (-419 (-576))) (-656 (-938))) 100))) -(((-192) (-10 -7 (-15 -1417 ((-1198 (-419 (-576))) (-938))) (-15 -3248 ((-1198 (-419 (-576))) (-938))) (-15 -2460 ((-1198 (-419 (-576))) (-938))) (-15 -1599 ((-1198 (-419 (-576))) (-938))) (-15 -3630 ((-1198 (-419 (-576))) (-938))) (-15 -2174 ((-1198 (-419 (-576))) (-938))) (-15 -4336 ((-1198 (-419 (-576))) (-938))) (-15 -4304 ((-419 (-576)) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2985 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2259 ((-419 (-576)) (-1198 (-419 (-576))))) (-15 -3493 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -3251 ((-1198 (-419 (-576))) (-656 (-938)))) (-15 -1706 ((-1198 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192)) -((-1706 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-3493 (*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-2985 (*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-4304 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-4336 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2174 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) (-1417 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(-10 -7 (-15 -1417 ((-1198 (-419 (-576))) (-938))) (-15 -3248 ((-1198 (-419 (-576))) (-938))) (-15 -2460 ((-1198 (-419 (-576))) (-938))) (-15 -1599 ((-1198 (-419 (-576))) (-938))) (-15 -3630 ((-1198 (-419 (-576))) (-938))) (-15 -2174 ((-1198 (-419 (-576))) (-938))) (-15 -4336 ((-1198 (-419 (-576))) (-938))) (-15 -4304 ((-419 (-576)) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2985 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -2259 ((-419 (-576)) (-1198 (-419 (-576))))) (-15 -3493 ((-1198 (-419 (-576))) (-1198 (-419 (-576))) (-1198 (-419 (-576))))) (-15 -3251 ((-1198 (-419 (-576))) (-656 (-938)))) (-15 -1706 ((-1198 (-419 (-576))) (-656 (-576)) (-656 (-576))))) -((-1832 (((-430 (-1192 (-576))) (-576)) 38)) (-3040 (((-656 (-1192 (-576))) (-576)) 33)) (-4434 (((-1192 (-576)) (-576)) 28))) -(((-193) (-10 -7 (-15 -3040 ((-656 (-1192 (-576))) (-576))) (-15 -4434 ((-1192 (-576)) (-576))) (-15 -1832 ((-430 (-1192 (-576))) (-576))))) (T -193)) -((-1832 (*1 *2 *3) (-12 (-5 *2 (-430 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-4434 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-3040 (*1 *2 *3) (-12 (-5 *2 (-656 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(-10 -7 (-15 -3040 ((-656 (-1192 (-576))) (-576))) (-15 -4434 ((-1192 (-576)) (-576))) (-15 -1832 ((-430 (-1192 (-576))) (-576)))) -((-1772 (((-1176 (-227)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-3961 (((-656 (-1178)) (-1176 (-227))) NIL)) (-3327 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-1689 (((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227)))) NIL)) (-3167 (((-656 (-1178)) (-656 (-227))) NIL)) (-2008 (((-227) (-1113 (-855 (-227)))) 31)) (-3130 (((-227) (-1113 (-855 (-227)))) 32)) (-3557 (((-390) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-4200 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3447 (((-1178) (-227)) NIL)) (-2063 (((-1178) (-656 (-1178))) 27)) (-1355 (((-1054) (-1196) (-1196) (-1054)) 13))) -(((-194) (-10 -7 (-15 -3327 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4200 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2008 ((-227) (-1113 (-855 (-227))))) (-15 -3130 ((-227) (-1113 (-855 (-227))))) (-15 -3557 ((-390) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1689 ((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227))))) (-15 -1772 ((-1176 (-227)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3447 ((-1178) (-227))) (-15 -3167 ((-656 (-1178)) (-656 (-227)))) (-15 -3961 ((-656 (-1178)) (-1176 (-227)))) (-15 -2063 ((-1178) (-656 (-1178)))) (-15 -1355 ((-1054) (-1196) (-1196) (-1054))))) (T -194)) -((-1355 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-194)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-194)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-194)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-194)))) (-1689 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) -(-10 -7 (-15 -3327 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4200 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2008 ((-227) (-1113 (-855 (-227))))) (-15 -3130 ((-227) (-1113 (-855 (-227))))) (-15 -3557 ((-390) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1689 ((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227))))) (-15 -1772 ((-1176 (-227)) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3447 ((-1178) (-227))) (-15 -3167 ((-656 (-1178)) (-656 (-227)))) (-15 -3961 ((-656 (-1178)) (-1176 (-227)))) (-15 -2063 ((-1178) (-656 (-1178)))) (-15 -1355 ((-1054) (-1196) (-1196) (-1054)))) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 61) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +(-13 (-1119) (-10 -8 (-15 -9 ($) -1398) (-15 -8 ($) -1398) (-15 -7 ($) -1398))) +((-3474 (((-112) $ $) NIL)) (-3259 (((-656 (-877)) $) NIL)) (-2706 (((-518) $) 8)) (-1927 (((-1177) $) NIL)) (-1820 (((-188) $) 10)) (-3718 (((-112) $ (-518)) NIL)) (-1445 (((-1139) $) NIL)) (-4003 (((-703 $) (-518)) 17)) (-2862 (((-656 (-112)) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-1730 (((-55) $) 12)) (-2988 (((-112) $ $) NIL))) +(((-189) (-13 (-187) (-10 -8 (-15 -4003 ((-703 $) (-518)))))) (T -189)) +((-4003 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) +(-13 (-187) (-10 -8 (-15 -4003 ((-703 $) (-518))))) +((-3630 ((|#2| |#2|) 28)) (-1883 (((-112) |#2|) 19)) (-1864 (((-326 |#1|) |#2|) 12)) (-1876 (((-326 |#1|) |#2|) 14)) (-2971 ((|#2| |#2| (-1195)) 69) ((|#2| |#2|) 70)) (-1993 (((-171 (-326 |#1|)) |#2|) 10)) (-2013 ((|#2| |#2| (-1195)) 66) ((|#2| |#2|) 60))) +(((-190 |#1| |#2|) (-10 -7 (-15 -2971 (|#2| |#2|)) (-15 -2971 (|#2| |#2| (-1195))) (-15 -2013 (|#2| |#2|)) (-15 -2013 (|#2| |#2| (-1195))) (-15 -1864 ((-326 |#1|) |#2|)) (-15 -1876 ((-326 |#1|) |#2|)) (-15 -1883 ((-112) |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -1993 ((-171 (-326 |#1|)) |#2|))) (-13 (-568) (-1057 (-576))) (-13 (-27) (-1221) (-442 (-171 |#1|)))) (T -190)) +((-1993 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-1864 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-2013 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) (-2971 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) (-2971 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3))))))) +(-10 -7 (-15 -2971 (|#2| |#2|)) (-15 -2971 (|#2| |#2| (-1195))) (-15 -2013 (|#2| |#2|)) (-15 -2013 (|#2| |#2| (-1195))) (-15 -1864 ((-326 |#1|) |#2|)) (-15 -1876 ((-326 |#1|) |#2|)) (-15 -1883 ((-112) |#2|)) (-15 -3630 (|#2| |#2|)) (-15 -1993 ((-171 (-326 |#1|)) |#2|))) +((-4399 (((-1286 (-701 (-969 |#1|))) (-1286 (-701 |#1|))) 26)) (-3563 (((-1286 (-701 (-419 (-969 |#1|)))) (-1286 (-701 |#1|))) 37))) +(((-191 |#1|) (-10 -7 (-15 -4399 ((-1286 (-701 (-969 |#1|))) (-1286 (-701 |#1|)))) (-15 -3563 ((-1286 (-701 (-419 (-969 |#1|)))) (-1286 (-701 |#1|))))) (-174)) (T -191)) +((-3563 (*1 *2 *3) (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1286 (-701 (-419 (-969 *4))))) (-5 *1 (-191 *4)))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) (-5 *2 (-1286 (-701 (-969 *4)))) (-5 *1 (-191 *4))))) +(-10 -7 (-15 -4399 ((-1286 (-701 (-969 |#1|))) (-1286 (-701 |#1|)))) (-15 -3563 ((-1286 (-701 (-419 (-969 |#1|)))) (-1286 (-701 |#1|))))) +((-1885 (((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576)))) 93)) (-1906 (((-1197 (-419 (-576))) (-656 (-576)) (-656 (-576))) 107)) (-2296 (((-1197 (-419 (-576))) (-938)) 54)) (-3144 (((-1197 (-419 (-576))) (-938)) 79)) (-3306 (((-419 (-576)) (-1197 (-419 (-576)))) 89)) (-1926 (((-1197 (-419 (-576))) (-938)) 37)) (-4096 (((-1197 (-419 (-576))) (-938)) 66)) (-4160 (((-1197 (-419 (-576))) (-938)) 61)) (-4034 (((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576)))) 87)) (-2869 (((-1197 (-419 (-576))) (-938)) 29)) (-2106 (((-419 (-576)) (-1197 (-419 (-576))) (-1197 (-419 (-576)))) 91)) (-2485 (((-1197 (-419 (-576))) (-938)) 35)) (-2576 (((-1197 (-419 (-576))) (-656 (-938))) 100))) +(((-192) (-10 -7 (-15 -2869 ((-1197 (-419 (-576))) (-938))) (-15 -2296 ((-1197 (-419 (-576))) (-938))) (-15 -1926 ((-1197 (-419 (-576))) (-938))) (-15 -2485 ((-1197 (-419 (-576))) (-938))) (-15 -4160 ((-1197 (-419 (-576))) (-938))) (-15 -4096 ((-1197 (-419 (-576))) (-938))) (-15 -3144 ((-1197 (-419 (-576))) (-938))) (-15 -2106 ((-419 (-576)) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -4034 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -3306 ((-419 (-576)) (-1197 (-419 (-576))))) (-15 -1885 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2576 ((-1197 (-419 (-576))) (-656 (-938)))) (-15 -1906 ((-1197 (-419 (-576))) (-656 (-576)) (-656 (-576)))))) (T -192)) +((-1906 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-1885 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-4034 (*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2106 (*1 *2 *3 *3) (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-192)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-1926 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) (-2869 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) +(-10 -7 (-15 -2869 ((-1197 (-419 (-576))) (-938))) (-15 -2296 ((-1197 (-419 (-576))) (-938))) (-15 -1926 ((-1197 (-419 (-576))) (-938))) (-15 -2485 ((-1197 (-419 (-576))) (-938))) (-15 -4160 ((-1197 (-419 (-576))) (-938))) (-15 -4096 ((-1197 (-419 (-576))) (-938))) (-15 -3144 ((-1197 (-419 (-576))) (-938))) (-15 -2106 ((-419 (-576)) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -4034 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -3306 ((-419 (-576)) (-1197 (-419 (-576))))) (-15 -1885 ((-1197 (-419 (-576))) (-1197 (-419 (-576))) (-1197 (-419 (-576))))) (-15 -2576 ((-1197 (-419 (-576))) (-656 (-938)))) (-15 -1906 ((-1197 (-419 (-576))) (-656 (-576)) (-656 (-576))))) +((-2736 (((-430 (-1191 (-576))) (-576)) 38)) (-3519 (((-656 (-1191 (-576))) (-576)) 33)) (-3843 (((-1191 (-576)) (-576)) 28))) +(((-193) (-10 -7 (-15 -3519 ((-656 (-1191 (-576))) (-576))) (-15 -3843 ((-1191 (-576)) (-576))) (-15 -2736 ((-430 (-1191 (-576))) (-576))))) (T -193)) +((-2736 (*1 *2 *3) (-12 (-5 *2 (-430 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576)))) (-3843 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) (-3519 (*1 *2 *3) (-12 (-5 *2 (-656 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(-10 -7 (-15 -3519 ((-656 (-1191 (-576))) (-576))) (-15 -3843 ((-1191 (-576)) (-576))) (-15 -2736 ((-430 (-1191 (-576))) (-576)))) +((-4082 (((-1176 (-227)) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 132)) (-2713 (((-656 (-1177)) (-1176 (-227))) NIL)) (-3350 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3084 (((-656 (-227)) (-326 (-227)) (-1195) (-1113 (-855 (-227)))) NIL)) (-1614 (((-656 (-1177)) (-656 (-227))) NIL)) (-3216 (((-227) (-1113 (-855 (-227)))) 31)) (-3582 (((-227) (-1113 (-855 (-227)))) 32)) (-2151 (((-390) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 126)) (-3413 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 67)) (-3642 (((-1177) (-227)) NIL)) (-2563 (((-1177) (-656 (-1177))) 27)) (-3191 (((-1054) (-1195) (-1195) (-1054)) 13))) +(((-194) (-10 -7 (-15 -3350 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3413 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3216 ((-227) (-1113 (-855 (-227))))) (-15 -3582 ((-227) (-1113 (-855 (-227))))) (-15 -2151 ((-390) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3084 ((-656 (-227)) (-326 (-227)) (-1195) (-1113 (-855 (-227))))) (-15 -4082 ((-1176 (-227)) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3642 ((-1177) (-227))) (-15 -1614 ((-656 (-1177)) (-656 (-227)))) (-15 -2713 ((-656 (-1177)) (-1176 (-227)))) (-15 -2563 ((-1177) (-656 (-1177)))) (-15 -3191 ((-1054) (-1195) (-1195) (-1054))))) (T -194)) +((-3191 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1195)) (-5 *1 (-194)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-194)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-194)))) (-4082 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-194)))) (-3084 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-194)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) (-3413 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-194)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-194))))) +(-10 -7 (-15 -3350 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3413 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3216 ((-227) (-1113 (-855 (-227))))) (-15 -3582 ((-227) (-1113 (-855 (-227))))) (-15 -2151 ((-390) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3084 ((-656 (-227)) (-326 (-227)) (-1195) (-1113 (-855 (-227))))) (-15 -4082 ((-1176 (-227)) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3642 ((-1177) (-227))) (-15 -1614 ((-656 (-1177)) (-656 (-227)))) (-15 -2713 ((-656 (-1177)) (-1176 (-227)))) (-15 -2563 ((-1177) (-656 (-1177)))) (-15 -3191 ((-1054) (-1195) (-1195) (-1054)))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 61) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 33) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-195) (-799)) (T -195)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 66) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 66) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-196) (-799)) (T -196)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 81) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 81) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 46) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-197) (-799)) (T -197)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 63) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 63) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 36) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-198) (-799)) (T -198)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 76) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 76) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-199) (-799)) (T -199)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 93) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 93) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-200) (-799)) (T -200)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 90) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 90) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 51) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-201) (-799)) (T -201)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 78) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 78) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 44) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-202) (-799)) (T -202)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 76)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 76)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 35)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-203) (-799)) (T -203)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 77)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 77)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 42)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-204) (-799)) (T -204)) NIL (-799) -((-2034 (((-112) $ $) NIL)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 105) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 105) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 86) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-205) (-799)) (T -205)) NIL (-799) -((-2120 (((-3 (-2 (|:| -3940 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-3622 (((-576) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-2988 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) -(((-206) (-10 -7 (-15 -2120 ((-3 (-2 (|:| -3940 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2988 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3622 ((-576) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) -((-3622 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-2988 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-2120 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -3940 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(-10 -7 (-15 -2120 ((-3 (-2 (|:| -3940 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2988 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3622 ((-576) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-3342 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-2033 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-4313 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-4256 (((-390) (-701 (-326 (-227)))) 140)) (-2539 (((-701 (-326 (-227))) (-1287 (-326 (-227))) (-656 (-1196))) 136)) (-2713 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-3209 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-2259 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1196)) (-1287 (-326 (-227)))) 125)) (-2685 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-4025 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) -(((-207) (-10 -7 (-15 -2685 ((-390) (-390) (-390))) (-15 -2685 ((-390) (-390) (-656 (-390)))) (-15 -4256 ((-390) (-701 (-326 (-227))))) (-15 -2539 ((-701 (-326 (-227))) (-1287 (-326 (-227))) (-656 (-1196)))) (-15 -2259 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1196)) (-1287 (-326 (-227))))) (-15 -4313 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2033 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3342 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3209 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4025 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2713 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) -((-2713 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4025 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2033 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-4313 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-2259 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1196))) (-5 *4 (-1287 (-326 (-227)))) (-5 *1 (-207)))) (-2539 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2685 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2685 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) -(-10 -7 (-15 -2685 ((-390) (-390) (-390))) (-15 -2685 ((-390) (-390) (-656 (-390)))) (-15 -4256 ((-390) (-701 (-326 (-227))))) (-15 -2539 ((-701 (-326 (-227))) (-1287 (-326 (-227))) (-656 (-1196)))) (-15 -2259 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1196)) (-1287 (-326 (-227))))) (-15 -4313 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -2033 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3342 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3209 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4025 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2713 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-2034 (((-112) $ $) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-2526 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-3919 (((-112) $ $) NIL))) +((-3237 (((-3 (-2 (|:| -1832 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 109)) (-2602 (((-576) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 59)) (-4359 (((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 90))) +(((-206) (-10 -7 (-15 -3237 ((-3 (-2 (|:| -1832 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4359 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2602 ((-576) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -206)) +((-2602 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206)))) (-4359 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-206)))) (-3237 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -1832 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(-10 -7 (-15 -3237 ((-3 (-2 (|:| -1832 (-115)) (|:| |w| (-227))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4359 ((-3 (-656 (-227)) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2602 ((-576) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-2111 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 49)) (-3673 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 157)) (-3604 (((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227)))) 112)) (-3330 (((-390) (-701 (-326 (-227)))) 140)) (-4066 (((-701 (-326 (-227))) (-1286 (-326 (-227))) (-656 (-1195))) 136)) (-1558 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 37)) (-1425 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 53)) (-3306 (((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1195)) (-1286 (-326 (-227)))) 125)) (-4278 (((-390) (-390) (-656 (-390))) 133) (((-390) (-390) (-390)) 128)) (-2625 (((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 45))) +(((-207) (-10 -7 (-15 -4278 ((-390) (-390) (-390))) (-15 -4278 ((-390) (-390) (-656 (-390)))) (-15 -3330 ((-390) (-701 (-326 (-227))))) (-15 -4066 ((-701 (-326 (-227))) (-1286 (-326 (-227))) (-656 (-1195)))) (-15 -3306 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1195)) (-1286 (-326 (-227))))) (-15 -3604 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -3673 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2111 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1425 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2625 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1558 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -207)) +((-1558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2625 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3604 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) (-5 *1 (-207)))) (-3306 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1195))) (-5 *4 (-1286 (-326 (-227)))) (-5 *1 (-207)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) (-3330 (*1 *2 *3) (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4278 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207)))) (-4278 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207))))) +(-10 -7 (-15 -4278 ((-390) (-390) (-390))) (-15 -4278 ((-390) (-390) (-656 (-390)))) (-15 -3330 ((-390) (-701 (-326 (-227))))) (-15 -4066 ((-701 (-326 (-227))) (-1286 (-326 (-227))) (-656 (-1195)))) (-15 -3306 ((-701 (-326 (-227))) (-701 (-326 (-227))) (-656 (-1195)) (-1286 (-326 (-227))))) (-15 -3604 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-701 (-326 (-227))))) (-15 -3673 ((-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390))) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2111 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1425 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2625 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1558 ((-390) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3474 (((-112) $ $) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2009 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 75)) (-2988 (((-112) $ $) NIL))) (((-208) (-812)) (T -208)) NIL (-812) -((-2034 (((-112) $ $) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-2526 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 43)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2009 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 73)) (-2988 (((-112) $ $) NIL))) (((-209) (-812)) (T -209)) NIL (-812) -((-2034 (((-112) $ $) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-2526 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 40)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2009 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 76)) (-2988 (((-112) $ $) NIL))) (((-210) (-812)) (T -210)) NIL (-812) -((-2034 (((-112) $ $) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-2526 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 48)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2009 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 88)) (-2988 (((-112) $ $) NIL))) (((-211) (-812)) (T -211)) NIL (-812) -((-2677 (((-656 (-1196)) (-1196) (-783)) 26)) (-2462 (((-326 (-227)) (-326 (-227))) 35)) (-1542 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 87)) (-2162 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47))) -(((-212) (-10 -7 (-15 -2677 ((-656 (-1196)) (-1196) (-783))) (-15 -2462 ((-326 (-227)) (-326 (-227)))) (-15 -2162 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -1542 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))))) (T -212)) -((-1542 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2162 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1196))) (-5 *1 (-212)) (-5 *3 (-1196))))) -(-10 -7 (-15 -2677 ((-656 (-1196)) (-1196) (-783))) (-15 -2462 ((-326 (-227)) (-326 (-227)))) (-15 -2162 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -1542 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))))) -((-2034 (((-112) $ $) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 28)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-1849 (((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 70)) (-3919 (((-112) $ $) NIL))) +((-3388 (((-656 (-1195)) (-1195) (-783)) 26)) (-2268 (((-326 (-227)) (-326 (-227))) 35)) (-2616 (((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 87)) (-2389 (((-112) (-227) (-227) (-656 (-326 (-227)))) 47))) +(((-212) (-10 -7 (-15 -3388 ((-656 (-1195)) (-1195) (-783))) (-15 -2268 ((-326 (-227)) (-326 (-227)))) (-15 -2389 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2616 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))))) (T -212)) +((-2616 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *2 (-112)) (-5 *1 (-212)))) (-2389 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-212)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212)))) (-3388 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1195))) (-5 *1 (-212)) (-5 *3 (-1195))))) +(-10 -7 (-15 -3388 ((-656 (-1195)) (-1195) (-783))) (-15 -2268 ((-326 (-227)) (-326 (-227)))) (-15 -2389 ((-112) (-227) (-227) (-656 (-326 (-227))))) (-15 -2616 ((-112) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))))) +((-3474 (((-112) $ $) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 28)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-1786 (((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 70)) (-2988 (((-112) $ $) NIL))) (((-213) (-910)) (T -213)) NIL (-910) -((-2034 (((-112) $ $) NIL)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 24)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-1849 (((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 24)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-1786 (((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) NIL)) (-2988 (((-112) $ $) NIL))) (((-214) (-910)) (T -214)) NIL (-910) -((-2034 (((-112) $ $) NIL)) (-3827 ((|#2| $ (-783) |#2|) 11)) (-3817 ((|#2| $ (-783)) 10)) (-1992 (($) 8)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 23)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 13))) -(((-215 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -1992 ($)) (-15 -3817 (|#2| $ (-783))) (-15 -3827 (|#2| $ (-783) |#2|)))) (-938) (-1119)) (T -215)) -((-1992 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1119)))) (-3817 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1119)) (-5 *1 (-215 *4 *2)) (-14 *4 (-938)))) (-3827 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-938)) (-4 *2 (-1119))))) -(-13 (-1119) (-10 -8 (-15 -1992 ($)) (-15 -3817 (|#2| $ (-783))) (-15 -3827 (|#2| $ (-783) |#2|)))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3237 (((-1292) $) 37) (((-1292) $ (-938) (-938)) 41)) (-4367 (($ $ (-1008)) 19) (((-250 (-1178)) $ (-1196)) 15)) (-1650 (((-1292) $) 35)) (-4092 (((-874) $) 32) (($ (-656 |#1|)) 8)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $ $) 27)) (-4007 (($ $ $) 22))) -(((-216 |#1|) (-13 (-1119) (-628 (-656 |#1|)) (-10 -8 (-15 -4367 ($ $ (-1008))) (-15 -4367 ((-250 (-1178)) $ (-1196))) (-15 -4007 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -1650 ((-1292) $)) (-15 -3237 ((-1292) $)) (-15 -3237 ((-1292) $ (-938) (-938))))) (-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 ((-1292) $)) (-15 -3237 ((-1292) $))))) (T -216)) -((-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 ((-1292) $)) (-15 -3237 ((-1292) $))))))) (-4367 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-250 (-1178))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ *3)) (-15 -1650 ((-1292) $)) (-15 -3237 ((-1292) $))))))) (-4007 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 ((-1292) $)) (-15 -3237 ((-1292) $))))))) (-4018 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 ((-1292) $)) (-15 -3237 ((-1292) $))))))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 (*2 $)) (-15 -3237 (*2 $))))))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 (*2 $)) (-15 -3237 (*2 $))))))) (-3237 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 (*2 $)) (-15 -3237 (*2 $)))))))) -(-13 (-1119) (-628 (-656 |#1|)) (-10 -8 (-15 -4367 ($ $ (-1008))) (-15 -4367 ((-250 (-1178)) $ (-1196))) (-15 -4007 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -1650 ((-1292) $)) (-15 -3237 ((-1292) $)) (-15 -3237 ((-1292) $ (-938) (-938))))) -((-1431 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1431 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) -((-1431 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1263 (-419 *2))) (-4 *2 (-1263 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) -(-10 -7 (-15 -1431 (|#2| |#4| (-1 |#2| |#2|)))) -((-2876 ((|#2| |#2| (-783) |#2|) 55)) (-2805 ((|#2| |#2| (-783) |#2|) 51)) (-1626 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -2373 |#2|)))) 79)) (-3570 (((-656 (-2 (|:| |deg| (-783)) (|:| -2373 |#2|))) |#2|) 73)) (-2224 (((-112) |#2|) 71)) (-3029 (((-430 |#2|) |#2|) 91)) (-1392 (((-430 |#2|) |#2|) 90)) (-2992 ((|#2| |#2| (-783) |#2|) 49)) (-1817 (((-2 (|:| |cont| |#1|) (|:| -3791 (-656 (-2 (|:| |irr| |#2|) (|:| -2136 (-576)))))) |#2| (-112)) 85))) -(((-218 |#1| |#2|) (-10 -7 (-15 -1392 ((-430 |#2|) |#2|)) (-15 -3029 ((-430 |#2|) |#2|)) (-15 -1817 ((-2 (|:| |cont| |#1|) (|:| -3791 (-656 (-2 (|:| |irr| |#2|) (|:| -2136 (-576)))))) |#2| (-112))) (-15 -3570 ((-656 (-2 (|:| |deg| (-783)) (|:| -2373 |#2|))) |#2|)) (-15 -1626 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -2373 |#2|))))) (-15 -2992 (|#2| |#2| (-783) |#2|)) (-15 -2805 (|#2| |#2| (-783) |#2|)) (-15 -2876 (|#2| |#2| (-783) |#2|)) (-15 -2224 ((-112) |#2|))) (-360) (-1263 |#1|)) (T -218)) -((-2224 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))) (-2876 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1263 *4)))) (-2805 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1263 *4)))) (-2992 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1263 *4)))) (-1626 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -2373 *5)))) (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-3570 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2373 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))) (-1817 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3791 (-656 (-2 (|:| |irr| *3) (|:| -2136 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1263 *5)))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4)))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -1392 ((-430 |#2|) |#2|)) (-15 -3029 ((-430 |#2|) |#2|)) (-15 -1817 ((-2 (|:| |cont| |#1|) (|:| -3791 (-656 (-2 (|:| |irr| |#2|) (|:| -2136 (-576)))))) |#2| (-112))) (-15 -3570 ((-656 (-2 (|:| |deg| (-783)) (|:| -2373 |#2|))) |#2|)) (-15 -1626 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -2373 |#2|))))) (-15 -2992 (|#2| |#2| (-783) |#2|)) (-15 -2805 (|#2| |#2| (-783) |#2|)) (-15 -2876 (|#2| |#2| (-783) |#2|)) (-15 -2224 ((-112) |#2|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 (((-576) $) NIL (|has| (-576) (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL (|has| (-576) (-832)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1057 (-576))))) (-2378 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-576) (-557)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-576) (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-3894 (((-576) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3713 (((-112) $) NIL (|has| (-576) (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| (-576) (-862)))) (-2477 (($ (-1 (-576) (-576)) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-576) (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3892 (((-576) $) NIL (|has| (-576) (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2259 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-1787 (((-783) $) NIL)) (-4367 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-1490 (($ $) NIL)) (-3905 (((-576) $) NIL)) (-3306 (($ (-419 (-576))) 9)) (-1505 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1196)) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL) (((-1023 10) $) 10)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-2471 (((-783)) NIL T CONST)) (-4179 (((-576) $) NIL (|has| (-576) (-557)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3423 (($ $) NIL (|has| (-576) (-832)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3977 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3944 (((-112) $ $) NIL (|has| (-576) (-862)))) (-4028 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-219) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 10)) (-10 -8 (-15 -1846 ((-419 (-576)) $)) (-15 -3306 ($ (-419 (-576))))))) (T -219)) -((-1846 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-3306 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) -(-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 10)) (-10 -8 (-15 -1846 ((-419 (-576)) $)) (-15 -3306 ($ (-419 (-576)))))) -((-2034 (((-112) $ $) NIL)) (-3404 (((-1137) $) 13)) (-3288 (((-1178) $) NIL)) (-3989 (((-495) $) 10)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 23) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-1154) $) 15)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-220) (-13 (-1102) (-10 -8 (-15 -3989 ((-495) $)) (-15 -3404 ((-1137) $)) (-15 -4136 ((-1154) $))))) (T -220)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-220)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-220))))) -(-13 (-1102) (-10 -8 (-15 -3989 ((-495) $)) (-15 -3404 ((-1137) $)) (-15 -4136 ((-1154) $)))) -((-3597 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)) (-1178)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|))) 25)) (-4154 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1196) (-855 |#2|) (-855 |#2|) (-112)) 17))) -(((-221 |#1| |#2|) (-10 -7 (-15 -3597 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)))) (-15 -3597 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)) (-1178))) (-15 -4154 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1196) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-976) (-29 |#1|))) (T -221)) -((-4154 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1196)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1222) (-976) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-855 *3))) (-5 *5 (-1178)) (-4 *3 (-13 (-1222) (-976) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-855 *3))) (-4 *3 (-13 (-1222) (-976) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) -(-10 -7 (-15 -3597 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)))) (-15 -3597 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)) (-1178))) (-15 -4154 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1196) (-855 |#2|) (-855 |#2|) (-112)))) -((-3597 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))) (-1178)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))) (-1178)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|)))) 22))) -(((-222 |#1|) (-10 -7 (-15 -3597 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))))) (-15 -3597 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))) (-1178))) (-15 -3597 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))))) (-15 -3597 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))) (-1178)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (T -222)) -((-3597 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-855 (-419 (-969 *6))))) (-5 *5 (-1178)) (-5 *3 (-419 (-969 *6))) (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-855 (-419 (-969 *5))))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1111 (-855 (-326 *6)))) (-5 *5 (-1178)) (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1111 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) -(-10 -7 (-15 -3597 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))))) (-15 -3597 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))) (-1178))) (-15 -3597 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))))) (-15 -3597 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))) (-1178)))) -((-2359 (((-2 (|:| -2248 (-1192 |#1|)) (|:| |deg| (-938))) (-1192 |#1|)) 26)) (-2824 (((-656 (-326 |#2|)) (-326 |#2|) (-938)) 51))) -(((-223 |#1| |#2|) (-10 -7 (-15 -2359 ((-2 (|:| -2248 (-1192 |#1|)) (|:| |deg| (-938))) (-1192 |#1|))) (-15 -2824 ((-656 (-326 |#2|)) (-326 |#2|) (-938)))) (-1068) (-568)) (T -223)) -((-2824 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1068)))) (-2359 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-2 (|:| -2248 (-1192 *4)) (|:| |deg| (-938)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1192 *4)) (-4 *5 (-568))))) -(-10 -7 (-15 -2359 ((-2 (|:| -2248 (-1192 |#1|)) (|:| |deg| (-938))) (-1192 |#1|))) (-15 -2824 ((-656 (-326 |#2|)) (-326 |#2|) (-938)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4174 ((|#1| $) NIL)) (-3005 ((|#1| $) 30)) (-2835 (((-112) $ (-783)) NIL)) (-3656 (($) NIL T CONST)) (-2527 (($ $) NIL)) (-3129 (($ $) 39)) (-3833 ((|#1| |#1| $) NIL)) (-2156 ((|#1| $) NIL)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-1325 (((-783) $) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3576 ((|#1| $) NIL)) (-4044 ((|#1| |#1| $) 35)) (-4344 ((|#1| |#1| $) 37)) (-2361 (($ |#1| $) NIL)) (-2927 (((-783) $) 33)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4371 ((|#1| $) NIL)) (-2349 ((|#1| $) 31)) (-3047 ((|#1| $) 29)) (-1679 ((|#1| $) NIL)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3816 ((|#1| |#1| $) NIL)) (-3372 (((-112) $) 9)) (-2643 (($) NIL)) (-2082 ((|#1| $) NIL)) (-1352 (($) NIL) (($ (-656 |#1|)) 16)) (-3569 (((-783) $) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3708 ((|#1| $) 13)) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) NIL)) (-3701 ((|#1| $) NIL)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -1352 ($ (-656 |#1|))))) (-1119)) (T -224)) -((-1352 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-224 *3))))) -(-13 (-261 |#1|) (-10 -8 (-15 -1352 ($ (-656 |#1|))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2517 (($ (-326 |#1|)) 24)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2489 (((-112) $) NIL)) (-2974 (((-3 (-326 |#1|) "failed") $) NIL)) (-2378 (((-326 |#1|) $) NIL)) (-1717 (($ $) 32)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-2477 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-1692 (((-326 |#1|) $) NIL)) (-4183 (($ $) 31)) (-3288 (((-1178) $) NIL)) (-3684 (((-112) $) NIL)) (-3139 (((-1139) $) NIL)) (-2582 (($ (-783)) NIL)) (-1952 (($ $) 33)) (-2369 (((-576) $) NIL)) (-4092 (((-874) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-2430 (((-326 |#1|) $ $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 26 T CONST)) (-4310 (($) NIL T CONST)) (-3919 (((-112) $ $) 29)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 20)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) -(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1057 (-326 |#1|)) (-10 -8 (-15 -1692 ((-326 |#1|) $)) (-15 -4183 ($ $)) (-15 -1717 ($ $)) (-15 -2430 ((-326 |#1|) $ $)) (-15 -2582 ($ (-783))) (-15 -3684 ((-112) $)) (-15 -2489 ((-112) $)) (-15 -2369 ((-576) $)) (-15 -2477 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2517 ($ (-326 |#1|))) (-15 -1952 ($ $)))) (-13 (-1068) (-862)) (-656 (-1196))) (T -225)) -((-1692 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-4183 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) (-14 *3 (-656 (-1196))))) (-1717 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) (-14 *3 (-656 (-1196))))) (-2430 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) (-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1068) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196))))) (-2517 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1068) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196))))) (-1952 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) (-14 *3 (-656 (-1196)))))) -(-13 (-632 (-326 |#1|)) (-1057 (-326 |#1|)) (-10 -8 (-15 -1692 ((-326 |#1|) $)) (-15 -4183 ($ $)) (-15 -1717 ($ $)) (-15 -2430 ((-326 |#1|) $ $)) (-15 -2582 ($ (-783))) (-15 -3684 ((-112) $)) (-15 -2489 ((-112) $)) (-15 -2369 ((-576) $)) (-15 -2477 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -2517 ($ (-326 |#1|))) (-15 -1952 ($ $)))) -((-3309 (((-112) (-1178)) 26)) (-1667 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-3241 (((-3 (-112) "failed") (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-969 |#1|) (-1196) (-855 |#2|) (-855 |#2|) (-112)) 85))) -(((-226 |#1| |#2|) (-10 -7 (-15 -3309 ((-112) (-1178))) (-15 -1667 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -3241 ((-3 (-112) "failed") (-969 |#1|) (-1196) (-855 |#2|) (-855 |#2|) (-112))) (-15 -3241 ((-3 (-112) "failed") (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-29 |#1|))) (T -226)) -((-3241 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1192 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1222) (-29 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-3241 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-969 *6)) (-5 *4 (-1196)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1222) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-1667 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1222) (-29 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1222) (-29 *4)))))) -(-10 -7 (-15 -3309 ((-112) (-1178))) (-15 -1667 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -3241 ((-3 (-112) "failed") (-969 |#1|) (-1196) (-855 |#2|) (-855 |#2|) (-112))) (-15 -3241 ((-3 (-112) "failed") (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 98)) (-3942 (((-576) $) 33)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2255 (($ $) NIL)) (-2266 (($ $) 87)) (-2111 (($ $) 75)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-1403 (($ $) 66)) (-4407 (((-112) $ $) NIL)) (-2236 (($ $) 85)) (-2084 (($ $) 73)) (-3934 (((-576) $) 127)) (-2294 (($ $) 90)) (-2138 (($ $) 77)) (-3656 (($) NIL T CONST)) (-4327 (($ $) NIL)) (-2974 (((-3 (-576) "failed") $) 126) (((-3 (-419 (-576)) "failed") $) 123)) (-2378 (((-576) $) 124) (((-419 (-576)) $) 121)) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) 103)) (-3452 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-2250 (((-938)) 28) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-3567 (((-112) $) NIL)) (-3926 (($) 46)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-1538 (((-576) $) 40)) (-1810 (((-112) $) 99)) (-3355 (($ $ (-576)) NIL)) (-4252 (($ $) NIL)) (-3713 (((-112) $) 97)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) 63) (($) 36 (-12 (-2433 (|has| $ (-6 -4445))) (-2433 (|has| $ (-6 -4453)))))) (-2726 (($ $ $) 62) (($) 35 (-12 (-2433 (|has| $ (-6 -4445))) (-2433 (|has| $ (-6 -4453)))))) (-4415 (((-576) $) 26)) (-4109 (($ $) 31)) (-2616 (($ $) 67)) (-2703 (($ $) 72)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-2226 (((-938) (-576)) NIL (|has| $ (-6 -4453)))) (-3139 (((-1139) $) 101)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL)) (-3892 (($ $) NIL)) (-2733 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-938)) 110)) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3175 (((-576) $) 27)) (-3169 (($) 45)) (-3353 (($ $) 71)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3963 (((-938)) NIL) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-3614 (($ $) 104) (($ $ (-783)) NIL)) (-3262 (((-938) (-576)) NIL (|has| $ (-6 -4453)))) (-2307 (($ $) 88)) (-2149 (($ $) 78)) (-2281 (($ $) 89)) (-2123 (($ $) 76)) (-2253 (($ $) 86)) (-2099 (($ $) 74)) (-1505 (((-390) $) 113) (((-227) $) 14) (((-905 (-390)) $) NIL) (((-548) $) 52)) (-4092 (((-874) $) 49) (($ (-576)) 152) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 152) (($ (-419 (-576))) NIL)) (-2471 (((-783)) NIL T CONST)) (-4179 (($ $) NIL)) (-1939 (((-938)) 34) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-1531 (((-112) $ $) NIL)) (-1841 (((-938)) 24)) (-2340 (($ $) 93)) (-2184 (($ $) 81) (($ $ $) 119)) (-2947 (((-112) $ $) NIL)) (-2317 (($ $) 91)) (-2161 (($ $) 79)) (-2368 (($ $) 96)) (-2207 (($ $) 84)) (-3945 (($ $) 94)) (-2220 (($ $) 82)) (-2352 (($ $) 95)) (-2195 (($ $) 83)) (-2329 (($ $) 92)) (-2173 (($ $) 80)) (-3423 (($ $) 118)) (-4300 (($) 42 T CONST)) (-4310 (($) 43 T CONST)) (-3774 (((-1178) $) 18) (((-1178) $ (-112)) 20) (((-1292) (-834) $) 21) (((-1292) (-834) $ (-112)) 22)) (-2917 (($ $) 107)) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-1802 (($ $ $) 109)) (-3977 (((-112) $ $) 56)) (-3955 (((-112) $ $) 54)) (-3919 (((-112) $ $) 64)) (-3966 (((-112) $ $) 55)) (-3944 (((-112) $ $) 53)) (-4028 (($ $ $) 44) (($ $ (-576)) 65)) (-4018 (($ $) 57) (($ $ $) 59)) (-4007 (($ $ $) 58)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 151) (($ $ $) 69)) (* (($ (-938) $) 32) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-227) (-13 (-416) (-238) (-840) (-1222) (-626 (-548)) (-10 -8 (-15 -4028 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3169 ($)) (-15 -4109 ($ $)) (-15 -2616 ($ $)) (-15 -2184 ($ $ $)) (-15 -2917 ($ $)) (-15 -1802 ($ $ $)) (-15 -3452 ((-419 (-576)) $ (-783))) (-15 -3452 ((-419 (-576)) $ (-783) (-783)))))) (T -227)) -((** (*1 *1 *1 *1) (-5 *1 (-227))) (-4028 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-3169 (*1 *1) (-5 *1 (-227))) (-4109 (*1 *1 *1) (-5 *1 (-227))) (-2616 (*1 *1 *1) (-5 *1 (-227))) (-2184 (*1 *1 *1 *1) (-5 *1 (-227))) (-2917 (*1 *1 *1) (-5 *1 (-227))) (-1802 (*1 *1 *1 *1) (-5 *1 (-227))) (-3452 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-3452 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) -(-13 (-416) (-238) (-840) (-1222) (-626 (-548)) (-10 -8 (-15 -4028 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -3169 ($)) (-15 -4109 ($ $)) (-15 -2616 ($ $)) (-15 -2184 ($ $ $)) (-15 -2917 ($ $)) (-15 -1802 ($ $ $)) (-15 -3452 ((-419 (-576)) $ (-783))) (-15 -3452 ((-419 (-576)) $ (-783) (-783))))) -((-3381 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-2029 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-1480 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-1382 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3400 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-2621 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-4199 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-2624 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-2456 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-2154 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2917 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-1802 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) -(((-228) (-10 -7 (-15 -2917 ((-227) (-227))) (-15 -2917 ((-171 (-227)) (-171 (-227)))) (-15 -1802 ((-227) (-227) (-227))) (-15 -1802 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2029 ((-227) (-227))) (-15 -2029 ((-171 (-227)) (-171 (-227)))) (-15 -1382 ((-227) (-227))) (-15 -1382 ((-171 (-227)) (-171 (-227)))) (-15 -3381 ((-227) (-783) (-227))) (-15 -3381 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -4199 ((-227) (-227) (-227))) (-15 -4199 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3400 ((-227) (-227) (-227))) (-15 -3400 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2624 ((-227) (-227) (-227))) (-15 -2624 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2621 ((-227) (-227) (-227))) (-15 -2621 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2154 ((-171 (-227)) (-171 (-227)))) (-15 -2154 ((-227) (-227))) (-15 -2456 ((-227) (-227))) (-15 -2456 ((-171 (-227)) (-171 (-227)))) (-15 -1480 ((-227) (-227) (-227))) (-15 -1480 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) -((-1480 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1480 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2621 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2621 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2624 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2624 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3400 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3400 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3381 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-3381 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2029 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2029 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1802 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1802 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) -(-10 -7 (-15 -2917 ((-227) (-227))) (-15 -2917 ((-171 (-227)) (-171 (-227)))) (-15 -1802 ((-227) (-227) (-227))) (-15 -1802 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2029 ((-227) (-227))) (-15 -2029 ((-171 (-227)) (-171 (-227)))) (-15 -1382 ((-227) (-227))) (-15 -1382 ((-171 (-227)) (-171 (-227)))) (-15 -3381 ((-227) (-783) (-227))) (-15 -3381 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -4199 ((-227) (-227) (-227))) (-15 -4199 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3400 ((-227) (-227) (-227))) (-15 -3400 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2624 ((-227) (-227) (-227))) (-15 -2624 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2621 ((-227) (-227) (-227))) (-15 -2621 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2154 ((-171 (-227)) (-171 (-227)))) (-15 -2154 ((-227) (-227))) (-15 -2456 ((-227) (-227))) (-15 -2456 ((-171 (-227)) (-171 (-227)))) (-15 -1480 ((-227) (-227) (-227))) (-15 -1480 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1705 (($ (-783) (-783)) NIL)) (-3207 (($ $ $) NIL)) (-2645 (($ (-1287 |#1|)) NIL) (($ $) NIL)) (-3681 (($ |#1| |#1| |#1|) 33)) (-2454 (((-112) $) NIL)) (-1573 (($ $ (-576) (-576)) NIL)) (-4230 (($ $ (-576) (-576)) NIL)) (-4175 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2144 (($ $) NIL)) (-2478 (((-112) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3482 (($ $ (-576) (-576) $) NIL)) (-4248 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-3344 (($ $ (-576) (-1287 |#1|)) NIL)) (-1806 (($ $ (-576) (-1287 |#1|)) NIL)) (-1372 (($ |#1| |#1| |#1|) 32)) (-3483 (($ (-783) |#1|) NIL)) (-3656 (($) NIL T CONST)) (-2664 (($ $) NIL (|has| |#1| (-317)))) (-4059 (((-1287 |#1|) $ (-576)) NIL)) (-3820 (($ |#1|) 31)) (-1592 (($ |#1|) 30)) (-3644 (($ |#1|) 29)) (-4049 (((-783) $) NIL (|has| |#1| (-568)))) (-3888 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3817 ((|#1| $ (-576) (-576)) NIL)) (-4260 (((-656 |#1|) $) NIL)) (-1659 (((-783) $) NIL (|has| |#1| (-568)))) (-3865 (((-656 (-1287 |#1|)) $) NIL (|has| |#1| (-568)))) (-2126 (((-783) $) NIL)) (-1992 (($ (-783) (-783) |#1|) NIL)) (-2140 (((-783) $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-1497 ((|#1| $) NIL (|has| |#1| (-6 (-4464 "*"))))) (-4217 (((-576) $) NIL)) (-1961 (((-576) $) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-1439 (((-576) $) NIL)) (-2743 (((-576) $) NIL)) (-3297 (($ (-656 (-656 |#1|))) 11)) (-3874 (($ (-1 |#1| |#1|) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2318 (((-656 (-656 |#1|)) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2295 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-2581 (($) 12)) (-2437 (($ $ $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2918 (($ $ |#1|) NIL)) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-2779 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-2849 (((-112) $) NIL)) (-2058 ((|#1| $) NIL (|has| |#1| (-6 (-4464 "*"))))) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-1762 (((-1287 |#1|) $ (-576)) NIL)) (-4092 (($ (-1287 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-1485 (((-112) $) NIL)) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1287 |#1|) $ (-1287 |#1|)) 15) (((-1287 |#1|) (-1287 |#1|) $) NIL) (((-960 |#1|) $ (-960 |#1|)) 21)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-229 |#1|) (-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 * ((-960 |#1|) $ (-960 |#1|))) (-15 -2581 ($)) (-15 -3644 ($ |#1|)) (-15 -1592 ($ |#1|)) (-15 -3820 ($ |#1|)) (-15 -1372 ($ |#1| |#1| |#1|)) (-15 -3681 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1222))) (T -229)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222))) (-5 *1 (-229 *3)))) (-2581 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-3644 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-1592 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-3820 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-1372 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) (-3681 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) -(-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 * ((-960 |#1|) $ (-960 |#1|))) (-15 -2581 ($)) (-15 -3644 ($ |#1|)) (-15 -1592 ($ |#1|)) (-15 -3820 ($ |#1|)) (-15 -1372 ($ |#1| |#1| |#1|)) (-15 -3681 ($ |#1| |#1| |#1|)))) -((-3831 (($ (-1 (-112) |#2|) $) 16)) (-4376 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-1833 (($) NIL) (($ (-656 |#2|)) 11)) (-3919 (((-112) $ $) 26))) -(((-230 |#1| |#2|) (-10 -8 (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4376 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4376 (|#1| |#2| |#1|)) (-15 -1833 (|#1| (-656 |#2|))) (-15 -1833 (|#1|)) (-15 -3919 ((-112) |#1| |#1|))) (-231 |#2|) (-1119)) (T -230)) -NIL -(-10 -8 (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4376 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4376 (|#1| |#2| |#1|)) (-15 -1833 (|#1| (-656 |#2|))) (-15 -1833 (|#1|)) (-15 -3919 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-3831 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-1690 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-2892 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-1833 (($) 50) (($ (-656 |#1|)) 49)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 51)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 43)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-1711 ((|#2| $ (-783) |#2|) 11)) (-1698 ((|#2| $ (-783)) 10)) (-4033 (($) 8)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 23)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 13))) +(((-215 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -4033 ($)) (-15 -1698 (|#2| $ (-783))) (-15 -1711 (|#2| $ (-783) |#2|)))) (-938) (-1119)) (T -215)) +((-4033 (*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1119)))) (-1698 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-1119)) (-5 *1 (-215 *4 *2)) (-14 *4 (-938)))) (-1711 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-938)) (-4 *2 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -4033 ($)) (-15 -1698 (|#2| $ (-783))) (-15 -1711 (|#2| $ (-783) |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3712 (((-1291) $) 37) (((-1291) $ (-938) (-938)) 41)) (-2871 (($ $ (-1008)) 19) (((-250 (-1177)) $ (-1195)) 15)) (-2076 (((-1291) $) 35)) (-3563 (((-874) $) 32) (($ (-656 |#1|)) 8)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $ $) 27)) (-3083 (($ $ $) 22))) +(((-216 |#1|) (-13 (-1119) (-628 (-656 |#1|)) (-10 -8 (-15 -2871 ($ $ (-1008))) (-15 -2871 ((-250 (-1177)) $ (-1195))) (-15 -3083 ($ $ $)) (-15 -3095 ($ $ $)) (-15 -2076 ((-1291) $)) (-15 -3712 ((-1291) $)) (-15 -3712 ((-1291) $ (-938) (-938))))) (-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 ((-1291) $)) (-15 -3712 ((-1291) $))))) (T -216)) +((-2871 (*1 *1 *1 *2) (-12 (-5 *2 (-1008)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 ((-1291) $)) (-15 -3712 ((-1291) $))))))) (-2871 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-250 (-1177))) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ *3)) (-15 -2076 ((-1291) $)) (-15 -3712 ((-1291) $))))))) (-3083 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 ((-1291) $)) (-15 -3712 ((-1291) $))))))) (-3095 (*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 ((-1291) $)) (-15 -3712 ((-1291) $))))))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 (*2 $)) (-15 -3712 (*2 $))))))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) (-4 *3 (-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 (*2 $)) (-15 -3712 (*2 $))))))) (-3712 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1291)) (-5 *1 (-216 *4)) (-4 *4 (-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 (*2 $)) (-15 -3712 (*2 $)))))))) +(-13 (-1119) (-628 (-656 |#1|)) (-10 -8 (-15 -2871 ($ $ (-1008))) (-15 -2871 ((-250 (-1177)) $ (-1195))) (-15 -3083 ($ $ $)) (-15 -3095 ($ $ $)) (-15 -2076 ((-1291) $)) (-15 -3712 ((-1291) $)) (-15 -3712 ((-1291) $ (-938) (-938))))) +((-2720 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-217 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2720 (|#2| |#4| (-1 |#2| |#2|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -217)) +((-2720 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1262 (-419 *2))) (-4 *2 (-1262 *5)) (-5 *1 (-217 *5 *2 *6 *3)) (-4 *3 (-353 *5 *2 *6))))) +(-10 -7 (-15 -2720 (|#2| |#4| (-1 |#2| |#2|)))) +((-1907 ((|#2| |#2| (-783) |#2|) 55)) (-2410 ((|#2| |#2| (-783) |#2|) 51)) (-2931 (((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -3653 |#2|)))) 79)) (-3951 (((-656 (-2 (|:| |deg| (-783)) (|:| -3653 |#2|))) |#2|) 73)) (-2262 (((-112) |#2|) 71)) (-1770 (((-430 |#2|) |#2|) 91)) (-1839 (((-430 |#2|) |#2|) 90)) (-3595 ((|#2| |#2| (-783) |#2|) 49)) (-3989 (((-2 (|:| |cont| |#1|) (|:| -1707 (-656 (-2 (|:| |irr| |#2|) (|:| -2011 (-576)))))) |#2| (-112)) 85))) +(((-218 |#1| |#2|) (-10 -7 (-15 -1839 ((-430 |#2|) |#2|)) (-15 -1770 ((-430 |#2|) |#2|)) (-15 -3989 ((-2 (|:| |cont| |#1|) (|:| -1707 (-656 (-2 (|:| |irr| |#2|) (|:| -2011 (-576)))))) |#2| (-112))) (-15 -3951 ((-656 (-2 (|:| |deg| (-783)) (|:| -3653 |#2|))) |#2|)) (-15 -2931 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -3653 |#2|))))) (-15 -3595 (|#2| |#2| (-783) |#2|)) (-15 -2410 (|#2| |#2| (-783) |#2|)) (-15 -1907 (|#2| |#2| (-783) |#2|)) (-15 -2262 ((-112) |#2|))) (-360) (-1262 |#1|)) (T -218)) +((-2262 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))) (-1907 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1262 *4)))) (-2410 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1262 *4)))) (-3595 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) (-4 *2 (-1262 *4)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -3653 *5)))) (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) (-5 *1 (-218 *4 *5)))) (-3951 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3653 *3)))) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))) (-3989 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-360)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1707 (-656 (-2 (|:| |irr| *3) (|:| -2011 (-576))))))) (-5 *1 (-218 *5 *3)) (-4 *3 (-1262 *5)))) (-1770 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4)))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -1839 ((-430 |#2|) |#2|)) (-15 -1770 ((-430 |#2|) |#2|)) (-15 -3989 ((-2 (|:| |cont| |#1|) (|:| -1707 (-656 (-2 (|:| |irr| |#2|) (|:| -2011 (-576)))))) |#2| (-112))) (-15 -3951 ((-656 (-2 (|:| |deg| (-783)) (|:| -3653 |#2|))) |#2|)) (-15 -2931 ((-656 |#2|) (-656 (-2 (|:| |deg| (-783)) (|:| -3653 |#2|))))) (-15 -3595 (|#2| |#2| (-783) |#2|)) (-15 -2410 (|#2| |#2| (-783) |#2|)) (-15 -1907 (|#2| |#2| (-783) |#2|)) (-15 -2262 ((-112) |#2|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 (((-576) $) NIL (|has| (-576) (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL (|has| (-576) (-832)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1057 (-576))))) (-4056 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1057 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-576) (-557)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1910 (((-112) $) NIL (|has| (-576) (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL)) (-1536 (((-576) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3566 (((-112) $) NIL (|has| (-576) (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| (-576) (-862)))) (-1632 (($ (-1 (-576) (-576)) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-576) (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3835 (((-576) $) NIL (|has| (-576) (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3306 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-3112 (((-783) $) NIL)) (-2871 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-917 (-1195)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-1880 (($ $) NIL)) (-1549 (((-576) $) NIL)) (-3036 (($ (-419 (-576))) 9)) (-4076 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1195)) NIL (|has| (-576) (-1057 (-1195)))) (((-419 (-576)) $) NIL) (((-1023 10) $) 10)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-1858 (((-783)) NIL T CONST)) (-3270 (((-576) $) NIL (|has| (-576) (-557)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2264 (($ $) NIL (|has| (-576) (-832)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-917 (-1195)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3049 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3010 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3107 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-219) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 10)) (-10 -8 (-15 -1465 ((-419 (-576)) $)) (-15 -3036 ($ (-419 (-576))))))) (T -219)) +((-1465 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) +(-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 10)) (-10 -8 (-15 -1465 ((-419 (-576)) $)) (-15 -3036 ($ (-419 (-576)))))) +((-3474 (((-112) $ $) NIL)) (-2707 (((-1137) $) 13)) (-1927 (((-1177) $) NIL)) (-2391 (((-495) $) 10)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 23) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-1154) $) 15)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-220) (-13 (-1102) (-10 -8 (-15 -2391 ((-495) $)) (-15 -2707 ((-1137) $)) (-15 -2719 ((-1154) $))))) (T -220)) +((-2391 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) (-2707 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-220)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-220))))) +(-13 (-1102) (-10 -8 (-15 -2391 ((-495) $)) (-15 -2707 ((-1137) $)) (-15 -2719 ((-1154) $)))) +((-3848 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)) (-1177)) 29) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|))) 25)) (-4228 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1195) (-855 |#2|) (-855 |#2|) (-112)) 17))) +(((-221 |#1| |#2|) (-10 -7 (-15 -3848 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)))) (-15 -3848 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)) (-1177))) (-15 -4228 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1195) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1221) (-976) (-29 |#1|))) (T -221)) +((-4228 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1195)) (-5 *6 (-112)) (-4 *7 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-4 *3 (-13 (-1221) (-976) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3)))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-855 *3))) (-5 *5 (-1177)) (-4 *3 (-13 (-1221) (-976) (-29 *6))) (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *6 *3)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-855 *3))) (-4 *3 (-13 (-1221) (-976) (-29 *5))) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-221 *5 *3))))) +(-10 -7 (-15 -3848 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)))) (-15 -3848 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1111 (-855 |#2|)) (-1177))) (-15 -4228 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-656 (-855 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1195) (-855 |#2|) (-855 |#2|) (-112)))) +((-3848 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))) (-1177)) 49) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|))))) 46) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))) (-1177)) 50) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|)))) 22))) +(((-222 |#1|) (-10 -7 (-15 -3848 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))))) (-15 -3848 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))) (-1177))) (-15 -3848 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))))) (-15 -3848 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))) (-1177)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (T -222)) +((-3848 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-855 (-419 (-969 *6))))) (-5 *5 (-1177)) (-5 *3 (-419 (-969 *6))) (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-855 (-419 (-969 *5))))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5)))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1111 (-855 (-326 *6)))) (-5 *5 (-1177)) (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *6)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1111 (-855 (-326 *5)))) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-222 *5))))) +(-10 -7 (-15 -3848 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))))) (-15 -3848 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-326 |#1|))) (-1177))) (-15 -3848 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))))) (-15 -3848 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-656 (-855 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-419 (-969 |#1|)) (-1111 (-855 (-419 (-969 |#1|)))) (-1177)))) +((-2521 (((-2 (|:| -3789 (-1191 |#1|)) (|:| |deg| (-938))) (-1191 |#1|)) 26)) (-2465 (((-656 (-326 |#2|)) (-326 |#2|) (-938)) 51))) +(((-223 |#1| |#2|) (-10 -7 (-15 -2521 ((-2 (|:| -3789 (-1191 |#1|)) (|:| |deg| (-938))) (-1191 |#1|))) (-15 -2465 ((-656 (-326 |#2|)) (-326 |#2|) (-938)))) (-1068) (-568)) (T -223)) +((-2465 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1068)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-2 (|:| -3789 (-1191 *4)) (|:| |deg| (-938)))) (-5 *1 (-223 *4 *5)) (-5 *3 (-1191 *4)) (-4 *5 (-568))))) +(-10 -7 (-15 -2521 ((-2 (|:| -3789 (-1191 |#1|)) (|:| |deg| (-938))) (-1191 |#1|))) (-15 -2465 ((-656 (-326 |#2|)) (-326 |#2|) (-938)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2770 ((|#1| $) NIL)) (-1346 ((|#1| $) 30)) (-3131 (((-112) $ (-783)) NIL)) (-3767 (($) NIL T CONST)) (-2132 (($ $) NIL)) (-3478 (($ $) 39)) (-2552 ((|#1| |#1| $) NIL)) (-3119 ((|#1| $) NIL)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-4261 (((-783) $) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1409 ((|#1| $) NIL)) (-3108 ((|#1| |#1| $) 35)) (-3754 ((|#1| |#1| $) 37)) (-2040 (($ |#1| $) NIL)) (-2331 (((-783) $) 33)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4416 ((|#1| $) NIL)) (-2347 ((|#1| $) 31)) (-3099 ((|#1| $) 29)) (-3399 ((|#1| $) NIL)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-2383 ((|#1| |#1| $) NIL)) (-1911 (((-112) $) 9)) (-2597 (($) NIL)) (-1944 ((|#1| $) NIL)) (-2017 (($) NIL) (($ (-656 |#1|)) 16)) (-4328 (((-783) $) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1320 ((|#1| $) 13)) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) NIL)) (-3667 ((|#1| $) NIL)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-224 |#1|) (-13 (-261 |#1|) (-10 -8 (-15 -2017 ($ (-656 |#1|))))) (-1119)) (T -224)) +((-2017 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-224 *3))))) +(-13 (-261 |#1|) (-10 -8 (-15 -2017 ($ (-656 |#1|))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3396 (($ (-326 |#1|)) 24)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2853 (((-112) $) NIL)) (-1539 (((-3 (-326 |#1|) "failed") $) NIL)) (-4056 (((-326 |#1|) $) NIL)) (-2166 (($ $) 32)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-1632 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL)) (-2142 (((-326 |#1|) $) NIL)) (-2466 (($ $) 31)) (-1927 (((-1177) $) NIL)) (-1466 (((-112) $) NIL)) (-1445 (((-1139) $) NIL)) (-2202 (($ (-783)) NIL)) (-1588 (($ $) 33)) (-1433 (((-576) $) NIL)) (-3563 (((-874) $) 65) (($ (-576)) NIL) (($ (-326 |#1|)) NIL)) (-4333 (((-326 |#1|) $ $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 26 T CONST)) (-2810 (($) NIL T CONST)) (-2988 (((-112) $ $) 29)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 20)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 25) (($ (-326 |#1|) $) 19))) +(((-225 |#1| |#2|) (-13 (-632 (-326 |#1|)) (-1057 (-326 |#1|)) (-10 -8 (-15 -2142 ((-326 |#1|) $)) (-15 -2466 ($ $)) (-15 -2166 ($ $)) (-15 -4333 ((-326 |#1|) $ $)) (-15 -2202 ($ (-783))) (-15 -1466 ((-112) $)) (-15 -2853 ((-112) $)) (-15 -1433 ((-576) $)) (-15 -1632 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -3396 ($ (-326 |#1|))) (-15 -1588 ($ $)))) (-13 (-1068) (-862)) (-656 (-1195))) (T -225)) +((-2142 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1195))))) (-2466 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) (-14 *3 (-656 (-1195))))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) (-14 *3 (-656 (-1195))))) (-4333 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1195))))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1195))))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1195))))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1195))))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1195))))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1068) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195))))) (-3396 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1068) (-862))) (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195))))) (-1588 (*1 *1 *1) (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) (-14 *3 (-656 (-1195)))))) +(-13 (-632 (-326 |#1|)) (-1057 (-326 |#1|)) (-10 -8 (-15 -2142 ((-326 |#1|) $)) (-15 -2466 ($ $)) (-15 -2166 ($ $)) (-15 -4333 ((-326 |#1|) $ $)) (-15 -2202 ($ (-783))) (-15 -1466 ((-112) $)) (-15 -2853 ((-112) $)) (-15 -1433 ((-576) $)) (-15 -1632 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -3396 ($ (-326 |#1|))) (-15 -1588 ($ $)))) +((-2150 (((-112) (-1177)) 26)) (-1821 (((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112)) 35)) (-2896 (((-3 (-112) "failed") (-1191 |#2|) (-855 |#2|) (-855 |#2|) (-112)) 84) (((-3 (-112) "failed") (-969 |#1|) (-1195) (-855 |#2|) (-855 |#2|) (-112)) 85))) +(((-226 |#1| |#2|) (-10 -7 (-15 -2150 ((-112) (-1177))) (-15 -1821 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2896 ((-3 (-112) "failed") (-969 |#1|) (-1195) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2896 ((-3 (-112) "failed") (-1191 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-1221) (-29 |#1|))) (T -226)) +((-2896 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1191 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1221) (-29 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-226 *5 *6)))) (-2896 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-969 *6)) (-5 *4 (-1195)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *7 (-13 (-1221) (-29 *6))) (-5 *1 (-226 *6 *7)))) (-1821 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1221) (-29 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-226 *6 *4)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1221) (-29 *4)))))) +(-10 -7 (-15 -2150 ((-112) (-1177))) (-15 -1821 ((-3 (-855 |#2|) "failed") (-624 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-112))) (-15 -2896 ((-3 (-112) "failed") (-969 |#1|) (-1195) (-855 |#2|) (-855 |#2|) (-112))) (-15 -2896 ((-3 (-112) "failed") (-1191 |#2|) (-855 |#2|) (-855 |#2|) (-112)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 98)) (-1560 (((-576) $) 33)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1615 (($ $) NIL)) (-3894 (($ $) 87)) (-3768 (($ $) 75)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1853 (($ $) 66)) (-1727 (((-112) $ $) NIL)) (-3872 (($ $) 85)) (-3747 (($ $) 73)) (-2184 (((-576) $) 127)) (-3916 (($ $) 90)) (-3788 (($ $) 77)) (-3767 (($) NIL T CONST)) (-2703 (($ $) NIL)) (-1539 (((-3 (-576) "failed") $) 126) (((-3 (-419 (-576)) "failed") $) 123)) (-4056 (((-576) $) 124) (((-419 (-576)) $) 121)) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) 103)) (-2842 (((-419 (-576)) $ (-783)) 117) (((-419 (-576)) $ (-783) (-783)) 116)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-3268 (((-938)) 28) (((-938) (-938)) NIL (|has| $ (-6 -4452)))) (-1910 (((-112) $) NIL)) (-1570 (($) 46)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-3333 (((-576) $) 40)) (-1414 (((-112) $) 99)) (-2826 (($ $ (-576)) NIL)) (-4072 (($ $) NIL)) (-3566 (((-112) $) 97)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) 63) (($) 36 (-12 (-2746 (|has| $ (-6 -4444))) (-2746 (|has| $ (-6 -4452)))))) (-1893 (($ $ $) 62) (($) 35 (-12 (-2746 (|has| $ (-6 -4444))) (-2746 (|has| $ (-6 -4452)))))) (-1431 (((-576) $) 26)) (-1355 (($ $) 31)) (-2423 (($ $) 67)) (-3710 (($ $) 72)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-2357 (((-938) (-576)) NIL (|has| $ (-6 -4452)))) (-1445 (((-1139) $) 101)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL)) (-3835 (($ $) NIL)) (-3096 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-938)) 110)) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4274 (((-576) $) 27)) (-1871 (($) 45)) (-3984 (($ $) 71)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2924 (((-938)) NIL) (((-938) (-938)) NIL (|has| $ (-6 -4452)))) (-2735 (($ $) 104) (($ $ (-783)) NIL)) (-4184 (((-938) (-576)) NIL (|has| $ (-6 -4452)))) (-3928 (($ $) 88)) (-3798 (($ $) 78)) (-3905 (($ $) 89)) (-3778 (($ $) 76)) (-3882 (($ $) 86)) (-3757 (($ $) 74)) (-4076 (((-390) $) 113) (((-227) $) 14) (((-905 (-390)) $) NIL) (((-548) $) 52)) (-3563 (((-874) $) 49) (($ (-576)) 152) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 152) (($ (-419 (-576))) NIL)) (-1858 (((-783)) NIL T CONST)) (-3270 (($ $) NIL)) (-3840 (((-938)) 34) (((-938) (-938)) NIL (|has| $ (-6 -4452)))) (-3985 (((-112) $ $) NIL)) (-3402 (((-938)) 24)) (-3958 (($ $) 93)) (-3831 (($ $) 81) (($ $ $) 119)) (-3040 (((-112) $ $) NIL)) (-3939 (($ $) 91)) (-3808 (($ $) 79)) (-3981 (($ $) 96)) (-3852 (($ $) 84)) (-1830 (($ $) 94)) (-3863 (($ $) 82)) (-3969 (($ $) 95)) (-3841 (($ $) 83)) (-3948 (($ $) 92)) (-3820 (($ $) 80)) (-2264 (($ $) 118)) (-2800 (($) 42 T CONST)) (-2810 (($) 43 T CONST)) (-2584 (((-1177) $) 18) (((-1177) $ (-112)) 20) (((-1291) (-834) $) 21) (((-1291) (-834) $ (-112)) 22)) (-2402 (($ $) 107)) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-3177 (($ $ $) 109)) (-3049 (((-112) $ $) 56)) (-3024 (((-112) $ $) 54)) (-2988 (((-112) $ $) 64)) (-3037 (((-112) $ $) 55)) (-3010 (((-112) $ $) 53)) (-3107 (($ $ $) 44) (($ $ (-576)) 65)) (-3095 (($ $) 57) (($ $ $) 59)) (-3083 (($ $ $) 58)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 68) (($ $ (-419 (-576))) 151) (($ $ $) 69)) (* (($ (-938) $) 32) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 60) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-227) (-13 (-416) (-238) (-840) (-1221) (-626 (-548)) (-10 -8 (-15 -3107 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1871 ($)) (-15 -1355 ($ $)) (-15 -2423 ($ $)) (-15 -3831 ($ $ $)) (-15 -2402 ($ $)) (-15 -3177 ($ $ $)) (-15 -2842 ((-419 (-576)) $ (-783))) (-15 -2842 ((-419 (-576)) $ (-783) (-783)))))) (T -227)) +((** (*1 *1 *1 *1) (-5 *1 (-227))) (-3107 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) (-1871 (*1 *1) (-5 *1 (-227))) (-1355 (*1 *1 *1) (-5 *1 (-227))) (-2423 (*1 *1 *1) (-5 *1 (-227))) (-3831 (*1 *1 *1 *1) (-5 *1 (-227))) (-2402 (*1 *1 *1) (-5 *1 (-227))) (-3177 (*1 *1 *1 *1) (-5 *1 (-227))) (-2842 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) (-2842 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227))))) +(-13 (-416) (-238) (-840) (-1221) (-626 (-548)) (-10 -8 (-15 -3107 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1871 ($)) (-15 -1355 ($ $)) (-15 -2423 ($ $)) (-15 -3831 ($ $ $)) (-15 -2402 ($ $)) (-15 -3177 ($ $ $)) (-15 -2842 ((-419 (-576)) $ (-783))) (-15 -2842 ((-419 (-576)) $ (-783) (-783))))) +((-3415 (((-171 (-227)) (-783) (-171 (-227))) 11) (((-227) (-783) (-227)) 12)) (-1349 (((-171 (-227)) (-171 (-227))) 13) (((-227) (-227)) 14)) (-2100 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 19) (((-227) (-227) (-227)) 22)) (-1440 (((-171 (-227)) (-171 (-227))) 27) (((-227) (-227)) 26)) (-3946 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 57) (((-227) (-227) (-227)) 49)) (-4054 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 62) (((-227) (-227) (-227)) 60)) (-1432 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 15) (((-227) (-227) (-227)) 16)) (-4381 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 17) (((-227) (-227) (-227)) 18)) (-1678 (((-171 (-227)) (-171 (-227))) 74) (((-227) (-227)) 73)) (-2907 (((-227) (-227)) 68) (((-171 (-227)) (-171 (-227))) 72)) (-2402 (((-171 (-227)) (-171 (-227))) 8) (((-227) (-227)) 9)) (-3177 (((-171 (-227)) (-171 (-227)) (-171 (-227))) 35) (((-227) (-227) (-227)) 31))) +(((-228) (-10 -7 (-15 -2402 ((-227) (-227))) (-15 -2402 ((-171 (-227)) (-171 (-227)))) (-15 -3177 ((-227) (-227) (-227))) (-15 -3177 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1349 ((-227) (-227))) (-15 -1349 ((-171 (-227)) (-171 (-227)))) (-15 -1440 ((-227) (-227))) (-15 -1440 ((-171 (-227)) (-171 (-227)))) (-15 -3415 ((-227) (-783) (-227))) (-15 -3415 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1432 ((-227) (-227) (-227))) (-15 -1432 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3946 ((-227) (-227) (-227))) (-15 -3946 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4381 ((-227) (-227) (-227))) (-15 -4381 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4054 ((-227) (-227) (-227))) (-15 -4054 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2907 ((-171 (-227)) (-171 (-227)))) (-15 -2907 ((-227) (-227))) (-15 -1678 ((-227) (-227))) (-15 -1678 ((-171 (-227)) (-171 (-227)))) (-15 -2100 ((-227) (-227) (-227))) (-15 -2100 ((-171 (-227)) (-171 (-227)) (-171 (-227)))))) (T -228)) +((-2100 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2100 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1678 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2907 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2907 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4054 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4054 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-4381 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-4381 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3946 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3946 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1432 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1432 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3415 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) (-3415 (*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-1349 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-3177 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-3177 (*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228))))) +(-10 -7 (-15 -2402 ((-227) (-227))) (-15 -2402 ((-171 (-227)) (-171 (-227)))) (-15 -3177 ((-227) (-227) (-227))) (-15 -3177 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -1349 ((-227) (-227))) (-15 -1349 ((-171 (-227)) (-171 (-227)))) (-15 -1440 ((-227) (-227))) (-15 -1440 ((-171 (-227)) (-171 (-227)))) (-15 -3415 ((-227) (-783) (-227))) (-15 -3415 ((-171 (-227)) (-783) (-171 (-227)))) (-15 -1432 ((-227) (-227) (-227))) (-15 -1432 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -3946 ((-227) (-227) (-227))) (-15 -3946 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4381 ((-227) (-227) (-227))) (-15 -4381 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -4054 ((-227) (-227) (-227))) (-15 -4054 ((-171 (-227)) (-171 (-227)) (-171 (-227)))) (-15 -2907 ((-171 (-227)) (-171 (-227)))) (-15 -2907 ((-227) (-227))) (-15 -1678 ((-227) (-227))) (-15 -1678 ((-171 (-227)) (-171 (-227)))) (-15 -2100 ((-227) (-227) (-227))) (-15 -2100 ((-171 (-227)) (-171 (-227)) (-171 (-227))))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3497 (($ (-783) (-783)) NIL)) (-2618 (($ $ $) NIL)) (-2793 (($ (-1286 |#1|)) NIL) (($ $) NIL)) (-2520 (($ |#1| |#1| |#1|) 33)) (-1491 (((-112) $) NIL)) (-2789 (($ $ (-576) (-576)) NIL)) (-3636 (($ $ (-576) (-576)) NIL)) (-2873 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1331 (($ $) NIL)) (-4294 (((-112) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2058 (($ $ (-576) (-576) $) NIL)) (-3731 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-4158 (($ $ (-576) (-1286 |#1|)) NIL)) (-2257 (($ $ (-576) (-1286 |#1|)) NIL)) (-2816 (($ |#1| |#1| |#1|) 32)) (-4027 (($ (-783) |#1|) NIL)) (-3767 (($) NIL T CONST)) (-3243 (($ $) NIL (|has| |#1| (-317)))) (-1946 (((-1286 |#1|) $ (-576)) NIL)) (-2598 (($ |#1|) 31)) (-4203 (($ |#1|) 30)) (-1964 (($ |#1|) 29)) (-3606 (((-783) $) NIL (|has| |#1| (-568)))) (-1776 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1698 ((|#1| $ (-576) (-576)) NIL)) (-3825 (((-656 |#1|) $) NIL)) (-2849 (((-783) $) NIL (|has| |#1| (-568)))) (-2115 (((-656 (-1286 |#1|)) $) NIL (|has| |#1| (-568)))) (-1622 (((-783) $) NIL)) (-4033 (($ (-783) (-783) |#1|) NIL)) (-1636 (((-783) $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-4329 ((|#1| $) NIL (|has| |#1| (-6 (-4463 "*"))))) (-1650 (((-576) $) NIL)) (-1351 (((-576) $) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-4159 (((-576) $) NIL)) (-4062 (((-576) $) NIL)) (-2457 (($ (-656 (-656 |#1|))) 11)) (-1763 (($ (-1 |#1| |#1|) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2156 (((-656 (-656 |#1|)) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2030 (((-3 $ "failed") $) NIL (|has| |#1| (-374)))) (-2741 (($) 12)) (-3758 (($ $ $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2500 (($ $ |#1|) NIL)) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-1716 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-4237 (((-112) $) NIL)) (-2201 ((|#1| $) NIL (|has| |#1| (-6 (-4463 "*"))))) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-4331 (((-1286 |#1|) $ (-576)) NIL)) (-3563 (($ (-1286 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2609 (((-112) $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $ $) NIL) (($ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1286 |#1|) $ (-1286 |#1|)) 15) (((-1286 |#1|) (-1286 |#1|) $) NIL) (((-960 |#1|) $ (-960 |#1|)) 21)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-229 |#1|) (-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 * ((-960 |#1|) $ (-960 |#1|))) (-15 -2741 ($)) (-15 -1964 ($ |#1|)) (-15 -4203 ($ |#1|)) (-15 -2598 ($ |#1|)) (-15 -2816 ($ |#1| |#1| |#1|)) (-15 -2520 ($ |#1| |#1| |#1|)))) (-13 (-374) (-1221))) (T -229)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221))) (-5 *1 (-229 *3)))) (-2741 (*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-1964 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-4203 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-2598 (*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-2816 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) (-2520 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) +(-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 * ((-960 |#1|) $ (-960 |#1|))) (-15 -2741 ($)) (-15 -1964 ($ |#1|)) (-15 -4203 ($ |#1|)) (-15 -2598 ($ |#1|)) (-15 -2816 ($ |#1| |#1| |#1|)) (-15 -2520 ($ |#1| |#1| |#1|)))) +((-4001 (($ (-1 (-112) |#2|) $) 16)) (-3623 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 28)) (-2837 (($) NIL) (($ (-656 |#2|)) 11)) (-2988 (((-112) $ $) 26))) +(((-230 |#1| |#2|) (-10 -8 (-15 -4001 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3623 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3623 (|#1| |#2| |#1|)) (-15 -2837 (|#1| (-656 |#2|))) (-15 -2837 (|#1|)) (-15 -2988 ((-112) |#1| |#1|))) (-231 |#2|) (-1119)) (T -230)) +NIL +(-10 -8 (-15 -4001 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3623 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3623 (|#1| |#2| |#1|)) (-15 -2837 (|#1| (-656 |#2|))) (-15 -2837 (|#1|)) (-15 -2988 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-4001 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3172 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3902 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2837 (($) 50) (($ (-656 |#1|)) 49)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 51)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 43)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-231 |#1|) (-141) (-1119)) (T -231)) NIL (-13 (-240 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3614 (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1196)) 55 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 53 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 52 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 51 (|has| |#1| (-917 (-1196)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-783)) 45 (|has| |#1| (-237)))) (-4092 (((-874) $) 12) (($ (-576)) 33)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1 |#1| |#1|) (-783)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1196)) 54 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 50 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 49 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 48 (|has| |#1| (-917 (-1196)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-783)) 44 (|has| |#1| (-237)))) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2735 (($ $ (-1 |#1| |#1|) (-783)) 57) (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1195)) 55 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 53 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 52 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 51 (|has| |#1| (-917 (-1195)))) (($ $) 47 (|has| |#1| (-237))) (($ $ (-783)) 45 (|has| |#1| (-237)))) (-3563 (((-874) $) 12) (($ (-576)) 33)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1 |#1| |#1|) (-783)) 59) (($ $ (-1 |#1| |#1|)) 58) (($ $ (-1195)) 54 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 50 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 49 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 48 (|has| |#1| (-917 (-1195)))) (($ $) 46 (|has| |#1| (-237))) (($ $ (-783)) 44 (|has| |#1| (-237)))) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-232 |#1|) (-141) (-1068)) (T -232)) NIL -(-13 (-1068) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-234 $) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ #0=(-1196)) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #0#) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T)) -((-4286 ((|#2| $) 9))) -(((-233 |#1| |#2|) (-10 -8 (-15 -4286 (|#2| |#1|))) (-234 |#2|) (-1237)) (T -233)) -NIL -(-10 -8 (-15 -4286 (|#2| |#1|))) -((-3614 ((|#1| $) 7)) (-4286 ((|#1| $) 6))) -(((-234 |#1|) (-141) (-1237)) (T -234)) -((-3614 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -3614 (|t#1| $)) (-15 -4286 (|t#1| $)))) -(((-1237) . T)) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3614 (($ $ (-783)) 37) (($ $) 35)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4286 (($ $ (-783)) 38) (($ $) 36)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(-13 (-1068) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-238)) (-6 (-238)) |%noBranch|) (IF (|has| |t#1| (-915 (-1195))) (-6 (-915 (-1195))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-234 $) -2835 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-238) |has| |#1| (-238)) ((-237) -2835 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ #0=(-1195)) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-915 (-1195)) |has| |#1| (-915 (-1195))) ((-917 #0#) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T)) +((-2051 ((|#2| $) 9))) +(((-233 |#1| |#2|) (-10 -8 (-15 -2051 (|#2| |#1|))) (-234 |#2|) (-1236)) (T -233)) +NIL +(-10 -8 (-15 -2051 (|#2| |#1|))) +((-2735 ((|#1| $) 7)) (-2051 ((|#1| $) 6))) +(((-234 |#1|) (-141) (-1236)) (T -234)) +((-2735 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1236)))) (-2051 (*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1236))))) +(-13 (-1236) (-10 -8 (-15 -2735 (|t#1| $)) (-15 -2051 (|t#1| $)))) +(((-1236) . T)) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2735 (($ $ (-783)) 37) (($ $) 35)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2051 (($ $ (-783)) 38) (($ $) 36)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-235 |#1|) (-141) (-1068)) (T -235)) NIL (-13 (-111 |t#1| |t#1|) (-237) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1237) . T)) -((-3614 (($ $) NIL) (($ $ (-783)) 9)) (-4286 (($ $) NIL) (($ $ (-783)) 11))) -(((-236 |#1|) (-10 -8 (-15 -4286 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-783))) (-15 -4286 (|#1| |#1|)) (-15 -3614 (|#1| |#1|))) (-237)) (T -236)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1236) . T)) +((-2735 (($ $) NIL) (($ $ (-783)) 9)) (-2051 (($ $) NIL) (($ $ (-783)) 11))) +(((-236 |#1|) (-10 -8 (-15 -2051 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-783))) (-15 -2051 (|#1| |#1|)) (-15 -2735 (|#1| |#1|))) (-237)) (T -236)) NIL -(-10 -8 (-15 -4286 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-783))) (-15 -4286 (|#1| |#1|)) (-15 -3614 (|#1| |#1|))) -((-3614 (($ $) 7) (($ $ (-783)) 10)) (-4286 (($ $) 6) (($ $ (-783)) 9))) +(-10 -8 (-15 -2051 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-783))) (-15 -2051 (|#1| |#1|)) (-15 -2735 (|#1| |#1|))) +((-2735 (($ $) 7) (($ $ (-783)) 10)) (-2051 (($ $) 6) (($ $ (-783)) 9))) (((-237) (-141)) (T -237)) -((-3614 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) (-4286 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783))))) -(-13 (-234 $) (-10 -8 (-15 -3614 ($ $ (-783))) (-15 -4286 ($ $ (-783))))) -(((-234 $) . T) ((-1237) . T)) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3614 (($ $ (-783)) 42) (($ $) 40)) (-4092 (((-874) $) 12) (($ (-576)) 33)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-783)) 43) (($ $) 41)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2735 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) (-2051 (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783))))) +(-13 (-234 $) (-10 -8 (-15 -2735 ($ $ (-783))) (-15 -2051 ($ $ (-783))))) +(((-234 $) . T) ((-1236) . T)) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2735 (($ $ (-783)) 42) (($ $) 40)) (-3563 (((-874) $) 12) (($ (-576)) 33)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-783)) 43) (($ $) 41)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-238) (-141)) (T -238)) NIL (-13 (-1068) (-237)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T)) -((-1833 (($) 12) (($ (-656 |#2|)) NIL)) (-4268 (($ $) 14)) (-4103 (($ (-656 |#2|)) 10)) (-4092 (((-874) $) 21))) -(((-239 |#1| |#2|) (-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -1833 (|#1| (-656 |#2|))) (-15 -1833 (|#1|)) (-15 -4103 (|#1| (-656 |#2|))) (-15 -4268 (|#1| |#1|))) (-240 |#2|) (-1119)) (T -239)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-234 $) . T) ((-237) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T)) +((-2837 (($) 12) (($ (-656 |#2|)) NIL)) (-1954 (($ $) 14)) (-3573 (($ (-656 |#2|)) 10)) (-3563 (((-874) $) 21))) +(((-239 |#1| |#2|) (-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -2837 (|#1| (-656 |#2|))) (-15 -2837 (|#1|)) (-15 -3573 (|#1| (-656 |#2|))) (-15 -1954 (|#1| |#1|))) (-240 |#2|) (-1119)) (T -239)) NIL -(-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -1833 (|#1| (-656 |#2|))) (-15 -1833 (|#1|)) (-15 -4103 (|#1| (-656 |#2|))) (-15 -4268 (|#1| |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-3831 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-1690 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-2892 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-1833 (($) 50) (($ (-656 |#1|)) 49)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 51)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 43)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +(-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -2837 (|#1| (-656 |#2|))) (-15 -2837 (|#1|)) (-15 -3573 (|#1| (-656 |#2|))) (-15 -1954 (|#1| |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-4001 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3172 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3902 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2837 (($) 50) (($ (-656 |#1|)) 49)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 51)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 43)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-240 |#1|) (-141) (-1119)) (T -240)) -((-1833 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1119)))) (-1833 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-240 *3)))) (-4376 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-240 *2)) (-4 *2 (-1119)))) (-4376 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-240 *3)) (-4 *3 (-1119)))) (-3831 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-240 *3)) (-4 *3 (-1119))))) -(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -1833 ($)) (-15 -1833 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4462)) (PROGN (-15 -4376 ($ |t#1| $)) (-15 -4376 ($ (-1 (-112) |t#1|) $)) (-15 -3831 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-3642 (((-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783))))) (-304 (-969 (-576)))) 42))) -(((-241) (-10 -7 (-15 -3642 ((-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783))))) (-304 (-969 (-576))))))) (T -241)) -((-3642 (*1 *2 *3) (-12 (-5 *3 (-304 (-969 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783)))))) (-5 *1 (-241))))) -(-10 -7 (-15 -3642 ((-2 (|:| |varOrder| (-656 (-1196))) (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) (|:| |hom| (-656 (-1287 (-783))))) (-304 (-969 (-576)))))) -((-2247 (((-783)) 56)) (-3687 (((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 $) $) NIL) (((-701 |#3|) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3667 (((-135)) 62)) (-3614 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-4092 (((-1287 |#3|) $) NIL) (($ |#3|) NIL) (((-874) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-2471 (((-783)) 15)) (-4028 (($ $ |#3|) 59))) -(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| (-576))) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4092 ((-874) |#1|)) (-15 -2471 ((-783))) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -4092 (|#1| |#3|)) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3687 ((-701 |#3|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#3|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -2247 ((-783))) (-15 -4028 (|#1| |#1| |#3|)) (-15 -3667 ((-135))) (-15 -4092 ((-1287 |#3|) |#1|))) (-243 |#2| |#3|) (-783) (-1237)) (T -242)) -((-3667 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1237)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2247 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2471 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) -(-10 -8 (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| (-576))) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4092 ((-874) |#1|)) (-15 -2471 ((-783))) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -4092 (|#1| |#3|)) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3687 ((-701 |#3|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#3|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -2247 ((-783))) (-15 -4028 (|#1| |#1| |#3|)) (-15 -3667 ((-135))) (-15 -4092 ((-1287 |#3|) |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#2| (-1119)))) (-1962 (((-112) $) 76 (|has| |#2| (-23)))) (-3001 (($ (-938)) 129 (|has| |#2| (-1068)))) (-2449 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2746 (($ $ $) 125 (|has| |#2| (-805)))) (-3788 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-2835 (((-112) $ (-783)) 8)) (-2247 (((-783)) 115 (|has| |#2| (-379)))) (-4248 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4463)))) (-3656 (($) 7 T CONST)) (-2974 (((-3 (-576) "failed") $) 71 (-2445 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) 68 (-2445 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1119)))) (-2378 (((-576) $) 70 (-2445 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) 67 (-2445 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) 66 (|has| |#2| (-1119)))) (-3687 (((-701 (-576)) (-1287 $)) 114 (-2445 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 113 (-2445 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) 112 (-2445 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 111 (-2445 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 110 (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) 109 (|has| |#2| (-1068))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) 108 (|has| |#2| (-1068))) (((-701 |#2|) (-1287 $)) 107 (|has| |#2| (-1068)))) (-3179 (((-3 $ "failed") $) 86 (|has| |#2| (-1068)))) (-2446 (($) 118 (|has| |#2| (-379)))) (-3888 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4463)))) (-3817 ((|#2| $ (-576)) 52)) (-4260 (((-656 |#2|) $) 31 (|has| $ (-6 -4462)))) (-1810 (((-112) $) 88 (|has| |#2| (-1068)))) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 44 (|has| (-576) (-862)))) (-3492 (($ $ $) 124 (|has| |#2| (-862)))) (-1750 (((-656 |#2|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 45 (|has| (-576) (-862)))) (-2726 (($ $ $) 123 (|has| |#2| (-862)))) (-3874 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#2| |#2|) $) 36)) (-3225 (((-938) $) 117 (|has| |#2| (-379)))) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#2| (-1119)))) (-4428 (((-656 (-576)) $) 47)) (-2013 (((-112) (-576) $) 48)) (-2550 (($ (-938)) 116 (|has| |#2| (-379)))) (-3139 (((-1139) $) 21 (|has| |#2| (-1119)))) (-2701 ((|#2| $) 43 (|has| (-576) (-862)))) (-2918 (($ $ |#2|) 42 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-1660 ((|#2| $ $) 128 (|has| |#2| (-1068)))) (-1440 (($ (-1287 |#2|)) 130)) (-3667 (((-135)) 127 (|has| |#2| (-374)))) (-3614 (($ $ (-783)) 105 (-2445 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) 103 (-2445 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) 99 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) 98 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) 97 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) 95 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1068)))) (-3150 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4462))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-1287 |#2|) $) 131) (($ (-576)) 72 (-3765 (-2445 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) 69 (-2445 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) 64 (|has| |#2| (-1119))) (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-2471 (((-783)) 90 (|has| |#2| (-1068)) CONST)) (-1531 (((-112) $ $) 23 (|has| |#2| (-1119)))) (-2190 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4462)))) (-4300 (($) 75 (|has| |#2| (-23)) CONST)) (-4310 (($) 89 (|has| |#2| (-1068)) CONST)) (-4286 (($ $ (-783)) 106 (-2445 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) 104 (-2445 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) 102 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) 101 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) 100 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) 96 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1068)))) (-3977 (((-112) $ $) 121 (|has| |#2| (-862)))) (-3955 (((-112) $ $) 120 (|has| |#2| (-862)))) (-3919 (((-112) $ $) 20 (|has| |#2| (-1119)))) (-3966 (((-112) $ $) 122 (|has| |#2| (-862)))) (-3944 (((-112) $ $) 119 (|has| |#2| (-862)))) (-4028 (($ $ |#2|) 126 (|has| |#2| (-374)))) (-4018 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-4007 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-783)) 87 (|has| |#2| (-1068))) (($ $ (-938)) 84 (|has| |#2| (-1068)))) (* (($ $ $) 85 (|has| |#2| (-1068))) (($ $ |#2|) 83 (|has| |#2| (-738))) (($ |#2| $) 82 (|has| |#2| (-738))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-783) $) 77 (|has| |#2| (-23))) (($ (-938) $) 74 (|has| |#2| (-25)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-243 |#1| |#2|) (-141) (-783) (-1237)) (T -243)) -((-1440 (*1 *1 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1237)) (-4 *1 (-243 *3 *4)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1068)) (-4 *4 (-1237)))) (-1660 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1237)) (-4 *2 (-1068))))) -(-13 (-616 (-576) |t#2|) (-625 (-1287 |t#2|)) (-10 -8 (-6 -4462) (-15 -1440 ($ (-1287 |t#2|))) (IF (|has| |t#2| (-1119)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1068)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -3001 ($ (-938))) (-15 -1660 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |t#2| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1294 |t#2|)) |%noBranch|))) -(((-21) -3765 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -3765 (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3765 (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3765 (|has| |#2| (-1119)) (|has| |#2| (-1068)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3765 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -3765 (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))) ((-628 (-576)) -3765 (|has| |#2| (-1068)) (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) ((-628 |#2|) |has| |#2| (-1119)) ((-625 (-874)) -3765 (|has| |#2| (-1119)) (|has| |#2| (-1068)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-874))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1287 |#2|)) . T) ((-234 $) -3765 (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1068)))) ((-232 |#2|) |has| |#2| (-1068)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1068))) ((-237) -3765 (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1068)))) ((-272 |#2|) |has| |#2| (-1068)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1068)) ((-423 |#2|) |has| |#2| (-1119)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-658 (-576)) -3765 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -3765 (|has| |#2| (-1068)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1068)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))) ((-660 |#2|) -3765 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1068)) ((-652 |#2|) -3765 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))) ((-651 |#2|) |has| |#2| (-1068)) ((-729 |#2|) -3765 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1068)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-862) -3765 (|has| |#2| (-862)) (|has| |#2| (-805))) ((-909 $ #3=(-1196)) -3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) ((-915 (-1196)) -12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068))) ((-917 #3#) -3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-915 (-1196))) (|has| |#2| (-1068)))) ((-1057 #0#) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))) ((-1057 (-576)) -12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) ((-1057 |#2|) |has| |#2| (-1119)) ((-1070 |#2|) -3765 (|has| |#2| (-1068)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1075 |#2|) -3765 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1068) |has| |#2| (-1068)) ((-1077) |has| |#2| (-1068)) ((-1131) |has| |#2| (-1068)) ((-1119) -3765 (|has| |#2| (-1119)) (|has| |#2| (-1068)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1237) . T) ((-1294 |#2|) |has| |#2| (-374))) -((-1687 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-2359 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-2477 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) -(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -1687 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2359 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2477 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-783) (-1237) (-1237)) (T -244)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-2359 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1237)) (-4 *2 (-1237)) (-5 *1 (-244 *5 *6 *2)))) (-1687 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1237)) (-4 *5 (-1237)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) -(-10 -7 (-15 -1687 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2359 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2477 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) -((-2034 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-1962 (((-112) $) NIL (|has| |#2| (-23)))) (-3001 (($ (-938)) 62 (|has| |#2| (-1068)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2746 (($ $ $) 68 (|has| |#2| (-805)))) (-3788 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-2835 (((-112) $ (-783)) NIL)) (-2247 (((-783)) NIL (|has| |#2| (-379)))) (-4248 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1119)))) (-2378 (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) 28 (|has| |#2| (-1119)))) (-3687 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1068))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-1287 $)) NIL (|has| |#2| (-1068)))) (-3179 (((-3 $ "failed") $) 58 (|has| |#2| (-1068)))) (-2446 (($) NIL (|has| |#2| (-379)))) (-3888 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ (-576)) 56)) (-4260 (((-656 |#2|) $) 14 (|has| $ (-6 -4462)))) (-1810 (((-112) $) NIL (|has| |#2| (-1068)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) 19 (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#2| (-862)))) (-1750 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#2| (-862)))) (-3874 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-3225 (((-938) $) NIL (|has| |#2| (-379)))) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#2| (-1119)))) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-2550 (($ (-938)) NIL (|has| |#2| (-379)))) (-3139 (((-1139) $) NIL (|has| |#2| (-1119)))) (-2701 ((|#2| $) NIL (|has| (-576) (-862)))) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-1660 ((|#2| $ $) NIL (|has| |#2| (-1068)))) (-1440 (($ (-1287 |#2|)) 17)) (-3667 (((-135)) NIL (|has| |#2| (-374)))) (-3614 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3150 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-1287 |#2|) $) 9) (($ (-576)) NIL (-3765 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) 12 (|has| |#2| (-1119))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-2471 (((-783)) NIL (|has| |#2| (-1068)) CONST)) (-1531 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-2190 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-4300 (($) 36 (|has| |#2| (-23)) CONST)) (-4310 (($) 40 (|has| |#2| (-1068)) CONST)) (-4286 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3977 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3919 (((-112) $ $) 27 (|has| |#2| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3944 (((-112) $ $) 66 (|has| |#2| (-862)))) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4007 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1068))) (($ $ (-938)) NIL (|has| |#2| (-1068)))) (* (($ $ $) 46 (|has| |#2| (-1068))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-938) $) NIL (|has| |#2| (-25)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-245 |#1| |#2|) (-243 |#1| |#2|) (-783) (-1237)) (T -245)) +((-2837 (*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1119)))) (-2837 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-240 *3)))) (-3623 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-240 *2)) (-4 *2 (-1119)))) (-3623 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-240 *3)) (-4 *3 (-1119)))) (-4001 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-240 *3)) (-4 *3 (-1119))))) +(-13 (-107 |t#1|) (-152 |t#1|) (-10 -8 (-15 -2837 ($)) (-15 -2837 ($ (-656 |t#1|))) (IF (|has| $ (-6 -4461)) (PROGN (-15 -3623 ($ |t#1| $)) (-15 -3623 ($ (-1 (-112) |t#1|) $)) (-15 -4001 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-3076 (((-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783))))) (-304 (-969 (-576)))) 42))) +(((-241) (-10 -7 (-15 -3076 ((-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783))))) (-304 (-969 (-576))))))) (T -241)) +((-3076 (*1 *2 *3) (-12 (-5 *3 (-304 (-969 (-576)))) (-5 *2 (-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783)))))) (-5 *1 (-241))))) +(-10 -7 (-15 -3076 ((-2 (|:| |varOrder| (-656 (-1195))) (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) (|:| |hom| (-656 (-1286 (-783))))) (-304 (-969 (-576)))))) +((-2148 (((-783)) 56)) (-3687 (((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) 53) (((-701 |#3|) (-701 $)) 44) (((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 $) $) NIL) (((-701 |#3|) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-2446 (((-135)) 62)) (-2735 (($ $ (-1 |#3| |#3|)) 18) (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-3563 (((-1286 |#3|) $) NIL) (($ |#3|) NIL) (((-874) $) NIL) (($ (-576)) 12) (($ (-419 (-576))) NIL)) (-1858 (((-783)) 15)) (-3107 (($ $ |#3|) 59))) +(((-242 |#1| |#2| |#3|) (-10 -8 (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| (-576))) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3563 ((-874) |#1|)) (-15 -1858 ((-783))) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3563 (|#1| |#3|)) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3687 ((-701 |#3|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#3|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -2148 ((-783))) (-15 -3107 (|#1| |#1| |#3|)) (-15 -2446 ((-135))) (-15 -3563 ((-1286 |#3|) |#1|))) (-243 |#2| |#3|) (-783) (-1236)) (T -242)) +((-2446 (*1 *2) (-12 (-14 *4 (-783)) (-4 *5 (-1236)) (-5 *2 (-135)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-2148 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) (-1858 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5))))) +(-10 -8 (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| (-576))) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3563 ((-874) |#1|)) (-15 -1858 ((-783))) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3563 (|#1| |#3|)) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3687 ((-701 |#3|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#3|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -2148 ((-783))) (-15 -3107 (|#1| |#1| |#3|)) (-15 -2446 ((-135))) (-15 -3563 ((-1286 |#3|) |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#2| (-1119)))) (-1454 (((-112) $) 76 (|has| |#2| (-23)))) (-2204 (($ (-938)) 129 (|has| |#2| (-1068)))) (-2333 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-4415 (($ $ $) 125 (|has| |#2| (-805)))) (-1367 (((-3 $ "failed") $ $) 78 (|has| |#2| (-132)))) (-3131 (((-112) $ (-783)) 8)) (-2148 (((-783)) 115 (|has| |#2| (-379)))) (-3731 ((|#2| $ (-576) |#2|) 53 (|has| $ (-6 -4462)))) (-3767 (($) 7 T CONST)) (-1539 (((-3 (-576) "failed") $) 71 (-2758 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) 68 (-2758 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1119)))) (-4056 (((-576) $) 70 (-2758 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) 67 (-2758 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) 66 (|has| |#2| (-1119)))) (-3687 (((-701 (-576)) (-1286 $)) 114 (-2758 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 113 (-2758 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) 112 (-2758 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 111 (-2758 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 110 (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) 109 (|has| |#2| (-1068))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) 108 (|has| |#2| (-1068))) (((-701 |#2|) (-1286 $)) 107 (|has| |#2| (-1068)))) (-1551 (((-3 $ "failed") $) 86 (|has| |#2| (-1068)))) (-1803 (($) 118 (|has| |#2| (-379)))) (-1776 ((|#2| $ (-576) |#2|) 54 (|has| $ (-6 -4462)))) (-1698 ((|#2| $ (-576)) 52)) (-3825 (((-656 |#2|) $) 31 (|has| $ (-6 -4461)))) (-1414 (((-112) $) 88 (|has| |#2| (-1068)))) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 44 (|has| (-576) (-862)))) (-2442 (($ $ $) 124 (|has| |#2| (-862)))) (-2591 (((-656 |#2|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 45 (|has| (-576) (-862)))) (-1893 (($ $ $) 123 (|has| |#2| (-862)))) (-1763 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#2| |#2|) $) 36)) (-1902 (((-938) $) 117 (|has| |#2| (-379)))) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#2| (-1119)))) (-3321 (((-656 (-576)) $) 47)) (-2378 (((-112) (-576) $) 48)) (-3257 (($ (-938)) 116 (|has| |#2| (-379)))) (-1445 (((-1139) $) 21 (|has| |#2| (-1119)))) (-3504 ((|#2| $) 43 (|has| (-576) (-862)))) (-2500 (($ $ |#2|) 42 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#2| $ (-576) |#2|) 51) ((|#2| $ (-576)) 50)) (-2962 ((|#2| $ $) 128 (|has| |#2| (-1068)))) (-1887 (($ (-1286 |#2|)) 130)) (-2446 (((-135)) 127 (|has| |#2| (-374)))) (-2735 (($ $ (-783)) 105 (-2758 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) 103 (-2758 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) 99 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195) (-783)) 98 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-656 (-1195))) 97 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195)) 95 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) 93 (|has| |#2| (-1068)))) (-1456 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4461))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-1286 |#2|) $) 131) (($ (-576)) 72 (-2835 (-2758 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) 69 (-2758 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) 64 (|has| |#2| (-1119))) (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-1858 (((-783)) 90 (|has| |#2| (-1068)) CONST)) (-3985 (((-112) $ $) 23 (|has| |#2| (-1119)))) (-2043 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4461)))) (-2800 (($) 75 (|has| |#2| (-23)) CONST)) (-2810 (($) 89 (|has| |#2| (-1068)) CONST)) (-2051 (($ $ (-783)) 106 (-2758 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) 104 (-2758 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) 102 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195) (-783)) 101 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-656 (-1195))) 100 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195)) 96 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) 91 (|has| |#2| (-1068)))) (-3049 (((-112) $ $) 121 (|has| |#2| (-862)))) (-3024 (((-112) $ $) 120 (|has| |#2| (-862)))) (-2988 (((-112) $ $) 20 (|has| |#2| (-1119)))) (-3037 (((-112) $ $) 122 (|has| |#2| (-862)))) (-3010 (((-112) $ $) 119 (|has| |#2| (-862)))) (-3107 (($ $ |#2|) 126 (|has| |#2| (-374)))) (-3095 (($ $ $) 81 (|has| |#2| (-21))) (($ $) 80 (|has| |#2| (-21)))) (-3083 (($ $ $) 73 (|has| |#2| (-25)))) (** (($ $ (-783)) 87 (|has| |#2| (-1068))) (($ $ (-938)) 84 (|has| |#2| (-1068)))) (* (($ $ $) 85 (|has| |#2| (-1068))) (($ $ |#2|) 83 (|has| |#2| (-738))) (($ |#2| $) 82 (|has| |#2| (-738))) (($ (-576) $) 79 (|has| |#2| (-21))) (($ (-783) $) 77 (|has| |#2| (-23))) (($ (-938) $) 74 (|has| |#2| (-25)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-243 |#1| |#2|) (-141) (-783) (-1236)) (T -243)) +((-1887 (*1 *1 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1236)) (-4 *1 (-243 *3 *4)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1068)) (-4 *4 (-1236)))) (-2962 (*1 *2 *1 *1) (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1236)) (-4 *2 (-1068))))) +(-13 (-616 (-576) |t#2|) (-625 (-1286 |t#2|)) (-10 -8 (-6 -4461) (-15 -1887 ($ (-1286 |t#2|))) (IF (|has| |t#2| (-1119)) (-6 (-423 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1068)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-232 |t#2|)) (-6 (-388 |t#2|)) (-15 -2204 ($ (-938))) (-15 -2962 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-132)) (-6 (-132)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-738)) (-6 (-652 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |t#2| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#2| (-805)) (-6 (-805)) |%noBranch|) (IF (|has| |t#2| (-374)) (-6 (-1293 |t#2|)) |%noBranch|))) +(((-21) -2835 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-23) -2835 (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2835 (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2835 (|has| |#2| (-1119)) (|has| |#2| (-1068)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2835 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-132) -2835 (|has| |#2| (-1068)) (|has| |#2| (-805)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-21))) ((-628 #0=(-419 (-576))) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))) ((-628 (-576)) -2835 (|has| |#2| (-1068)) (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) ((-628 |#2|) |has| |#2| (-1119)) ((-625 (-874)) -2835 (|has| |#2| (-1119)) (|has| |#2| (-1068)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-625 (-874))) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-625 (-1286 |#2|)) . T) ((-234 $) -2835 (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1068)))) ((-232 |#2|) |has| |#2| (-1068)) ((-238) -12 (|has| |#2| (-238)) (|has| |#2| (-1068))) ((-237) -2835 (-12 (|has| |#2| (-237)) (|has| |#2| (-1068))) (-12 (|has| |#2| (-238)) (|has| |#2| (-1068)))) ((-272 |#2|) |has| |#2| (-1068)) ((-296 #1=(-576) |#2|) . T) ((-298 #1# |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-379) |has| |#2| (-379)) ((-388 |#2|) |has| |#2| (-1068)) ((-423 |#2|) |has| |#2| (-1119)) ((-501 |#2|) . T) ((-616 #1# |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-658 (-576)) -2835 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-21))) ((-658 |#2|) -2835 (|has| |#2| (-1068)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-658 $) |has| |#2| (-1068)) ((-660 #2=(-576)) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))) ((-660 |#2|) -2835 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-660 $) |has| |#2| (-1068)) ((-652 |#2|) -2835 (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-651 #2#) -12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068))) ((-651 |#2|) |has| |#2| (-1068)) ((-729 |#2|) -2835 (|has| |#2| (-374)) (|has| |#2| (-174))) ((-738) |has| |#2| (-1068)) ((-804) |has| |#2| (-805)) ((-805) |has| |#2| (-805)) ((-806) |has| |#2| (-805)) ((-807) |has| |#2| (-805)) ((-862) -2835 (|has| |#2| (-862)) (|has| |#2| (-805))) ((-909 $ #3=(-1195)) -2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068)))) ((-915 (-1195)) -12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068))) ((-917 #3#) -2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068))) (-12 (|has| |#2| (-915 (-1195))) (|has| |#2| (-1068)))) ((-1057 #0#) -12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119))) ((-1057 (-576)) -12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) ((-1057 |#2|) |has| |#2| (-1119)) ((-1070 |#2|) -2835 (|has| |#2| (-1068)) (|has| |#2| (-738)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1075 |#2|) -2835 (|has| |#2| (-1068)) (|has| |#2| (-374)) (|has| |#2| (-174))) ((-1068) |has| |#2| (-1068)) ((-1077) |has| |#2| (-1068)) ((-1131) |has| |#2| (-1068)) ((-1119) -2835 (|has| |#2| (-1119)) (|has| |#2| (-1068)) (|has| |#2| (-862)) (|has| |#2| (-805)) (|has| |#2| (-738)) (|has| |#2| (-379)) (|has| |#2| (-374)) (|has| |#2| (-174)) (|has| |#2| (-132)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1236) . T) ((-1293 |#2|) |has| |#2| (-374))) +((-2874 (((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 21)) (-2521 ((|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|) 23)) (-1632 (((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)) 18))) +(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -2874 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2521 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -1632 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) (-783) (-1236) (-1236)) (T -244)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) (-4 *6 (-1236)) (-4 *2 (-1236)) (-5 *1 (-244 *5 *6 *2)))) (-2874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) (-4 *7 (-1236)) (-4 *5 (-1236)) (-5 *2 (-245 *6 *5)) (-5 *1 (-244 *6 *7 *5))))) +(-10 -7 (-15 -2874 ((-245 |#1| |#3|) (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -2521 (|#3| (-1 |#3| |#2| |#3|) (-245 |#1| |#2|) |#3|)) (-15 -1632 ((-245 |#1| |#3|) (-1 |#3| |#2|) (-245 |#1| |#2|)))) +((-3474 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-1454 (((-112) $) NIL (|has| |#2| (-23)))) (-2204 (($ (-938)) 62 (|has| |#2| (-1068)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-4415 (($ $ $) 68 (|has| |#2| (-805)))) (-1367 (((-3 $ "failed") $ $) 53 (|has| |#2| (-132)))) (-3131 (((-112) $ (-783)) NIL)) (-2148 (((-783)) NIL (|has| |#2| (-379)))) (-3731 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1119)))) (-4056 (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) 28 (|has| |#2| (-1119)))) (-3687 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1068))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-1286 $)) NIL (|has| |#2| (-1068)))) (-1551 (((-3 $ "failed") $) 58 (|has| |#2| (-1068)))) (-1803 (($) NIL (|has| |#2| (-379)))) (-1776 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ (-576)) 56)) (-3825 (((-656 |#2|) $) 14 (|has| $ (-6 -4461)))) (-1414 (((-112) $) NIL (|has| |#2| (-1068)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) 19 (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#2| (-862)))) (-2591 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#2| (-862)))) (-1763 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-1902 (((-938) $) NIL (|has| |#2| (-379)))) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#2| (-1119)))) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-3257 (($ (-938)) NIL (|has| |#2| (-379)))) (-1445 (((-1139) $) NIL (|has| |#2| (-1119)))) (-3504 ((|#2| $) NIL (|has| (-576) (-862)))) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#2|) $) 23 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) 20)) (-2962 ((|#2| $ $) NIL (|has| |#2| (-1068)))) (-1887 (($ (-1286 |#2|)) 17)) (-2446 (((-135)) NIL (|has| |#2| (-374)))) (-2735 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-1456 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-1286 |#2|) $) 9) (($ (-576)) NIL (-2835 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) 12 (|has| |#2| (-1119))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-1858 (((-783)) NIL (|has| |#2| (-1068)) CONST)) (-3985 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-2043 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2800 (($) 36 (|has| |#2| (-23)) CONST)) (-2810 (($) 40 (|has| |#2| (-1068)) CONST)) (-2051 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3049 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2988 (((-112) $ $) 27 (|has| |#2| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3010 (((-112) $ $) 66 (|has| |#2| (-862)))) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3083 (($ $ $) 34 (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1068))) (($ $ (-938)) NIL (|has| |#2| (-1068)))) (* (($ $ $) 46 (|has| |#2| (-1068))) (($ $ |#2|) 44 (|has| |#2| (-738))) (($ |#2| $) 45 (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-938) $) NIL (|has| |#2| (-25)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-245 |#1| |#2|) (-243 |#1| |#2|) (-783) (-1236)) (T -245)) NIL (-243 |#1| |#2|) -((-1933 (((-576) (-656 (-1178))) 36) (((-576) (-1178)) 29)) (-2524 (((-1292) (-656 (-1178))) 40) (((-1292) (-1178)) 39)) (-1879 (((-1178)) 16)) (-1779 (((-1178) (-576) (-1178)) 23)) (-2553 (((-656 (-1178)) (-656 (-1178)) (-576) (-1178)) 37) (((-1178) (-1178) (-576) (-1178)) 35)) (-2228 (((-656 (-1178)) (-656 (-1178))) 15) (((-656 (-1178)) (-1178)) 11))) -(((-246) (-10 -7 (-15 -2228 ((-656 (-1178)) (-1178))) (-15 -2228 ((-656 (-1178)) (-656 (-1178)))) (-15 -1879 ((-1178))) (-15 -1779 ((-1178) (-576) (-1178))) (-15 -2553 ((-1178) (-1178) (-576) (-1178))) (-15 -2553 ((-656 (-1178)) (-656 (-1178)) (-576) (-1178))) (-15 -2524 ((-1292) (-1178))) (-15 -2524 ((-1292) (-656 (-1178)))) (-15 -1933 ((-576) (-1178))) (-15 -1933 ((-576) (-656 (-1178)))))) (T -246)) -((-1933 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-576)) (-5 *1 (-246)))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-246)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1292)) (-5 *1 (-246)))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-246)))) (-2553 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1178))) (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *1 (-246)))) (-2553 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1779 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1879 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-246)))) (-2228 (*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)))) (-2228 (*1 *2 *3) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)) (-5 *3 (-1178))))) -(-10 -7 (-15 -2228 ((-656 (-1178)) (-1178))) (-15 -2228 ((-656 (-1178)) (-656 (-1178)))) (-15 -1879 ((-1178))) (-15 -1779 ((-1178) (-576) (-1178))) (-15 -2553 ((-1178) (-1178) (-576) (-1178))) (-15 -2553 ((-656 (-1178)) (-656 (-1178)) (-576) (-1178))) (-15 -2524 ((-1292) (-1178))) (-15 -2524 ((-1292) (-656 (-1178)))) (-15 -1933 ((-576) (-1178))) (-15 -1933 ((-576) (-656 (-1178))))) +((-3410 (((-576) (-656 (-1177))) 36) (((-576) (-1177)) 29)) (-4357 (((-1291) (-656 (-1177))) 40) (((-1291) (-1177)) 39)) (-1843 (((-1177)) 16)) (-3535 (((-1177) (-576) (-1177)) 23)) (-2387 (((-656 (-1177)) (-656 (-1177)) (-576) (-1177)) 37) (((-1177) (-1177) (-576) (-1177)) 35)) (-3287 (((-656 (-1177)) (-656 (-1177))) 15) (((-656 (-1177)) (-1177)) 11))) +(((-246) (-10 -7 (-15 -3287 ((-656 (-1177)) (-1177))) (-15 -3287 ((-656 (-1177)) (-656 (-1177)))) (-15 -1843 ((-1177))) (-15 -3535 ((-1177) (-576) (-1177))) (-15 -2387 ((-1177) (-1177) (-576) (-1177))) (-15 -2387 ((-656 (-1177)) (-656 (-1177)) (-576) (-1177))) (-15 -4357 ((-1291) (-1177))) (-15 -4357 ((-1291) (-656 (-1177)))) (-15 -3410 ((-576) (-1177))) (-15 -3410 ((-576) (-656 (-1177)))))) (T -246)) +((-3410 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-576)) (-5 *1 (-246)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-246)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1291)) (-5 *1 (-246)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-246)))) (-2387 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 (-1177))) (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *1 (-246)))) (-2387 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-246)))) (-3535 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-246)))) (-1843 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-246)))) (-3287 (*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-246)))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-246)) (-5 *3 (-1177))))) +(-10 -7 (-15 -3287 ((-656 (-1177)) (-1177))) (-15 -3287 ((-656 (-1177)) (-656 (-1177)))) (-15 -1843 ((-1177))) (-15 -3535 ((-1177) (-576) (-1177))) (-15 -2387 ((-1177) (-1177) (-576) (-1177))) (-15 -2387 ((-656 (-1177)) (-656 (-1177)) (-576) (-1177))) (-15 -4357 ((-1291) (-1177))) (-15 -4357 ((-1291) (-656 (-1177)))) (-15 -3410 ((-576) (-1177))) (-15 -3410 ((-576) (-656 (-1177))))) ((** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 20)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) NIL))) (((-247 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-248)) (T -247)) NIL (-10 -8 (-15 ** (|#1| |#1| (-576))) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 47)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 47)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 51)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 48)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 50) (($ $ (-419 (-576))) 49))) (((-248) (-141)) (T -248)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) (-1644 (*1 *1 *1) (-4 *1 (-248)))) -(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -1644 ($ $)))) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) (-2095 (*1 *1 *1) (-4 *1 (-248)))) +(-13 (-300) (-38 (-419 (-576))) (-10 -8 (-15 ** ($ $ (-576))) (-15 -2095 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-300) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-729 #0#) . T) ((-738) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1731 ((|#1| $) 49)) (-3053 (($ $) 58)) (-2835 (((-112) $ (-783)) 8)) (-2597 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-3723 (($ $ $) 54 (|has| $ (-6 -4463)))) (-1730 (($ $ $) 53 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3656 (($) 7 T CONST)) (-3900 (($ $) 57)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 51)) (-2397 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-4081 (($ $) 56)) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3699 (((-656 |#1|) $) 46)) (-3781 (((-112) $) 50)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2912 ((|#1| $) 60)) (-3989 (($ $) 59)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ "value") 48)) (-3136 (((-576) $ $) 45)) (-2492 (((-112) $) 47)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-2116 (($ $ $) 55 (|has| $ (-6 -4463)))) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) 52)) (-3682 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-249 |#1|) (-141) (-1237)) (T -249)) -((-2912 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3989 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3900 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-4081 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-2116 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-3723 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))) (-1730 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237))))) -(-13 (-1029 |t#1|) (-10 -8 (-15 -2912 (|t#1| $)) (-15 -3989 ($ $)) (-15 -3053 ($ $)) (-15 -3900 ($ $)) (-15 -4081 ($ $)) (IF (|has| $ (-6 -4463)) (PROGN (-15 -2116 ($ $ $)) (-15 -3723 ($ $ $)) (-15 -1730 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) NIL)) (-3367 ((|#1| $) NIL)) (-3053 (($ $) NIL)) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2633 (($ $ (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3362 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2398 (($ $) 10 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-2597 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-3744 (($ $ $) NIL (|has| $ (-6 -4463)))) (-3476 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2466 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "rest" $) NIL (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3831 (($ (-1 (-112) |#1|) $) NIL)) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3357 ((|#1| $) NIL)) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-2712 (($ $) NIL) (($ $ (-783)) NIL)) (-4329 (($ $) NIL (|has| |#1| (-1119)))) (-1690 (($ $) 7 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4376 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-2892 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3235 (((-112) $) NIL)) (-3433 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119))) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) NIL)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1992 (($ (-783) |#1|) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-1897 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3257 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1783 (($ |#1|) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3699 (((-656 |#1|) $) NIL)) (-3781 (((-112) $) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2912 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2361 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3371 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2701 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3020 (((-112) $) NIL)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-3136 (((-576) $ $) NIL)) (-2531 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2470 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-4361 (($ (-656 |#1|)) 22)) (-2492 (((-112) $) NIL)) (-1398 (($ $) NIL)) (-1556 (($ $) NIL (|has| $ (-6 -4463)))) (-2212 (((-783) $) NIL)) (-2251 (($ $) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) NIL)) (-2116 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2851 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-4092 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-874) $) 21 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2048 (((-783) $) 14 (|has| $ (-6 -4462))))) -(((-250 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -4361 ($ (-656 |#1|))) (-15 -4367 ($ $ "unique")) (-15 -4367 ($ $ "sort")) (-15 -4367 ((-783) $ "count")))) (-862)) (T -250)) -((-4361 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-4367 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-862))))) -(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -4361 ($ (-656 |#1|))) (-15 -4367 ($ $ "unique")) (-15 -4367 ($ $ "sort")) (-15 -4367 ((-783) $ "count")))) -((-2425 (((-3 (-783) "failed") |#1| |#1| (-783)) 40))) -(((-251 |#1|) (-10 -7 (-15 -2425 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251)) -((-2425 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3))))) -(-10 -7 (-15 -2425 ((-3 (-783) "failed") |#1| |#1| (-783)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3614 (($ $) 54 (|has| |#1| (-237))) (($ $ (-783)) 52 (|has| |#1| (-237))) (($ $ (-1196)) 50 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 48 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 47 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 46 (|has| |#1| (-917 (-1196)))) (($ $ (-1 |#1| |#1|) (-783)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4286 (($ $) 53 (|has| |#1| (-237))) (($ $ (-783)) 51 (|has| |#1| (-237))) (($ $ (-1196)) 49 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 45 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 44 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 43 (|has| |#1| (-917 (-1196)))) (($ $ (-1 |#1| |#1|) (-783)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3142 ((|#1| $) 49)) (-2464 (($ $) 58)) (-3131 (((-112) $ (-783)) 8)) (-3429 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3234 (($ $ $) 54 (|has| $ (-6 -4462)))) (-3581 (($ $ $) 53 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-3767 (($) 7 T CONST)) (-3520 (($ $) 57)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 51)) (-3180 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-3540 (($ $) 56)) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-2942 (((-656 |#1|) $) 46)) (-1905 (((-112) $) 50)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-3923 ((|#1| $) 60)) (-2391 (($ $) 59)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ "value") 48)) (-2972 (((-576) $ $) 45)) (-3173 (((-112) $) 47)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-1523 (($ $ $) 55 (|has| $ (-6 -4462)))) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) 52)) (-4369 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-249 |#1|) (-141) (-1236)) (T -249)) +((-3923 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236)))) (-2391 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236)))) (-2464 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236)))) (-3520 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236)))) (-3540 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236)))) (-1523 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-249 *2)) (-4 *2 (-1236)))) (-3234 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-249 *2)) (-4 *2 (-1236)))) (-3581 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-249 *2)) (-4 *2 (-1236))))) +(-13 (-1029 |t#1|) (-10 -8 (-15 -3923 (|t#1| $)) (-15 -2391 ($ $)) (-15 -2464 ($ $)) (-15 -3520 ($ $)) (-15 -3540 ($ $)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -1523 ($ $ $)) (-15 -3234 ($ $ $)) (-15 -3581 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) NIL)) (-2893 ((|#1| $) NIL)) (-2464 (($ $) NIL)) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2938 (($ $ (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2265 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1758 (($ $) 10 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-3429 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3614 (($ $ $) NIL (|has| $ (-6 -4462)))) (-2611 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1438 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "rest" $) NIL (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-4001 (($ (-1 (-112) |#1|) $) NIL)) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2882 ((|#1| $) NIL)) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3515 (($ $) NIL) (($ $ (-783)) NIL)) (-3315 (($ $) NIL (|has| |#1| (-1119)))) (-3172 (($ $) 7 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3623 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-3902 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3518 (((-112) $) NIL)) (-3584 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119))) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4033 (($ (-783) |#1|) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-2093 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1854 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1628 (($ |#1|) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-2942 (((-656 |#1|) $) NIL)) (-1905 (((-112) $) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-3923 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2040 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2277 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3504 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-3524 (((-112) $) NIL)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-783) $ "count") 16)) (-2972 (((-576) $ $) NIL)) (-2560 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3464 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3552 (($ (-656 |#1|)) 22)) (-3173 (((-112) $) NIL)) (-1442 (($ $) NIL)) (-1544 (($ $) NIL (|has| $ (-6 -4462)))) (-3564 (((-783) $) NIL)) (-2705 (($ $) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) NIL)) (-1523 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1661 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3563 (($ (-656 |#1|)) 17) (((-656 |#1|) $) 18) (((-874) $) 21 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3485 (((-783) $) 14 (|has| $ (-6 -4461))))) +(((-250 |#1|) (-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3552 ($ (-656 |#1|))) (-15 -2871 ($ $ "unique")) (-15 -2871 ($ $ "sort")) (-15 -2871 ((-783) $ "count")))) (-862)) (T -250)) +((-3552 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3)))) (-2871 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-2871 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862)))) (-2871 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-862))))) +(-13 (-678 |#1|) (-502 (-656 |#1|)) (-10 -8 (-15 -3552 ($ (-656 |#1|))) (-15 -2871 ($ $ "unique")) (-15 -2871 ($ $ "sort")) (-15 -2871 ((-783) $ "count")))) +((-1895 (((-3 (-783) "failed") |#1| |#1| (-783)) 40))) +(((-251 |#1|) (-10 -7 (-15 -1895 ((-3 (-783) "failed") |#1| |#1| (-783)))) (-13 (-738) (-379) (-10 -7 (-15 ** (|#1| |#1| (-576)))))) (T -251)) +((-1895 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-783)) (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) (-5 *1 (-251 *3))))) +(-10 -7 (-15 -1895 ((-3 (-783) "failed") |#1| |#1| (-783)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2735 (($ $) 54 (|has| |#1| (-237))) (($ $ (-783)) 52 (|has| |#1| (-237))) (($ $ (-1195)) 50 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 48 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 47 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 46 (|has| |#1| (-917 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 40) (($ $ (-1 |#1| |#1|)) 39)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2051 (($ $) 53 (|has| |#1| (-237))) (($ $ (-783)) 51 (|has| |#1| (-237))) (($ $ (-1195)) 49 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 45 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 44 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 43 (|has| |#1| (-917 (-1195)))) (($ $ (-1 |#1| |#1|) (-783)) 42) (($ $ (-1 |#1| |#1|)) 41)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-252 |#1|) (-141) (-1068)) (T -252)) NIL -(-13 (-111 |t#1| |t#1|) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-237)) (-6 (-235 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-917 (-1196))) (-6 (-914 |t#1| (-1196))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) -3765 (-12 (|has| |#1| (-174)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-729 |#1|) -3765 (-12 (|has| |#1| (-174)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-909 $ #0=(-1196)) |has| |#1| (-917 (-1196))) ((-914 |#1| (-1196)) |has| |#1| (-917 (-1196))) ((-917 #0#) |has| |#1| (-917 (-1196))) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-876 |#1|)) $) NIL)) (-1364 (((-1192 $) $ (-876 |#1|)) NIL) (((-1192 |#2|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2573 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1587 (($ $) NIL (|has| |#2| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#2| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-2378 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2996 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-1338 (($ $ (-656 (-576))) NIL)) (-1717 (($ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-926)))) (-2291 (($ $ |#2| (-245 (-2048 |#1|) (-783)) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-1529 (($ (-1192 |#2|) (-876 |#1|)) NIL) (($ (-1192 $) (-876 |#1|)) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#2| (-245 (-2048 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-876 |#1|)) NIL)) (-1915 (((-245 (-2048 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-3968 (($ (-1 (-245 (-2048 |#1|) (-783)) (-245 (-2048 |#1|) (-783))) $) NIL)) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-3403 (((-3 (-876 |#1|) "failed") $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#2| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3288 (((-1178) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -3175 (-783))) "failed") $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#2| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#2| (-926)))) (-2022 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-1955 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3614 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2369 (((-245 (-2048 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3714 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3076 (((-656 |#2|) $) NIL)) (-2430 ((|#2| $ (-245 (-2048 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-253 |#1| |#2|) (-13 (-966 |#2| (-245 (-2048 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -1338 ($ $ (-656 (-576)))))) (-656 (-1196)) (-1068)) (T -253)) -((-1338 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1196))) (-4 *4 (-1068))))) -(-13 (-966 |#2| (-245 (-2048 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -1338 ($ $ (-656 (-576)))))) -((-2034 (((-112) $ $) NIL)) (-1698 (((-1292) $) 17)) (-1362 (((-185 (-255)) $) 11)) (-2679 (($ (-185 (-255))) 12)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1873 (((-255) $) 7)) (-4092 (((-874) $) 9)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 15))) -(((-254) (-13 (-1119) (-10 -8 (-15 -1873 ((-255) $)) (-15 -1362 ((-185 (-255)) $)) (-15 -2679 ($ (-185 (-255)))) (-15 -1698 ((-1292) $))))) (T -254)) -((-1873 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2679 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1698 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-254))))) -(-13 (-1119) (-10 -8 (-15 -1873 ((-255) $)) (-15 -1362 ((-185 (-255)) $)) (-15 -2679 ($ (-185 (-255)))) (-15 -1698 ((-1292) $)))) -((-2034 (((-112) $ $) NIL)) (-3760 (((-656 (-877)) $) NIL)) (-4124 (((-518) $) NIL)) (-3288 (((-1178) $) NIL)) (-3927 (((-188) $) NIL)) (-1412 (((-112) $ (-518)) NIL)) (-3139 (((-1139) $) NIL)) (-3104 (((-343) $) 7)) (-2341 (((-656 (-112)) $) NIL)) (-4092 (((-874) $) NIL) (((-189) $) 8)) (-1531 (((-112) $ $) NIL)) (-1666 (((-55) $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -3104 ((-343) $))))) (T -255)) -((-3104 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(-13 (-187) (-625 (-189)) (-10 -8 (-15 -3104 ((-343) $)))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4367 (((-1201) $ (-783)) 13)) (-4092 (((-874) $) 20)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 16)) (-2048 (((-783) $) 9))) -(((-256) (-13 (-1119) (-296 (-783) (-1201)) (-10 -8 (-15 -2048 ((-783) $))))) (T -256)) -((-2048 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))) -(-13 (-1119) (-296 (-783) (-1201)) (-10 -8 (-15 -2048 ((-783) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3001 (($ (-938)) NIL (|has| |#4| (-1068)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2746 (($ $ $) NIL (|has| |#4| (-805)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-2247 (((-783)) NIL (|has| |#4| (-379)))) (-4248 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1119))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))) (-2378 ((|#4| $) NIL (|has| |#4| (-1119))) (((-576) $) NIL (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))) (-3687 (((-2 (|:| -2215 (-701 |#4|)) (|:| |vec| (-1287 |#4|))) (-701 $) (-1287 $)) NIL (|has| |#4| (-1068))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1068))) (((-2 (|:| -2215 (-701 |#4|)) (|:| |vec| (-1287 |#4|))) (-1287 $) $) NIL (|has| |#4| (-1068))) (((-701 |#4|) (-1287 $)) NIL (|has| |#4| (-1068))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068))))) (-3179 (((-3 $ "failed") $) NIL (|has| |#4| (-1068)))) (-2446 (($) NIL (|has| |#4| (-379)))) (-3888 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#4| $ (-576)) NIL)) (-4260 (((-656 |#4|) $) NIL (|has| $ (-6 -4462)))) (-1810 (((-112) $) NIL (|has| |#4| (-1068)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#4| (-862)))) (-1750 (((-656 |#4|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#4| (-862)))) (-3874 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) NIL)) (-3225 (((-938) $) NIL (|has| |#4| (-379)))) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-2550 (($ (-938)) NIL (|has| |#4| (-379)))) (-3139 (((-1139) $) NIL)) (-2701 ((|#4| $) NIL (|has| (-576) (-862)))) (-2918 (($ $ |#4|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3060 (((-656 |#4|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-1660 ((|#4| $ $) NIL (|has| |#4| (-1068)))) (-1440 (($ (-1287 |#4|)) NIL)) (-3667 (((-135)) NIL (|has| |#4| (-374)))) (-3614 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1068))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-783)) NIL (-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068))))) (($ $) NIL (-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068)))))) (-3150 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-1287 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1119))) (((-874) $) NIL) (($ (-576)) NIL (-3765 (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119))) (|has| |#4| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))) (-2471 (((-783)) NIL (|has| |#4| (-1068)) CONST)) (-1531 (((-112) $ $) NIL)) (-2190 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL (|has| |#4| (-1068)) CONST)) (-4286 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1068))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#4| (-915 (-1196))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1196))) (|has| |#4| (-1068))))) (($ $ (-783)) NIL (-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068))))) (($ $) NIL (-3765 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068)))))) (-3977 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#4| (-862)))) (-4028 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1068))) (($ $ (-938)) NIL (|has| |#4| (-1068)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1068)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) +(-13 (-111 |t#1| |t#1|) (-272 |t#1|) (-10 -7 (IF (|has| |t#1| (-237)) (-6 (-235 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-917 (-1195))) (-6 (-914 |t#1| (-1195))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-234 $) |has| |#1| (-237)) ((-235 |#1|) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-272 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) -2835 (-12 (|has| |#1| (-174)) (|has| |#1| (-917 (-1195)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-729 |#1|) -2835 (-12 (|has| |#1| (-174)) (|has| |#1| (-917 (-1195)))) (-12 (|has| |#1| (-174)) (|has| |#1| (-237)))) ((-909 $ #0=(-1195)) |has| |#1| (-917 (-1195))) ((-914 |#1| (-1195)) |has| |#1| (-917 (-1195))) ((-917 #0#) |has| |#1| (-917 (-1195))) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-876 |#1|)) $) NIL)) (-3999 (((-1191 $) $ (-876 |#1|)) NIL) (((-1191 |#2|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4412 (($ $) NIL (|has| |#2| (-568)))) (-4176 (((-112) $) NIL (|has| |#2| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1760 (($ $) NIL (|has| |#2| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4056 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2861 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3102 (($ $ (-656 (-576))) NIL)) (-2166 (($ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#2| (-926)))) (-1660 (($ $ |#2| (-245 (-3485 |#1|) (-783)) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1980 (($ (-1191 |#2|) (-876 |#1|)) NIL) (($ (-1191 $) (-876 |#1|)) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#2| (-245 (-3485 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-876 |#1|)) NIL)) (-3403 (((-245 (-3485 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2133 (($ (-1 (-245 (-3485 |#1|) (-783)) (-245 (-3485 |#1|) (-783))) $) NIL)) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-4209 (((-3 (-876 |#1|) "failed") $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#2| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1927 (((-1177) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -4274 (-783))) "failed") $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#2| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#2| (-926)))) (-3463 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-1960 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2735 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-1433 (((-245 (-3485 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3648 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2927 (((-656 |#2|) $) NIL)) (-4333 ((|#2| $ (-245 (-3485 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-253 |#1| |#2|) (-13 (-966 |#2| (-245 (-3485 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -3102 ($ $ (-656 (-576)))))) (-656 (-1195)) (-1068)) (T -253)) +((-3102 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) (-14 *3 (-656 (-1195))) (-4 *4 (-1068))))) +(-13 (-966 |#2| (-245 (-3485 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -3102 ($ $ (-656 (-576)))))) +((-3474 (((-112) $ $) NIL)) (-2658 (((-1291) $) 17)) (-4210 (((-185 (-255)) $) 11)) (-1873 (($ (-185 (-255))) 12)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2642 (((-255) $) 7)) (-3563 (((-874) $) 9)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 15))) +(((-254) (-13 (-1119) (-10 -8 (-15 -2642 ((-255) $)) (-15 -4210 ((-185 (-255)) $)) (-15 -1873 ($ (-185 (-255)))) (-15 -2658 ((-1291) $))))) (T -254)) +((-2642 (*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-254))))) +(-13 (-1119) (-10 -8 (-15 -2642 ((-255) $)) (-15 -4210 ((-185 (-255)) $)) (-15 -1873 ($ (-185 (-255)))) (-15 -2658 ((-1291) $)))) +((-3474 (((-112) $ $) NIL)) (-3259 (((-656 (-877)) $) NIL)) (-2706 (((-518) $) NIL)) (-1927 (((-1177) $) NIL)) (-1820 (((-188) $) NIL)) (-3718 (((-112) $ (-518)) NIL)) (-1445 (((-1139) $) NIL)) (-2802 (((-343) $) 7)) (-2862 (((-656 (-112)) $) NIL)) (-3563 (((-874) $) NIL) (((-189) $) 8)) (-3985 (((-112) $ $) NIL)) (-1730 (((-55) $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-255) (-13 (-187) (-625 (-189)) (-10 -8 (-15 -2802 ((-343) $))))) (T -255)) +((-2802 (*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) +(-13 (-187) (-625 (-189)) (-10 -8 (-15 -2802 ((-343) $)))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2871 (((-1200) $ (-783)) 13)) (-3563 (((-874) $) 20)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 16)) (-3485 (((-783) $) 9))) +(((-256) (-13 (-1119) (-296 (-783) (-1200)) (-10 -8 (-15 -3485 ((-783) $))))) (T -256)) +((-3485 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256))))) +(-13 (-1119) (-296 (-783) (-1200)) (-10 -8 (-15 -3485 ((-783) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2204 (($ (-938)) NIL (|has| |#4| (-1068)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-4415 (($ $ $) NIL (|has| |#4| (-805)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2148 (((-783)) NIL (|has| |#4| (-379)))) (-3731 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1119))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))) (-4056 ((|#4| $) NIL (|has| |#4| (-1119))) (((-576) $) NIL (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))) (-3687 (((-2 (|:| -2689 (-701 |#4|)) (|:| |vec| (-1286 |#4|))) (-701 $) (-1286 $)) NIL (|has| |#4| (-1068))) (((-701 |#4|) (-701 $)) NIL (|has| |#4| (-1068))) (((-2 (|:| -2689 (-701 |#4|)) (|:| |vec| (-1286 |#4|))) (-1286 $) $) NIL (|has| |#4| (-1068))) (((-701 |#4|) (-1286 $)) NIL (|has| |#4| (-1068))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#4| (-651 (-576))) (|has| |#4| (-1068))))) (-1551 (((-3 $ "failed") $) NIL (|has| |#4| (-1068)))) (-1803 (($) NIL (|has| |#4| (-379)))) (-1776 ((|#4| $ (-576) |#4|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#4| $ (-576)) NIL)) (-3825 (((-656 |#4|) $) NIL (|has| $ (-6 -4461)))) (-1414 (((-112) $) NIL (|has| |#4| (-1068)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#4| (-862)))) (-2591 (((-656 |#4|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#4| (-862)))) (-1763 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) NIL)) (-1902 (((-938) $) NIL (|has| |#4| (-379)))) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-3257 (($ (-938)) NIL (|has| |#4| (-379)))) (-1445 (((-1139) $) NIL)) (-3504 ((|#4| $) NIL (|has| (-576) (-862)))) (-2500 (($ $ |#4|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-1947 (((-656 |#4|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#4| $ (-576) |#4|) NIL) ((|#4| $ (-576)) 12)) (-2962 ((|#4| $ $) NIL (|has| |#4| (-1068)))) (-1887 (($ (-1286 |#4|)) NIL)) (-2446 (((-135)) NIL (|has| |#4| (-374)))) (-2735 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1068))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1068))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) (($ $ (-783)) NIL (-2835 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068))))) (($ $) NIL (-2835 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068)))))) (-1456 (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-1286 |#4|) $) NIL) (($ |#4|) NIL (|has| |#4| (-1119))) (((-874) $) NIL) (($ (-576)) NIL (-2835 (-12 (|has| |#4| (-1057 (-576))) (|has| |#4| (-1119))) (|has| |#4| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#4| (-1057 (-419 (-576)))) (|has| |#4| (-1119))))) (-1858 (((-783)) NIL (|has| |#4| (-1068)) CONST)) (-3985 (((-112) $ $) NIL)) (-2043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL (|has| |#4| (-1068)) CONST)) (-2051 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1068))) (($ $ (-1 |#4| |#4|) (-783)) NIL (|has| |#4| (-1068))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#4| (-915 (-1195))) (|has| |#4| (-1068))) (-12 (|has| |#4| (-917 (-1195))) (|has| |#4| (-1068))))) (($ $ (-783)) NIL (-2835 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068))))) (($ $) NIL (-2835 (-12 (|has| |#4| (-238)) (|has| |#4| (-1068))) (-12 (|has| |#4| (-237)) (|has| |#4| (-1068)))))) (-3049 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#4| (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#4| (-862)))) (-3107 (($ $ |#4|) NIL (|has| |#4| (-374)))) (-3095 (($ $ $) NIL) (($ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#4| (-1068))) (($ $ (-938)) NIL (|has| |#4| (-1068)))) (* (($ |#2| $) 14) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-738))) (($ |#4| $) NIL (|has| |#4| (-738))) (($ $ $) NIL (|has| |#4| (-1068)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) (((-257 |#1| |#2| |#3| |#4|) (-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) (-938) (-1068) (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-660 |#2|)) (T -257)) NIL (-13 (-243 |#1| |#4|) (-660 |#2|) (-660 |#3|)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3001 (($ (-938)) NIL (|has| |#3| (-1068)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2746 (($ $ $) NIL (|has| |#3| (-805)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-2247 (((-783)) NIL (|has| |#3| (-379)))) (-4248 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1119))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))) (-2378 ((|#3| $) NIL (|has| |#3| (-1119))) (((-576) $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))) (-3687 (((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1068))) (((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 $) $) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-1287 $)) NIL (|has| |#3| (-1068))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068))))) (-3179 (((-3 $ "failed") $) NIL (|has| |#3| (-1068)))) (-2446 (($) NIL (|has| |#3| (-379)))) (-3888 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#3| $ (-576)) NIL)) (-4260 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-1810 (((-112) $) NIL (|has| |#3| (-1068)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#3| (-862)))) (-1750 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#3| (-862)))) (-3874 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#3| |#3|) $) NIL)) (-3225 (((-938) $) NIL (|has| |#3| (-379)))) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-2550 (($ (-938)) NIL (|has| |#3| (-379)))) (-3139 (((-1139) $) NIL)) (-2701 ((|#3| $) NIL (|has| (-576) (-862)))) (-2918 (($ $ |#3|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-3060 (((-656 |#3|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-1660 ((|#3| $ $) NIL (|has| |#3| (-1068)))) (-1440 (($ (-1287 |#3|)) NIL)) (-3667 (((-135)) NIL (|has| |#3| (-374)))) (-3614 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-783)) NIL (-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) (($ $) NIL (-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))))) (-3150 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-1287 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1119))) (((-874) $) NIL) (($ (-576)) NIL (-3765 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))) (-2471 (((-783)) NIL (|has| |#3| (-1068)) CONST)) (-1531 (((-112) $ $) NIL)) (-2190 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL (|has| |#3| (-1068)) CONST)) (-4286 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#3| (-915 (-1196))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068))))) (($ $ (-783)) NIL (-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) (($ $) NIL (-3765 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))))) (-3977 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#3| (-862)))) (-4028 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1068))) (($ $ (-938)) NIL (|has| |#3| (-1068)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1068)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2204 (($ (-938)) NIL (|has| |#3| (-1068)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-4415 (($ $ $) NIL (|has| |#3| (-805)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2148 (((-783)) NIL (|has| |#3| (-379)))) (-3731 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1119))) (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))) (-4056 ((|#3| $) NIL (|has| |#3| (-1119))) (((-576) $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))) (-3687 (((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1068))) (((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 $) $) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-1286 $)) NIL (|has| |#3| (-1068))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068))))) (-1551 (((-3 $ "failed") $) NIL (|has| |#3| (-1068)))) (-1803 (($) NIL (|has| |#3| (-379)))) (-1776 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#3| $ (-576)) NIL)) (-3825 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-1414 (((-112) $) NIL (|has| |#3| (-1068)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#3| (-862)))) (-2591 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#3| (-862)))) (-1763 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#3| |#3|) $) NIL)) (-1902 (((-938) $) NIL (|has| |#3| (-379)))) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-3257 (($ (-938)) NIL (|has| |#3| (-379)))) (-1445 (((-1139) $) NIL)) (-3504 ((|#3| $) NIL (|has| (-576) (-862)))) (-2500 (($ $ |#3|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1119))))) (-1947 (((-656 |#3|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) 11)) (-2962 ((|#3| $ $) NIL (|has| |#3| (-1068)))) (-1887 (($ (-1286 |#3|)) NIL)) (-2446 (((-135)) NIL (|has| |#3| (-374)))) (-2735 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) (($ $ (-783)) NIL (-2835 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) (($ $) NIL (-2835 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))))) (-1456 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-1286 |#3|) $) NIL) (($ |#3|) NIL (|has| |#3| (-1119))) (((-874) $) NIL) (($ (-576)) NIL (-2835 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119))))) (-1858 (((-783)) NIL (|has| |#3| (-1068)) CONST)) (-3985 (((-112) $ $) NIL)) (-2043 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL (|has| |#3| (-1068)) CONST)) (-2051 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#3| (-915 (-1195))) (|has| |#3| (-1068))) (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068))))) (($ $ (-783)) NIL (-2835 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068))))) (($ $) NIL (-2835 (-12 (|has| |#3| (-238)) (|has| |#3| (-1068))) (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))))) (-3049 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3107 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3095 (($ $ $) NIL) (($ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-783)) NIL (|has| |#3| (-1068))) (($ $ (-938)) NIL (|has| |#3| (-1068)))) (* (($ |#2| $) 13) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ $ $) NIL (|has| |#3| (-1068)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) (((-258 |#1| |#2| |#3|) (-13 (-243 |#1| |#3|) (-660 |#2|)) (-783) (-1068) (-660 |#2|)) (T -258)) NIL (-13 (-243 |#1| |#3|) (-660 |#2|)) -((-4406 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-2483 (((-783) $) 58) (((-783) $ |#3|) 61)) (-2289 (($ $) 76)) (-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-1538 (((-783) $ |#3|) 43) (((-783) $) 38)) (-3789 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-3446 ((|#4| $) 69)) (-1614 (((-112) $) 67)) (-3473 (($ $) 75)) (-2259 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-3614 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-4332 (((-656 |#3|) $) 86)) (-2369 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -4092 (|#1| |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2259 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#3| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#3| |#1|)) (-15 -3789 ((-1 |#1| (-783)) |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3446 (|#4| |#1|)) (-15 -1614 ((-112) |#1|)) (-15 -2483 ((-783) |#1| |#3|)) (-15 -4406 ((-656 (-783)) |#1| |#3|)) (-15 -2483 ((-783) |#1|)) (-15 -4406 ((-656 (-783)) |#1|)) (-15 -2369 ((-783) |#1| |#3|)) (-15 -1538 ((-783) |#1|)) (-15 -1538 ((-783) |#1| |#3|)) (-15 -4332 ((-656 |#3|) |#1|)) (-15 -3789 ((-1 |#1| (-783)) |#3|)) (-15 -4092 (|#1| |#3|)) (-15 -2974 ((-3 |#3| "failed") |#1|)) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2369 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -2369 ((-783) |#1| |#4|)) (-15 -4092 (|#1| |#4|)) (-15 -2974 ((-3 |#4| "failed") |#1|)) (-15 -2259 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#4| |#1|)) (-15 -2259 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#4| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2369 (|#5| |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -3614 (|#1| |#1| |#4|)) (-15 -3614 (|#1| |#1| (-656 |#4|))) (-15 -3614 (|#1| |#1| |#4| (-783))) (-15 -3614 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1068) (-862) (-275 |#3|) (-805)) (T -259)) +((-1641 (((-656 (-783)) $) 56) (((-656 (-783)) $ |#3|) 59)) (-3457 (((-783) $) 58) (((-783) $ |#3|) 61)) (-2671 (($ $) 76)) (-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3333 (((-783) $ |#3|) 43) (((-783) $) 38)) (-1388 (((-1 $ (-783)) |#3|) 15) (((-1 $ (-783)) $) 88)) (-3897 ((|#4| $) 69)) (-4374 (((-112) $) 67)) (-4175 (($ $) 75)) (-3306 (($ $ (-656 (-304 $))) 111) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) 103) (($ $ |#3| |#2|) NIL) (($ $ (-656 |#3|) (-656 |#2|)) 97)) (-2735 (($ $ (-656 |#4|) (-656 (-783))) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|)) NIL) (($ $ |#4|) NIL) (($ $ (-1 |#2| |#2|)) 32) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-2684 (((-656 |#3|) $) 86)) (-1433 ((|#5| $) NIL) (((-783) $ |#4|) NIL) (((-656 (-783)) $ (-656 |#4|)) NIL) (((-783) $ |#3|) 49)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-419 (-576))) NIL) (($ $) NIL))) +(((-259 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -3563 (|#1| |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3306 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#3| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#3| |#1|)) (-15 -1388 ((-1 |#1| (-783)) |#1|)) (-15 -2671 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -3897 (|#4| |#1|)) (-15 -4374 ((-112) |#1|)) (-15 -3457 ((-783) |#1| |#3|)) (-15 -1641 ((-656 (-783)) |#1| |#3|)) (-15 -3457 ((-783) |#1|)) (-15 -1641 ((-656 (-783)) |#1|)) (-15 -1433 ((-783) |#1| |#3|)) (-15 -3333 ((-783) |#1|)) (-15 -3333 ((-783) |#1| |#3|)) (-15 -2684 ((-656 |#3|) |#1|)) (-15 -1388 ((-1 |#1| (-783)) |#3|)) (-15 -3563 (|#1| |#3|)) (-15 -1539 ((-3 |#3| "failed") |#1|)) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1433 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -1433 ((-783) |#1| |#4|)) (-15 -3563 (|#1| |#4|)) (-15 -1539 ((-3 |#4| "failed") |#1|)) (-15 -3306 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#4| |#1|)) (-15 -3306 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#4| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1433 (|#5| |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -2735 (|#1| |#1| |#4|)) (-15 -2735 (|#1| |#1| (-656 |#4|))) (-15 -2735 (|#1| |#1| |#4| (-783))) (-15 -2735 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) (-260 |#2| |#3| |#4| |#5|) (-1068) (-862) (-275 |#3|) (-805)) (T -259)) NIL -(-10 -8 (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -4092 (|#1| |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2259 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#3| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#3| |#1|)) (-15 -3789 ((-1 |#1| (-783)) |#1|)) (-15 -2289 (|#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -3446 (|#4| |#1|)) (-15 -1614 ((-112) |#1|)) (-15 -2483 ((-783) |#1| |#3|)) (-15 -4406 ((-656 (-783)) |#1| |#3|)) (-15 -2483 ((-783) |#1|)) (-15 -4406 ((-656 (-783)) |#1|)) (-15 -2369 ((-783) |#1| |#3|)) (-15 -1538 ((-783) |#1|)) (-15 -1538 ((-783) |#1| |#3|)) (-15 -4332 ((-656 |#3|) |#1|)) (-15 -3789 ((-1 |#1| (-783)) |#3|)) (-15 -4092 (|#1| |#3|)) (-15 -2974 ((-3 |#3| "failed") |#1|)) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2369 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -2369 ((-783) |#1| |#4|)) (-15 -4092 (|#1| |#4|)) (-15 -2974 ((-3 |#4| "failed") |#1|)) (-15 -2259 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#4| |#1|)) (-15 -2259 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#4| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2369 (|#5| |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -3614 (|#1| |#1| |#4|)) (-15 -3614 (|#1| |#1| (-656 |#4|))) (-15 -3614 (|#1| |#1| |#4| (-783))) (-15 -3614 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-4406 (((-656 (-783)) $) 236) (((-656 (-783)) $ |#2|) 234)) (-2483 (((-783) $) 235) (((-783) $ |#2|) 233)) (-1541 (((-656 |#3|) $) 113)) (-1364 (((-1192 $) $ |#3|) 128) (((-1192 |#1|) $) 127)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2573 (($ $) 91 (|has| |#1| (-568)))) (-4306 (((-112) $) 93 (|has| |#1| (-568)))) (-1736 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3788 (((-3 $ "failed") $ $) 20)) (-1589 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-926)))) (-1587 (($ $) 101 (|has| |#1| (-464)))) (-2100 (((-430 $) $) 100 (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-926)))) (-2289 (($ $) 229)) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-2378 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1057 (-576)))) ((|#3| $) 144) ((|#2| $) 244)) (-2996 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-1717 (($ $) 161)) (-3687 (((-701 (-576)) (-1287 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 140 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 137) (((-701 |#1|) (-701 $)) 136) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 135) (((-701 |#1|) (-1287 $)) 134)) (-3179 (((-3 $ "failed") $) 37)) (-1363 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-1704 (((-656 $) $) 112)) (-2725 (((-112) $) 99 (|has| |#1| (-926)))) (-2291 (($ $ |#1| |#4| $) 179)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1538 (((-783) $ |#2|) 239) (((-783) $) 238)) (-1810 (((-112) $) 35)) (-1831 (((-783) $) 176)) (-1529 (($ (-1192 |#1|) |#3|) 120) (($ (-1192 $) |#3|) 119)) (-2503 (((-656 $) $) 129)) (-4331 (((-112) $) 159)) (-1518 (($ |#1| |#4|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ |#3|) 123)) (-1915 ((|#4| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3968 (($ (-1 |#4| |#4|) $) 178)) (-2477 (($ (-1 |#1| |#1|) $) 158)) (-3789 (((-1 $ (-783)) |#2|) 241) (((-1 $ (-783)) $) 228 (|has| |#1| (-238)))) (-3403 (((-3 |#3| "failed") $) 126)) (-1681 (($ $) 156)) (-1692 ((|#1| $) 155)) (-3446 ((|#3| $) 231)) (-3117 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3288 (((-1178) $) 10)) (-1614 (((-112) $) 232)) (-3009 (((-3 (-656 $) "failed") $) 117)) (-2016 (((-3 (-656 $) "failed") $) 118)) (-3178 (((-3 (-2 (|:| |var| |#3|) (|:| -3175 (-783))) "failed") $) 116)) (-3473 (($ $) 230)) (-3139 (((-1139) $) 11)) (-1657 (((-112) $) 173)) (-1670 ((|#1| $) 174)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3149 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-926)))) (-1392 (((-430 $) $) 102 (|has| |#1| (-926)))) (-2022 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2259 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) 226 (|has| |#1| (-238))) (($ $ |#2| |#1|) 225 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) 224 (|has| |#1| (-238)))) (-1955 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3614 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-783)) 247) (($ $) 223 (|has| |#1| (-237))) (($ $ (-783)) 221 (|has| |#1| (-237))) (($ $ (-1196)) 219 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 217 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 216 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 215 (|has| |#1| (-917 (-1196))))) (-4332 (((-656 |#2|) $) 240)) (-2369 ((|#4| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 237)) (-1505 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3714 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 107 (-2445 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-419 (-576))) 81 (-3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) 175)) (-2430 ((|#1| $ |#4|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3612 (((-3 $ "failed") $) 82 (-3765 (-2445 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) 32 T CONST)) (-3141 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-783)) 245) (($ $) 222 (|has| |#1| (-237))) (($ $ (-783)) 220 (|has| |#1| (-237))) (($ $ (-1196)) 218 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 214 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 213 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 212 (|has| |#1| (-917 (-1196))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(-10 -8 (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -3563 (|#1| |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3306 (|#1| |#1| (-656 |#3|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#3| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#3|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#3| |#1|)) (-15 -1388 ((-1 |#1| (-783)) |#1|)) (-15 -2671 (|#1| |#1|)) (-15 -4175 (|#1| |#1|)) (-15 -3897 (|#4| |#1|)) (-15 -4374 ((-112) |#1|)) (-15 -3457 ((-783) |#1| |#3|)) (-15 -1641 ((-656 (-783)) |#1| |#3|)) (-15 -3457 ((-783) |#1|)) (-15 -1641 ((-656 (-783)) |#1|)) (-15 -1433 ((-783) |#1| |#3|)) (-15 -3333 ((-783) |#1|)) (-15 -3333 ((-783) |#1| |#3|)) (-15 -2684 ((-656 |#3|) |#1|)) (-15 -1388 ((-1 |#1| (-783)) |#3|)) (-15 -3563 (|#1| |#3|)) (-15 -1539 ((-3 |#3| "failed") |#1|)) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1433 ((-656 (-783)) |#1| (-656 |#4|))) (-15 -1433 ((-783) |#1| |#4|)) (-15 -3563 (|#1| |#4|)) (-15 -1539 ((-3 |#4| "failed") |#1|)) (-15 -3306 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#4| |#1|)) (-15 -3306 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#4| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1433 (|#5| |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -2735 (|#1| |#1| |#4|)) (-15 -2735 (|#1| |#1| (-656 |#4|))) (-15 -2735 (|#1| |#1| |#4| (-783))) (-15 -2735 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1641 (((-656 (-783)) $) 236) (((-656 (-783)) $ |#2|) 234)) (-3457 (((-783) $) 235) (((-783) $ |#2|) 233)) (-1991 (((-656 |#3|) $) 113)) (-3999 (((-1191 $) $ |#3|) 128) (((-1191 |#1|) $) 127)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4412 (($ $) 91 (|has| |#1| (-568)))) (-4176 (((-112) $) 93 (|has| |#1| (-568)))) (-2846 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-1367 (((-3 $ "failed") $ $) 20)) (-1990 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-926)))) (-1760 (($ $) 101 (|has| |#1| (-464)))) (-2732 (((-430 $) $) 100 (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-926)))) (-2671 (($ $) 229)) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 |#2| "failed") $) 243)) (-4056 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1057 (-576)))) ((|#3| $) 144) ((|#2| $) 244)) (-2861 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2166 (($ $) 161)) (-3687 (((-701 (-576)) (-1286 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 140 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 137) (((-701 |#1|) (-701 $)) 136) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 135) (((-701 |#1|) (-1286 $)) 134)) (-1551 (((-3 $ "failed") $) 37)) (-2985 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2153 (((-656 $) $) 112)) (-1792 (((-112) $) 99 (|has| |#1| (-926)))) (-1660 (($ $ |#1| |#4| $) 179)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3333 (((-783) $ |#2|) 239) (((-783) $) 238)) (-1414 (((-112) $) 35)) (-3839 (((-783) $) 176)) (-1980 (($ (-1191 |#1|) |#3|) 120) (($ (-1191 $) |#3|) 119)) (-1475 (((-656 $) $) 129)) (-2606 (((-112) $) 159)) (-1970 (($ |#1| |#4|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ |#3|) 123)) (-3403 ((|#4| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2133 (($ (-1 |#4| |#4|) $) 178)) (-1632 (($ (-1 |#1| |#1|) $) 158)) (-1388 (((-1 $ (-783)) |#2|) 241) (((-1 $ (-783)) $) 228 (|has| |#1| (-238)))) (-4209 (((-3 |#3| "failed") $) 126)) (-2129 (($ $) 156)) (-2142 ((|#1| $) 155)) (-3897 ((|#3| $) 231)) (-3459 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1927 (((-1177) $) 10)) (-4374 (((-112) $) 232)) (-1708 (((-3 (-656 $) "failed") $) 117)) (-2567 (((-3 (-656 $) "failed") $) 118)) (-1419 (((-3 (-2 (|:| |var| |#3|) (|:| -4274 (-783))) "failed") $) 116)) (-4175 (($ $) 230)) (-1445 (((-1139) $) 11)) (-2105 (((-112) $) 173)) (-2116 ((|#1| $) 174)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-3495 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-926)))) (-1839 (((-430 $) $) 102 (|has| |#1| (-926)))) (-3463 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3306 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145) (($ $ |#2| $) 227 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) 226 (|has| |#1| (-238))) (($ $ |#2| |#1|) 225 (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) 224 (|has| |#1| (-238)))) (-1960 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2735 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40) (($ $ (-1 |#1| |#1|)) 248) (($ $ (-1 |#1| |#1|) (-783)) 247) (($ $) 223 (|has| |#1| (-237))) (($ $ (-783)) 221 (|has| |#1| (-237))) (($ $ (-1195)) 219 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 217 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 216 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 215 (|has| |#1| (-917 (-1195))))) (-2684 (((-656 |#2|) $) 240)) (-1433 ((|#4| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132) (((-783) $ |#2|) 237)) (-4076 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3648 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 107 (-2758 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ |#2|) 242) (($ (-419 (-576))) 81 (-2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) 175)) (-4333 ((|#1| $ |#4|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-2883 (((-3 $ "failed") $) 82 (-2835 (-2758 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) 32 T CONST)) (-3274 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41) (($ $ (-1 |#1| |#1|)) 246) (($ $ (-1 |#1| |#1|) (-783)) 245) (($ $) 222 (|has| |#1| (-237))) (($ $ (-783)) 220 (|has| |#1| (-237))) (($ $ (-1195)) 218 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 214 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 213 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 212 (|has| |#1| (-917 (-1195))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) (((-260 |#1| |#2| |#3| |#4|) (-141) (-1068) (-862) (-275 |t#2|) (-805)) (T -260)) -((-3789 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-4332 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-1538 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-2369 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-4406 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-4406 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-2483 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-3473 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-2289 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-3789 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))) -(-13 (-966 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1057 |t#2|) (-10 -8 (-15 -3789 ((-1 $ (-783)) |t#2|)) (-15 -4332 ((-656 |t#2|) $)) (-15 -1538 ((-783) $ |t#2|)) (-15 -1538 ((-783) $)) (-15 -2369 ((-783) $ |t#2|)) (-15 -4406 ((-656 (-783)) $)) (-15 -2483 ((-783) $)) (-15 -4406 ((-656 (-783)) $ |t#2|)) (-15 -2483 ((-783) $ |t#2|)) (-15 -1614 ((-112) $)) (-15 -3446 (|t#3| $)) (-15 -3473 ($ $)) (-15 -2289 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -3789 ((-1 $ (-783)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-234 $) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3765 (|has| |#1| (-926)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ #2=(-1196)) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-909 $ |#3|) . T) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-915 |#3|) . T) ((-917 #2#) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-917 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-966 |#1| |#4| |#3|) . T) ((-926) |has| |#1| (-926)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1057 |#2|) . T) ((-1057 |#3|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-1241) |has| |#1| (-926))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-4174 ((|#1| $) 55)) (-3005 ((|#1| $) 45)) (-2835 (((-112) $ (-783)) 8)) (-3656 (($) 7 T CONST)) (-2527 (($ $) 61)) (-3129 (($ $) 49)) (-3833 ((|#1| |#1| $) 47)) (-2156 ((|#1| $) 46)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-1325 (((-783) $) 62)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3576 ((|#1| $) 40)) (-4044 ((|#1| |#1| $) 53)) (-4344 ((|#1| |#1| $) 52)) (-2361 (($ |#1| $) 41)) (-2927 (((-783) $) 56)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4371 ((|#1| $) 63)) (-2349 ((|#1| $) 51)) (-3047 ((|#1| $) 50)) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3816 ((|#1| |#1| $) 59)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-2082 ((|#1| $) 60)) (-1352 (($) 58) (($ (-656 |#1|)) 57)) (-3569 (((-783) $) 44)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3708 ((|#1| $) 54)) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 43)) (-3701 ((|#1| $) 64)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-261 |#1|) (-141) (-1237)) (T -261)) -((-1352 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-1352 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-261 *3)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-3708 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-4044 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-4344 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-3047 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) (-3129 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(-13 (-1140 |t#1|) (-1014 |t#1|) (-10 -8 (-15 -1352 ($)) (-15 -1352 ($ (-656 |t#1|))) (-15 -2927 ((-783) $)) (-15 -4174 (|t#1| $)) (-15 -3708 (|t#1| $)) (-15 -4044 (|t#1| |t#1| $)) (-15 -4344 (|t#1| |t#1| $)) (-15 -2349 (|t#1| $)) (-15 -3047 (|t#1| $)) (-15 -3129 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1014 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1140 |#1|) . T) ((-1237) . T)) -((-2486 (((-1 (-960 (-227)) (-227) (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1840 (((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390))) 173) (((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 171) (((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 176) (((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 172) (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 164) (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 163) (((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390))) 145) (((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270))) 143) (((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390))) 144) (((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270))) 141)) (-1791 (((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390))) 175) (((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 174) (((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 178) (((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 177) (((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 166) (((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 165) (((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390))) 151) (((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270))) 150) (((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390))) 149) (((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270))) 148) (((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390))) 113) (((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270))) 112) (((-1288) (-1 (-227) (-227)) (-1113 (-390))) 107) (((-1288) (-1 (-227) (-227)) (-1113 (-390)) (-656 (-270))) 105))) -(((-262) (-10 -7 (-15 -1791 ((-1288) (-1 (-227) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1288) (-1 (-227) (-227)) (-1113 (-390)))) (-15 -1791 ((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1791 ((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1791 ((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1791 ((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1791 ((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1791 ((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -2486 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) -((-2486 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262))))) -(-10 -7 (-15 -1791 ((-1288) (-1 (-227) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1288) (-1 (-227) (-227)) (-1113 (-390)))) (-15 -1791 ((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1288) (-890 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1791 ((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1791 ((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1791 ((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1791 ((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1791 ((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -1840 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -2486 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1791 (((-1288) (-304 |#2|) (-1196) (-1196) (-656 (-270))) 101))) -(((-263 |#1| |#2|) (-10 -7 (-15 -1791 ((-1288) (-304 |#2|) (-1196) (-1196) (-656 (-270))))) (-13 (-568) (-862) (-1057 (-576))) (-442 |#1|)) (T -263)) -((-1791 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1196)) (-5 *5 (-656 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1057 (-576)))) (-5 *2 (-1288)) (-5 *1 (-263 *6 *7))))) -(-10 -7 (-15 -1791 ((-1288) (-304 |#2|) (-1196) (-1196) (-656 (-270))))) -((-1974 (((-576) (-576)) 71)) (-2815 (((-576) (-576)) 72)) (-3807 (((-227) (-227)) 73)) (-1988 (((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227))) 70)) (-3256 (((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)) (-112)) 68))) -(((-264) (-10 -7 (-15 -3256 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)) (-112))) (-15 -1988 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -1974 ((-576) (-576))) (-15 -2815 ((-576) (-576))) (-15 -3807 ((-227) (-227))))) (T -264)) -((-3807 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-1974 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-1988 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) (-5 *2 (-1289)) (-5 *1 (-264)))) (-3256 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) (-5 *5 (-112)) (-5 *2 (-1289)) (-5 *1 (-264))))) -(-10 -7 (-15 -3256 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)) (-112))) (-15 -1988 ((-1289) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -1974 ((-576) (-576))) (-15 -2815 ((-576) (-576))) (-15 -3807 ((-227) (-227)))) -((-4092 (((-1111 (-390)) (-1111 (-326 |#1|))) 16))) -(((-265 |#1|) (-10 -7 (-15 -4092 ((-1111 (-390)) (-1111 (-326 |#1|))))) (-13 (-862) (-568) (-626 (-390)))) (T -265)) -((-4092 (*1 *2 *3) (-12 (-5 *3 (-1111 (-326 *4))) (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1111 (-390))) (-5 *1 (-265 *4))))) -(-10 -7 (-15 -4092 ((-1111 (-390)) (-1111 (-326 |#1|))))) -((-1840 (((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390))) 75) (((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 74) (((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390))) 65) (((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 64) (((-1152 (-227)) (-892 |#1|) (-1111 (-390))) 56) (((-1152 (-227)) (-892 |#1|) (-1111 (-390)) (-656 (-270))) 55)) (-1791 (((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390))) 78) (((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 77) (((-1289) |#1| (-1111 (-390)) (-1111 (-390))) 68) (((-1289) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 67) (((-1289) (-892 |#1|) (-1111 (-390))) 60) (((-1289) (-892 |#1|) (-1111 (-390)) (-656 (-270))) 59) (((-1288) (-890 |#1|) (-1111 (-390))) 47) (((-1288) (-890 |#1|) (-1111 (-390)) (-656 (-270))) 46) (((-1288) |#1| (-1111 (-390))) 38) (((-1288) |#1| (-1111 (-390)) (-656 (-270))) 36))) -(((-266 |#1|) (-10 -7 (-15 -1791 ((-1288) |#1| (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1288) |#1| (-1111 (-390)))) (-15 -1791 ((-1288) (-890 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1288) (-890 |#1|) (-1111 (-390)))) (-15 -1791 ((-1289) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-892 |#1|) (-1111 (-390)))) (-15 -1840 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)))) (-15 -1791 ((-1289) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1840 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1791 ((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)))) (-15 -1840 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390))))) (-13 (-626 (-548)) (-1119))) (T -266)) -((-1840 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *5)))) (-1840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *6)))) (-1791 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) (-5 *1 (-266 *5)))) (-1791 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) (-5 *1 (-266 *6)))) (-1840 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1840 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1791 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1791 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *5)))) (-1840 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *6)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) (-5 *1 (-266 *5)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) (-5 *1 (-266 *6)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) (-5 *1 (-266 *5)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) (-5 *1 (-266 *6)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119)))))) -(-10 -7 (-15 -1791 ((-1288) |#1| (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1288) |#1| (-1111 (-390)))) (-15 -1791 ((-1288) (-890 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1288) (-890 |#1|) (-1111 (-390)))) (-15 -1791 ((-1289) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-892 |#1|) (-1111 (-390)))) (-15 -1840 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)))) (-15 -1791 ((-1289) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1840 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1791 ((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1791 ((-1289) (-895 |#1|) (-1111 (-390)) (-1111 (-390)))) (-15 -1840 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1840 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390))))) -((-1791 (((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))) 23) (((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227))) 24) (((-1288) (-656 (-960 (-227))) (-656 (-270))) 16) (((-1288) (-656 (-960 (-227)))) 17) (((-1288) (-656 (-227)) (-656 (-227)) (-656 (-270))) 20) (((-1288) (-656 (-227)) (-656 (-227))) 21))) -(((-267) (-10 -7 (-15 -1791 ((-1288) (-656 (-227)) (-656 (-227)))) (-15 -1791 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1791 ((-1288) (-656 (-960 (-227))))) (-15 -1791 ((-1288) (-656 (-960 (-227))) (-656 (-270)))) (-15 -1791 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1791 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))) (T -267)) -((-1791 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1791 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1791 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1791 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267))))) -(-10 -7 (-15 -1791 ((-1288) (-656 (-227)) (-656 (-227)))) (-15 -1791 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1791 ((-1288) (-656 (-960 (-227))))) (-15 -1791 ((-1288) (-656 (-960 (-227))) (-656 (-270)))) (-15 -1791 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1791 ((-1289) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))))) -((-2313 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-2519 (((-938) (-656 (-270)) (-938)) 52)) (-4333 (((-938) (-656 (-270)) (-938)) 51)) (-3374 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-3680 (((-390) (-656 (-270)) (-390)) 57)) (-2901 (((-938) (-656 (-270)) (-938)) 53)) (-2146 (((-112) (-656 (-270)) (-112)) 27)) (-3715 (((-1178) (-656 (-270)) (-1178)) 19)) (-3294 (((-1178) (-656 (-270)) (-1178)) 26)) (-2640 (((-1152 (-227)) (-656 (-270))) 46)) (-1769 (((-656 (-1113 (-390))) (-656 (-270)) (-656 (-1113 (-390)))) 40)) (-3337 (((-886) (-656 (-270)) (-886)) 32)) (-4354 (((-886) (-656 (-270)) (-886)) 33)) (-3853 (((-1 (-960 (-227)) (-960 (-227))) (-656 (-270)) (-1 (-960 (-227)) (-960 (-227)))) 63)) (-3272 (((-112) (-656 (-270)) (-112)) 14)) (-2262 (((-112) (-656 (-270)) (-112)) 13))) -(((-268) (-10 -7 (-15 -2262 ((-112) (-656 (-270)) (-112))) (-15 -3272 ((-112) (-656 (-270)) (-112))) (-15 -2313 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3715 ((-1178) (-656 (-270)) (-1178))) (-15 -3294 ((-1178) (-656 (-270)) (-1178))) (-15 -2146 ((-112) (-656 (-270)) (-112))) (-15 -3337 ((-886) (-656 (-270)) (-886))) (-15 -4354 ((-886) (-656 (-270)) (-886))) (-15 -1769 ((-656 (-1113 (-390))) (-656 (-270)) (-656 (-1113 (-390))))) (-15 -4333 ((-938) (-656 (-270)) (-938))) (-15 -2519 ((-938) (-656 (-270)) (-938))) (-15 -2640 ((-1152 (-227)) (-656 (-270)))) (-15 -2901 ((-938) (-656 (-270)) (-938))) (-15 -3680 ((-390) (-656 (-270)) (-390))) (-15 -3853 ((-1 (-960 (-227)) (-960 (-227))) (-656 (-270)) (-1 (-960 (-227)) (-960 (-227))))) (-15 -3374 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268)) -((-3374 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3853 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3680 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2901 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-268)))) (-2519 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4333 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1769 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4354 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3337 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2146 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3294 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3715 (*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2313 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3272 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2262 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(-10 -7 (-15 -2262 ((-112) (-656 (-270)) (-112))) (-15 -3272 ((-112) (-656 (-270)) (-112))) (-15 -2313 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3715 ((-1178) (-656 (-270)) (-1178))) (-15 -3294 ((-1178) (-656 (-270)) (-1178))) (-15 -2146 ((-112) (-656 (-270)) (-112))) (-15 -3337 ((-886) (-656 (-270)) (-886))) (-15 -4354 ((-886) (-656 (-270)) (-886))) (-15 -1769 ((-656 (-1113 (-390))) (-656 (-270)) (-656 (-1113 (-390))))) (-15 -4333 ((-938) (-656 (-270)) (-938))) (-15 -2519 ((-938) (-656 (-270)) (-938))) (-15 -2640 ((-1152 (-227)) (-656 (-270)))) (-15 -2901 ((-938) (-656 (-270)) (-938))) (-15 -3680 ((-390) (-656 (-270)) (-390))) (-15 -3853 ((-1 (-960 (-227)) (-960 (-227))) (-656 (-270)) (-1 (-960 (-227)) (-960 (-227))))) (-15 -3374 ((-656 (-390)) (-656 (-270)) (-656 (-390))))) -((-3144 (((-3 |#1| "failed") (-656 (-270)) (-1196)) 17))) -(((-269 |#1|) (-10 -7 (-15 -3144 ((-3 |#1| "failed") (-656 (-270)) (-1196)))) (-1237)) (T -269)) -((-3144 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *1 (-269 *2)) (-4 *2 (-1237))))) -(-10 -7 (-15 -3144 ((-3 |#1| "failed") (-656 (-270)) (-1196)))) -((-2034 (((-112) $ $) NIL)) (-2313 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-2519 (($ (-938)) 81)) (-4333 (($ (-938)) 80)) (-3500 (($ (-656 (-390))) 87)) (-3680 (($ (-390)) 66)) (-2901 (($ (-938)) 82)) (-2146 (($ (-112)) 33)) (-3715 (($ (-1178)) 28)) (-3294 (($ (-1178)) 29)) (-2640 (($ (-1152 (-227))) 76)) (-1769 (($ (-656 (-1113 (-390)))) 72)) (-2920 (($ (-656 (-1113 (-390)))) 68) (($ (-656 (-1113 (-419 (-576))))) 71)) (-1461 (($ (-390)) 38) (($ (-886)) 42)) (-3137 (((-112) (-656 $) (-1196)) 100)) (-3144 (((-3 (-52) "failed") (-656 $) (-1196)) 102)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2752 (($ (-390)) 43) (($ (-886)) 44)) (-3287 (($ (-1 (-960 (-227)) (-960 (-227)))) 65)) (-3853 (($ (-1 (-960 (-227)) (-960 (-227)))) 83)) (-1785 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-4092 (((-874) $) 93)) (-2403 (($ (-112)) 34) (($ (-656 (-1113 (-390)))) 60)) (-1531 (((-112) $ $) NIL)) (-2262 (($ (-112)) 35)) (-3919 (((-112) $ $) 97))) -(((-270) (-13 (-1119) (-10 -8 (-15 -2262 ($ (-112))) (-15 -2403 ($ (-112))) (-15 -2313 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3715 ($ (-1178))) (-15 -3294 ($ (-1178))) (-15 -2146 ($ (-112))) (-15 -2403 ($ (-656 (-1113 (-390))))) (-15 -3287 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -1461 ($ (-390))) (-15 -1461 ($ (-886))) (-15 -2752 ($ (-390))) (-15 -2752 ($ (-886))) (-15 -1785 ($ (-1 (-227) (-227)))) (-15 -1785 ($ (-1 (-227) (-227) (-227)))) (-15 -1785 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3680 ($ (-390))) (-15 -2920 ($ (-656 (-1113 (-390))))) (-15 -2920 ($ (-656 (-1113 (-419 (-576)))))) (-15 -1769 ($ (-656 (-1113 (-390))))) (-15 -2640 ($ (-1152 (-227)))) (-15 -4333 ($ (-938))) (-15 -2519 ($ (-938))) (-15 -2901 ($ (-938))) (-15 -3853 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -3500 ($ (-656 (-390)))) (-15 -3144 ((-3 (-52) "failed") (-656 $) (-1196))) (-15 -3137 ((-112) (-656 $) (-1196)))))) (T -270)) -((-2262 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2403 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2313 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) (-2146 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2403 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) (-3287 (*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) (-1461 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-1461 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-2752 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2752 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-419 (-576))))) (-5 *1 (-270)))) (-1769 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-270)))) (-4333 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-2519 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-2901 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) (-3500 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-3144 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-52)) (-5 *1 (-270)))) (-3137 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-112)) (-5 *1 (-270))))) -(-13 (-1119) (-10 -8 (-15 -2262 ($ (-112))) (-15 -2403 ($ (-112))) (-15 -2313 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -3715 ($ (-1178))) (-15 -3294 ($ (-1178))) (-15 -2146 ($ (-112))) (-15 -2403 ($ (-656 (-1113 (-390))))) (-15 -3287 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -1461 ($ (-390))) (-15 -1461 ($ (-886))) (-15 -2752 ($ (-390))) (-15 -2752 ($ (-886))) (-15 -1785 ($ (-1 (-227) (-227)))) (-15 -1785 ($ (-1 (-227) (-227) (-227)))) (-15 -1785 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -3680 ($ (-390))) (-15 -2920 ($ (-656 (-1113 (-390))))) (-15 -2920 ($ (-656 (-1113 (-419 (-576)))))) (-15 -1769 ($ (-656 (-1113 (-390))))) (-15 -2640 ($ (-1152 (-227)))) (-15 -4333 ($ (-938))) (-15 -2519 ($ (-938))) (-15 -2901 ($ (-938))) (-15 -3853 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -3500 ($ (-656 (-390)))) (-15 -3144 ((-3 (-52) "failed") (-656 $) (-1196))) (-15 -3137 ((-112) (-656 $) (-1196))))) -((-3614 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-4286 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL))) -(((-271 |#1| |#2|) (-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -4286 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -4286 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4286 (|#1| |#1| (-656 (-1196)))) (-15 -4286 (|#1| |#1| (-1196) (-783))) (-15 -4286 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4286 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4286 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1237)) (T -271)) -NIL -(-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -4286 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -4286 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -4286 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4286 (|#1| |#1| (-656 (-1196)))) (-15 -4286 (|#1| |#1| (-1196) (-783))) (-15 -4286 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4286 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -4286 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|)))) -((-3614 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1196)) (-656 (-783))) 16 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 15 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 14 (|has| |#1| (-917 (-1196)))) (($ $ (-1196)) 12 (|has| |#1| (-917 (-1196)))) (($ $ (-783)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-4286 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1196)) (-656 (-783))) 19 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 18 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 17 (|has| |#1| (-917 (-1196)))) (($ $ (-1196)) 13 (|has| |#1| (-917 (-1196)))) (($ $ (-783)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) -(((-272 |#1|) (-141) (-1237)) (T -272)) -((-3614 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) (-3614 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1237)))) (-4286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) (-4286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -3614 ($ $ (-1 |t#1| |t#1|))) (-15 -3614 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -4286 ($ $ (-1 |t#1| |t#1|))) (-15 -4286 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-917 (-1196))) (-6 (-917 (-1196))) |%noBranch|))) -(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-909 $ #0=(-1196)) |has| |#1| (-917 (-1196))) ((-917 #0#) |has| |#1| (-917 (-1196))) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-4406 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-2483 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-1541 (((-656 |#3|) $) NIL)) (-1364 (((-1192 $) $ |#3|) NIL) (((-1192 |#1|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1587 (($ $) NIL (|has| |#1| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2289 (($ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1144 |#1| |#2|) "failed") $) 23)) (-2378 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1144 |#1| |#2|) $) NIL)) (-2996 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-1717 (($ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-926)))) (-2291 (($ $ |#1| (-543 |#3|) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))))) (-1538 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-1529 (($ (-1192 |#1|) |#3|) NIL) (($ (-1192 $) |#3|) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ |#3|) NIL)) (-1915 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-3968 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3789 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-3403 (((-3 |#3| "failed") $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3446 ((|#3| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3288 (((-1178) $) NIL)) (-1614 (((-112) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| |#3|) (|:| -3175 (-783))) "failed") $) NIL)) (-3473 (($ $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#1| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1955 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-3614 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-4332 (((-656 |#2|) $) NIL)) (-2369 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-3714 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1144 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +((-1388 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) (-2684 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4)))) (-3333 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1433 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) (-1641 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) (-3457 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) (-4374 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-805)) (-4 *2 (-275 *4)))) (-4175 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-2671 (*1 *1 *1) (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-275 *3)) (-4 *5 (-805)))) (-1388 (*1 *2 *1) (-12 (-4 *3 (-238)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6))))) +(-13 (-966 |t#1| |t#4| |t#3|) (-232 |t#1|) (-1057 |t#2|) (-10 -8 (-15 -1388 ((-1 $ (-783)) |t#2|)) (-15 -2684 ((-656 |t#2|) $)) (-15 -3333 ((-783) $ |t#2|)) (-15 -3333 ((-783) $)) (-15 -1433 ((-783) $ |t#2|)) (-15 -1641 ((-656 (-783)) $)) (-15 -3457 ((-783) $)) (-15 -1641 ((-656 (-783)) $ |t#2|)) (-15 -3457 ((-783) $ |t#2|)) (-15 -4374 ((-112) $)) (-15 -3897 (|t#3| $)) (-15 -4175 ($ $)) (-15 -2671 ($ $)) (IF (|has| |t#1| (-238)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-319 $)) (-15 -1388 ((-1 $ (-783)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#2|) . T) ((-628 |#3|) . T) ((-628 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-234 $) -2835 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2835 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-300) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#4|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2835 (|has| |#1| (-926)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-238)) ((-526 |#2| $) |has| |#1| (-238)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ #2=(-1195)) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-909 $ |#3|) . T) ((-915 (-1195)) |has| |#1| (-915 (-1195))) ((-915 |#3|) . T) ((-917 #2#) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-917 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-966 |#1| |#4| |#3|) . T) ((-926) |has| |#1| (-926)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1057 |#2|) . T) ((-1057 |#3|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T) ((-1240) |has| |#1| (-926))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2770 ((|#1| $) 55)) (-1346 ((|#1| $) 45)) (-3131 (((-112) $ (-783)) 8)) (-3767 (($) 7 T CONST)) (-2132 (($ $) 61)) (-3478 (($ $) 49)) (-2552 ((|#1| |#1| $) 47)) (-3119 ((|#1| $) 46)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-4261 (((-783) $) 62)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1409 ((|#1| $) 40)) (-3108 ((|#1| |#1| $) 53)) (-3754 ((|#1| |#1| $) 52)) (-2040 (($ |#1| $) 41)) (-2331 (((-783) $) 56)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4416 ((|#1| $) 63)) (-2347 ((|#1| $) 51)) (-3099 ((|#1| $) 50)) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-2383 ((|#1| |#1| $) 59)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1944 ((|#1| $) 60)) (-2017 (($) 58) (($ (-656 |#1|)) 57)) (-4328 (((-783) $) 44)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1320 ((|#1| $) 54)) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 43)) (-3667 ((|#1| $) 64)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-261 |#1|) (-141) (-1236)) (T -261)) +((-2017 (*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-2017 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-261 *3)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-2770 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-1320 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-3108 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-3754 (*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) (-3478 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) +(-13 (-1140 |t#1|) (-1014 |t#1|) (-10 -8 (-15 -2017 ($)) (-15 -2017 ($ (-656 |t#1|))) (-15 -2331 ((-783) $)) (-15 -2770 (|t#1| $)) (-15 -1320 (|t#1| $)) (-15 -3108 (|t#1| |t#1| $)) (-15 -3754 (|t#1| |t#1| $)) (-15 -2347 (|t#1| $)) (-15 -3099 (|t#1| $)) (-15 -3478 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1014 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1140 |#1|) . T) ((-1236) . T)) +((-3755 (((-1 (-960 (-227)) (-227) (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 153)) (-1692 (((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390))) 173) (((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 171) (((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 176) (((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 172) (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 164) (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 163) (((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390))) 145) (((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270))) 143) (((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390))) 144) (((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270))) 141)) (-1643 (((-1288) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390))) 175) (((-1288) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 174) (((-1288) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 178) (((-1288) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 177) (((-1288) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390))) 166) (((-1288) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270))) 165) (((-1288) (-1 (-960 (-227)) (-227)) (-1113 (-390))) 151) (((-1288) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270))) 150) (((-1288) (-892 (-1 (-227) (-227))) (-1113 (-390))) 149) (((-1288) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270))) 148) (((-1287) (-890 (-1 (-227) (-227))) (-1113 (-390))) 113) (((-1287) (-890 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270))) 112) (((-1287) (-1 (-227) (-227)) (-1113 (-390))) 107) (((-1287) (-1 (-227) (-227)) (-1113 (-390)) (-656 (-270))) 105))) +(((-262) (-10 -7 (-15 -1643 ((-1287) (-1 (-227) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1287) (-1 (-227) (-227)) (-1113 (-390)))) (-15 -1643 ((-1287) (-890 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1287) (-890 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1643 ((-1288) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1643 ((-1288) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1643 ((-1288) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1643 ((-1288) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1643 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -3755 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -262)) +((-3755 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227) (-227))) (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1692 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *2 (-1287)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *2 (-1287)) (-5 *1 (-262)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262))))) +(-10 -7 (-15 -1643 ((-1287) (-1 (-227) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1287) (-1 (-227) (-227)) (-1113 (-390)))) (-15 -1643 ((-1287) (-890 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1287) (-890 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1643 ((-1288) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1643 ((-1288) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-892 (-1 (-227) (-227))) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-1 (-960 (-227)) (-227)) (-1113 (-390)))) (-15 -1643 ((-1288) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1643 ((-1288) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-390)) (-1113 (-390)))) (-15 -1643 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -1692 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-895 (-1 (-227) (-227) (-227))) (-1113 (-390)) (-1113 (-390)))) (-15 -3755 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1643 (((-1287) (-304 |#2|) (-1195) (-1195) (-656 (-270))) 101))) +(((-263 |#1| |#2|) (-10 -7 (-15 -1643 ((-1287) (-304 |#2|) (-1195) (-1195) (-656 (-270))))) (-13 (-568) (-862) (-1057 (-576))) (-442 |#1|)) (T -263)) +((-1643 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-1195)) (-5 *5 (-656 (-270))) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1057 (-576)))) (-5 *2 (-1287)) (-5 *1 (-263 *6 *7))))) +(-10 -7 (-15 -1643 ((-1287) (-304 |#2|) (-1195) (-1195) (-656 (-270))))) +((-1971 (((-576) (-576)) 71)) (-2072 (((-576) (-576)) 72)) (-2693 (((-227) (-227)) 73)) (-4166 (((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227))) 70)) (-1721 (((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)) (-112)) 68))) +(((-264) (-10 -7 (-15 -1721 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)) (-112))) (-15 -4166 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -1971 ((-576) (-576))) (-15 -2072 ((-576) (-576))) (-15 -2693 ((-227) (-227))))) (T -264)) +((-2693 (*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-1971 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264)))) (-4166 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) (-5 *2 (-1288)) (-5 *1 (-264)))) (-1721 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) (-5 *5 (-112)) (-5 *2 (-1288)) (-5 *1 (-264))))) +(-10 -7 (-15 -1721 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)) (-112))) (-15 -4166 ((-1288) (-1 (-171 (-227)) (-171 (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -1971 ((-576) (-576))) (-15 -2072 ((-576) (-576))) (-15 -2693 ((-227) (-227)))) +((-3563 (((-1111 (-390)) (-1111 (-326 |#1|))) 16))) +(((-265 |#1|) (-10 -7 (-15 -3563 ((-1111 (-390)) (-1111 (-326 |#1|))))) (-13 (-862) (-568) (-626 (-390)))) (T -265)) +((-3563 (*1 *2 *3) (-12 (-5 *3 (-1111 (-326 *4))) (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1111 (-390))) (-5 *1 (-265 *4))))) +(-10 -7 (-15 -3563 ((-1111 (-390)) (-1111 (-326 |#1|))))) +((-1692 (((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390))) 75) (((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 74) (((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390))) 65) (((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 64) (((-1152 (-227)) (-892 |#1|) (-1111 (-390))) 56) (((-1152 (-227)) (-892 |#1|) (-1111 (-390)) (-656 (-270))) 55)) (-1643 (((-1288) (-895 |#1|) (-1111 (-390)) (-1111 (-390))) 78) (((-1288) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 77) (((-1288) |#1| (-1111 (-390)) (-1111 (-390))) 68) (((-1288) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270))) 67) (((-1288) (-892 |#1|) (-1111 (-390))) 60) (((-1288) (-892 |#1|) (-1111 (-390)) (-656 (-270))) 59) (((-1287) (-890 |#1|) (-1111 (-390))) 47) (((-1287) (-890 |#1|) (-1111 (-390)) (-656 (-270))) 46) (((-1287) |#1| (-1111 (-390))) 38) (((-1287) |#1| (-1111 (-390)) (-656 (-270))) 36))) +(((-266 |#1|) (-10 -7 (-15 -1643 ((-1287) |#1| (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1287) |#1| (-1111 (-390)))) (-15 -1643 ((-1287) (-890 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1287) (-890 |#1|) (-1111 (-390)))) (-15 -1643 ((-1288) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-892 |#1|) (-1111 (-390)))) (-15 -1692 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)))) (-15 -1643 ((-1288) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1692 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1643 ((-1288) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-895 |#1|) (-1111 (-390)) (-1111 (-390)))) (-15 -1692 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390))))) (-13 (-626 (-548)) (-1119))) (T -266)) +((-1692 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *5)))) (-1692 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *6)))) (-1643 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) (-5 *1 (-266 *5)))) (-1643 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) (-5 *1 (-266 *6)))) (-1692 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1692 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1643 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1643 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *5)))) (-1692 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *6)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) (-5 *1 (-266 *5)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) (-5 *1 (-266 *6)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-890 *5)) (-5 *4 (-1111 (-390))) (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1287)) (-5 *1 (-266 *5)))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-890 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1287)) (-5 *1 (-266 *6)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1287)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) (-1643 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119)))))) +(-10 -7 (-15 -1643 ((-1287) |#1| (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1287) |#1| (-1111 (-390)))) (-15 -1643 ((-1287) (-890 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1287) (-890 |#1|) (-1111 (-390)))) (-15 -1643 ((-1288) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-892 |#1|) (-1111 (-390)))) (-15 -1692 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-892 |#1|) (-1111 (-390)))) (-15 -1643 ((-1288) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1692 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) |#1| (-1111 (-390)) (-1111 (-390)))) (-15 -1643 ((-1288) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1643 ((-1288) (-895 |#1|) (-1111 (-390)) (-1111 (-390)))) (-15 -1692 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390)) (-656 (-270)))) (-15 -1692 ((-1152 (-227)) (-895 |#1|) (-1111 (-390)) (-1111 (-390))))) +((-1643 (((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))) 23) (((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227))) 24) (((-1287) (-656 (-960 (-227))) (-656 (-270))) 16) (((-1287) (-656 (-960 (-227)))) 17) (((-1287) (-656 (-227)) (-656 (-227)) (-656 (-270))) 20) (((-1287) (-656 (-227)) (-656 (-227))) 21))) +(((-267) (-10 -7 (-15 -1643 ((-1287) (-656 (-227)) (-656 (-227)))) (-15 -1643 ((-1287) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1643 ((-1287) (-656 (-960 (-227))))) (-15 -1643 ((-1287) (-656 (-960 (-227))) (-656 (-270)))) (-15 -1643 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1643 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270)))))) (T -267)) +((-1643 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1643 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-267)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *2 (-1287)) (-5 *1 (-267)))) (-1643 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-267)))) (-1643 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287)) (-5 *1 (-267))))) +(-10 -7 (-15 -1643 ((-1287) (-656 (-227)) (-656 (-227)))) (-15 -1643 ((-1287) (-656 (-227)) (-656 (-227)) (-656 (-270)))) (-15 -1643 ((-1287) (-656 (-960 (-227))))) (-15 -1643 ((-1287) (-656 (-960 (-227))) (-656 (-270)))) (-15 -1643 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)))) (-15 -1643 ((-1288) (-656 (-227)) (-656 (-227)) (-656 (-227)) (-656 (-270))))) +((-2986 (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 25)) (-3592 (((-938) (-656 (-270)) (-938)) 52)) (-2805 (((-938) (-656 (-270)) (-938)) 51)) (-2350 (((-656 (-390)) (-656 (-270)) (-656 (-390))) 68)) (-4256 (((-390) (-656 (-270)) (-390)) 57)) (-4423 (((-938) (-656 (-270)) (-938)) 53)) (-3408 (((-112) (-656 (-270)) (-112)) 27)) (-1357 (((-1177) (-656 (-270)) (-1177)) 19)) (-4431 (((-1177) (-656 (-270)) (-1177)) 26)) (-1422 (((-1152 (-227)) (-656 (-270))) 46)) (-2002 (((-656 (-1113 (-390))) (-656 (-270)) (-656 (-1113 (-390)))) 40)) (-1604 (((-886) (-656 (-270)) (-886)) 32)) (-2194 (((-886) (-656 (-270)) (-886)) 33)) (-3531 (((-1 (-960 (-227)) (-960 (-227))) (-656 (-270)) (-1 (-960 (-227)) (-960 (-227)))) 63)) (-2957 (((-112) (-656 (-270)) (-112)) 14)) (-2123 (((-112) (-656 (-270)) (-112)) 13))) +(((-268) (-10 -7 (-15 -2123 ((-112) (-656 (-270)) (-112))) (-15 -2957 ((-112) (-656 (-270)) (-112))) (-15 -2986 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ((-1177) (-656 (-270)) (-1177))) (-15 -4431 ((-1177) (-656 (-270)) (-1177))) (-15 -3408 ((-112) (-656 (-270)) (-112))) (-15 -1604 ((-886) (-656 (-270)) (-886))) (-15 -2194 ((-886) (-656 (-270)) (-886))) (-15 -2002 ((-656 (-1113 (-390))) (-656 (-270)) (-656 (-1113 (-390))))) (-15 -2805 ((-938) (-656 (-270)) (-938))) (-15 -3592 ((-938) (-656 (-270)) (-938))) (-15 -1422 ((-1152 (-227)) (-656 (-270)))) (-15 -4423 ((-938) (-656 (-270)) (-938))) (-15 -4256 ((-390) (-656 (-270)) (-390))) (-15 -3531 ((-1 (-960 (-227)) (-960 (-227))) (-656 (-270)) (-1 (-960 (-227)) (-960 (-227))))) (-15 -2350 ((-656 (-390)) (-656 (-270)) (-656 (-390)))))) (T -268)) +((-2350 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3531 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4256 (*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4423 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-268)))) (-3592 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2805 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2002 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2194 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1604 (*1 *2 *3 *2) (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-3408 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-4431 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-1357 (*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2986 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2957 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) (-2123 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(-10 -7 (-15 -2123 ((-112) (-656 (-270)) (-112))) (-15 -2957 ((-112) (-656 (-270)) (-112))) (-15 -2986 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) (-656 (-270)) (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ((-1177) (-656 (-270)) (-1177))) (-15 -4431 ((-1177) (-656 (-270)) (-1177))) (-15 -3408 ((-112) (-656 (-270)) (-112))) (-15 -1604 ((-886) (-656 (-270)) (-886))) (-15 -2194 ((-886) (-656 (-270)) (-886))) (-15 -2002 ((-656 (-1113 (-390))) (-656 (-270)) (-656 (-1113 (-390))))) (-15 -2805 ((-938) (-656 (-270)) (-938))) (-15 -3592 ((-938) (-656 (-270)) (-938))) (-15 -1422 ((-1152 (-227)) (-656 (-270)))) (-15 -4423 ((-938) (-656 (-270)) (-938))) (-15 -4256 ((-390) (-656 (-270)) (-390))) (-15 -3531 ((-1 (-960 (-227)) (-960 (-227))) (-656 (-270)) (-1 (-960 (-227)) (-960 (-227))))) (-15 -2350 ((-656 (-390)) (-656 (-270)) (-656 (-390))))) +((-2654 (((-3 |#1| "failed") (-656 (-270)) (-1195)) 17))) +(((-269 |#1|) (-10 -7 (-15 -2654 ((-3 |#1| "failed") (-656 (-270)) (-1195)))) (-1236)) (T -269)) +((-2654 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *1 (-269 *2)) (-4 *2 (-1236))))) +(-10 -7 (-15 -2654 ((-3 |#1| "failed") (-656 (-270)) (-1195)))) +((-3474 (((-112) $ $) NIL)) (-2986 (($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 24)) (-3592 (($ (-938)) 81)) (-2805 (($ (-938)) 80)) (-3341 (($ (-656 (-390))) 87)) (-4256 (($ (-390)) 66)) (-4423 (($ (-938)) 82)) (-3408 (($ (-112)) 33)) (-1357 (($ (-1177)) 28)) (-4431 (($ (-1177)) 29)) (-1422 (($ (-1152 (-227))) 76)) (-2002 (($ (-656 (-1113 (-390)))) 72)) (-2691 (($ (-656 (-1113 (-390)))) 68) (($ (-656 (-1113 (-419 (-576))))) 71)) (-2700 (($ (-390)) 38) (($ (-886)) 42)) (-3078 (((-112) (-656 $) (-1195)) 100)) (-2654 (((-3 (-52) "failed") (-656 $) (-1195)) 102)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3832 (($ (-390)) 43) (($ (-886)) 44)) (-1809 (($ (-1 (-960 (-227)) (-960 (-227)))) 65)) (-3531 (($ (-1 (-960 (-227)) (-960 (-227)))) 83)) (-2877 (($ (-1 (-227) (-227))) 48) (($ (-1 (-227) (-227) (-227))) 52) (($ (-1 (-227) (-227) (-227) (-227))) 56)) (-3563 (((-874) $) 93)) (-2416 (($ (-112)) 34) (($ (-656 (-1113 (-390)))) 60)) (-3985 (((-112) $ $) NIL)) (-2123 (($ (-112)) 35)) (-2988 (((-112) $ $) 97))) +(((-270) (-13 (-1119) (-10 -8 (-15 -2123 ($ (-112))) (-15 -2416 ($ (-112))) (-15 -2986 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ($ (-1177))) (-15 -4431 ($ (-1177))) (-15 -3408 ($ (-112))) (-15 -2416 ($ (-656 (-1113 (-390))))) (-15 -1809 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -2700 ($ (-390))) (-15 -2700 ($ (-886))) (-15 -3832 ($ (-390))) (-15 -3832 ($ (-886))) (-15 -2877 ($ (-1 (-227) (-227)))) (-15 -2877 ($ (-1 (-227) (-227) (-227)))) (-15 -2877 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -4256 ($ (-390))) (-15 -2691 ($ (-656 (-1113 (-390))))) (-15 -2691 ($ (-656 (-1113 (-419 (-576)))))) (-15 -2002 ($ (-656 (-1113 (-390))))) (-15 -1422 ($ (-1152 (-227)))) (-15 -2805 ($ (-938))) (-15 -3592 ($ (-938))) (-15 -4423 ($ (-938))) (-15 -3531 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -3341 ($ (-656 (-390)))) (-15 -2654 ((-3 (-52) "failed") (-656 $) (-1195))) (-15 -3078 ((-112) (-656 $) (-1195)))))) (T -270)) +((-2123 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2416 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2986 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-270)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270)))) (-4431 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270)))) (-3408 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) (-2416 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) (-1809 (*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) (-2700 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2700 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) (-2877 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270)))) (-2877 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) (-2877 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) (-4256 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-419 (-576))))) (-5 *1 (-270)))) (-2002 (*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) (-1422 (*1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-270)))) (-2805 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-3592 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-4423 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-3531 (*1 *1 *2) (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) (-2654 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-52)) (-5 *1 (-270)))) (-3078 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-112)) (-5 *1 (-270))))) +(-13 (-1119) (-10 -8 (-15 -2123 ($ (-112))) (-15 -2416 ($ (-112))) (-15 -2986 ($ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -1357 ($ (-1177))) (-15 -4431 ($ (-1177))) (-15 -3408 ($ (-112))) (-15 -2416 ($ (-656 (-1113 (-390))))) (-15 -1809 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -2700 ($ (-390))) (-15 -2700 ($ (-886))) (-15 -3832 ($ (-390))) (-15 -3832 ($ (-886))) (-15 -2877 ($ (-1 (-227) (-227)))) (-15 -2877 ($ (-1 (-227) (-227) (-227)))) (-15 -2877 ($ (-1 (-227) (-227) (-227) (-227)))) (-15 -4256 ($ (-390))) (-15 -2691 ($ (-656 (-1113 (-390))))) (-15 -2691 ($ (-656 (-1113 (-419 (-576)))))) (-15 -2002 ($ (-656 (-1113 (-390))))) (-15 -1422 ($ (-1152 (-227)))) (-15 -2805 ($ (-938))) (-15 -3592 ($ (-938))) (-15 -4423 ($ (-938))) (-15 -3531 ($ (-1 (-960 (-227)) (-960 (-227))))) (-15 -3341 ($ (-656 (-390)))) (-15 -2654 ((-3 (-52) "failed") (-656 $) (-1195))) (-15 -3078 ((-112) (-656 $) (-1195))))) +((-2735 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) 11) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) 19) (($ $ (-783)) NIL) (($ $) 16)) (-2051 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-783)) 14) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-783)) NIL) (($ $) NIL))) +(((-271 |#1| |#2|) (-10 -8 (-15 -2735 (|#1| |#1|)) (-15 -2051 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2051 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2051 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2051 (|#1| |#1| (-656 (-1195)))) (-15 -2051 (|#1| |#1| (-1195) (-783))) (-15 -2051 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2051 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2051 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|)))) (-272 |#2|) (-1236)) (T -271)) +NIL +(-10 -8 (-15 -2735 (|#1| |#1|)) (-15 -2051 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2051 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2051 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2051 (|#1| |#1| (-656 (-1195)))) (-15 -2051 (|#1| |#1| (-1195) (-783))) (-15 -2051 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2051 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2051 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|)))) +((-2735 (($ $ (-1 |#1| |#1|)) 23) (($ $ (-1 |#1| |#1|) (-783)) 22) (($ $ (-656 (-1195)) (-656 (-783))) 16 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 15 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 14 (|has| |#1| (-917 (-1195)))) (($ $ (-1195)) 12 (|has| |#1| (-917 (-1195)))) (($ $ (-783)) 10 (|has| |#1| (-237))) (($ $) 8 (|has| |#1| (-237)))) (-2051 (($ $ (-1 |#1| |#1|)) 21) (($ $ (-1 |#1| |#1|) (-783)) 20) (($ $ (-656 (-1195)) (-656 (-783))) 19 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 18 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 17 (|has| |#1| (-917 (-1195)))) (($ $ (-1195)) 13 (|has| |#1| (-917 (-1195)))) (($ $ (-783)) 11 (|has| |#1| (-237))) (($ $) 9 (|has| |#1| (-237))))) +(((-272 |#1|) (-141) (-1236)) (T -272)) +((-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) (-2735 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1236)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) (-4 *4 (-1236))))) +(-13 (-1236) (-10 -8 (-15 -2735 ($ $ (-1 |t#1| |t#1|))) (-15 -2735 ($ $ (-1 |t#1| |t#1|) (-783))) (-15 -2051 ($ $ (-1 |t#1| |t#1|))) (-15 -2051 ($ $ (-1 |t#1| |t#1|) (-783))) (IF (|has| |t#1| (-237)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-917 (-1195))) (-6 (-917 (-1195))) |%noBranch|))) +(((-234 $) |has| |#1| (-237)) ((-237) |has| |#1| (-237)) ((-909 $ #0=(-1195)) |has| |#1| (-917 (-1195))) ((-917 #0#) |has| |#1| (-917 (-1195))) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1641 (((-656 (-783)) $) NIL) (((-656 (-783)) $ |#2|) NIL)) (-3457 (((-783) $) NIL) (((-783) $ |#2|) NIL)) (-1991 (((-656 |#3|) $) NIL)) (-3999 (((-1191 $) $ |#3|) NIL) (((-1191 |#1|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 |#3|)) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1760 (($ $) NIL (|has| |#1| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-2671 (($ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1144 |#1| |#2|) "failed") $) 23)) (-4056 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1144 |#1| |#2|) $) NIL)) (-2861 (($ $ $ |#3|) NIL (|has| |#1| (-174)))) (-2166 (($ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#1| (-926)))) (-1660 (($ $ |#1| (-543 |#3|) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))))) (-3333 (((-783) $ |#2|) NIL) (((-783) $) 10)) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1980 (($ (-1191 |#1|) |#3|) NIL) (($ (-1191 $) |#3|) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ |#3|) NIL)) (-3403 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL)) (-2133 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1388 (((-1 $ (-783)) |#2|) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-4209 (((-3 |#3| "failed") $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3897 ((|#3| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1927 (((-1177) $) NIL)) (-4374 (((-112) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| |#3|) (|:| -4274 (-783))) "failed") $) NIL)) (-4175 (($ $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#1| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-656 |#3|) (-656 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-656 |#3|) (-656 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 $)) NIL (|has| |#1| (-238))) (($ $ |#2| |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 |#2|) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1960 (($ $ |#3|) NIL (|has| |#1| (-174)))) (-2735 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2684 (((-656 |#2|) $) NIL)) (-1433 (((-543 |#3|) $) NIL) (((-783) $ |#3|) NIL) (((-656 (-783)) $ (-656 |#3|)) NIL) (((-783) $ |#2|) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))))) (-3648 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ |#3|) NIL (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1144 |#1| |#2|)) 32) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-543 |#3|)) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-656 |#3|) (-656 (-783))) NIL) (($ $ |#3| (-783)) NIL) (($ $ (-656 |#3|)) NIL) (($ $ |#3|) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) (((-273 |#1| |#2| |#3|) (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1057 (-1144 |#1| |#2|))) (-1068) (-862) (-275 |#2|)) (T -273)) NIL (-13 (-260 |#1| |#2| |#3| (-543 |#3|)) (-1057 (-1144 |#1| |#2|))) -((-2483 (((-783) $) 37)) (-2974 (((-3 |#2| "failed") $) 22)) (-2378 ((|#2| $) 33)) (-3614 (($ $ (-783)) 18) (($ $) 14)) (-4092 (((-874) $) 32) (($ |#2|) 11)) (-3919 (((-112) $ $) 26)) (-3944 (((-112) $ $) 36))) -(((-274 |#1| |#2|) (-10 -8 (-15 -2483 ((-783) |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3944 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) (-275 |#2|) (-862)) (T -274)) +((-3457 (((-783) $) 37)) (-1539 (((-3 |#2| "failed") $) 22)) (-4056 ((|#2| $) 33)) (-2735 (($ $ (-783)) 18) (($ $) 14)) (-3563 (((-874) $) 32) (($ |#2|) 11)) (-2988 (((-112) $ $) 26)) (-3010 (((-112) $ $) 36))) +(((-274 |#1| |#2|) (-10 -8 (-15 -3457 ((-783) |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -3010 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) (-275 |#2|) (-862)) (T -274)) NIL -(-10 -8 (-15 -2483 ((-783) |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3944 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-2483 (((-783) $) 22)) (-1615 ((|#1| $) 23)) (-2974 (((-3 |#1| "failed") $) 27)) (-2378 ((|#1| $) 28)) (-1538 (((-783) $) 24)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3789 (($ |#1| (-783)) 25)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3614 (($ $ (-783)) 31) (($ $) 29)) (-4092 (((-874) $) 12) (($ |#1|) 26)) (-1531 (((-112) $ $) 9)) (-4286 (($ $ (-783)) 32) (($ $) 30)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19))) +(-10 -8 (-15 -3457 ((-783) |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -3010 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-3457 (((-783) $) 22)) (-3022 ((|#1| $) 23)) (-1539 (((-3 |#1| "failed") $) 27)) (-4056 ((|#1| $) 28)) (-3333 (((-783) $) 24)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1388 (($ |#1| (-783)) 25)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2735 (($ $ (-783)) 31) (($ $) 29)) (-3563 (((-874) $) 12) (($ |#1|) 26)) (-3985 (((-112) $ $) 9)) (-2051 (($ $ (-783)) 32) (($ $) 30)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19))) (((-275 |#1|) (-141) (-862)) (T -275)) -((-4092 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-3789 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783))))) -(-13 (-862) (-237) (-1057 |t#1|) (-10 -8 (-15 -3789 ($ |t#1| (-783))) (-15 -1538 ((-783) $)) (-15 -1615 (|t#1| $)) (-15 -2483 ((-783) $)) (-15 -4092 ($ |t#1|)))) -(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-234 $) . T) ((-237) . T) ((-862) . T) ((-1057 |#1|) . T) ((-1119) . T) ((-1237) . T)) -((-1541 (((-656 (-1196)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) 53)) (-2677 (((-656 (-1196)) (-326 (-227)) (-783)) 94)) (-2278 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-3564 (((-326 (-227)) (-326 (-227))) 79)) (-1739 (((-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-3716 (((-112) (-656 (-326 (-227)))) 104)) (-3102 (((-112) (-326 (-227))) 36)) (-4359 (((-656 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))))) 132)) (-1482 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-2185 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-2137 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-1339 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-1499 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-4264 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) 126)) (-3417 (((-1054) (-1196) (-1054)) 46))) -(((-276) (-10 -7 (-15 -1499 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -1739 ((-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2278 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3564 ((-326 (-227)) (-326 (-227)))) (-15 -3716 ((-112) (-656 (-326 (-227))))) (-15 -1339 ((-112) (-656 (-326 (-227))))) (-15 -1339 ((-112) (-326 (-227)))) (-15 -2137 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -2185 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -1482 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -3102 ((-112) (-326 (-227)))) (-15 -1541 ((-656 (-1196)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) (-15 -2677 ((-656 (-1196)) (-326 (-227)) (-783))) (-15 -3417 ((-1054) (-1196) (-1054))) (-15 -4264 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) (-15 -4359 ((-656 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))))))) (T -276)) -((-4359 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))))) (-5 *2 (-656 (-1178))) (-5 *1 (-276)))) (-4264 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-3417 (*1 *2 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-276)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1196))) (-5 *1 (-276)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) (-5 *2 (-656 (-1196))) (-5 *1 (-276)))) (-3102 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1482 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-2185 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-2137 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3564 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2278 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-1739 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276))))) -(-10 -7 (-15 -1499 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -1739 ((-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2278 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -3564 ((-326 (-227)) (-326 (-227)))) (-15 -3716 ((-112) (-656 (-326 (-227))))) (-15 -1339 ((-112) (-656 (-326 (-227))))) (-15 -1339 ((-112) (-326 (-227)))) (-15 -2137 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -2185 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -1482 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -3102 ((-112) (-326 (-227)))) (-15 -1541 ((-656 (-1196)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) (-15 -2677 ((-656 (-1196)) (-326 (-227)) (-783))) (-15 -3417 ((-1054) (-1196) (-1054))) (-15 -4264 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) (-15 -4359 ((-656 (-1178)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))))))) -((-2034 (((-112) $ $) NIL)) (-2305 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3563 (*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-1388 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783))))) +(-13 (-862) (-237) (-1057 |t#1|) (-10 -8 (-15 -1388 ($ |t#1| (-783))) (-15 -3333 ((-783) $)) (-15 -3022 (|t#1| $)) (-15 -3457 ((-783) $)) (-15 -3563 ($ |t#1|)))) +(((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-234 $) . T) ((-237) . T) ((-862) . T) ((-1057 |#1|) . T) ((-1119) . T) ((-1236) . T)) +((-1991 (((-656 (-1195)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) 53)) (-3388 (((-656 (-1195)) (-326 (-227)) (-783)) 94)) (-2920 (((-3 (-326 (-227)) "failed") (-326 (-227))) 63)) (-1562 (((-326 (-227)) (-326 (-227))) 79)) (-3157 (((-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 38)) (-3734 (((-112) (-656 (-326 (-227)))) 104)) (-3805 (((-112) (-326 (-227))) 36)) (-1464 (((-656 (-1177)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))))) 132)) (-2312 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 108)) (-2840 (((-656 (-326 (-227))) (-656 (-326 (-227)))) 106)) (-3945 (((-701 (-227)) (-656 (-326 (-227))) (-783)) 120)) (-3211 (((-112) (-326 (-227))) 31) (((-112) (-656 (-326 (-227)))) 105)) (-4432 (((-656 (-227)) (-656 (-855 (-227))) (-227)) 15)) (-2889 (((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) 126)) (-2977 (((-1054) (-1195) (-1054)) 46))) +(((-276) (-10 -7 (-15 -4432 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3157 ((-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2920 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1562 ((-326 (-227)) (-326 (-227)))) (-15 -3734 ((-112) (-656 (-326 (-227))))) (-15 -3211 ((-112) (-656 (-326 (-227))))) (-15 -3211 ((-112) (-326 (-227)))) (-15 -3945 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -2840 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2312 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -3805 ((-112) (-326 (-227)))) (-15 -1991 ((-656 (-1195)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) (-15 -3388 ((-656 (-1195)) (-326 (-227)) (-783))) (-15 -2977 ((-1054) (-1195) (-1054))) (-15 -2889 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) (-15 -1464 ((-656 (-1177)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))))))) (T -276)) +((-1464 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))))) (-5 *2 (-656 (-1177))) (-5 *1 (-276)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) (-5 *2 (-390)) (-5 *1 (-276)))) (-2977 (*1 *2 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1195)) (-5 *1 (-276)))) (-3388 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1195))) (-5 *1 (-276)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) (-5 *2 (-656 (-1195))) (-5 *1 (-276)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-2312 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276)))) (-3945 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-276)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) (-1562 (*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-2920 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-276)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) (-5 *1 (-276))))) +(-10 -7 (-15 -4432 ((-656 (-227)) (-656 (-855 (-227))) (-227))) (-15 -3157 ((-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2920 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -1562 ((-326 (-227)) (-326 (-227)))) (-15 -3734 ((-112) (-656 (-326 (-227))))) (-15 -3211 ((-112) (-656 (-326 (-227))))) (-15 -3211 ((-112) (-326 (-227)))) (-15 -3945 ((-701 (-227)) (-656 (-326 (-227))) (-783))) (-15 -2840 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -2312 ((-656 (-326 (-227))) (-656 (-326 (-227))))) (-15 -3805 ((-112) (-326 (-227)))) (-15 -1991 ((-656 (-1195)) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) (-15 -3388 ((-656 (-1195)) (-326 (-227)) (-783))) (-15 -2977 ((-1054) (-1195) (-1054))) (-15 -2889 ((-390) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) (-15 -1464 ((-656 (-1177)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))))))) +((-3474 (((-112) $ $) NIL)) (-1510 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 56)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-277) (-851)) (T -277)) NIL (-851) -((-2034 (((-112) $ $) NIL)) (-2305 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) 72) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) 43)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1510 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) 72) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 63)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 41) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) 43)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-278) (-851)) (T -278)) NIL (-851) -((-2034 (((-112) $ $) NIL)) (-2305 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) 90) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) 65)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1510 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) 90) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 85)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 52) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) 65)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-279) (-851)) (T -279)) NIL (-851) -((-2034 (((-112) $ $) NIL)) (-2305 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1510 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 73)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 45) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-280) (-851)) (T -280)) NIL (-851) -((-2034 (((-112) $ $) NIL)) (-2305 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1510 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 65)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 31) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-281) (-851)) (T -281)) NIL (-851) -((-2034 (((-112) $ $) NIL)) (-2305 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1510 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 90)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 33) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-282) (-851)) (T -282)) NIL (-851) -((-2034 (((-112) $ $) NIL)) (-2305 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1510 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 87)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 32) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-283) (-851)) (T -283)) NIL (-851) -((-2034 (((-112) $ $) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1930 (((-656 (-576)) $) 29)) (-2369 (((-783) $) 27)) (-4092 (((-874) $) 33) (($ (-656 (-576))) 23)) (-1531 (((-112) $ $) NIL)) (-4314 (($ (-783)) 30)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 9)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 17))) -(((-284) (-13 (-862) (-10 -8 (-15 -4092 ($ (-656 (-576)))) (-15 -2369 ((-783) $)) (-15 -1930 ((-656 (-576)) $)) (-15 -4314 ($ (-783)))))) (T -284)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-4314 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) -(-13 (-862) (-10 -8 (-15 -4092 ($ (-656 (-576)))) (-15 -2369 ((-783) $)) (-15 -1930 ((-656 (-576)) $)) (-15 -4314 ($ (-783))))) -((-2266 ((|#2| |#2|) 77)) (-2111 ((|#2| |#2|) 65)) (-3388 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2236 ((|#2| |#2|) 75)) (-2084 ((|#2| |#2|) 63)) (-2294 ((|#2| |#2|) 79)) (-2138 ((|#2| |#2|) 67)) (-3926 ((|#2|) 46)) (-1344 (((-115) (-115)) 100)) (-2703 ((|#2| |#2|) 61)) (-2213 (((-112) |#2|) 147)) (-1864 ((|#2| |#2|) 195)) (-2692 ((|#2| |#2|) 171)) (-2171 ((|#2|) 59)) (-3665 ((|#2|) 58)) (-3012 ((|#2| |#2|) 191)) (-2290 ((|#2| |#2|) 167)) (-2788 ((|#2| |#2|) 199)) (-3065 ((|#2| |#2|) 175)) (-2199 ((|#2| |#2|) 163)) (-3385 ((|#2| |#2|) 165)) (-3116 ((|#2| |#2|) 201)) (-1786 ((|#2| |#2|) 177)) (-4027 ((|#2| |#2|) 197)) (-3772 ((|#2| |#2|) 173)) (-2607 ((|#2| |#2|) 193)) (-2326 ((|#2| |#2|) 169)) (-1661 ((|#2| |#2|) 207)) (-1805 ((|#2| |#2|) 183)) (-4270 ((|#2| |#2|) 203)) (-1558 ((|#2| |#2|) 179)) (-3261 ((|#2| |#2|) 211)) (-1507 ((|#2| |#2|) 187)) (-4231 ((|#2| |#2|) 213)) (-4116 ((|#2| |#2|) 189)) (-3135 ((|#2| |#2|) 209)) (-1861 ((|#2| |#2|) 185)) (-1830 ((|#2| |#2|) 205)) (-4383 ((|#2| |#2|) 181)) (-3353 ((|#2| |#2|) 62)) (-2307 ((|#2| |#2|) 80)) (-2149 ((|#2| |#2|) 68)) (-2281 ((|#2| |#2|) 78)) (-2123 ((|#2| |#2|) 66)) (-2253 ((|#2| |#2|) 76)) (-2099 ((|#2| |#2|) 64)) (-3201 (((-112) (-115)) 98)) (-2340 ((|#2| |#2|) 83)) (-2184 ((|#2| |#2|) 71)) (-2317 ((|#2| |#2|) 81)) (-2161 ((|#2| |#2|) 69)) (-2368 ((|#2| |#2|) 85)) (-2207 ((|#2| |#2|) 73)) (-3945 ((|#2| |#2|) 86)) (-2220 ((|#2| |#2|) 74)) (-2352 ((|#2| |#2|) 84)) (-2195 ((|#2| |#2|) 72)) (-2329 ((|#2| |#2|) 82)) (-2173 ((|#2| |#2|) 70))) -(((-285 |#1| |#2|) (-10 -7 (-15 -3353 (|#2| |#2|)) (-15 -2703 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -2099 (|#2| |#2|)) (-15 -2111 (|#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -2138 (|#2| |#2|)) (-15 -2149 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -2173 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -2195 (|#2| |#2|)) (-15 -2207 (|#2| |#2|)) (-15 -2220 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2294 (|#2| |#2|)) (-15 -2307 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3926 (|#2|)) (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -3665 (|#2|)) (-15 -2171 (|#2|)) (-15 -3385 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -2326 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -3065 (|#2| |#2|)) (-15 -1786 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -4383 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -1864 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -2788 (|#2| |#2|)) (-15 -3116 (|#2| |#2|)) (-15 -4270 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -3261 (|#2| |#2|)) (-15 -4231 (|#2| |#2|)) (-15 -3388 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2213 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1021))) (T -285)) -((-2213 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1021))))) (-3388 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1021))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-4231 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3261 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3135 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1661 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-4270 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3116 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2788 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-4027 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2607 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3012 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-4116 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1507 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1861 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-4383 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1558 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1786 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3065 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2326 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2290 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2199 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3385 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2171 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-3665 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1344 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1021))))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021))))) (-3926 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2317 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2307 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2294 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2207 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2195 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2184 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2173 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2161 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2149 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2138 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2123 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2111 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2099 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3353 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021)))))) -(-10 -7 (-15 -3353 (|#2| |#2|)) (-15 -2703 (|#2| |#2|)) (-15 -2084 (|#2| |#2|)) (-15 -2099 (|#2| |#2|)) (-15 -2111 (|#2| |#2|)) (-15 -2123 (|#2| |#2|)) (-15 -2138 (|#2| |#2|)) (-15 -2149 (|#2| |#2|)) (-15 -2161 (|#2| |#2|)) (-15 -2173 (|#2| |#2|)) (-15 -2184 (|#2| |#2|)) (-15 -2195 (|#2| |#2|)) (-15 -2207 (|#2| |#2|)) (-15 -2220 (|#2| |#2|)) (-15 -2236 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2294 (|#2| |#2|)) (-15 -2307 (|#2| |#2|)) (-15 -2317 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -2368 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3926 (|#2|)) (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -3665 (|#2|)) (-15 -2171 (|#2|)) (-15 -3385 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -2290 (|#2| |#2|)) (-15 -2326 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -3065 (|#2| |#2|)) (-15 -1786 (|#2| |#2|)) (-15 -1558 (|#2| |#2|)) (-15 -4383 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -1861 (|#2| |#2|)) (-15 -1507 (|#2| |#2|)) (-15 -4116 (|#2| |#2|)) (-15 -3012 (|#2| |#2|)) (-15 -2607 (|#2| |#2|)) (-15 -1864 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -2788 (|#2| |#2|)) (-15 -3116 (|#2| |#2|)) (-15 -4270 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1661 (|#2| |#2|)) (-15 -3135 (|#2| |#2|)) (-15 -3261 (|#2| |#2|)) (-15 -4231 (|#2| |#2|)) (-15 -3388 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2213 ((-112) |#2|))) -((-3828 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1196)) 151)) (-2404 ((|#2| (-419 (-576)) |#2|) 49)) (-2709 ((|#2| |#2| (-624 |#2|)) 144)) (-1677 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1196)) 143)) (-1923 ((|#2| |#2| (-1196)) 20) ((|#2| |#2|) 23)) (-1845 ((|#2| |#2| (-1196)) 157) ((|#2| |#2|) 155))) -(((-286 |#1| |#2|) (-10 -7 (-15 -1845 (|#2| |#2|)) (-15 -1845 (|#2| |#2| (-1196))) (-15 -1677 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1196))) (-15 -1923 (|#2| |#2|)) (-15 -1923 (|#2| |#2| (-1196))) (-15 -3828 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1196))) (-15 -2709 (|#2| |#2| (-624 |#2|))) (-15 -2404 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -286)) -((-2404 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-2709 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-3828 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1196)) (-4 *2 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-1923 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-1677 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-1845 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-1845 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(-10 -7 (-15 -1845 (|#2| |#2|)) (-15 -1845 (|#2| |#2| (-1196))) (-15 -1677 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1196))) (-15 -1923 (|#2| |#2|)) (-15 -1923 (|#2| |#2| (-1196))) (-15 -3828 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1196))) (-15 -2709 (|#2| |#2| (-624 |#2|))) (-15 -2404 (|#2| (-419 (-576)) |#2|))) -((-2102 (((-3 |#3| "failed") |#3|) 120)) (-2266 ((|#3| |#3|) 142)) (-2441 (((-3 |#3| "failed") |#3|) 89)) (-2111 ((|#3| |#3|) 132)) (-4239 (((-3 |#3| "failed") |#3|) 65)) (-2236 ((|#3| |#3|) 140)) (-3590 (((-3 |#3| "failed") |#3|) 53)) (-2084 ((|#3| |#3|) 130)) (-1543 (((-3 |#3| "failed") |#3|) 122)) (-2294 ((|#3| |#3|) 144)) (-1963 (((-3 |#3| "failed") |#3|) 91)) (-2138 ((|#3| |#3|) 134)) (-3260 (((-3 |#3| "failed") |#3| (-783)) 41)) (-3948 (((-3 |#3| "failed") |#3|) 81)) (-2703 ((|#3| |#3|) 129)) (-2280 (((-3 |#3| "failed") |#3|) 51)) (-3353 ((|#3| |#3|) 128)) (-2147 (((-3 |#3| "failed") |#3|) 123)) (-2307 ((|#3| |#3|) 145)) (-2200 (((-3 |#3| "failed") |#3|) 92)) (-2149 ((|#3| |#3|) 135)) (-3285 (((-3 |#3| "failed") |#3|) 121)) (-2281 ((|#3| |#3|) 143)) (-1484 (((-3 |#3| "failed") |#3|) 90)) (-2123 ((|#3| |#3|) 133)) (-3220 (((-3 |#3| "failed") |#3|) 67)) (-2253 ((|#3| |#3|) 141)) (-2660 (((-3 |#3| "failed") |#3|) 55)) (-2099 ((|#3| |#3|) 131)) (-4240 (((-3 |#3| "failed") |#3|) 73)) (-2340 ((|#3| |#3|) 148)) (-4107 (((-3 |#3| "failed") |#3|) 114)) (-2184 ((|#3| |#3|) 152)) (-3033 (((-3 |#3| "failed") |#3|) 69)) (-2317 ((|#3| |#3|) 146)) (-1447 (((-3 |#3| "failed") |#3|) 57)) (-2161 ((|#3| |#3|) 136)) (-3671 (((-3 |#3| "failed") |#3|) 77)) (-2368 ((|#3| |#3|) 150)) (-4076 (((-3 |#3| "failed") |#3|) 61)) (-2207 ((|#3| |#3|) 138)) (-2103 (((-3 |#3| "failed") |#3|) 79)) (-3945 ((|#3| |#3|) 151)) (-4424 (((-3 |#3| "failed") |#3|) 63)) (-2220 ((|#3| |#3|) 139)) (-4146 (((-3 |#3| "failed") |#3|) 75)) (-2352 ((|#3| |#3|) 149)) (-1579 (((-3 |#3| "failed") |#3|) 117)) (-2195 ((|#3| |#3|) 153)) (-1345 (((-3 |#3| "failed") |#3|) 71)) (-2329 ((|#3| |#3|) 147)) (-3364 (((-3 |#3| "failed") |#3|) 59)) (-2173 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) -(((-287 |#1| |#2| |#3|) (-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -3353 (|#3| |#3|)) (-15 -2703 (|#3| |#3|)) (-15 -2084 (|#3| |#3|)) (-15 -2099 (|#3| |#3|)) (-15 -2111 (|#3| |#3|)) (-15 -2123 (|#3| |#3|)) (-15 -2138 (|#3| |#3|)) (-15 -2149 (|#3| |#3|)) (-15 -2161 (|#3| |#3|)) (-15 -2173 (|#3| |#3|)) (-15 -2184 (|#3| |#3|)) (-15 -2195 (|#3| |#3|)) (-15 -2207 (|#3| |#3|)) (-15 -2220 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2294 (|#3| |#3|)) (-15 -2307 (|#3| |#3|)) (-15 -2317 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)))) (-38 (-419 (-576))) (-1278 |#1|) (-1249 |#1| |#2|)) (T -287)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1278 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1249 *4 *5)))) (-3353 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2099 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2111 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2123 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2138 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2149 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2161 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2173 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2184 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2195 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2207 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2294 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2307 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2317 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4))))) -(-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -3353 (|#3| |#3|)) (-15 -2703 (|#3| |#3|)) (-15 -2084 (|#3| |#3|)) (-15 -2099 (|#3| |#3|)) (-15 -2111 (|#3| |#3|)) (-15 -2123 (|#3| |#3|)) (-15 -2138 (|#3| |#3|)) (-15 -2149 (|#3| |#3|)) (-15 -2161 (|#3| |#3|)) (-15 -2173 (|#3| |#3|)) (-15 -2184 (|#3| |#3|)) (-15 -2195 (|#3| |#3|)) (-15 -2207 (|#3| |#3|)) (-15 -2220 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2294 (|#3| |#3|)) (-15 -2307 (|#3| |#3|)) (-15 -2317 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)))) -((-2102 (((-3 |#3| "failed") |#3|) 70)) (-2266 ((|#3| |#3|) 137)) (-2441 (((-3 |#3| "failed") |#3|) 54)) (-2111 ((|#3| |#3|) 125)) (-4239 (((-3 |#3| "failed") |#3|) 66)) (-2236 ((|#3| |#3|) 135)) (-3590 (((-3 |#3| "failed") |#3|) 50)) (-2084 ((|#3| |#3|) 123)) (-1543 (((-3 |#3| "failed") |#3|) 74)) (-2294 ((|#3| |#3|) 139)) (-1963 (((-3 |#3| "failed") |#3|) 58)) (-2138 ((|#3| |#3|) 127)) (-3260 (((-3 |#3| "failed") |#3| (-783)) 38)) (-3948 (((-3 |#3| "failed") |#3|) 48)) (-2703 ((|#3| |#3|) 111)) (-2280 (((-3 |#3| "failed") |#3|) 46)) (-3353 ((|#3| |#3|) 122)) (-2147 (((-3 |#3| "failed") |#3|) 76)) (-2307 ((|#3| |#3|) 140)) (-2200 (((-3 |#3| "failed") |#3|) 60)) (-2149 ((|#3| |#3|) 128)) (-3285 (((-3 |#3| "failed") |#3|) 72)) (-2281 ((|#3| |#3|) 138)) (-1484 (((-3 |#3| "failed") |#3|) 56)) (-2123 ((|#3| |#3|) 126)) (-3220 (((-3 |#3| "failed") |#3|) 68)) (-2253 ((|#3| |#3|) 136)) (-2660 (((-3 |#3| "failed") |#3|) 52)) (-2099 ((|#3| |#3|) 124)) (-4240 (((-3 |#3| "failed") |#3|) 78)) (-2340 ((|#3| |#3|) 143)) (-4107 (((-3 |#3| "failed") |#3|) 62)) (-2184 ((|#3| |#3|) 131)) (-3033 (((-3 |#3| "failed") |#3|) 112)) (-2317 ((|#3| |#3|) 141)) (-1447 (((-3 |#3| "failed") |#3|) 100)) (-2161 ((|#3| |#3|) 129)) (-3671 (((-3 |#3| "failed") |#3|) 116)) (-2368 ((|#3| |#3|) 145)) (-4076 (((-3 |#3| "failed") |#3|) 107)) (-2207 ((|#3| |#3|) 133)) (-2103 (((-3 |#3| "failed") |#3|) 117)) (-3945 ((|#3| |#3|) 146)) (-4424 (((-3 |#3| "failed") |#3|) 109)) (-2220 ((|#3| |#3|) 134)) (-4146 (((-3 |#3| "failed") |#3|) 80)) (-2352 ((|#3| |#3|) 144)) (-1579 (((-3 |#3| "failed") |#3|) 64)) (-2195 ((|#3| |#3|) 132)) (-1345 (((-3 |#3| "failed") |#3|) 113)) (-2329 ((|#3| |#3|) 142)) (-3364 (((-3 |#3| "failed") |#3|) 103)) (-2173 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) -(((-288 |#1| |#2| |#3| |#4|) (-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -3353 (|#3| |#3|)) (-15 -2703 (|#3| |#3|)) (-15 -2084 (|#3| |#3|)) (-15 -2099 (|#3| |#3|)) (-15 -2111 (|#3| |#3|)) (-15 -2123 (|#3| |#3|)) (-15 -2138 (|#3| |#3|)) (-15 -2149 (|#3| |#3|)) (-15 -2161 (|#3| |#3|)) (-15 -2173 (|#3| |#3|)) (-15 -2184 (|#3| |#3|)) (-15 -2195 (|#3| |#3|)) (-15 -2207 (|#3| |#3|)) (-15 -2220 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2294 (|#3| |#3|)) (-15 -2307 (|#3| |#3|)) (-15 -2317 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)))) (-38 (-419 (-576))) (-1247 |#1|) (-1270 |#1| |#2|) (-1002 |#2|)) (T -288)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1247 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1270 *4 *5)) (-4 *6 (-1002 *5)))) (-3353 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2099 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2111 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2123 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2138 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2149 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2161 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2173 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2184 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2195 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2207 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2220 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2236 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2294 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2307 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2317 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-2368 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4))))) -(-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -3353 (|#3| |#3|)) (-15 -2703 (|#3| |#3|)) (-15 -2084 (|#3| |#3|)) (-15 -2099 (|#3| |#3|)) (-15 -2111 (|#3| |#3|)) (-15 -2123 (|#3| |#3|)) (-15 -2138 (|#3| |#3|)) (-15 -2149 (|#3| |#3|)) (-15 -2161 (|#3| |#3|)) (-15 -2173 (|#3| |#3|)) (-15 -2184 (|#3| |#3|)) (-15 -2195 (|#3| |#3|)) (-15 -2207 (|#3| |#3|)) (-15 -2220 (|#3| |#3|)) (-15 -2236 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2294 (|#3| |#3|)) (-15 -2307 (|#3| |#3|)) (-15 -2317 (|#3| |#3|)) (-15 -2329 (|#3| |#3|)) (-15 -2340 (|#3| |#3|)) (-15 -2352 (|#3| |#3|)) (-15 -2368 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)))) -((-1535 (((-112) $) 20)) (-1968 (((-1201) $) 7)) (-2682 (((-3 (-518) "failed") $) 14)) (-2179 (((-3 (-656 $) "failed") $) NIL)) (-1668 (((-3 (-518) "failed") $) 21)) (-2871 (((-3 (-1123) "failed") $) 18)) (-3636 (((-112) $) 16)) (-4092 (((-874) $) NIL)) (-2499 (((-112) $) 9))) -(((-289) (-13 (-625 (-874)) (-10 -8 (-15 -1968 ((-1201) $)) (-15 -3636 ((-112) $)) (-15 -2871 ((-3 (-1123) "failed") $)) (-15 -1535 ((-112) $)) (-15 -1668 ((-3 (-518) "failed") $)) (-15 -2499 ((-112) $)) (-15 -2682 ((-3 (-518) "failed") $)) (-15 -2179 ((-3 (-656 $) "failed") $))))) (T -289)) -((-1968 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-289)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2871 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-289)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-1668 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2682 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-2179 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))) -(-13 (-625 (-874)) (-10 -8 (-15 -1968 ((-1201) $)) (-15 -3636 ((-112) $)) (-15 -2871 ((-3 (-1123) "failed") $)) (-15 -1535 ((-112) $)) (-15 -1668 ((-3 (-518) "failed") $)) (-15 -2499 ((-112) $)) (-15 -2682 ((-3 (-518) "failed") $)) (-15 -2179 ((-3 (-656 $) "failed") $)))) -((-3081 (((-609) $) 10)) (-3562 (((-597) $) 8)) (-1577 (((-301) $) 12)) (-4380 (($ (-597) (-609) (-301)) NIL)) (-4092 (((-874) $) 19))) -(((-290) (-13 (-625 (-874)) (-10 -8 (-15 -4380 ($ (-597) (-609) (-301))) (-15 -3562 ((-597) $)) (-15 -3081 ((-609) $)) (-15 -1577 ((-301) $))))) (T -290)) -((-4380 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(-13 (-625 (-874)) (-10 -8 (-15 -4380 ($ (-597) (-609) (-301))) (-15 -3562 ((-597) $)) (-15 -3081 ((-609) $)) (-15 -1577 ((-301) $)))) -((-3457 (($ (-1 (-112) |#2|) $) 24)) (-1690 (($ $) 38)) (-4376 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2892 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-1897 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-3371 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-2470 (($ $ (-576)) 11) (($ $ (-1254 (-576))) 14)) (-2116 (($ $ |#2|) 32) (($ $ $) NIL)) (-2851 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL))) -(((-291 |#1| |#2|) (-10 -8 (-15 -1897 (|#1| |#1| |#1|)) (-15 -4376 (|#1| |#2| |#1|)) (-15 -1897 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4376 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2116 (|#1| |#1| |#1|)) (-15 -2116 (|#1| |#1| |#2|)) (-15 -3371 (|#1| |#1| |#1| (-576))) (-15 -3371 (|#1| |#2| |#1| (-576))) (-15 -2470 (|#1| |#1| (-1254 (-576)))) (-15 -2470 (|#1| |#1| (-576))) (-15 -2851 (|#1| (-656 |#1|))) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#2|)) (-15 -2892 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3457 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2892 (|#1| |#2| |#1|)) (-15 -1690 (|#1| |#1|))) (-292 |#2|) (-1237)) (T -291)) -NIL -(-10 -8 (-15 -1897 (|#1| |#1| |#1|)) (-15 -4376 (|#1| |#2| |#1|)) (-15 -1897 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4376 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2116 (|#1| |#1| |#1|)) (-15 -2116 (|#1| |#1| |#2|)) (-15 -3371 (|#1| |#1| |#1| (-576))) (-15 -3371 (|#1| |#2| |#1| (-576))) (-15 -2470 (|#1| |#1| (-1254 (-576)))) (-15 -2470 (|#1| |#1| (-576))) (-15 -2851 (|#1| (-656 |#1|))) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#2|)) (-15 -2892 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3457 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2892 (|#1| |#2| |#1|)) (-15 -1690 (|#1| |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2449 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) 8)) (-4248 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3831 (($ (-1 (-112) |#1|) $) 88)) (-3457 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-4329 (($ $) 86 (|has| |#1| (-1119)))) (-1690 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1119)))) (-2892 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 52)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1992 (($ (-783) |#1|) 70)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 44 (|has| (-576) (-862)))) (-1897 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 45 (|has| (-576) (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2361 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-3371 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4428 (((-656 (-576)) $) 47)) (-2013 (((-112) (-576) $) 48)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2701 ((|#1| $) 43 (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2918 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-2531 (($ $ (-576)) 94) (($ $ (-1254 (-576))) 93)) (-2470 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 72)) (-2116 (($ $ |#1|) 96) (($ $ $) 95)) (-2851 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-292 |#1|) (-141) (-1237)) (T -292)) -((-2116 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) (-2116 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) (-2531 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-2531 (*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-4376 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-2361 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1237)))) (-2361 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-1897 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-3831 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) (-4376 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1119)))) (-4329 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1119)))) (-1897 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-862))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4463) (-15 -2116 ($ $ |t#1|)) (-15 -2116 ($ $ $)) (-15 -2531 ($ $ (-576))) (-15 -2531 ($ $ (-1254 (-576)))) (-15 -4376 ($ (-1 (-112) |t#1|) $)) (-15 -2361 ($ |t#1| $ (-576))) (-15 -2361 ($ $ $ (-576))) (-15 -1897 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3831 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -4376 ($ |t#1| $)) (-15 -4329 ($ $))) |%noBranch|) (IF (|has| |t#1| (-862)) (-15 -1897 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) +((-3474 (((-112) $ $) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4330 (((-656 (-576)) $) 29)) (-1433 (((-783) $) 27)) (-3563 (((-874) $) 33) (($ (-656 (-576))) 23)) (-3985 (((-112) $ $) NIL)) (-3708 (($ (-783)) 30)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 9)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 17))) +(((-284) (-13 (-862) (-10 -8 (-15 -3563 ($ (-656 (-576)))) (-15 -1433 ((-783) $)) (-15 -4330 ((-656 (-576)) $)) (-15 -3708 ($ (-783)))))) (T -284)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) (-3708 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) +(-13 (-862) (-10 -8 (-15 -3563 ($ (-656 (-576)))) (-15 -1433 ((-783) $)) (-15 -4330 ((-656 (-576)) $)) (-15 -3708 ($ (-783))))) +((-3894 ((|#2| |#2|) 77)) (-3768 ((|#2| |#2|) 65)) (-2860 (((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3872 ((|#2| |#2|) 75)) (-3747 ((|#2| |#2|) 63)) (-3916 ((|#2| |#2|) 79)) (-3788 ((|#2| |#2|) 67)) (-1570 ((|#2|) 46)) (-3974 (((-115) (-115)) 100)) (-3710 ((|#2| |#2|) 61)) (-3646 (((-112) |#2|) 147)) (-2763 ((|#2| |#2|) 195)) (-3694 ((|#2| |#2|) 171)) (-2048 ((|#2|) 59)) (-2225 ((|#2|) 58)) (-3893 ((|#2| |#2|) 191)) (-1543 ((|#2| |#2|) 167)) (-1342 ((|#2| |#2|) 199)) (-4346 ((|#2| |#2|) 175)) (-1673 ((|#2| |#2|) 163)) (-3730 ((|#2| |#2|) 165)) (-1528 ((|#2| |#2|) 201)) (-2993 ((|#2| |#2|) 177)) (-2865 ((|#2| |#2|) 197)) (-2385 ((|#2| |#2|) 173)) (-3311 ((|#2| |#2|) 193)) (-4132 ((|#2| |#2|) 169)) (-3080 ((|#2| |#2|) 207)) (-2158 ((|#2| |#2|) 183)) (-2079 ((|#2| |#2|) 203)) (-1788 ((|#2| |#2|) 179)) (-4107 ((|#2| |#2|) 211)) (-3785 ((|#2| |#2|) 187)) (-3743 ((|#2| |#2|) 213)) (-3883 ((|#2| |#2|) 189)) (-2868 ((|#2| |#2|) 209)) (-2967 ((|#2| |#2|) 185)) (-3744 ((|#2| |#2|) 205)) (-3124 ((|#2| |#2|) 181)) (-3984 ((|#2| |#2|) 62)) (-3928 ((|#2| |#2|) 80)) (-3798 ((|#2| |#2|) 68)) (-3905 ((|#2| |#2|) 78)) (-3778 ((|#2| |#2|) 66)) (-3882 ((|#2| |#2|) 76)) (-3757 ((|#2| |#2|) 64)) (-3263 (((-112) (-115)) 98)) (-3958 ((|#2| |#2|) 83)) (-3831 ((|#2| |#2|) 71)) (-3939 ((|#2| |#2|) 81)) (-3808 ((|#2| |#2|) 69)) (-3981 ((|#2| |#2|) 85)) (-3852 ((|#2| |#2|) 73)) (-1830 ((|#2| |#2|) 86)) (-3863 ((|#2| |#2|) 74)) (-3969 ((|#2| |#2|) 84)) (-3841 ((|#2| |#2|) 72)) (-3948 ((|#2| |#2|) 82)) (-3820 ((|#2| |#2|) 70))) +(((-285 |#1| |#2|) (-10 -7 (-15 -3984 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -3747 (|#2| |#2|)) (-15 -3757 (|#2| |#2|)) (-15 -3768 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -3831 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3872 (|#2| |#2|)) (-15 -3882 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3928 (|#2| |#2|)) (-15 -3939 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1570 (|#2|)) (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -2225 (|#2|)) (-15 -2048 (|#2|)) (-15 -3730 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -4346 (|#2| |#2|)) (-15 -2993 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -3124 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -2967 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -2763 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3080 (|#2| |#2|)) (-15 -2868 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -2860 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3646 ((-112) |#2|))) (-568) (-13 (-442 |#1|) (-1021))) (T -285)) +((-3646 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-442 *4) (-1021))))) (-2860 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-442 *4) (-1021))) (-4 *4 (-568)) (-5 *1 (-285 *4 *2)))) (-3743 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-4107 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2868 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3080 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2079 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1342 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2865 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2763 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3311 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2967 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2158 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3124 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2993 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-4346 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2385 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3694 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3730 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-2048 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-2225 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) (-4 *4 (-13 (-442 *3) (-1021))))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021))))) (-1570 (*1 *2) (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) (-4 *3 (-568)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3948 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3928 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3882 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3757 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3747 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021)))))) +(-10 -7 (-15 -3984 (|#2| |#2|)) (-15 -3710 (|#2| |#2|)) (-15 -3747 (|#2| |#2|)) (-15 -3757 (|#2| |#2|)) (-15 -3768 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -3788 (|#2| |#2|)) (-15 -3798 (|#2| |#2|)) (-15 -3808 (|#2| |#2|)) (-15 -3820 (|#2| |#2|)) (-15 -3831 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3863 (|#2| |#2|)) (-15 -3872 (|#2| |#2|)) (-15 -3882 (|#2| |#2|)) (-15 -3894 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3928 (|#2| |#2|)) (-15 -3939 (|#2| |#2|)) (-15 -3948 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -1570 (|#2|)) (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -2225 (|#2|)) (-15 -2048 (|#2|)) (-15 -3730 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -4132 (|#2| |#2|)) (-15 -3694 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -4346 (|#2| |#2|)) (-15 -2993 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -3124 (|#2| |#2|)) (-15 -2158 (|#2| |#2|)) (-15 -2967 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -3311 (|#2| |#2|)) (-15 -2763 (|#2| |#2|)) (-15 -2865 (|#2| |#2|)) (-15 -1342 (|#2| |#2|)) (-15 -1528 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3080 (|#2| |#2|)) (-15 -2868 (|#2| |#2|)) (-15 -4107 (|#2| |#2|)) (-15 -3743 (|#2| |#2|)) (-15 -2860 ((-3 |#2| "failed") |#2| (-656 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -3646 ((-112) |#2|))) +((-1985 (((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1195)) 151)) (-2505 ((|#2| (-419 (-576)) |#2|) 49)) (-2546 ((|#2| |#2| (-624 |#2|)) 144)) (-1343 (((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1195)) 143)) (-1753 ((|#2| |#2| (-1195)) 20) ((|#2| |#2|) 23)) (-2614 ((|#2| |#2| (-1195)) 157) ((|#2| |#2|) 155))) +(((-286 |#1| |#2|) (-10 -7 (-15 -2614 (|#2| |#2|)) (-15 -2614 (|#2| |#2| (-1195))) (-15 -1343 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1195))) (-15 -1753 (|#2| |#2|)) (-15 -1753 (|#2| |#2| (-1195))) (-15 -1985 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1195))) (-15 -2546 (|#2| |#2| (-624 |#2|))) (-15 -2505 (|#2| (-419 (-576)) |#2|))) (-13 (-568) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -286)) +((-2505 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-2546 (*1 *2 *2 *3) (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)))) (-1985 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1195)) (-4 *2 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *5 *2)))) (-1753 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-1753 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-1343 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-2614 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) +(-10 -7 (-15 -2614 (|#2| |#2|)) (-15 -2614 (|#2| |#2| (-1195))) (-15 -1343 ((-2 (|:| |func| |#2|) (|:| |kers| (-656 (-624 |#2|))) (|:| |vals| (-656 |#2|))) |#2| (-1195))) (-15 -1753 (|#2| |#2|)) (-15 -1753 (|#2| |#2| (-1195))) (-15 -1985 ((-3 |#2| "failed") (-656 (-624 |#2|)) |#2| (-1195))) (-15 -2546 (|#2| |#2| (-624 |#2|))) (-15 -2505 (|#2| (-419 (-576)) |#2|))) +((-2946 (((-3 |#3| "failed") |#3|) 120)) (-3894 ((|#3| |#3|) 142)) (-3016 (((-3 |#3| "failed") |#3|) 89)) (-3768 ((|#3| |#3|) 132)) (-2231 (((-3 |#3| "failed") |#3|) 65)) (-3872 ((|#3| |#3|) 140)) (-2471 (((-3 |#3| "failed") |#3|) 53)) (-3747 ((|#3| |#3|) 130)) (-2704 (((-3 |#3| "failed") |#3|) 122)) (-3916 ((|#3| |#3|) 144)) (-3456 (((-3 |#3| "failed") |#3|) 91)) (-3788 ((|#3| |#3|) 134)) (-4009 (((-3 |#3| "failed") |#3| (-783)) 41)) (-3873 (((-3 |#3| "failed") |#3|) 81)) (-3710 ((|#3| |#3|) 129)) (-3174 (((-3 |#3| "failed") |#3|) 51)) (-3984 ((|#3| |#3|) 128)) (-3507 (((-3 |#3| "failed") |#3|) 123)) (-3928 ((|#3| |#3|) 145)) (-1798 (((-3 |#3| "failed") |#3|) 92)) (-3798 ((|#3| |#3|) 135)) (-1555 (((-3 |#3| "failed") |#3|) 121)) (-3905 ((|#3| |#3|) 143)) (-2514 (((-3 |#3| "failed") |#3|) 90)) (-3778 ((|#3| |#3|) 133)) (-2627 (((-3 |#3| "failed") |#3|) 67)) (-3882 ((|#3| |#3|) 141)) (-2941 (((-3 |#3| "failed") |#3|) 55)) (-3757 ((|#3| |#3|) 131)) (-2337 (((-3 |#3| "failed") |#3|) 73)) (-3958 ((|#3| |#3|) 148)) (-4251 (((-3 |#3| "failed") |#3|) 114)) (-3831 ((|#3| |#3|) 152)) (-4004 (((-3 |#3| "failed") |#3|) 69)) (-3939 ((|#3| |#3|) 146)) (-1804 (((-3 |#3| "failed") |#3|) 57)) (-3808 ((|#3| |#3|) 136)) (-2739 (((-3 |#3| "failed") |#3|) 77)) (-3981 ((|#3| |#3|) 150)) (-3169 (((-3 |#3| "failed") |#3|) 61)) (-3852 ((|#3| |#3|) 138)) (-3055 (((-3 |#3| "failed") |#3|) 79)) (-1830 ((|#3| |#3|) 151)) (-4193 (((-3 |#3| "failed") |#3|) 63)) (-3863 ((|#3| |#3|) 139)) (-1768 (((-3 |#3| "failed") |#3|) 75)) (-3969 ((|#3| |#3|) 149)) (-2241 (((-3 |#3| "failed") |#3|) 117)) (-3841 ((|#3| |#3|) 153)) (-2503 (((-3 |#3| "failed") |#3|) 71)) (-3948 ((|#3| |#3|) 147)) (-2490 (((-3 |#3| "failed") |#3|) 59)) (-3820 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-419 (-576))) 47 (|has| |#1| (-374))))) +(((-287 |#1| |#2| |#3|) (-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -3984 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3747 (|#3| |#3|)) (-15 -3757 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3788 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3820 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3872 (|#3| |#3|)) (-15 -3882 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3928 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3948 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3969 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)))) (-38 (-419 (-576))) (-1277 |#1|) (-1248 |#1| |#2|)) (T -287)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1277 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1248 *4 *5)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3747 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3757 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3882 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3928 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3948 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4))))) +(-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -3984 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3747 (|#3| |#3|)) (-15 -3757 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3788 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3820 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3872 (|#3| |#3|)) (-15 -3882 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3928 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3948 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3969 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)))) +((-2946 (((-3 |#3| "failed") |#3|) 70)) (-3894 ((|#3| |#3|) 137)) (-3016 (((-3 |#3| "failed") |#3|) 54)) (-3768 ((|#3| |#3|) 125)) (-2231 (((-3 |#3| "failed") |#3|) 66)) (-3872 ((|#3| |#3|) 135)) (-2471 (((-3 |#3| "failed") |#3|) 50)) (-3747 ((|#3| |#3|) 123)) (-2704 (((-3 |#3| "failed") |#3|) 74)) (-3916 ((|#3| |#3|) 139)) (-3456 (((-3 |#3| "failed") |#3|) 58)) (-3788 ((|#3| |#3|) 127)) (-4009 (((-3 |#3| "failed") |#3| (-783)) 38)) (-3873 (((-3 |#3| "failed") |#3|) 48)) (-3710 ((|#3| |#3|) 111)) (-3174 (((-3 |#3| "failed") |#3|) 46)) (-3984 ((|#3| |#3|) 122)) (-3507 (((-3 |#3| "failed") |#3|) 76)) (-3928 ((|#3| |#3|) 140)) (-1798 (((-3 |#3| "failed") |#3|) 60)) (-3798 ((|#3| |#3|) 128)) (-1555 (((-3 |#3| "failed") |#3|) 72)) (-3905 ((|#3| |#3|) 138)) (-2514 (((-3 |#3| "failed") |#3|) 56)) (-3778 ((|#3| |#3|) 126)) (-2627 (((-3 |#3| "failed") |#3|) 68)) (-3882 ((|#3| |#3|) 136)) (-2941 (((-3 |#3| "failed") |#3|) 52)) (-3757 ((|#3| |#3|) 124)) (-2337 (((-3 |#3| "failed") |#3|) 78)) (-3958 ((|#3| |#3|) 143)) (-4251 (((-3 |#3| "failed") |#3|) 62)) (-3831 ((|#3| |#3|) 131)) (-4004 (((-3 |#3| "failed") |#3|) 112)) (-3939 ((|#3| |#3|) 141)) (-1804 (((-3 |#3| "failed") |#3|) 100)) (-3808 ((|#3| |#3|) 129)) (-2739 (((-3 |#3| "failed") |#3|) 116)) (-3981 ((|#3| |#3|) 145)) (-3169 (((-3 |#3| "failed") |#3|) 107)) (-3852 ((|#3| |#3|) 133)) (-3055 (((-3 |#3| "failed") |#3|) 117)) (-1830 ((|#3| |#3|) 146)) (-4193 (((-3 |#3| "failed") |#3|) 109)) (-3863 ((|#3| |#3|) 134)) (-1768 (((-3 |#3| "failed") |#3|) 80)) (-3969 ((|#3| |#3|) 144)) (-2241 (((-3 |#3| "failed") |#3|) 64)) (-3841 ((|#3| |#3|) 132)) (-2503 (((-3 |#3| "failed") |#3|) 113)) (-3948 ((|#3| |#3|) 142)) (-2490 (((-3 |#3| "failed") |#3|) 103)) (-3820 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-419 (-576))) 44 (|has| |#1| (-374))))) +(((-288 |#1| |#2| |#3| |#4|) (-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -3984 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3747 (|#3| |#3|)) (-15 -3757 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3788 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3820 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3872 (|#3| |#3|)) (-15 -3882 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3928 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3948 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3969 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)))) (-38 (-419 (-576))) (-1246 |#1|) (-1269 |#1| |#2|) (-1002 |#2|)) (T -288)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) (-4 *5 (-1246 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1269 *4 *5)) (-4 *6 (-1002 *5)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3747 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3757 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3768 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3808 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3820 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3831 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3863 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3882 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3928 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3939 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3948 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4))))) +(-13 (-1002 |#3|) (-10 -7 (IF (|has| |#1| (-374)) (-15 ** (|#3| |#3| (-419 (-576)))) |%noBranch|) (-15 -3984 (|#3| |#3|)) (-15 -3710 (|#3| |#3|)) (-15 -3747 (|#3| |#3|)) (-15 -3757 (|#3| |#3|)) (-15 -3768 (|#3| |#3|)) (-15 -3778 (|#3| |#3|)) (-15 -3788 (|#3| |#3|)) (-15 -3798 (|#3| |#3|)) (-15 -3808 (|#3| |#3|)) (-15 -3820 (|#3| |#3|)) (-15 -3831 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3863 (|#3| |#3|)) (-15 -3872 (|#3| |#3|)) (-15 -3882 (|#3| |#3|)) (-15 -3894 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3928 (|#3| |#3|)) (-15 -3939 (|#3| |#3|)) (-15 -3948 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3969 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -1830 (|#3| |#3|)))) +((-3645 (((-112) $) 20)) (-3074 (((-1200) $) 7)) (-2096 (((-3 (-518) "failed") $) 14)) (-3371 (((-3 (-656 $) "failed") $) NIL)) (-1913 (((-3 (-518) "failed") $) 21)) (-1441 (((-3 (-1123) "failed") $) 18)) (-3652 (((-112) $) 16)) (-3563 (((-874) $) NIL)) (-2432 (((-112) $) 9))) +(((-289) (-13 (-625 (-874)) (-10 -8 (-15 -3074 ((-1200) $)) (-15 -3652 ((-112) $)) (-15 -1441 ((-3 (-1123) "failed") $)) (-15 -3645 ((-112) $)) (-15 -1913 ((-3 (-518) "failed") $)) (-15 -2432 ((-112) $)) (-15 -2096 ((-3 (-518) "failed") $)) (-15 -3371 ((-3 (-656 $) "failed") $))))) (T -289)) +((-3074 (*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-289)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-1441 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-289)))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-1913 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) (-2096 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) (-3371 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289))))) +(-13 (-625 (-874)) (-10 -8 (-15 -3074 ((-1200) $)) (-15 -3652 ((-112) $)) (-15 -1441 ((-3 (-1123) "failed") $)) (-15 -3645 ((-112) $)) (-15 -1913 ((-3 (-518) "failed") $)) (-15 -2432 ((-112) $)) (-15 -2096 ((-3 (-518) "failed") $)) (-15 -3371 ((-3 (-656 $) "failed") $)))) +((-4092 (((-609) $) 10)) (-2622 (((-597) $) 8)) (-3241 (((-301) $) 12)) (-2808 (($ (-597) (-609) (-301)) NIL)) (-3563 (((-874) $) 19))) +(((-290) (-13 (-625 (-874)) (-10 -8 (-15 -2808 ($ (-597) (-609) (-301))) (-15 -2622 ((-597) $)) (-15 -4092 ((-609) $)) (-15 -3241 ((-301) $))))) (T -290)) +((-2808 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) +(-13 (-625 (-874)) (-10 -8 (-15 -2808 ($ (-597) (-609) (-301))) (-15 -2622 ((-597) $)) (-15 -4092 ((-609) $)) (-15 -3241 ((-301) $)))) +((-2496 (($ (-1 (-112) |#2|) $) 24)) (-3172 (($ $) 38)) (-3623 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3902 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2093 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2277 (($ |#2| $ (-576)) 20) (($ $ $ (-576)) 22)) (-3464 (($ $ (-576)) 11) (($ $ (-1253 (-576))) 14)) (-1523 (($ $ |#2|) 32) (($ $ $) NIL)) (-1661 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-656 $)) NIL))) +(((-291 |#1| |#2|) (-10 -8 (-15 -2093 (|#1| |#1| |#1|)) (-15 -3623 (|#1| |#2| |#1|)) (-15 -2093 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3623 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1| |#2|)) (-15 -2277 (|#1| |#1| |#1| (-576))) (-15 -2277 (|#1| |#2| |#1| (-576))) (-15 -3464 (|#1| |#1| (-1253 (-576)))) (-15 -3464 (|#1| |#1| (-576))) (-15 -1661 (|#1| (-656 |#1|))) (-15 -1661 (|#1| |#1| |#1|)) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#2|)) (-15 -3902 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2496 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3902 (|#1| |#2| |#1|)) (-15 -3172 (|#1| |#1|))) (-292 |#2|) (-1236)) (T -291)) +NIL +(-10 -8 (-15 -2093 (|#1| |#1| |#1|)) (-15 -3623 (|#1| |#2| |#1|)) (-15 -2093 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3623 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -1523 (|#1| |#1| |#2|)) (-15 -2277 (|#1| |#1| |#1| (-576))) (-15 -2277 (|#1| |#2| |#1| (-576))) (-15 -3464 (|#1| |#1| (-1253 (-576)))) (-15 -3464 (|#1| |#1| (-576))) (-15 -1661 (|#1| (-656 |#1|))) (-15 -1661 (|#1| |#1| |#1|)) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#2|)) (-15 -3902 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2496 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3902 (|#1| |#2| |#1|)) (-15 -3172 (|#1| |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2333 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) 8)) (-3731 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-4001 (($ (-1 (-112) |#1|) $) 88)) (-2496 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3315 (($ $) 86 (|has| |#1| (-1119)))) (-3172 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ (-1 (-112) |#1|) $) 92) (($ |#1| $) 87 (|has| |#1| (-1119)))) (-3902 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 52)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-4033 (($ (-783) |#1|) 70)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 44 (|has| (-576) (-862)))) (-2093 (($ (-1 (-112) |#1| |#1|) $ $) 89) (($ $ $) 85 (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 45 (|has| (-576) (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-2040 (($ |#1| $ (-576)) 91) (($ $ $ (-576)) 90)) (-2277 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3321 (((-656 (-576)) $) 47)) (-2378 (((-112) (-576) $) 48)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3504 ((|#1| $) 43 (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2500 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-2560 (($ $ (-576)) 94) (($ $ (-1253 (-576))) 93)) (-3464 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 72)) (-1523 (($ $ |#1|) 96) (($ $ $) 95)) (-1661 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-292 |#1|) (-141) (-1236)) (T -292)) +((-1523 (*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) (-1523 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) (-2560 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-2560 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-3623 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-2040 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1236)))) (-2040 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-2093 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-4001 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) (-3623 (*1 *1 *2 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1119)))) (-3315 (*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1119)))) (-2093 (*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-862))))) +(-13 (-663 |t#1|) (-10 -8 (-6 -4462) (-15 -1523 ($ $ |t#1|)) (-15 -1523 ($ $ $)) (-15 -2560 ($ $ (-576))) (-15 -2560 ($ $ (-1253 (-576)))) (-15 -3623 ($ (-1 (-112) |t#1|) $)) (-15 -2040 ($ |t#1| $ (-576))) (-15 -2040 ($ $ $ (-576))) (-15 -2093 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4001 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -3623 ($ |t#1| $)) (-15 -3315 ($ $))) |%noBranch|) (IF (|has| |t#1| (-862)) (-15 -2093 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) ((** (($ $ $) 10))) (((-293 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-294)) (T -293)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2703 (($ $) 6)) (-3353 (($ $) 7)) (** (($ $ $) 8))) +((-3710 (($ $) 6)) (-3984 (($ $) 7)) (** (($ $ $) 8))) (((-294) (-141)) (T -294)) -((** (*1 *1 *1 *1) (-4 *1 (-294))) (-3353 (*1 *1 *1) (-4 *1 (-294))) (-2703 (*1 *1 *1) (-4 *1 (-294)))) -(-13 (-10 -8 (-15 -2703 ($ $)) (-15 -3353 ($ $)) (-15 ** ($ $ $)))) -((-2804 (((-656 (-1176 |#1|)) (-1176 |#1|) |#1|) 35)) (-2671 ((|#2| |#2| |#1|) 39)) (-4026 ((|#2| |#2| |#1|) 41)) (-3328 ((|#2| |#2| |#1|) 40))) -(((-295 |#1| |#2|) (-10 -7 (-15 -2671 (|#2| |#2| |#1|)) (-15 -3328 (|#2| |#2| |#1|)) (-15 -4026 (|#2| |#2| |#1|)) (-15 -2804 ((-656 (-1176 |#1|)) (-1176 |#1|) |#1|))) (-374) (-1278 |#1|)) (T -295)) -((-2804 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1176 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1176 *4)) (-4 *5 (-1278 *4)))) (-4026 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))) (-3328 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3)))) (-2671 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3))))) -(-10 -7 (-15 -2671 (|#2| |#2| |#1|)) (-15 -3328 (|#2| |#2| |#1|)) (-15 -4026 (|#2| |#2| |#1|)) (-15 -2804 ((-656 (-1176 |#1|)) (-1176 |#1|) |#1|))) -((-4367 ((|#2| $ |#1|) 6))) -(((-296 |#1| |#2|) (-141) (-1237) (-1237)) (T -296)) -((-4367 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1237)) (-4 *2 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -4367 (|t#2| $ |t#1|)))) -(((-1237) . T)) -((-3888 ((|#3| $ |#2| |#3|) 12)) (-3817 ((|#3| $ |#2|) 10))) -(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -3888 (|#3| |#1| |#2| |#3|)) (-15 -3817 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1119) (-1237)) (T -297)) -NIL -(-10 -8 (-15 -3888 (|#3| |#1| |#2| |#3|)) (-15 -3817 (|#3| |#1| |#2|))) -((-4248 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4463)))) (-3888 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) 11)) (-4367 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-298 |#1| |#2|) (-141) (-1119) (-1237)) (T -298)) -((-4367 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) (-3817 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) (-4248 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) (-3888 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237))))) -(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -4367 (|t#2| $ |t#1| |t#2|)) (-15 -3817 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4463)) (PROGN (-15 -4248 (|t#2| $ |t#1| |t#2|)) (-15 -3888 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-296 |#1| |#2|) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 37)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 44)) (-2573 (($ $) 41)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-1975 (($ $ $) 35)) (-2359 (($ |#2| |#3|) 18)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1810 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1567 ((|#3| $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 19)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2722 (((-3 $ "failed") $ $) NIL)) (-1787 (((-783) $) 36)) (-4367 ((|#2| $ |#2|) 46)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 23)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-4300 (($) 31 T CONST)) (-4310 (($) 39 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) -(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1567 (|#3| $)) (-15 -4092 (|#2| $)) (-15 -2359 ($ |#2| |#3|)) (-15 -2722 ((-3 $ "failed") $ $)) (-15 -3179 ((-3 $ "failed") $)) (-15 -1644 ($ $)))) (-174) (-1263 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) -((-3179 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1567 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1263 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4092 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2359 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1263 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2722 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1644 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) -(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -1567 (|#3| $)) (-15 -4092 (|#2| $)) (-15 -2359 ($ |#2| |#3|)) (-15 -2722 ((-3 $ "failed") $ $)) (-15 -3179 ((-3 $ "failed") $)) (-15 -1644 ($ $)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 33)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((** (*1 *1 *1 *1) (-4 *1 (-294))) (-3984 (*1 *1 *1) (-4 *1 (-294))) (-3710 (*1 *1 *1) (-4 *1 (-294)))) +(-13 (-10 -8 (-15 -3710 ($ $)) (-15 -3984 ($ $)) (-15 ** ($ $ $)))) +((-2318 (((-656 (-1176 |#1|)) (-1176 |#1|) |#1|) 35)) (-3246 ((|#2| |#2| |#1|) 39)) (-2740 ((|#2| |#2| |#1|) 41)) (-3862 ((|#2| |#2| |#1|) 40))) +(((-295 |#1| |#2|) (-10 -7 (-15 -3246 (|#2| |#2| |#1|)) (-15 -3862 (|#2| |#2| |#1|)) (-15 -2740 (|#2| |#2| |#1|)) (-15 -2318 ((-656 (-1176 |#1|)) (-1176 |#1|) |#1|))) (-374) (-1277 |#1|)) (T -295)) +((-2318 (*1 *2 *3 *4) (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1176 *4))) (-5 *1 (-295 *4 *5)) (-5 *3 (-1176 *4)) (-4 *5 (-1277 *4)))) (-2740 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))) (-3862 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3)))) (-3246 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3))))) +(-10 -7 (-15 -3246 (|#2| |#2| |#1|)) (-15 -3862 (|#2| |#2| |#1|)) (-15 -2740 (|#2| |#2| |#1|)) (-15 -2318 ((-656 (-1176 |#1|)) (-1176 |#1|) |#1|))) +((-2871 ((|#2| $ |#1|) 6))) +(((-296 |#1| |#2|) (-141) (-1236) (-1236)) (T -296)) +((-2871 (*1 *2 *1 *3) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1236)) (-4 *2 (-1236))))) +(-13 (-1236) (-10 -8 (-15 -2871 (|t#2| $ |t#1|)))) +(((-1236) . T)) +((-1776 ((|#3| $ |#2| |#3|) 12)) (-1698 ((|#3| $ |#2|) 10))) +(((-297 |#1| |#2| |#3|) (-10 -8 (-15 -1776 (|#3| |#1| |#2| |#3|)) (-15 -1698 (|#3| |#1| |#2|))) (-298 |#2| |#3|) (-1119) (-1236)) (T -297)) +NIL +(-10 -8 (-15 -1776 (|#3| |#1| |#2| |#3|)) (-15 -1698 (|#3| |#1| |#2|))) +((-3731 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4462)))) (-1776 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) 11)) (-2871 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-298 |#1| |#2|) (-141) (-1119) (-1236)) (T -298)) +((-2871 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1236)))) (-1698 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1236)))) (-3731 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1236)))) (-1776 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1236))))) +(-13 (-296 |t#1| |t#2|) (-10 -8 (-15 -2871 (|t#2| $ |t#1| |t#2|)) (-15 -1698 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3731 (|t#2| $ |t#1| |t#2|)) (-15 -1776 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-296 |#1| |#2|) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 37)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 44)) (-4412 (($ $) 41)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-3420 (($ $ $) 35)) (-2521 (($ |#2| |#3|) 18)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1414 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3325 ((|#3| $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 19)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2655 (((-3 $ "failed") $ $) NIL)) (-3112 (((-783) $) 36)) (-2871 ((|#2| $ |#2|) 46)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 23)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2800 (($) 31 T CONST)) (-2810 (($) 39 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40))) +(((-299 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -3325 (|#3| $)) (-15 -3563 (|#2| $)) (-15 -2521 ($ |#2| |#3|)) (-15 -2655 ((-3 $ "failed") $ $)) (-15 -1551 ((-3 $ "failed") $)) (-15 -2095 ($ $)))) (-174) (-1262 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -299)) +((-1551 (*1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3325 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1262 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3563 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2521 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1262 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2655 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2095 (*1 *1 *1) (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))) +(-13 (-317) (-296 |#2| |#2|) (-10 -8 (-15 -3325 (|#3| $)) (-15 -3563 (|#2| $)) (-15 -2521 ($ |#2| |#3|)) (-15 -2655 ((-3 $ "failed") $ $)) (-15 -1551 ((-3 $ "failed") $)) (-15 -2095 ($ $)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 33)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-300) (-141)) (T -300)) NIL -(-13 (-1068) (-111 $ $) (-10 -7 (-6 -4455))) +(-13 (-1068) (-111 $ $) (-10 -7 (-6 -4454))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-1990 (((-656 (-1104)) $) 10)) (-1385 (($ (-518) (-518) (-1123) $) 19)) (-4249 (($ (-518) (-656 (-982)) $) 23)) (-2625 (($) 25)) (-1446 (((-703 (-1123)) (-518) (-518) $) 18)) (-1334 (((-656 (-982)) (-518) $) 22)) (-2643 (($) 7)) (-1823 (($) 24)) (-4092 (((-874) $) 29)) (-4094 (($) 26))) -(((-301) (-13 (-625 (-874)) (-10 -8 (-15 -2643 ($)) (-15 -1990 ((-656 (-1104)) $)) (-15 -1446 ((-703 (-1123)) (-518) (-518) $)) (-15 -1385 ($ (-518) (-518) (-1123) $)) (-15 -1334 ((-656 (-982)) (-518) $)) (-15 -4249 ($ (-518) (-656 (-982)) $)) (-15 -1823 ($)) (-15 -2625 ($)) (-15 -4094 ($))))) (T -301)) -((-2643 (*1 *1) (-5 *1 (-301))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-656 (-1104))) (-5 *1 (-301)))) (-1446 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1123))) (-5 *1 (-301)))) (-1385 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-301)))) (-1334 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-982))) (-5 *1 (-301)))) (-4249 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-301)))) (-1823 (*1 *1) (-5 *1 (-301))) (-2625 (*1 *1) (-5 *1 (-301))) (-4094 (*1 *1) (-5 *1 (-301)))) -(-13 (-625 (-874)) (-10 -8 (-15 -2643 ($)) (-15 -1990 ((-656 (-1104)) $)) (-15 -1446 ((-703 (-1123)) (-518) (-518) $)) (-15 -1385 ($ (-518) (-518) (-1123) $)) (-15 -1334 ((-656 (-982)) (-518) $)) (-15 -4249 ($ (-518) (-656 (-982)) $)) (-15 -1823 ($)) (-15 -2625 ($)) (-15 -4094 ($)))) -((-4034 (((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))) 102)) (-3421 (((-656 (-701 (-419 (-969 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|)))))) (-701 (-419 (-969 |#1|)))) 97) (((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))) (-783) (-783)) 41)) (-2675 (((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))) 99)) (-4143 (((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|)))) 75)) (-4356 (((-656 (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (-701 (-419 (-969 |#1|)))) 74)) (-3794 (((-969 |#1|) (-701 (-419 (-969 |#1|)))) 55) (((-969 |#1|) (-701 (-419 (-969 |#1|))) (-1196)) 56))) -(((-302 |#1|) (-10 -7 (-15 -3794 ((-969 |#1|) (-701 (-419 (-969 |#1|))) (-1196))) (-15 -3794 ((-969 |#1|) (-701 (-419 (-969 |#1|))))) (-15 -4356 ((-656 (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (-701 (-419 (-969 |#1|))))) (-15 -4143 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))))) (-15 -3421 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))) (-783) (-783))) (-15 -3421 ((-656 (-701 (-419 (-969 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|)))))) (-701 (-419 (-969 |#1|))))) (-15 -4034 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|))))) (-15 -2675 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))))) (-464)) (T -302)) -((-2675 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4)))))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4)))))) (-3421 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-969 *5)) (-1185 (-1196) (-969 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5)))))) (-3421 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-969 *6)) (-1185 (-1196) (-969 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-969 *6)))))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-969 *5)) (-1185 (-1196) (-969 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5)))))) (-4356 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4))))) (-5 *1 (-302 *4)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-5 *2 (-969 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-969 *5)))) (-5 *4 (-1196)) (-5 *2 (-969 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) -(-10 -7 (-15 -3794 ((-969 |#1|) (-701 (-419 (-969 |#1|))) (-1196))) (-15 -3794 ((-969 |#1|) (-701 (-419 (-969 |#1|))))) (-15 -4356 ((-656 (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (-701 (-419 (-969 |#1|))))) (-15 -4143 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))))) (-15 -3421 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|))) (-701 (-419 (-969 |#1|))) (-783) (-783))) (-15 -3421 ((-656 (-701 (-419 (-969 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|)))))) (-701 (-419 (-969 |#1|))))) (-15 -4034 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|))))) (-15 -2675 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1185 (-1196) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))))) -((-2477 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) -(((-303 |#1| |#2|) (-10 -7 (-15 -2477 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1237) (-1237)) (T -303)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) -(-10 -7 (-15 -2477 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1962 (((-112) $) NIL (|has| |#1| (-21)))) (-1458 (($ $) 12)) (-3788 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1756 (($ $ $) 95 (|has| |#1| (-312)))) (-3656 (($) NIL (-3765 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-3484 (($ $) 51 (|has| |#1| (-21)))) (-4133 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-1804 ((|#1| $) 11)) (-3179 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-1810 (((-112) $) NIL (|has| |#1| (-738)))) (-2477 (($ (-1 |#1| |#1|) $) 14)) (-1790 ((|#1| $) 10)) (-1818 (($ $) 50 (|has| |#1| (-21)))) (-4062 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-1644 (($ $) 64 (-3765 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4360 (((-656 $) $) 85 (|has| |#1| (-568)))) (-2259 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-1196) |#1|) 17 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1196) |#1|)))) (-2510 (($ |#1| |#1|) 9)) (-3667 (((-135)) 90 (|has| |#1| (-374)))) (-3614 (($ $ (-1196)) 87 (|has| |#1| (-915 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-915 (-1196))))) (-3646 (($ $ $) NIL (|has| |#1| (-485)))) (-1361 (($ $ $) NIL (|has| |#1| (-485)))) (-4092 (($ (-576)) NIL (|has| |#1| (-1068))) (((-112) $) 37 (|has| |#1| (-1119))) (((-874) $) 36 (|has| |#1| (-1119)))) (-2471 (((-783)) 67 (|has| |#1| (-1068)) CONST)) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4300 (($) 47 (|has| |#1| (-21)) CONST)) (-4310 (($) 57 (|has| |#1| (-738)) CONST)) (-4286 (($ $ (-1196)) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-915 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-915 (-1196))))) (-3919 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1119)))) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-3765 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-4018 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-4007 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-938)) NIL (|has| |#1| (-1131)))) (* (($ $ |#1|) 55 (|has| |#1| (-1131))) (($ |#1| $) 54 (|has| |#1| (-1131))) (($ $ $) 53 (|has| |#1| (-1131))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-938) $) NIL (|has| |#1| (-25))))) -(((-304 |#1|) (-13 (-1237) (-10 -8 (-15 -3919 ($ |#1| |#1|)) (-15 -2510 ($ |#1| |#1|)) (-15 -1458 ($ $)) (-15 -1790 (|#1| $)) (-15 -1804 (|#1| $)) (-15 -2477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1196) |#1|)) (-6 (-526 (-1196) |#1|)) |%noBranch|) (IF (|has| |#1| (-1119)) (PROGN (-6 (-1119)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -2259 ($ $ $)) (-15 -2259 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4007 ($ |#1| $)) (-15 -4007 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1818 ($ $)) (-15 -3484 ($ $)) (-15 -4018 ($ |#1| $)) (-15 -4018 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -4062 ((-3 $ "failed") $)) (-15 -4133 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -4062 ((-3 $ "failed") $)) (-15 -4133 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -4360 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1294 |#1|)) (-15 -4028 ($ $ $)) (-15 -1644 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1756 ($ $ $)) |%noBranch|))) (-1237)) (T -304)) -((-3919 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-2510 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-1458 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-1790 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-1804 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) (-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-304 *3)))) (-2259 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)) (-5 *1 (-304 *2)))) (-2259 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1119)) (-4 *3 (-1237)) (-5 *1 (-304 *3)))) (-4007 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) (-4007 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) (-1818 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-3484 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-4018 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-4018 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-4062 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237)))) (-4133 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237)))) (-4360 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1237)))) (-1756 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1237)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1237)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1237)))) (-4028 (*1 *1 *1 *1) (-3765 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) (-1644 (*1 *1 *1) (-3765 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237)))))) -(-13 (-1237) (-10 -8 (-15 -3919 ($ |#1| |#1|)) (-15 -2510 ($ |#1| |#1|)) (-15 -1458 ($ $)) (-15 -1790 (|#1| $)) (-15 -1804 (|#1| $)) (-15 -2477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1196) |#1|)) (-6 (-526 (-1196) |#1|)) |%noBranch|) (IF (|has| |#1| (-1119)) (PROGN (-6 (-1119)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -2259 ($ $ $)) (-15 -2259 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4007 ($ |#1| $)) (-15 -4007 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1818 ($ $)) (-15 -3484 ($ $)) (-15 -4018 ($ |#1| $)) (-15 -4018 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -4062 ((-3 $ "failed") $)) (-15 -4133 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -4062 ((-3 $ "failed") $)) (-15 -4133 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -4360 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1294 |#1|)) (-15 -4028 ($ $ $)) (-15 -1644 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -1756 ($ $ $)) |%noBranch|))) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2449 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#2| $ |#1| |#2|) NIL)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 |#2| "failed") |#1| $) NIL)) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) NIL)) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) NIL)) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 ((|#1| $) NIL (|has| |#1| (-862)))) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4315 ((|#1| $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2364 (((-656 |#1|) $) NIL)) (-3700 (((-112) |#1| $) NIL)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-4428 (((-656 |#1|) $) NIL)) (-2013 (((-112) |#1| $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2701 ((|#2| $) NIL (|has| |#1| (-862)))) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-4092 (((-874) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-305 |#1| |#2|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) (-1119) (-1119)) (T -305)) -NIL -(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) -((-2297 (((-322) (-1178) (-656 (-1178))) 17) (((-322) (-1178) (-1178)) 16) (((-322) (-656 (-1178))) 15) (((-322) (-1178)) 14))) -(((-306) (-10 -7 (-15 -2297 ((-322) (-1178))) (-15 -2297 ((-322) (-656 (-1178)))) (-15 -2297 ((-322) (-1178) (-1178))) (-15 -2297 ((-322) (-1178) (-656 (-1178)))))) (T -306)) -((-2297 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1178))) (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) (-2297 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-322)) (-5 *1 (-306)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306))))) -(-10 -7 (-15 -2297 ((-322) (-1178))) (-15 -2297 ((-322) (-656 (-1178)))) (-15 -2297 ((-322) (-1178) (-1178))) (-15 -2297 ((-322) (-1178) (-656 (-1178))))) -((-2477 ((|#2| (-1 |#2| |#1|) (-1178) (-624 |#1|)) 18))) -(((-307 |#1| |#2|) (-10 -7 (-15 -2477 (|#2| (-1 |#2| |#1|) (-1178) (-624 |#1|)))) (-312) (-1237)) (T -307)) -((-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1178)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1237)) (-5 *1 (-307 *6 *2))))) -(-10 -7 (-15 -2477 (|#2| (-1 |#2| |#1|) (-1178) (-624 |#1|)))) -((-2477 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) -(((-308 |#1| |#2|) (-10 -7 (-15 -2477 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) -(-10 -7 (-15 -2477 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) -((-2578 (((-112) (-227)) 12))) -(((-309 |#1| |#2|) (-10 -7 (-15 -2578 ((-112) (-227)))) (-227) (-227)) (T -309)) -((-2578 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2578 ((-112) (-227)))) -((-1559 (((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227)))) 118)) (-1772 (((-1176 (-227)) (-1287 (-326 (-227))) (-656 (-1196)) (-1113 (-855 (-227)))) 135) (((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227)))) 72)) (-3961 (((-656 (-1178)) (-1176 (-227))) NIL)) (-1689 (((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227)))) 69)) (-3640 (((-656 (-227)) (-969 (-419 (-576))) (-1196) (-1113 (-855 (-227)))) 59)) (-3167 (((-656 (-1178)) (-656 (-227))) NIL)) (-2008 (((-227) (-1113 (-855 (-227)))) 29)) (-3130 (((-227) (-1113 (-855 (-227)))) 30)) (-3535 (((-112) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3447 (((-1178) (-227)) NIL))) -(((-310) (-10 -7 (-15 -2008 ((-227) (-1113 (-855 (-227))))) (-15 -3130 ((-227) (-1113 (-855 (-227))))) (-15 -3535 ((-112) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1689 ((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227))))) (-15 -1559 ((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -1772 ((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -1772 ((-1176 (-227)) (-1287 (-326 (-227))) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -3640 ((-656 (-227)) (-969 (-419 (-576))) (-1196) (-1113 (-855 (-227))))) (-15 -3447 ((-1178) (-227))) (-15 -3167 ((-656 (-1178)) (-656 (-227)))) (-15 -3961 ((-656 (-1178)) (-1176 (-227)))))) (T -310)) -((-3961 (*1 *2 *3) (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-310)))) (-3640 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *4 (-1196)) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-1772 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) (-1772 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) (-1689 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) -(-10 -7 (-15 -2008 ((-227) (-1113 (-855 (-227))))) (-15 -3130 ((-227) (-1113 (-855 (-227))))) (-15 -3535 ((-112) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1689 ((-656 (-227)) (-326 (-227)) (-1196) (-1113 (-855 (-227))))) (-15 -1559 ((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -1772 ((-1176 (-227)) (-326 (-227)) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -1772 ((-1176 (-227)) (-1287 (-326 (-227))) (-656 (-1196)) (-1113 (-855 (-227))))) (-15 -3640 ((-656 (-227)) (-969 (-419 (-576))) (-1196) (-1113 (-855 (-227))))) (-15 -3447 ((-1178) (-227))) (-15 -3167 ((-656 (-1178)) (-656 (-227)))) (-15 -3961 ((-656 (-1178)) (-1176 (-227))))) -((-4385 (((-656 (-624 $)) $) 27)) (-1756 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-2974 (((-3 (-624 $) "failed") $) 127)) (-2378 (((-624 $) $) 126)) (-2191 (($ $) 17) (($ (-656 $)) 54)) (-4349 (((-656 (-115)) $) 35)) (-1344 (((-115) (-115)) 88)) (-3082 (((-112) $) 150)) (-2477 (($ (-1 $ $) (-624 $)) 86)) (-4348 (((-3 (-624 $) "failed") $) 94)) (-1770 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-1412 (((-112) $ (-115)) 132) (((-112) $ (-1196)) 131)) (-2927 (((-783) $) 44)) (-2513 (((-112) $ $) 57) (((-112) $ (-1196)) 49)) (-2015 (((-112) $) 148)) (-2259 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) 67) (($ $ (-1196) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-4367 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-3724 (($ $) 51) (($ $ $) 135)) (-3163 (($ $) 15) (($ (-656 $)) 53)) (-3201 (((-112) (-115)) 21))) -(((-311 |#1|) (-10 -8 (-15 -3082 ((-112) |#1|)) (-15 -2015 ((-112) |#1|)) (-15 -2259 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2259 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -2513 ((-112) |#1| (-1196))) (-15 -2513 ((-112) |#1| |#1|)) (-15 -2477 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1770 (|#1| (-115) (-656 |#1|))) (-15 -1770 (|#1| (-115) |#1|)) (-15 -1412 ((-112) |#1| (-1196))) (-15 -1412 ((-112) |#1| (-115))) (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -4349 ((-656 (-115)) |#1|)) (-15 -4385 ((-656 (-624 |#1|)) |#1|)) (-15 -4348 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2927 ((-783) |#1|)) (-15 -3724 (|#1| |#1| |#1|)) (-15 -3724 (|#1| |#1|)) (-15 -2191 (|#1| (-656 |#1|))) (-15 -2191 (|#1| |#1|)) (-15 -3163 (|#1| (-656 |#1|))) (-15 -3163 (|#1| |#1|)) (-15 -1756 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1756 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1756 (|#1| |#1| (-304 |#1|))) (-15 -4367 (|#1| (-115) (-656 |#1|))) (-15 -4367 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2259 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2974 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2378 ((-624 |#1|) |#1|))) (-312)) (T -311)) -((-1344 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) -(-10 -8 (-15 -3082 ((-112) |#1|)) (-15 -2015 ((-112) |#1|)) (-15 -2259 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2259 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -2513 ((-112) |#1| (-1196))) (-15 -2513 ((-112) |#1| |#1|)) (-15 -2477 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1770 (|#1| (-115) (-656 |#1|))) (-15 -1770 (|#1| (-115) |#1|)) (-15 -1412 ((-112) |#1| (-1196))) (-15 -1412 ((-112) |#1| (-115))) (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -4349 ((-656 (-115)) |#1|)) (-15 -4385 ((-656 (-624 |#1|)) |#1|)) (-15 -4348 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2927 ((-783) |#1|)) (-15 -3724 (|#1| |#1| |#1|)) (-15 -3724 (|#1| |#1|)) (-15 -2191 (|#1| (-656 |#1|))) (-15 -2191 (|#1| |#1|)) (-15 -3163 (|#1| (-656 |#1|))) (-15 -3163 (|#1| |#1|)) (-15 -1756 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1756 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1756 (|#1| |#1| (-304 |#1|))) (-15 -4367 (|#1| (-115) (-656 |#1|))) (-15 -4367 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2259 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -2974 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2378 ((-624 |#1|) |#1|))) -((-2034 (((-112) $ $) 7)) (-4385 (((-656 (-624 $)) $) 39)) (-1756 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-2974 (((-3 (-624 $) "failed") $) 64)) (-2378 (((-624 $) $) 65)) (-2191 (($ $) 46) (($ (-656 $)) 45)) (-4349 (((-656 (-115)) $) 38)) (-1344 (((-115) (-115)) 37)) (-3082 (((-112) $) 17 (|has| $ (-1057 (-576))))) (-2525 (((-1192 $) (-624 $)) 20 (|has| $ (-1068)))) (-2477 (($ (-1 $ $) (-624 $)) 31)) (-4348 (((-3 (-624 $) "failed") $) 41)) (-3288 (((-1178) $) 10)) (-1332 (((-656 (-624 $)) $) 40)) (-1770 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-1412 (((-112) $ (-115)) 35) (((-112) $ (-1196)) 34)) (-2927 (((-783) $) 42)) (-3139 (((-1139) $) 11)) (-2513 (((-112) $ $) 30) (((-112) $ (-1196)) 29)) (-2015 (((-112) $) 18 (|has| $ (-1057 (-576))))) (-2259 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1196) (-1 $ (-656 $))) 26) (($ $ (-1196) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-4367 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-3724 (($ $) 44) (($ $ $) 43)) (-2840 (($ $) 19 (|has| $ (-1068)))) (-4092 (((-874) $) 12) (($ (-624 $)) 63)) (-3163 (($ $) 48) (($ (-656 $)) 47)) (-3201 (((-112) (-115)) 36)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-4338 (((-656 (-1104)) $) 10)) (-4088 (($ (-518) (-518) (-1123) $) 19)) (-1862 (($ (-518) (-656 (-982)) $) 23)) (-1363 (($) 25)) (-1656 (((-703 (-1123)) (-518) (-518) $) 18)) (-2764 (((-656 (-982)) (-518) $) 22)) (-2597 (($) 7)) (-1674 (($) 24)) (-3563 (((-874) $) 29)) (-2439 (($) 26))) +(((-301) (-13 (-625 (-874)) (-10 -8 (-15 -2597 ($)) (-15 -4338 ((-656 (-1104)) $)) (-15 -1656 ((-703 (-1123)) (-518) (-518) $)) (-15 -4088 ($ (-518) (-518) (-1123) $)) (-15 -2764 ((-656 (-982)) (-518) $)) (-15 -1862 ($ (-518) (-656 (-982)) $)) (-15 -1674 ($)) (-15 -1363 ($)) (-15 -2439 ($))))) (T -301)) +((-2597 (*1 *1) (-5 *1 (-301))) (-4338 (*1 *2 *1) (-12 (-5 *2 (-656 (-1104))) (-5 *1 (-301)))) (-1656 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1123))) (-5 *1 (-301)))) (-4088 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-301)))) (-2764 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-656 (-982))) (-5 *1 (-301)))) (-1862 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-301)))) (-1674 (*1 *1) (-5 *1 (-301))) (-1363 (*1 *1) (-5 *1 (-301))) (-2439 (*1 *1) (-5 *1 (-301)))) +(-13 (-625 (-874)) (-10 -8 (-15 -2597 ($)) (-15 -4338 ((-656 (-1104)) $)) (-15 -1656 ((-703 (-1123)) (-518) (-518) $)) (-15 -4088 ($ (-518) (-518) (-1123) $)) (-15 -2764 ((-656 (-982)) (-518) $)) (-15 -1862 ($ (-518) (-656 (-982)) $)) (-15 -1674 ($)) (-15 -1363 ($)) (-15 -2439 ($)))) +((-3427 (((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))) 102)) (-3260 (((-656 (-701 (-419 (-969 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|)))))) (-701 (-419 (-969 |#1|)))) 97) (((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|))) (-701 (-419 (-969 |#1|))) (-783) (-783)) 41)) (-1552 (((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))) 99)) (-1502 (((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|))) (-701 (-419 (-969 |#1|)))) 75)) (-2419 (((-656 (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (-701 (-419 (-969 |#1|)))) 74)) (-3941 (((-969 |#1|) (-701 (-419 (-969 |#1|)))) 55) (((-969 |#1|) (-701 (-419 (-969 |#1|))) (-1195)) 56))) +(((-302 |#1|) (-10 -7 (-15 -3941 ((-969 |#1|) (-701 (-419 (-969 |#1|))) (-1195))) (-15 -3941 ((-969 |#1|) (-701 (-419 (-969 |#1|))))) (-15 -2419 ((-656 (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (-701 (-419 (-969 |#1|))))) (-15 -1502 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|))) (-701 (-419 (-969 |#1|))))) (-15 -3260 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|))) (-701 (-419 (-969 |#1|))) (-783) (-783))) (-15 -3260 ((-656 (-701 (-419 (-969 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|)))))) (-701 (-419 (-969 |#1|))))) (-15 -3427 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|))))) (-15 -1552 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))))) (-464)) (T -302)) +((-1552 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1184 (-1195) (-969 *4)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4)))))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-656 (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1184 (-1195) (-969 *4)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 *4)))))))) (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4)))))) (-3260 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-969 *5)) (-1184 (-1195) (-969 *5)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5)))))) (-3260 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-969 *6)) (-1184 (-1195) (-969 *6)))) (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *6))))) (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-969 *6)))))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-969 *5)) (-1184 (-1195) (-969 *5)))) (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5)))))) (-2419 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-4 *4 (-464)) (-5 *2 (-656 (-3 (-419 (-969 *4)) (-1184 (-1195) (-969 *4))))) (-5 *1 (-302 *4)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-5 *2 (-969 *4)) (-5 *1 (-302 *4)) (-4 *4 (-464)))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-969 *5)))) (-5 *4 (-1195)) (-5 *2 (-969 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464))))) +(-10 -7 (-15 -3941 ((-969 |#1|) (-701 (-419 (-969 |#1|))) (-1195))) (-15 -3941 ((-969 |#1|) (-701 (-419 (-969 |#1|))))) (-15 -2419 ((-656 (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (-701 (-419 (-969 |#1|))))) (-15 -1502 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|))) (-701 (-419 (-969 |#1|))))) (-15 -3260 ((-656 (-701 (-419 (-969 |#1|)))) (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|))) (-701 (-419 (-969 |#1|))) (-783) (-783))) (-15 -3260 ((-656 (-701 (-419 (-969 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|)))))) (-701 (-419 (-969 |#1|))))) (-15 -3427 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (|:| |geneigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|))))) (-15 -1552 ((-656 (-2 (|:| |eigval| (-3 (-419 (-969 |#1|)) (-1184 (-1195) (-969 |#1|)))) (|:| |eigmult| (-783)) (|:| |eigvec| (-656 (-701 (-419 (-969 |#1|))))))) (-701 (-419 (-969 |#1|)))))) +((-1632 (((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)) 14))) +(((-303 |#1| |#2|) (-10 -7 (-15 -1632 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) (-1236) (-1236)) (T -303)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6))))) +(-10 -7 (-15 -1632 ((-304 |#2|) (-1 |#2| |#1|) (-304 |#1|)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1454 (((-112) $) NIL (|has| |#1| (-21)))) (-3683 (($ $) 12)) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3340 (($ $ $) 95 (|has| |#1| (-312)))) (-3767 (($) NIL (-2835 (|has| |#1| (-21)) (|has| |#1| (-738))) CONST)) (-4123 (($ $) 51 (|has| |#1| (-21)))) (-3145 (((-3 $ "failed") $) 62 (|has| |#1| (-738)))) (-1649 ((|#1| $) 11)) (-1551 (((-3 $ "failed") $) 60 (|has| |#1| (-738)))) (-1414 (((-112) $) NIL (|has| |#1| (-738)))) (-1632 (($ (-1 |#1| |#1|) $) 14)) (-1637 ((|#1| $) 10)) (-4089 (($ $) 50 (|has| |#1| (-21)))) (-4137 (((-3 $ "failed") $) 61 (|has| |#1| (-738)))) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2095 (($ $) 64 (-2835 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1573 (((-656 $) $) 85 (|has| |#1| (-568)))) (-3306 (($ $ $) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 $)) 28 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-1195) |#1|) 17 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 21 (|has| |#1| (-526 (-1195) |#1|)))) (-2366 (($ |#1| |#1|) 9)) (-2446 (((-135)) 90 (|has| |#1| (-374)))) (-2735 (($ $ (-1195)) 87 (|has| |#1| (-915 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-915 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-915 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-915 (-1195))))) (-4026 (($ $ $) NIL (|has| |#1| (-485)))) (-4081 (($ $ $) NIL (|has| |#1| (-485)))) (-3563 (($ (-576)) NIL (|has| |#1| (-1068))) (((-112) $) 37 (|has| |#1| (-1119))) (((-874) $) 36 (|has| |#1| (-1119)))) (-1858 (((-783)) 67 (|has| |#1| (-1068)) CONST)) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2800 (($) 47 (|has| |#1| (-21)) CONST)) (-2810 (($) 57 (|has| |#1| (-738)) CONST)) (-2051 (($ $ (-1195)) NIL (|has| |#1| (-915 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-915 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-915 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-915 (-1195))))) (-2988 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1119)))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 92 (-2835 (|has| |#1| (-374)) (|has| |#1| (-485))))) (-3095 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3083 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-576)) NIL (|has| |#1| (-485))) (($ $ (-783)) NIL (|has| |#1| (-738))) (($ $ (-938)) NIL (|has| |#1| (-1131)))) (* (($ $ |#1|) 55 (|has| |#1| (-1131))) (($ |#1| $) 54 (|has| |#1| (-1131))) (($ $ $) 53 (|has| |#1| (-1131))) (($ (-576) $) 70 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-938) $) NIL (|has| |#1| (-25))))) +(((-304 |#1|) (-13 (-1236) (-10 -8 (-15 -2988 ($ |#1| |#1|)) (-15 -2366 ($ |#1| |#1|)) (-15 -3683 ($ $)) (-15 -1637 (|#1| $)) (-15 -1649 (|#1| $)) (-15 -1632 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1195) |#1|)) (-6 (-526 (-1195) |#1|)) |%noBranch|) (IF (|has| |#1| (-1119)) (PROGN (-6 (-1119)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3306 ($ $ $)) (-15 -3306 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3083 ($ |#1| $)) (-15 -3083 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4089 ($ $)) (-15 -4123 ($ $)) (-15 -3095 ($ |#1| $)) (-15 -3095 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -4137 ((-3 $ "failed") $)) (-15 -3145 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -4137 ((-3 $ "failed") $)) (-15 -3145 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -1573 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-915 (-1195))) (-6 (-915 (-1195))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1293 |#1|)) (-15 -3107 ($ $ $)) (-15 -2095 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3340 ($ $ $)) |%noBranch|))) (-1236)) (T -304)) +((-2988 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-2366 (*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-3683 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-1637 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-1649 (*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-304 *3)))) (-3306 (*1 *1 *1 *1) (-12 (-4 *2 (-319 *2)) (-4 *2 (-1119)) (-4 *2 (-1236)) (-5 *1 (-304 *2)))) (-3306 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1119)) (-4 *3 (-1236)) (-5 *1 (-304 *3)))) (-3083 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) (-3083 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) (-4089 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-4123 (*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-3095 (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-3095 (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) (-4137 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236)))) (-3145 (*1 *1 *1) (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236)))) (-1573 (*1 *2 *1) (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) (-4 *3 (-1236)))) (-3340 (*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1236)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1236)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1236)))) (-3107 (*1 *1 *1 *1) (-2835 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) (-2095 (*1 *1 *1) (-2835 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236)))))) +(-13 (-1236) (-10 -8 (-15 -2988 ($ |#1| |#1|)) (-15 -2366 ($ |#1| |#1|)) (-15 -3683 ($ $)) (-15 -1637 (|#1| $)) (-15 -1649 (|#1| $)) (-15 -1632 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1195) |#1|)) (-6 (-526 (-1195) |#1|)) |%noBranch|) (IF (|has| |#1| (-1119)) (PROGN (-6 (-1119)) (-6 (-625 (-112))) (IF (|has| |#1| (-319 |#1|)) (PROGN (-15 -3306 ($ $ $)) (-15 -3306 ($ $ (-656 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3083 ($ |#1| $)) (-15 -3083 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4089 ($ $)) (-15 -4123 ($ $)) (-15 -3095 ($ |#1| $)) (-15 -3095 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1131)) (PROGN (-6 (-1131)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-738)) (PROGN (-6 (-738)) (-15 -4137 ((-3 $ "failed") $)) (-15 -3145 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -4137 ((-3 $ "failed") $)) (-15 -3145 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|) (IF (|has| |#1| (-568)) (-15 -1573 ((-656 $) $)) |%noBranch|) (IF (|has| |#1| (-915 (-1195))) (-6 (-915 (-1195))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-1293 |#1|)) (-15 -3107 ($ $ $)) (-15 -2095 ($ $))) |%noBranch|) (IF (|has| |#1| (-312)) (-15 -3340 ($ $ $)) |%noBranch|))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2333 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#2| $ |#1| |#2|) NIL)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 |#2| "failed") |#1| $) NIL)) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) NIL)) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 ((|#1| $) NIL (|has| |#1| (-862)))) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-3814 ((|#1| $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3135 (((-656 |#1|) $) NIL)) (-2937 (((-112) |#1| $) NIL)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-3321 (((-656 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3504 ((|#2| $) NIL (|has| |#1| (-862)))) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-3563 (((-874) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-305 |#1| |#2|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1119) (-1119)) (T -305)) +NIL +(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) +((-3331 (((-322) (-1177) (-656 (-1177))) 17) (((-322) (-1177) (-1177)) 16) (((-322) (-656 (-1177))) 15) (((-322) (-1177)) 14))) +(((-306) (-10 -7 (-15 -3331 ((-322) (-1177))) (-15 -3331 ((-322) (-656 (-1177)))) (-15 -3331 ((-322) (-1177) (-1177))) (-15 -3331 ((-322) (-1177) (-656 (-1177)))))) (T -306)) +((-3331 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1177))) (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3331 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-322)) (-5 *1 (-306)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306))))) +(-10 -7 (-15 -3331 ((-322) (-1177))) (-15 -3331 ((-322) (-656 (-1177)))) (-15 -3331 ((-322) (-1177) (-1177))) (-15 -3331 ((-322) (-1177) (-656 (-1177))))) +((-1632 ((|#2| (-1 |#2| |#1|) (-1177) (-624 |#1|)) 18))) +(((-307 |#1| |#2|) (-10 -7 (-15 -1632 (|#2| (-1 |#2| |#1|) (-1177) (-624 |#1|)))) (-312) (-1236)) (T -307)) +((-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1177)) (-5 *5 (-624 *6)) (-4 *6 (-312)) (-4 *2 (-1236)) (-5 *1 (-307 *6 *2))))) +(-10 -7 (-15 -1632 (|#2| (-1 |#2| |#1|) (-1177) (-624 |#1|)))) +((-1632 ((|#2| (-1 |#2| |#1|) (-624 |#1|)) 17))) +(((-308 |#1| |#2|) (-10 -7 (-15 -1632 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) (-312) (-312)) (T -308)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2))))) +(-10 -7 (-15 -1632 (|#2| (-1 |#2| |#1|) (-624 |#1|)))) +((-3641 (((-112) (-227)) 12))) +(((-309 |#1| |#2|) (-10 -7 (-15 -3641 ((-112) (-227)))) (-227) (-227)) (T -309)) +((-3641 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -3641 ((-112) (-227)))) +((-1900 (((-1176 (-227)) (-326 (-227)) (-656 (-1195)) (-1113 (-855 (-227)))) 118)) (-4082 (((-1176 (-227)) (-1286 (-326 (-227))) (-656 (-1195)) (-1113 (-855 (-227)))) 135) (((-1176 (-227)) (-326 (-227)) (-656 (-1195)) (-1113 (-855 (-227)))) 72)) (-2713 (((-656 (-1177)) (-1176 (-227))) NIL)) (-3084 (((-656 (-227)) (-326 (-227)) (-1195) (-1113 (-855 (-227)))) 69)) (-2867 (((-656 (-227)) (-969 (-419 (-576))) (-1195) (-1113 (-855 (-227)))) 59)) (-1614 (((-656 (-1177)) (-656 (-227))) NIL)) (-3216 (((-227) (-1113 (-855 (-227)))) 29)) (-3582 (((-227) (-1113 (-855 (-227)))) 30)) (-1725 (((-112) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 64)) (-3642 (((-1177) (-227)) NIL))) +(((-310) (-10 -7 (-15 -3216 ((-227) (-1113 (-855 (-227))))) (-15 -3582 ((-227) (-1113 (-855 (-227))))) (-15 -1725 ((-112) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3084 ((-656 (-227)) (-326 (-227)) (-1195) (-1113 (-855 (-227))))) (-15 -1900 ((-1176 (-227)) (-326 (-227)) (-656 (-1195)) (-1113 (-855 (-227))))) (-15 -4082 ((-1176 (-227)) (-326 (-227)) (-656 (-1195)) (-1113 (-855 (-227))))) (-15 -4082 ((-1176 (-227)) (-1286 (-326 (-227))) (-656 (-1195)) (-1113 (-855 (-227))))) (-15 -2867 ((-656 (-227)) (-969 (-419 (-576))) (-1195) (-1113 (-855 (-227))))) (-15 -3642 ((-1177) (-227))) (-15 -1614 ((-656 (-1177)) (-656 (-227)))) (-15 -2713 ((-656 (-1177)) (-1176 (-227)))))) (T -310)) +((-2713 (*1 *2 *3) (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-310)))) (-2867 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *4 (-1195)) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-4082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) (-4082 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) (-1900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) (-3084 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-112)) (-5 *1 (-310)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310))))) +(-10 -7 (-15 -3216 ((-227) (-1113 (-855 (-227))))) (-15 -3582 ((-227) (-1113 (-855 (-227))))) (-15 -1725 ((-112) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3084 ((-656 (-227)) (-326 (-227)) (-1195) (-1113 (-855 (-227))))) (-15 -1900 ((-1176 (-227)) (-326 (-227)) (-656 (-1195)) (-1113 (-855 (-227))))) (-15 -4082 ((-1176 (-227)) (-326 (-227)) (-656 (-1195)) (-1113 (-855 (-227))))) (-15 -4082 ((-1176 (-227)) (-1286 (-326 (-227))) (-656 (-1195)) (-1113 (-855 (-227))))) (-15 -2867 ((-656 (-227)) (-969 (-419 (-576))) (-1195) (-1113 (-855 (-227))))) (-15 -3642 ((-1177) (-227))) (-15 -1614 ((-656 (-1177)) (-656 (-227)))) (-15 -2713 ((-656 (-1177)) (-1176 (-227))))) +((-3887 (((-656 (-624 $)) $) 27)) (-3340 (($ $ (-304 $)) 78) (($ $ (-656 (-304 $))) 139) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1539 (((-3 (-624 $) "failed") $) 127)) (-4056 (((-624 $) $) 126)) (-2188 (($ $) 17) (($ (-656 $)) 54)) (-3061 (((-656 (-115)) $) 35)) (-3974 (((-115) (-115)) 88)) (-3828 (((-112) $) 150)) (-1632 (($ (-1 $ $) (-624 $)) 86)) (-2953 (((-3 (-624 $) "failed") $) 94)) (-1616 (($ (-115) $) 59) (($ (-115) (-656 $)) 110)) (-3718 (((-112) $ (-115)) 132) (((-112) $ (-1195)) 131)) (-2331 (((-783) $) 44)) (-4245 (((-112) $ $) 57) (((-112) $ (-1195)) 49)) (-2489 (((-112) $) 148)) (-3306 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) 137) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 81) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) 67) (($ $ (-1195) (-1 $ $)) 72) (($ $ (-656 (-115)) (-656 (-1 $ $))) 80) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 82) (($ $ (-115) (-1 $ (-656 $))) 68) (($ $ (-115) (-1 $ $)) 74)) (-2871 (($ (-115) $) 60) (($ (-115) $ $) 61) (($ (-115) $ $ $) 62) (($ (-115) $ $ $ $) 63) (($ (-115) (-656 $)) 123)) (-2114 (($ $) 51) (($ $ $) 135)) (-4102 (($ $) 15) (($ (-656 $)) 53)) (-3263 (((-112) (-115)) 21))) +(((-311 |#1|) (-10 -8 (-15 -3828 ((-112) |#1|)) (-15 -2489 ((-112) |#1|)) (-15 -3306 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3306 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -4245 ((-112) |#1| (-1195))) (-15 -4245 ((-112) |#1| |#1|)) (-15 -1632 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1616 (|#1| (-115) (-656 |#1|))) (-15 -1616 (|#1| (-115) |#1|)) (-15 -3718 ((-112) |#1| (-1195))) (-15 -3718 ((-112) |#1| (-115))) (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -3061 ((-656 (-115)) |#1|)) (-15 -3887 ((-656 (-624 |#1|)) |#1|)) (-15 -2953 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2331 ((-783) |#1|)) (-15 -2114 (|#1| |#1| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -2188 (|#1| (-656 |#1|))) (-15 -2188 (|#1| |#1|)) (-15 -4102 (|#1| (-656 |#1|))) (-15 -4102 (|#1| |#1|)) (-15 -3340 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3340 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3340 (|#1| |#1| (-304 |#1|))) (-15 -2871 (|#1| (-115) (-656 |#1|))) (-15 -2871 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3306 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1539 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4056 ((-624 |#1|) |#1|))) (-312)) (T -311)) +((-3974 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312))))) +(-10 -8 (-15 -3828 ((-112) |#1|)) (-15 -2489 ((-112) |#1|)) (-15 -3306 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3306 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -4245 ((-112) |#1| (-1195))) (-15 -4245 ((-112) |#1| |#1|)) (-15 -1632 (|#1| (-1 |#1| |#1|) (-624 |#1|))) (-15 -1616 (|#1| (-115) (-656 |#1|))) (-15 -1616 (|#1| (-115) |#1|)) (-15 -3718 ((-112) |#1| (-1195))) (-15 -3718 ((-112) |#1| (-115))) (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -3061 ((-656 (-115)) |#1|)) (-15 -3887 ((-656 (-624 |#1|)) |#1|)) (-15 -2953 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2331 ((-783) |#1|)) (-15 -2114 (|#1| |#1| |#1|)) (-15 -2114 (|#1| |#1|)) (-15 -2188 (|#1| (-656 |#1|))) (-15 -2188 (|#1| |#1|)) (-15 -4102 (|#1| (-656 |#1|))) (-15 -4102 (|#1| |#1|)) (-15 -3340 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3340 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3340 (|#1| |#1| (-304 |#1|))) (-15 -2871 (|#1| (-115) (-656 |#1|))) (-15 -2871 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3306 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -1539 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4056 ((-624 |#1|) |#1|))) +((-3474 (((-112) $ $) 7)) (-3887 (((-656 (-624 $)) $) 39)) (-3340 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-1539 (((-3 (-624 $) "failed") $) 64)) (-4056 (((-624 $) $) 65)) (-2188 (($ $) 46) (($ (-656 $)) 45)) (-3061 (((-656 (-115)) $) 38)) (-3974 (((-115) (-115)) 37)) (-3828 (((-112) $) 17 (|has| $ (-1057 (-576))))) (-3121 (((-1191 $) (-624 $)) 20 (|has| $ (-1068)))) (-1632 (($ (-1 $ $) (-624 $)) 31)) (-2953 (((-3 (-624 $) "failed") $) 41)) (-1927 (((-1177) $) 10)) (-3963 (((-656 (-624 $)) $) 40)) (-1616 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-3718 (((-112) $ (-115)) 35) (((-112) $ (-1195)) 34)) (-2331 (((-783) $) 42)) (-1445 (((-1139) $) 11)) (-4245 (((-112) $ $) 30) (((-112) $ (-1195)) 29)) (-2489 (((-112) $) 18 (|has| $ (-1057 (-576))))) (-3306 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1195) (-1 $ (-656 $))) 26) (($ $ (-1195) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21)) (-2871 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-2114 (($ $) 44) (($ $ $) 43)) (-1372 (($ $) 19 (|has| $ (-1068)))) (-3563 (((-874) $) 12) (($ (-624 $)) 63)) (-4102 (($ $) 48) (($ (-656 $)) 47)) (-3263 (((-112) (-115)) 36)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-312) (-141)) (T -312)) -((-4367 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4367 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4367 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4367 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-4367 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-1756 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-1756 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-3163 (*1 *1 *1) (-4 *1 (-312))) (-3163 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-2191 (*1 *1 *1) (-4 *1 (-312))) (-2191 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-3724 (*1 *1 *1) (-4 *1 (-312))) (-3724 (*1 *1 *1 *1) (-4 *1 (-312))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-4348 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-1332 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-4349 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-1344 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-3201 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1412 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-1412 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) (-1770 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1770 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-2477 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-2513 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-2513 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-2525 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1068)) (-4 *1 (-312)) (-5 *2 (-1192 *1)))) (-2840 (*1 *1 *1) (-12 (-4 *1 (-1068)) (-4 *1 (-312)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) -(-13 (-1119) (-1057 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -4367 ($ (-115) $)) (-15 -4367 ($ (-115) $ $)) (-15 -4367 ($ (-115) $ $ $)) (-15 -4367 ($ (-115) $ $ $ $)) (-15 -4367 ($ (-115) (-656 $))) (-15 -1756 ($ $ (-304 $))) (-15 -1756 ($ $ (-656 (-304 $)))) (-15 -1756 ($ $ (-656 (-624 $)) (-656 $))) (-15 -3163 ($ $)) (-15 -3163 ($ (-656 $))) (-15 -2191 ($ $)) (-15 -2191 ($ (-656 $))) (-15 -3724 ($ $)) (-15 -3724 ($ $ $)) (-15 -2927 ((-783) $)) (-15 -4348 ((-3 (-624 $) "failed") $)) (-15 -1332 ((-656 (-624 $)) $)) (-15 -4385 ((-656 (-624 $)) $)) (-15 -4349 ((-656 (-115)) $)) (-15 -1344 ((-115) (-115))) (-15 -3201 ((-112) (-115))) (-15 -1412 ((-112) $ (-115))) (-15 -1412 ((-112) $ (-1196))) (-15 -1770 ($ (-115) $)) (-15 -1770 ($ (-115) (-656 $))) (-15 -2477 ($ (-1 $ $) (-624 $))) (-15 -2513 ((-112) $ $)) (-15 -2513 ((-112) $ (-1196))) (-15 -2259 ($ $ (-656 (-1196)) (-656 (-1 $ $)))) (-15 -2259 ($ $ (-656 (-1196)) (-656 (-1 $ (-656 $))))) (-15 -2259 ($ $ (-1196) (-1 $ (-656 $)))) (-15 -2259 ($ $ (-1196) (-1 $ $))) (-15 -2259 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -2259 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -2259 ($ $ (-115) (-1 $ (-656 $)))) (-15 -2259 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1068)) (PROGN (-15 -2525 ((-1192 $) (-624 $))) (-15 -2840 ($ $))) |%noBranch|) (IF (|has| $ (-1057 (-576))) (PROGN (-15 -2015 ((-112) $)) (-15 -3082 ((-112) $))) |%noBranch|))) +((-2871 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2871 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2871 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2871 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-2871 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-4102 (*1 *1 *1) (-4 *1 (-312))) (-4102 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-2188 (*1 *1 *1) (-4 *1 (-312))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) (-2114 (*1 *1 *1) (-4 *1 (-312))) (-2114 (*1 *1 *1 *1) (-4 *1 (-312))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) (-2953 (*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-3887 (*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115))))) (-3974 (*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-3263 (*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3718 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) (-3718 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) (-1616 (*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) (-1616 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) (-1632 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-624 *1)) (-4 *1 (-312)))) (-4245 (*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112)))) (-4245 (*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-312)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-1068)) (-4 *1 (-312)) (-5 *2 (-1191 *1)))) (-1372 (*1 *1 *1) (-12 (-4 *1 (-1068)) (-4 *1 (-312)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) (-3828 (*1 *2 *1) (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112))))) +(-13 (-1119) (-1057 (-624 $)) (-526 (-624 $) $) (-319 $) (-10 -8 (-15 -2871 ($ (-115) $)) (-15 -2871 ($ (-115) $ $)) (-15 -2871 ($ (-115) $ $ $)) (-15 -2871 ($ (-115) $ $ $ $)) (-15 -2871 ($ (-115) (-656 $))) (-15 -3340 ($ $ (-304 $))) (-15 -3340 ($ $ (-656 (-304 $)))) (-15 -3340 ($ $ (-656 (-624 $)) (-656 $))) (-15 -4102 ($ $)) (-15 -4102 ($ (-656 $))) (-15 -2188 ($ $)) (-15 -2188 ($ (-656 $))) (-15 -2114 ($ $)) (-15 -2114 ($ $ $)) (-15 -2331 ((-783) $)) (-15 -2953 ((-3 (-624 $) "failed") $)) (-15 -3963 ((-656 (-624 $)) $)) (-15 -3887 ((-656 (-624 $)) $)) (-15 -3061 ((-656 (-115)) $)) (-15 -3974 ((-115) (-115))) (-15 -3263 ((-112) (-115))) (-15 -3718 ((-112) $ (-115))) (-15 -3718 ((-112) $ (-1195))) (-15 -1616 ($ (-115) $)) (-15 -1616 ($ (-115) (-656 $))) (-15 -1632 ($ (-1 $ $) (-624 $))) (-15 -4245 ((-112) $ $)) (-15 -4245 ((-112) $ (-1195))) (-15 -3306 ($ $ (-656 (-1195)) (-656 (-1 $ $)))) (-15 -3306 ($ $ (-656 (-1195)) (-656 (-1 $ (-656 $))))) (-15 -3306 ($ $ (-1195) (-1 $ (-656 $)))) (-15 -3306 ($ $ (-1195) (-1 $ $))) (-15 -3306 ($ $ (-656 (-115)) (-656 (-1 $ $)))) (-15 -3306 ($ $ (-656 (-115)) (-656 (-1 $ (-656 $))))) (-15 -3306 ($ $ (-115) (-1 $ (-656 $)))) (-15 -3306 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1068)) (PROGN (-15 -3121 ((-1191 $) (-624 $))) (-15 -1372 ($ $))) |%noBranch|) (IF (|has| $ (-1057 (-576))) (PROGN (-15 -2489 ((-112) $)) (-15 -3828 ((-112) $))) |%noBranch|))) (((-102) . T) ((-628 #0=(-624 $)) . T) ((-625 (-874)) . T) ((-319 $) . T) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-1057 #0#) . T) ((-1119) . T)) -((-3487 (((-656 |#1|) (-656 |#1|)) 10))) -(((-313 |#1|) (-10 -7 (-15 -3487 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313)) -((-3487 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(-10 -7 (-15 -3487 ((-656 |#1|) (-656 |#1|)))) -((-2477 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2477 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1068) (-1068)) (T -314)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -2477 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) -((-2758 (((-1287 (-326 (-390))) (-1287 (-326 (-227)))) 110)) (-2546 (((-1113 (-855 (-227))) (-1113 (-855 (-390)))) 43)) (-3961 (((-656 (-1178)) (-1176 (-227))) 92)) (-3555 (((-326 (-390)) (-969 (-227))) 53)) (-2583 (((-227) (-969 (-227))) 49)) (-2889 (((-1178) (-390)) 195)) (-1343 (((-855 (-227)) (-855 (-390))) 37)) (-3202 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1287 (-326 (-227)))) 165)) (-1622 (((-1054) (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) 207) (((-1054) (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))))) 205)) (-2215 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-1600 (((-1287 (-711)) (-656 (-227))) 99)) (-3167 (((-656 (-1178)) (-656 (-227))) 79)) (-2874 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-2578 (((-112) (-227) (-1113 (-855 (-227)))) 117)) (-4151 (((-1054) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-2008 (((-227) (-1113 (-855 (-227)))) 112)) (-3130 (((-227) (-1113 (-855 (-227)))) 113)) (-4137 (((-227) (-419 (-576))) 31)) (-2715 (((-1178) (-390)) 77)) (-1671 (((-227) (-390)) 22)) (-4264 (((-390) (-1287 (-326 (-227)))) 177)) (-2538 (((-326 (-227)) (-326 (-390))) 28)) (-3414 (((-419 (-576)) (-326 (-227))) 56)) (-2332 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-4308 (((-326 (-390)) (-326 (-227))) 103)) (-1495 (((-227) (-326 (-227))) 57)) (-3800 (((-656 (-227)) (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) 68)) (-1356 (((-1113 (-855 (-227))) (-1113 (-855 (-227)))) 65)) (-3447 (((-1178) (-227)) 76)) (-1340 (((-711) (-227)) 95)) (-2354 (((-419 (-576)) (-227)) 58)) (-1645 (((-326 (-390)) (-227)) 52)) (-1505 (((-656 (-1113 (-855 (-227)))) (-656 (-1113 (-855 (-390))))) 46)) (-2851 (((-1054) (-656 (-1054))) 191) (((-1054) (-1054) (-1054)) 185)) (-2197 (((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) -(((-315) (-10 -7 (-15 -1671 ((-227) (-390))) (-15 -2538 ((-326 (-227)) (-326 (-390)))) (-15 -1343 ((-855 (-227)) (-855 (-390)))) (-15 -2546 ((-1113 (-855 (-227))) (-1113 (-855 (-390))))) (-15 -1505 ((-656 (-1113 (-855 (-227)))) (-656 (-1113 (-855 (-390)))))) (-15 -2354 ((-419 (-576)) (-227))) (-15 -3414 ((-419 (-576)) (-326 (-227)))) (-15 -1495 ((-227) (-326 (-227)))) (-15 -2874 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -4264 ((-390) (-1287 (-326 (-227))))) (-15 -3202 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1287 (-326 (-227))))) (-15 -2332 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -1356 ((-1113 (-855 (-227))) (-1113 (-855 (-227))))) (-15 -3800 ((-656 (-227)) (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))))) (-15 -1340 ((-711) (-227))) (-15 -1600 ((-1287 (-711)) (-656 (-227)))) (-15 -4308 ((-326 (-390)) (-326 (-227)))) (-15 -2758 ((-1287 (-326 (-390))) (-1287 (-326 (-227))))) (-15 -2578 ((-112) (-227) (-1113 (-855 (-227))))) (-15 -3447 ((-1178) (-227))) (-15 -2715 ((-1178) (-390))) (-15 -3167 ((-656 (-1178)) (-656 (-227)))) (-15 -3961 ((-656 (-1178)) (-1176 (-227)))) (-15 -2008 ((-227) (-1113 (-855 (-227))))) (-15 -3130 ((-227) (-1113 (-855 (-227))))) (-15 -2851 ((-1054) (-1054) (-1054))) (-15 -2851 ((-1054) (-656 (-1054)))) (-15 -2889 ((-1178) (-390))) (-15 -1622 ((-1054) (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))))) (-15 -1622 ((-1054) (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))))) (-15 -2197 ((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4151 ((-1054) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -3555 ((-326 (-390)) (-969 (-227)))) (-15 -2583 ((-227) (-969 (-227)))) (-15 -1645 ((-326 (-390)) (-227))) (-15 -4137 ((-227) (-419 (-576)))) (-15 -2215 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315)) -((-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-969 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3555 (*1 *2 *3) (-12 (-5 *3 (-969 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-2197 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-2851 (*1 *2 *3) (-12 (-5 *3 (-656 (-1054))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-2851 (*1 *2 *2 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-315)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-315)))) (-2578 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-1287 (-326 (-390)))) (-5 *1 (-315)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287 (-711))) (-5 *1 (-315)))) (-1340 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-1356 (*1 *2 *2) (-12 (-5 *2 (-1113 (-855 (-227)))) (-5 *1 (-315)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-3202 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-4264 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-2874 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-656 (-1113 (-855 (-390))))) (-5 *2 (-656 (-1113 (-855 (-227))))) (-5 *1 (-315)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-390)))) (-5 *2 (-1113 (-855 (-227)))) (-5 *1 (-315)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(-10 -7 (-15 -1671 ((-227) (-390))) (-15 -2538 ((-326 (-227)) (-326 (-390)))) (-15 -1343 ((-855 (-227)) (-855 (-390)))) (-15 -2546 ((-1113 (-855 (-227))) (-1113 (-855 (-390))))) (-15 -1505 ((-656 (-1113 (-855 (-227)))) (-656 (-1113 (-855 (-390)))))) (-15 -2354 ((-419 (-576)) (-227))) (-15 -3414 ((-419 (-576)) (-326 (-227)))) (-15 -1495 ((-227) (-326 (-227)))) (-15 -2874 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -4264 ((-390) (-1287 (-326 (-227))))) (-15 -3202 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1287 (-326 (-227))))) (-15 -2332 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -1356 ((-1113 (-855 (-227))) (-1113 (-855 (-227))))) (-15 -3800 ((-656 (-227)) (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))))) (-15 -1340 ((-711) (-227))) (-15 -1600 ((-1287 (-711)) (-656 (-227)))) (-15 -4308 ((-326 (-390)) (-326 (-227)))) (-15 -2758 ((-1287 (-326 (-390))) (-1287 (-326 (-227))))) (-15 -2578 ((-112) (-227) (-1113 (-855 (-227))))) (-15 -3447 ((-1178) (-227))) (-15 -2715 ((-1178) (-390))) (-15 -3167 ((-656 (-1178)) (-656 (-227)))) (-15 -3961 ((-656 (-1178)) (-1176 (-227)))) (-15 -2008 ((-227) (-1113 (-855 (-227))))) (-15 -3130 ((-227) (-1113 (-855 (-227))))) (-15 -2851 ((-1054) (-1054) (-1054))) (-15 -2851 ((-1054) (-656 (-1054)))) (-15 -2889 ((-1178) (-390))) (-15 -1622 ((-1054) (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))))) (-15 -1622 ((-1054) (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))))) (-15 -2197 ((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4151 ((-1054) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -3555 ((-326 (-390)) (-969 (-227)))) (-15 -2583 ((-227) (-969 (-227)))) (-15 -1645 ((-326 (-390)) (-227))) (-15 -4137 ((-227) (-419 (-576)))) (-15 -2215 ((-701 (-227)) (-656 (-227)) (-783)))) -((-4407 (((-112) $ $) 14)) (-1975 (($ $ $) 18)) (-1986 (($ $ $) 17)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 50)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-3149 (($ $ $) 25) (($ (-656 $)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2022 (((-3 $ "failed") $ $) 21)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 53))) -(((-316 |#1|) (-10 -8 (-15 -2651 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1331 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1331 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2582 |#1|)) |#1| |#1|)) (-15 -1975 (|#1| |#1| |#1|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -4407 ((-112) |#1| |#1|)) (-15 -1407 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -4064 ((-2 (|:| -1856 (-656 |#1|)) (|:| -2582 |#1|)) (-656 |#1|))) (-15 -3149 (|#1| (-656 |#1|))) (-15 -3149 (|#1| |#1| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) -NIL -(-10 -8 (-15 -2651 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -1331 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1331 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2582 |#1|)) |#1| |#1|)) (-15 -1975 (|#1| |#1| |#1|)) (-15 -1986 (|#1| |#1| |#1|)) (-15 -4407 ((-112) |#1| |#1|)) (-15 -1407 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -4064 ((-2 (|:| -1856 (-656 |#1|)) (|:| -2582 |#1|)) (-656 |#1|))) (-15 -3149 (|#1| (-656 |#1|))) (-15 -3149 (|#1| |#1| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-4407 (((-112) $ $) 65)) (-3656 (($) 18 T CONST)) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-1810 (((-112) $) 35)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-1333 (((-656 |#1|) (-656 |#1|)) 10))) +(((-313 |#1|) (-10 -7 (-15 -1333 ((-656 |#1|) (-656 |#1|)))) (-860)) (T -313)) +((-1333 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) +(-10 -7 (-15 -1333 ((-656 |#1|) (-656 |#1|)))) +((-1632 (((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)) 17))) +(((-314 |#1| |#2|) (-10 -7 (-15 -1632 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) (-1068) (-1068)) (T -314)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-701 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-701 *6)) (-5 *1 (-314 *5 *6))))) +(-10 -7 (-15 -1632 ((-701 |#2|) (-1 |#2| |#1|) (-701 |#1|)))) +((-2080 (((-1286 (-326 (-390))) (-1286 (-326 (-227)))) 110)) (-3616 (((-1113 (-855 (-227))) (-1113 (-855 (-390)))) 43)) (-2713 (((-656 (-1177)) (-1176 (-227))) 92)) (-3161 (((-326 (-390)) (-969 (-227))) 53)) (-2878 (((-227) (-969 (-227))) 49)) (-2806 (((-1177) (-390)) 195)) (-2405 (((-855 (-227)) (-855 (-390))) 37)) (-2170 (((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1286 (-326 (-227)))) 165)) (-3682 (((-1054) (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054)))) 207) (((-1054) (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))))) 205)) (-2689 (((-701 (-227)) (-656 (-227)) (-783)) 19)) (-2574 (((-1286 (-711)) (-656 (-227))) 99)) (-1614 (((-656 (-1177)) (-656 (-227))) 79)) (-2276 (((-3 (-326 (-227)) "failed") (-326 (-227))) 128)) (-3641 (((-112) (-227) (-1113 (-855 (-227)))) 117)) (-3966 (((-1054) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) 224)) (-3216 (((-227) (-1113 (-855 (-227)))) 112)) (-3582 (((-227) (-1113 (-855 (-227)))) 113)) (-2245 (((-227) (-419 (-576))) 31)) (-1781 (((-1177) (-390)) 77)) (-3936 (((-227) (-390)) 22)) (-2889 (((-390) (-1286 (-326 (-227)))) 177)) (-3944 (((-326 (-227)) (-326 (-390))) 28)) (-3868 (((-419 (-576)) (-326 (-227))) 56)) (-3337 (((-326 (-419 (-576))) (-326 (-227))) 73)) (-4392 (((-326 (-390)) (-326 (-227))) 103)) (-4133 (((-227) (-326 (-227))) 57)) (-3304 (((-656 (-227)) (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) 68)) (-3265 (((-1113 (-855 (-227))) (-1113 (-855 (-227)))) 65)) (-3642 (((-1177) (-227)) 76)) (-2089 (((-711) (-227)) 95)) (-1497 (((-419 (-576)) (-227)) 58)) (-4075 (((-326 (-390)) (-227)) 52)) (-4076 (((-656 (-1113 (-855 (-227)))) (-656 (-1113 (-855 (-390))))) 46)) (-1661 (((-1054) (-656 (-1054))) 191) (((-1054) (-1054) (-1054)) 185)) (-1444 (((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221))) +(((-315) (-10 -7 (-15 -3936 ((-227) (-390))) (-15 -3944 ((-326 (-227)) (-326 (-390)))) (-15 -2405 ((-855 (-227)) (-855 (-390)))) (-15 -3616 ((-1113 (-855 (-227))) (-1113 (-855 (-390))))) (-15 -4076 ((-656 (-1113 (-855 (-227)))) (-656 (-1113 (-855 (-390)))))) (-15 -1497 ((-419 (-576)) (-227))) (-15 -3868 ((-419 (-576)) (-326 (-227)))) (-15 -4133 ((-227) (-326 (-227)))) (-15 -2276 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -2889 ((-390) (-1286 (-326 (-227))))) (-15 -2170 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1286 (-326 (-227))))) (-15 -3337 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3265 ((-1113 (-855 (-227))) (-1113 (-855 (-227))))) (-15 -3304 ((-656 (-227)) (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))))) (-15 -2089 ((-711) (-227))) (-15 -2574 ((-1286 (-711)) (-656 (-227)))) (-15 -4392 ((-326 (-390)) (-326 (-227)))) (-15 -2080 ((-1286 (-326 (-390))) (-1286 (-326 (-227))))) (-15 -3641 ((-112) (-227) (-1113 (-855 (-227))))) (-15 -3642 ((-1177) (-227))) (-15 -1781 ((-1177) (-390))) (-15 -1614 ((-656 (-1177)) (-656 (-227)))) (-15 -2713 ((-656 (-1177)) (-1176 (-227)))) (-15 -3216 ((-227) (-1113 (-855 (-227))))) (-15 -3582 ((-227) (-1113 (-855 (-227))))) (-15 -1661 ((-1054) (-1054) (-1054))) (-15 -1661 ((-1054) (-656 (-1054)))) (-15 -2806 ((-1177) (-390))) (-15 -3682 ((-1054) (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))))) (-15 -3682 ((-1054) (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054))))) (-15 -1444 ((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3966 ((-1054) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -3161 ((-326 (-390)) (-969 (-227)))) (-15 -2878 ((-227) (-969 (-227)))) (-15 -4075 ((-326 (-390)) (-227))) (-15 -2245 ((-227) (-419 (-576)))) (-15 -2689 ((-701 (-227)) (-656 (-227)) (-783))))) (T -315)) +((-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) (-5 *1 (-315)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-969 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-969 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054)))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-3682 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-656 (-1054))) (-5 *2 (-1054)) (-5 *1 (-315)))) (-1661 (*1 *2 *2 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-315)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315)))) (-1614 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-315)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-315)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-1286 (-326 (-390)))) (-5 *1 (-315)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1286 (-711))) (-5 *1 (-315)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-5 *2 (-656 (-227))) (-5 *1 (-315)))) (-3265 (*1 *2 *2) (-12 (-5 *2 (-1113 (-855 (-227)))) (-5 *1 (-315)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) (-5 *1 (-315)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) (-5 *1 (-315)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315)))) (-2276 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-656 (-1113 (-855 (-390))))) (-5 *2 (-656 (-1113 (-855 (-227))))) (-5 *1 (-315)))) (-3616 (*1 *2 *3) (-12 (-5 *3 (-1113 (-855 (-390)))) (-5 *2 (-1113 (-855 (-227)))) (-5 *1 (-315)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315)))) (-3944 (*1 *2 *3) (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) +(-10 -7 (-15 -3936 ((-227) (-390))) (-15 -3944 ((-326 (-227)) (-326 (-390)))) (-15 -2405 ((-855 (-227)) (-855 (-390)))) (-15 -3616 ((-1113 (-855 (-227))) (-1113 (-855 (-390))))) (-15 -4076 ((-656 (-1113 (-855 (-227)))) (-656 (-1113 (-855 (-390)))))) (-15 -1497 ((-419 (-576)) (-227))) (-15 -3868 ((-419 (-576)) (-326 (-227)))) (-15 -4133 ((-227) (-326 (-227)))) (-15 -2276 ((-3 (-326 (-227)) "failed") (-326 (-227)))) (-15 -2889 ((-390) (-1286 (-326 (-227))))) (-15 -2170 ((-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576))) (-1286 (-326 (-227))))) (-15 -3337 ((-326 (-419 (-576))) (-326 (-227)))) (-15 -3265 ((-1113 (-855 (-227))) (-1113 (-855 (-227))))) (-15 -3304 ((-656 (-227)) (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))))) (-15 -2089 ((-711) (-227))) (-15 -2574 ((-1286 (-711)) (-656 (-227)))) (-15 -4392 ((-326 (-390)) (-326 (-227)))) (-15 -2080 ((-1286 (-326 (-390))) (-1286 (-326 (-227))))) (-15 -3641 ((-112) (-227) (-1113 (-855 (-227))))) (-15 -3642 ((-1177) (-227))) (-15 -1781 ((-1177) (-390))) (-15 -1614 ((-656 (-1177)) (-656 (-227)))) (-15 -2713 ((-656 (-1177)) (-1176 (-227)))) (-15 -3216 ((-227) (-1113 (-855 (-227))))) (-15 -3582 ((-227) (-1113 (-855 (-227))))) (-15 -1661 ((-1054) (-1054) (-1054))) (-15 -1661 ((-1054) (-656 (-1054)))) (-15 -2806 ((-1177) (-390))) (-15 -3682 ((-1054) (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))))) (-15 -3682 ((-1054) (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054))))) (-15 -1444 ((-1054) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3966 ((-1054) (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))) (-15 -3161 ((-326 (-390)) (-969 (-227)))) (-15 -2878 ((-227) (-969 (-227)))) (-15 -4075 ((-326 (-390)) (-227))) (-15 -2245 ((-227) (-419 (-576)))) (-15 -2689 ((-701 (-227)) (-656 (-227)) (-783)))) +((-1727 (((-112) $ $) 14)) (-3420 (($ $ $) 18)) (-3431 (($ $ $) 17)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 50)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 65)) (-3495 (($ $ $) 25) (($ (-656 $)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3463 (((-3 $ "failed") $ $) 21)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 53))) +(((-316 |#1|) (-10 -8 (-15 -3381 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3738 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3738 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2202 |#1|)) |#1| |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -1727 ((-112) |#1| |#1|)) (-15 -1350 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -4356 ((-2 (|:| -1706 (-656 |#1|)) (|:| -2202 |#1|)) (-656 |#1|))) (-15 -3495 (|#1| (-656 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#1|))) (-317)) (T -316)) +NIL +(-10 -8 (-15 -3381 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -3738 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3738 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2202 |#1|)) |#1| |#1|)) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3431 (|#1| |#1| |#1|)) (-15 -1727 ((-112) |#1| |#1|)) (-15 -1350 ((-3 (-656 |#1|) "failed") (-656 |#1|) |#1|)) (-15 -4356 ((-2 (|:| -1706 (-656 |#1|)) (|:| -2202 |#1|)) (-656 |#1|))) (-15 -3495 (|#1| (-656 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-1727 (((-112) $ $) 65)) (-3767 (($) 18 T CONST)) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-1414 (((-112) $) 35)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-317) (-141)) (T -317)) -((-4407 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-2233 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-317)))) (-1986 (*1 *1 *1 *1) (-4 *1 (-317))) (-1975 (*1 *1 *1 *1) (-4 *1 (-317))) (-1331 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2582 *1))) (-4 *1 (-317)))) (-1331 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-2651 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) -(-13 (-937) (-10 -8 (-15 -4407 ((-112) $ $)) (-15 -1787 ((-783) $)) (-15 -2233 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -1986 ($ $ $)) (-15 -1975 ($ $ $)) (-15 -1331 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $)) (-15 -1331 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2651 ((-3 (-656 $) "failed") (-656 $) $)))) +((-1727 (*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112)))) (-3112 (*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783)))) (-1784 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-317)))) (-3431 (*1 *1 *1 *1) (-4 *1 (-317))) (-3420 (*1 *1 *1 *1) (-4 *1 (-317))) (-3738 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2202 *1))) (-4 *1 (-317)))) (-3738 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-317)))) (-3381 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) +(-13 (-937) (-10 -8 (-15 -1727 ((-112) $ $)) (-15 -3112 ((-783) $)) (-15 -1784 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -3431 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -3738 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $)) (-15 -3738 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3381 ((-3 (-656 $) "failed") (-656 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2259 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL))) -(((-318 |#1| |#2|) (-10 -8 (-15 -2259 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2259 (|#1| |#1| (-304 |#2|))) (-15 -2259 (|#1| |#1| |#2| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1119)) (T -318)) +((-3306 (($ $ (-656 |#2|) (-656 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-304 |#2|)) 11) (($ $ (-656 (-304 |#2|))) NIL))) +(((-318 |#1| |#2|) (-10 -8 (-15 -3306 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3306 (|#1| |#1| (-304 |#2|))) (-15 -3306 (|#1| |#1| |#2| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) (-319 |#2|) (-1119)) (T -318)) NIL -(-10 -8 (-15 -2259 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2259 (|#1| |#1| (-304 |#2|))) (-15 -2259 (|#1| |#1| |#2| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) -((-2259 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10))) +(-10 -8 (-15 -3306 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3306 (|#1| |#1| (-304 |#2|))) (-15 -3306 (|#1| |#1| |#2| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#2|) (-656 |#2|)))) +((-3306 (($ $ (-656 |#1|) (-656 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-304 |#1|)) 11) (($ $ (-656 (-304 |#1|))) 10))) (((-319 |#1|) (-141) (-1119)) (T -319)) -((-2259 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1119)))) (-2259 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1119))))) -(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -2259 ($ $ (-304 |t#1|))) (-15 -2259 ($ $ (-656 (-304 |t#1|)))))) +((-3306 (*1 *1 *1 *2) (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1119)))) (-3306 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1119))))) +(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -3306 ($ $ (-304 |t#1|))) (-15 -3306 ($ $ (-656 (-304 |t#1|)))))) (((-526 |#1| |#1|) . T)) -((-2259 ((|#1| (-1 |#1| (-576)) (-1198 (-419 (-576)))) 26))) -(((-320 |#1|) (-10 -7 (-15 -2259 (|#1| (-1 |#1| (-576)) (-1198 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) -((-2259 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1198 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) -(-10 -7 (-15 -2259 (|#1| (-1 |#1| (-576)) (-1198 (-419 (-576)))))) -((-2034 (((-112) $ $) NIL)) (-2096 (((-576) $) 12)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2271 (((-1154) $) 9)) (-4092 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-321) (-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)) (-15 -2096 ((-576) $))))) (T -321)) -((-2271 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-321)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) -(-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)) (-15 -2096 ((-576) $)))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 7)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 9))) +((-3306 ((|#1| (-1 |#1| (-576)) (-1197 (-419 (-576)))) 26))) +(((-320 |#1|) (-10 -7 (-15 -3306 (|#1| (-1 |#1| (-576)) (-1197 (-419 (-576)))))) (-38 (-419 (-576)))) (T -320)) +((-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1197 (-419 (-576)))) (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576))))))) +(-10 -7 (-15 -3306 (|#1| (-1 |#1| (-576)) (-1197 (-419 (-576)))))) +((-3474 (((-112) $ $) NIL)) (-3982 (((-576) $) 12)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4269 (((-1154) $) 9)) (-3563 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-321) (-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)) (-15 -3982 ((-576) $))))) (T -321)) +((-4269 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-321)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321))))) +(-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)) (-15 -3982 ((-576) $)))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 7)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 9))) (((-322) (-1119)) (T -322)) NIL (-1119) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 60)) (-3942 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-926)))) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-926)))) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-1273 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-3 (-1272 |#2| |#3| |#4|) "failed") $) 26)) (-2378 (((-1273 |#1| |#2| |#3| |#4|) $) NIL) (((-1196) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-576) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-1272 |#2| |#3| |#4|) $) NIL)) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-1273 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1287 (-1273 |#1| |#2| |#3| |#4|)))) (-701 $) (-1287 $)) NIL) (((-701 (-1273 |#1| |#2| |#3| |#4|)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-1273 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1287 (-1273 |#1| |#2| |#3| |#4|)))) (-1287 $) $) NIL) (((-701 (-1273 |#1| |#2| |#3| |#4|)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-557)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-899 (-390))))) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-3894 (((-1273 |#1| |#2| |#3| |#4|) $) 22)) (-2083 (((-3 $ "failed") $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1171)))) (-3713 (((-112) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-2726 (($ $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-2477 (($ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) $) NIL)) (-3177 (((-3 (-855 |#2|) "failed") $) 80)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-317)))) (-3892 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-926)))) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2259 (($ $ (-656 (-1273 |#1| |#2| |#3| |#4|)) (-656 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1273 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-319 (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1196)) (-656 (-1273 |#1| |#2| |#3| |#4|))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-526 (-1196) (-1273 |#1| |#2| |#3| |#4|)))) (($ $ (-1196) (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-526 (-1196) (-1273 |#1| |#2| |#3| |#4|))))) (-1787 (((-783) $) NIL)) (-4367 (($ $ (-1273 |#1| |#2| |#3| |#4|)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-296 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237)))) (-1490 (($ $) NIL)) (-3905 (((-1273 |#1| |#2| |#3| |#4|) $) 19)) (-1505 (((-905 (-576)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1041))) (((-227) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1041)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3| |#4|) (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1273 |#1| |#2| |#3| |#4|)) 30) (($ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-1057 (-1196)))) (($ (-1272 |#2| |#3| |#4|)) 37)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-1273 |#1| |#2| |#3| |#4|) (-926))) (|has| (-1273 |#1| |#2| |#3| |#4|) (-146))))) (-2471 (((-783)) NIL T CONST)) (-4179 (((-1273 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-557)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3423 (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-832)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-917 (-1196)))) (($ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-237)))) (-3977 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-3944 (((-112) $ $) NIL (|has| (-1273 |#1| |#2| |#3| |#4|) (-862)))) (-4028 (($ $ $) 35) (($ (-1273 |#1| |#2| |#3| |#4|) (-1273 |#1| |#2| |#3| |#4|)) 32)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1273 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1273 |#1| |#2| |#3| |#4|)) NIL))) -(((-323 |#1| |#2| |#3| |#4|) (-13 (-1011 (-1273 |#1| |#2| |#3| |#4|)) (-1057 (-1272 |#2| |#3| |#4|)) (-10 -8 (-15 -3177 ((-3 (-855 |#2|) "failed") $)) (-15 -4092 ($ (-1272 |#2| |#3| |#4|))))) (-13 (-1057 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1222) (-442 |#1|)) (-1196) |#2|) (T -323)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1272 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4) (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-3177 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4)))) -(-13 (-1011 (-1273 |#1| |#2| |#3| |#4|)) (-1057 (-1272 |#2| |#3| |#4|)) (-10 -8 (-15 -3177 ((-3 (-855 |#2|) "failed") $)) (-15 -4092 ($ (-1272 |#2| |#3| |#4|))))) -((-2477 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) -(((-324 |#1| |#2|) (-10 -7 (-15 -2477 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1119) (-1119)) (T -324)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) -(-10 -7 (-15 -2477 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) -((-1596 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1196)) 26)) (-3451 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1196)) 55)) (-1621 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1196)) 50)) (-1608 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1196)) 43))) -(((-325 |#1| |#2|) (-10 -7 (-15 -1596 ((-52) (-1196))) (-15 -1596 ((-52) |#2|)) (-15 -1596 ((-52) |#2| (-783))) (-15 -1596 ((-52) |#2| (-304 |#2|))) (-15 -1596 ((-52) |#2| (-304 |#2|) (-783))) (-15 -1608 ((-52) (-1196))) (-15 -1608 ((-52) |#2|)) (-15 -1608 ((-52) |#2| (-576))) (-15 -1608 ((-52) |#2| (-304 |#2|))) (-15 -1608 ((-52) |#2| (-304 |#2|) (-576))) (-15 -1621 ((-52) (-1196))) (-15 -1621 ((-52) |#2|)) (-15 -1621 ((-52) |#2| (-419 (-576)))) (-15 -1621 ((-52) |#2| (-304 |#2|))) (-15 -1621 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3451 ((-52) (-1196))) (-15 -3451 ((-52) |#2|)) (-15 -3451 ((-52) |#2| (-419 (-576)))) (-15 -3451 ((-52) |#2| (-304 |#2|))) (-15 -3451 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -325)) -((-3451 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-3451 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) (-1621 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1621 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-1621 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) (-1608 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1608 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1057 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-1608 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1608 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) (-1596 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-1596 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-1596 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-1596 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4)))))) -(-10 -7 (-15 -1596 ((-52) (-1196))) (-15 -1596 ((-52) |#2|)) (-15 -1596 ((-52) |#2| (-783))) (-15 -1596 ((-52) |#2| (-304 |#2|))) (-15 -1596 ((-52) |#2| (-304 |#2|) (-783))) (-15 -1608 ((-52) (-1196))) (-15 -1608 ((-52) |#2|)) (-15 -1608 ((-52) |#2| (-576))) (-15 -1608 ((-52) |#2| (-304 |#2|))) (-15 -1608 ((-52) |#2| (-304 |#2|) (-576))) (-15 -1621 ((-52) (-1196))) (-15 -1621 ((-52) |#2|)) (-15 -1621 ((-52) |#2| (-419 (-576)))) (-15 -1621 ((-52) |#2| (-304 |#2|))) (-15 -1621 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -3451 ((-52) (-1196))) (-15 -3451 ((-52) |#2|)) (-15 -3451 ((-52) |#2| (-419 (-576)))) (-15 -3451 ((-52) |#2| (-304 |#2|))) (-15 -3451 ((-52) |#2| (-304 |#2|) (-419 (-576))))) -((-2034 (((-112) $ $) NIL)) (-1559 (((-656 $) $ (-1196)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $) (-1196)) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $)) NIL (|has| |#1| (-568))) (((-656 $) (-969 $)) NIL (|has| |#1| (-568)))) (-1669 (($ $ (-1196)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1192 $) (-1196)) NIL (|has| |#1| (-568))) (($ (-1192 $)) NIL (|has| |#1| (-568))) (($ (-969 $)) NIL (|has| |#1| (-568)))) (-1962 (((-112) $) 27 (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-1541 (((-656 (-1196)) $) 368)) (-1364 (((-419 (-1192 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-4385 (((-656 (-624 $)) $) NIL)) (-2266 (($ $) 171 (|has| |#1| (-568)))) (-2111 (($ $) 147 (|has| |#1| (-568)))) (-4358 (($ $ (-1111 $)) 232 (|has| |#1| (-568))) (($ $ (-1196)) 228 (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) NIL (-3765 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-1756 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-1589 (((-430 (-1192 $)) (-1192 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1587 (($ $) NIL (|has| |#1| (-568)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1403 (($ $) NIL (|has| |#1| (-568)))) (-4407 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2236 (($ $) 167 (|has| |#1| (-568)))) (-2084 (($ $) 143 (|has| |#1| (-568)))) (-3258 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-2294 (($ $) 175 (|has| |#1| (-568)))) (-2138 (($ $) 151 (|has| |#1| (-568)))) (-3656 (($) NIL (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) (|has| |#1| (-1131))) CONST)) (-4189 (((-656 $) $ (-1196)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $) (-1196)) NIL (|has| |#1| (-568))) (((-656 $) (-1192 $)) NIL (|has| |#1| (-568))) (((-656 $) (-969 $)) NIL (|has| |#1| (-568)))) (-1935 (($ $ (-1196)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1192 $) (-1196)) 134 (|has| |#1| (-568))) (($ (-1192 $)) NIL (|has| |#1| (-568))) (($ (-969 $)) NIL (|has| |#1| (-568)))) (-2974 (((-3 (-624 $) "failed") $) 18) (((-3 (-1196) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-969 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-969 |#1|) "failed") $) NIL (|has| |#1| (-1068))) (((-3 (-419 (-576)) "failed") $) 46 (-3765 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2378 (((-624 $) $) 12) (((-1196) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-969 |#1|)) $) NIL (|has| |#1| (-568))) (((-969 |#1|) $) NIL (|has| |#1| (-1068))) (((-419 (-576)) $) 319 (-3765 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-1975 (($ $ $) NIL (|has| |#1| (-568)))) (-3687 (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 125 (|has| |#1| (-1068))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1068))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL (|has| |#1| (-1068))) (((-701 |#1|) (-1287 $)) NIL (|has| |#1| (-1068))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (-2359 (($ $) 96 (|has| |#1| (-568)))) (-3179 (((-3 $ "failed") $) NIL (|has| |#1| (-1131)))) (-1986 (($ $ $) NIL (|has| |#1| (-568)))) (-3390 (($ $ (-1111 $)) 236 (|has| |#1| (-568))) (($ $ (-1196)) 234 (|has| |#1| (-568)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-2725 (((-112) $) NIL (|has| |#1| (-568)))) (-3381 (($ $ $) 202 (|has| |#1| (-568)))) (-3926 (($) 137 (|has| |#1| (-568)))) (-2135 (($ $ $) 222 (|has| |#1| (-568)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 392 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 399 (|has| |#1| (-899 (-390))))) (-2191 (($ $) NIL) (($ (-656 $)) NIL)) (-4349 (((-656 (-115)) $) NIL)) (-1344 (((-115) (-115)) 276)) (-1810 (((-112) $) 25 (|has| |#1| (-1131)))) (-3082 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-4272 (($ $) 72 (|has| |#1| (-1068)))) (-3894 (((-1144 |#1| (-624 $)) $) 91 (|has| |#1| (-1068)))) (-1979 (((-112) $) 62 (|has| |#1| (-568)))) (-3355 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-2525 (((-1192 $) (-624 $)) 277 (|has| $ (-1068)))) (-2477 (($ (-1 $ $) (-624 $)) 426)) (-4348 (((-3 (-624 $) "failed") $) NIL)) (-2703 (($ $) 141 (|has| |#1| (-568)))) (-1821 (($ $) 247 (|has| |#1| (-568)))) (-3117 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3288 (((-1178) $) NIL)) (-1332 (((-656 (-624 $)) $) 49)) (-1770 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-3009 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1131)))) (-4192 (((-3 (-2 (|:| |val| $) (|:| -3175 (-576))) "failed") $) NIL (|has| |#1| (-1068)))) (-2016 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-2642 (((-3 (-2 (|:| -1856 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3178 (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $) NIL (|has| |#1| (-1131))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-1196)) NIL (|has| |#1| (-1068)))) (-1412 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) 51)) (-1644 (($ $) NIL (-3765 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-1909 (($ $ (-1196)) 251 (|has| |#1| (-568))) (($ $ (-1111 $)) 253 (|has| |#1| (-568)))) (-2927 (((-783) $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) 43)) (-1670 ((|#1| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 301 (|has| |#1| (-568)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2513 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-4144 (($ $ (-1196)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-1765 (($ $) 218 (|has| |#1| (-568)))) (-3282 (((-430 (-1192 $)) (-1192 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1392 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-568)))) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-3353 (($ $) 139 (|has| |#1| (-568)))) (-2015 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-2259 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1196)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1196)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ $)) NIL (|has| |#1| (-1068)))) (-1787 (((-783) $) NIL (|has| |#1| (-568)))) (-2037 (($ $) 239 (|has| |#1| (-568)))) (-4367 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-568)))) (-3724 (($ $) NIL) (($ $ $) NIL)) (-2070 (($ $) 249 (|has| |#1| (-568)))) (-1382 (($ $) 200 (|has| |#1| (-568)))) (-3614 (($ $ (-1196)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-1068))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-1068)))) (-1490 (($ $) 74 (|has| |#1| (-568)))) (-3905 (((-1144 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-2840 (($ $) 317 (|has| $ (-1068)))) (-2307 (($ $) 177 (|has| |#1| (-568)))) (-2149 (($ $) 153 (|has| |#1| (-568)))) (-2281 (($ $) 173 (|has| |#1| (-568)))) (-2123 (($ $) 149 (|has| |#1| (-568)))) (-2253 (($ $) 169 (|has| |#1| (-568)))) (-2099 (($ $) 145 (|has| |#1| (-568)))) (-1505 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-3646 (($ $ $) NIL (|has| |#1| (-485)))) (-1361 (($ $ $) NIL (|has| |#1| (-485)))) (-4092 (((-874) $) 424) (($ (-624 $)) 415) (($ (-1196)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) (($ (-1144 |#1| (-624 $))) 95 (|has| |#1| (-1068))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-969 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-969 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-969 |#1|))) NIL (|has| |#1| (-568))) (($ (-969 |#1|)) NIL (|has| |#1| (-1068))) (($ (-576)) 34 (-3765 (|has| |#1| (-1057 (-576))) (|has| |#1| (-1068)))) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-568)) (|has| |#1| (-1057 (-419 (-576))))))) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL (|has| |#1| (-1068)) CONST)) (-3163 (($ $) NIL) (($ (-656 $)) NIL)) (-1760 (($ $ $) 220 (|has| |#1| (-568)))) (-3400 (($ $ $) 206 (|has| |#1| (-568)))) (-2621 (($ $ $) 210 (|has| |#1| (-568)))) (-4199 (($ $ $) 204 (|has| |#1| (-568)))) (-2624 (($ $ $) 208 (|has| |#1| (-568)))) (-3201 (((-112) (-115)) 10)) (-1531 (((-112) $ $) 86)) (-2340 (($ $) 183 (|has| |#1| (-568)))) (-2184 (($ $) 159 (|has| |#1| (-568)))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) 179 (|has| |#1| (-568)))) (-2161 (($ $) 155 (|has| |#1| (-568)))) (-2368 (($ $) 187 (|has| |#1| (-568)))) (-2207 (($ $) 163 (|has| |#1| (-568)))) (-2407 (($ (-1196) $) NIL) (($ (-1196) $ $) NIL) (($ (-1196) $ $ $) NIL) (($ (-1196) $ $ $ $) NIL) (($ (-1196) (-656 $)) NIL)) (-2456 (($ $) 214 (|has| |#1| (-568)))) (-2154 (($ $) 212 (|has| |#1| (-568)))) (-3945 (($ $) 189 (|has| |#1| (-568)))) (-2220 (($ $) 165 (|has| |#1| (-568)))) (-2352 (($ $) 185 (|has| |#1| (-568)))) (-2195 (($ $) 161 (|has| |#1| (-568)))) (-2329 (($ $) 181 (|has| |#1| (-568)))) (-2173 (($ $) 157 (|has| |#1| (-568)))) (-3423 (($ $) 192 (|has| |#1| (-568)))) (-4300 (($) 21 (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) CONST)) (-1902 (($ $) 243 (|has| |#1| (-568)))) (-4310 (($) 23 (|has| |#1| (-1131)) CONST)) (-2917 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-3848 (($ $) 241 (|has| |#1| (-568)))) (-4286 (($ $ (-1196)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-1068))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-1068)))) (-3415 (($ $) 245 (|has| |#1| (-568)))) (-1802 (($ $ $) 198 (|has| |#1| (-568)))) (-3919 (((-112) $ $) 88)) (-4028 (($ (-1144 |#1| (-624 $)) (-1144 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-3765 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4018 (($ $ $) 40 (-3765 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (($ $) 29 (-3765 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-4007 (($ $ $) 38 (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-3765 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1131))) (($ $ (-938)) 84 (|has| |#1| (-1131)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1068))) (($ $ $) 36 (|has| |#1| (-1131))) (($ (-576) $) 32 (-3765 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (($ (-783) $) NIL (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (($ (-938) $) NIL (-3765 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))))) -(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1222)) (-6 (-161)) (-6 (-641)) (-6 (-1158)) (-15 -2359 ($ $)) (-15 -1979 ((-112) $)) (-15 -3258 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3282 ((-430 (-1192 $)) (-1192 $))) (-15 -1589 ((-430 (-1192 $)) (-1192 $)))) |%noBranch|) (IF (|has| |#1| (-1057 (-576))) (-6 (-1057 (-48))) |%noBranch|)) |%noBranch|))) (-1119)) (T -326)) -((-2359 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1119)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))) (-3258 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))) (-3282 (*1 *2 *3) (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119)))) (-1589 (*1 *2 *3) (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119))))) -(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1222)) (-6 (-161)) (-6 (-641)) (-6 (-1158)) (-15 -2359 ($ $)) (-15 -1979 ((-112) $)) (-15 -3258 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -3282 ((-430 (-1192 $)) (-1192 $))) (-15 -1589 ((-430 (-1192 $)) (-1192 $)))) |%noBranch|) (IF (|has| |#1| (-1057 (-576))) (-6 (-1057 (-48))) |%noBranch|)) |%noBranch|))) -((-3279 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) -(((-327 |#1| |#2|) (-10 -7 (-15 -3279 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3279 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3279 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3279 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3279 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3279 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3279 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3279 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3279 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3279 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) -((-3279 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-3279 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3279 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-3279 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-3279 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3279 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3279 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-3279 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3279 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-3279 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) -(-10 -7 (-15 -3279 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -3279 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -3279 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3279 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3279 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -3279 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -3279 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -3279 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -3279 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -3279 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-1456 (((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576) (-1178)) 67) (((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576)) 68) (((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576) (-1178)) 64) (((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-1638 (((-1 (-227) (-227)) (-227)) 66))) -(((-328) (-10 -7 (-15 -1638 ((-1 (-227) (-227)) (-227))) (-15 -1456 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576))) (-15 -1456 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576) (-1178))) (-15 -1456 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576))) (-15 -1456 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576) (-1178))))) (T -328)) -((-1456 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1178)) (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) (-1456 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) (-1456 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *7 (-1178)) (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) (-1456 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) (-1638 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(-10 -7 (-15 -1638 ((-1 (-227) (-227)) (-227))) (-15 -1456 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576))) (-15 -1456 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576) (-1178))) (-15 -1456 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576))) (-15 -1456 ((-1232 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576) (-1178)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 26)) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2255 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-1655 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-2266 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| |#1| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2236 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2294 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) 36)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2725 (((-112) $) NIL (|has| |#1| (-374)))) (-3840 (((-112) $) NIL)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-419 (-576))) NIL) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-3597 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222)))))) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2843 (($ $ (-419 (-576))) NIL)) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1400 (((-419 (-576)) $) 17)) (-1970 (($ (-1272 |#1| |#2| |#3|)) 11)) (-3175 (((-1272 |#1| |#2| |#3|) $) 12)) (-3353 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-3614 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2369 (((-419 (-576)) $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) 10)) (-4092 (((-874) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2430 ((|#1| $ (-419 (-576))) 34)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-2553 ((|#1| $) NIL)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 28)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 37)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-329 |#1| |#2| |#3|) (-13 (-1268 |#1|) (-804) (-10 -8 (-15 -1970 ($ (-1272 |#1| |#2| |#3|))) (-15 -3175 ((-1272 |#1| |#2| |#3|) $)) (-15 -1400 ((-419 (-576)) $)))) (-374) (-1196) |#1|) (T -329)) -((-1970 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) (-14 *5 *3))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) (-14 *5 *3)))) -(-13 (-1268 |#1|) (-804) (-10 -8 (-15 -1970 ($ (-1272 |#1| |#2| |#3|))) (-15 -3175 ((-1272 |#1| |#2| |#3|) $)) (-15 -1400 ((-419 (-576)) $)))) -((-3355 (((-2 (|:| -3175 (-783)) (|:| -1856 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-2703 (((-656 (-2 (|:| -1856 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) -(((-330 |#1|) (-10 -7 (-15 -3355 ((-2 (|:| -3175 (-783)) (|:| -1856 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -2703 ((-656 (-2 (|:| -1856 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) -((-2703 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -1856 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783))))) -(-10 -7 (-15 -3355 ((-2 (|:| -3175 (-783)) (|:| -1856 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -2703 ((-656 (-2 (|:| -1856 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) -((-1541 (((-656 |#2|) (-1192 |#4|)) 44)) (-1405 ((|#3| (-576)) 47)) (-2886 (((-1192 |#4|) (-1192 |#3|)) 30)) (-3560 (((-1192 |#4|) (-1192 |#4|) (-576)) 66)) (-2141 (((-1192 |#3|) (-1192 |#4|)) 21)) (-2369 (((-656 (-783)) (-1192 |#4|) (-656 |#2|)) 41)) (-4060 (((-1192 |#3|) (-1192 |#4|) (-656 |#2|) (-656 |#3|)) 35))) -(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4060 ((-1192 |#3|) (-1192 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -2369 ((-656 (-783)) (-1192 |#4|) (-656 |#2|))) (-15 -1541 ((-656 |#2|) (-1192 |#4|))) (-15 -2141 ((-1192 |#3|) (-1192 |#4|))) (-15 -2886 ((-1192 |#4|) (-1192 |#3|))) (-15 -3560 ((-1192 |#4|) (-1192 |#4|) (-576))) (-15 -1405 (|#3| (-576)))) (-805) (-862) (-1068) (-966 |#3| |#1| |#2|)) (T -331)) -((-1405 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1068)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-966 *2 *4 *5)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 *7)) (-5 *3 (-576)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2886 (*1 *2 *3) (-12 (-5 *3 (-1192 *6)) (-4 *6 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1192 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-1192 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-1192 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-1192 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-2369 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862)) (-4 *8 (-966 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1068)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-4060 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-862)) (-4 *8 (-1068)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1192 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(-10 -7 (-15 -4060 ((-1192 |#3|) (-1192 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -2369 ((-656 (-783)) (-1192 |#4|) (-656 |#2|))) (-15 -1541 ((-656 |#2|) (-1192 |#4|))) (-15 -2141 ((-1192 |#3|) (-1192 |#4|))) (-15 -2886 ((-1192 |#4|) (-1192 |#3|))) (-15 -3560 ((-1192 |#4|) (-1192 |#4|) (-576))) (-15 -1405 (|#3| (-576)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 19)) (-1655 (((-656 (-2 (|:| |gen| |#1|) (|:| -3353 (-576)))) $) 21)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2247 (((-783) $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-3158 ((|#1| $ (-576)) NIL)) (-3902 (((-576) $ (-576)) NIL)) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3230 (($ (-1 |#1| |#1|) $) NIL)) (-2208 (($ (-1 (-576) (-576)) $) 11)) (-3288 (((-1178) $) NIL)) (-1885 (($ $ $) NIL (|has| (-576) (-804)))) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL) (($ |#1|) NIL)) (-2430 (((-576) |#1| $) NIL)) (-1531 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) 29 (|has| |#1| (-862)))) (-4018 (($ $) 12) (($ $ $) 28)) (-4007 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 60)) (-1560 (((-1272 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-926)))) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-926)))) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-1272 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-3 (-1271 |#2| |#3| |#4|) "failed") $) 26)) (-4056 (((-1272 |#1| |#2| |#3| |#4|) $) NIL) (((-1195) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1057 (-1195)))) (((-419 (-576)) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-576) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1057 (-576)))) (((-1271 |#2| |#3| |#4|) $) NIL)) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-1272 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1286 (-1272 |#1| |#2| |#3| |#4|)))) (-701 $) (-1286 $)) NIL) (((-701 (-1272 |#1| |#2| |#3| |#4|)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-1272 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1286 (-1272 |#1| |#2| |#3| |#4|)))) (-1286 $) $) NIL) (((-701 (-1272 |#1| |#2| |#3| |#4|)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-557)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1910 (((-112) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-899 (-390))))) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL)) (-1536 (((-1272 |#1| |#2| |#3| |#4|) $) 22)) (-3930 (((-3 $ "failed") $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1171)))) (-3566 (((-112) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-1893 (($ $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-1632 (($ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) $) NIL)) (-1397 (((-3 (-855 |#2|) "failed") $) 80)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-317)))) (-3835 (((-1272 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-926)))) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3306 (($ $ (-656 (-1272 |#1| |#2| |#3| |#4|)) (-656 (-1272 |#1| |#2| |#3| |#4|))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-304 (-1272 |#1| |#2| |#3| |#4|))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-304 (-1272 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-319 (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-656 (-1195)) (-656 (-1272 |#1| |#2| |#3| |#4|))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-526 (-1195) (-1272 |#1| |#2| |#3| |#4|)))) (($ $ (-1195) (-1272 |#1| |#2| |#3| |#4|)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-526 (-1195) (-1272 |#1| |#2| |#3| |#4|))))) (-3112 (((-783) $) NIL)) (-2871 (($ $ (-1272 |#1| |#2| |#3| |#4|)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-296 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-917 (-1195)))) (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-237)))) (-1880 (($ $) NIL)) (-1549 (((-1272 |#1| |#2| |#3| |#4|) $) 19)) (-4076 (((-905 (-576)) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-626 (-548)))) (((-390) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1041))) (((-227) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1041)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3| |#4|) (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-1272 |#1| |#2| |#3| |#4|)) 30) (($ (-1195)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-1057 (-1195)))) (($ (-1271 |#2| |#3| |#4|)) 37)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| (-1272 |#1| |#2| |#3| |#4|) (-926))) (|has| (-1272 |#1| |#2| |#3| |#4|) (-146))))) (-1858 (((-783)) NIL T CONST)) (-3270 (((-1272 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-557)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2264 (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-832)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|))) NIL) (($ $ (-1 (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-917 (-1195)))) (($ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-237))) (($ $ (-783)) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-237)))) (-3049 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-3010 (((-112) $ $) NIL (|has| (-1272 |#1| |#2| |#3| |#4|) (-862)))) (-3107 (($ $ $) 35) (($ (-1272 |#1| |#2| |#3| |#4|) (-1272 |#1| |#2| |#3| |#4|)) 32)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-1272 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1272 |#1| |#2| |#3| |#4|)) NIL))) +(((-323 |#1| |#2| |#3| |#4|) (-13 (-1011 (-1272 |#1| |#2| |#3| |#4|)) (-1057 (-1271 |#2| |#3| |#4|)) (-10 -8 (-15 -1397 ((-3 (-855 |#2|) "failed") $)) (-15 -3563 ($ (-1271 |#2| |#3| |#4|))))) (-13 (-1057 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1221) (-442 |#1|)) (-1195) |#2|) (T -323)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1271 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4) (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) (-1397 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4)))) +(-13 (-1011 (-1272 |#1| |#2| |#3| |#4|)) (-1057 (-1271 |#2| |#3| |#4|)) (-10 -8 (-15 -1397 ((-3 (-855 |#2|) "failed") $)) (-15 -3563 ($ (-1271 |#2| |#3| |#4|))))) +((-1632 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13))) +(((-324 |#1| |#2|) (-10 -7 (-15 -1632 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1119) (-1119)) (T -324)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6))))) +(-10 -7 (-15 -1632 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) +((-2052 (((-52) |#2| (-304 |#2|) (-783)) 40) (((-52) |#2| (-304 |#2|)) 32) (((-52) |#2| (-783)) 35) (((-52) |#2|) 33) (((-52) (-1195)) 26)) (-2398 (((-52) |#2| (-304 |#2|) (-419 (-576))) 59) (((-52) |#2| (-304 |#2|)) 56) (((-52) |#2| (-419 (-576))) 58) (((-52) |#2|) 57) (((-52) (-1195)) 55)) (-2074 (((-52) |#2| (-304 |#2|) (-419 (-576))) 54) (((-52) |#2| (-304 |#2|)) 51) (((-52) |#2| (-419 (-576))) 53) (((-52) |#2|) 52) (((-52) (-1195)) 50)) (-2065 (((-52) |#2| (-304 |#2|) (-576)) 47) (((-52) |#2| (-304 |#2|)) 44) (((-52) |#2| (-576)) 46) (((-52) |#2|) 45) (((-52) (-1195)) 43))) +(((-325 |#1| |#2|) (-10 -7 (-15 -2052 ((-52) (-1195))) (-15 -2052 ((-52) |#2|)) (-15 -2052 ((-52) |#2| (-783))) (-15 -2052 ((-52) |#2| (-304 |#2|))) (-15 -2052 ((-52) |#2| (-304 |#2|) (-783))) (-15 -2065 ((-52) (-1195))) (-15 -2065 ((-52) |#2|)) (-15 -2065 ((-52) |#2| (-576))) (-15 -2065 ((-52) |#2| (-304 |#2|))) (-15 -2065 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2074 ((-52) (-1195))) (-15 -2074 ((-52) |#2|)) (-15 -2074 ((-52) |#2| (-419 (-576)))) (-15 -2074 ((-52) |#2| (-304 |#2|))) (-15 -2074 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -2398 ((-52) (-1195))) (-15 -2398 ((-52) |#2|)) (-15 -2398 ((-52) |#2| (-419 (-576)))) (-15 -2398 ((-52) |#2| (-304 |#2|))) (-15 -2398 ((-52) |#2| (-304 |#2|) (-419 (-576))))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -325)) +((-2398 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-2398 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) (-2074 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-2074 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) (-2065 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1057 *5) (-651 *5))) (-5 *5 (-576)) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1057 *4) (-651 *4))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-2065 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) (-2052 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-2052 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-2052 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4)))))) +(-10 -7 (-15 -2052 ((-52) (-1195))) (-15 -2052 ((-52) |#2|)) (-15 -2052 ((-52) |#2| (-783))) (-15 -2052 ((-52) |#2| (-304 |#2|))) (-15 -2052 ((-52) |#2| (-304 |#2|) (-783))) (-15 -2065 ((-52) (-1195))) (-15 -2065 ((-52) |#2|)) (-15 -2065 ((-52) |#2| (-576))) (-15 -2065 ((-52) |#2| (-304 |#2|))) (-15 -2065 ((-52) |#2| (-304 |#2|) (-576))) (-15 -2074 ((-52) (-1195))) (-15 -2074 ((-52) |#2|)) (-15 -2074 ((-52) |#2| (-419 (-576)))) (-15 -2074 ((-52) |#2| (-304 |#2|))) (-15 -2074 ((-52) |#2| (-304 |#2|) (-419 (-576)))) (-15 -2398 ((-52) (-1195))) (-15 -2398 ((-52) |#2|)) (-15 -2398 ((-52) |#2| (-419 (-576)))) (-15 -2398 ((-52) |#2| (-304 |#2|))) (-15 -2398 ((-52) |#2| (-304 |#2|) (-419 (-576))))) +((-3474 (((-112) $ $) NIL)) (-1900 (((-656 $) $ (-1195)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $) (-1195)) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $)) NIL (|has| |#1| (-568))) (((-656 $) (-969 $)) NIL (|has| |#1| (-568)))) (-2010 (($ $ (-1195)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1191 $) (-1195)) NIL (|has| |#1| (-568))) (($ (-1191 $)) NIL (|has| |#1| (-568))) (($ (-969 $)) NIL (|has| |#1| (-568)))) (-1454 (((-112) $) 27 (-2835 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-1991 (((-656 (-1195)) $) 368)) (-3999 (((-419 (-1191 $)) $ (-624 $)) NIL (|has| |#1| (-568)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-3887 (((-656 (-624 $)) $) NIL)) (-3894 (($ $) 171 (|has| |#1| (-568)))) (-3768 (($ $) 147 (|has| |#1| (-568)))) (-2603 (($ $ (-1111 $)) 232 (|has| |#1| (-568))) (($ $ (-1195)) 228 (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) NIL (-2835 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-3340 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) 386) (($ $ (-656 (-624 $)) (-656 $)) 430)) (-1990 (((-430 (-1191 $)) (-1191 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1760 (($ $) NIL (|has| |#1| (-568)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-568)))) (-1853 (($ $) NIL (|has| |#1| (-568)))) (-1727 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3872 (($ $) 167 (|has| |#1| (-568)))) (-3747 (($ $) 143 (|has| |#1| (-568)))) (-1957 (($ $ (-576)) 73 (|has| |#1| (-568)))) (-3916 (($ $) 175 (|has| |#1| (-568)))) (-3788 (($ $) 151 (|has| |#1| (-568)))) (-3767 (($) NIL (-2835 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) (|has| |#1| (-1131))) CONST)) (-1816 (((-656 $) $ (-1195)) NIL (|has| |#1| (-568))) (((-656 $) $) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $) (-1195)) NIL (|has| |#1| (-568))) (((-656 $) (-1191 $)) NIL (|has| |#1| (-568))) (((-656 $) (-969 $)) NIL (|has| |#1| (-568)))) (-3532 (($ $ (-1195)) NIL (|has| |#1| (-568))) (($ $) NIL (|has| |#1| (-568))) (($ (-1191 $) (-1195)) 134 (|has| |#1| (-568))) (($ (-1191 $)) NIL (|has| |#1| (-568))) (($ (-969 $)) NIL (|has| |#1| (-568)))) (-1539 (((-3 (-624 $) "failed") $) 18) (((-3 (-1195) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-969 |#1|)) "failed") $) NIL (|has| |#1| (-568))) (((-3 (-969 |#1|) "failed") $) NIL (|has| |#1| (-1068))) (((-3 (-419 (-576)) "failed") $) 46 (-2835 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-4056 (((-624 $) $) 12) (((-1195) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-969 |#1|)) $) NIL (|has| |#1| (-568))) (((-969 |#1|) $) NIL (|has| |#1| (-1068))) (((-419 (-576)) $) 319 (-2835 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-3420 (($ $ $) NIL (|has| |#1| (-568)))) (-3687 (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 125 (|has| |#1| (-1068))) (((-701 |#1|) (-701 $)) 115 (|has| |#1| (-1068))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL (|has| |#1| (-1068))) (((-701 |#1|) (-1286 $)) NIL (|has| |#1| (-1068))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (-2521 (($ $) 96 (|has| |#1| (-568)))) (-1551 (((-3 $ "failed") $) NIL (|has| |#1| (-1131)))) (-3431 (($ $ $) NIL (|has| |#1| (-568)))) (-3105 (($ $ (-1111 $)) 236 (|has| |#1| (-568))) (($ $ (-1195)) 234 (|has| |#1| (-568)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-568)))) (-1792 (((-112) $) NIL (|has| |#1| (-568)))) (-3415 (($ $ $) 202 (|has| |#1| (-568)))) (-1570 (($) 137 (|has| |#1| (-568)))) (-1891 (($ $ $) 222 (|has| |#1| (-568)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 392 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 399 (|has| |#1| (-899 (-390))))) (-2188 (($ $) NIL) (($ (-656 $)) NIL)) (-3061 (((-656 (-115)) $) NIL)) (-3974 (((-115) (-115)) 276)) (-1414 (((-112) $) 25 (|has| |#1| (-1131)))) (-3828 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-2302 (($ $) 72 (|has| |#1| (-1068)))) (-1536 (((-1144 |#1| (-624 $)) $) 91 (|has| |#1| (-1068)))) (-1779 (((-112) $) 62 (|has| |#1| (-568)))) (-2826 (($ $ (-576)) NIL (|has| |#1| (-568)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-3121 (((-1191 $) (-624 $)) 277 (|has| $ (-1068)))) (-1632 (($ (-1 $ $) (-624 $)) 426)) (-2953 (((-3 (-624 $) "failed") $) NIL)) (-3710 (($ $) 141 (|has| |#1| (-568)))) (-3724 (($ $) 247 (|has| |#1| (-568)))) (-3459 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1927 (((-1177) $) NIL)) (-3963 (((-656 (-624 $)) $) 49)) (-1616 (($ (-115) $) NIL) (($ (-115) (-656 $)) 431)) (-1708 (((-3 (-656 $) "failed") $) NIL (|has| |#1| (-1131)))) (-2027 (((-3 (-2 (|:| |val| $) (|:| -4274 (-576))) "failed") $) NIL (|has| |#1| (-1068)))) (-2567 (((-3 (-656 $) "failed") $) 436 (|has| |#1| (-25)))) (-3656 (((-3 (-2 (|:| -1706 (-576)) (|:| |var| (-624 $))) "failed") $) 440 (|has| |#1| (-25)))) (-1419 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $) NIL (|has| |#1| (-1131))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-115)) NIL (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-1195)) NIL (|has| |#1| (-1068)))) (-3718 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) 51)) (-2095 (($ $) NIL (-2835 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4019 (($ $ (-1195)) 251 (|has| |#1| (-568))) (($ $ (-1111 $)) 253 (|has| |#1| (-568)))) (-2331 (((-783) $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) 43)) (-2116 ((|#1| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 301 (|has| |#1| (-568)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-4245 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-1589 (($ $ (-1195)) 226 (|has| |#1| (-568))) (($ $) 224 (|has| |#1| (-568)))) (-1473 (($ $) 218 (|has| |#1| (-568)))) (-1340 (((-430 (-1191 $)) (-1191 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-568))))) (-1839 (((-430 $) $) NIL (|has| |#1| (-568)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-568)))) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-568)))) (-3984 (($ $) 139 (|has| |#1| (-568)))) (-2489 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3306 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 425) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) 379) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-626 (-548)))) (($ $) NIL (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1195)) 366 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1195)) 365 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) NIL (|has| |#1| (-1068))) (($ $ (-1195) (-783) (-1 $ (-656 $))) NIL (|has| |#1| (-1068))) (($ $ (-1195) (-783) (-1 $ $)) NIL (|has| |#1| (-1068)))) (-3112 (((-783) $) NIL (|has| |#1| (-568)))) (-3702 (($ $) 239 (|has| |#1| (-568)))) (-2871 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-568)))) (-2114 (($ $) NIL) (($ $ $) NIL)) (-3737 (($ $) 249 (|has| |#1| (-568)))) (-1440 (($ $) 200 (|has| |#1| (-568)))) (-2735 (($ $ (-1195)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-1068))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-1068)))) (-1880 (($ $) 74 (|has| |#1| (-568)))) (-1549 (((-1144 |#1| (-624 $)) $) 93 (|has| |#1| (-568)))) (-1372 (($ $) 317 (|has| $ (-1068)))) (-3928 (($ $) 177 (|has| |#1| (-568)))) (-3798 (($ $) 153 (|has| |#1| (-568)))) (-3905 (($ $) 173 (|has| |#1| (-568)))) (-3778 (($ $) 149 (|has| |#1| (-568)))) (-3882 (($ $) 169 (|has| |#1| (-568)))) (-3757 (($ $) 145 (|has| |#1| (-568)))) (-4076 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) NIL (|has| |#1| (-568))) (((-548) $) 363 (|has| |#1| (-626 (-548))))) (-4026 (($ $ $) NIL (|has| |#1| (-485)))) (-4081 (($ $ $) NIL (|has| |#1| (-485)))) (-3563 (((-874) $) 424) (($ (-624 $)) 415) (($ (-1195)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-568))) (($ (-48)) 312 (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) (($ (-1144 |#1| (-624 $))) 95 (|has| |#1| (-1068))) (($ (-419 |#1|)) NIL (|has| |#1| (-568))) (($ (-969 (-419 |#1|))) NIL (|has| |#1| (-568))) (($ (-419 (-969 (-419 |#1|)))) NIL (|has| |#1| (-568))) (($ (-419 (-969 |#1|))) NIL (|has| |#1| (-568))) (($ (-969 |#1|)) NIL (|has| |#1| (-1068))) (($ (-576)) 34 (-2835 (|has| |#1| (-1057 (-576))) (|has| |#1| (-1068)))) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-568)) (|has| |#1| (-1057 (-419 (-576))))))) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL (|has| |#1| (-1068)) CONST)) (-4102 (($ $) NIL) (($ (-656 $)) NIL)) (-4114 (($ $ $) 220 (|has| |#1| (-568)))) (-3946 (($ $ $) 206 (|has| |#1| (-568)))) (-4054 (($ $ $) 210 (|has| |#1| (-568)))) (-1432 (($ $ $) 204 (|has| |#1| (-568)))) (-4381 (($ $ $) 208 (|has| |#1| (-568)))) (-3263 (((-112) (-115)) 10)) (-3985 (((-112) $ $) 86)) (-3958 (($ $) 183 (|has| |#1| (-568)))) (-3831 (($ $) 159 (|has| |#1| (-568)))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) 179 (|has| |#1| (-568)))) (-3808 (($ $) 155 (|has| |#1| (-568)))) (-3981 (($ $) 187 (|has| |#1| (-568)))) (-3852 (($ $) 163 (|has| |#1| (-568)))) (-4017 (($ (-1195) $) NIL) (($ (-1195) $ $) NIL) (($ (-1195) $ $ $) NIL) (($ (-1195) $ $ $ $) NIL) (($ (-1195) (-656 $)) NIL)) (-1678 (($ $) 214 (|has| |#1| (-568)))) (-2907 (($ $) 212 (|has| |#1| (-568)))) (-1830 (($ $) 189 (|has| |#1| (-568)))) (-3863 (($ $) 165 (|has| |#1| (-568)))) (-3969 (($ $) 185 (|has| |#1| (-568)))) (-3841 (($ $) 161 (|has| |#1| (-568)))) (-3948 (($ $) 181 (|has| |#1| (-568)))) (-3820 (($ $) 157 (|has| |#1| (-568)))) (-2264 (($ $) 192 (|has| |#1| (-568)))) (-2800 (($) 21 (-2835 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) CONST)) (-1377 (($ $) 243 (|has| |#1| (-568)))) (-2810 (($) 23 (|has| |#1| (-1131)) CONST)) (-2402 (($ $) 194 (|has| |#1| (-568))) (($ $ $) 196 (|has| |#1| (-568)))) (-4360 (($ $) 241 (|has| |#1| (-568)))) (-2051 (($ $ (-1195)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-1068))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-1068))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-1068)))) (-2771 (($ $) 245 (|has| |#1| (-568)))) (-3177 (($ $ $) 198 (|has| |#1| (-568)))) (-2988 (((-112) $ $) 88)) (-3107 (($ (-1144 |#1| (-624 $)) (-1144 |#1| (-624 $))) 106 (|has| |#1| (-568))) (($ $ $) 42 (-2835 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3095 (($ $ $) 40 (-2835 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (($ $) 29 (-2835 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (-3083 (($ $ $) 38 (-2835 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))))) (** (($ $ $) 64 (|has| |#1| (-568))) (($ $ (-419 (-576))) 314 (|has| |#1| (-568))) (($ $ (-576)) 80 (-2835 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 75 (|has| |#1| (-1131))) (($ $ (-938)) 84 (|has| |#1| (-1131)))) (* (($ (-419 (-576)) $) NIL (|has| |#1| (-568))) (($ $ (-419 (-576))) NIL (|has| |#1| (-568))) (($ $ |#1|) NIL (|has| |#1| (-174))) (($ |#1| $) NIL (|has| |#1| (-1068))) (($ $ $) 36 (|has| |#1| (-1131))) (($ (-576) $) 32 (-2835 (|has| |#1| (-21)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (($ (-783) $) NIL (-2835 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))) (($ (-938) $) NIL (-2835 (|has| |#1| (-25)) (-12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))))))) +(((-326 |#1|) (-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1221)) (-6 (-161)) (-6 (-641)) (-6 (-1158)) (-15 -2521 ($ $)) (-15 -1779 ((-112) $)) (-15 -1957 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -1340 ((-430 (-1191 $)) (-1191 $))) (-15 -1990 ((-430 (-1191 $)) (-1191 $)))) |%noBranch|) (IF (|has| |#1| (-1057 (-576))) (-6 (-1057 (-48))) |%noBranch|)) |%noBranch|))) (-1119)) (T -326)) +((-2521 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1119)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))) (-1957 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))) (-1340 (*1 *2 *3) (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119)))) (-1990 (*1 *2 *3) (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119))))) +(-13 (-442 |#1|) (-10 -8 (IF (|has| |#1| (-568)) (PROGN (-6 (-29 |#1|)) (-6 (-1221)) (-6 (-161)) (-6 (-641)) (-6 (-1158)) (-15 -2521 ($ $)) (-15 -1779 ((-112) $)) (-15 -1957 ($ $ (-576))) (IF (|has| |#1| (-464)) (PROGN (-15 -1340 ((-430 (-1191 $)) (-1191 $))) (-15 -1990 ((-430 (-1191 $)) (-1191 $)))) |%noBranch|) (IF (|has| |#1| (-1057 (-576))) (-6 (-1057 (-48))) |%noBranch|)) |%noBranch|))) +((-2246 (((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)) 89) (((-52) |#2| (-115) (-304 |#2|) (-304 |#2|)) 85) (((-52) |#2| (-115) (-304 |#2|) |#2|) 87) (((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|) 88) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 81) (((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 83) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|)) 84) (((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|))) 82) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 90) (((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|)) 86))) +(((-327 |#1| |#2|) (-10 -7 (-15 -2246 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2246 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2246 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2246 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2246 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2246 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2246 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2246 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2246 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2246 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-568) (-626 (-548))) (-442 |#1|)) (T -327)) +((-2246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3)))) (-2246 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2246 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-4 *3 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *3)))) (-2246 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *5)) (-5 *4 (-115)) (-4 *5 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *5)))) (-2246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-115))) (-5 *6 (-656 (-304 *8))) (-4 *8 (-442 *7)) (-5 *5 (-304 *8)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2246 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 (-304 *8))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *8)) (-5 *6 (-656 *8)) (-4 *8 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *8)))) (-2246 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-304 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2246 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-656 *7)) (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *6 *7)))) (-2246 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *5 *6))))) +(-10 -7 (-15 -2246 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-304 |#2|))) (-15 -2246 ((-52) (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2246 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2246 ((-52) (-656 (-304 |#2|)) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2246 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 |#2|))) (-15 -2246 ((-52) (-656 |#2|) (-656 (-115)) (-304 |#2|) (-656 (-304 |#2|)))) (-15 -2246 ((-52) (-304 |#2|) (-115) (-304 |#2|) |#2|)) (-15 -2246 ((-52) |#2| (-115) (-304 |#2|) |#2|)) (-15 -2246 ((-52) |#2| (-115) (-304 |#2|) (-304 |#2|))) (-15 -2246 ((-52) |#2| (-115) (-304 |#2|) (-656 |#2|)))) +((-3462 (((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576) (-1177)) 67) (((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576)) 68) (((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576) (-1177)) 64) (((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576)) 65)) (-1530 (((-1 (-227) (-227)) (-227)) 66))) +(((-328) (-10 -7 (-15 -1530 ((-1 (-227) (-227)) (-227))) (-15 -3462 ((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3462 ((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576) (-1177))) (-15 -3462 ((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576))) (-15 -3462 ((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576) (-1177))))) (T -328)) +((-3462 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1177)) (-5 *2 (-1231 (-943))) (-5 *1 (-328)))) (-3462 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *2 (-1231 (-943))) (-5 *1 (-328)))) (-3462 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *7 (-1177)) (-5 *2 (-1231 (-943))) (-5 *1 (-328)))) (-3462 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *2 (-1231 (-943))) (-5 *1 (-328)))) (-1530 (*1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) +(-10 -7 (-15 -1530 ((-1 (-227) (-227)) (-227))) (-15 -3462 ((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576))) (-15 -3462 ((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-1 (-227) (-227)) (-576) (-1177))) (-15 -3462 ((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576))) (-15 -3462 ((-1231 (-943)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-227) (-576) (-1177)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 26)) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1615 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3826 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 20)) (-3894 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| |#1| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3872 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) 36)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1792 (((-112) $) NIL (|has| |#1| (-374)))) (-1822 (((-112) $) NIL)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) 16)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-419 (-576))) NIL) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-3848 (($ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221)))))) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1714 (($ $ (-419 (-576))) NIL)) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1668 (((-419 (-576)) $) 17)) (-2916 (($ (-1271 |#1| |#2| |#3|)) 11)) (-4274 (((-1271 |#1| |#2| |#3|) $) 12)) (-3984 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1433 (((-419 (-576)) $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) 10)) (-3563 (((-874) $) 42) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4333 ((|#1| $ (-419 (-576))) 34)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-2387 ((|#1| $) NIL)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 28)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 37)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-329 |#1| |#2| |#3|) (-13 (-1267 |#1|) (-804) (-10 -8 (-15 -2916 ($ (-1271 |#1| |#2| |#3|))) (-15 -4274 ((-1271 |#1| |#2| |#3|) $)) (-15 -1668 ((-419 (-576)) $)))) (-374) (-1195) |#1|) (T -329)) +((-2916 (*1 *1 *2) (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1271 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) (-14 *5 *3))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) (-14 *5 *3)))) +(-13 (-1267 |#1|) (-804) (-10 -8 (-15 -2916 ($ (-1271 |#1| |#2| |#3|))) (-15 -4274 ((-1271 |#1| |#2| |#3|) $)) (-15 -1668 ((-419 (-576)) $)))) +((-2826 (((-2 (|:| -4274 (-783)) (|:| -1706 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783)) 35)) (-3710 (((-656 (-2 (|:| -1706 (-783)) (|:| |logand| |#1|))) (-430 |#1|)) 40))) +(((-330 |#1|) (-10 -7 (-15 -2826 ((-2 (|:| -4274 (-783)) (|:| -1706 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3710 ((-656 (-2 (|:| -1706 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) (-568)) (T -330)) +((-3710 (*1 *2 *3) (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) (-5 *2 (-656 (-2 (|:| -1706 (-783)) (|:| |logand| *4)))) (-5 *1 (-330 *4)))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *5) (|:| |radicand| (-656 *5)))) (-5 *1 (-330 *5)) (-5 *4 (-783))))) +(-10 -7 (-15 -2826 ((-2 (|:| -4274 (-783)) (|:| -1706 |#1|) (|:| |radicand| (-656 |#1|))) (-430 |#1|) (-783))) (-15 -3710 ((-656 (-2 (|:| -1706 (-783)) (|:| |logand| |#1|))) (-430 |#1|)))) +((-1991 (((-656 |#2|) (-1191 |#4|)) 44)) (-3895 ((|#3| (-576)) 47)) (-3726 (((-1191 |#4|) (-1191 |#3|)) 30)) (-2454 (((-1191 |#4|) (-1191 |#4|) (-576)) 66)) (-4145 (((-1191 |#3|) (-1191 |#4|)) 21)) (-1433 (((-656 (-783)) (-1191 |#4|) (-656 |#2|)) 41)) (-2063 (((-1191 |#3|) (-1191 |#4|) (-656 |#2|) (-656 |#3|)) 35))) +(((-331 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2063 ((-1191 |#3|) (-1191 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -1433 ((-656 (-783)) (-1191 |#4|) (-656 |#2|))) (-15 -1991 ((-656 |#2|) (-1191 |#4|))) (-15 -4145 ((-1191 |#3|) (-1191 |#4|))) (-15 -3726 ((-1191 |#4|) (-1191 |#3|))) (-15 -2454 ((-1191 |#4|) (-1191 |#4|) (-576))) (-15 -3895 (|#3| (-576)))) (-805) (-862) (-1068) (-966 |#3| |#1| |#2|)) (T -331)) +((-3895 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1068)) (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-966 *2 *4 *5)))) (-2454 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 *7)) (-5 *3 (-576)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *1 (-331 *4 *5 *6 *7)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-1191 *6)) (-4 *6 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1191 *7)) (-5 *1 (-331 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-1191 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-1191 *6)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-1191 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-656 *5)) (-5 *1 (-331 *4 *5 *6 *7)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862)) (-4 *8 (-966 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1068)) (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) (-2063 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) (-4 *7 (-862)) (-4 *8 (-1068)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-1191 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) +(-10 -7 (-15 -2063 ((-1191 |#3|) (-1191 |#4|) (-656 |#2|) (-656 |#3|))) (-15 -1433 ((-656 (-783)) (-1191 |#4|) (-656 |#2|))) (-15 -1991 ((-656 |#2|) (-1191 |#4|))) (-15 -4145 ((-1191 |#3|) (-1191 |#4|))) (-15 -3726 ((-1191 |#4|) (-1191 |#3|))) (-15 -2454 ((-1191 |#4|) (-1191 |#4|) (-576))) (-15 -3895 (|#3| (-576)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 19)) (-3826 (((-656 (-2 (|:| |gen| |#1|) (|:| -3984 (-576)))) $) 21)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2148 (((-783) $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-2281 ((|#1| $ (-576)) NIL)) (-2523 (((-576) $ (-576)) NIL)) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-4239 (($ (-1 |#1| |#1|) $) NIL)) (-4441 (($ (-1 (-576) (-576)) $) 11)) (-1927 (((-1177) $) NIL)) (-4370 (($ $ $) NIL (|has| (-576) (-804)))) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL) (($ |#1|) NIL)) (-4333 (((-576) |#1| $) NIL)) (-3985 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) 29 (|has| |#1| (-862)))) (-3095 (($ $) 12) (($ $ $) 28)) (-3083 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL) (($ (-576) |#1|) 27))) (((-332 |#1|) (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) (-1119)) (T -332)) NIL (-13 (-21) (-729 (-576)) (-333 |#1| (-576)) (-10 -7 (IF (|has| |#1| (-862)) (-6 (-862)) |%noBranch|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1655 (((-656 (-2 (|:| |gen| |#1|) (|:| -3353 |#2|))) $) 28)) (-3788 (((-3 $ "failed") $ $) 20)) (-2247 (((-783) $) 29)) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#1| "failed") $) 33)) (-2378 ((|#1| $) 34)) (-3158 ((|#1| $ (-576)) 26)) (-3902 ((|#2| $ (-576)) 27)) (-3230 (($ (-1 |#1| |#1|) $) 23)) (-2208 (($ (-1 |#2| |#2|) $) 24)) (-3288 (((-1178) $) 10)) (-1885 (($ $ $) 22 (|has| |#2| (-804)))) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ |#1|) 32)) (-2430 ((|#2| |#1| $) 25)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4007 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3826 (((-656 (-2 (|:| |gen| |#1|) (|:| -3984 |#2|))) $) 28)) (-1367 (((-3 $ "failed") $ $) 20)) (-2148 (((-783) $) 29)) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#1| "failed") $) 33)) (-4056 ((|#1| $) 34)) (-2281 ((|#1| $ (-576)) 26)) (-2523 ((|#2| $ (-576)) 27)) (-4239 (($ (-1 |#1| |#1|) $) 23)) (-4441 (($ (-1 |#2| |#2|) $) 24)) (-1927 (((-1177) $) 10)) (-4370 (($ $ $) 22 (|has| |#2| (-804)))) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ |#1|) 32)) (-4333 ((|#2| |#1| $) 25)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3083 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ |#2| |#1|) 30))) (((-333 |#1| |#2|) (-141) (-1119) (-132)) (T -333)) -((-4007 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) (-5 *2 (-783)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 *4)))))) (-3902 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1119)) (-4 *2 (-132)))) (-3158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1119)))) (-2430 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132)))) (-2208 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)))) (-3230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)))) (-1885 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132)) (-4 *3 (-804))))) -(-13 (-132) (-1057 |t#1|) (-10 -8 (-15 -4007 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2247 ((-783) $)) (-15 -1655 ((-656 (-2 (|:| |gen| |t#1|) (|:| -3353 |t#2|))) $)) (-15 -3902 (|t#2| $ (-576))) (-15 -3158 (|t#1| $ (-576))) (-15 -2430 (|t#2| |t#1| $)) (-15 -2208 ($ (-1 |t#2| |t#2|) $)) (-15 -3230 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -1885 ($ $ $)) |%noBranch|))) +((-3083 (*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) (-5 *2 (-783)))) (-3826 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 *4)))))) (-2523 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1119)) (-4 *2 (-132)))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) (-4 *2 (-1119)))) (-4333 (*1 *2 *3 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132)))) (-4441 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)))) (-4239 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)))) (-4370 (*1 *1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132)) (-4 *3 (-804))))) +(-13 (-132) (-1057 |t#1|) (-10 -8 (-15 -3083 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2148 ((-783) $)) (-15 -3826 ((-656 (-2 (|:| |gen| |t#1|) (|:| -3984 |t#2|))) $)) (-15 -2523 (|t#2| $ (-576))) (-15 -2281 (|t#1| $ (-576))) (-15 -4333 (|t#2| |t#1| $)) (-15 -4441 ($ (-1 |t#2| |t#2|) $)) (-15 -4239 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-804)) (-15 -4370 ($ $ $)) |%noBranch|))) (((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-1057 |#1|) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1655 (((-656 (-2 (|:| |gen| |#1|) (|:| -3353 (-783)))) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2247 (((-783) $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-3158 ((|#1| $ (-576)) NIL)) (-3902 (((-783) $ (-576)) NIL)) (-3230 (($ (-1 |#1| |#1|) $) NIL)) (-2208 (($ (-1 (-783) (-783)) $) NIL)) (-3288 (((-1178) $) NIL)) (-1885 (($ $ $) NIL (|has| (-783) (-804)))) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL) (($ |#1|) NIL)) (-2430 (((-783) |#1| $) NIL)) (-1531 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4007 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3826 (((-656 (-2 (|:| |gen| |#1|) (|:| -3984 (-783)))) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2148 (((-783) $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-2281 ((|#1| $ (-576)) NIL)) (-2523 (((-783) $ (-576)) NIL)) (-4239 (($ (-1 |#1| |#1|) $) NIL)) (-4441 (($ (-1 (-783) (-783)) $) NIL)) (-1927 (((-1177) $) NIL)) (-4370 (($ $ $) NIL (|has| (-783) (-804)))) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL) (($ |#1|) NIL)) (-4333 (((-783) |#1| $) NIL)) (-3985 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3083 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-783) |#1|) NIL))) (((-334 |#1|) (-333 |#1| (-783)) (-1119)) (T -334)) NIL (-333 |#1| (-783)) -((-1363 (($ $) 72)) (-2291 (($ $ |#2| |#3| $) 14)) (-3968 (($ (-1 |#3| |#3|) $) 51)) (-1657 (((-112) $) 42)) (-1670 ((|#2| $) 44)) (-2022 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3714 ((|#2| $) 68)) (-3076 (((-656 |#2|) $) 56)) (-3141 (($ $ $ (-783)) 37)) (-4028 (($ $ |#2|) 60))) -(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -1363 (|#1| |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3141 (|#1| |#1| |#1| (-783))) (-15 -2291 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3968 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3076 ((-656 |#2|) |#1|)) (-15 -1670 (|#2| |#1|)) (-15 -1657 ((-112) |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4028 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1068) (-804)) (T -335)) +((-2985 (($ $) 72)) (-1660 (($ $ |#2| |#3| $) 14)) (-2133 (($ (-1 |#3| |#3|) $) 51)) (-2105 (((-112) $) 42)) (-2116 ((|#2| $) 44)) (-3463 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-3648 ((|#2| $) 68)) (-2927 (((-656 |#2|) $) 56)) (-3274 (($ $ $ (-783)) 37)) (-3107 (($ $ |#2|) 60))) +(((-335 |#1| |#2| |#3|) (-10 -8 (-15 -2985 (|#1| |#1|)) (-15 -3648 (|#2| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3274 (|#1| |#1| |#1| (-783))) (-15 -1660 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2133 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2927 ((-656 |#2|) |#1|)) (-15 -2116 (|#2| |#1|)) (-15 -2105 ((-112) |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3107 (|#1| |#1| |#2|))) (-336 |#2| |#3|) (-1068) (-804)) (T -335)) NIL -(-10 -8 (-15 -1363 (|#1| |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3141 (|#1| |#1| |#1| (-783))) (-15 -2291 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3968 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3076 ((-656 |#2|) |#1|)) (-15 -1670 (|#2| |#1|)) (-15 -1657 ((-112) |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4028 (|#1| |#1| |#2|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2573 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-2974 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-2378 (((-576) $) 99 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 96)) (-1717 (($ $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-1363 (($ $) 84 (|has| |#1| (-464)))) (-2291 (($ $ |#1| |#2| $) 88)) (-1810 (((-112) $) 35)) (-1831 (((-783) $) 91)) (-4331 (((-112) $) 74)) (-1518 (($ |#1| |#2|) 73)) (-1915 ((|#2| $) 90)) (-3968 (($ (-1 |#2| |#2|) $) 89)) (-2477 (($ (-1 |#1| |#1|) $) 75)) (-1681 (($ $) 77)) (-1692 ((|#1| $) 78)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-1657 (((-112) $) 94)) (-1670 ((|#1| $) 93)) (-2022 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-2369 ((|#2| $) 76)) (-3714 ((|#1| $) 85 (|has| |#1| (-464)))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-3076 (((-656 |#1|) $) 92)) (-2430 ((|#1| $ |#2|) 71)) (-3612 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-3141 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(-10 -8 (-15 -2985 (|#1| |#1|)) (-15 -3648 (|#2| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3274 (|#1| |#1| |#1| (-783))) (-15 -1660 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2133 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2927 ((-656 |#2|) |#1|)) (-15 -2116 (|#2| |#1|)) (-15 -2105 ((-112) |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3107 (|#1| |#1| |#2|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4412 (($ $) 64 (|has| |#1| (-568)))) (-4176 (((-112) $) 66 (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1539 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 95)) (-4056 (((-576) $) 99 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 97 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 96)) (-2166 (($ $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-2985 (($ $) 84 (|has| |#1| (-464)))) (-1660 (($ $ |#1| |#2| $) 88)) (-1414 (((-112) $) 35)) (-3839 (((-783) $) 91)) (-2606 (((-112) $) 74)) (-1970 (($ |#1| |#2|) 73)) (-3403 ((|#2| $) 90)) (-2133 (($ (-1 |#2| |#2|) $) 89)) (-1632 (($ (-1 |#1| |#1|) $) 75)) (-2129 (($ $) 77)) (-2142 ((|#1| $) 78)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2105 (((-112) $) 94)) (-2116 ((|#1| $) 93)) (-3463 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-568)))) (-1433 ((|#2| $) 76)) (-3648 ((|#1| $) 85 (|has| |#1| (-464)))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59) (($ (-419 (-576))) 69 (-2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-2927 (((-656 |#1|) $) 92)) (-4333 ((|#1| $ |#2|) 71)) (-2883 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-3274 (($ $ $ (-783)) 87 (|has| |#1| (-174)))) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-336 |#1| |#2|) (-141) (-1068) (-804)) (T -336)) -((-1657 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-112)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-783)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-3968 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) (-2291 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-3141 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-4 *3 (-174)))) (-2022 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-568)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-464))))) -(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -1657 ((-112) $)) (-15 -1670 (|t#1| $)) (-15 -3076 ((-656 |t#1|) $)) (-15 -1831 ((-783) $)) (-15 -1915 (|t#2| $)) (-15 -3968 ($ (-1 |t#2| |t#2|) $)) (-15 -2291 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3141 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -2022 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3714 (|t#1| $)) (-15 -1363 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-2390 (((-112) (-112)) NIL)) (-4248 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3831 (($ (-1 (-112) |#1|) $) NIL)) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-4329 (($ $) NIL (|has| |#1| (-1119)))) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4376 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3433 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-4362 (($ $ (-576)) NIL)) (-2081 (((-783) $) NIL)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1992 (($ (-783) |#1|) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-1897 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2361 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3371 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1906 (($ (-656 |#1|)) NIL)) (-2701 ((|#1| $) NIL (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2531 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) NIL)) (-2116 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2851 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1906 ($ (-656 |#1|))) (-15 -2081 ((-783) $)) (-15 -4362 ($ $ (-576))) (-15 -2390 ((-112) (-112))))) (-1237)) (T -337)) -((-1906 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-337 *3)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) (-4362 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1237))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1906 ($ (-656 |#1|))) (-15 -2081 ((-783) $)) (-15 -4362 ($ $ (-576))) (-15 -2390 ((-112) (-112))))) -((-4273 (((-112) $) 47)) (-3062 (((-783)) 23)) (-3803 ((|#2| $) 51) (($ $ (-938)) 121)) (-2247 (((-783)) 122)) (-3006 (($ (-1287 |#2|)) 20)) (-2172 (((-112) $) 134)) (-4252 ((|#2| $) 53) (($ $ (-938)) 118)) (-3164 (((-1192 |#2|) $) NIL) (((-1192 $) $ (-938)) 109)) (-3392 (((-1192 |#2|) $) 95)) (-4212 (((-1192 |#2|) $) 91) (((-3 (-1192 |#2|) "failed") $ $) 88)) (-4216 (($ $ (-1192 |#2|)) 58)) (-2588 (((-845 (-938))) 30) (((-938)) 48)) (-3667 (((-135)) 27)) (-2369 (((-845 (-938)) $) 32) (((-938) $) 137)) (-2506 (($) 128)) (-3287 (((-1287 |#2|) $) NIL) (((-701 |#2|) (-1287 $)) 42)) (-3612 (($ $) NIL) (((-3 $ "failed") $) 98)) (-4101 (((-112) $) 45))) -(((-338 |#1| |#2|) (-10 -8 (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -2247 ((-783))) (-15 -3612 (|#1| |#1|)) (-15 -4212 ((-3 (-1192 |#2|) "failed") |#1| |#1|)) (-15 -4212 ((-1192 |#2|) |#1|)) (-15 -3392 ((-1192 |#2|) |#1|)) (-15 -4216 (|#1| |#1| (-1192 |#2|))) (-15 -2172 ((-112) |#1|)) (-15 -2506 (|#1|)) (-15 -3803 (|#1| |#1| (-938))) (-15 -4252 (|#1| |#1| (-938))) (-15 -3164 ((-1192 |#1|) |#1| (-938))) (-15 -3803 (|#2| |#1|)) (-15 -4252 (|#2| |#1|)) (-15 -2369 ((-938) |#1|)) (-15 -2588 ((-938))) (-15 -3164 ((-1192 |#2|) |#1|)) (-15 -3006 (|#1| (-1287 |#2|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1|)) (-15 -3062 ((-783))) (-15 -2588 ((-845 (-938)))) (-15 -2369 ((-845 (-938)) |#1|)) (-15 -4273 ((-112) |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -3667 ((-135)))) (-339 |#2|) (-374)) (T -338)) -((-3667 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2588 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-938))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3062 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2588 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-938)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2247 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) -(-10 -8 (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -2247 ((-783))) (-15 -3612 (|#1| |#1|)) (-15 -4212 ((-3 (-1192 |#2|) "failed") |#1| |#1|)) (-15 -4212 ((-1192 |#2|) |#1|)) (-15 -3392 ((-1192 |#2|) |#1|)) (-15 -4216 (|#1| |#1| (-1192 |#2|))) (-15 -2172 ((-112) |#1|)) (-15 -2506 (|#1|)) (-15 -3803 (|#1| |#1| (-938))) (-15 -4252 (|#1| |#1| (-938))) (-15 -3164 ((-1192 |#1|) |#1| (-938))) (-15 -3803 (|#2| |#1|)) (-15 -4252 (|#2| |#1|)) (-15 -2369 ((-938) |#1|)) (-15 -2588 ((-938))) (-15 -3164 ((-1192 |#2|) |#1|)) (-15 -3006 (|#1| (-1287 |#2|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1|)) (-15 -3062 ((-783))) (-15 -2588 ((-845 (-938)))) (-15 -2369 ((-845 (-938)) |#1|)) (-15 -4273 ((-112) |#1|)) (-15 -4101 ((-112) |#1|)) (-15 -3667 ((-135)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-4273 (((-112) $) 104)) (-3062 (((-783)) 100)) (-3803 ((|#1| $) 151) (($ $ (-938)) 148 (|has| |#1| (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-4407 (((-112) $ $) 65)) (-2247 (((-783)) 123 (|has| |#1| (-379)))) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#1| "failed") $) 111)) (-2378 ((|#1| $) 112)) (-3006 (($ (-1287 |#1|)) 157)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-2446 (($) 120 (|has| |#1| (-379)))) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-1554 (($) 135 (|has| |#1| (-379)))) (-3506 (((-112) $) 136 (|has| |#1| (-379)))) (-1329 (($ $ (-783)) 97 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2725 (((-112) $) 79)) (-1538 (((-938) $) 138 (|has| |#1| (-379))) (((-845 (-938)) $) 94 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1810 (((-112) $) 35)) (-3783 (($) 146 (|has| |#1| (-379)))) (-2172 (((-112) $) 145 (|has| |#1| (-379)))) (-4252 ((|#1| $) 152) (($ $ (-938)) 149 (|has| |#1| (-379)))) (-2083 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3164 (((-1192 |#1|) $) 156) (((-1192 $) $ (-938)) 150 (|has| |#1| (-379)))) (-3225 (((-938) $) 121 (|has| |#1| (-379)))) (-3392 (((-1192 |#1|) $) 142 (|has| |#1| (-379)))) (-4212 (((-1192 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-4216 (($ $ (-1192 |#1|)) 143 (|has| |#1| (-379)))) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 78)) (-3503 (($) 125 (|has| |#1| (-379)) CONST)) (-2550 (($ (-938)) 122 (|has| |#1| (-379)))) (-3377 (((-112) $) 103)) (-3139 (((-1139) $) 11)) (-2582 (($) 144 (|has| |#1| (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) 132 (|has| |#1| (-379)))) (-1392 (((-430 $) $) 82)) (-2588 (((-845 (-938))) 101) (((-938)) 154)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-2547 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3667 (((-135)) 109)) (-3614 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-2369 (((-845 (-938)) $) 102) (((-938) $) 153)) (-2840 (((-1192 |#1|)) 155)) (-3870 (($) 134 (|has| |#1| (-379)))) (-2506 (($) 147 (|has| |#1| (-379)))) (-3287 (((-1287 |#1|) $) 159) (((-701 |#1|) (-1287 $)) 158)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3612 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-1999 (((-1287 $)) 161) (((-1287 $) (-938)) 160)) (-2947 (((-112) $ $) 45)) (-4101 (((-112) $) 105)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3847 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-4286 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 73) (($ $ |#1|) 108)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +((-2105 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-112)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-656 *3)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-783)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-2133 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) (-1660 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) (-3274 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-4 *3 (-174)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-568)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-2985 (*1 *1 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-464))))) +(-13 (-47 |t#1| |t#2|) (-423 |t#1|) (-10 -8 (-15 -2105 ((-112) $)) (-15 -2116 (|t#1| $)) (-15 -2927 ((-656 |t#1|) $)) (-15 -3839 ((-783) $)) (-15 -3403 (|t#2| $)) (-15 -2133 ($ (-1 |t#2| |t#2|) $)) (-15 -1660 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-174)) (-15 -3274 ($ $ $ (-783))) |%noBranch|) (IF (|has| |t#1| (-568)) (-15 -3463 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3648 (|t#1| $)) (-15 -2985 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-423 |#1|) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-2579 (((-112) (-112)) NIL)) (-3731 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-4001 (($ (-1 (-112) |#1|) $) NIL)) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3315 (($ $) NIL (|has| |#1| (-1119)))) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3623 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3584 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-1683 (($ $ (-576)) NIL)) (-1815 (((-783) $) NIL)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-4033 (($ (-783) |#1|) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-2093 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2040 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2277 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1825 (($ (-656 |#1|)) NIL)) (-3504 ((|#1| $) NIL (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2560 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) NIL)) (-1523 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1661 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-337 |#1|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1825 ($ (-656 |#1|))) (-15 -1815 ((-783) $)) (-15 -1683 ($ $ (-576))) (-15 -2579 ((-112) (-112))))) (-1236)) (T -337)) +((-1825 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-337 *3)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) (-1683 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1236))))) +(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1825 ($ (-656 |#1|))) (-15 -1815 ((-783) $)) (-15 -1683 ($ $ (-576))) (-15 -2579 ((-112) (-112))))) +((-2415 (((-112) $) 47)) (-4032 (((-783)) 23)) (-2310 ((|#2| $) 51) (($ $ (-938)) 121)) (-2148 (((-783)) 122)) (-2612 (($ (-1286 |#2|)) 20)) (-3996 (((-112) $) 134)) (-4072 ((|#2| $) 53) (($ $ (-938)) 118)) (-2554 (((-1191 |#2|) $) NIL) (((-1191 $) $ (-938)) 109)) (-1936 (((-1191 |#2|) $) 95)) (-3275 (((-1191 |#2|) $) 91) (((-3 (-1191 |#2|) "failed") $ $) 88)) (-1531 (($ $ (-1191 |#2|)) 58)) (-3201 (((-845 (-938))) 30) (((-938)) 48)) (-2446 (((-135)) 27)) (-1433 (((-845 (-938)) $) 32) (((-938) $) 137)) (-1795 (($) 128)) (-1809 (((-1286 |#2|) $) NIL) (((-701 |#2|) (-1286 $)) 42)) (-2883 (($ $) NIL) (((-3 $ "failed") $) 98)) (-1847 (((-112) $) 45))) +(((-338 |#1| |#2|) (-10 -8 (-15 -2883 ((-3 |#1| "failed") |#1|)) (-15 -2148 ((-783))) (-15 -2883 (|#1| |#1|)) (-15 -3275 ((-3 (-1191 |#2|) "failed") |#1| |#1|)) (-15 -3275 ((-1191 |#2|) |#1|)) (-15 -1936 ((-1191 |#2|) |#1|)) (-15 -1531 (|#1| |#1| (-1191 |#2|))) (-15 -3996 ((-112) |#1|)) (-15 -1795 (|#1|)) (-15 -2310 (|#1| |#1| (-938))) (-15 -4072 (|#1| |#1| (-938))) (-15 -2554 ((-1191 |#1|) |#1| (-938))) (-15 -2310 (|#2| |#1|)) (-15 -4072 (|#2| |#1|)) (-15 -1433 ((-938) |#1|)) (-15 -3201 ((-938))) (-15 -2554 ((-1191 |#2|) |#1|)) (-15 -2612 (|#1| (-1286 |#2|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1|)) (-15 -4032 ((-783))) (-15 -3201 ((-845 (-938)))) (-15 -1433 ((-845 (-938)) |#1|)) (-15 -2415 ((-112) |#1|)) (-15 -1847 ((-112) |#1|)) (-15 -2446 ((-135)))) (-339 |#2|) (-374)) (T -338)) +((-2446 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3201 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-845 (-938))) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-4032 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-3201 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-938)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4)))) (-2148 (*1 *2) (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) (-4 *3 (-339 *4))))) +(-10 -8 (-15 -2883 ((-3 |#1| "failed") |#1|)) (-15 -2148 ((-783))) (-15 -2883 (|#1| |#1|)) (-15 -3275 ((-3 (-1191 |#2|) "failed") |#1| |#1|)) (-15 -3275 ((-1191 |#2|) |#1|)) (-15 -1936 ((-1191 |#2|) |#1|)) (-15 -1531 (|#1| |#1| (-1191 |#2|))) (-15 -3996 ((-112) |#1|)) (-15 -1795 (|#1|)) (-15 -2310 (|#1| |#1| (-938))) (-15 -4072 (|#1| |#1| (-938))) (-15 -2554 ((-1191 |#1|) |#1| (-938))) (-15 -2310 (|#2| |#1|)) (-15 -4072 (|#2| |#1|)) (-15 -1433 ((-938) |#1|)) (-15 -3201 ((-938))) (-15 -2554 ((-1191 |#2|) |#1|)) (-15 -2612 (|#1| (-1286 |#2|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1|)) (-15 -4032 ((-783))) (-15 -3201 ((-845 (-938)))) (-15 -1433 ((-845 (-938)) |#1|)) (-15 -2415 ((-112) |#1|)) (-15 -1847 ((-112) |#1|)) (-15 -2446 ((-135)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-2415 (((-112) $) 104)) (-4032 (((-783)) 100)) (-2310 ((|#1| $) 151) (($ $ (-938)) 148 (|has| |#1| (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) 133 (|has| |#1| (-379)))) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-1727 (((-112) $ $) 65)) (-2148 (((-783)) 123 (|has| |#1| (-379)))) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#1| "failed") $) 111)) (-4056 ((|#1| $) 112)) (-2612 (($ (-1286 |#1|)) 157)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-379)))) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-1803 (($) 120 (|has| |#1| (-379)))) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-2580 (($) 135 (|has| |#1| (-379)))) (-2664 (((-112) $) 136 (|has| |#1| (-379)))) (-3499 (($ $ (-783)) 97 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1792 (((-112) $) 79)) (-3333 (((-938) $) 138 (|has| |#1| (-379))) (((-845 (-938)) $) 94 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1414 (((-112) $) 35)) (-2136 (($) 146 (|has| |#1| (-379)))) (-3996 (((-112) $) 145 (|has| |#1| (-379)))) (-4072 ((|#1| $) 152) (($ $ (-938)) 149 (|has| |#1| (-379)))) (-3930 (((-3 $ "failed") $) 124 (|has| |#1| (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2554 (((-1191 |#1|) $) 156) (((-1191 $) $ (-938)) 150 (|has| |#1| (-379)))) (-1902 (((-938) $) 121 (|has| |#1| (-379)))) (-1936 (((-1191 |#1|) $) 142 (|has| |#1| (-379)))) (-3275 (((-1191 |#1|) $) 141 (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) 140 (|has| |#1| (-379)))) (-1531 (($ $ (-1191 |#1|)) 143 (|has| |#1| (-379)))) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 78)) (-1538 (($) 125 (|has| |#1| (-379)) CONST)) (-3257 (($ (-938)) 122 (|has| |#1| (-379)))) (-4206 (((-112) $) 103)) (-1445 (((-1139) $) 11)) (-2202 (($) 144 (|has| |#1| (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) 132 (|has| |#1| (-379)))) (-1839 (((-430 $) $) 82)) (-3201 (((-845 (-938))) 101) (((-938)) 154)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-3721 (((-783) $) 137 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 95 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2446 (((-135)) 109)) (-2735 (($ $ (-783)) 128 (|has| |#1| (-379))) (($ $) 126 (|has| |#1| (-379)))) (-1433 (((-845 (-938)) $) 102) (((-938) $) 153)) (-1372 (((-1191 |#1|)) 155)) (-2594 (($) 134 (|has| |#1| (-379)))) (-1795 (($) 147 (|has| |#1| (-379)))) (-1809 (((-1286 |#1|) $) 159) (((-701 |#1|) (-1286 $)) 158)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 131 (|has| |#1| (-379)))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-2883 (($ $) 130 (|has| |#1| (-379))) (((-3 $ "failed") $) 93 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3713 (((-1286 $)) 161) (((-1286 $) (-938)) 160)) (-3040 (((-112) $ $) 45)) (-1847 (((-112) $) 105)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-4273 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-2051 (($ $ (-783)) 129 (|has| |#1| (-379))) (($ $) 127 (|has| |#1| (-379)))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 73) (($ $ |#1|) 108)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) (((-339 |#1|) (-141) (-374)) (T -339)) -((-1999 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1287 *1)) (-4 *1 (-339 *3)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-374)) (-5 *2 (-1287 *1)) (-4 *1 (-339 *4)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1287 *3)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) (-2840 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) (-2588 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-3164 (*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1192 *1)) (-4 *1 (-339 *4)))) (-4252 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2506 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3783 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2172 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-2582 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-4216 (*1 *1 *1 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1192 *3)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1192 *3)))) (-4212 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1192 *3))))) -(-13 (-1306 |t#1|) (-1057 |t#1|) (-10 -8 (-15 -1999 ((-1287 $))) (-15 -1999 ((-1287 $) (-938))) (-15 -3287 ((-1287 |t#1|) $)) (-15 -3287 ((-701 |t#1|) (-1287 $))) (-15 -3006 ($ (-1287 |t#1|))) (-15 -3164 ((-1192 |t#1|) $)) (-15 -2840 ((-1192 |t#1|))) (-15 -2588 ((-938))) (-15 -2369 ((-938) $)) (-15 -4252 (|t#1| $)) (-15 -3803 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -3164 ((-1192 $) $ (-938))) (-15 -4252 ($ $ (-938))) (-15 -3803 ($ $ (-938))) (-15 -2506 ($)) (-15 -3783 ($)) (-15 -2172 ((-112) $)) (-15 -2582 ($)) (-15 -4216 ($ $ (-1192 |t#1|))) (-15 -3392 ((-1192 |t#1|) $)) (-15 -4212 ((-1192 |t#1|) $)) (-15 -4212 ((-3 (-1192 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1306 |#1|) . T) ((-374) . T) ((-414) -3765 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-379)) ((-1237) |has| |#1| (-379)) ((-1241) . T) ((-1294 |#1|) . T)) -((-2034 (((-112) $ $) NIL)) (-2987 (($ (-1195) $) 100)) (-4391 (($) 89)) (-1985 (((-1139) (-1139)) 9)) (-2584 (($) 90)) (-4155 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-3906 (($ (-1195) $) 101)) (-4100 (($ (-656 (-874))) 91)) (-1844 (((-1292) $) 87)) (-3318 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1838 (($ (-1139)) 58)) (-1799 (((-1123) $) 30)) (-4251 (($ (-1111 (-969 (-576))) $) 97) (($ (-1111 (-969 (-576))) (-969 (-576)) $) 98)) (-3014 (($ (-1139)) 99)) (-3531 (($ (-1195) $) 129) (($ (-1195) $ $) 130)) (-1619 (($ (-1196) (-656 (-1196))) 88)) (-4373 (($ (-1178)) 94) (($ (-656 (-1178))) 92)) (-4092 (((-874) $) 132)) (-3424 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3372 (-112)) (|:| -1731 (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -2920 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -4136 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4136 $))) (|:| |commonBranch| (-2 (|:| -4124 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-874)))) $) 50)) (-2966 (($ (-1178)) 202)) (-3474 (($ (-656 $)) 128)) (-1531 (((-112) $ $) NIL)) (-3624 (($ (-1196) (-1178)) 135) (($ (-1196) (-326 (-713))) 175) (($ (-1196) (-326 (-711))) 176) (($ (-1196) (-326 (-706))) 177) (($ (-1196) (-701 (-713))) 138) (($ (-1196) (-701 (-711))) 141) (($ (-1196) (-701 (-706))) 144) (($ (-1196) (-1287 (-713))) 147) (($ (-1196) (-1287 (-711))) 150) (($ (-1196) (-1287 (-706))) 153) (($ (-1196) (-701 (-326 (-713)))) 156) (($ (-1196) (-701 (-326 (-711)))) 159) (($ (-1196) (-701 (-326 (-706)))) 162) (($ (-1196) (-1287 (-326 (-713)))) 165) (($ (-1196) (-1287 (-326 (-711)))) 168) (($ (-1196) (-1287 (-326 (-706)))) 171) (($ (-1196) (-656 (-969 (-576))) (-326 (-713))) 172) (($ (-1196) (-656 (-969 (-576))) (-326 (-711))) 173) (($ (-1196) (-656 (-969 (-576))) (-326 (-706))) 174) (($ (-1196) (-326 (-576))) 199) (($ (-1196) (-326 (-390))) 200) (($ (-1196) (-326 (-171 (-390)))) 201) (($ (-1196) (-701 (-326 (-576)))) 180) (($ (-1196) (-701 (-326 (-390)))) 183) (($ (-1196) (-701 (-326 (-171 (-390))))) 186) (($ (-1196) (-1287 (-326 (-576)))) 189) (($ (-1196) (-1287 (-326 (-390)))) 192) (($ (-1196) (-1287 (-326 (-171 (-390))))) 195) (($ (-1196) (-656 (-969 (-576))) (-326 (-576))) 196) (($ (-1196) (-656 (-969 (-576))) (-326 (-390))) 197) (($ (-1196) (-656 (-969 (-576))) (-326 (-171 (-390)))) 198)) (-3919 (((-112) $ $) NIL))) -(((-340) (-13 (-1119) (-10 -8 (-15 -4251 ($ (-1111 (-969 (-576))) $)) (-15 -4251 ($ (-1111 (-969 (-576))) (-969 (-576)) $)) (-15 -2987 ($ (-1195) $)) (-15 -3906 ($ (-1195) $)) (-15 -1838 ($ (-1139))) (-15 -3014 ($ (-1139))) (-15 -4373 ($ (-1178))) (-15 -4373 ($ (-656 (-1178)))) (-15 -2966 ($ (-1178))) (-15 -4155 ($)) (-15 -4155 ($ (-326 (-711)))) (-15 -4155 ($ (-326 (-713)))) (-15 -4155 ($ (-326 (-706)))) (-15 -4155 ($ (-326 (-390)))) (-15 -4155 ($ (-326 (-576)))) (-15 -4155 ($ (-326 (-171 (-390))))) (-15 -3531 ($ (-1195) $)) (-15 -3531 ($ (-1195) $ $)) (-15 -3624 ($ (-1196) (-1178))) (-15 -3624 ($ (-1196) (-326 (-713)))) (-15 -3624 ($ (-1196) (-326 (-711)))) (-15 -3624 ($ (-1196) (-326 (-706)))) (-15 -3624 ($ (-1196) (-701 (-713)))) (-15 -3624 ($ (-1196) (-701 (-711)))) (-15 -3624 ($ (-1196) (-701 (-706)))) (-15 -3624 ($ (-1196) (-1287 (-713)))) (-15 -3624 ($ (-1196) (-1287 (-711)))) (-15 -3624 ($ (-1196) (-1287 (-706)))) (-15 -3624 ($ (-1196) (-701 (-326 (-713))))) (-15 -3624 ($ (-1196) (-701 (-326 (-711))))) (-15 -3624 ($ (-1196) (-701 (-326 (-706))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-713))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-711))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-706))))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-713)))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-711)))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-706)))) (-15 -3624 ($ (-1196) (-326 (-576)))) (-15 -3624 ($ (-1196) (-326 (-390)))) (-15 -3624 ($ (-1196) (-326 (-171 (-390))))) (-15 -3624 ($ (-1196) (-701 (-326 (-576))))) (-15 -3624 ($ (-1196) (-701 (-326 (-390))))) (-15 -3624 ($ (-1196) (-701 (-326 (-171 (-390)))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-576))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-390))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-171 (-390)))))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-576)))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-390)))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-171 (-390))))) (-15 -3474 ($ (-656 $))) (-15 -4391 ($)) (-15 -2584 ($)) (-15 -4100 ($ (-656 (-874)))) (-15 -1619 ($ (-1196) (-656 (-1196)))) (-15 -3318 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3424 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3372 (-112)) (|:| -1731 (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -2920 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -4136 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4136 $))) (|:| |commonBranch| (-2 (|:| -4124 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -1844 ((-1292) $)) (-15 -1799 ((-1123) $)) (-15 -1985 ((-1139) (-1139)))))) (T -340)) -((-4251 (*1 *1 *2 *1) (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *1 (-340)))) (-4251 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *3 (-969 (-576))) (-5 *1 (-340)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-3906 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-1838 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))) (-4373 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340)))) (-4373 (*1 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-340)))) (-2966 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340)))) (-4155 (*1 *1) (-5 *1 (-340))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-4155 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3531 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-3531 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-713))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-711))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-706))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-713)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-711)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-706)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-576)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-390)))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-3624 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-4391 (*1 *1) (-5 *1 (-340))) (-2584 (*1 *1) (-5 *1 (-340))) (-4100 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340)))) (-1619 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-340)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -3372 (-112)) (|:| -1731 (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -2920 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -4136 (-340)))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4136 (-340)))) (|:| |commonBranch| (-2 (|:| -4124 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-874))))) (-5 *1 (-340)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-340)))) (-1799 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-340)))) (-1985 (*1 *2 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340))))) -(-13 (-1119) (-10 -8 (-15 -4251 ($ (-1111 (-969 (-576))) $)) (-15 -4251 ($ (-1111 (-969 (-576))) (-969 (-576)) $)) (-15 -2987 ($ (-1195) $)) (-15 -3906 ($ (-1195) $)) (-15 -1838 ($ (-1139))) (-15 -3014 ($ (-1139))) (-15 -4373 ($ (-1178))) (-15 -4373 ($ (-656 (-1178)))) (-15 -2966 ($ (-1178))) (-15 -4155 ($)) (-15 -4155 ($ (-326 (-711)))) (-15 -4155 ($ (-326 (-713)))) (-15 -4155 ($ (-326 (-706)))) (-15 -4155 ($ (-326 (-390)))) (-15 -4155 ($ (-326 (-576)))) (-15 -4155 ($ (-326 (-171 (-390))))) (-15 -3531 ($ (-1195) $)) (-15 -3531 ($ (-1195) $ $)) (-15 -3624 ($ (-1196) (-1178))) (-15 -3624 ($ (-1196) (-326 (-713)))) (-15 -3624 ($ (-1196) (-326 (-711)))) (-15 -3624 ($ (-1196) (-326 (-706)))) (-15 -3624 ($ (-1196) (-701 (-713)))) (-15 -3624 ($ (-1196) (-701 (-711)))) (-15 -3624 ($ (-1196) (-701 (-706)))) (-15 -3624 ($ (-1196) (-1287 (-713)))) (-15 -3624 ($ (-1196) (-1287 (-711)))) (-15 -3624 ($ (-1196) (-1287 (-706)))) (-15 -3624 ($ (-1196) (-701 (-326 (-713))))) (-15 -3624 ($ (-1196) (-701 (-326 (-711))))) (-15 -3624 ($ (-1196) (-701 (-326 (-706))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-713))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-711))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-706))))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-713)))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-711)))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-706)))) (-15 -3624 ($ (-1196) (-326 (-576)))) (-15 -3624 ($ (-1196) (-326 (-390)))) (-15 -3624 ($ (-1196) (-326 (-171 (-390))))) (-15 -3624 ($ (-1196) (-701 (-326 (-576))))) (-15 -3624 ($ (-1196) (-701 (-326 (-390))))) (-15 -3624 ($ (-1196) (-701 (-326 (-171 (-390)))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-576))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-390))))) (-15 -3624 ($ (-1196) (-1287 (-326 (-171 (-390)))))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-576)))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-390)))) (-15 -3624 ($ (-1196) (-656 (-969 (-576))) (-326 (-171 (-390))))) (-15 -3474 ($ (-656 $))) (-15 -4391 ($)) (-15 -2584 ($)) (-15 -4100 ($ (-656 (-874)))) (-15 -1619 ($ (-1196) (-656 (-1196)))) (-15 -3318 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3424 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1196)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1196)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1195)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3372 (-112)) (|:| -1731 (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) (|:| |forBranch| (-2 (|:| -2920 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -4136 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4136 $))) (|:| |commonBranch| (-2 (|:| -4124 (-1196)) (|:| |contents| (-656 (-1196))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -1844 ((-1292) $)) (-15 -1799 ((-1123) $)) (-15 -1985 ((-1139) (-1139))))) -((-2034 (((-112) $ $) NIL)) (-1588 (((-112) $) 13)) (-2084 (($ |#1|) 10)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2099 (($ |#1|) 12)) (-4092 (((-874) $) 19)) (-1531 (((-112) $ $) NIL)) (-2819 ((|#1| $) 14)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 21))) -(((-341 |#1|) (-13 (-862) (-10 -8 (-15 -2084 ($ |#1|)) (-15 -2099 ($ |#1|)) (-15 -1588 ((-112) $)) (-15 -2819 (|#1| $)))) (-862)) (T -341)) -((-2084 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-2099 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862)))) (-2819 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))) -(-13 (-862) (-10 -8 (-15 -2084 ($ |#1|)) (-15 -2099 ($ |#1|)) (-15 -1588 ((-112) $)) (-15 -2819 (|#1| $)))) -((-3439 (((-340) (-1196) (-969 (-576))) 23)) (-1367 (((-340) (-1196) (-969 (-576))) 27)) (-3650 (((-340) (-1196) (-1111 (-969 (-576))) (-1111 (-969 (-576)))) 26) (((-340) (-1196) (-969 (-576)) (-969 (-576))) 24)) (-3912 (((-340) (-1196) (-969 (-576))) 31))) -(((-342) (-10 -7 (-15 -3439 ((-340) (-1196) (-969 (-576)))) (-15 -3650 ((-340) (-1196) (-969 (-576)) (-969 (-576)))) (-15 -3650 ((-340) (-1196) (-1111 (-969 (-576))) (-1111 (-969 (-576))))) (-15 -1367 ((-340) (-1196) (-969 (-576)))) (-15 -3912 ((-340) (-1196) (-969 (-576)))))) (T -342)) -((-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3650 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-1111 (-969 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3650 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) -(-10 -7 (-15 -3439 ((-340) (-1196) (-969 (-576)))) (-15 -3650 ((-340) (-1196) (-969 (-576)) (-969 (-576)))) (-15 -3650 ((-340) (-1196) (-1111 (-969 (-576))) (-1111 (-969 (-576))))) (-15 -1367 ((-340) (-1196) (-969 (-576)))) (-15 -3912 ((-340) (-1196) (-969 (-576))))) -((-2034 (((-112) $ $) NIL)) (-3172 (((-518) $) 20)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3069 (((-975 (-783)) $) 18)) (-3556 (((-256) $) 7)) (-4092 (((-874) $) 26)) (-3908 (((-975 (-185 (-140))) $) 16)) (-1531 (((-112) $ $) NIL)) (-3591 (((-656 (-885 (-1201) (-783))) $) 12)) (-3919 (((-112) $ $) 22))) -(((-343) (-13 (-1119) (-10 -8 (-15 -3556 ((-256) $)) (-15 -3591 ((-656 (-885 (-1201) (-783))) $)) (-15 -3069 ((-975 (-783)) $)) (-15 -3908 ((-975 (-185 (-140))) $)) (-15 -3172 ((-518) $))))) (T -343)) -((-3556 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1201) (-783)))) (-5 *1 (-343)))) (-3069 (*1 *2 *1) (-12 (-5 *2 (-975 (-783))) (-5 *1 (-343)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-975 (-185 (-140)))) (-5 *1 (-343)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(-13 (-1119) (-10 -8 (-15 -3556 ((-256) $)) (-15 -3591 ((-656 (-885 (-1201) (-783))) $)) (-15 -3069 ((-975 (-783)) $)) (-15 -3908 ((-975 (-185 (-140))) $)) (-15 -3172 ((-518) $)))) -((-2477 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) -(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2477 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1263 |#5|) (-1263 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1263 *9)) (-4 *11 (-1263 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) -(-10 -7 (-15 -2477 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) -((-4153 (((-112) $) 14))) -(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4153 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1263 |#2|) (-1263 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) -NIL -(-10 -8 (-15 -4153 ((-112) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-2359 (($ $) 29)) (-4153 (((-112) $) 28)) (-3288 (((-1178) $) 10)) (-2133 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-3139 (((-1139) $) 11)) (-2582 (((-3 |#4| "failed") $) 27)) (-1586 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-3205 (((-2 (|:| -2954 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) -(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1263 |t#1|) (-1263 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346)) -((-2133 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1586 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-1586 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-1586 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-1586 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1263 *2)) (-4 *5 (-1263 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -2954 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-2359 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-2582 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-1586 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2133 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1586 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1586 ($ |t#4|)) (-15 -1586 ($ |t#1| |t#1|)) (-15 -1586 ($ |t#1| |t#1| (-576))) (-15 -3205 ((-2 (|:| -2954 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2359 ($ $)) (-15 -4153 ((-112) $)) (-15 -2582 ((-3 |t#4| "failed") $)) (-15 -1586 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +((-3713 (*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1286 *1)) (-4 *1 (-339 *3)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-374)) (-5 *2 (-1286 *1)) (-4 *1 (-339 *4)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1286 *3)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) (-1372 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) (-3201 (*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) (-2554 (*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1191 *1)) (-4 *1 (-339 *4)))) (-4072 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-2310 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) (-1795 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-2136 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) (-2202 (*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) (-1531 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) (-4 *3 (-374)))) (-1936 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1191 *3)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1191 *3)))) (-3275 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-1191 *3))))) +(-13 (-1305 |t#1|) (-1057 |t#1|) (-10 -8 (-15 -3713 ((-1286 $))) (-15 -3713 ((-1286 $) (-938))) (-15 -1809 ((-1286 |t#1|) $)) (-15 -1809 ((-701 |t#1|) (-1286 $))) (-15 -2612 ($ (-1286 |t#1|))) (-15 -2554 ((-1191 |t#1|) $)) (-15 -1372 ((-1191 |t#1|))) (-15 -3201 ((-938))) (-15 -1433 ((-938) $)) (-15 -4072 (|t#1| $)) (-15 -2310 (|t#1| $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-360)) (-15 -2554 ((-1191 $) $ (-938))) (-15 -4072 ($ $ (-938))) (-15 -2310 ($ $ (-938))) (-15 -1795 ($)) (-15 -2136 ($)) (-15 -3996 ((-112) $)) (-15 -2202 ($)) (-15 -1531 ($ $ (-1191 |t#1|))) (-15 -1936 ((-1191 |t#1|) $)) (-15 -3275 ((-1191 |t#1|) $)) (-15 -3275 ((-3 (-1191 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2835 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-234 $) |has| |#1| (-379)) ((-238) |has| |#1| (-379)) ((-237) |has| |#1| (-379)) ((-248) . T) ((-300) . T) ((-317) . T) ((-1305 |#1|) . T) ((-374) . T) ((-414) -2835 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-379) |has| |#1| (-379)) ((-360) |has| |#1| (-379)) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-379)) ((-1236) |has| |#1| (-379)) ((-1240) . T) ((-1293 |#1|) . T)) +((-3474 (((-112) $ $) NIL)) (-4247 (($ (-1194) $) 100)) (-4140 (($) 89)) (-3977 (((-1139) (-1139)) 9)) (-4411 (($) 90)) (-4316 (($) 104) (($ (-326 (-711))) 112) (($ (-326 (-713))) 108) (($ (-326 (-706))) 116) (($ (-326 (-390))) 123) (($ (-326 (-576))) 119) (($ (-326 (-171 (-390)))) 127)) (-1577 (($ (-1194) $) 101)) (-1717 (($ (-656 (-874))) 91)) (-2530 (((-1291) $) 87)) (-3842 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2126 (($ (-1139)) 58)) (-2856 (((-1123) $) 30)) (-3940 (($ (-1111 (-969 (-576))) $) 97) (($ (-1111 (-969 (-576))) (-969 (-576)) $) 98)) (-1358 (($ (-1139)) 99)) (-2841 (($ (-1194) $) 129) (($ (-1194) $ $) 130)) (-3633 (($ (-1195) (-656 (-1195))) 88)) (-2381 (($ (-1177)) 94) (($ (-656 (-1177))) 92)) (-3563 (((-874) $) 132)) (-2401 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1911 (-112)) (|:| -3142 (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -2691 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -2719 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2719 $))) (|:| |commonBranch| (-2 (|:| -2706 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874)))) $) 50)) (-2888 (($ (-1177)) 202)) (-2422 (($ (-656 $)) 128)) (-3985 (((-112) $ $) NIL)) (-1607 (($ (-1195) (-1177)) 135) (($ (-1195) (-326 (-713))) 175) (($ (-1195) (-326 (-711))) 176) (($ (-1195) (-326 (-706))) 177) (($ (-1195) (-701 (-713))) 138) (($ (-1195) (-701 (-711))) 141) (($ (-1195) (-701 (-706))) 144) (($ (-1195) (-1286 (-713))) 147) (($ (-1195) (-1286 (-711))) 150) (($ (-1195) (-1286 (-706))) 153) (($ (-1195) (-701 (-326 (-713)))) 156) (($ (-1195) (-701 (-326 (-711)))) 159) (($ (-1195) (-701 (-326 (-706)))) 162) (($ (-1195) (-1286 (-326 (-713)))) 165) (($ (-1195) (-1286 (-326 (-711)))) 168) (($ (-1195) (-1286 (-326 (-706)))) 171) (($ (-1195) (-656 (-969 (-576))) (-326 (-713))) 172) (($ (-1195) (-656 (-969 (-576))) (-326 (-711))) 173) (($ (-1195) (-656 (-969 (-576))) (-326 (-706))) 174) (($ (-1195) (-326 (-576))) 199) (($ (-1195) (-326 (-390))) 200) (($ (-1195) (-326 (-171 (-390)))) 201) (($ (-1195) (-701 (-326 (-576)))) 180) (($ (-1195) (-701 (-326 (-390)))) 183) (($ (-1195) (-701 (-326 (-171 (-390))))) 186) (($ (-1195) (-1286 (-326 (-576)))) 189) (($ (-1195) (-1286 (-326 (-390)))) 192) (($ (-1195) (-1286 (-326 (-171 (-390))))) 195) (($ (-1195) (-656 (-969 (-576))) (-326 (-576))) 196) (($ (-1195) (-656 (-969 (-576))) (-326 (-390))) 197) (($ (-1195) (-656 (-969 (-576))) (-326 (-171 (-390)))) 198)) (-2988 (((-112) $ $) NIL))) +(((-340) (-13 (-1119) (-10 -8 (-15 -3940 ($ (-1111 (-969 (-576))) $)) (-15 -3940 ($ (-1111 (-969 (-576))) (-969 (-576)) $)) (-15 -4247 ($ (-1194) $)) (-15 -1577 ($ (-1194) $)) (-15 -2126 ($ (-1139))) (-15 -1358 ($ (-1139))) (-15 -2381 ($ (-1177))) (-15 -2381 ($ (-656 (-1177)))) (-15 -2888 ($ (-1177))) (-15 -4316 ($)) (-15 -4316 ($ (-326 (-711)))) (-15 -4316 ($ (-326 (-713)))) (-15 -4316 ($ (-326 (-706)))) (-15 -4316 ($ (-326 (-390)))) (-15 -4316 ($ (-326 (-576)))) (-15 -4316 ($ (-326 (-171 (-390))))) (-15 -2841 ($ (-1194) $)) (-15 -2841 ($ (-1194) $ $)) (-15 -1607 ($ (-1195) (-1177))) (-15 -1607 ($ (-1195) (-326 (-713)))) (-15 -1607 ($ (-1195) (-326 (-711)))) (-15 -1607 ($ (-1195) (-326 (-706)))) (-15 -1607 ($ (-1195) (-701 (-713)))) (-15 -1607 ($ (-1195) (-701 (-711)))) (-15 -1607 ($ (-1195) (-701 (-706)))) (-15 -1607 ($ (-1195) (-1286 (-713)))) (-15 -1607 ($ (-1195) (-1286 (-711)))) (-15 -1607 ($ (-1195) (-1286 (-706)))) (-15 -1607 ($ (-1195) (-701 (-326 (-713))))) (-15 -1607 ($ (-1195) (-701 (-326 (-711))))) (-15 -1607 ($ (-1195) (-701 (-326 (-706))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-713))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-711))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-706))))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-713)))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-711)))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-706)))) (-15 -1607 ($ (-1195) (-326 (-576)))) (-15 -1607 ($ (-1195) (-326 (-390)))) (-15 -1607 ($ (-1195) (-326 (-171 (-390))))) (-15 -1607 ($ (-1195) (-701 (-326 (-576))))) (-15 -1607 ($ (-1195) (-701 (-326 (-390))))) (-15 -1607 ($ (-1195) (-701 (-326 (-171 (-390)))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-576))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-390))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-171 (-390)))))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-576)))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-390)))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-171 (-390))))) (-15 -2422 ($ (-656 $))) (-15 -4140 ($)) (-15 -4411 ($)) (-15 -1717 ($ (-656 (-874)))) (-15 -3633 ($ (-1195) (-656 (-1195)))) (-15 -3842 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2401 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1911 (-112)) (|:| -3142 (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -2691 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -2719 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2719 $))) (|:| |commonBranch| (-2 (|:| -2706 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -2530 ((-1291) $)) (-15 -2856 ((-1123) $)) (-15 -3977 ((-1139) (-1139)))))) (T -340)) +((-3940 (*1 *1 *2 *1) (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *1 (-340)))) (-3940 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *3 (-969 (-576))) (-5 *1 (-340)))) (-4247 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-1577 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-2126 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))) (-1358 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340)))) (-2381 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340)))) (-2381 (*1 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-340)))) (-2888 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340)))) (-4316 (*1 *1) (-5 *1 (-340))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) (-4316 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2841 (*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-2841 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-713))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-711))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-706))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-713)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-711)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-706)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-713))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-711))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-706))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-576)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-390)))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-171 (-390))))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-576))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-390))) (-5 *1 (-340)))) (-1607 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340)))) (-4140 (*1 *1) (-5 *1 (-340))) (-4411 (*1 *1) (-5 *1 (-340))) (-1717 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340)))) (-3633 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-340)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-340)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| (-340)) (|:| |elseClause| (-340)))) (|:| |returnBranch| (-2 (|:| -1911 (-112)) (|:| -3142 (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) (|:| |blockBranch| (-656 (-340))) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -2691 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -2719 (-340)))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2719 (-340)))) (|:| |commonBranch| (-2 (|:| -2706 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874))))) (-5 *1 (-340)))) (-2530 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-340)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-340)))) (-3977 (*1 *2 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340))))) +(-13 (-1119) (-10 -8 (-15 -3940 ($ (-1111 (-969 (-576))) $)) (-15 -3940 ($ (-1111 (-969 (-576))) (-969 (-576)) $)) (-15 -4247 ($ (-1194) $)) (-15 -1577 ($ (-1194) $)) (-15 -2126 ($ (-1139))) (-15 -1358 ($ (-1139))) (-15 -2381 ($ (-1177))) (-15 -2381 ($ (-656 (-1177)))) (-15 -2888 ($ (-1177))) (-15 -4316 ($)) (-15 -4316 ($ (-326 (-711)))) (-15 -4316 ($ (-326 (-713)))) (-15 -4316 ($ (-326 (-706)))) (-15 -4316 ($ (-326 (-390)))) (-15 -4316 ($ (-326 (-576)))) (-15 -4316 ($ (-326 (-171 (-390))))) (-15 -2841 ($ (-1194) $)) (-15 -2841 ($ (-1194) $ $)) (-15 -1607 ($ (-1195) (-1177))) (-15 -1607 ($ (-1195) (-326 (-713)))) (-15 -1607 ($ (-1195) (-326 (-711)))) (-15 -1607 ($ (-1195) (-326 (-706)))) (-15 -1607 ($ (-1195) (-701 (-713)))) (-15 -1607 ($ (-1195) (-701 (-711)))) (-15 -1607 ($ (-1195) (-701 (-706)))) (-15 -1607 ($ (-1195) (-1286 (-713)))) (-15 -1607 ($ (-1195) (-1286 (-711)))) (-15 -1607 ($ (-1195) (-1286 (-706)))) (-15 -1607 ($ (-1195) (-701 (-326 (-713))))) (-15 -1607 ($ (-1195) (-701 (-326 (-711))))) (-15 -1607 ($ (-1195) (-701 (-326 (-706))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-713))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-711))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-706))))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-713)))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-711)))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-706)))) (-15 -1607 ($ (-1195) (-326 (-576)))) (-15 -1607 ($ (-1195) (-326 (-390)))) (-15 -1607 ($ (-1195) (-326 (-171 (-390))))) (-15 -1607 ($ (-1195) (-701 (-326 (-576))))) (-15 -1607 ($ (-1195) (-701 (-326 (-390))))) (-15 -1607 ($ (-1195) (-701 (-326 (-171 (-390)))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-576))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-390))))) (-15 -1607 ($ (-1195) (-1286 (-326 (-171 (-390)))))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-576)))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-390)))) (-15 -1607 ($ (-1195) (-656 (-969 (-576))) (-326 (-171 (-390))))) (-15 -2422 ($ (-656 $))) (-15 -4140 ($)) (-15 -4411 ($)) (-15 -1717 ($ (-656 (-874)))) (-15 -3633 ($ (-1195) (-656 (-1195)))) (-15 -3842 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2401 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1195)) (|:| |arrayIndex| (-656 (-969 (-576)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1194)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1911 (-112)) (|:| -3142 (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) (|:| |blockBranch| (-656 $)) (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) (|:| |forBranch| (-2 (|:| -2691 (-1111 (-969 (-576)))) (|:| |span| (-969 (-576))) (|:| -2719 $))) (|:| |labelBranch| (-1139)) (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2719 $))) (|:| |commonBranch| (-2 (|:| -2706 (-1195)) (|:| |contents| (-656 (-1195))))) (|:| |printBranch| (-656 (-874)))) $)) (-15 -2530 ((-1291) $)) (-15 -2856 ((-1123) $)) (-15 -3977 ((-1139) (-1139))))) +((-3474 (((-112) $ $) NIL)) (-1874 (((-112) $) 13)) (-3747 (($ |#1|) 10)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3757 (($ |#1|) 12)) (-3563 (((-874) $) 19)) (-3985 (((-112) $ $) NIL)) (-4225 ((|#1| $) 14)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 21))) +(((-341 |#1|) (-13 (-862) (-10 -8 (-15 -3747 ($ |#1|)) (-15 -3757 ($ |#1|)) (-15 -1874 ((-112) $)) (-15 -4225 (|#1| $)))) (-862)) (T -341)) +((-3747 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-3757 (*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862)))) (-4225 (*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862))))) +(-13 (-862) (-10 -8 (-15 -3747 ($ |#1|)) (-15 -3757 ($ |#1|)) (-15 -1874 ((-112) $)) (-15 -4225 (|#1| $)))) +((-4224 (((-340) (-1195) (-969 (-576))) 23)) (-1390 (((-340) (-1195) (-969 (-576))) 27)) (-1334 (((-340) (-1195) (-1111 (-969 (-576))) (-1111 (-969 (-576)))) 26) (((-340) (-1195) (-969 (-576)) (-969 (-576))) 24)) (-3901 (((-340) (-1195) (-969 (-576))) 31))) +(((-342) (-10 -7 (-15 -4224 ((-340) (-1195) (-969 (-576)))) (-15 -1334 ((-340) (-1195) (-969 (-576)) (-969 (-576)))) (-15 -1334 ((-340) (-1195) (-1111 (-969 (-576))) (-1111 (-969 (-576))))) (-15 -1390 ((-340) (-1195) (-969 (-576)))) (-15 -3901 ((-340) (-1195) (-969 (-576)))))) (T -342)) +((-3901 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1390 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1334 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-1111 (-969 (-576)))) (-5 *2 (-340)) (-5 *1 (-342)))) (-1334 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342)))) (-4224 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) (-5 *1 (-342))))) +(-10 -7 (-15 -4224 ((-340) (-1195) (-969 (-576)))) (-15 -1334 ((-340) (-1195) (-969 (-576)) (-969 (-576)))) (-15 -1334 ((-340) (-1195) (-1111 (-969 (-576))) (-1111 (-969 (-576))))) (-15 -1390 ((-340) (-1195) (-969 (-576)))) (-15 -3901 ((-340) (-1195) (-969 (-576))))) +((-3474 (((-112) $ $) NIL)) (-2102 (((-518) $) 20)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3445 (((-975 (-783)) $) 18)) (-3261 (((-256) $) 7)) (-3563 (((-874) $) 26)) (-2205 (((-975 (-185 (-140))) $) 16)) (-3985 (((-112) $ $) NIL)) (-2570 (((-656 (-885 (-1200) (-783))) $) 12)) (-2988 (((-112) $ $) 22))) +(((-343) (-13 (-1119) (-10 -8 (-15 -3261 ((-256) $)) (-15 -2570 ((-656 (-885 (-1200) (-783))) $)) (-15 -3445 ((-975 (-783)) $)) (-15 -2205 ((-975 (-185 (-140))) $)) (-15 -2102 ((-518) $))))) (T -343)) +((-3261 (*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1200) (-783)))) (-5 *1 (-343)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-975 (-783))) (-5 *1 (-343)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-975 (-185 (-140)))) (-5 *1 (-343)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) +(-13 (-1119) (-10 -8 (-15 -3261 ((-256) $)) (-15 -2570 ((-656 (-885 (-1200) (-783))) $)) (-15 -3445 ((-975 (-783)) $)) (-15 -2205 ((-975 (-185 (-140))) $)) (-15 -2102 ((-518) $)))) +((-1632 (((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)) 33))) +(((-344 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1632 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-374) (-1262 |#5|) (-1262 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -344)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *9 (-374)) (-4 *10 (-1262 *9)) (-4 *11 (-1262 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11))))) +(-10 -7 (-15 -1632 ((-347 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-347 |#1| |#2| |#3| |#4|)))) +((-4156 (((-112) $) 14))) +(((-345 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4156 ((-112) |#1|))) (-346 |#2| |#3| |#4| |#5|) (-374) (-1262 |#2|) (-1262 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -345)) +NIL +(-10 -8 (-15 -4156 ((-112) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-2521 (($ $) 29)) (-4156 (((-112) $) 28)) (-1927 (((-1177) $) 10)) (-1675 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 35)) (-1445 (((-1139) $) 11)) (-2202 (((-3 |#4| "failed") $) 27)) (-1629 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-576)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2450 (((-2 (|:| -3081 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24))) +(((-346 |#1| |#2| |#3| |#4|) (-141) (-374) (-1262 |t#1|) (-1262 (-419 |t#2|)) (-353 |t#1| |t#2| |t#3|)) (T -346)) +((-1675 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1629 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) (-4 *1 (-346 *3 *4 *5 *6)))) (-1629 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) (-1629 (*1 *1 *2 *2) (-12 (-4 *2 (-374)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) (-1629 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1262 *2)) (-4 *5 (-1262 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) (-4 *6 (-353 *2 *4 *5)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-2 (|:| -3081 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112)))) (-2202 (*1 *2 *1) (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *2 (-353 *3 *4 *5)))) (-1629 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-374)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -1675 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1629 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1629 ($ |t#4|)) (-15 -1629 ($ |t#1| |t#1|)) (-15 -1629 ($ |t#1| |t#1| (-576))) (-15 -2450 ((-2 (|:| -3081 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2521 ($ $)) (-15 -4156 ((-112) $)) (-15 -2202 ((-3 |t#4| "failed") $)) (-15 -1629 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2359 (($ $) 33)) (-4153 (((-112) $) NIL)) (-3288 (((-1178) $) NIL)) (-3527 (((-1287 |#4|) $) 134)) (-2133 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-3139 (((-1139) $) NIL)) (-2582 (((-3 |#4| "failed") $) 36)) (-3822 (((-1287 |#4|) $) 126)) (-1586 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3205 (((-2 (|:| -2954 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4092 (((-874) $) 17)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 14 T CONST)) (-3919 (((-112) $ $) 20)) (-4018 (($ $) 27) (($ $ $) NIL)) (-4007 (($ $ $) 25)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23))) -(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3822 ((-1287 |#4|) $)) (-15 -3527 ((-1287 |#4|) $)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) -((-3822 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-3527 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) -(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3822 ((-1287 |#4|) $)) (-15 -3527 ((-1287 |#4|) $)))) -((-2259 (($ $ (-1196) |#2|) NIL) (($ $ (-656 (-1196)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-4367 (($ $ |#2|) 11))) -(((-348 |#1| |#2|) (-10 -8 (-15 -4367 (|#1| |#1| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#2| |#2|)) (-15 -2259 (|#1| |#1| (-304 |#2|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 |#2|))) (-15 -2259 (|#1| |#1| (-1196) |#2|))) (-349 |#2|) (-1119)) (T -348)) -NIL -(-10 -8 (-15 -4367 (|#1| |#1| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#2| |#2|)) (-15 -2259 (|#1| |#1| (-304 |#2|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 |#2|))) (-15 -2259 (|#1| |#1| (-1196) |#2|))) -((-2477 (($ (-1 |#1| |#1|) $) 6)) (-2259 (($ $ (-1196) |#1|) 17 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-4367 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2521 (($ $) 33)) (-4156 (((-112) $) NIL)) (-1927 (((-1177) $) NIL)) (-2279 (((-1286 |#4|) $) 134)) (-1675 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31)) (-1445 (((-1139) $) NIL)) (-2202 (((-3 |#4| "failed") $) 36)) (-1533 (((-1286 |#4|) $) 126)) (-1629 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-576)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2450 (((-2 (|:| -3081 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3563 (((-874) $) 17)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 14 T CONST)) (-2988 (((-112) $ $) 20)) (-3095 (($ $) 27) (($ $ $) NIL)) (-3083 (($ $ $) 25)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 23))) +(((-347 |#1| |#2| |#3| |#4|) (-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1533 ((-1286 |#4|) $)) (-15 -2279 ((-1286 |#4|) $)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -347)) +((-1533 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5)))) (-2279 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) (-4 *6 (-353 *3 *4 *5))))) +(-13 (-346 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1533 ((-1286 |#4|) $)) (-15 -2279 ((-1286 |#4|) $)))) +((-3306 (($ $ (-1195) |#2|) NIL) (($ $ (-656 (-1195)) (-656 |#2|)) 20) (($ $ (-656 (-304 |#2|))) 15) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-2871 (($ $ |#2|) 11))) +(((-348 |#1| |#2|) (-10 -8 (-15 -2871 (|#1| |#1| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#2| |#2|)) (-15 -3306 (|#1| |#1| (-304 |#2|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 |#2|))) (-15 -3306 (|#1| |#1| (-1195) |#2|))) (-349 |#2|) (-1119)) (T -348)) +NIL +(-10 -8 (-15 -2871 (|#1| |#1| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#2| |#2|)) (-15 -3306 (|#1| |#1| (-304 |#2|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 |#2|))) (-15 -3306 (|#1| |#1| (-1195) |#2|))) +((-1632 (($ (-1 |#1| |#1|) $) 6)) (-3306 (($ $ (-1195) |#1|) 17 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 16 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-656 (-304 |#1|))) 15 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 14 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-319 |#1|))) (($ $ (-656 |#1|) (-656 |#1|)) 12 (|has| |#1| (-319 |#1|)))) (-2871 (($ $ |#1|) 11 (|has| |#1| (-296 |#1| |#1|))))) (((-349 |#1|) (-141) (-1119)) (T -349)) -((-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1119))))) -(-13 (-10 -8 (-15 -2477 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1196) |t#1|)) (-6 (-526 (-1196) |t#1|)) |%noBranch|))) -(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1237) |has| |#1| (-296 |#1| |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-1196)) $) NIL)) (-3218 (((-112)) 96) (((-112) (-112)) 97)) (-4385 (((-656 (-624 $)) $) NIL)) (-2266 (($ $) NIL)) (-2111 (($ $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1756 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1403 (($ $) NIL)) (-2236 (($ $) NIL)) (-2084 (($ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1196)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1057 (-576)))) (((-3 $ "failed") (-419 (-969 (-576)))) 70 (|has| |#3| (-1057 (-576)))) (((-3 $ "failed") (-969 (-576))) 65 (|has| |#3| (-1057 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1057 (-390)))) (((-3 $ "failed") (-419 (-969 (-390)))) 88 (|has| |#3| (-1057 (-390)))) (((-3 $ "failed") (-969 (-390))) 83 (|has| |#3| (-1057 (-390))))) (-2378 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1196)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1057 (-576)))) (($ (-419 (-969 (-576)))) 71 (|has| |#3| (-1057 (-576)))) (($ (-969 (-576))) 67 (|has| |#3| (-1057 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1057 (-390)))) (($ (-419 (-969 (-390)))) 89 (|has| |#3| (-1057 (-390)))) (($ (-969 (-390))) 85 (|has| |#3| (-1057 (-390))))) (-3179 (((-3 $ "failed") $) NIL)) (-3926 (($) 101)) (-2191 (($ $) NIL) (($ (-656 $)) NIL)) (-4349 (((-656 (-115)) $) NIL)) (-1344 (((-115) (-115)) NIL)) (-1810 (((-112) $) NIL)) (-3082 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-2525 (((-1192 $) (-624 $)) NIL (|has| $ (-1068)))) (-2477 (($ (-1 $ $) (-624 $)) NIL)) (-4348 (((-3 (-624 $) "failed") $) NIL)) (-2616 (($ $) 99)) (-2703 (($ $) NIL)) (-3288 (((-1178) $) NIL)) (-1332 (((-656 (-624 $)) $) NIL)) (-1770 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-1412 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) NIL)) (-2927 (((-783) $) NIL)) (-3139 (((-1139) $) NIL)) (-2513 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-3353 (($ $) NIL)) (-2015 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-2259 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-4367 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-3724 (($ $) NIL) (($ $ $) NIL)) (-3614 (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2840 (($ $) NIL (|has| $ (-1068)))) (-2253 (($ $) NIL)) (-2099 (($ $) NIL)) (-4092 (((-874) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-2471 (((-783)) NIL T CONST)) (-3163 (($ $) NIL) (($ (-656 $)) NIL)) (-3201 (((-112) (-115)) NIL)) (-1531 (((-112) $ $) NIL)) (-2184 (($ $) NIL)) (-2161 (($ $) NIL)) (-2173 (($ $) NIL)) (-3423 (($ $) NIL)) (-4300 (($) 100 T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL))) -(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1057 |#3|) (-915 (-1196)) (-10 -8 (-15 -2378 ($ (-326 |#3|))) (-15 -2974 ((-3 $ "failed") (-326 |#3|))) (-15 -2378 ($ (-1196))) (-15 -2974 ((-3 $ "failed") (-1196))) (-15 -4092 ((-326 |#3|) $)) (IF (|has| |#3| (-1057 (-576))) (PROGN (-15 -2378 ($ (-326 (-576)))) (-15 -2974 ((-3 $ "failed") (-326 (-576)))) (-15 -2378 ($ (-419 (-969 (-576))))) (-15 -2974 ((-3 $ "failed") (-419 (-969 (-576))))) (-15 -2378 ($ (-969 (-576)))) (-15 -2974 ((-3 $ "failed") (-969 (-576))))) |%noBranch|) (IF (|has| |#3| (-1057 (-390))) (PROGN (-15 -2378 ($ (-326 (-390)))) (-15 -2974 ((-3 $ "failed") (-326 (-390)))) (-15 -2378 ($ (-419 (-969 (-390))))) (-15 -2974 ((-3 $ "failed") (-419 (-969 (-390))))) (-15 -2378 ($ (-969 (-390)))) (-15 -2974 ((-3 $ "failed") (-969 (-390))))) |%noBranch|) (-15 -3423 ($ $)) (-15 -1403 ($ $)) (-15 -3353 ($ $)) (-15 -2703 ($ $)) (-15 -2616 ($ $)) (-15 -2084 ($ $)) (-15 -2099 ($ $)) (-15 -2111 ($ $)) (-15 -2161 ($ $)) (-15 -2173 ($ $)) (-15 -2184 ($ $)) (-15 -2236 ($ $)) (-15 -2253 ($ $)) (-15 -2266 ($ $)) (-15 -3926 ($)) (-15 -1541 ((-656 (-1196)) $)) (-15 -3218 ((-112))) (-15 -3218 ((-112) (-112))))) (-656 (-1196)) (-656 (-1196)) (-399)) (T -350)) -((-2378 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-3423 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-1403 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3353 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2703 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2616 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2084 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2099 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2111 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2161 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2173 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2184 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2236 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2253 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-3926 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-3218 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) (-3218 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399))))) -(-13 (-312) (-38 |#3|) (-1057 |#3|) (-915 (-1196)) (-10 -8 (-15 -2378 ($ (-326 |#3|))) (-15 -2974 ((-3 $ "failed") (-326 |#3|))) (-15 -2378 ($ (-1196))) (-15 -2974 ((-3 $ "failed") (-1196))) (-15 -4092 ((-326 |#3|) $)) (IF (|has| |#3| (-1057 (-576))) (PROGN (-15 -2378 ($ (-326 (-576)))) (-15 -2974 ((-3 $ "failed") (-326 (-576)))) (-15 -2378 ($ (-419 (-969 (-576))))) (-15 -2974 ((-3 $ "failed") (-419 (-969 (-576))))) (-15 -2378 ($ (-969 (-576)))) (-15 -2974 ((-3 $ "failed") (-969 (-576))))) |%noBranch|) (IF (|has| |#3| (-1057 (-390))) (PROGN (-15 -2378 ($ (-326 (-390)))) (-15 -2974 ((-3 $ "failed") (-326 (-390)))) (-15 -2378 ($ (-419 (-969 (-390))))) (-15 -2974 ((-3 $ "failed") (-419 (-969 (-390))))) (-15 -2378 ($ (-969 (-390)))) (-15 -2974 ((-3 $ "failed") (-969 (-390))))) |%noBranch|) (-15 -3423 ($ $)) (-15 -1403 ($ $)) (-15 -3353 ($ $)) (-15 -2703 ($ $)) (-15 -2616 ($ $)) (-15 -2084 ($ $)) (-15 -2099 ($ $)) (-15 -2111 ($ $)) (-15 -2161 ($ $)) (-15 -2173 ($ $)) (-15 -2184 ($ $)) (-15 -2236 ($ $)) (-15 -2253 ($ $)) (-15 -2266 ($ $)) (-15 -3926 ($)) (-15 -1541 ((-656 (-1196)) $)) (-15 -3218 ((-112))) (-15 -3218 ((-112) (-112))))) -((-2477 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2477 (|#8| (-1 |#5| |#1|) |#4|))) (-1241) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1241) (-1263 |#5|) (-1263 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1241)) (-4 *8 (-1241)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *9 (-1263 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1263 (-419 *9)))))) -(-10 -7 (-15 -2477 (|#8| (-1 |#5| |#1|) |#4|))) -((-2041 (((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) $) 39)) (-3006 (($ (-1287 (-419 |#3|)) (-1287 $)) NIL) (($ (-1287 (-419 |#3|))) NIL) (($ (-1287 |#3|) |#3|) 173)) (-3601 (((-1287 $) (-1287 $)) 156)) (-4229 (((-656 (-656 |#2|))) 126)) (-4346 (((-112) |#2| |#2|) 76)) (-1363 (($ $) 148)) (-1835 (((-783)) 172)) (-3191 (((-1287 $) (-1287 $)) 218)) (-3157 (((-656 (-969 |#2|)) (-1196)) 115)) (-2256 (((-112) $) 169)) (-3071 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-2568 (((-3 |#3| "failed")) 52)) (-3379 (((-783)) 184)) (-4367 ((|#2| $ |#2| |#2|) 140)) (-1591 (((-3 |#3| "failed")) 71)) (-3614 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2127 (((-1287 $) (-1287 $)) 162)) (-3547 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-1472 (((-112)) 34))) -(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4229 ((-656 (-656 |#2|)))) (-15 -3157 ((-656 (-969 |#2|)) (-1196))) (-15 -3547 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2568 ((-3 |#3| "failed"))) (-15 -1591 ((-3 |#3| "failed"))) (-15 -4367 (|#2| |#1| |#2| |#2|)) (-15 -1363 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3071 ((-112) |#1| |#3|)) (-15 -3071 ((-112) |#1| |#2|)) (-15 -3006 (|#1| (-1287 |#3|) |#3|)) (-15 -2041 ((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3601 ((-1287 |#1|) (-1287 |#1|))) (-15 -3191 ((-1287 |#1|) (-1287 |#1|))) (-15 -2127 ((-1287 |#1|) (-1287 |#1|))) (-15 -3071 ((-112) |#1|)) (-15 -2256 ((-112) |#1|)) (-15 -4346 ((-112) |#2| |#2|)) (-15 -1472 ((-112))) (-15 -3379 ((-783))) (-15 -1835 ((-783))) (-15 -3614 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -3614 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -3006 (|#1| (-1287 (-419 |#3|)))) (-15 -3006 (|#1| (-1287 (-419 |#3|)) (-1287 |#1|)))) (-353 |#2| |#3| |#4|) (-1241) (-1263 |#2|) (-1263 (-419 |#3|))) (T -352)) -((-1835 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3379 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-1472 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-4346 (*1 *2 *3 *3) (-12 (-4 *3 (-1241)) (-4 *5 (-1263 *3)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-1591 (*1 *2) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-2568 (*1 *2) (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-656 (-969 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-4229 (*1 *2) (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) -(-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -4229 ((-656 (-656 |#2|)))) (-15 -3157 ((-656 (-969 |#2|)) (-1196))) (-15 -3547 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2568 ((-3 |#3| "failed"))) (-15 -1591 ((-3 |#3| "failed"))) (-15 -4367 (|#2| |#1| |#2| |#2|)) (-15 -1363 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3071 ((-112) |#1| |#3|)) (-15 -3071 ((-112) |#1| |#2|)) (-15 -3006 (|#1| (-1287 |#3|) |#3|)) (-15 -2041 ((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3601 ((-1287 |#1|) (-1287 |#1|))) (-15 -3191 ((-1287 |#1|) (-1287 |#1|))) (-15 -2127 ((-1287 |#1|) (-1287 |#1|))) (-15 -3071 ((-112) |#1|)) (-15 -2256 ((-112) |#1|)) (-15 -4346 ((-112) |#2| |#2|)) (-15 -1472 ((-112))) (-15 -3379 ((-783))) (-15 -1835 ((-783))) (-15 -3614 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -3614 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -3006 (|#1| (-1287 (-419 |#3|)))) (-15 -3006 (|#1| (-1287 (-419 |#3|)) (-1287 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-2041 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 211)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-2573 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-4306 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-1532 (((-701 (-419 |#2|)) (-1287 $)) 53) (((-701 (-419 |#2|))) 68)) (-3803 (((-419 |#2|) $) 59)) (-2178 (((-1209 (-938) (-783)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-2100 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-4407 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2247 (((-783)) 99 (|has| (-419 |#2|) (-379)))) (-4020 (((-112)) 228)) (-2699 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-3656 (($) 18 T CONST)) (-2974 (((-3 (-576) "failed") $) 185 (|has| (-419 |#2|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 180)) (-2378 (((-576) $) 184 (|has| (-419 |#2|) (-1057 (-576)))) (((-419 (-576)) $) 182 (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-419 |#2|) $) 181)) (-3006 (($ (-1287 (-419 |#2|)) (-1287 $)) 55) (($ (-1287 (-419 |#2|))) 71) (($ (-1287 |#2|) |#2|) 210)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-1975 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-3754 (((-701 (-419 |#2|)) $ (-1287 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-3687 (((-701 (-576)) (-1287 $)) 179 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 178 (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) 177 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-701 $) (-1287 $)) 175) (((-701 (-419 |#2|)) (-701 $)) 174) (((-2 (|:| -2215 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-1287 $) $) 173) (((-701 (-419 |#2|)) (-1287 $)) 172)) (-3601 (((-1287 $) (-1287 $)) 216)) (-2359 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-3179 (((-3 $ "failed") $) 37)) (-4229 (((-656 (-656 |#1|))) 197 (|has| |#1| (-379)))) (-4346 (((-112) |#1| |#1|) 232)) (-4049 (((-938)) 61)) (-2446 (($) 102 (|has| (-419 |#2|) (-379)))) (-4127 (((-112)) 225)) (-3756 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-1986 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 114 (|has| (-419 |#2|) (-374)))) (-1363 (($ $) 203)) (-1554 (($) 160 (|has| (-419 |#2|) (-360)))) (-3506 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-1329 (($ $ (-783)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-2725 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-1538 (((-938) $) 163 (|has| (-419 |#2|) (-360))) (((-845 (-938)) $) 149 (|has| (-419 |#2|) (-360)))) (-1810 (((-112) $) 35)) (-1835 (((-783)) 235)) (-3191 (((-1287 $) (-1287 $)) 217)) (-4252 (((-419 |#2|) $) 58)) (-3157 (((-656 (-969 |#1|)) (-1196)) 198 (|has| |#1| (-374)))) (-2083 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| (-419 |#2|) (-374)))) (-3164 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-3225 (((-938) $) 101 (|has| (-419 |#2|) (-379)))) (-2344 ((|#3| $) 167)) (-3117 (($ (-656 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-3288 (((-1178) $) 10)) (-2006 (((-701 (-419 |#2|))) 212)) (-2745 (((-701 (-419 |#2|))) 214)) (-1644 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-4382 (($ (-1287 |#2|) |#2|) 208)) (-3619 (((-701 (-419 |#2|))) 213)) (-1686 (((-701 (-419 |#2|))) 215)) (-1742 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-1896 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 209)) (-1780 (((-1287 $)) 221)) (-2186 (((-1287 $)) 222)) (-2256 (((-112) $) 220)) (-3071 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-3503 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-2550 (($ (-938)) 100 (|has| (-419 |#2|) (-379)))) (-2568 (((-3 |#2| "failed")) 200)) (-3139 (((-1139) $) 11)) (-3379 (((-783)) 234)) (-2582 (($) 171)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 113 (|has| (-419 |#2|) (-374)))) (-3149 (($ (-656 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-1392 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-2022 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| (-419 |#2|) (-374)))) (-1787 (((-783) $) 117 (|has| (-419 |#2|) (-374)))) (-4367 ((|#1| $ |#1| |#1|) 202)) (-1591 (((-3 |#2| "failed")) 201)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-1955 (((-419 |#2|) (-1287 $)) 54) (((-419 |#2|)) 67)) (-2547 (((-783) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-3614 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-656 (-1196)) (-656 (-783))) 141 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-2445 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196) (-783)) 140 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-2445 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1196))) 139 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-2445 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196)) 137 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-2445 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 147 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2445 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2445 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4003 (((-701 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-2840 ((|#3|) 170)) (-3870 (($) 159 (|has| (-419 |#2|) (-360)))) (-3287 (((-1287 (-419 |#2|)) $ (-1287 $)) 57) (((-701 (-419 |#2|)) (-1287 $) (-1287 $)) 56) (((-1287 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1287 $)) 72)) (-1505 (((-1287 (-419 |#2|)) $) 70) (($ (-1287 (-419 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 156 (|has| (-419 |#2|) (-360)))) (-2127 (((-1287 $) (-1287 $)) 218)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-3765 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1057 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-3612 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-3794 ((|#3| $) 52)) (-2471 (((-783)) 32 T CONST)) (-1819 (((-112)) 231)) (-1457 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-1531 (((-112) $ $) 9)) (-1999 (((-1287 $)) 74)) (-2947 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-3547 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-1472 (((-112)) 233)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1196)) (-656 (-783))) 144 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-2445 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196) (-783)) 143 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-2445 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1196))) 142 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-2445 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-1196)) 138 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-2445 (|has| (-419 |#2|) (-917 (-1196))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 148 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2445 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-3765 (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2445 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2445 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374))))) -(((-353 |#1| |#2| |#3|) (-141) (-1241) (-1263 |t#1|) (-1263 (-419 |t#2|))) (T -353)) -((-1835 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783)))) (-3379 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783)))) (-1472 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-4346 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-1819 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-1457 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-1457 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-4020 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-2699 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-2699 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-4127 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3756 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3756 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-2186 (*1 *2) (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1780 (*1 *2) (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3071 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-2127 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-3191 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-1686 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2745 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-3619 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2006 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))) (-3006 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) (-1896 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))) (-4382 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) (-1742 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-3071 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) (-3071 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) (-3614 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))))) (-4367 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))))) (-1591 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))) (-2568 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))) (-3547 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1241)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-969 *4))))) (-4229 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -1835 ((-783))) (-15 -3379 ((-783))) (-15 -1472 ((-112))) (-15 -4346 ((-112) |t#1| |t#1|)) (-15 -1819 ((-112))) (-15 -1457 ((-112) |t#1|)) (-15 -1457 ((-112) |t#2|)) (-15 -4020 ((-112))) (-15 -2699 ((-112) |t#1|)) (-15 -2699 ((-112) |t#2|)) (-15 -4127 ((-112))) (-15 -3756 ((-112) |t#1|)) (-15 -3756 ((-112) |t#2|)) (-15 -2186 ((-1287 $))) (-15 -1780 ((-1287 $))) (-15 -2256 ((-112) $)) (-15 -3071 ((-112) $)) (-15 -2127 ((-1287 $) (-1287 $))) (-15 -3191 ((-1287 $) (-1287 $))) (-15 -3601 ((-1287 $) (-1287 $))) (-15 -1686 ((-701 (-419 |t#2|)))) (-15 -2745 ((-701 (-419 |t#2|)))) (-15 -3619 ((-701 (-419 |t#2|)))) (-15 -2006 ((-701 (-419 |t#2|)))) (-15 -2041 ((-2 (|:| |num| (-1287 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3006 ($ (-1287 |t#2|) |t#2|)) (-15 -1896 ((-2 (|:| |num| (-1287 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4382 ($ (-1287 |t#2|) |t#2|)) (-15 -1742 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3071 ((-112) $ |t#1|)) (-15 -3071 ((-112) $ |t#2|)) (-15 -3614 ($ $ (-1 |t#2| |t#2|))) (-15 -1363 ($ $)) (-15 -4367 (|t#1| $ |t#1| |t#1|)) (-15 -1591 ((-3 |t#2| "failed"))) (-15 -2568 ((-3 |t#2| "failed"))) (-15 -3547 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -3157 ((-656 (-969 |t#1|)) (-1196))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -4229 ((-656 (-656 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -3765 (|has| (-419 |#2|) (-1057 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -3765 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -3765 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -3765 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -3765 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-909 $ #3=(-1196)) -3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196))))) ((-915 (-1196)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) ((-917 #3#) -3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196))))) ((-937) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1057 (-419 (-576))) |has| (-419 |#2|) (-1057 (-419 (-576)))) ((-1057 #1#) . T) ((-1057 (-576)) |has| (-419 |#2|) (-1057 (-576))) ((-1070 #0#) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1070 #1#) . T) ((-1070 $) . T) ((-1075 #0#) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1075 #1#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| (-419 |#2|) (-360)) ((-1237) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1241) -3765 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-927 |#1|) (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL (|has| (-927 |#1|) (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-927 |#1|) "failed") $) NIL)) (-2378 (((-927 |#1|) $) NIL)) (-3006 (($ (-1287 (-927 |#1|))) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-927 |#1|) (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-927 |#1|) (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) NIL (|has| (-927 |#1|) (-379)))) (-3506 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379)))) (($ $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) NIL (|has| (-927 |#1|) (-379))) (((-845 (-938)) $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1810 (((-112) $) NIL)) (-3783 (($) NIL (|has| (-927 |#1|) (-379)))) (-2172 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-4252 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| (-927 |#1|) (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 (-927 |#1|)) $) NIL) (((-1192 $) $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3225 (((-938) $) NIL (|has| (-927 |#1|) (-379)))) (-3392 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379)))) (-4212 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-1192 (-927 |#1|)) "failed") $ $) NIL (|has| (-927 |#1|) (-379)))) (-4216 (($ $ (-1192 (-927 |#1|))) NIL (|has| (-927 |#1|) (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-927 |#1|) (-379)) CONST)) (-2550 (($ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3377 (((-112) $) NIL)) (-3139 (((-1139) $) NIL)) (-2520 (((-975 (-1139))) NIL)) (-2582 (($) NIL (|has| (-927 |#1|) (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| (-927 |#1|) (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) NIL) (((-938)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-2840 (((-1192 (-927 |#1|))) NIL)) (-3870 (($) NIL (|has| (-927 |#1|) (-379)))) (-2506 (($) NIL (|has| (-927 |#1|) (-379)))) (-3287 (((-1287 (-927 |#1|)) $) NIL) (((-701 (-927 |#1|)) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-927 |#1|) (-379)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-927 |#1|)) NIL)) (-3612 (($ $) NIL (|has| (-927 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3847 (($ $) NIL (|has| (-927 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-927 |#1|) (-379)))) (-4286 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL) (($ $ (-927 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-927 |#1|)) NIL) (($ (-927 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-13 (-339 (-927 |#1|)) (-10 -7 (-15 -2520 ((-975 (-1139)))))) (-938) (-938)) (T -354)) -((-2520 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-354 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938))))) -(-13 (-339 (-927 |#1|)) (-10 -7 (-15 -2520 ((-975 (-1139)))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 58)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL (|has| |#1| (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) 142)) (-2378 ((|#1| $) 113)) (-3006 (($ (-1287 |#1|)) 130)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) 124 (|has| |#1| (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) 160 (|has| |#1| (-379)))) (-3506 (((-112) $) 66 (|has| |#1| (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) 60 (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1810 (((-112) $) 62)) (-3783 (($) 162 (|has| |#1| (-379)))) (-2172 (((-112) $) NIL (|has| |#1| (-379)))) (-4252 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 |#1|) $) 117) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-3225 (((-938) $) 171 (|has| |#1| (-379)))) (-3392 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4212 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4216 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 178)) (-3503 (($) NIL (|has| |#1| (-379)) CONST)) (-2550 (($ (-938)) 96 (|has| |#1| (-379)))) (-3377 (((-112) $) 147)) (-3139 (((-1139) $) NIL)) (-2520 (((-975 (-1139))) 57)) (-2582 (($) 158 (|has| |#1| (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) 119 (|has| |#1| (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) 90) (((-938)) 91)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-2840 (((-1192 |#1|)) 122)) (-3870 (($) 159 (|has| |#1| (-379)))) (-2506 (($) 167 (|has| |#1| (-379)))) (-3287 (((-1287 |#1|) $) 77) (((-701 |#1|) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4092 (((-874) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-3612 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2471 (((-783)) 155 T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) 144) (((-1287 $) (-938)) 98)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) 67 T CONST)) (-4310 (($) 103 T CONST)) (-3847 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-4286 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3919 (((-112) $ $) 65)) (-4028 (($ $ $) 176) (($ $ |#1|) 177)) (-4018 (($ $) 157) (($ $ $) NIL)) (-4007 (($ $ $) 86)) (** (($ $ (-938)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) -(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2520 ((-975 (-1139)))))) (-360) (-1192 |#1|)) (T -355)) -((-2520 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1192 *3))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2520 ((-975 (-1139)))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL (|has| |#1| (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-3006 (($ (-1287 |#1|)) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| |#1| (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) NIL (|has| |#1| (-379)))) (-3506 (((-112) $) NIL (|has| |#1| (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1810 (((-112) $) NIL)) (-3783 (($) NIL (|has| |#1| (-379)))) (-2172 (((-112) $) NIL (|has| |#1| (-379)))) (-4252 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 |#1|) $) NIL) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-3225 (((-938) $) NIL (|has| |#1| (-379)))) (-3392 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4212 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4216 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| |#1| (-379)) CONST)) (-2550 (($ (-938)) NIL (|has| |#1| (-379)))) (-3377 (((-112) $) NIL)) (-3139 (((-1139) $) NIL)) (-2520 (((-975 (-1139))) NIL)) (-2582 (($) NIL (|has| |#1| (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| |#1| (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) NIL) (((-938)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-2840 (((-1192 |#1|)) NIL)) (-3870 (($) NIL (|has| |#1| (-379)))) (-2506 (($) NIL (|has| |#1| (-379)))) (-3287 (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3612 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3847 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-4286 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2520 ((-975 (-1139)))))) (-360) (-938)) (T -356)) -((-2520 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938))))) -(-13 (-339 |#1|) (-10 -7 (-15 -2520 ((-975 (-1139)))))) -((-3461 (((-783) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139)))))) 61)) (-3099 (((-975 (-1139)) (-1192 |#1|)) 112)) (-2447 (((-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))) (-1192 |#1|)) 103)) (-4420 (((-701 |#1|) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139)))))) 113)) (-2443 (((-3 (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))) "failed") (-938)) 13)) (-2891 (((-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139)))))) (-938)) 18))) -(((-357 |#1|) (-10 -7 (-15 -3099 ((-975 (-1139)) (-1192 |#1|))) (-15 -2447 ((-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))) (-1192 |#1|))) (-15 -4420 ((-701 |#1|) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))))) (-15 -3461 ((-783) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))))) (-15 -2443 ((-3 (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))) "failed") (-938))) (-15 -2891 ((-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139)))))) (-938)))) (-360)) (T -357)) -((-2891 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-3 (-1192 *4) (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-2443 (*1 *2 *3) (|partial| -12 (-5 *3 (-938)) (-5 *2 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-4420 (*1 *2 *3) (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) (-5 *1 (-357 *4)))) (-3099 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-975 (-1139))) (-5 *1 (-357 *4))))) -(-10 -7 (-15 -3099 ((-975 (-1139)) (-1192 |#1|))) (-15 -2447 ((-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))) (-1192 |#1|))) (-15 -4420 ((-701 |#1|) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))))) (-15 -3461 ((-783) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))))) (-15 -2443 ((-3 (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))) "failed") (-938))) (-15 -2891 ((-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139)))))) (-938)))) -((-4092 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -4092 (|#3| |#1|)) (-15 -4092 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) -((-4092 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) -(-10 -7 (-15 -4092 (|#3| |#1|)) (-15 -4092 (|#1| |#3|))) -((-3506 (((-112) $) 60)) (-1538 (((-845 (-938)) $) 23) (((-938) $) 64)) (-2083 (((-3 $ "failed") $) 18)) (-3503 (($) 9)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 114)) (-2547 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-3614 (($ $) 8) (($ $ (-783)) NIL)) (-3870 (($) 53)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 38)) (-3612 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-359 |#1|) (-10 -8 (-15 -1538 ((-938) |#1|)) (-15 -2547 ((-783) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3870 (|#1|)) (-15 -1789 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -3612 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3503 (|#1|)) (-15 -2083 ((-3 |#1| "failed") |#1|)) (-15 -2547 ((-3 (-783) "failed") |#1| |#1|)) (-15 -1538 ((-845 (-938)) |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) (-360)) (T -359)) -NIL -(-10 -8 (-15 -1538 ((-938) |#1|)) (-15 -2547 ((-783) |#1|)) (-15 -3506 ((-112) |#1|)) (-15 -3870 (|#1|)) (-15 -1789 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -3612 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3503 (|#1|)) (-15 -2083 ((-3 |#1| "failed") |#1|)) (-15 -2547 ((-3 (-783) "failed") |#1| |#1|)) (-15 -1538 ((-845 (-938)) |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-2178 (((-1209 (-938) (-783)) (-576)) 102)) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-4407 (((-112) $ $) 65)) (-2247 (((-783)) 112)) (-3656 (($) 18 T CONST)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-2446 (($) 115)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-1554 (($) 100)) (-3506 (((-112) $) 99)) (-1329 (($ $) 87) (($ $ (-783)) 86)) (-2725 (((-112) $) 79)) (-1538 (((-845 (-938)) $) 89) (((-938) $) 97)) (-1810 (((-112) $) 35)) (-2083 (((-3 $ "failed") $) 111)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3225 (((-938) $) 114)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 78)) (-3503 (($) 110 T CONST)) (-2550 (($ (-938)) 113)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) 103)) (-1392 (((-430 $) $) 82)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-2547 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-3614 (($ $) 109) (($ $ (-783)) 107)) (-3870 (($) 101)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 104)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3612 (((-3 $ "failed") $) 90) (($ $) 105)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $) 108) (($ $ (-783)) 106)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1119))))) +(-13 (-10 -8 (-15 -1632 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-296 |t#1| |t#1|)) (-6 (-296 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1195) |t#1|)) (-6 (-526 (-1195) |t#1|)) |%noBranch|))) +(((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-1236) |has| |#1| (-296 |#1| |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-1195)) $) NIL)) (-2437 (((-112)) 96) (((-112) (-112)) 97)) (-3887 (((-656 (-624 $)) $) NIL)) (-3894 (($ $) NIL)) (-3768 (($ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3340 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1853 (($ $) NIL)) (-3872 (($ $) NIL)) (-3747 (($ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-624 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-326 |#3|)) 76) (((-3 $ "failed") (-1195)) 103) (((-3 $ "failed") (-326 (-576))) 64 (|has| |#3| (-1057 (-576)))) (((-3 $ "failed") (-419 (-969 (-576)))) 70 (|has| |#3| (-1057 (-576)))) (((-3 $ "failed") (-969 (-576))) 65 (|has| |#3| (-1057 (-576)))) (((-3 $ "failed") (-326 (-390))) 94 (|has| |#3| (-1057 (-390)))) (((-3 $ "failed") (-419 (-969 (-390)))) 88 (|has| |#3| (-1057 (-390)))) (((-3 $ "failed") (-969 (-390))) 83 (|has| |#3| (-1057 (-390))))) (-4056 (((-624 $) $) NIL) ((|#3| $) NIL) (($ (-326 |#3|)) 77) (($ (-1195)) 104) (($ (-326 (-576))) 66 (|has| |#3| (-1057 (-576)))) (($ (-419 (-969 (-576)))) 71 (|has| |#3| (-1057 (-576)))) (($ (-969 (-576))) 67 (|has| |#3| (-1057 (-576)))) (($ (-326 (-390))) 95 (|has| |#3| (-1057 (-390)))) (($ (-419 (-969 (-390)))) 89 (|has| |#3| (-1057 (-390)))) (($ (-969 (-390))) 85 (|has| |#3| (-1057 (-390))))) (-1551 (((-3 $ "failed") $) NIL)) (-1570 (($) 101)) (-2188 (($ $) NIL) (($ (-656 $)) NIL)) (-3061 (((-656 (-115)) $) NIL)) (-3974 (((-115) (-115)) NIL)) (-1414 (((-112) $) NIL)) (-3828 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3121 (((-1191 $) (-624 $)) NIL (|has| $ (-1068)))) (-1632 (($ (-1 $ $) (-624 $)) NIL)) (-2953 (((-3 (-624 $) "failed") $) NIL)) (-2423 (($ $) 99)) (-3710 (($ $) NIL)) (-1927 (((-1177) $) NIL)) (-3963 (((-656 (-624 $)) $) NIL)) (-1616 (($ (-115) $) 98) (($ (-115) (-656 $)) NIL)) (-3718 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) NIL)) (-2331 (((-783) $) NIL)) (-1445 (((-1139) $) NIL)) (-4245 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-3984 (($ $) NIL)) (-2489 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3306 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-2871 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-2114 (($ $) NIL) (($ $ $) NIL)) (-2735 (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-1372 (($ $) NIL (|has| $ (-1068)))) (-3882 (($ $) NIL)) (-3757 (($ $) NIL)) (-3563 (((-874) $) NIL) (($ (-624 $)) NIL) (($ |#3|) NIL) (($ (-576)) NIL) (((-326 |#3|) $) 102)) (-1858 (((-783)) NIL T CONST)) (-4102 (($ $) NIL) (($ (-656 $)) NIL)) (-3263 (((-112) (-115)) NIL)) (-3985 (((-112) $ $) NIL)) (-3831 (($ $) NIL)) (-3808 (($ $) NIL)) (-3820 (($ $) NIL)) (-2264 (($ $) NIL)) (-2800 (($) 100 T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $ $) NIL) (($ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL))) +(((-350 |#1| |#2| |#3|) (-13 (-312) (-38 |#3|) (-1057 |#3|) (-915 (-1195)) (-10 -8 (-15 -4056 ($ (-326 |#3|))) (-15 -1539 ((-3 $ "failed") (-326 |#3|))) (-15 -4056 ($ (-1195))) (-15 -1539 ((-3 $ "failed") (-1195))) (-15 -3563 ((-326 |#3|) $)) (IF (|has| |#3| (-1057 (-576))) (PROGN (-15 -4056 ($ (-326 (-576)))) (-15 -1539 ((-3 $ "failed") (-326 (-576)))) (-15 -4056 ($ (-419 (-969 (-576))))) (-15 -1539 ((-3 $ "failed") (-419 (-969 (-576))))) (-15 -4056 ($ (-969 (-576)))) (-15 -1539 ((-3 $ "failed") (-969 (-576))))) |%noBranch|) (IF (|has| |#3| (-1057 (-390))) (PROGN (-15 -4056 ($ (-326 (-390)))) (-15 -1539 ((-3 $ "failed") (-326 (-390)))) (-15 -4056 ($ (-419 (-969 (-390))))) (-15 -1539 ((-3 $ "failed") (-419 (-969 (-390))))) (-15 -4056 ($ (-969 (-390)))) (-15 -1539 ((-3 $ "failed") (-969 (-390))))) |%noBranch|) (-15 -2264 ($ $)) (-15 -1853 ($ $)) (-15 -3984 ($ $)) (-15 -3710 ($ $)) (-15 -2423 ($ $)) (-15 -3747 ($ $)) (-15 -3757 ($ $)) (-15 -3768 ($ $)) (-15 -3808 ($ $)) (-15 -3820 ($ $)) (-15 -3831 ($ $)) (-15 -3872 ($ $)) (-15 -3882 ($ $)) (-15 -3894 ($ $)) (-15 -1570 ($)) (-15 -1991 ((-656 (-1195)) $)) (-15 -2437 ((-112))) (-15 -2437 ((-112) (-112))))) (-656 (-1195)) (-656 (-1195)) (-399)) (T -350)) +((-4056 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3984 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3710 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-2423 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3747 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3757 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3808 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3820 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3831 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3872 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3882 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-3894 (*1 *1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-1570 (*1 *1) (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-399)))) (-2437 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) (-2437 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399))))) +(-13 (-312) (-38 |#3|) (-1057 |#3|) (-915 (-1195)) (-10 -8 (-15 -4056 ($ (-326 |#3|))) (-15 -1539 ((-3 $ "failed") (-326 |#3|))) (-15 -4056 ($ (-1195))) (-15 -1539 ((-3 $ "failed") (-1195))) (-15 -3563 ((-326 |#3|) $)) (IF (|has| |#3| (-1057 (-576))) (PROGN (-15 -4056 ($ (-326 (-576)))) (-15 -1539 ((-3 $ "failed") (-326 (-576)))) (-15 -4056 ($ (-419 (-969 (-576))))) (-15 -1539 ((-3 $ "failed") (-419 (-969 (-576))))) (-15 -4056 ($ (-969 (-576)))) (-15 -1539 ((-3 $ "failed") (-969 (-576))))) |%noBranch|) (IF (|has| |#3| (-1057 (-390))) (PROGN (-15 -4056 ($ (-326 (-390)))) (-15 -1539 ((-3 $ "failed") (-326 (-390)))) (-15 -4056 ($ (-419 (-969 (-390))))) (-15 -1539 ((-3 $ "failed") (-419 (-969 (-390))))) (-15 -4056 ($ (-969 (-390)))) (-15 -1539 ((-3 $ "failed") (-969 (-390))))) |%noBranch|) (-15 -2264 ($ $)) (-15 -1853 ($ $)) (-15 -3984 ($ $)) (-15 -3710 ($ $)) (-15 -2423 ($ $)) (-15 -3747 ($ $)) (-15 -3757 ($ $)) (-15 -3768 ($ $)) (-15 -3808 ($ $)) (-15 -3820 ($ $)) (-15 -3831 ($ $)) (-15 -3872 ($ $)) (-15 -3882 ($ $)) (-15 -3894 ($ $)) (-15 -1570 ($)) (-15 -1991 ((-656 (-1195)) $)) (-15 -2437 ((-112))) (-15 -2437 ((-112) (-112))))) +((-1632 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-351 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1632 (|#8| (-1 |#5| |#1|) |#4|))) (-1240) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-1240) (-1262 |#5|) (-1262 (-419 |#6|)) (-353 |#5| |#6| |#7|)) (T -351)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1240)) (-4 *8 (-1240)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *9 (-1262 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1262 (-419 *9)))))) +(-10 -7 (-15 -1632 (|#8| (-1 |#5| |#1|) |#4|))) +((-3090 (((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) $) 39)) (-2612 (($ (-1286 (-419 |#3|)) (-1286 $)) NIL) (($ (-1286 (-419 |#3|))) NIL) (($ (-1286 |#3|) |#3|) 173)) (-4258 (((-1286 $) (-1286 $)) 156)) (-3529 (((-656 (-656 |#2|))) 126)) (-2748 (((-112) |#2| |#2|) 76)) (-2985 (($ $) 148)) (-3052 (((-783)) 172)) (-3590 (((-1286 $) (-1286 $)) 218)) (-2191 (((-656 (-969 |#2|)) (-1195)) 115)) (-1718 (((-112) $) 169)) (-3665 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 222)) (-3904 (((-3 |#3| "failed")) 52)) (-4418 (((-783)) 184)) (-2871 ((|#2| $ |#2| |#2|) 140)) (-4083 (((-3 |#3| "failed")) 71)) (-2735 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 226) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-2524 (((-1286 $) (-1286 $)) 162)) (-3554 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68)) (-3684 (((-112)) 34))) +(((-352 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3529 ((-656 (-656 |#2|)))) (-15 -2191 ((-656 (-969 |#2|)) (-1195))) (-15 -3554 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3904 ((-3 |#3| "failed"))) (-15 -4083 ((-3 |#3| "failed"))) (-15 -2871 (|#2| |#1| |#2| |#2|)) (-15 -2985 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3665 ((-112) |#1| |#3|)) (-15 -3665 ((-112) |#1| |#2|)) (-15 -2612 (|#1| (-1286 |#3|) |#3|)) (-15 -3090 ((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4258 ((-1286 |#1|) (-1286 |#1|))) (-15 -3590 ((-1286 |#1|) (-1286 |#1|))) (-15 -2524 ((-1286 |#1|) (-1286 |#1|))) (-15 -3665 ((-112) |#1|)) (-15 -1718 ((-112) |#1|)) (-15 -2748 ((-112) |#2| |#2|)) (-15 -3684 ((-112))) (-15 -4418 ((-783))) (-15 -3052 ((-783))) (-15 -2735 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2735 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2612 (|#1| (-1286 (-419 |#3|)))) (-15 -2612 (|#1| (-1286 (-419 |#3|)) (-1286 |#1|)))) (-353 |#2| |#3| |#4|) (-1240) (-1262 |#2|) (-1262 (-419 |#3|))) (T -352)) +((-3052 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-4418 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-3684 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) (-2748 (*1 *2 *3 *3) (-12 (-4 *3 (-1240)) (-4 *5 (-1262 *3)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) (-4083 (*1 *2) (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-3904 (*1 *2) (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) (-4 *3 (-353 *4 *2 *5)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-656 (-969 *5))) (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) (-3529 (*1 *2) (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6))))) +(-10 -8 (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -3529 ((-656 (-656 |#2|)))) (-15 -2191 ((-656 (-969 |#2|)) (-1195))) (-15 -3554 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3904 ((-3 |#3| "failed"))) (-15 -4083 ((-3 |#3| "failed"))) (-15 -2871 (|#2| |#1| |#2| |#2|)) (-15 -2985 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3665 ((-112) |#1| |#3|)) (-15 -3665 ((-112) |#1| |#2|)) (-15 -2612 (|#1| (-1286 |#3|) |#3|)) (-15 -3090 ((-2 (|:| |num| (-1286 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4258 ((-1286 |#1|) (-1286 |#1|))) (-15 -3590 ((-1286 |#1|) (-1286 |#1|))) (-15 -2524 ((-1286 |#1|) (-1286 |#1|))) (-15 -3665 ((-112) |#1|)) (-15 -1718 ((-112) |#1|)) (-15 -2748 ((-112) |#2| |#2|)) (-15 -3684 ((-112))) (-15 -4418 ((-783))) (-15 -3052 ((-783))) (-15 -2735 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-783))) (-15 -2735 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2612 (|#1| (-1286 (-419 |#3|)))) (-15 -2612 (|#1| (-1286 (-419 |#3|)) (-1286 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3090 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 211)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 105 (|has| (-419 |#2|) (-374)))) (-4412 (($ $) 106 (|has| (-419 |#2|) (-374)))) (-4176 (((-112) $) 108 (|has| (-419 |#2|) (-374)))) (-4084 (((-701 (-419 |#2|)) (-1286 $)) 53) (((-701 (-419 |#2|))) 68)) (-2310 (((-419 |#2|) $) 59)) (-1361 (((-1208 (-938) (-783)) (-576)) 158 (|has| (-419 |#2|) (-360)))) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 125 (|has| (-419 |#2|) (-374)))) (-2732 (((-430 $) $) 126 (|has| (-419 |#2|) (-374)))) (-1727 (((-112) $ $) 116 (|has| (-419 |#2|) (-374)))) (-2148 (((-783)) 99 (|has| (-419 |#2|) (-379)))) (-3027 (((-112)) 228)) (-3202 (((-112) |#1|) 227) (((-112) |#2|) 226)) (-3767 (($) 18 T CONST)) (-1539 (((-3 (-576) "failed") $) 185 (|has| (-419 |#2|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) 180)) (-4056 (((-576) $) 184 (|has| (-419 |#2|) (-1057 (-576)))) (((-419 (-576)) $) 182 (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-419 |#2|) $) 181)) (-2612 (($ (-1286 (-419 |#2|)) (-1286 $)) 55) (($ (-1286 (-419 |#2|))) 71) (($ (-1286 |#2|) |#2|) 210)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-419 |#2|) (-360)))) (-3420 (($ $ $) 120 (|has| (-419 |#2|) (-374)))) (-3103 (((-701 (-419 |#2|)) $ (-1286 $)) 60) (((-701 (-419 |#2|)) $) 66)) (-3687 (((-701 (-576)) (-1286 $)) 179 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 178 (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) 177 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 176 (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-701 $) (-1286 $)) 175) (((-701 (-419 |#2|)) (-701 $)) 174) (((-2 (|:| -2689 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-1286 $) $) 173) (((-701 (-419 |#2|)) (-1286 $)) 172)) (-4258 (((-1286 $) (-1286 $)) 216)) (-2521 (($ |#3|) 169) (((-3 $ "failed") (-419 |#3|)) 166 (|has| (-419 |#2|) (-374)))) (-1551 (((-3 $ "failed") $) 37)) (-3529 (((-656 (-656 |#1|))) 197 (|has| |#1| (-379)))) (-2748 (((-112) |#1| |#1|) 232)) (-3606 (((-938)) 61)) (-1803 (($) 102 (|has| (-419 |#2|) (-379)))) (-3671 (((-112)) 225)) (-3291 (((-112) |#1|) 224) (((-112) |#2|) 223)) (-3431 (($ $ $) 119 (|has| (-419 |#2|) (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 114 (|has| (-419 |#2|) (-374)))) (-2985 (($ $) 203)) (-2580 (($) 160 (|has| (-419 |#2|) (-360)))) (-2664 (((-112) $) 161 (|has| (-419 |#2|) (-360)))) (-3499 (($ $ (-783)) 152 (|has| (-419 |#2|) (-360))) (($ $) 151 (|has| (-419 |#2|) (-360)))) (-1792 (((-112) $) 127 (|has| (-419 |#2|) (-374)))) (-3333 (((-938) $) 163 (|has| (-419 |#2|) (-360))) (((-845 (-938)) $) 149 (|has| (-419 |#2|) (-360)))) (-1414 (((-112) $) 35)) (-3052 (((-783)) 235)) (-3590 (((-1286 $) (-1286 $)) 217)) (-4072 (((-419 |#2|) $) 58)) (-2191 (((-656 (-969 |#1|)) (-1195)) 198 (|has| |#1| (-374)))) (-3930 (((-3 $ "failed") $) 153 (|has| (-419 |#2|) (-360)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| (-419 |#2|) (-374)))) (-2554 ((|#3| $) 51 (|has| (-419 |#2|) (-374)))) (-1902 (((-938) $) 101 (|has| (-419 |#2|) (-379)))) (-2510 ((|#3| $) 167)) (-3459 (($ (-656 $)) 112 (|has| (-419 |#2|) (-374))) (($ $ $) 111 (|has| (-419 |#2|) (-374)))) (-1927 (((-1177) $) 10)) (-3011 (((-701 (-419 |#2|))) 212)) (-4288 (((-701 (-419 |#2|))) 214)) (-2095 (($ $) 128 (|has| (-419 |#2|) (-374)))) (-3018 (($ (-1286 |#2|) |#2|) 208)) (-2317 (((-701 (-419 |#2|))) 213)) (-2760 (((-701 (-419 |#2|))) 215)) (-3323 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207)) (-3194 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 209)) (-3640 (((-1286 $)) 221)) (-2969 (((-1286 $)) 222)) (-1718 (((-112) $) 220)) (-3665 (((-112) $) 219) (((-112) $ |#1|) 206) (((-112) $ |#2|) 205)) (-1538 (($) 154 (|has| (-419 |#2|) (-360)) CONST)) (-3257 (($ (-938)) 100 (|has| (-419 |#2|) (-379)))) (-3904 (((-3 |#2| "failed")) 200)) (-1445 (((-1139) $) 11)) (-4418 (((-783)) 234)) (-2202 (($) 171)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 113 (|has| (-419 |#2|) (-374)))) (-3495 (($ (-656 $)) 110 (|has| (-419 |#2|) (-374))) (($ $ $) 109 (|has| (-419 |#2|) (-374)))) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) 157 (|has| (-419 |#2|) (-360)))) (-1839 (((-430 $) $) 124 (|has| (-419 |#2|) (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 121 (|has| (-419 |#2|) (-374)))) (-3463 (((-3 $ "failed") $ $) 104 (|has| (-419 |#2|) (-374)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| (-419 |#2|) (-374)))) (-3112 (((-783) $) 117 (|has| (-419 |#2|) (-374)))) (-2871 ((|#1| $ |#1| |#1|) 202)) (-4083 (((-3 |#2| "failed")) 201)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 118 (|has| (-419 |#2|) (-374)))) (-1960 (((-419 |#2|) (-1286 $)) 54) (((-419 |#2|)) 67)) (-3721 (((-783) $) 162 (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) 150 (|has| (-419 |#2|) (-360)))) (-2735 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 136 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 135 (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) 204) (($ $ (-656 (-1195)) (-656 (-783))) 141 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-2758 (|has| (-419 |#2|) (-917 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-1195) (-783)) 140 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-2758 (|has| (-419 |#2|) (-917 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195))) 139 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-2758 (|has| (-419 |#2|) (-917 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-1195)) 137 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-2758 (|has| (-419 |#2|) (-917 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 147 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2758 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 145 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2758 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-1423 (((-701 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) 165 (|has| (-419 |#2|) (-374)))) (-1372 ((|#3|) 170)) (-2594 (($) 159 (|has| (-419 |#2|) (-360)))) (-1809 (((-1286 (-419 |#2|)) $ (-1286 $)) 57) (((-701 (-419 |#2|)) (-1286 $) (-1286 $)) 56) (((-1286 (-419 |#2|)) $) 73) (((-701 (-419 |#2|)) (-1286 $)) 72)) (-4076 (((-1286 (-419 |#2|)) $) 70) (($ (-1286 (-419 |#2|))) 69) ((|#3| $) 186) (($ |#3|) 168)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 156 (|has| (-419 |#2|) (-360)))) (-2524 (((-1286 $) (-1286 $)) 218)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 |#2|)) 44) (($ (-419 (-576))) 98 (-2835 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-1057 (-419 (-576)))))) (($ $) 103 (|has| (-419 |#2|) (-374)))) (-2883 (($ $) 155 (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) 50 (|has| (-419 |#2|) (-146)))) (-3941 ((|#3| $) 52)) (-1858 (((-783)) 32 T CONST)) (-4188 (((-112)) 231)) (-3579 (((-112) |#1|) 230) (((-112) |#2|) 229)) (-3985 (((-112) $ $) 9)) (-3713 (((-1286 $)) 74)) (-3040 (((-112) $ $) 107 (|has| (-419 |#2|) (-374)))) (-3554 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199)) (-3684 (((-112)) 233)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 134 (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) 133 (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1195)) (-656 (-783))) 144 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-2758 (|has| (-419 |#2|) (-917 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-1195) (-783)) 143 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-2758 (|has| (-419 |#2|) (-917 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-656 (-1195))) 142 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-2758 (|has| (-419 |#2|) (-917 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-1195)) 138 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-2758 (|has| (-419 |#2|) (-917 (-1195))) (|has| (-419 |#2|) (-374))))) (($ $ (-783)) 148 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2758 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) 146 (-2835 (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-237))) (-2758 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-238))) (-2758 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 132 (|has| (-419 |#2|) (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| (-419 |#2|) (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 |#2|)) 46) (($ (-419 |#2|) $) 45) (($ (-419 (-576)) $) 131 (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) 130 (|has| (-419 |#2|) (-374))))) +(((-353 |#1| |#2| |#3|) (-141) (-1240) (-1262 |t#1|) (-1262 (-419 |t#2|))) (T -353)) +((-3052 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783)))) (-4418 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783)))) (-3684 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2748 (*1 *2 *3 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-4188 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3579 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3579 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-3027 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3202 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3202 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-3671 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3291 (*1 *2 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3291 (*1 *2 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-2969 (*1 *2) (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)))) (-3640 (*1 *2) (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3665 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-2524 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-3590 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-2760 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-4288 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-2317 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-3011 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4))))) (-3090 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4))))) (-3018 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5))))) (-3665 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) (-3665 (*1 *2 *1 *3) (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) (-2985 (*1 *1 *1) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))))) (-2871 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))))) (-4083 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))) (-3904 (*1 *2) (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3)))) (-3554 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1240)) (-4 *6 (-1262 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-353 *4 *5 *6)))) (-2191 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *4 (-374)) (-5 *2 (-656 (-969 *4))))) (-3529 (*1 *2) (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) +(-13 (-736 (-419 |t#2|) |t#3|) (-10 -8 (-15 -3052 ((-783))) (-15 -4418 ((-783))) (-15 -3684 ((-112))) (-15 -2748 ((-112) |t#1| |t#1|)) (-15 -4188 ((-112))) (-15 -3579 ((-112) |t#1|)) (-15 -3579 ((-112) |t#2|)) (-15 -3027 ((-112))) (-15 -3202 ((-112) |t#1|)) (-15 -3202 ((-112) |t#2|)) (-15 -3671 ((-112))) (-15 -3291 ((-112) |t#1|)) (-15 -3291 ((-112) |t#2|)) (-15 -2969 ((-1286 $))) (-15 -3640 ((-1286 $))) (-15 -1718 ((-112) $)) (-15 -3665 ((-112) $)) (-15 -2524 ((-1286 $) (-1286 $))) (-15 -3590 ((-1286 $) (-1286 $))) (-15 -4258 ((-1286 $) (-1286 $))) (-15 -2760 ((-701 (-419 |t#2|)))) (-15 -4288 ((-701 (-419 |t#2|)))) (-15 -2317 ((-701 (-419 |t#2|)))) (-15 -3011 ((-701 (-419 |t#2|)))) (-15 -3090 ((-2 (|:| |num| (-1286 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2612 ($ (-1286 |t#2|) |t#2|)) (-15 -3194 ((-2 (|:| |num| (-1286 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3018 ($ (-1286 |t#2|) |t#2|)) (-15 -3323 ((-2 (|:| |num| (-701 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3665 ((-112) $ |t#1|)) (-15 -3665 ((-112) $ |t#2|)) (-15 -2735 ($ $ (-1 |t#2| |t#2|))) (-15 -2985 ($ $)) (-15 -2871 (|t#1| $ |t#1| |t#1|)) (-15 -4083 ((-3 |t#2| "failed"))) (-15 -3904 ((-3 |t#2| "failed"))) (-15 -3554 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-374)) (-15 -2191 ((-656 (-969 |t#1|)) (-1195))) |%noBranch|) (IF (|has| |t#1| (-379)) (-15 -3529 ((-656 (-656 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-38 #1=(-419 |#2|)) . T) ((-38 $) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-102) . T) ((-111 #0# #0#) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-146))) ((-148) |has| (-419 |#2|) (-148)) ((-628 #0#) -2835 (|has| (-419 |#2|) (-1057 (-419 (-576)))) (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-628 #1#) . T) ((-628 (-576)) . T) ((-628 $) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#3|) . T) ((-234 $) -2835 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-232 #1#) |has| (-419 |#2|) (-374)) ((-238) -2835 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-237) -2835 (|has| (-419 |#2|) (-360)) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374)))) ((-272 #1#) |has| (-419 |#2|) (-374)) ((-248) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-300) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-317) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-374) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-414) |has| (-419 |#2|) (-360)) ((-379) -2835 (|has| (-419 |#2|) (-379)) (|has| (-419 |#2|) (-360))) ((-360) |has| (-419 |#2|) (-360)) ((-381 #1# |#3|) . T) ((-421 #1# |#3|) . T) ((-388 #1#) . T) ((-423 #1#) . T) ((-464) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-568) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #0#) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-658 #1#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-660 #1#) . T) ((-660 #2=(-576)) |has| (-419 |#2|) (-651 (-576))) ((-660 $) . T) ((-652 #0#) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-652 #1#) . T) ((-652 $) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-651 #1#) . T) ((-651 #2#) |has| (-419 |#2|) (-651 (-576))) ((-729 #0#) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-729 #1#) . T) ((-729 $) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-736 #1# |#3|) . T) ((-738) . T) ((-909 $ #3=(-1195)) -2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195))))) ((-915 (-1195)) -12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) ((-917 #3#) -2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195))))) ((-937) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1057 (-419 (-576))) |has| (-419 |#2|) (-1057 (-419 (-576)))) ((-1057 #1#) . T) ((-1057 (-576)) |has| (-419 |#2|) (-1057 (-576))) ((-1070 #0#) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1070 #1#) . T) ((-1070 $) . T) ((-1075 #0#) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1075 #1#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| (-419 |#2|) (-360)) ((-1236) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374))) ((-1240) -2835 (|has| (-419 |#2|) (-360)) (|has| (-419 |#2|) (-374)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| (-927 |#1|) (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL (|has| (-927 |#1|) (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-927 |#1|) "failed") $) NIL)) (-4056 (((-927 |#1|) $) NIL)) (-2612 (($ (-1286 (-927 |#1|))) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-927 |#1|) (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-927 |#1|) (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) NIL (|has| (-927 |#1|) (-379)))) (-2664 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379)))) (($ $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) NIL (|has| (-927 |#1|) (-379))) (((-845 (-938)) $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1414 (((-112) $) NIL)) (-2136 (($) NIL (|has| (-927 |#1|) (-379)))) (-3996 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-4072 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| (-927 |#1|) (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 (-927 |#1|)) $) NIL) (((-1191 $) $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1902 (((-938) $) NIL (|has| (-927 |#1|) (-379)))) (-1936 (((-1191 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379)))) (-3275 (((-1191 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-1191 (-927 |#1|)) "failed") $ $) NIL (|has| (-927 |#1|) (-379)))) (-1531 (($ $ (-1191 (-927 |#1|))) NIL (|has| (-927 |#1|) (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-927 |#1|) (-379)) CONST)) (-3257 (($ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-4206 (((-112) $) NIL)) (-1445 (((-1139) $) NIL)) (-3685 (((-975 (-1139))) NIL)) (-2202 (($) NIL (|has| (-927 |#1|) (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| (-927 |#1|) (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) NIL) (((-938)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1372 (((-1191 (-927 |#1|))) NIL)) (-2594 (($) NIL (|has| (-927 |#1|) (-379)))) (-1795 (($) NIL (|has| (-927 |#1|) (-379)))) (-1809 (((-1286 (-927 |#1|)) $) NIL) (((-701 (-927 |#1|)) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-927 |#1|) (-379)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-927 |#1|)) NIL)) (-2883 (($ $) NIL (|has| (-927 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL) (((-1286 $) (-938)) NIL)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| (-927 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-927 |#1|) (-379)))) (-2051 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ (-927 |#1|)) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-927 |#1|)) NIL) (($ (-927 |#1|) $) NIL))) +(((-354 |#1| |#2|) (-13 (-339 (-927 |#1|)) (-10 -7 (-15 -3685 ((-975 (-1139)))))) (-938) (-938)) (T -354)) +((-3685 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-354 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938))))) +(-13 (-339 (-927 |#1|)) (-10 -7 (-15 -3685 ((-975 (-1139)))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 58)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) 56 (|has| |#1| (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL (|has| |#1| (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) 142)) (-4056 ((|#1| $) 113)) (-2612 (($ (-1286 |#1|)) 130)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) 124 (|has| |#1| (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) 160 (|has| |#1| (-379)))) (-2664 (((-112) $) 66 (|has| |#1| (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) 60 (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1414 (((-112) $) 62)) (-2136 (($) 162 (|has| |#1| (-379)))) (-3996 (((-112) $) NIL (|has| |#1| (-379)))) (-4072 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 |#1|) $) 117) (((-1191 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1902 (((-938) $) 171 (|has| |#1| (-379)))) (-1936 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3275 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1531 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 178)) (-1538 (($) NIL (|has| |#1| (-379)) CONST)) (-3257 (($ (-938)) 96 (|has| |#1| (-379)))) (-4206 (((-112) $) 147)) (-1445 (((-1139) $) NIL)) (-3685 (((-975 (-1139))) 57)) (-2202 (($) 158 (|has| |#1| (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) 119 (|has| |#1| (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) 90) (((-938)) 91)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) 161 (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) 154 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1372 (((-1191 |#1|)) 122)) (-2594 (($) 159 (|has| |#1| (-379)))) (-1795 (($) 167 (|has| |#1| (-379)))) (-1809 (((-1286 |#1|) $) 77) (((-701 |#1|) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3563 (((-874) $) 174) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 100)) (-2883 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1858 (((-783)) 155 T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) 144) (((-1286 $) (-938)) 98)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) 67 T CONST)) (-2810 (($) 103 T CONST)) (-4273 (($ $) 107 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2051 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2988 (((-112) $ $) 65)) (-3107 (($ $ $) 176) (($ $ |#1|) 177)) (-3095 (($ $) 157) (($ $ $) NIL)) (-3083 (($ $ $) 86)) (** (($ $ (-938)) 180) (($ $ (-783)) 181) (($ $ (-576)) 179)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 102) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 175))) +(((-355 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3685 ((-975 (-1139)))))) (-360) (-1191 |#1|)) (T -355)) +((-3685 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) (-14 *4 (-1191 *3))))) +(-13 (-339 |#1|) (-10 -7 (-15 -3685 ((-975 (-1139)))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL (|has| |#1| (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-2612 (($ (-1286 |#1|)) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| |#1| (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) NIL (|has| |#1| (-379)))) (-2664 (((-112) $) NIL (|has| |#1| (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1414 (((-112) $) NIL)) (-2136 (($) NIL (|has| |#1| (-379)))) (-3996 (((-112) $) NIL (|has| |#1| (-379)))) (-4072 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 |#1|) $) NIL) (((-1191 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1902 (((-938) $) NIL (|has| |#1| (-379)))) (-1936 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3275 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1531 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| |#1| (-379)) CONST)) (-3257 (($ (-938)) NIL (|has| |#1| (-379)))) (-4206 (((-112) $) NIL)) (-1445 (((-1139) $) NIL)) (-3685 (((-975 (-1139))) NIL)) (-2202 (($) NIL (|has| |#1| (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| |#1| (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) NIL) (((-938)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1372 (((-1191 |#1|)) NIL)) (-2594 (($) NIL (|has| |#1| (-379)))) (-1795 (($) NIL (|has| |#1| (-379)))) (-1809 (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-2883 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL) (((-1286 $) (-938)) NIL)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2051 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-356 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -3685 ((-975 (-1139)))))) (-360) (-938)) (T -356)) +((-3685 (*1 *2) (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938))))) +(-13 (-339 |#1|) (-10 -7 (-15 -3685 ((-975 (-1139)))))) +((-2417 (((-783) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139)))))) 61)) (-3530 (((-975 (-1139)) (-1191 |#1|)) 112)) (-2120 (((-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))) (-1191 |#1|)) 103)) (-1863 (((-701 |#1|) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139)))))) 113)) (-3122 (((-3 (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))) "failed") (-938)) 13)) (-3044 (((-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139)))))) (-938)) 18))) +(((-357 |#1|) (-10 -7 (-15 -3530 ((-975 (-1139)) (-1191 |#1|))) (-15 -2120 ((-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))) (-1191 |#1|))) (-15 -1863 ((-701 |#1|) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))))) (-15 -2417 ((-783) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))))) (-15 -3122 ((-3 (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))) "failed") (-938))) (-15 -3044 ((-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139)))))) (-938)))) (-360)) (T -357)) +((-3044 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-3 (-1191 *4) (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139))))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-3122 (*1 *2 *3) (|partial| -12 (-5 *3 (-938)) (-5 *2 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) (-5 *1 (-357 *4)) (-4 *4 (-360)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) (-5 *1 (-357 *4)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-975 (-1139))) (-5 *1 (-357 *4))))) +(-10 -7 (-15 -3530 ((-975 (-1139)) (-1191 |#1|))) (-15 -2120 ((-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))) (-1191 |#1|))) (-15 -1863 ((-701 |#1|) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))))) (-15 -2417 ((-783) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))))) (-15 -3122 ((-3 (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))) "failed") (-938))) (-15 -3044 ((-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139)))))) (-938)))) +((-3563 ((|#1| |#3|) 104) ((|#3| |#1|) 87))) +(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3563 (|#3| |#1|)) (-15 -3563 (|#1| |#3|))) (-339 |#2|) (-360) (-339 |#2|)) (T -358)) +((-3563 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *2 *4 *3)) (-4 *3 (-339 *4)))) (-3563 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4))))) +(-10 -7 (-15 -3563 (|#3| |#1|)) (-15 -3563 (|#1| |#3|))) +((-2664 (((-112) $) 60)) (-3333 (((-845 (-938)) $) 23) (((-938) $) 64)) (-3930 (((-3 $ "failed") $) 18)) (-1538 (($) 9)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 114)) (-3721 (((-3 (-783) "failed") $ $) 92) (((-783) $) 79)) (-2735 (($ $) 8) (($ $ (-783)) NIL)) (-2594 (($) 53)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 38)) (-2883 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-359 |#1|) (-10 -8 (-15 -3333 ((-938) |#1|)) (-15 -3721 ((-783) |#1|)) (-15 -2664 ((-112) |#1|)) (-15 -2594 (|#1|)) (-15 -2110 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -2883 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -1538 (|#1|)) (-15 -3930 ((-3 |#1| "failed") |#1|)) (-15 -3721 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3333 ((-845 (-938)) |#1|)) (-15 -2883 ((-3 |#1| "failed") |#1|)) (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) (-360)) (T -359)) +NIL +(-10 -8 (-15 -3333 ((-938) |#1|)) (-15 -3721 ((-783) |#1|)) (-15 -2664 ((-112) |#1|)) (-15 -2594 (|#1|)) (-15 -2110 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -2883 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -1538 (|#1|)) (-15 -3930 ((-3 |#1| "failed") |#1|)) (-15 -3721 ((-3 (-783) "failed") |#1| |#1|)) (-15 -3333 ((-845 (-938)) |#1|)) (-15 -2883 ((-3 |#1| "failed") |#1|)) (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1361 (((-1208 (-938) (-783)) (-576)) 102)) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-1727 (((-112) $ $) 65)) (-2148 (((-783)) 112)) (-3767 (($) 18 T CONST)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) 96)) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-1803 (($) 115)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-2580 (($) 100)) (-2664 (((-112) $) 99)) (-3499 (($ $) 87) (($ $ (-783)) 86)) (-1792 (((-112) $) 79)) (-3333 (((-845 (-938)) $) 89) (((-938) $) 97)) (-1414 (((-112) $) 35)) (-3930 (((-3 $ "failed") $) 111)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1902 (((-938) $) 114)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 78)) (-1538 (($) 110 T CONST)) (-3257 (($ (-938)) 113)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) 103)) (-1839 (((-430 $) $) 82)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-3721 (((-3 (-783) "failed") $ $) 88) (((-783) $) 98)) (-2735 (($ $) 109) (($ $ (-783)) 107)) (-2594 (($) 101)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 104)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-2883 (((-3 $ "failed") $) 90) (($ $) 105)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $) 108) (($ $ (-783)) 106)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 73)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-360) (-141)) (T -360)) -((-3612 (*1 *1 *1) (-4 *1 (-360))) (-1789 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1287 *1)))) (-4002 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))))) (-2178 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1209 (-938) (-783))))) (-3870 (*1 *1) (-4 *1 (-360))) (-1554 (*1 *1) (-4 *1 (-360))) (-3506 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-2547 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-938)))) (-2000 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-414) (-379) (-1171) (-238) (-10 -8 (-15 -3612 ($ $)) (-15 -1789 ((-3 (-1287 $) "failed") (-701 $))) (-15 -4002 ((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576)))))) (-15 -2178 ((-1209 (-938) (-783)) (-576))) (-15 -3870 ($)) (-15 -1554 ($)) (-15 -3506 ((-112) $)) (-15 -2547 ((-783) $)) (-15 -1538 ((-938) $)) (-15 -2000 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) . T) ((-1237) . T) ((-1241) . T)) -((-1483 (((-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-2186 (((-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53))) -(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -2186 ((-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -1483 ((-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $)))) (-1263 |#1|) (-421 |#1| |#2|)) (T -361)) -((-1483 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2186 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(-10 -7 (-15 -2186 ((-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -1483 ((-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-927 |#1|) (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-3461 (((-783)) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL (|has| (-927 |#1|) (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-927 |#1|) "failed") $) NIL)) (-2378 (((-927 |#1|) $) NIL)) (-3006 (($ (-1287 (-927 |#1|))) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-927 |#1|) (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-927 |#1|) (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) NIL (|has| (-927 |#1|) (-379)))) (-3506 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379)))) (($ $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) NIL (|has| (-927 |#1|) (-379))) (((-845 (-938)) $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1810 (((-112) $) NIL)) (-3783 (($) NIL (|has| (-927 |#1|) (-379)))) (-2172 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-4252 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| (-927 |#1|) (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 (-927 |#1|)) $) NIL) (((-1192 $) $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3225 (((-938) $) NIL (|has| (-927 |#1|) (-379)))) (-3392 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379)))) (-4212 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-1192 (-927 |#1|)) "failed") $ $) NIL (|has| (-927 |#1|) (-379)))) (-4216 (($ $ (-1192 (-927 |#1|))) NIL (|has| (-927 |#1|) (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-927 |#1|) (-379)) CONST)) (-2550 (($ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3377 (((-112) $) NIL)) (-3139 (((-1139) $) NIL)) (-4052 (((-1287 (-656 (-2 (|:| -1731 (-927 |#1|)) (|:| -2550 (-1139)))))) NIL)) (-3448 (((-701 (-927 |#1|))) NIL)) (-2582 (($) NIL (|has| (-927 |#1|) (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| (-927 |#1|) (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) NIL) (((-938)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-2840 (((-1192 (-927 |#1|))) NIL)) (-3870 (($) NIL (|has| (-927 |#1|) (-379)))) (-2506 (($) NIL (|has| (-927 |#1|) (-379)))) (-3287 (((-1287 (-927 |#1|)) $) NIL) (((-701 (-927 |#1|)) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-927 |#1|) (-379)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-927 |#1|)) NIL)) (-3612 (($ $) NIL (|has| (-927 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3847 (($ $) NIL (|has| (-927 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-927 |#1|) (-379)))) (-4286 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL) (($ $ (-927 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-927 |#1|)) NIL) (($ (-927 |#1|) $) NIL))) -(((-362 |#1| |#2|) (-13 (-339 (-927 |#1|)) (-10 -7 (-15 -4052 ((-1287 (-656 (-2 (|:| -1731 (-927 |#1|)) (|:| -2550 (-1139))))))) (-15 -3448 ((-701 (-927 |#1|)))) (-15 -3461 ((-783))))) (-938) (-938)) (T -362)) -((-4052 (*1 *2) (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1731 (-927 *3)) (|:| -2550 (-1139)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3448 (*1 *2) (-12 (-5 *2 (-701 (-927 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3461 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938))))) -(-13 (-339 (-927 |#1|)) (-10 -7 (-15 -4052 ((-1287 (-656 (-2 (|:| -1731 (-927 |#1|)) (|:| -2550 (-1139))))))) (-15 -3448 ((-701 (-927 |#1|)))) (-15 -3461 ((-783))))) -((-2034 (((-112) $ $) 73)) (-1962 (((-112) $) 88)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 ((|#1| $) 106) (($ $ (-938)) 104 (|has| |#1| (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-3461 (((-783)) 103)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) 187 (|has| |#1| (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) 127)) (-2378 ((|#1| $) 105)) (-3006 (($ (-1287 |#1|)) 71)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) 182 (|has| |#1| (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) 171 (|has| |#1| (-379)))) (-3506 (((-112) $) NIL (|has| |#1| (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1810 (((-112) $) NIL)) (-3783 (($) 113 (|has| |#1| (-379)))) (-2172 (((-112) $) 200 (|has| |#1| (-379)))) (-4252 ((|#1| $) 108) (($ $ (-938)) 107 (|has| |#1| (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 |#1|) $) 214) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-3225 (((-938) $) 148 (|has| |#1| (-379)))) (-3392 (((-1192 |#1|) $) 87 (|has| |#1| (-379)))) (-4212 (((-1192 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-4216 (($ $ (-1192 |#1|)) 83 (|has| |#1| (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 218)) (-3503 (($) NIL (|has| |#1| (-379)) CONST)) (-2550 (($ (-938)) 150 (|has| |#1| (-379)))) (-3377 (((-112) $) 123)) (-3139 (((-1139) $) NIL)) (-4052 (((-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139)))))) 97)) (-3448 (((-701 |#1|)) 101)) (-2582 (($) 110 (|has| |#1| (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) 173 (|has| |#1| (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) NIL) (((-938)) 174)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) 75)) (-2840 (((-1192 |#1|)) 175)) (-3870 (($) 147 (|has| |#1| (-379)))) (-2506 (($) NIL (|has| |#1| (-379)))) (-3287 (((-1287 |#1|) $) 121) (((-701 |#1|) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4092 (((-874) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-3612 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2471 (((-783)) 180 T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) 197) (((-1287 $) (-938)) 116)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) 186 T CONST)) (-4310 (($) 161 T CONST)) (-3847 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-4286 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3919 (((-112) $ $) 208)) (-4028 (($ $ $) 119) (($ $ |#1|) 120)) (-4018 (($ $) 202) (($ $ $) 206)) (-4007 (($ $ $) 204)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) -(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -4052 ((-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))))) (-15 -3448 ((-701 |#1|))) (-15 -3461 ((-783))))) (-360) (-3 (-1192 |#1|) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))))) (T -363)) -((-4052 (*1 *2) (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1731 *3) (|:| -2550 (-1139)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) *2)))) (-3448 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) (-1287 (-656 (-2 (|:| -1731 *3) (|:| -2550 (-1139))))))))) (-3461 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) (-1287 (-656 (-2 (|:| -1731 *3) (|:| -2550 (-1139)))))))))) -(-13 (-339 |#1|) (-10 -7 (-15 -4052 ((-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))))) (-15 -3448 ((-701 |#1|))) (-15 -3461 ((-783))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-3461 (((-783)) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL (|has| |#1| (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-3006 (($ (-1287 |#1|)) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| |#1| (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) NIL (|has| |#1| (-379)))) (-3506 (((-112) $) NIL (|has| |#1| (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1810 (((-112) $) NIL)) (-3783 (($) NIL (|has| |#1| (-379)))) (-2172 (((-112) $) NIL (|has| |#1| (-379)))) (-4252 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 |#1|) $) NIL) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-3225 (((-938) $) NIL (|has| |#1| (-379)))) (-3392 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4212 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4216 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| |#1| (-379)) CONST)) (-2550 (($ (-938)) NIL (|has| |#1| (-379)))) (-3377 (((-112) $) NIL)) (-3139 (((-1139) $) NIL)) (-4052 (((-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139)))))) NIL)) (-3448 (((-701 |#1|)) NIL)) (-2582 (($) NIL (|has| |#1| (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| |#1| (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) NIL) (((-938)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-2840 (((-1192 |#1|)) NIL)) (-3870 (($) NIL (|has| |#1| (-379)))) (-2506 (($) NIL (|has| |#1| (-379)))) (-3287 (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3612 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3847 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-4286 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -4052 ((-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))))) (-15 -3448 ((-701 |#1|))) (-15 -3461 ((-783))))) (-360) (-938)) (T -364)) -((-4052 (*1 *2) (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1731 *3) (|:| -2550 (-1139)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938)))) (-3448 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938)))) (-3461 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938))))) -(-13 (-339 |#1|) (-10 -7 (-15 -4052 ((-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))))) (-15 -3448 ((-701 |#1|))) (-15 -3461 ((-783))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-927 |#1|) (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL (|has| (-927 |#1|) (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-927 |#1|) "failed") $) NIL)) (-2378 (((-927 |#1|) $) NIL)) (-3006 (($ (-1287 (-927 |#1|))) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-927 |#1|) (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-927 |#1|) (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) NIL (|has| (-927 |#1|) (-379)))) (-3506 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379)))) (($ $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) NIL (|has| (-927 |#1|) (-379))) (((-845 (-938)) $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1810 (((-112) $) NIL)) (-3783 (($) NIL (|has| (-927 |#1|) (-379)))) (-2172 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-4252 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| (-927 |#1|) (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 (-927 |#1|)) $) NIL) (((-1192 $) $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3225 (((-938) $) NIL (|has| (-927 |#1|) (-379)))) (-3392 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379)))) (-4212 (((-1192 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-1192 (-927 |#1|)) "failed") $ $) NIL (|has| (-927 |#1|) (-379)))) (-4216 (($ $ (-1192 (-927 |#1|))) NIL (|has| (-927 |#1|) (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-927 |#1|) (-379)) CONST)) (-2550 (($ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3377 (((-112) $) NIL)) (-3139 (((-1139) $) NIL)) (-2582 (($) NIL (|has| (-927 |#1|) (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| (-927 |#1|) (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) NIL) (((-938)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-2840 (((-1192 (-927 |#1|))) NIL)) (-3870 (($) NIL (|has| (-927 |#1|) (-379)))) (-2506 (($) NIL (|has| (-927 |#1|) (-379)))) (-3287 (((-1287 (-927 |#1|)) $) NIL) (((-701 (-927 |#1|)) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-927 |#1|) (-379)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-927 |#1|)) NIL)) (-3612 (($ $) NIL (|has| (-927 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3847 (($ $) NIL (|has| (-927 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-927 |#1|) (-379)))) (-4286 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL) (($ $ (-927 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-927 |#1|)) NIL) (($ (-927 |#1|) $) NIL))) +((-2883 (*1 *1 *1) (-4 *1 (-360))) (-2110 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1286 *1)))) (-4440 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))))) (-1361 (*1 *2 *3) (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1208 (-938) (-783))))) (-2594 (*1 *1) (-4 *1 (-360))) (-2580 (*1 *1) (-4 *1 (-360))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-938)))) (-3815 (*1 *2) (-12 (-4 *1 (-360)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-414) (-379) (-1171) (-238) (-10 -8 (-15 -2883 ($ $)) (-15 -2110 ((-3 (-1286 $) "failed") (-701 $))) (-15 -4440 ((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576)))))) (-15 -1361 ((-1208 (-938) (-783)) (-576))) (-15 -2594 ($)) (-15 -2580 ($)) (-15 -2664 ((-112) $)) (-15 -3721 ((-783) $)) (-15 -3333 ((-938) $)) (-15 -3815 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) . T) ((-379) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) . T) ((-1236) . T) ((-1240) . T)) +((-2426 (((-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|) 55)) (-2969 (((-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 53))) +(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -2969 ((-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2426 ((-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $)))) (-1262 |#1|) (-421 |#1| |#2|)) (T -361)) +((-2426 (*1 *2 *3) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2969 (*1 *2) (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(-10 -7 (-15 -2969 ((-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))))) (-15 -2426 ((-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| (-927 |#1|) (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-2417 (((-783)) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL (|has| (-927 |#1|) (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-927 |#1|) "failed") $) NIL)) (-4056 (((-927 |#1|) $) NIL)) (-2612 (($ (-1286 (-927 |#1|))) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-927 |#1|) (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-927 |#1|) (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) NIL (|has| (-927 |#1|) (-379)))) (-2664 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379)))) (($ $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) NIL (|has| (-927 |#1|) (-379))) (((-845 (-938)) $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1414 (((-112) $) NIL)) (-2136 (($) NIL (|has| (-927 |#1|) (-379)))) (-3996 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-4072 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| (-927 |#1|) (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 (-927 |#1|)) $) NIL) (((-1191 $) $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1902 (((-938) $) NIL (|has| (-927 |#1|) (-379)))) (-1936 (((-1191 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379)))) (-3275 (((-1191 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-1191 (-927 |#1|)) "failed") $ $) NIL (|has| (-927 |#1|) (-379)))) (-1531 (($ $ (-1191 (-927 |#1|))) NIL (|has| (-927 |#1|) (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-927 |#1|) (-379)) CONST)) (-3257 (($ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-4206 (((-112) $) NIL)) (-1445 (((-1139) $) NIL)) (-2468 (((-1286 (-656 (-2 (|:| -3142 (-927 |#1|)) (|:| -3257 (-1139)))))) NIL)) (-3740 (((-701 (-927 |#1|))) NIL)) (-2202 (($) NIL (|has| (-927 |#1|) (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| (-927 |#1|) (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) NIL) (((-938)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1372 (((-1191 (-927 |#1|))) NIL)) (-2594 (($) NIL (|has| (-927 |#1|) (-379)))) (-1795 (($) NIL (|has| (-927 |#1|) (-379)))) (-1809 (((-1286 (-927 |#1|)) $) NIL) (((-701 (-927 |#1|)) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-927 |#1|) (-379)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-927 |#1|)) NIL)) (-2883 (($ $) NIL (|has| (-927 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL) (((-1286 $) (-938)) NIL)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| (-927 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-927 |#1|) (-379)))) (-2051 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ (-927 |#1|)) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-927 |#1|)) NIL) (($ (-927 |#1|) $) NIL))) +(((-362 |#1| |#2|) (-13 (-339 (-927 |#1|)) (-10 -7 (-15 -2468 ((-1286 (-656 (-2 (|:| -3142 (-927 |#1|)) (|:| -3257 (-1139))))))) (-15 -3740 ((-701 (-927 |#1|)))) (-15 -2417 ((-783))))) (-938) (-938)) (T -362)) +((-2468 (*1 *2) (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3142 (-927 *3)) (|:| -3257 (-1139)))))) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3740 (*1 *2) (-12 (-5 *2 (-701 (-927 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-2417 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938))))) +(-13 (-339 (-927 |#1|)) (-10 -7 (-15 -2468 ((-1286 (-656 (-2 (|:| -3142 (-927 |#1|)) (|:| -3257 (-1139))))))) (-15 -3740 ((-701 (-927 |#1|)))) (-15 -2417 ((-783))))) +((-3474 (((-112) $ $) 73)) (-1454 (((-112) $) 88)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 ((|#1| $) 106) (($ $ (-938)) 104 (|has| |#1| (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) 170 (|has| |#1| (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-2417 (((-783)) 103)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) 187 (|has| |#1| (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) 127)) (-4056 ((|#1| $) 105)) (-2612 (($ (-1286 |#1|)) 71)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) 182 (|has| |#1| (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) 171 (|has| |#1| (-379)))) (-2664 (((-112) $) NIL (|has| |#1| (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1414 (((-112) $) NIL)) (-2136 (($) 113 (|has| |#1| (-379)))) (-3996 (((-112) $) 200 (|has| |#1| (-379)))) (-4072 ((|#1| $) 108) (($ $ (-938)) 107 (|has| |#1| (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 |#1|) $) 214) (((-1191 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1902 (((-938) $) 148 (|has| |#1| (-379)))) (-1936 (((-1191 |#1|) $) 87 (|has| |#1| (-379)))) (-3275 (((-1191 |#1|) $) 84 (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) 96 (|has| |#1| (-379)))) (-1531 (($ $ (-1191 |#1|)) 83 (|has| |#1| (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 218)) (-1538 (($) NIL (|has| |#1| (-379)) CONST)) (-3257 (($ (-938)) 150 (|has| |#1| (-379)))) (-4206 (((-112) $) 123)) (-1445 (((-1139) $) NIL)) (-2468 (((-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139)))))) 97)) (-3740 (((-701 |#1|)) 101)) (-2202 (($) 110 (|has| |#1| (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) 173 (|has| |#1| (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) NIL) (((-938)) 174)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) 75)) (-1372 (((-1191 |#1|)) 175)) (-2594 (($) 147 (|has| |#1| (-379)))) (-1795 (($) NIL (|has| |#1| (-379)))) (-1809 (((-1286 |#1|) $) 121) (((-701 |#1|) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3563 (((-874) $) 140) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 70)) (-2883 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1858 (((-783)) 180 T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) 197) (((-1286 $) (-938)) 116)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) 186 T CONST)) (-2810 (($) 161 T CONST)) (-4273 (($ $) 122 (|has| |#1| (-379))) (($ $ (-783)) 114 (|has| |#1| (-379)))) (-2051 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2988 (((-112) $ $) 208)) (-3107 (($ $ $) 119) (($ $ |#1|) 120)) (-3095 (($ $) 202) (($ $ $) 206)) (-3083 (($ $ $) 204)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 153)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 211) (($ $ $) 164) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 118))) +(((-363 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2468 ((-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))))) (-15 -3740 ((-701 |#1|))) (-15 -2417 ((-783))))) (-360) (-3 (-1191 |#1|) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))))) (T -363)) +((-2468 (*1 *2) (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3142 *3) (|:| -3257 (-1139)))))) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) *2)))) (-3740 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) (-1286 (-656 (-2 (|:| -3142 *3) (|:| -3257 (-1139))))))))) (-2417 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) (-1286 (-656 (-2 (|:| -3142 *3) (|:| -3257 (-1139)))))))))) +(-13 (-339 |#1|) (-10 -7 (-15 -2468 ((-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))))) (-15 -3740 ((-701 |#1|))) (-15 -2417 ((-783))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-2417 (((-783)) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL (|has| |#1| (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-2612 (($ (-1286 |#1|)) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| |#1| (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) NIL (|has| |#1| (-379)))) (-2664 (((-112) $) NIL (|has| |#1| (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1414 (((-112) $) NIL)) (-2136 (($) NIL (|has| |#1| (-379)))) (-3996 (((-112) $) NIL (|has| |#1| (-379)))) (-4072 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 |#1|) $) NIL) (((-1191 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1902 (((-938) $) NIL (|has| |#1| (-379)))) (-1936 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3275 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1531 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| |#1| (-379)) CONST)) (-3257 (($ (-938)) NIL (|has| |#1| (-379)))) (-4206 (((-112) $) NIL)) (-1445 (((-1139) $) NIL)) (-2468 (((-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139)))))) NIL)) (-3740 (((-701 |#1|)) NIL)) (-2202 (($) NIL (|has| |#1| (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| |#1| (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) NIL) (((-938)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1372 (((-1191 |#1|)) NIL)) (-2594 (($) NIL (|has| |#1| (-379)))) (-1795 (($) NIL (|has| |#1| (-379)))) (-1809 (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-2883 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL) (((-1286 $) (-938)) NIL)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2051 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-364 |#1| |#2|) (-13 (-339 |#1|) (-10 -7 (-15 -2468 ((-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))))) (-15 -3740 ((-701 |#1|))) (-15 -2417 ((-783))))) (-360) (-938)) (T -364)) +((-2468 (*1 *2) (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3142 *3) (|:| -3257 (-1139)))))) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938)))) (-3740 (*1 *2) (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938)))) (-2417 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938))))) +(-13 (-339 |#1|) (-10 -7 (-15 -2468 ((-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))))) (-15 -3740 ((-701 |#1|))) (-15 -2417 ((-783))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| (-927 |#1|) (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL (|has| (-927 |#1|) (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-927 |#1|) "failed") $) NIL)) (-4056 (((-927 |#1|) $) NIL)) (-2612 (($ (-1286 (-927 |#1|))) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-927 |#1|) (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-927 |#1|) (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) NIL (|has| (-927 |#1|) (-379)))) (-2664 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379)))) (($ $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) NIL (|has| (-927 |#1|) (-379))) (((-845 (-938)) $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1414 (((-112) $) NIL)) (-2136 (($) NIL (|has| (-927 |#1|) (-379)))) (-3996 (((-112) $) NIL (|has| (-927 |#1|) (-379)))) (-4072 (((-927 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| (-927 |#1|) (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 (-927 |#1|)) $) NIL) (((-1191 $) $ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-1902 (((-938) $) NIL (|has| (-927 |#1|) (-379)))) (-1936 (((-1191 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379)))) (-3275 (((-1191 (-927 |#1|)) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-1191 (-927 |#1|)) "failed") $ $) NIL (|has| (-927 |#1|) (-379)))) (-1531 (($ $ (-1191 (-927 |#1|))) NIL (|has| (-927 |#1|) (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-927 |#1|) (-379)) CONST)) (-3257 (($ (-938)) NIL (|has| (-927 |#1|) (-379)))) (-4206 (((-112) $) NIL)) (-1445 (((-1139) $) NIL)) (-2202 (($) NIL (|has| (-927 |#1|) (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| (-927 |#1|) (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) NIL) (((-938)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) NIL (|has| (-927 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1372 (((-1191 (-927 |#1|))) NIL)) (-2594 (($) NIL (|has| (-927 |#1|) (-379)))) (-1795 (($) NIL (|has| (-927 |#1|) (-379)))) (-1809 (((-1286 (-927 |#1|)) $) NIL) (((-701 (-927 |#1|)) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-927 |#1|) (-379)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-927 |#1|)) NIL)) (-2883 (($ $) NIL (|has| (-927 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| (-927 |#1|) (-146)) (|has| (-927 |#1|) (-379))))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL) (((-1286 $) (-938)) NIL)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| (-927 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-927 |#1|) (-379)))) (-2051 (($ $ (-783)) NIL (|has| (-927 |#1|) (-379))) (($ $) NIL (|has| (-927 |#1|) (-379)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ (-927 |#1|)) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-927 |#1|)) NIL) (($ (-927 |#1|) $) NIL))) (((-365 |#1| |#2|) (-339 (-927 |#1|)) (-938) (-938)) (T -365)) NIL (-339 (-927 |#1|)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) 155 (|has| |#1| (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) 103)) (-2378 ((|#1| $) 100)) (-3006 (($ (-1287 |#1|)) 95)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) 92 (|has| |#1| (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) 51 (|has| |#1| (-379)))) (-3506 (((-112) $) NIL (|has| |#1| (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1810 (((-112) $) NIL)) (-3783 (($) 130 (|has| |#1| (-379)))) (-2172 (((-112) $) 84 (|has| |#1| (-379)))) (-4252 ((|#1| $) 47) (($ $ (-938)) 52 (|has| |#1| (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 |#1|) $) 75) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-3225 (((-938) $) 107 (|has| |#1| (-379)))) (-3392 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4212 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4216 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| |#1| (-379)) CONST)) (-2550 (($ (-938)) 105 (|has| |#1| (-379)))) (-3377 (((-112) $) 157)) (-3139 (((-1139) $) NIL)) (-2582 (($) 44 (|has| |#1| (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) 124 (|has| |#1| (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) NIL) (((-938)) 154)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) 67)) (-2840 (((-1192 |#1|)) 98)) (-3870 (($) 135 (|has| |#1| (-379)))) (-2506 (($) NIL (|has| |#1| (-379)))) (-3287 (((-1287 |#1|) $) 63) (((-701 |#1|) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4092 (((-874) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-3612 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2471 (((-783)) 159 T CONST)) (-1531 (((-112) $ $) 161)) (-1999 (((-1287 $)) 119) (((-1287 $) (-938)) 58)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) 121 T CONST)) (-4310 (($) 40 T CONST)) (-3847 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-4286 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3919 (((-112) $ $) 117)) (-4028 (($ $ $) 109) (($ $ |#1|) 110)) (-4018 (($ $) 90) (($ $ $) 115)) (-4007 (($ $ $) 113)) (** (($ $ (-938)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) -(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1192 |#1|)) (T -366)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) 129 (|has| |#1| (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) 155 (|has| |#1| (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) 103)) (-4056 ((|#1| $) 100)) (-2612 (($ (-1286 |#1|)) 95)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) 92 (|has| |#1| (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) 51 (|has| |#1| (-379)))) (-2664 (((-112) $) NIL (|has| |#1| (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1414 (((-112) $) NIL)) (-2136 (($) 130 (|has| |#1| (-379)))) (-3996 (((-112) $) 84 (|has| |#1| (-379)))) (-4072 ((|#1| $) 47) (($ $ (-938)) 52 (|has| |#1| (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 |#1|) $) 75) (((-1191 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1902 (((-938) $) 107 (|has| |#1| (-379)))) (-1936 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3275 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1531 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| |#1| (-379)) CONST)) (-3257 (($ (-938)) 105 (|has| |#1| (-379)))) (-4206 (((-112) $) 157)) (-1445 (((-1139) $) NIL)) (-2202 (($) 44 (|has| |#1| (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) 124 (|has| |#1| (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) NIL) (((-938)) 154)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) 67)) (-1372 (((-1191 |#1|)) 98)) (-2594 (($) 135 (|has| |#1| (-379)))) (-1795 (($) NIL (|has| |#1| (-379)))) (-1809 (((-1286 |#1|) $) 63) (((-701 |#1|) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3563 (((-874) $) 153) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 97)) (-2883 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1858 (((-783)) 159 T CONST)) (-3985 (((-112) $ $) 161)) (-3713 (((-1286 $)) 119) (((-1286 $) (-938)) 58)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) 121 T CONST)) (-2810 (($) 40 T CONST)) (-4273 (($ $) 78 (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2051 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2988 (((-112) $ $) 117)) (-3107 (($ $ $) 109) (($ $ |#1|) 110)) (-3095 (($ $) 90) (($ $ $) 115)) (-3083 (($ $ $) 113)) (** (($ $ (-938)) NIL) (($ $ (-783)) 53) (($ $ (-576)) 138)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 88) (($ $ $) 65) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 86))) +(((-366 |#1| |#2|) (-339 |#1|) (-360) (-1191 |#1|)) (T -366)) NIL (-339 |#1|) -((-3728 ((|#1| (-1192 |#2|)) 59))) -(((-367 |#1| |#2|) (-10 -7 (-15 -3728 (|#1| (-1192 |#2|)))) (-13 (-414) (-10 -7 (-15 -4092 (|#1| |#2|)) (-15 -3225 ((-938) |#1|)) (-15 -1999 ((-1287 |#1|) (-938))) (-15 -3847 (|#1| |#1|)))) (-360)) (T -367)) -((-3728 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -4092 (*2 *4)) (-15 -3225 ((-938) *2)) (-15 -1999 ((-1287 *2) (-938))) (-15 -3847 (*2 *2))))) (-5 *1 (-367 *2 *4))))) -(-10 -7 (-15 -3728 (|#1| (-1192 |#2|)))) -((-2049 (((-975 (-1192 |#1|)) (-1192 |#1|)) 49)) (-2446 (((-1192 |#1|) (-938) (-938)) 154) (((-1192 |#1|) (-938)) 150)) (-3506 (((-112) (-1192 |#1|)) 107)) (-3641 (((-938) (-938)) 85)) (-1950 (((-938) (-938)) 92)) (-3770 (((-938) (-938)) 83)) (-2172 (((-112) (-1192 |#1|)) 111)) (-2150 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 135)) (-4218 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 140)) (-1808 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 139)) (-3659 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 138)) (-2609 (((-3 (-1192 |#1|) "failed") (-1192 |#1|)) 131)) (-3594 (((-1192 |#1|) (-1192 |#1|)) 71)) (-4197 (((-1192 |#1|) (-938)) 145)) (-4366 (((-1192 |#1|) (-938)) 148)) (-2374 (((-1192 |#1|) (-938)) 147)) (-4104 (((-1192 |#1|) (-938)) 146)) (-2710 (((-1192 |#1|) (-938)) 143))) -(((-368 |#1|) (-10 -7 (-15 -3506 ((-112) (-1192 |#1|))) (-15 -2172 ((-112) (-1192 |#1|))) (-15 -3770 ((-938) (-938))) (-15 -3641 ((-938) (-938))) (-15 -1950 ((-938) (-938))) (-15 -2710 ((-1192 |#1|) (-938))) (-15 -4197 ((-1192 |#1|) (-938))) (-15 -4104 ((-1192 |#1|) (-938))) (-15 -2374 ((-1192 |#1|) (-938))) (-15 -4366 ((-1192 |#1|) (-938))) (-15 -2609 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2150 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -3659 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -1808 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -4218 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2446 ((-1192 |#1|) (-938))) (-15 -2446 ((-1192 |#1|) (-938) (-938))) (-15 -3594 ((-1192 |#1|) (-1192 |#1|))) (-15 -2049 ((-975 (-1192 |#1|)) (-1192 |#1|)))) (-360)) (T -368)) -((-2049 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-975 (-1192 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1192 *4)))) (-3594 (*1 *2 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2446 (*1 *2 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4218 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1808 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3659 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2150 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2609 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4197 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3770 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) -(-10 -7 (-15 -3506 ((-112) (-1192 |#1|))) (-15 -2172 ((-112) (-1192 |#1|))) (-15 -3770 ((-938) (-938))) (-15 -3641 ((-938) (-938))) (-15 -1950 ((-938) (-938))) (-15 -2710 ((-1192 |#1|) (-938))) (-15 -4197 ((-1192 |#1|) (-938))) (-15 -4104 ((-1192 |#1|) (-938))) (-15 -2374 ((-1192 |#1|) (-938))) (-15 -4366 ((-1192 |#1|) (-938))) (-15 -2609 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2150 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -3659 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -1808 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -4218 ((-3 (-1192 |#1|) "failed") (-1192 |#1|))) (-15 -2446 ((-1192 |#1|) (-938))) (-15 -2446 ((-1192 |#1|) (-938) (-938))) (-15 -3594 ((-1192 |#1|) (-1192 |#1|))) (-15 -2049 ((-975 (-1192 |#1|)) (-1192 |#1|)))) -((-2074 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38))) -(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -2074 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1263 |#1|) (-1263 |#2|)) (T -369)) -((-2074 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) -(-10 -7 (-15 -2074 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL (|has| |#1| (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-3006 (($ (-1287 |#1|)) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| |#1| (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) NIL (|has| |#1| (-379)))) (-3506 (((-112) $) NIL (|has| |#1| (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1810 (((-112) $) NIL)) (-3783 (($) NIL (|has| |#1| (-379)))) (-2172 (((-112) $) NIL (|has| |#1| (-379)))) (-4252 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 |#1|) $) NIL) (((-1192 $) $ (-938)) NIL (|has| |#1| (-379)))) (-3225 (((-938) $) NIL (|has| |#1| (-379)))) (-3392 (((-1192 |#1|) $) NIL (|has| |#1| (-379)))) (-4212 (((-1192 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1192 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-4216 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| |#1| (-379)) CONST)) (-2550 (($ (-938)) NIL (|has| |#1| (-379)))) (-3377 (((-112) $) NIL)) (-3139 (((-1139) $) NIL)) (-2582 (($) NIL (|has| |#1| (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| |#1| (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) NIL) (((-938)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-2840 (((-1192 |#1|)) NIL)) (-3870 (($) NIL (|has| |#1| (-379)))) (-2506 (($) NIL (|has| |#1| (-379)))) (-3287 (((-1287 |#1|) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-3612 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3847 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-4286 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-2498 ((|#1| (-1191 |#2|)) 59))) +(((-367 |#1| |#2|) (-10 -7 (-15 -2498 (|#1| (-1191 |#2|)))) (-13 (-414) (-10 -7 (-15 -3563 (|#1| |#2|)) (-15 -1902 ((-938) |#1|)) (-15 -3713 ((-1286 |#1|) (-938))) (-15 -4273 (|#1| |#1|)))) (-360)) (T -367)) +((-2498 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-4 *2 (-13 (-414) (-10 -7 (-15 -3563 (*2 *4)) (-15 -1902 ((-938) *2)) (-15 -3713 ((-1286 *2) (-938))) (-15 -4273 (*2 *2))))) (-5 *1 (-367 *2 *4))))) +(-10 -7 (-15 -2498 (|#1| (-1191 |#2|)))) +((-3801 (((-975 (-1191 |#1|)) (-1191 |#1|)) 49)) (-1803 (((-1191 |#1|) (-938) (-938)) 154) (((-1191 |#1|) (-938)) 150)) (-2664 (((-112) (-1191 |#1|)) 107)) (-2970 (((-938) (-938)) 85)) (-2615 (((-938) (-938)) 92)) (-2211 (((-938) (-938)) 83)) (-3996 (((-112) (-1191 |#1|)) 111)) (-3699 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 135)) (-1778 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 140)) (-2460 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 139)) (-2898 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 138)) (-2326 (((-3 (-1191 |#1|) "failed") (-1191 |#1|)) 131)) (-1638 (((-1191 |#1|) (-1191 |#1|)) 71)) (-4355 (((-1191 |#1|) (-938)) 145)) (-3961 (((-1191 |#1|) (-938)) 148)) (-3750 (((-1191 |#1|) (-938)) 147)) (-2081 (((-1191 |#1|) (-938)) 146)) (-2628 (((-1191 |#1|) (-938)) 143))) +(((-368 |#1|) (-10 -7 (-15 -2664 ((-112) (-1191 |#1|))) (-15 -3996 ((-112) (-1191 |#1|))) (-15 -2211 ((-938) (-938))) (-15 -2970 ((-938) (-938))) (-15 -2615 ((-938) (-938))) (-15 -2628 ((-1191 |#1|) (-938))) (-15 -4355 ((-1191 |#1|) (-938))) (-15 -2081 ((-1191 |#1|) (-938))) (-15 -3750 ((-1191 |#1|) (-938))) (-15 -3961 ((-1191 |#1|) (-938))) (-15 -2326 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -3699 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2898 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2460 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -1778 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -1803 ((-1191 |#1|) (-938))) (-15 -1803 ((-1191 |#1|) (-938) (-938))) (-15 -1638 ((-1191 |#1|) (-1191 |#1|))) (-15 -3801 ((-975 (-1191 |#1|)) (-1191 |#1|)))) (-360)) (T -368)) +((-3801 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-975 (-1191 *4))) (-5 *1 (-368 *4)) (-5 *3 (-1191 *4)))) (-1638 (*1 *2 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-1803 (*1 *2 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-1778 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2460 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2898 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3699 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-2326 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-3750 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-4355 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2628 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) (-4 *4 (-360)))) (-2615 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2970 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-368 *4))))) +(-10 -7 (-15 -2664 ((-112) (-1191 |#1|))) (-15 -3996 ((-112) (-1191 |#1|))) (-15 -2211 ((-938) (-938))) (-15 -2970 ((-938) (-938))) (-15 -2615 ((-938) (-938))) (-15 -2628 ((-1191 |#1|) (-938))) (-15 -4355 ((-1191 |#1|) (-938))) (-15 -2081 ((-1191 |#1|) (-938))) (-15 -3750 ((-1191 |#1|) (-938))) (-15 -3961 ((-1191 |#1|) (-938))) (-15 -2326 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -3699 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2898 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -2460 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -1778 ((-3 (-1191 |#1|) "failed") (-1191 |#1|))) (-15 -1803 ((-1191 |#1|) (-938))) (-15 -1803 ((-1191 |#1|) (-938) (-938))) (-15 -1638 ((-1191 |#1|) (-1191 |#1|))) (-15 -3801 ((-975 (-1191 |#1|)) (-1191 |#1|)))) +((-4168 (((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|) 38))) +(((-369 |#1| |#2| |#3|) (-10 -7 (-15 -4168 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) (-360) (-1262 |#1|) (-1262 |#2|)) (T -369)) +((-4168 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3))))) +(-10 -7 (-15 -4168 ((-3 (-656 |#3|) "failed") (-656 |#3|) |#3|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| |#1| (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL (|has| |#1| (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-2612 (($ (-1286 |#1|)) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| |#1| (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) NIL (|has| |#1| (-379)))) (-2664 (((-112) $) NIL (|has| |#1| (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) NIL (|has| |#1| (-379))) (((-845 (-938)) $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1414 (((-112) $) NIL)) (-2136 (($) NIL (|has| |#1| (-379)))) (-3996 (((-112) $) NIL (|has| |#1| (-379)))) (-4072 ((|#1| $) NIL) (($ $ (-938)) NIL (|has| |#1| (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 |#1|) $) NIL) (((-1191 $) $ (-938)) NIL (|has| |#1| (-379)))) (-1902 (((-938) $) NIL (|has| |#1| (-379)))) (-1936 (((-1191 |#1|) $) NIL (|has| |#1| (-379)))) (-3275 (((-1191 |#1|) $) NIL (|has| |#1| (-379))) (((-3 (-1191 |#1|) "failed") $ $) NIL (|has| |#1| (-379)))) (-1531 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| |#1| (-379)) CONST)) (-3257 (($ (-938)) NIL (|has| |#1| (-379)))) (-4206 (((-112) $) NIL)) (-1445 (((-1139) $) NIL)) (-2202 (($) NIL (|has| |#1| (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| |#1| (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) NIL) (((-938)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) NIL (|has| |#1| (-379))) (((-3 (-783) "failed") $ $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1372 (((-1191 |#1|)) NIL)) (-2594 (($) NIL (|has| |#1| (-379)))) (-1795 (($) NIL (|has| |#1| (-379)))) (-1809 (((-1286 |#1|) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-379)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) NIL)) (-2883 (($ $) NIL (|has| |#1| (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL) (((-1286 $) (-938)) NIL)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| |#1| (-379))) (($ $ (-783)) NIL (|has| |#1| (-379)))) (-2051 (($ $ (-783)) NIL (|has| |#1| (-379))) (($ $) NIL (|has| |#1| (-379)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-370 |#1| |#2|) (-339 |#1|) (-360) (-938)) (T -370)) NIL (-339 |#1|) -((-2027 (((-112) (-656 (-969 |#1|))) 41)) (-2686 (((-656 (-969 |#1|)) (-656 (-969 |#1|))) 53)) (-3398 (((-3 (-656 (-969 |#1|)) "failed") (-656 (-969 |#1|))) 48))) -(((-371 |#1| |#2|) (-10 -7 (-15 -2027 ((-112) (-656 (-969 |#1|)))) (-15 -3398 ((-3 (-656 (-969 |#1|)) "failed") (-656 (-969 |#1|)))) (-15 -2686 ((-656 (-969 |#1|)) (-656 (-969 |#1|))))) (-464) (-656 (-1196))) (T -371)) -((-2686 (*1 *2 *2) (-12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1196))))) (-3398 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1196))))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1196)))))) -(-10 -7 (-15 -2027 ((-112) (-656 (-969 |#1|)))) (-15 -3398 ((-3 (-656 (-969 |#1|)) "failed") (-656 (-969 |#1|)))) (-15 -2686 ((-656 (-969 |#1|)) (-656 (-969 |#1|))))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783) $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) 17)) (-3158 ((|#1| $ (-576)) NIL)) (-3670 (((-576) $ (-576)) NIL)) (-3230 (($ (-1 |#1| |#1|) $) 34)) (-1682 (($ (-1 (-576) (-576)) $) 26)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 28)) (-3139 (((-1139) $) NIL)) (-3791 (((-656 (-2 (|:| |gen| |#1|) (|:| -3353 (-576)))) $) 30)) (-3646 (($ $ $) NIL)) (-1361 (($ $ $) NIL)) (-4092 (((-874) $) 40) (($ |#1|) NIL)) (-1531 (((-112) $ $) NIL)) (-4310 (($) 11 T CONST)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-372 |#1|) (-13 (-485) (-1057 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2247 ((-783) $)) (-15 -3670 ((-576) $ (-576))) (-15 -3158 (|#1| $ (-576))) (-15 -1682 ($ (-1 (-576) (-576)) $)) (-15 -3230 ($ (-1 |#1| |#1|) $)) (-15 -3791 ((-656 (-2 (|:| |gen| |#1|) (|:| -3353 (-576)))) $)))) (-1119)) (T -372)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) (-3670 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) (-3158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (-1682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) (-3230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-372 *3)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1119))))) -(-13 (-485) (-1057 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2247 ((-783) $)) (-15 -3670 ((-576) $ (-576))) (-15 -3158 (|#1| $ (-576))) (-15 -1682 ($ (-1 (-576) (-576)) $)) (-15 -3230 ($ (-1 |#1| |#1|) $)) (-15 -3791 ((-656 (-2 (|:| |gen| |#1|) (|:| -3353 (-576)))) $)))) -((-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 13)) (-2573 (($ $) 14)) (-2100 (((-430 $) $) 34)) (-2725 (((-112) $) 30)) (-1644 (($ $) 19)) (-3149 (($ $ $) 25) (($ (-656 $)) NIL)) (-1392 (((-430 $) $) 35)) (-2022 (((-3 $ "failed") $ $) 24)) (-1787 (((-783) $) 28)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 39)) (-2947 (((-112) $ $) 16)) (-4028 (($ $ $) 37))) -(((-373 |#1|) (-10 -8 (-15 -4028 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -2725 ((-112) |#1|)) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -2233 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -1787 ((-783) |#1|)) (-15 -3149 (|#1| (-656 |#1|))) (-15 -3149 (|#1| |#1| |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -3528 ((-2 (|:| -3500 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) -NIL -(-10 -8 (-15 -4028 (|#1| |#1| |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -2725 ((-112) |#1|)) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -2233 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -1787 ((-783) |#1|)) (-15 -3149 (|#1| (-656 |#1|))) (-15 -3149 (|#1| |#1| |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -3528 ((-2 (|:| -3500 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-4407 (((-112) $ $) 65)) (-3656 (($) 18 T CONST)) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-2725 (((-112) $) 79)) (-1810 (((-112) $) 35)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 78)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1392 (((-430 $) $) 82)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-4254 (((-112) (-656 (-969 |#1|))) 41)) (-4390 (((-656 (-969 |#1|)) (-656 (-969 |#1|))) 53)) (-3343 (((-3 (-656 (-969 |#1|)) "failed") (-656 (-969 |#1|))) 48))) +(((-371 |#1| |#2|) (-10 -7 (-15 -4254 ((-112) (-656 (-969 |#1|)))) (-15 -3343 ((-3 (-656 (-969 |#1|)) "failed") (-656 (-969 |#1|)))) (-15 -4390 ((-656 (-969 |#1|)) (-656 (-969 |#1|))))) (-464) (-656 (-1195))) (T -371)) +((-4390 (*1 *2 *2) (-12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1195))))) (-3343 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1195))))) (-4254 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-112)) (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1195)))))) +(-10 -7 (-15 -4254 ((-112) (-656 (-969 |#1|)))) (-15 -3343 ((-3 (-656 (-969 |#1|)) "failed") (-656 (-969 |#1|)))) (-15 -4390 ((-656 (-969 |#1|)) (-656 (-969 |#1|))))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783) $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) 17)) (-2281 ((|#1| $ (-576)) NIL)) (-2633 (((-576) $ (-576)) NIL)) (-4239 (($ (-1 |#1| |#1|) $) 34)) (-3576 (($ (-1 (-576) (-576)) $) 26)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 28)) (-1445 (((-1139) $) NIL)) (-1707 (((-656 (-2 (|:| |gen| |#1|) (|:| -3984 (-576)))) $) 30)) (-4026 (($ $ $) NIL)) (-4081 (($ $ $) NIL)) (-3563 (((-874) $) 40) (($ |#1|) NIL)) (-3985 (((-112) $ $) NIL)) (-2810 (($) 11 T CONST)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ |#1| (-576)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-372 |#1|) (-13 (-485) (-1057 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2148 ((-783) $)) (-15 -2633 ((-576) $ (-576))) (-15 -2281 (|#1| $ (-576))) (-15 -3576 ($ (-1 (-576) (-576)) $)) (-15 -4239 ($ (-1 |#1| |#1|) $)) (-15 -1707 ((-656 (-2 (|:| |gen| |#1|) (|:| -3984 (-576)))) $)))) (-1119)) (T -372)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) (-2633 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) (-3576 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) (-4239 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-372 *3)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 (-576))))) (-5 *1 (-372 *3)) (-4 *3 (-1119))))) +(-13 (-485) (-1057 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-576))) (-15 -2148 ((-783) $)) (-15 -2633 ((-576) $ (-576))) (-15 -2281 (|#1| $ (-576))) (-15 -3576 ($ (-1 (-576) (-576)) $)) (-15 -4239 ($ (-1 |#1| |#1|) $)) (-15 -1707 ((-656 (-2 (|:| |gen| |#1|) (|:| -3984 (-576)))) $)))) +((-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 13)) (-4412 (($ $) 14)) (-2732 (((-430 $) $) 34)) (-1792 (((-112) $) 30)) (-2095 (($ $) 19)) (-3495 (($ $ $) 25) (($ (-656 $)) NIL)) (-1839 (((-430 $) $) 35)) (-3463 (((-3 $ "failed") $ $) 24)) (-3112 (((-783) $) 28)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 39)) (-3040 (((-112) $ $) 16)) (-3107 (($ $ $) 37))) +(((-373 |#1|) (-10 -8 (-15 -3107 (|#1| |#1| |#1|)) (-15 -2095 (|#1| |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1784 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3112 ((-783) |#1|)) (-15 -3495 (|#1| (-656 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -2362 ((-2 (|:| -3341 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#1|))) (-374)) (T -373)) +NIL +(-10 -8 (-15 -3107 (|#1| |#1| |#1|)) (-15 -2095 (|#1| |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1784 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3112 ((-783) |#1|)) (-15 -3495 (|#1| (-656 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -2362 ((-2 (|:| -3341 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-1727 (((-112) $ $) 65)) (-3767 (($) 18 T CONST)) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-1792 (((-112) $) 79)) (-1414 (((-112) $) 35)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 78)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-1839 (((-430 $) $) 82)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 73)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-374) (-141)) (T -374)) -((-4028 (*1 *1 *1 *1) (-4 *1 (-374)))) -(-13 (-317) (-1241) (-248) (-10 -8 (-15 -4028 ($ $ $)) (-6 -4460) (-6 -4454))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T)) -((-2034 (((-112) $ $) 7)) (-3183 ((|#2| $ |#2|) 14)) (-3490 (($ $ (-1178)) 19)) (-1422 ((|#2| $) 15)) (-3709 (($ |#1|) 21) (($ |#1| (-1178)) 20)) (-4124 ((|#1| $) 17)) (-3288 (((-1178) $) 10)) (-1767 (((-1178) $) 16)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-3603 (($ $) 18)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-3107 (*1 *1 *1 *1) (-4 *1 (-374)))) +(-13 (-317) (-1240) (-248) (-10 -8 (-15 -3107 ($ $ $)) (-6 -4459) (-6 -4453))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1240) . T)) +((-3474 (((-112) $ $) 7)) (-3917 ((|#2| $ |#2|) 14)) (-1606 (($ $ (-1177)) 19)) (-3280 ((|#2| $) 15)) (-3223 (($ |#1|) 21) (($ |#1| (-1177)) 20)) (-2706 ((|#1| $) 17)) (-1927 (((-1177) $) 10)) (-1746 (((-1177) $) 16)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-4382 (($ $) 18)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-375 |#1| |#2|) (-141) (-1119) (-1119)) (T -375)) -((-3709 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-3709 (*1 *1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1119)) (-4 *4 (-1119)))) (-3490 (*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-3603 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-1178)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-3183 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) -(-13 (-1119) (-10 -8 (-15 -3709 ($ |t#1|)) (-15 -3709 ($ |t#1| (-1178))) (-15 -3490 ($ $ (-1178))) (-15 -3603 ($ $)) (-15 -4124 (|t#1| $)) (-15 -1767 ((-1178) $)) (-15 -1422 (|t#2| $)) (-15 -3183 (|t#2| $ |t#2|)))) +((-3223 (*1 *1 *2) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-3223 (*1 *1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1119)) (-4 *4 (-1119)))) (-1606 (*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-4382 (*1 *1 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-1746 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-1177)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-3917 (*1 *2 *1 *2) (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -3223 ($ |t#1|)) (-15 -3223 ($ |t#1| (-1177))) (-15 -1606 ($ $ (-1177))) (-15 -4382 ($ $)) (-15 -2706 (|t#1| $)) (-15 -1746 ((-1177) $)) (-15 -3280 (|t#2| $)) (-15 -3917 (|t#2| $ |t#2|)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-3183 ((|#1| $ |#1|) 31)) (-3490 (($ $ (-1178)) 23)) (-3199 (((-3 |#1| "failed") $) 30)) (-1422 ((|#1| $) 28)) (-3709 (($ (-400)) 22) (($ (-400) (-1178)) 21)) (-4124 (((-400) $) 25)) (-3288 (((-1178) $) NIL)) (-1767 (((-1178) $) 26)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 20)) (-3603 (($ $) 24)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 19))) -(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -3199 ((-3 |#1| "failed") $)))) (-1119)) (T -376)) -((-3199 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1119))))) -(-13 (-375 (-400) |#1|) (-10 -8 (-15 -3199 ((-3 |#1| "failed") $)))) -((-3925 (((-1287 (-701 |#2|)) (-1287 $)) 67)) (-3016 (((-701 |#2|) (-1287 $)) 139)) (-2379 ((|#2| $) 36)) (-4114 (((-701 |#2|) $ (-1287 $)) 142)) (-3046 (((-3 $ "failed") $) 89)) (-4045 ((|#2| $) 39)) (-4378 (((-1192 |#2|) $) 98)) (-2548 ((|#2| (-1287 $)) 122)) (-3145 (((-1192 |#2|) $) 32)) (-4429 (((-112)) 116)) (-3006 (($ (-1287 |#2|) (-1287 $)) 132)) (-3179 (((-3 $ "failed") $) 93)) (-3440 (((-112)) 111)) (-3903 (((-112)) 106)) (-2866 (((-112)) 58)) (-2472 (((-701 |#2|) (-1287 $)) 137)) (-3653 ((|#2| $) 35)) (-1424 (((-701 |#2|) $ (-1287 $)) 141)) (-1714 (((-3 $ "failed") $) 87)) (-1891 ((|#2| $) 38)) (-3691 (((-1192 |#2|) $) 97)) (-4167 ((|#2| (-1287 $)) 120)) (-1684 (((-1192 |#2|) $) 30)) (-1371 (((-112)) 115)) (-2614 (((-112)) 108)) (-3810 (((-112)) 56)) (-2989 (((-112)) 103)) (-4207 (((-112)) 117)) (-3287 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) 128)) (-2261 (((-112)) 113)) (-3558 (((-656 (-1287 |#2|))) 102)) (-2723 (((-112)) 114)) (-4393 (((-112)) 112)) (-4340 (((-112)) 51)) (-1450 (((-112)) 118))) -(((-377 |#1| |#2|) (-10 -8 (-15 -4378 ((-1192 |#2|) |#1|)) (-15 -3691 ((-1192 |#2|) |#1|)) (-15 -3558 ((-656 (-1287 |#2|)))) (-15 -3046 ((-3 |#1| "failed") |#1|)) (-15 -1714 ((-3 |#1| "failed") |#1|)) (-15 -3179 ((-3 |#1| "failed") |#1|)) (-15 -3903 ((-112))) (-15 -2614 ((-112))) (-15 -3440 ((-112))) (-15 -3810 ((-112))) (-15 -2866 ((-112))) (-15 -2989 ((-112))) (-15 -1450 ((-112))) (-15 -4207 ((-112))) (-15 -4429 ((-112))) (-15 -1371 ((-112))) (-15 -4340 ((-112))) (-15 -2723 ((-112))) (-15 -4393 ((-112))) (-15 -2261 ((-112))) (-15 -3145 ((-1192 |#2|) |#1|)) (-15 -1684 ((-1192 |#2|) |#1|)) (-15 -3016 ((-701 |#2|) (-1287 |#1|))) (-15 -2472 ((-701 |#2|) (-1287 |#1|))) (-15 -2548 (|#2| (-1287 |#1|))) (-15 -4167 (|#2| (-1287 |#1|))) (-15 -3006 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4045 (|#2| |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -2379 (|#2| |#1|)) (-15 -3653 (|#2| |#1|)) (-15 -4114 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -1424 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -3925 ((-1287 (-701 |#2|)) (-1287 |#1|)))) (-378 |#2|) (-174)) (T -377)) -((-2261 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4393 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2723 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4340 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1371 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4429 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4207 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1450 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2989 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2866 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3810 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3440 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2614 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3903 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3558 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1287 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) -(-10 -8 (-15 -4378 ((-1192 |#2|) |#1|)) (-15 -3691 ((-1192 |#2|) |#1|)) (-15 -3558 ((-656 (-1287 |#2|)))) (-15 -3046 ((-3 |#1| "failed") |#1|)) (-15 -1714 ((-3 |#1| "failed") |#1|)) (-15 -3179 ((-3 |#1| "failed") |#1|)) (-15 -3903 ((-112))) (-15 -2614 ((-112))) (-15 -3440 ((-112))) (-15 -3810 ((-112))) (-15 -2866 ((-112))) (-15 -2989 ((-112))) (-15 -1450 ((-112))) (-15 -4207 ((-112))) (-15 -4429 ((-112))) (-15 -1371 ((-112))) (-15 -4340 ((-112))) (-15 -2723 ((-112))) (-15 -4393 ((-112))) (-15 -2261 ((-112))) (-15 -3145 ((-1192 |#2|) |#1|)) (-15 -1684 ((-1192 |#2|) |#1|)) (-15 -3016 ((-701 |#2|) (-1287 |#1|))) (-15 -2472 ((-701 |#2|) (-1287 |#1|))) (-15 -2548 (|#2| (-1287 |#1|))) (-15 -4167 (|#2| (-1287 |#1|))) (-15 -3006 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4045 (|#2| |#1|)) (-15 -1891 (|#2| |#1|)) (-15 -2379 (|#2| |#1|)) (-15 -3653 (|#2| |#1|)) (-15 -4114 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -1424 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -3925 ((-1287 (-701 |#2|)) (-1287 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3500 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) 20)) (-3925 (((-1287 (-701 |#1|)) (-1287 $)) 83)) (-3286 (((-1287 $)) 86)) (-3656 (($) 18 T CONST)) (-3063 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-4163 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-3016 (((-701 |#1|) (-1287 $)) 70)) (-2379 ((|#1| $) 79)) (-4114 (((-701 |#1|) $ (-1287 $)) 81)) (-3046 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-3952 (($ $ (-938)) 31)) (-4045 ((|#1| $) 77)) (-4378 (((-1192 |#1|) $) 47 (|has| |#1| (-568)))) (-2548 ((|#1| (-1287 $)) 72)) (-3145 (((-1192 |#1|) $) 68)) (-4429 (((-112)) 62)) (-3006 (($ (-1287 |#1|) (-1287 $)) 74)) (-3179 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4049 (((-938)) 85)) (-3751 (((-112)) 59)) (-4370 (($ $ (-938)) 38)) (-3440 (((-112)) 55)) (-3903 (((-112)) 53)) (-2866 (((-112)) 57)) (-2416 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3335 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-2472 (((-701 |#1|) (-1287 $)) 71)) (-3653 ((|#1| $) 80)) (-1424 (((-701 |#1|) $ (-1287 $)) 82)) (-1714 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-2596 (($ $ (-938)) 32)) (-1891 ((|#1| $) 78)) (-3691 (((-1192 |#1|) $) 48 (|has| |#1| (-568)))) (-4167 ((|#1| (-1287 $)) 73)) (-1684 (((-1192 |#1|) $) 69)) (-1371 (((-112)) 63)) (-3288 (((-1178) $) 10)) (-2614 (((-112)) 54)) (-3810 (((-112)) 56)) (-2989 (((-112)) 58)) (-3139 (((-1139) $) 11)) (-4207 (((-112)) 61)) (-3287 (((-1287 |#1|) $ (-1287 $)) 76) (((-701 |#1|) (-1287 $) (-1287 $)) 75)) (-2180 (((-656 (-969 |#1|)) (-1287 $)) 84)) (-1361 (($ $ $) 28)) (-2261 (((-112)) 67)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3558 (((-656 (-1287 |#1|))) 49 (|has| |#1| (-568)))) (-3911 (($ $ $ $) 29)) (-2723 (((-112)) 65)) (-3771 (($ $ $) 27)) (-4393 (((-112)) 66)) (-4340 (((-112)) 64)) (-1450 (((-112)) 60)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-3474 (((-112) $ $) NIL)) (-3917 ((|#1| $ |#1|) 31)) (-1606 (($ $ (-1177)) 23)) (-3066 (((-3 |#1| "failed") $) 30)) (-3280 ((|#1| $) 28)) (-3223 (($ (-400)) 22) (($ (-400) (-1177)) 21)) (-2706 (((-400) $) 25)) (-1927 (((-1177) $) NIL)) (-1746 (((-1177) $) 26)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 20)) (-4382 (($ $) 24)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 19))) +(((-376 |#1|) (-13 (-375 (-400) |#1|) (-10 -8 (-15 -3066 ((-3 |#1| "failed") $)))) (-1119)) (T -376)) +((-3066 (*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1119))))) +(-13 (-375 (-400) |#1|) (-10 -8 (-15 -3066 ((-3 |#1| "failed") $)))) +((-2697 (((-1286 (-701 |#2|)) (-1286 $)) 67)) (-4252 (((-701 |#2|) (-1286 $)) 139)) (-2828 ((|#2| $) 36)) (-1783 (((-701 |#2|) $ (-1286 $)) 142)) (-2991 (((-3 $ "failed") $) 89)) (-3207 ((|#2| $) 39)) (-3812 (((-1191 |#2|) $) 98)) (-2639 ((|#2| (-1286 $)) 122)) (-2355 (((-1191 |#2|) $) 32)) (-3411 (((-112)) 116)) (-2612 (($ (-1286 |#2|) (-1286 $)) 132)) (-1551 (((-3 $ "failed") $) 93)) (-4334 (((-112)) 111)) (-1364 (((-112)) 106)) (-2272 (((-112)) 58)) (-1950 (((-701 |#2|) (-1286 $)) 137)) (-3544 ((|#2| $) 35)) (-2269 (((-701 |#2|) $ (-1286 $)) 141)) (-1410 (((-3 $ "failed") $) 87)) (-3804 ((|#2| $) 38)) (-2904 (((-1191 |#2|) $) 97)) (-1394 ((|#2| (-1286 $)) 120)) (-3764 (((-1191 |#2|) $) 30)) (-2692 (((-112)) 115)) (-1610 (((-112)) 108)) (-3077 (((-112)) 56)) (-3276 (((-112)) 103)) (-2775 (((-112)) 117)) (-1809 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) 128)) (-2012 (((-112)) 113)) (-2253 (((-656 (-1286 |#2|))) 102)) (-1524 (((-112)) 114)) (-2647 (((-112)) 112)) (-2256 (((-112)) 51)) (-4016 (((-112)) 118))) +(((-377 |#1| |#2|) (-10 -8 (-15 -3812 ((-1191 |#2|) |#1|)) (-15 -2904 ((-1191 |#2|) |#1|)) (-15 -2253 ((-656 (-1286 |#2|)))) (-15 -2991 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-3 |#1| "failed") |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 -1364 ((-112))) (-15 -1610 ((-112))) (-15 -4334 ((-112))) (-15 -3077 ((-112))) (-15 -2272 ((-112))) (-15 -3276 ((-112))) (-15 -4016 ((-112))) (-15 -2775 ((-112))) (-15 -3411 ((-112))) (-15 -2692 ((-112))) (-15 -2256 ((-112))) (-15 -1524 ((-112))) (-15 -2647 ((-112))) (-15 -2012 ((-112))) (-15 -2355 ((-1191 |#2|) |#1|)) (-15 -3764 ((-1191 |#2|) |#1|)) (-15 -4252 ((-701 |#2|) (-1286 |#1|))) (-15 -1950 ((-701 |#2|) (-1286 |#1|))) (-15 -2639 (|#2| (-1286 |#1|))) (-15 -1394 (|#2| (-1286 |#1|))) (-15 -2612 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3207 (|#2| |#1|)) (-15 -3804 (|#2| |#1|)) (-15 -2828 (|#2| |#1|)) (-15 -3544 (|#2| |#1|)) (-15 -1783 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2269 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2697 ((-1286 (-701 |#2|)) (-1286 |#1|)))) (-378 |#2|) (-174)) (T -377)) +((-2012 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2647 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1524 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2256 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2692 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3411 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2775 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4016 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3276 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2272 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-3077 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-4334 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1610 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-1364 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) (-2253 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1286 *4))) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4))))) +(-10 -8 (-15 -3812 ((-1191 |#2|) |#1|)) (-15 -2904 ((-1191 |#2|) |#1|)) (-15 -2253 ((-656 (-1286 |#2|)))) (-15 -2991 ((-3 |#1| "failed") |#1|)) (-15 -1410 ((-3 |#1| "failed") |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 -1364 ((-112))) (-15 -1610 ((-112))) (-15 -4334 ((-112))) (-15 -3077 ((-112))) (-15 -2272 ((-112))) (-15 -3276 ((-112))) (-15 -4016 ((-112))) (-15 -2775 ((-112))) (-15 -3411 ((-112))) (-15 -2692 ((-112))) (-15 -2256 ((-112))) (-15 -1524 ((-112))) (-15 -2647 ((-112))) (-15 -2012 ((-112))) (-15 -2355 ((-1191 |#2|) |#1|)) (-15 -3764 ((-1191 |#2|) |#1|)) (-15 -4252 ((-701 |#2|) (-1286 |#1|))) (-15 -1950 ((-701 |#2|) (-1286 |#1|))) (-15 -2639 (|#2| (-1286 |#1|))) (-15 -1394 (|#2| (-1286 |#1|))) (-15 -2612 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3207 (|#2| |#1|)) (-15 -3804 (|#2| |#1|)) (-15 -2828 (|#2| |#1|)) (-15 -3544 (|#2| |#1|)) (-15 -1783 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2269 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2697 ((-1286 (-701 |#2|)) (-1286 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3341 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) 20)) (-2697 (((-1286 (-701 |#1|)) (-1286 $)) 83)) (-1686 (((-1286 $)) 86)) (-3767 (($) 18 T CONST)) (-4130 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-4122 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-4252 (((-701 |#1|) (-1286 $)) 70)) (-2828 ((|#1| $) 79)) (-1783 (((-701 |#1|) $ (-1286 $)) 81)) (-2991 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-4242 (($ $ (-938)) 31)) (-3207 ((|#1| $) 77)) (-3812 (((-1191 |#1|) $) 47 (|has| |#1| (-568)))) (-2639 ((|#1| (-1286 $)) 72)) (-2355 (((-1191 |#1|) $) 68)) (-3411 (((-112)) 62)) (-2612 (($ (-1286 |#1|) (-1286 $)) 74)) (-1551 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3606 (((-938)) 85)) (-2995 (((-112)) 59)) (-4300 (($ $ (-938)) 38)) (-4334 (((-112)) 55)) (-1364 (((-112)) 53)) (-2272 (((-112)) 57)) (-4230 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-2694 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-1950 (((-701 |#1|) (-1286 $)) 71)) (-3544 ((|#1| $) 80)) (-2269 (((-701 |#1|) $ (-1286 $)) 82)) (-1410 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-1428 (($ $ (-938)) 32)) (-3804 ((|#1| $) 78)) (-2904 (((-1191 |#1|) $) 48 (|has| |#1| (-568)))) (-1394 ((|#1| (-1286 $)) 73)) (-3764 (((-1191 |#1|) $) 69)) (-2692 (((-112)) 63)) (-1927 (((-1177) $) 10)) (-1610 (((-112)) 54)) (-3077 (((-112)) 56)) (-3276 (((-112)) 58)) (-1445 (((-1139) $) 11)) (-2775 (((-112)) 61)) (-1809 (((-1286 |#1|) $ (-1286 $)) 76) (((-701 |#1|) (-1286 $) (-1286 $)) 75)) (-3434 (((-656 (-969 |#1|)) (-1286 $)) 84)) (-4081 (($ $ $) 28)) (-2012 (((-112)) 67)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2253 (((-656 (-1286 |#1|))) 49 (|has| |#1| (-568)))) (-1938 (($ $ $ $) 29)) (-1524 (((-112)) 65)) (-2303 (($ $ $) 27)) (-2647 (((-112)) 66)) (-2256 (((-112)) 64)) (-4016 (((-112)) 60)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-378 |#1|) (-141) (-174)) (T -378)) -((-3286 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-378 *3)))) (-4049 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-938)))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-969 *4))))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1287 (-701 *4))))) (-1424 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4114 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2379 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1891 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-4045 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3287 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1287 *4)))) (-3287 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3006 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3016 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1684 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3)))) (-2261 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4393 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2723 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4340 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1371 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4429 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4207 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1450 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3751 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2989 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2866 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3810 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3440 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2614 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3903 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3179 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1714 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3046 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-3558 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1287 *3))))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1192 *3)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1192 *3)))) (-2416 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1999 (-656 *1)))) (-4 *1 (-378 *3)))) (-3063 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1999 (-656 *1)))) (-4 *1 (-378 *3)))) (-3335 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-4163 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-3500 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(-13 (-756 |t#1|) (-10 -8 (-15 -3286 ((-1287 $))) (-15 -4049 ((-938))) (-15 -2180 ((-656 (-969 |t#1|)) (-1287 $))) (-15 -3925 ((-1287 (-701 |t#1|)) (-1287 $))) (-15 -1424 ((-701 |t#1|) $ (-1287 $))) (-15 -4114 ((-701 |t#1|) $ (-1287 $))) (-15 -3653 (|t#1| $)) (-15 -2379 (|t#1| $)) (-15 -1891 (|t#1| $)) (-15 -4045 (|t#1| $)) (-15 -3287 ((-1287 |t#1|) $ (-1287 $))) (-15 -3287 ((-701 |t#1|) (-1287 $) (-1287 $))) (-15 -3006 ($ (-1287 |t#1|) (-1287 $))) (-15 -4167 (|t#1| (-1287 $))) (-15 -2548 (|t#1| (-1287 $))) (-15 -2472 ((-701 |t#1|) (-1287 $))) (-15 -3016 ((-701 |t#1|) (-1287 $))) (-15 -1684 ((-1192 |t#1|) $)) (-15 -3145 ((-1192 |t#1|) $)) (-15 -2261 ((-112))) (-15 -4393 ((-112))) (-15 -2723 ((-112))) (-15 -4340 ((-112))) (-15 -1371 ((-112))) (-15 -4429 ((-112))) (-15 -4207 ((-112))) (-15 -1450 ((-112))) (-15 -3751 ((-112))) (-15 -2989 ((-112))) (-15 -2866 ((-112))) (-15 -3810 ((-112))) (-15 -3440 ((-112))) (-15 -2614 ((-112))) (-15 -3903 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -3179 ((-3 $ "failed") $)) (-15 -1714 ((-3 $ "failed") $)) (-15 -3046 ((-3 $ "failed") $)) (-15 -3558 ((-656 (-1287 |t#1|)))) (-15 -3691 ((-1192 |t#1|) $)) (-15 -4378 ((-1192 |t#1|) $)) (-15 -2416 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed"))) (-15 -3063 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed"))) (-15 -3335 ((-3 $ "failed"))) (-15 -4163 ((-3 $ "failed"))) (-15 -3500 ((-3 $ "failed"))) (-6 -4459)) |%noBranch|))) +((-1686 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-378 *3)))) (-3606 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-938)))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-656 (-969 *4))))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1286 (-701 *4))))) (-2269 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-1783 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-3207 (*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1809 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-1286 *4)))) (-1809 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) (-4 *1 (-378 *4)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-4252 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3)))) (-2355 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3)))) (-2012 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2647 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1524 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2256 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2692 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3411 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2775 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4016 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2995 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3276 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-2272 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-3077 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-4334 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1610 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1364 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112)))) (-1551 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-1410 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2991 (*1 *1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) (-2253 (*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-656 (-1286 *3))))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1191 *3)))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) (-5 *2 (-1191 *3)))) (-4230 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3713 (-656 *1)))) (-4 *1 (-378 *3)))) (-4130 (*1 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3713 (-656 *1)))) (-4 *1 (-378 *3)))) (-2694 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-4122 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) (-3341 (*1 *1) (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(-13 (-756 |t#1|) (-10 -8 (-15 -1686 ((-1286 $))) (-15 -3606 ((-938))) (-15 -3434 ((-656 (-969 |t#1|)) (-1286 $))) (-15 -2697 ((-1286 (-701 |t#1|)) (-1286 $))) (-15 -2269 ((-701 |t#1|) $ (-1286 $))) (-15 -1783 ((-701 |t#1|) $ (-1286 $))) (-15 -3544 (|t#1| $)) (-15 -2828 (|t#1| $)) (-15 -3804 (|t#1| $)) (-15 -3207 (|t#1| $)) (-15 -1809 ((-1286 |t#1|) $ (-1286 $))) (-15 -1809 ((-701 |t#1|) (-1286 $) (-1286 $))) (-15 -2612 ($ (-1286 |t#1|) (-1286 $))) (-15 -1394 (|t#1| (-1286 $))) (-15 -2639 (|t#1| (-1286 $))) (-15 -1950 ((-701 |t#1|) (-1286 $))) (-15 -4252 ((-701 |t#1|) (-1286 $))) (-15 -3764 ((-1191 |t#1|) $)) (-15 -2355 ((-1191 |t#1|) $)) (-15 -2012 ((-112))) (-15 -2647 ((-112))) (-15 -1524 ((-112))) (-15 -2256 ((-112))) (-15 -2692 ((-112))) (-15 -3411 ((-112))) (-15 -2775 ((-112))) (-15 -4016 ((-112))) (-15 -2995 ((-112))) (-15 -3276 ((-112))) (-15 -2272 ((-112))) (-15 -3077 ((-112))) (-15 -4334 ((-112))) (-15 -1610 ((-112))) (-15 -1364 ((-112))) (IF (|has| |t#1| (-568)) (PROGN (-15 -1551 ((-3 $ "failed") $)) (-15 -1410 ((-3 $ "failed") $)) (-15 -2991 ((-3 $ "failed") $)) (-15 -2253 ((-656 (-1286 |t#1|)))) (-15 -2904 ((-1191 |t#1|) $)) (-15 -3812 ((-1191 |t#1|) $)) (-15 -4230 ((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed"))) (-15 -4130 ((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed"))) (-15 -2694 ((-3 $ "failed"))) (-15 -4122 ((-3 $ "failed"))) (-15 -3341 ((-3 $ "failed"))) (-6 -4458)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 7)) (-2247 (((-783)) 17)) (-2446 (($) 14)) (-3225 (((-938) $) 15)) (-3288 (((-1178) $) 10)) (-2550 (($ (-938)) 16)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-3474 (((-112) $ $) 7)) (-2148 (((-783)) 17)) (-1803 (($) 14)) (-1902 (((-938) $) 15)) (-1927 (((-1177) $) 10)) (-3257 (($ (-938)) 16)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-379) (-141)) (T -379)) -((-2247 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-2550 (*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-379)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-938)))) (-2446 (*1 *1) (-4 *1 (-379)))) -(-13 (-1119) (-10 -8 (-15 -2247 ((-783))) (-15 -2550 ($ (-938))) (-15 -3225 ((-938) $)) (-15 -2446 ($)))) +((-2148 (*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) (-3257 (*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-379)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-938)))) (-1803 (*1 *1) (-4 *1 (-379)))) +(-13 (-1119) (-10 -8 (-15 -2148 ((-783))) (-15 -3257 ($ (-938))) (-15 -1902 ((-938) $)) (-15 -1803 ($)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-1532 (((-701 |#2|) (-1287 $)) 45)) (-3006 (($ (-1287 |#2|) (-1287 $)) 39)) (-3754 (((-701 |#2|) $ (-1287 $)) 47)) (-1955 ((|#2| (-1287 $)) 13)) (-3287 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) 27))) -(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -1532 ((-701 |#2|) (-1287 |#1|))) (-15 -1955 (|#2| (-1287 |#1|))) (-15 -3006 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3754 ((-701 |#2|) |#1| (-1287 |#1|)))) (-381 |#2| |#3|) (-174) (-1263 |#2|)) (T -380)) -NIL -(-10 -8 (-15 -1532 ((-701 |#2|) (-1287 |#1|))) (-15 -1955 (|#2| (-1287 |#1|))) (-15 -3006 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3754 ((-701 |#2|) |#1| (-1287 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1532 (((-701 |#1|) (-1287 $)) 53)) (-3803 ((|#1| $) 59)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3006 (($ (-1287 |#1|) (-1287 $)) 55)) (-3754 (((-701 |#1|) $ (-1287 $)) 60)) (-3179 (((-3 $ "failed") $) 37)) (-4049 (((-938)) 61)) (-1810 (((-112) $) 35)) (-4252 ((|#1| $) 58)) (-3164 ((|#2| $) 51 (|has| |#1| (-374)))) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-1955 ((|#1| (-1287 $)) 54)) (-3287 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3612 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3794 ((|#2| $) 52)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-381 |#1| |#2|) (-141) (-174) (-1263 |t#1|)) (T -381)) -((-4049 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-938)))) (-3754 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) (-3287 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *4)))) (-3287 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-3006 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1263 *4)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1263 *2)) (-4 *2 (-174)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) (-3164 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1263 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -4049 ((-938))) (-15 -3754 ((-701 |t#1|) $ (-1287 $))) (-15 -3803 (|t#1| $)) (-15 -4252 (|t#1| $)) (-15 -3287 ((-1287 |t#1|) $ (-1287 $))) (-15 -3287 ((-701 |t#1|) (-1287 $) (-1287 $))) (-15 -3006 ($ (-1287 |t#1|) (-1287 $))) (-15 -1955 (|t#1| (-1287 $))) (-15 -1532 ((-701 |t#1|) (-1287 $))) (-15 -3794 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -3164 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) +((-4084 (((-701 |#2|) (-1286 $)) 45)) (-2612 (($ (-1286 |#2|) (-1286 $)) 39)) (-3103 (((-701 |#2|) $ (-1286 $)) 47)) (-1960 ((|#2| (-1286 $)) 13)) (-1809 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) 27))) +(((-380 |#1| |#2| |#3|) (-10 -8 (-15 -4084 ((-701 |#2|) (-1286 |#1|))) (-15 -1960 (|#2| (-1286 |#1|))) (-15 -2612 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3103 ((-701 |#2|) |#1| (-1286 |#1|)))) (-381 |#2| |#3|) (-174) (-1262 |#2|)) (T -380)) +NIL +(-10 -8 (-15 -4084 ((-701 |#2|) (-1286 |#1|))) (-15 -1960 (|#2| (-1286 |#1|))) (-15 -2612 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3103 ((-701 |#2|) |#1| (-1286 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-4084 (((-701 |#1|) (-1286 $)) 53)) (-2310 ((|#1| $) 59)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-2612 (($ (-1286 |#1|) (-1286 $)) 55)) (-3103 (((-701 |#1|) $ (-1286 $)) 60)) (-1551 (((-3 $ "failed") $) 37)) (-3606 (((-938)) 61)) (-1414 (((-112) $) 35)) (-4072 ((|#1| $) 58)) (-2554 ((|#2| $) 51 (|has| |#1| (-374)))) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-1960 ((|#1| (-1286 $)) 54)) (-1809 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-2883 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3941 ((|#2| $) 52)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-381 |#1| |#2|) (-141) (-174) (-1262 |t#1|)) (T -381)) +((-3606 (*1 *2) (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-938)))) (-3103 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) (-1809 (*1 *2 *1 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *4)))) (-1809 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-2612 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) (-4 *1 (-381 *4 *5)) (-4 *5 (-1262 *4)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1262 *2)) (-4 *2 (-174)))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) (-2554 (*1 *2 *1) (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) (-4 *2 (-1262 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3606 ((-938))) (-15 -3103 ((-701 |t#1|) $ (-1286 $))) (-15 -2310 (|t#1| $)) (-15 -4072 (|t#1| $)) (-15 -1809 ((-1286 |t#1|) $ (-1286 $))) (-15 -1809 ((-701 |t#1|) (-1286 $) (-1286 $))) (-15 -2612 ($ (-1286 |t#1|) (-1286 $))) (-15 -1960 (|t#1| (-1286 $))) (-15 -4084 ((-701 |t#1|) (-1286 $))) (-15 -3941 (|t#2| $)) (IF (|has| |t#1| (-374)) (-15 -2554 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-1687 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2359 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2477 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2359 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1687 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1237) (-384 |#1|) (-1237) (-384 |#3|)) (T -382)) -((-1687 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-2359 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) -(-10 -7 (-15 -2477 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2359 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1687 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2761 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3362 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2398 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4112 (($ $) 25)) (-3433 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-3257 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-383 |#1| |#2|) (-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2761 ((-112) |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -3257 (|#1| |#1| |#1|)) (-15 -3433 ((-576) |#2| |#1| (-576))) (-15 -3433 ((-576) |#2| |#1|)) (-15 -3433 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2761 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2398 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -3257 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1237)) (T -383)) -NIL -(-10 -8 (-15 -3362 (|#1| |#1|)) (-15 -3362 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2761 ((-112) |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -3257 (|#1| |#1| |#1|)) (-15 -3433 ((-576) |#2| |#1| (-576))) (-15 -3433 ((-576) |#2| |#1|)) (-15 -3433 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2761 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2398 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4112 (|#1| |#1|)) (-15 -3257 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2449 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) 8)) (-4248 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-3129 (($ $) 93 (|has| $ (-6 -4463)))) (-4112 (($ $) 103)) (-1690 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 52)) (-3433 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1992 (($ (-783) |#1|) 70)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 44 (|has| (-576) (-862)))) (-3492 (($ $ $) 90 (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 45 (|has| (-576) (-862)))) (-2726 (($ $ $) 89 (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4428 (((-656 (-576)) $) 47)) (-2013 (((-112) (-576) $) 48)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2701 ((|#1| $) 43 (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2918 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-2470 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3582 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-4268 (($ $) 13)) (-1505 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 72)) (-2851 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3955 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3966 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3944 (((-112) $ $) 85 (|has| |#1| (-862)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-384 |#1|) (-141) (-1237)) (T -384)) -((-3257 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-4112 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)))) (-2398 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-2761 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-3433 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) (-5 *2 (-576)))) (-3433 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-576)))) (-3433 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)))) (-3257 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862)))) (-2398 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-862)) (-5 *2 (-112)))) (-3582 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4463)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-3129 (*1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-384 *2)) (-4 *2 (-1237)))) (-3362 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4463)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) (-3362 (*1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862))))) -(-13 (-663 |t#1|) (-10 -8 (-6 -4462) (-15 -3257 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4112 ($ $)) (-15 -2398 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2761 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3433 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -3433 ((-576) |t#1| $)) (-15 -3433 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-6 (-862)) (-15 -3257 ($ $ $)) (-15 -2398 ($ $)) (-15 -2761 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4463)) (PROGN (-15 -3582 ($ $ $ (-576))) (-15 -3129 ($ $)) (-15 -3362 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-15 -3362 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1237) . T)) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-2677 (((-656 |#1|) $) 37)) (-1936 (($ $ (-783)) 38)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-4065 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 41)) (-3313 (($ $) 39)) (-2267 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 42)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2259 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-2369 (((-783) $) 43)) (-4103 (($ $ $) 34)) (-4092 (((-874) $) 12) (($ |#1|) 46) (((-1302 |#1| |#2|) $) 45) (((-1311 |#1| |#2|) $) 44)) (-1856 ((|#2| (-1311 |#1| |#2|) $) 47)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-2542 (($ (-684 |#1|)) 40)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) +((-2874 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2521 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-1632 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-382 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2874 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1236) (-384 |#1|) (-1236) (-384 |#3|)) (T -382)) +((-2874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5))))) +(-10 -7 (-15 -1632 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2874 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2373 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2265 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1758 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3733 (($ $) 25)) (-3584 (((-576) (-1 (-112) |#2|) $) NIL) (((-576) |#2| $) 11) (((-576) |#2| $ (-576)) NIL)) (-1854 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-383 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -3584 ((-576) |#2| |#1| (-576))) (-15 -3584 ((-576) |#2| |#1|)) (-15 -3584 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2373 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1758 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -1854 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-384 |#2|) (-1236)) (T -383)) +NIL +(-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -3584 ((-576) |#2| |#1| (-576))) (-15 -3584 ((-576) |#2| |#1|)) (-15 -3584 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -2373 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1758 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3733 (|#1| |#1|)) (-15 -1854 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2333 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) 8)) (-3731 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3478 (($ $) 93 (|has| $ (-6 -4462)))) (-3733 (($ $) 103)) (-3172 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 52)) (-3584 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-4033 (($ (-783) |#1|) 70)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 44 (|has| (-576) (-862)))) (-2442 (($ $ $) 90 (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 45 (|has| (-576) (-862)))) (-1893 (($ $ $) 89 (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3321 (((-656 (-576)) $) 47)) (-2378 (((-112) (-576) $) 48)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3504 ((|#1| $) 43 (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2500 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-3464 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3760 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-1954 (($ $) 13)) (-4076 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 72)) (-1661 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 86 (|has| |#1| (-862)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3037 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3010 (((-112) $ $) 85 (|has| |#1| (-862)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-384 |#1|) (-141) (-1236)) (T -384)) +((-1854 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-3733 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)))) (-1758 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-2373 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-3584 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) (-5 *2 (-576)))) (-3584 (*1 *2 *3 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-1119)) (-5 *2 (-576)))) (-3584 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-1119)))) (-1854 (*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) (-1758 (*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) (-2373 (*1 *2 *1) (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-862)) (-5 *2 (-112)))) (-3760 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-3478 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)))) (-2265 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4462)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) (-2265 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862))))) +(-13 (-663 |t#1|) (-10 -8 (-6 -4461) (-15 -1854 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3733 ($ $)) (-15 -1758 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2373 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3584 ((-576) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -3584 ((-576) |t#1| $)) (-15 -3584 ((-576) |t#1| $ (-576)))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-6 (-862)) (-15 -1854 ($ $ $)) (-15 -1758 ($ $)) (-15 -2373 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -3760 ($ $ $ (-576))) (-15 -3478 ($ $)) (-15 -2265 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-15 -2265 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1236) . T)) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3388 (((-656 |#1|) $) 37)) (-3639 (($ $ (-783)) 38)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1338 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 41)) (-2575 (($ $) 39)) (-4398 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 42)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3306 (($ $ |#1| $) 36) (($ $ (-656 |#1|) (-656 $)) 35)) (-1433 (((-783) $) 43)) (-3573 (($ $ $) 34)) (-3563 (((-874) $) 12) (($ |#1|) 46) (((-1301 |#1| |#2|) $) 45) (((-1310 |#1| |#2|) $) 44)) (-1706 ((|#2| (-1310 |#1| |#2|) $) 47)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-4394 (($ (-684 |#1|)) 40)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#2|) 33 (|has| |#2| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31))) (((-385 |#1| |#2|) (-141) (-862) (-174)) (T -385)) -((-1856 (*1 *2 *3 *1) (-12 (-5 *3 (-1311 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) (-4 *2 (-174)))) (-4092 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1302 *3 *4)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1311 *3 *4)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-783)))) (-2267 (*1 *2 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-4065 (*1 *2 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2542 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-2259 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-862)) (-4 *5 (-174))))) -(-13 (-646 |t#2|) (-10 -8 (-15 -1856 (|t#2| (-1311 |t#1| |t#2|) $)) (-15 -4092 ($ |t#1|)) (-15 -4092 ((-1302 |t#1| |t#2|) $)) (-15 -4092 ((-1311 |t#1| |t#2|) $)) (-15 -2369 ((-783) $)) (-15 -2267 ((-1311 |t#1| |t#2|) (-1311 |t#1| |t#2|) $)) (-15 -4065 ((-1311 |t#1| |t#2|) (-1311 |t#1| |t#2|) $)) (-15 -2542 ($ (-684 |t#1|))) (-15 -3313 ($ $)) (-15 -1936 ($ $ (-783))) (-15 -2677 ((-656 |t#1|) $)) (-15 -2259 ($ $ |t#1| $)) (-15 -2259 ($ $ (-656 |t#1|) (-656 $))))) +((-1706 (*1 *2 *3 *1) (-12 (-5 *3 (-1310 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) (-4 *2 (-174)))) (-3563 (*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1301 *3 *4)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-1310 *3 *4)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-783)))) (-4398 (*1 *2 *2 *1) (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-1338 (*1 *2 *2 *1) (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) (-4 *4 (-174)))) (-2575 (*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *2 (-656 *3)))) (-3306 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) (-4 *4 (-862)) (-4 *5 (-174))))) +(-13 (-646 |t#2|) (-10 -8 (-15 -1706 (|t#2| (-1310 |t#1| |t#2|) $)) (-15 -3563 ($ |t#1|)) (-15 -3563 ((-1301 |t#1| |t#2|) $)) (-15 -3563 ((-1310 |t#1| |t#2|) $)) (-15 -1433 ((-783) $)) (-15 -4398 ((-1310 |t#1| |t#2|) (-1310 |t#1| |t#2|) $)) (-15 -1338 ((-1310 |t#1| |t#2|) (-1310 |t#1| |t#2|) $)) (-15 -4394 ($ (-684 |t#1|))) (-15 -2575 ($ $)) (-15 -3639 ($ $ (-783))) (-15 -3388 ((-656 |t#1|) $)) (-15 -3306 ($ $ |t#1| $)) (-15 -3306 ($ $ (-656 |t#1|) (-656 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-660 |#2|) . T) ((-646 |#2|) . T) ((-652 |#2|) . T) ((-729 |#2|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1119) . T)) -((-2469 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-3835 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2152 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) -(((-386 |#1| |#2|) (-10 -7 (-15 -3835 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2152 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2469 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1237) (-13 (-384 |#1|) (-10 -7 (-6 -4463)))) (T -386)) -((-2469 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))))) (-2152 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))))) (-3835 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463))))))) -(-10 -7 (-15 -3835 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2152 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2469 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-3687 (((-701 |#2|) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 22) (((-701 (-576)) (-701 $)) 14) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL))) -(((-387 |#1| |#2|) (-10 -8 (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-1287 |#1|)))) (-388 |#2|) (-1068)) (T -387)) -NIL -(-10 -8 (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-1287 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3687 (((-701 |#1|) (-1287 $)) 32) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 29) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 41 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 40 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1287 $)) 38 (|has| |#1| (-651 (-576))))) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +((-1754 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 40)) (-1503 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-3890 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 33))) +(((-386 |#1| |#2|) (-10 -7 (-15 -1503 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3890 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1754 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1236) (-13 (-384 |#1|) (-10 -7 (-6 -4462)))) (T -386)) +((-1754 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))) (-3890 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))))) (-1503 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462))))))) +(-10 -7 (-15 -1503 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -3890 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1754 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-3687 (((-701 |#2|) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 22) (((-701 (-576)) (-701 $)) 14) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL))) +(((-387 |#1| |#2|) (-10 -8 (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-1286 |#1|)))) (-388 |#2|) (-1068)) (T -387)) +NIL +(-10 -8 (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-1286 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-3687 (((-701 |#1|) (-1286 $)) 32) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 29) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 41 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 40 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 39 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-1286 $)) 38 (|has| |#1| (-651 (-576))))) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) (((-388 |#1|) (-141) (-1068)) (T -388)) NIL (-13 (-651 |t#1|) (-10 -7 (IF (|has| |t#1| (-651 (-576))) (-6 (-651 (-576))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 #0=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-651 #0#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-1119) . T)) -((-2518 (((-656 (-304 (-969 (-171 |#1|)))) (-304 (-419 (-969 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-969 (-171 |#1|)))) (-419 (-969 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-304 (-419 (-969 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-419 (-969 (-171 (-576))))) |#1|) 41)) (-2210 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-969 (-171 (-576))))) (-656 (-1196)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-969 (-171 (-576)))) |#1|) 18))) -(((-389 |#1|) (-10 -7 (-15 -2518 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -2518 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-304 (-419 (-969 (-171 (-576)))))) |#1|)) (-15 -2518 ((-656 (-304 (-969 (-171 |#1|)))) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -2518 ((-656 (-304 (-969 (-171 |#1|)))) (-304 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -2210 ((-656 (-171 |#1|)) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -2210 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-969 (-171 (-576))))) (-656 (-1196)) |#1|))) (-13 (-374) (-860))) (T -389)) -((-2210 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-2210 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 (-171 (-576)))))) (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-171 (-576))))) (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-969 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -2518 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -2518 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-304 (-419 (-969 (-171 (-576)))))) |#1|)) (-15 -2518 ((-656 (-304 (-969 (-171 |#1|)))) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -2518 ((-656 (-304 (-969 (-171 |#1|)))) (-304 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -2210 ((-656 (-171 |#1|)) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -2210 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-969 (-171 (-576))))) (-656 (-1196)) |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 35)) (-3942 (((-576) $) 62)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2255 (($ $) 136)) (-2266 (($ $) 98)) (-2111 (($ $) 90)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-1403 (($ $) 47)) (-4407 (((-112) $ $) NIL)) (-2236 (($ $) 96)) (-2084 (($ $) 85)) (-3934 (((-576) $) 78)) (-3298 (($ $ (-576)) 73)) (-2294 (($ $) NIL)) (-2138 (($ $) NIL)) (-3656 (($) NIL T CONST)) (-4327 (($ $) 138)) (-2974 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-2378 (((-576) $) 229) (((-419 (-576)) $) 225)) (-1975 (($ $ $) NIL)) (-3705 (((-576) $ $) 125)) (-3179 (((-3 $ "failed") $) 141)) (-3452 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-2250 (((-938)) 121) (((-938) (-938)) 122 (|has| $ (-6 -4453)))) (-3567 (((-112) $) 130)) (-3926 (($) 41)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-2231 (((-1292) (-783)) 191)) (-4293 (((-1292)) 196) (((-1292) (-783)) 197)) (-3338 (((-1292)) 198) (((-1292) (-783)) 199)) (-3224 (((-1292)) 194) (((-1292) (-783)) 195)) (-1538 (((-576) $) 68)) (-1810 (((-112) $) 40)) (-3355 (($ $ (-576)) NIL)) (-1845 (($ $) 51)) (-4252 (($ $) NIL)) (-3713 (((-112) $) 37)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL) (($) NIL (-12 (-2433 (|has| $ (-6 -4445))) (-2433 (|has| $ (-6 -4453)))))) (-2726 (($ $ $) NIL) (($) NIL (-12 (-2433 (|has| $ (-6 -4445))) (-2433 (|has| $ (-6 -4453)))))) (-4415 (((-576) $) 17)) (-4109 (($) 106) (($ $) 113)) (-2616 (($) 112) (($ $) 114)) (-2703 (($ $) 101)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 143)) (-2226 (((-938) (-576)) 46 (|has| $ (-6 -4453)))) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) 60)) (-3892 (($ $) 135)) (-2733 (($ (-576) (-576)) 131) (($ (-576) (-576) (-938)) 132)) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3175 (((-576) $) 19)) (-3169 (($) 115)) (-3353 (($ $) 95)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3963 (((-938)) 123) (((-938) (-938)) 124 (|has| $ (-6 -4453)))) (-3614 (($ $) 142) (($ $ (-783)) NIL)) (-3262 (((-938) (-576)) 50 (|has| $ (-6 -4453)))) (-2307 (($ $) NIL)) (-2149 (($ $) NIL)) (-2281 (($ $) NIL)) (-2123 (($ $) NIL)) (-2253 (($ $) 97)) (-2099 (($ $) 89)) (-1505 (((-390) $) 216) (((-227) $) 218) (((-905 (-390)) $) NIL) (((-1178) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-4092 (((-874) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-2471 (((-783)) NIL T CONST)) (-4179 (($ $) 137)) (-1939 (((-938)) 61) (((-938) (-938)) 80 (|has| $ (-6 -4453)))) (-1531 (((-112) $ $) NIL)) (-1841 (((-938)) 126)) (-2340 (($ $) 104)) (-2184 (($ $) 49) (($ $ $) 59)) (-2947 (((-112) $ $) NIL)) (-2317 (($ $) 102)) (-2161 (($ $) 39)) (-2368 (($ $) NIL)) (-2207 (($ $) NIL)) (-3945 (($ $) NIL)) (-2220 (($ $) NIL)) (-2352 (($ $) NIL)) (-2195 (($ $) NIL)) (-2329 (($ $) 103)) (-2173 (($ $) 52)) (-3423 (($ $) 58)) (-4300 (($) 36 T CONST)) (-4310 (($) 43 T CONST)) (-3774 (((-1178) $) 27) (((-1178) $ (-112)) 29) (((-1292) (-834) $) 30) (((-1292) (-834) $ (-112)) 31)) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-3977 (((-112) $ $) 203)) (-3955 (((-112) $ $) 45)) (-3919 (((-112) $ $) 56)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 57)) (-4028 (($ $ $) 48) (($ $ (-576)) 42)) (-4018 (($ $) 38) (($ $ $) 53)) (-4007 (($ $ $) 72)) (** (($ $ (-938)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-938) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-390) (-13 (-416) (-238) (-626 (-1178)) (-840) (-625 (-227)) (-1222) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4028 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1845 ($ $)) (-15 -3705 ((-576) $ $)) (-15 -3298 ($ $ (-576))) (-15 -3452 ((-419 (-576)) $ (-783))) (-15 -3452 ((-419 (-576)) $ (-783) (-783))) (-15 -4109 ($)) (-15 -2616 ($)) (-15 -3169 ($)) (-15 -2184 ($ $ $)) (-15 -4109 ($ $)) (-15 -2616 ($ $)) (-15 -3338 ((-1292))) (-15 -3338 ((-1292) (-783))) (-15 -3224 ((-1292))) (-15 -3224 ((-1292) (-783))) (-15 -4293 ((-1292))) (-15 -4293 ((-1292) (-783))) (-15 -2231 ((-1292) (-783))) (-6 -4453) (-6 -4445)))) (T -390)) -((** (*1 *1 *1 *1) (-5 *1 (-390))) (-4028 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-1845 (*1 *1 *1) (-5 *1 (-390))) (-3705 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3298 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-3452 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-3452 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-4109 (*1 *1) (-5 *1 (-390))) (-2616 (*1 *1) (-5 *1 (-390))) (-3169 (*1 *1) (-5 *1 (-390))) (-2184 (*1 *1 *1 *1) (-5 *1 (-390))) (-4109 (*1 *1 *1) (-5 *1 (-390))) (-2616 (*1 *1 *1) (-5 *1 (-390))) (-3338 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) (-3224 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))) (-3224 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) (-4293 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390)))) (-4293 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390))))) -(-13 (-416) (-238) (-626 (-1178)) (-840) (-625 (-227)) (-1222) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -4028 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -1845 ($ $)) (-15 -3705 ((-576) $ $)) (-15 -3298 ($ $ (-576))) (-15 -3452 ((-419 (-576)) $ (-783))) (-15 -3452 ((-419 (-576)) $ (-783) (-783))) (-15 -4109 ($)) (-15 -2616 ($)) (-15 -3169 ($)) (-15 -2184 ($ $ $)) (-15 -4109 ($ $)) (-15 -2616 ($ $)) (-15 -3338 ((-1292))) (-15 -3338 ((-1292) (-783))) (-15 -3224 ((-1292))) (-15 -3224 ((-1292) (-783))) (-15 -4293 ((-1292))) (-15 -4293 ((-1292) (-783))) (-15 -2231 ((-1292) (-783))) (-6 -4453) (-6 -4445))) -((-1843 (((-656 (-304 (-969 |#1|))) (-304 (-419 (-969 (-576)))) |#1|) 46) (((-656 (-304 (-969 |#1|))) (-419 (-969 (-576))) |#1|) 45) (((-656 (-656 (-304 (-969 |#1|)))) (-656 (-304 (-419 (-969 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-969 |#1|)))) (-656 (-419 (-969 (-576)))) |#1|) 36)) (-1381 (((-656 |#1|) (-419 (-969 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-969 (-576)))) (-656 (-1196)) |#1|) 30))) -(((-391 |#1|) (-10 -7 (-15 -1843 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-419 (-969 (-576)))) |#1|)) (-15 -1843 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-304 (-419 (-969 (-576))))) |#1|)) (-15 -1843 ((-656 (-304 (-969 |#1|))) (-419 (-969 (-576))) |#1|)) (-15 -1843 ((-656 (-304 (-969 |#1|))) (-304 (-419 (-969 (-576)))) |#1|)) (-15 -1381 ((-656 (-656 |#1|)) (-656 (-419 (-969 (-576)))) (-656 (-1196)) |#1|)) (-15 -1381 ((-656 |#1|) (-419 (-969 (-576))) |#1|))) (-13 (-860) (-374))) (T -391)) -((-1381 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1381 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-969 (-576))))) (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 (-576))))) (-5 *2 (-656 (-304 (-969 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 (-304 (-969 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-969 (-576)))))) (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 (-576))))) (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))) -(-10 -7 (-15 -1843 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-419 (-969 (-576)))) |#1|)) (-15 -1843 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-304 (-419 (-969 (-576))))) |#1|)) (-15 -1843 ((-656 (-304 (-969 |#1|))) (-419 (-969 (-576))) |#1|)) (-15 -1843 ((-656 (-304 (-969 |#1|))) (-304 (-419 (-969 (-576)))) |#1|)) (-15 -1381 ((-656 (-656 |#1|)) (-656 (-419 (-969 (-576)))) (-656 (-1196)) |#1|)) (-15 -1381 ((-656 |#1|) (-419 (-969 (-576))) |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) 30)) (-2378 ((|#2| $) 32)) (-1717 (($ $) NIL)) (-1831 (((-783) $) 11)) (-2503 (((-656 $) $) 23)) (-4331 (((-112) $) NIL)) (-1585 (($ |#2| |#1|) 21)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3010 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1681 ((|#2| $) 18)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 51) (($ |#2|) 31)) (-3076 (((-656 |#1|) $) 20)) (-2430 ((|#1| $ |#2|) 55)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 33 T CONST)) (-2994 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) +((-3501 (((-656 (-304 (-969 (-171 |#1|)))) (-304 (-419 (-969 (-171 (-576))))) |#1|) 51) (((-656 (-304 (-969 (-171 |#1|)))) (-419 (-969 (-171 (-576)))) |#1|) 50) (((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-304 (-419 (-969 (-171 (-576)))))) |#1|) 47) (((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-419 (-969 (-171 (-576))))) |#1|) 41)) (-3416 (((-656 (-656 (-171 |#1|))) (-656 (-419 (-969 (-171 (-576))))) (-656 (-1195)) |#1|) 30) (((-656 (-171 |#1|)) (-419 (-969 (-171 (-576)))) |#1|) 18))) +(((-389 |#1|) (-10 -7 (-15 -3501 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -3501 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-304 (-419 (-969 (-171 (-576)))))) |#1|)) (-15 -3501 ((-656 (-304 (-969 (-171 |#1|)))) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -3501 ((-656 (-304 (-969 (-171 |#1|)))) (-304 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -3416 ((-656 (-171 |#1|)) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -3416 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-969 (-171 (-576))))) (-656 (-1195)) |#1|))) (-13 (-374) (-860))) (T -389)) +((-3416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 (-171 *5)))) (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860))))) (-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 (-171 (-576)))))) (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-171 (-576))))) (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-969 (-171 (-576))))))) (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) (-3501 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -3501 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -3501 ((-656 (-656 (-304 (-969 (-171 |#1|))))) (-656 (-304 (-419 (-969 (-171 (-576)))))) |#1|)) (-15 -3501 ((-656 (-304 (-969 (-171 |#1|)))) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -3501 ((-656 (-304 (-969 (-171 |#1|)))) (-304 (-419 (-969 (-171 (-576))))) |#1|)) (-15 -3416 ((-656 (-171 |#1|)) (-419 (-969 (-171 (-576)))) |#1|)) (-15 -3416 ((-656 (-656 (-171 |#1|))) (-656 (-419 (-969 (-171 (-576))))) (-656 (-1195)) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 35)) (-1560 (((-576) $) 62)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1615 (($ $) 136)) (-3894 (($ $) 98)) (-3768 (($ $) 90)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1853 (($ $) 47)) (-1727 (((-112) $ $) NIL)) (-3872 (($ $) 96)) (-3747 (($ $) 85)) (-2184 (((-576) $) 78)) (-2745 (($ $ (-576)) 73)) (-3916 (($ $) NIL)) (-3788 (($ $) NIL)) (-3767 (($) NIL T CONST)) (-2703 (($ $) 138)) (-1539 (((-3 (-576) "failed") $) 231) (((-3 (-419 (-576)) "failed") $) 227)) (-4056 (((-576) $) 229) (((-419 (-576)) $) 225)) (-3420 (($ $ $) NIL)) (-2911 (((-576) $ $) 125)) (-1551 (((-3 $ "failed") $) 141)) (-2842 (((-419 (-576)) $ (-783)) 232) (((-419 (-576)) $ (-783) (-783)) 224)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-3268 (((-938)) 121) (((-938) (-938)) 122 (|has| $ (-6 -4452)))) (-1910 (((-112) $) 130)) (-1570 (($) 41)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-1537 (((-1291) (-783)) 191)) (-2244 (((-1291)) 196) (((-1291) (-783)) 197)) (-1729 (((-1291)) 198) (((-1291) (-783)) 199)) (-1799 (((-1291)) 194) (((-1291) (-783)) 195)) (-3333 (((-576) $) 68)) (-1414 (((-112) $) 40)) (-2826 (($ $ (-576)) NIL)) (-2614 (($ $) 51)) (-4072 (($ $) NIL)) (-3566 (((-112) $) 37)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL) (($) NIL (-12 (-2746 (|has| $ (-6 -4444))) (-2746 (|has| $ (-6 -4452)))))) (-1893 (($ $ $) NIL) (($) NIL (-12 (-2746 (|has| $ (-6 -4444))) (-2746 (|has| $ (-6 -4452)))))) (-1431 (((-576) $) 17)) (-1355 (($) 106) (($ $) 113)) (-2423 (($) 112) (($ $) 114)) (-3710 (($ $) 101)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 143)) (-2357 (((-938) (-576)) 46 (|has| $ (-6 -4452)))) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) 60)) (-3835 (($ $) 135)) (-3096 (($ (-576) (-576)) 131) (($ (-576) (-576) (-938)) 132)) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4274 (((-576) $) 19)) (-1871 (($) 115)) (-3984 (($ $) 95)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2924 (((-938)) 123) (((-938) (-938)) 124 (|has| $ (-6 -4452)))) (-2735 (($ $) 142) (($ $ (-783)) NIL)) (-4184 (((-938) (-576)) 50 (|has| $ (-6 -4452)))) (-3928 (($ $) NIL)) (-3798 (($ $) NIL)) (-3905 (($ $) NIL)) (-3778 (($ $) NIL)) (-3882 (($ $) 97)) (-3757 (($ $) 89)) (-4076 (((-390) $) 216) (((-227) $) 218) (((-905 (-390)) $) NIL) (((-1177) $) 202) (((-548) $) 214) (($ (-227)) 223)) (-3563 (((-874) $) 206) (($ (-576)) 228) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-576)) 228) (($ (-419 (-576))) NIL) (((-227) $) 219)) (-1858 (((-783)) NIL T CONST)) (-3270 (($ $) 137)) (-3840 (((-938)) 61) (((-938) (-938)) 80 (|has| $ (-6 -4452)))) (-3985 (((-112) $ $) NIL)) (-3402 (((-938)) 126)) (-3958 (($ $) 104)) (-3831 (($ $) 49) (($ $ $) 59)) (-3040 (((-112) $ $) NIL)) (-3939 (($ $) 102)) (-3808 (($ $) 39)) (-3981 (($ $) NIL)) (-3852 (($ $) NIL)) (-1830 (($ $) NIL)) (-3863 (($ $) NIL)) (-3969 (($ $) NIL)) (-3841 (($ $) NIL)) (-3948 (($ $) 103)) (-3820 (($ $) 52)) (-2264 (($ $) 58)) (-2800 (($) 36 T CONST)) (-2810 (($) 43 T CONST)) (-2584 (((-1177) $) 27) (((-1177) $ (-112)) 29) (((-1291) (-834) $) 30) (((-1291) (-834) $ (-112)) 31)) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-3049 (((-112) $ $) 203)) (-3024 (((-112) $ $) 45)) (-2988 (((-112) $ $) 56)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 57)) (-3107 (($ $ $) 48) (($ $ (-576)) 42)) (-3095 (($ $) 38) (($ $ $) 53)) (-3083 (($ $ $) 72)) (** (($ $ (-938)) 83) (($ $ (-783)) NIL) (($ $ (-576)) 107) (($ $ (-419 (-576))) 154) (($ $ $) 145)) (* (($ (-938) $) 79) (($ (-783) $) NIL) (($ (-576) $) 84) (($ $ $) 71) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-390) (-13 (-416) (-238) (-626 (-1177)) (-840) (-625 (-227)) (-1221) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3107 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2614 ($ $)) (-15 -2911 ((-576) $ $)) (-15 -2745 ($ $ (-576))) (-15 -2842 ((-419 (-576)) $ (-783))) (-15 -2842 ((-419 (-576)) $ (-783) (-783))) (-15 -1355 ($)) (-15 -2423 ($)) (-15 -1871 ($)) (-15 -3831 ($ $ $)) (-15 -1355 ($ $)) (-15 -2423 ($ $)) (-15 -1729 ((-1291))) (-15 -1729 ((-1291) (-783))) (-15 -1799 ((-1291))) (-15 -1799 ((-1291) (-783))) (-15 -2244 ((-1291))) (-15 -2244 ((-1291) (-783))) (-15 -1537 ((-1291) (-783))) (-6 -4452) (-6 -4444)))) (T -390)) +((** (*1 *1 *1 *1) (-5 *1 (-390))) (-3107 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2614 (*1 *1 *1) (-5 *1 (-390))) (-2911 (*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2745 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) (-2842 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-2842 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) (-1355 (*1 *1) (-5 *1 (-390))) (-2423 (*1 *1) (-5 *1 (-390))) (-1871 (*1 *1) (-5 *1 (-390))) (-3831 (*1 *1 *1 *1) (-5 *1 (-390))) (-1355 (*1 *1 *1) (-5 *1 (-390))) (-2423 (*1 *1 *1) (-5 *1 (-390))) (-1729 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))) (-1729 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) (-1799 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) (-2244 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390))))) +(-13 (-416) (-238) (-626 (-1177)) (-840) (-625 (-227)) (-1221) (-626 (-548)) (-630 (-227)) (-10 -8 (-15 -3107 ($ $ (-576))) (-15 ** ($ $ $)) (-15 -2614 ($ $)) (-15 -2911 ((-576) $ $)) (-15 -2745 ($ $ (-576))) (-15 -2842 ((-419 (-576)) $ (-783))) (-15 -2842 ((-419 (-576)) $ (-783) (-783))) (-15 -1355 ($)) (-15 -2423 ($)) (-15 -1871 ($)) (-15 -3831 ($ $ $)) (-15 -1355 ($ $)) (-15 -2423 ($ $)) (-15 -1729 ((-1291))) (-15 -1729 ((-1291) (-783))) (-15 -1799 ((-1291))) (-15 -1799 ((-1291) (-783))) (-15 -2244 ((-1291))) (-15 -2244 ((-1291) (-783))) (-15 -1537 ((-1291) (-783))) (-6 -4452) (-6 -4444))) +((-2445 (((-656 (-304 (-969 |#1|))) (-304 (-419 (-969 (-576)))) |#1|) 46) (((-656 (-304 (-969 |#1|))) (-419 (-969 (-576))) |#1|) 45) (((-656 (-656 (-304 (-969 |#1|)))) (-656 (-304 (-419 (-969 (-576))))) |#1|) 42) (((-656 (-656 (-304 (-969 |#1|)))) (-656 (-419 (-969 (-576)))) |#1|) 36)) (-1802 (((-656 |#1|) (-419 (-969 (-576))) |#1|) 20) (((-656 (-656 |#1|)) (-656 (-419 (-969 (-576)))) (-656 (-1195)) |#1|) 30))) +(((-391 |#1|) (-10 -7 (-15 -2445 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-419 (-969 (-576)))) |#1|)) (-15 -2445 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-304 (-419 (-969 (-576))))) |#1|)) (-15 -2445 ((-656 (-304 (-969 |#1|))) (-419 (-969 (-576))) |#1|)) (-15 -2445 ((-656 (-304 (-969 |#1|))) (-304 (-419 (-969 (-576)))) |#1|)) (-15 -1802 ((-656 (-656 |#1|)) (-656 (-419 (-969 (-576)))) (-656 (-1195)) |#1|)) (-15 -1802 ((-656 |#1|) (-419 (-969 (-576))) |#1|))) (-13 (-860) (-374))) (T -391)) +((-1802 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-1802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-419 (-969 (-576))))) (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) (-4 *5 (-13 (-860) (-374))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 (-576))))) (-5 *2 (-656 (-304 (-969 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 (-304 (-969 *4)))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-969 (-576)))))) (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 (-576))))) (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374)))))) +(-10 -7 (-15 -2445 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-419 (-969 (-576)))) |#1|)) (-15 -2445 ((-656 (-656 (-304 (-969 |#1|)))) (-656 (-304 (-419 (-969 (-576))))) |#1|)) (-15 -2445 ((-656 (-304 (-969 |#1|))) (-419 (-969 (-576))) |#1|)) (-15 -2445 ((-656 (-304 (-969 |#1|))) (-304 (-419 (-969 (-576)))) |#1|)) (-15 -1802 ((-656 (-656 |#1|)) (-656 (-419 (-969 (-576)))) (-656 (-1195)) |#1|)) (-15 -1802 ((-656 |#1|) (-419 (-969 (-576))) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) 30)) (-4056 ((|#2| $) 32)) (-2166 (($ $) NIL)) (-3839 (((-783) $) 11)) (-1475 (((-656 $) $) 23)) (-2606 (((-112) $) NIL)) (-3605 (($ |#2| |#1|) 21)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1814 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2129 ((|#2| $) 18)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 51) (($ |#2|) 31)) (-2927 (((-656 |#1|) $) 20)) (-4333 ((|#1| $ |#2|) 55)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 33 T CONST)) (-3816 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40))) (((-392 |#1| |#2|) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1068) (-862)) (T -392)) ((* (*1 *1 *2 *3) (-12 (-5 *1 (-392 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-862))))) (-13 (-393 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#2| "failed") $) 49)) (-2378 ((|#2| $) 50)) (-1717 (($ $) 35)) (-1831 (((-783) $) 39)) (-2503 (((-656 $) $) 40)) (-4331 (((-112) $) 43)) (-1585 (($ |#2| |#1|) 44)) (-2477 (($ (-1 |#1| |#1|) $) 45)) (-3010 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-1681 ((|#2| $) 38)) (-1692 ((|#1| $) 37)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ |#2|) 48)) (-3076 (((-656 |#1|) $) 41)) (-2430 ((|#1| $ |#2|) 46)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-2994 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#2| "failed") $) 49)) (-4056 ((|#2| $) 50)) (-2166 (($ $) 35)) (-3839 (((-783) $) 39)) (-1475 (((-656 $) $) 40)) (-2606 (((-112) $) 43)) (-3605 (($ |#2| |#1|) 44)) (-1632 (($ (-1 |#1| |#1|) $) 45)) (-1814 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2129 ((|#2| $) 38)) (-2142 ((|#1| $) 37)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ |#2|) 48)) (-2927 (((-656 |#1|) $) 41)) (-4333 ((|#1| $ |#2|) 46)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-3816 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47))) (((-393 |#1| |#2|) (-141) (-1068) (-1119)) (T -393)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119)))) (-2430 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) (-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)))) (-1585 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) (-4331 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-112)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 *3)))) (-2503 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-783)))) (-1681 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1717 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119))))) -(-13 (-111 |t#1| |t#1|) (-1057 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2430 (|t#1| $ |t#2|)) (-15 -2477 ($ (-1 |t#1| |t#1|) $)) (-15 -1585 ($ |t#2| |t#1|)) (-15 -4331 ((-112) $)) (-15 -2994 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3076 ((-656 |t#1|) $)) (-15 -2503 ((-656 $) $)) (-15 -1831 ((-783) $)) (-15 -1681 (|t#2| $)) (-15 -1692 (|t#1| $)) (-15 -3010 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1717 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119)))) (-4333 (*1 *2 *1 *3) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)))) (-3605 (*1 *1 *2 *3) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-112)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 *3)))) (-1475 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-393 *3 *4)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-783)))) (-2129 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2166 (*1 *1 *1) (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119))))) +(-13 (-111 |t#1| |t#1|) (-1057 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4333 (|t#1| $ |t#2|)) (-15 -1632 ($ (-1 |t#1| |t#1|) $)) (-15 -3605 ($ |t#2| |t#1|)) (-15 -2606 ((-112) $)) (-15 -3816 ((-656 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2927 ((-656 |t#1|) $)) (-15 -1475 ((-656 $) $)) (-15 -3839 ((-783) $)) (-15 -2129 (|t#2| $)) (-15 -2142 (|t#1| $)) (-15 -1814 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2166 ($ $)) (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-1057 |#2|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T)) -((-3472 (((-1292) $) 7)) (-4092 (((-874) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 11))) +((-3188 (((-1291) $) 7)) (-3563 (((-874) $) 8) (($ (-701 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 11))) (((-394) (-141)) (T -394)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) (-4 *1 (-394))))) -(-13 (-407) (-10 -8 (-15 -4092 ($ (-701 (-711)))) (-15 -4092 ($ (-656 (-340)))) (-15 -4092 ($ (-340))) (-15 -4092 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340)))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1237) . T)) -((-2974 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-969 (-390)))) 17) (((-3 $ "failed") (-701 (-969 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 11)) (-2378 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-969 (-390)))) 18) (($ (-701 (-969 (-576)))) 16) (($ (-701 (-419 (-969 (-390))))) 14) (($ (-701 (-419 (-969 (-576))))) 12)) (-3472 (((-1292) $) 7)) (-4092 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 23))) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-394))))) +(-13 (-407) (-10 -8 (-15 -3563 ($ (-701 (-711)))) (-15 -3563 ($ (-656 (-340)))) (-15 -3563 ($ (-340))) (-15 -3563 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340)))))))) +(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) +((-1539 (((-3 $ "failed") (-701 (-326 (-390)))) 21) (((-3 $ "failed") (-701 (-326 (-576)))) 19) (((-3 $ "failed") (-701 (-969 (-390)))) 17) (((-3 $ "failed") (-701 (-969 (-576)))) 15) (((-3 $ "failed") (-701 (-419 (-969 (-390))))) 13) (((-3 $ "failed") (-701 (-419 (-969 (-576))))) 11)) (-4056 (($ (-701 (-326 (-390)))) 22) (($ (-701 (-326 (-576)))) 20) (($ (-701 (-969 (-390)))) 18) (($ (-701 (-969 (-576)))) 16) (($ (-701 (-419 (-969 (-390))))) 14) (($ (-701 (-419 (-969 (-576))))) 12)) (-3188 (((-1291) $) 7)) (-3563 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 23))) (((-395) (-141)) (T -395)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) (-4 *1 (-395)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395))))) -(-13 (-407) (-10 -8 (-15 -4092 ($ (-656 (-340)))) (-15 -4092 ($ (-340))) (-15 -4092 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340)))))) (-15 -2378 ($ (-701 (-326 (-390))))) (-15 -2974 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -2378 ($ (-701 (-326 (-576))))) (-15 -2974 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -2378 ($ (-701 (-969 (-390))))) (-15 -2974 ((-3 $ "failed") (-701 (-969 (-390))))) (-15 -2378 ($ (-701 (-969 (-576))))) (-15 -2974 ((-3 $ "failed") (-701 (-969 (-576))))) (-15 -2378 ($ (-701 (-419 (-969 (-390)))))) (-15 -2974 ((-3 $ "failed") (-701 (-419 (-969 (-390)))))) (-15 -2378 ($ (-701 (-419 (-969 (-576)))))) (-15 -2974 ((-3 $ "failed") (-701 (-419 (-969 (-576)))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-1518 (($ |#1| |#2|) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3369 ((|#2| $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 33)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 12 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-395)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395))))) +(-13 (-407) (-10 -8 (-15 -3563 ($ (-656 (-340)))) (-15 -3563 ($ (-340))) (-15 -3563 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340)))))) (-15 -4056 ($ (-701 (-326 (-390))))) (-15 -1539 ((-3 $ "failed") (-701 (-326 (-390))))) (-15 -4056 ($ (-701 (-326 (-576))))) (-15 -1539 ((-3 $ "failed") (-701 (-326 (-576))))) (-15 -4056 ($ (-701 (-969 (-390))))) (-15 -1539 ((-3 $ "failed") (-701 (-969 (-390))))) (-15 -4056 ($ (-701 (-969 (-576))))) (-15 -1539 ((-3 $ "failed") (-701 (-969 (-576))))) (-15 -4056 ($ (-701 (-419 (-969 (-390)))))) (-15 -1539 ((-3 $ "failed") (-701 (-419 (-969 (-390)))))) (-15 -4056 ($ (-701 (-419 (-969 (-576)))))) (-15 -1539 ((-3 $ "failed") (-701 (-419 (-969 (-576)))))))) +(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1970 (($ |#1| |#2|) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1672 ((|#2| $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 33)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 12 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) (((-396 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) (-1068) (-862)) (T -396)) NIL (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-174)) (-6 (-729 |#1|)) |%noBranch|))) -((-2034 (((-112) $ $) 7)) (-2247 (((-783) $) 34)) (-3656 (($) 19 T CONST)) (-4065 (((-3 $ "failed") $ $) 37)) (-2974 (((-3 |#1| "failed") $) 45)) (-2378 ((|#1| $) 46)) (-3179 (((-3 $ "failed") $) 16)) (-2904 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1810 (((-112) $) 18)) (-3158 ((|#1| $ (-576)) 31)) (-3670 (((-783) $ (-576)) 32)) (-3492 (($ $ $) 28 (|has| |#1| (-862)))) (-2726 (($ $ $) 27 (|has| |#1| (-862)))) (-3230 (($ (-1 |#1| |#1|) $) 29)) (-1682 (($ (-1 (-783) (-783)) $) 30)) (-2267 (((-3 $ "failed") $ $) 38)) (-3288 (((-1178) $) 10)) (-4403 (($ $ $) 39)) (-4222 (($ $ $) 40)) (-3139 (((-1139) $) 11)) (-3791 (((-656 (-2 (|:| |gen| |#1|) (|:| -3353 (-783)))) $) 33)) (-2233 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4092 (((-874) $) 12) (($ |#1|) 44)) (-1531 (((-112) $ $) 9)) (-4310 (($) 20 T CONST)) (-3977 (((-112) $ $) 25 (|has| |#1| (-862)))) (-3955 (((-112) $ $) 24 (|has| |#1| (-862)))) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 26 (|has| |#1| (-862)))) (-3944 (((-112) $ $) 23 (|has| |#1| (-862)))) (** (($ $ (-938)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) +((-3474 (((-112) $ $) 7)) (-2148 (((-783) $) 34)) (-3767 (($) 19 T CONST)) (-1338 (((-3 $ "failed") $ $) 37)) (-1539 (((-3 |#1| "failed") $) 45)) (-4056 ((|#1| $) 46)) (-1551 (((-3 $ "failed") $) 16)) (-3496 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-1414 (((-112) $) 18)) (-2281 ((|#1| $ (-576)) 31)) (-2633 (((-783) $ (-576)) 32)) (-2442 (($ $ $) 28 (|has| |#1| (-862)))) (-1893 (($ $ $) 27 (|has| |#1| (-862)))) (-4239 (($ (-1 |#1| |#1|) $) 29)) (-3576 (($ (-1 (-783) (-783)) $) 30)) (-4398 (((-3 $ "failed") $ $) 38)) (-1927 (((-1177) $) 10)) (-4250 (($ $ $) 39)) (-3965 (($ $ $) 40)) (-1445 (((-1139) $) 11)) (-1707 (((-656 (-2 (|:| |gen| |#1|) (|:| -3984 (-783)))) $) 33)) (-1784 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-3563 (((-874) $) 12) (($ |#1|) 44)) (-3985 (((-112) $ $) 9)) (-2810 (($) 20 T CONST)) (-3049 (((-112) $ $) 25 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 24 (|has| |#1| (-862)))) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 26 (|has| |#1| (-862)))) (-3010 (((-112) $ $) 23 (|has| |#1| (-862)))) (** (($ $ (-938)) 14) (($ $ (-783)) 17) (($ |#1| (-783)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42))) (((-397 |#1|) (-141) (-1119)) (T -397)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-4222 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-4403 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-2267 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-4065 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-2233 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1119)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2904 (*1 *2 *1 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) (-5 *2 (-783)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 (-783))))))) (-3670 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1119)) (-5 *2 (-783)))) (-3158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-1682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1119)))) (-3230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1119))))) -(-13 (-738) (-1057 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -4222 ($ $ $)) (-15 -4403 ($ $ $)) (-15 -2267 ((-3 $ "failed") $ $)) (-15 -4065 ((-3 $ "failed") $ $)) (-15 -2233 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2904 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2247 ((-783) $)) (-15 -3791 ((-656 (-2 (|:| |gen| |t#1|) (|:| -3353 (-783)))) $)) (-15 -3670 ((-783) $ (-576))) (-15 -3158 (|t#1| $ (-576))) (-15 -1682 ($ (-1 (-783) (-783)) $)) (-15 -3230 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|))) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-3965 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-4250 (*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-4398 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-1338 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-1784 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1119)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-3496 (*1 *2 *1 *1) (-12 (-4 *3 (-1119)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) (-2148 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) (-5 *2 (-783)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 (-783))))))) (-2633 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1119)) (-5 *2 (-783)))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) (-3576 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1119)))) (-4239 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1119))))) +(-13 (-738) (-1057 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-783))) (-15 -3965 ($ $ $)) (-15 -4250 ($ $ $)) (-15 -4398 ((-3 $ "failed") $ $)) (-15 -1338 ((-3 $ "failed") $ $)) (-15 -1784 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3496 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2148 ((-783) $)) (-15 -1707 ((-656 (-2 (|:| |gen| |t#1|) (|:| -3984 (-783)))) $)) (-15 -2633 ((-783) $ (-576))) (-15 -2281 (|t#1| $ (-576))) (-15 -3576 ($ (-1 (-783) (-783)) $)) (-15 -4239 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|))) (((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-1057 |#1|) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783) $) 74)) (-3656 (($) NIL T CONST)) (-4065 (((-3 $ "failed") $ $) 77)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2904 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1810 (((-112) $) 17)) (-3158 ((|#1| $ (-576)) NIL)) (-3670 (((-783) $ (-576)) NIL)) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3230 (($ (-1 |#1| |#1|) $) 40)) (-1682 (($ (-1 (-783) (-783)) $) 37)) (-2267 (((-3 $ "failed") $ $) 60)) (-3288 (((-1178) $) NIL)) (-4403 (($ $ $) 28)) (-4222 (($ $ $) 26)) (-3139 (((-1139) $) NIL)) (-3791 (((-656 (-2 (|:| |gen| |#1|) (|:| -3353 (-783)))) $) 34)) (-2233 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-4092 (((-874) $) 24) (($ |#1|) NIL)) (-1531 (((-112) $ $) NIL)) (-4310 (($) 11 T CONST)) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) 84 (|has| |#1| (-862)))) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783) $) 74)) (-3767 (($) NIL T CONST)) (-1338 (((-3 $ "failed") $ $) 77)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3496 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-1414 (((-112) $) 17)) (-2281 ((|#1| $ (-576)) NIL)) (-2633 (((-783) $ (-576)) NIL)) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-4239 (($ (-1 |#1| |#1|) $) 40)) (-3576 (($ (-1 (-783) (-783)) $) 37)) (-4398 (((-3 $ "failed") $ $) 60)) (-1927 (((-1177) $) NIL)) (-4250 (($ $ $) 28)) (-3965 (($ $ $) 26)) (-1445 (((-1139) $) NIL)) (-1707 (((-656 (-2 (|:| |gen| |#1|) (|:| -3984 (-783)))) $) 34)) (-1784 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-3563 (((-874) $) 24) (($ |#1|) NIL)) (-3985 (((-112) $ $) NIL)) (-2810 (($) 11 T CONST)) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) 84 (|has| |#1| (-862)))) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) (((-398 |#1|) (-397 |#1|) (-1119)) (T -398)) NIL (-397 |#1|) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-2974 (((-3 (-576) "failed") $) 53)) (-2378 (((-576) $) 54)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3492 (($ $ $) 60)) (-2726 (($ $ $) 59)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2022 (((-3 $ "failed") $ $) 48)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 52)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3977 (((-112) $ $) 57)) (-3955 (((-112) $ $) 56)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 58)) (-3944 (((-112) $ $) 55)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1539 (((-3 (-576) "failed") $) 53)) (-4056 (((-576) $) 54)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-2442 (($ $ $) 60)) (-1893 (($ $ $) 59)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3463 (((-3 $ "failed") $ $) 48)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 52)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-3049 (((-112) $ $) 57)) (-3024 (((-112) $ $) 56)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 58)) (-3010 (((-112) $ $) 55)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-399) (-141)) (T -399)) NIL (-13 (-568) (-862) (-1057 (-576))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-862) . T) ((-1057 (-576)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1919 (((-112) $) 25)) (-1857 (((-112) $) 22)) (-1992 (($ (-1178) (-1178) (-1178)) 26)) (-4124 (((-1178) $) 16)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2389 (($ (-1178) (-1178) (-1178)) 14)) (-4206 (((-1178) $) 17)) (-4087 (((-112) $) 18)) (-3027 (((-1178) $) 15)) (-4092 (((-874) $) 12) (($ (-1178)) 13) (((-1178) $) 9)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 7))) +((-3474 (((-112) $ $) NIL)) (-2619 (((-112) $) 25)) (-4322 (((-112) $) 22)) (-4033 (($ (-1177) (-1177) (-1177)) 26)) (-2706 (((-1177) $) 16)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4303 (($ (-1177) (-1177) (-1177)) 14)) (-3875 (((-1177) $) 17)) (-1626 (((-112) $) 18)) (-2316 (((-1177) $) 15)) (-3563 (((-874) $) 12) (($ (-1177)) 13) (((-1177) $) 9)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 7))) (((-400) (-401)) (T -400)) NIL (-401) -((-2034 (((-112) $ $) 7)) (-1919 (((-112) $) 17)) (-1857 (((-112) $) 18)) (-1992 (($ (-1178) (-1178) (-1178)) 16)) (-4124 (((-1178) $) 21)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2389 (($ (-1178) (-1178) (-1178)) 23)) (-4206 (((-1178) $) 20)) (-4087 (((-112) $) 19)) (-3027 (((-1178) $) 22)) (-4092 (((-874) $) 12) (($ (-1178)) 25) (((-1178) $) 24)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-3474 (((-112) $ $) 7)) (-2619 (((-112) $) 17)) (-4322 (((-112) $) 18)) (-4033 (($ (-1177) (-1177) (-1177)) 16)) (-2706 (((-1177) $) 21)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-4303 (($ (-1177) (-1177) (-1177)) 23)) (-3875 (((-1177) $) 20)) (-1626 (((-112) $) 19)) (-2316 (((-1177) $) 22)) (-3563 (((-874) $) 12) (($ (-1177)) 25) (((-1177) $) 24)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-401) (-141)) (T -401)) -((-2389 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401)))) (-3027 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) (-4087 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-1992 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401))))) -(-13 (-1119) (-502 (-1178)) (-10 -8 (-15 -2389 ($ (-1178) (-1178) (-1178))) (-15 -3027 ((-1178) $)) (-15 -4124 ((-1178) $)) (-15 -4206 ((-1178) $)) (-15 -4087 ((-112) $)) (-15 -1857 ((-112) $)) (-15 -1919 ((-112) $)) (-15 -1992 ($ (-1178) (-1178) (-1178))))) -(((-102) . T) ((-628 #0=(-1178)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3393 (((-874) $) 63)) (-3656 (($) NIL T CONST)) (-3952 (($ $ (-938)) NIL)) (-4370 (($ $ (-938)) NIL)) (-2596 (($ $ (-938)) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2582 (($ (-783)) 38)) (-3667 (((-783)) 18)) (-2009 (((-874) $) 65)) (-1361 (($ $ $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3911 (($ $ $ $) NIL)) (-3771 (($ $ $) NIL)) (-4300 (($) 24 T CONST)) (-3919 (((-112) $ $) 41)) (-4018 (($ $) 48) (($ $ $) 50)) (-4007 (($ $ $) 51)) (** (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) -(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -3667 ((-783))) (-15 -2009 ((-874) $)) (-15 -3393 ((-874) $)) (-15 -2582 ($ (-783))))) (-783) (-783) (-174)) (T -402)) -((-3667 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-3393 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) -(-13 (-756 |#3|) (-10 -8 (-15 -3667 ((-783))) (-15 -2009 ((-874) $)) (-15 -3393 ((-874) $)) (-15 -2582 ($ (-783))))) -((-3889 (((-1178)) 12)) (-1983 (((-1166 (-1178))) 30)) (-2211 (((-1292) (-1178)) 27) (((-1292) (-400)) 26)) (-2225 (((-1292)) 28)) (-3795 (((-1166 (-1178))) 29))) -(((-403) (-10 -7 (-15 -3795 ((-1166 (-1178)))) (-15 -1983 ((-1166 (-1178)))) (-15 -2225 ((-1292))) (-15 -2211 ((-1292) (-400))) (-15 -2211 ((-1292) (-1178))) (-15 -3889 ((-1178))))) (T -403)) -((-3889 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-403)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-403)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-403)))) (-2225 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-403)))) (-1983 (*1 *2) (-12 (-5 *2 (-1166 (-1178))) (-5 *1 (-403)))) (-3795 (*1 *2) (-12 (-5 *2 (-1166 (-1178))) (-5 *1 (-403))))) -(-10 -7 (-15 -3795 ((-1166 (-1178)))) (-15 -1983 ((-1166 (-1178)))) (-15 -2225 ((-1292))) (-15 -2211 ((-1292) (-400))) (-15 -2211 ((-1292) (-1178))) (-15 -3889 ((-1178)))) -((-1538 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16))) -(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1538 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) -((-1538 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))) -(-10 -7 (-15 -1538 ((-783) (-347 |#1| |#2| |#3| |#4|)))) -((-4092 (((-406) |#1|) 11))) -(((-405 |#1|) (-10 -7 (-15 -4092 ((-406) |#1|))) (-1119)) (T -405)) -((-4092 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1119))))) -(-10 -7 (-15 -4092 ((-406) |#1|))) -((-2034 (((-112) $ $) NIL)) (-2166 (((-656 (-1178)) $ (-656 (-1178))) 42)) (-3768 (((-656 (-1178)) $ (-656 (-1178))) 43)) (-1642 (((-656 (-1178)) $ (-656 (-1178))) 44)) (-1564 (((-656 (-1178)) $) 39)) (-1992 (($) 30)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2068 (((-656 (-1178)) $) 40)) (-1709 (((-656 (-1178)) $) 41)) (-1650 (((-1292) $ (-576)) 37) (((-1292) $) 38)) (-1505 (($ (-874) (-576)) 35)) (-4092 (((-874) $) 49) (($ (-874)) 32)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-406) (-13 (-1119) (-628 (-874)) (-10 -8 (-15 -1505 ($ (-874) (-576))) (-15 -1650 ((-1292) $ (-576))) (-15 -1650 ((-1292) $)) (-15 -1709 ((-656 (-1178)) $)) (-15 -2068 ((-656 (-1178)) $)) (-15 -1992 ($)) (-15 -1564 ((-656 (-1178)) $)) (-15 -1642 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -3768 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2166 ((-656 (-1178)) $ (-656 (-1178))))))) (T -406)) -((-1505 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406)))) (-1650 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-406)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-406)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-1992 (*1 *1) (-5 *1 (-406))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-1642 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-3768 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) (-2166 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))) -(-13 (-1119) (-628 (-874)) (-10 -8 (-15 -1505 ($ (-874) (-576))) (-15 -1650 ((-1292) $ (-576))) (-15 -1650 ((-1292) $)) (-15 -1709 ((-656 (-1178)) $)) (-15 -2068 ((-656 (-1178)) $)) (-15 -1992 ($)) (-15 -1564 ((-656 (-1178)) $)) (-15 -1642 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -3768 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2166 ((-656 (-1178)) $ (-656 (-1178)))))) -((-3472 (((-1292) $) 7)) (-4092 (((-874) $) 8))) +((-4303 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401)))) (-2316 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-4322 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112)))) (-4033 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401))))) +(-13 (-1119) (-502 (-1177)) (-10 -8 (-15 -4303 ($ (-1177) (-1177) (-1177))) (-15 -2316 ((-1177) $)) (-15 -2706 ((-1177) $)) (-15 -3875 ((-1177) $)) (-15 -1626 ((-112) $)) (-15 -4322 ((-112) $)) (-15 -2619 ((-112) $)) (-15 -4033 ($ (-1177) (-1177) (-1177))))) +(((-102) . T) ((-628 #0=(-1177)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2026 (((-874) $) 63)) (-3767 (($) NIL T CONST)) (-4242 (($ $ (-938)) NIL)) (-4300 (($ $ (-938)) NIL)) (-1428 (($ $ (-938)) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2202 (($ (-783)) 38)) (-2446 (((-783)) 18)) (-3293 (((-874) $) 65)) (-4081 (($ $ $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-1938 (($ $ $ $) NIL)) (-2303 (($ $ $) NIL)) (-2800 (($) 24 T CONST)) (-2988 (((-112) $ $) 41)) (-3095 (($ $) 48) (($ $ $) 50)) (-3083 (($ $ $) 51)) (** (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47))) +(((-402 |#1| |#2| |#3|) (-13 (-756 |#3|) (-10 -8 (-15 -2446 ((-783))) (-15 -3293 ((-874) $)) (-15 -2026 ((-874) $)) (-15 -2202 ($ (-783))))) (-783) (-783) (-174)) (T -402)) +((-2446 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783)) (-4 *5 (-174)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-174))))) +(-13 (-756 |#3|) (-10 -8 (-15 -2446 ((-783))) (-15 -3293 ((-874) $)) (-15 -2026 ((-874) $)) (-15 -2202 ($ (-783))))) +((-3559 (((-1177)) 12)) (-1962 (((-1166 (-1177))) 30)) (-3164 (((-1291) (-1177)) 27) (((-1291) (-400)) 26)) (-3175 (((-1291)) 28)) (-4050 (((-1166 (-1177))) 29))) +(((-403) (-10 -7 (-15 -4050 ((-1166 (-1177)))) (-15 -1962 ((-1166 (-1177)))) (-15 -3175 ((-1291))) (-15 -3164 ((-1291) (-400))) (-15 -3164 ((-1291) (-1177))) (-15 -3559 ((-1177))))) (T -403)) +((-3559 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-403)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-403)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-403)))) (-3175 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-403)))) (-1962 (*1 *2) (-12 (-5 *2 (-1166 (-1177))) (-5 *1 (-403)))) (-4050 (*1 *2) (-12 (-5 *2 (-1166 (-1177))) (-5 *1 (-403))))) +(-10 -7 (-15 -4050 ((-1166 (-1177)))) (-15 -1962 ((-1166 (-1177)))) (-15 -3175 ((-1291))) (-15 -3164 ((-1291) (-400))) (-15 -3164 ((-1291) (-1177))) (-15 -3559 ((-1177)))) +((-3333 (((-783) (-347 |#1| |#2| |#3| |#4|)) 16))) +(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3333 ((-783) (-347 |#1| |#2| |#3| |#4|)))) (-13 (-379) (-374)) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -404)) +((-3333 (*1 *2 *3) (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7))))) +(-10 -7 (-15 -3333 ((-783) (-347 |#1| |#2| |#3| |#4|)))) +((-3563 (((-406) |#1|) 11))) +(((-405 |#1|) (-10 -7 (-15 -3563 ((-406) |#1|))) (-1119)) (T -405)) +((-3563 (*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1119))))) +(-10 -7 (-15 -3563 ((-406) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1529 (((-656 (-1177)) $ (-656 (-1177))) 42)) (-1791 (((-656 (-1177)) $ (-656 (-1177))) 43)) (-2020 (((-656 (-1177)) $ (-656 (-1177))) 44)) (-4197 (((-656 (-1177)) $) 39)) (-4033 (($) 30)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-1576 (((-656 (-1177)) $) 40)) (-4097 (((-656 (-1177)) $) 41)) (-2076 (((-1291) $ (-576)) 37) (((-1291) $) 38)) (-4076 (($ (-874) (-576)) 35)) (-3563 (((-874) $) 49) (($ (-874)) 32)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-406) (-13 (-1119) (-628 (-874)) (-10 -8 (-15 -4076 ($ (-874) (-576))) (-15 -2076 ((-1291) $ (-576))) (-15 -2076 ((-1291) $)) (-15 -4097 ((-656 (-1177)) $)) (-15 -1576 ((-656 (-1177)) $)) (-15 -4033 ($)) (-15 -4197 ((-656 (-1177)) $)) (-15 -2020 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -1791 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -1529 ((-656 (-1177)) $ (-656 (-1177))))))) (T -406)) +((-4076 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-406)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-406)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-1576 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-4033 (*1 *1) (-5 *1 (-406))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-2020 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-1791 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) (-1529 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))) +(-13 (-1119) (-628 (-874)) (-10 -8 (-15 -4076 ($ (-874) (-576))) (-15 -2076 ((-1291) $ (-576))) (-15 -2076 ((-1291) $)) (-15 -4097 ((-656 (-1177)) $)) (-15 -1576 ((-656 (-1177)) $)) (-15 -4033 ($)) (-15 -4197 ((-656 (-1177)) $)) (-15 -2020 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -1791 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -1529 ((-656 (-1177)) $ (-656 (-1177)))))) +((-3188 (((-1291) $) 7)) (-3563 (((-874) $) 8))) (((-407) (-141)) (T -407)) -((-3472 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1292))))) -(-13 (-1237) (-625 (-874)) (-10 -8 (-15 -3472 ((-1292) $)))) -(((-625 (-874)) . T) ((-1237) . T)) -((-2974 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-969 (-390))) 17) (((-3 $ "failed") (-969 (-576))) 15) (((-3 $ "failed") (-419 (-969 (-390)))) 13) (((-3 $ "failed") (-419 (-969 (-576)))) 11)) (-2378 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-969 (-390))) 18) (($ (-969 (-576))) 16) (($ (-419 (-969 (-390)))) 14) (($ (-419 (-969 (-576)))) 12)) (-3472 (((-1292) $) 7)) (-4092 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 23))) +((-3188 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1291))))) +(-13 (-1236) (-625 (-874)) (-10 -8 (-15 -3188 ((-1291) $)))) +(((-625 (-874)) . T) ((-1236) . T)) +((-1539 (((-3 $ "failed") (-326 (-390))) 21) (((-3 $ "failed") (-326 (-576))) 19) (((-3 $ "failed") (-969 (-390))) 17) (((-3 $ "failed") (-969 (-576))) 15) (((-3 $ "failed") (-419 (-969 (-390)))) 13) (((-3 $ "failed") (-419 (-969 (-576)))) 11)) (-4056 (($ (-326 (-390))) 22) (($ (-326 (-576))) 20) (($ (-969 (-390))) 18) (($ (-969 (-576))) 16) (($ (-419 (-969 (-390)))) 14) (($ (-419 (-969 (-576)))) 12)) (-3188 (((-1291) $) 7)) (-3563 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 23))) (((-408) (-141)) (T -408)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) (-4 *1 (-408)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408))))) -(-13 (-407) (-10 -8 (-15 -4092 ($ (-656 (-340)))) (-15 -4092 ($ (-340))) (-15 -4092 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340)))))) (-15 -2378 ($ (-326 (-390)))) (-15 -2974 ((-3 $ "failed") (-326 (-390)))) (-15 -2378 ($ (-326 (-576)))) (-15 -2974 ((-3 $ "failed") (-326 (-576)))) (-15 -2378 ($ (-969 (-390)))) (-15 -2974 ((-3 $ "failed") (-969 (-390)))) (-15 -2378 ($ (-969 (-576)))) (-15 -2974 ((-3 $ "failed") (-969 (-576)))) (-15 -2378 ($ (-419 (-969 (-390))))) (-15 -2974 ((-3 $ "failed") (-419 (-969 (-390))))) (-15 -2378 ($ (-419 (-969 (-576))))) (-15 -2974 ((-3 $ "failed") (-419 (-969 (-576))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1237) . T)) -((-2475 (((-656 (-1178)) (-656 (-1178))) 9)) (-3472 (((-1292) (-400)) 26)) (-3358 (((-1123) (-1196) (-656 (-1196)) (-1199) (-656 (-1196))) 59) (((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)) (-1196)) 34) (((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196))) 33))) -(((-409) (-10 -7 (-15 -3358 ((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)))) (-15 -3358 ((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)) (-1196))) (-15 -3358 ((-1123) (-1196) (-656 (-1196)) (-1199) (-656 (-1196)))) (-15 -3472 ((-1292) (-400))) (-15 -2475 ((-656 (-1178)) (-656 (-1178)))))) (T -409)) -((-2475 (*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-409)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-409)))) (-3358 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1196))) (-5 *5 (-1199)) (-5 *3 (-1196)) (-5 *2 (-1123)) (-5 *1 (-409)))) (-3358 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1123)) (-5 *1 (-409)))) (-3358 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1123)) (-5 *1 (-409))))) -(-10 -7 (-15 -3358 ((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)))) (-15 -3358 ((-1123) (-1196) (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196)))) (-656 (-656 (-3 (|:| |array| (-656 (-1196))) (|:| |scalar| (-1196))))) (-656 (-1196)) (-1196))) (-15 -3358 ((-1123) (-1196) (-656 (-1196)) (-1199) (-656 (-1196)))) (-15 -3472 ((-1292) (-400))) (-15 -2475 ((-656 (-1178)) (-656 (-1178))))) -((-3472 (((-1292) $) 35)) (-4092 (((-874) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) -(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -4092 ($ (-340))) (-15 -4092 ($ (-656 (-340)))) (-15 -4092 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340)))))) (-15 -4092 ($ (-326 (-713)))) (-15 -4092 ($ (-326 (-711)))) (-15 -4092 ($ (-326 (-706)))) (-15 -4092 ($ (-304 (-326 (-713))))) (-15 -4092 ($ (-304 (-326 (-711))))) (-15 -4092 ($ (-304 (-326 (-706))))) (-15 -4092 ($ (-326 (-576)))) (-15 -4092 ($ (-326 (-390)))) (-15 -4092 ($ (-326 (-171 (-390))))) (-15 -4092 ($ (-304 (-326 (-576))))) (-15 -4092 ($ (-304 (-326 (-390))))) (-15 -4092 ($ (-304 (-326 (-171 (-390)))))))) (-1196) (-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-656 (-1196)) (-1200)) (T -410)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-14 *5 (-656 (-1196))) (-14 *6 (-1200))))) -(-13 (-407) (-10 -8 (-15 -4092 ($ (-340))) (-15 -4092 ($ (-656 (-340)))) (-15 -4092 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340)))))) (-15 -4092 ($ (-326 (-713)))) (-15 -4092 ($ (-326 (-711)))) (-15 -4092 ($ (-326 (-706)))) (-15 -4092 ($ (-304 (-326 (-713))))) (-15 -4092 ($ (-304 (-326 (-711))))) (-15 -4092 ($ (-304 (-326 (-706))))) (-15 -4092 ($ (-326 (-576)))) (-15 -4092 ($ (-326 (-390)))) (-15 -4092 ($ (-326 (-171 (-390))))) (-15 -4092 ($ (-304 (-326 (-576))))) (-15 -4092 ($ (-304 (-326 (-390))))) (-15 -4092 ($ (-304 (-326 (-171 (-390)))))))) -((-2034 (((-112) $ $) NIL)) (-3587 ((|#2| $) 38)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2575 (($ (-419 |#2|)) 93)) (-3915 (((-656 (-2 (|:| -3175 (-783)) (|:| -2553 |#2|) (|:| |num| |#2|))) $) 39)) (-3614 (($ $ (-783)) 36) (($ $) 34)) (-1505 (((-419 |#2|) $) 49)) (-4103 (($ (-656 (-2 (|:| -3175 (-783)) (|:| -2553 |#2|) (|:| |num| |#2|)))) 33)) (-4092 (((-874) $) 131)) (-1531 (((-112) $ $) NIL)) (-4286 (($ $ (-783)) 37) (($ $) 35)) (-3919 (((-112) $ $) NIL)) (-4007 (($ |#2| $) 41))) -(((-411 |#1| |#2|) (-13 (-1119) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -4007 ($ |#2| $)) (-15 -2575 ($ (-419 |#2|))) (-15 -3587 (|#2| $)) (-15 -3915 ((-656 (-2 (|:| -3175 (-783)) (|:| -2553 |#2|) (|:| |num| |#2|))) $)) (-15 -4103 ($ (-656 (-2 (|:| -3175 (-783)) (|:| -2553 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1263 |#1|)) (T -411)) -((-4007 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1263 *3)))) (-2575 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-3587 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-3915 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -3175 (-783)) (|:| -2553 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1263 *3)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -3175 (-783)) (|:| -2553 *4) (|:| |num| *4)))) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))) -(-13 (-1119) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -4007 ($ |#2| $)) (-15 -2575 ($ (-419 |#2|))) (-15 -3587 (|#2| $)) (-15 -3915 ((-656 (-2 (|:| -3175 (-783)) (|:| -2553 |#2|) (|:| |num| |#2|))) $)) (-15 -4103 ($ (-656 (-2 (|:| -3175 (-783)) (|:| -2553 |#2|) (|:| |num| |#2|))))))) -((-2034 (((-112) $ $) 9 (-3765 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 16 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 15 (|has| |#1| (-899 (-576))))) (-3288 (((-1178) $) 13 (-3765 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3139 (((-1139) $) 12 (-3765 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-4092 (((-874) $) 11 (-3765 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-1531 (((-112) $ $) 14 (-3765 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3919 (((-112) $ $) 10 (-3765 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390))))))) -(((-412 |#1|) (-141) (-1237)) (T -412)) -NIL -(-13 (-1237) (-10 -7 (IF (|has| |t#1| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|))) -(((-102) -3765 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-625 (-874)) -3765 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-1119) -3765 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-1237) . T)) -((-1329 (($ $) 10) (($ $ (-783)) 12))) -(((-413 |#1|) (-10 -8 (-15 -1329 (|#1| |#1| (-783))) (-15 -1329 (|#1| |#1|))) (-414)) (T -413)) -NIL -(-10 -8 (-15 -1329 (|#1| |#1| (-783))) (-15 -1329 (|#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-4407 (((-112) $ $) 65)) (-3656 (($) 18 T CONST)) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-1329 (($ $) 87) (($ $ (-783)) 86)) (-2725 (((-112) $) 79)) (-1538 (((-845 (-938)) $) 89)) (-1810 (((-112) $) 35)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 78)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1392 (((-430 $) $) 82)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-2547 (((-3 (-783) "failed") $ $) 88)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-3612 (((-3 $ "failed") $) 90)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-408)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408))))) +(-13 (-407) (-10 -8 (-15 -3563 ($ (-656 (-340)))) (-15 -3563 ($ (-340))) (-15 -3563 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340)))))) (-15 -4056 ($ (-326 (-390)))) (-15 -1539 ((-3 $ "failed") (-326 (-390)))) (-15 -4056 ($ (-326 (-576)))) (-15 -1539 ((-3 $ "failed") (-326 (-576)))) (-15 -4056 ($ (-969 (-390)))) (-15 -1539 ((-3 $ "failed") (-969 (-390)))) (-15 -4056 ($ (-969 (-576)))) (-15 -1539 ((-3 $ "failed") (-969 (-576)))) (-15 -4056 ($ (-419 (-969 (-390))))) (-15 -1539 ((-3 $ "failed") (-419 (-969 (-390))))) (-15 -4056 ($ (-419 (-969 (-576))))) (-15 -1539 ((-3 $ "failed") (-419 (-969 (-576))))))) +(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) +((-4100 (((-656 (-1177)) (-656 (-1177))) 9)) (-3188 (((-1291) (-400)) 26)) (-3053 (((-1123) (-1195) (-656 (-1195)) (-1198) (-656 (-1195))) 59) (((-1123) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)) (-1195)) 34) (((-1123) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195))) 33))) +(((-409) (-10 -7 (-15 -3053 ((-1123) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)))) (-15 -3053 ((-1123) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)) (-1195))) (-15 -3053 ((-1123) (-1195) (-656 (-1195)) (-1198) (-656 (-1195)))) (-15 -3188 ((-1291) (-400))) (-15 -4100 ((-656 (-1177)) (-656 (-1177)))))) (T -409)) +((-4100 (*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-409)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-409)))) (-3053 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-656 (-1195))) (-5 *5 (-1198)) (-5 *3 (-1195)) (-5 *2 (-1123)) (-5 *1 (-409)))) (-3053 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1123)) (-5 *1 (-409)))) (-3053 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1123)) (-5 *1 (-409))))) +(-10 -7 (-15 -3053 ((-1123) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)))) (-15 -3053 ((-1123) (-1195) (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195)))) (-656 (-656 (-3 (|:| |array| (-656 (-1195))) (|:| |scalar| (-1195))))) (-656 (-1195)) (-1195))) (-15 -3053 ((-1123) (-1195) (-656 (-1195)) (-1198) (-656 (-1195)))) (-15 -3188 ((-1291) (-400))) (-15 -4100 ((-656 (-1177)) (-656 (-1177))))) +((-3188 (((-1291) $) 35)) (-3563 (((-874) $) 97) (($ (-340)) 99) (($ (-656 (-340))) 98) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 96) (($ (-326 (-713))) 52) (($ (-326 (-711))) 72) (($ (-326 (-706))) 85) (($ (-304 (-326 (-713)))) 67) (($ (-304 (-326 (-711)))) 80) (($ (-304 (-326 (-706)))) 93) (($ (-326 (-576))) 104) (($ (-326 (-390))) 117) (($ (-326 (-171 (-390)))) 130) (($ (-304 (-326 (-576)))) 112) (($ (-304 (-326 (-390)))) 125) (($ (-304 (-326 (-171 (-390))))) 138))) +(((-410 |#1| |#2| |#3| |#4|) (-13 (-407) (-10 -8 (-15 -3563 ($ (-340))) (-15 -3563 ($ (-656 (-340)))) (-15 -3563 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340)))))) (-15 -3563 ($ (-326 (-713)))) (-15 -3563 ($ (-326 (-711)))) (-15 -3563 ($ (-326 (-706)))) (-15 -3563 ($ (-304 (-326 (-713))))) (-15 -3563 ($ (-304 (-326 (-711))))) (-15 -3563 ($ (-304 (-326 (-706))))) (-15 -3563 ($ (-326 (-576)))) (-15 -3563 ($ (-326 (-390)))) (-15 -3563 ($ (-326 (-171 (-390))))) (-15 -3563 ($ (-304 (-326 (-576))))) (-15 -3563 ($ (-304 (-326 (-390))))) (-15 -3563 ($ (-304 (-326 (-171 (-390)))))))) (-1195) (-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-656 (-1195)) (-1199)) (T -410)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-14 *5 (-656 (-1195))) (-14 *6 (-1199))))) +(-13 (-407) (-10 -8 (-15 -3563 ($ (-340))) (-15 -3563 ($ (-656 (-340)))) (-15 -3563 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340)))))) (-15 -3563 ($ (-326 (-713)))) (-15 -3563 ($ (-326 (-711)))) (-15 -3563 ($ (-326 (-706)))) (-15 -3563 ($ (-304 (-326 (-713))))) (-15 -3563 ($ (-304 (-326 (-711))))) (-15 -3563 ($ (-304 (-326 (-706))))) (-15 -3563 ($ (-326 (-576)))) (-15 -3563 ($ (-326 (-390)))) (-15 -3563 ($ (-326 (-171 (-390))))) (-15 -3563 ($ (-304 (-326 (-576))))) (-15 -3563 ($ (-304 (-326 (-390))))) (-15 -3563 ($ (-304 (-326 (-171 (-390)))))))) +((-3474 (((-112) $ $) NIL)) (-2119 ((|#2| $) 38)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3384 (($ (-419 |#2|)) 93)) (-4227 (((-656 (-2 (|:| -4274 (-783)) (|:| -2387 |#2|) (|:| |num| |#2|))) $) 39)) (-2735 (($ $ (-783)) 36) (($ $) 34)) (-4076 (((-419 |#2|) $) 49)) (-3573 (($ (-656 (-2 (|:| -4274 (-783)) (|:| -2387 |#2|) (|:| |num| |#2|)))) 33)) (-3563 (((-874) $) 131)) (-3985 (((-112) $ $) NIL)) (-2051 (($ $ (-783)) 37) (($ $) 35)) (-2988 (((-112) $ $) NIL)) (-3083 (($ |#2| $) 41))) +(((-411 |#1| |#2|) (-13 (-1119) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3083 ($ |#2| $)) (-15 -3384 ($ (-419 |#2|))) (-15 -2119 (|#2| $)) (-15 -4227 ((-656 (-2 (|:| -4274 (-783)) (|:| -2387 |#2|) (|:| |num| |#2|))) $)) (-15 -3573 ($ (-656 (-2 (|:| -4274 (-783)) (|:| -2387 |#2|) (|:| |num| |#2|))))))) (-13 (-374) (-148)) (-1262 |#1|)) (T -411)) +((-3083 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1262 *3)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) (-2119 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-374) (-148))))) (-4227 (*1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *2 (-656 (-2 (|:| -4274 (-783)) (|:| -2387 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4274 (-783)) (|:| -2387 *4) (|:| |num| *4)))) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4))))) +(-13 (-1119) (-237) (-626 (-419 |#2|)) (-10 -8 (-15 -3083 ($ |#2| $)) (-15 -3384 ($ (-419 |#2|))) (-15 -2119 (|#2| $)) (-15 -4227 ((-656 (-2 (|:| -4274 (-783)) (|:| -2387 |#2|) (|:| |num| |#2|))) $)) (-15 -3573 ($ (-656 (-2 (|:| -4274 (-783)) (|:| -2387 |#2|) (|:| |num| |#2|))))))) +((-3474 (((-112) $ $) 9 (-2835 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 16 (|has| |#1| (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 15 (|has| |#1| (-899 (-576))))) (-1927 (((-1177) $) 13 (-2835 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-1445 (((-1139) $) 12 (-2835 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3563 (((-874) $) 11 (-2835 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-3985 (((-112) $ $) 14 (-2835 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))))) (-2988 (((-112) $ $) 10 (-2835 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390))))))) +(((-412 |#1|) (-141) (-1236)) (T -412)) +NIL +(-13 (-1236) (-10 -7 (IF (|has| |t#1| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|))) +(((-102) -2835 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-625 (-874)) -2835 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-1119) -2835 (|has| |#1| (-899 (-576))) (|has| |#1| (-899 (-390)))) ((-1236) . T)) +((-3499 (($ $) 10) (($ $ (-783)) 12))) +(((-413 |#1|) (-10 -8 (-15 -3499 (|#1| |#1| (-783))) (-15 -3499 (|#1| |#1|))) (-414)) (T -413)) +NIL +(-10 -8 (-15 -3499 (|#1| |#1| (-783))) (-15 -3499 (|#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-1727 (((-112) $ $) 65)) (-3767 (($) 18 T CONST)) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-3499 (($ $) 87) (($ $ (-783)) 86)) (-1792 (((-112) $) 79)) (-3333 (((-845 (-938)) $) 89)) (-1414 (((-112) $) 35)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 78)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-1839 (((-430 $) $) 82)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-3721 (((-3 (-783) "failed") $ $) 88)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74)) (-2883 (((-3 $ "failed") $) 90)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 73)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-414) (-141)) (T -414)) -((-1538 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-938))))) (-2547 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-1329 (*1 *1 *1) (-4 *1 (-414))) (-1329 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))) -(-13 (-374) (-146) (-10 -8 (-15 -1538 ((-845 (-938)) $)) (-15 -2547 ((-3 (-783) "failed") $ $)) (-15 -1329 ($ $)) (-15 -1329 ($ $ (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T)) -((-2733 (($ (-576) (-576)) 11) (($ (-576) (-576) (-938)) NIL)) (-3963 (((-938)) 19) (((-938) (-938)) NIL))) -(((-415 |#1|) (-10 -8 (-15 -3963 ((-938) (-938))) (-15 -3963 ((-938))) (-15 -2733 (|#1| (-576) (-576) (-938))) (-15 -2733 (|#1| (-576) (-576)))) (-416)) (T -415)) -((-3963 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) -(-10 -8 (-15 -3963 ((-938) (-938))) (-15 -3963 ((-938))) (-15 -2733 (|#1| (-576) (-576) (-938))) (-15 -2733 (|#1| (-576) (-576)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3942 (((-576) $) 97)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-2255 (($ $) 95)) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-1403 (($ $) 105)) (-4407 (((-112) $ $) 65)) (-3934 (((-576) $) 122)) (-3656 (($) 18 T CONST)) (-4327 (($ $) 94)) (-2974 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-2378 (((-576) $) 111) (((-419 (-576)) $) 108)) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-2725 (((-112) $) 79)) (-2250 (((-938)) 138) (((-938) (-938)) 135 (|has| $ (-6 -4453)))) (-3567 (((-112) $) 120)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-1538 (((-576) $) 144)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 104)) (-4252 (($ $) 100)) (-3713 (((-112) $) 121)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3492 (($ $ $) 119) (($) 132 (-12 (-2433 (|has| $ (-6 -4453))) (-2433 (|has| $ (-6 -4445)))))) (-2726 (($ $ $) 118) (($) 131 (-12 (-2433 (|has| $ (-6 -4453))) (-2433 (|has| $ (-6 -4445)))))) (-4415 (((-576) $) 141)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 78)) (-2226 (((-938) (-576)) 134 (|has| $ (-6 -4453)))) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1846 (($ $) 96)) (-3892 (($ $) 98)) (-2733 (($ (-576) (-576)) 146) (($ (-576) (-576) (-938)) 145)) (-1392 (((-430 $) $) 82)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3175 (((-576) $) 142)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-3963 (((-938)) 139) (((-938) (-938)) 136 (|has| $ (-6 -4453)))) (-3262 (((-938) (-576)) 133 (|has| $ (-6 -4453)))) (-1505 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-2471 (((-783)) 32 T CONST)) (-4179 (($ $) 99)) (-1939 (((-938)) 140) (((-938) (-938)) 137 (|has| $ (-6 -4453)))) (-1531 (((-112) $ $) 9)) (-1841 (((-938)) 143)) (-2947 (((-112) $ $) 45)) (-3423 (($ $) 123)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3977 (((-112) $ $) 116)) (-3955 (((-112) $ $) 115)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 117)) (-3944 (((-112) $ $) 114)) (-4028 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-3333 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-938))))) (-3721 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783)))) (-3499 (*1 *1 *1) (-4 *1 (-414))) (-3499 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783))))) +(-13 (-374) (-146) (-10 -8 (-15 -3333 ((-845 (-938)) $)) (-15 -3721 ((-3 (-783) "failed") $ $)) (-15 -3499 ($ $)) (-15 -3499 ($ $ (-783))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-146) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1240) . T)) +((-3096 (($ (-576) (-576)) 11) (($ (-576) (-576) (-938)) NIL)) (-2924 (((-938)) 19) (((-938) (-938)) NIL))) +(((-415 |#1|) (-10 -8 (-15 -2924 ((-938) (-938))) (-15 -2924 ((-938))) (-15 -3096 (|#1| (-576) (-576) (-938))) (-15 -3096 (|#1| (-576) (-576)))) (-416)) (T -415)) +((-2924 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-2924 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) +(-10 -8 (-15 -2924 ((-938) (-938))) (-15 -2924 ((-938))) (-15 -3096 (|#1| (-576) (-576) (-938))) (-15 -3096 (|#1| (-576) (-576)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1560 (((-576) $) 97)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1615 (($ $) 95)) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-1853 (($ $) 105)) (-1727 (((-112) $ $) 65)) (-2184 (((-576) $) 122)) (-3767 (($) 18 T CONST)) (-2703 (($ $) 94)) (-1539 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-4056 (((-576) $) 111) (((-419 (-576)) $) 108)) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-1792 (((-112) $) 79)) (-3268 (((-938)) 138) (((-938) (-938)) 135 (|has| $ (-6 -4452)))) (-1910 (((-112) $) 120)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-3333 (((-576) $) 144)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 104)) (-4072 (($ $) 100)) (-3566 (((-112) $) 121)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2442 (($ $ $) 119) (($) 132 (-12 (-2746 (|has| $ (-6 -4452))) (-2746 (|has| $ (-6 -4444)))))) (-1893 (($ $ $) 118) (($) 131 (-12 (-2746 (|has| $ (-6 -4452))) (-2746 (|has| $ (-6 -4444)))))) (-1431 (((-576) $) 141)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 78)) (-2357 (((-938) (-576)) 134 (|has| $ (-6 -4452)))) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-1465 (($ $) 96)) (-3835 (($ $) 98)) (-3096 (($ (-576) (-576)) 146) (($ (-576) (-576) (-938)) 145)) (-1839 (((-430 $) $) 82)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-4274 (((-576) $) 142)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-2924 (((-938)) 139) (((-938) (-938)) 136 (|has| $ (-6 -4452)))) (-4184 (((-938) (-576)) 133 (|has| $ (-6 -4452)))) (-4076 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-1858 (((-783)) 32 T CONST)) (-3270 (($ $) 99)) (-3840 (((-938)) 140) (((-938) (-938)) 137 (|has| $ (-6 -4452)))) (-3985 (((-112) $ $) 9)) (-3402 (((-938)) 143)) (-3040 (((-112) $ $) 45)) (-2264 (($ $) 123)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-3049 (((-112) $ $) 116)) (-3024 (((-112) $ $) 115)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 117)) (-3010 (((-112) $ $) 114)) (-3107 (($ $ $) 73)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-416) (-141)) (T -416)) -((-2733 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-2733 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-4 *1 (-416)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1841 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-4415 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1939 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-3963 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-2250 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-1939 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4453)) (-4 *1 (-416)) (-5 *2 (-938)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4453)) (-4 *1 (-416)) (-5 *2 (-938)))) (-3492 (*1 *1) (-12 (-4 *1 (-416)) (-2433 (|has| *1 (-6 -4453))) (-2433 (|has| *1 (-6 -4445))))) (-2726 (*1 *1) (-12 (-4 *1 (-416)) (-2433 (|has| *1 (-6 -4453))) (-2433 (|has| *1 (-6 -4445)))))) -(-13 (-1079) (-10 -8 (-6 -2728) (-15 -2733 ($ (-576) (-576))) (-15 -2733 ($ (-576) (-576) (-938))) (-15 -1538 ((-576) $)) (-15 -1841 ((-938))) (-15 -3175 ((-576) $)) (-15 -4415 ((-576) $)) (-15 -1939 ((-938))) (-15 -3963 ((-938))) (-15 -2250 ((-938))) (IF (|has| $ (-6 -4453)) (PROGN (-15 -1939 ((-938) (-938))) (-15 -3963 ((-938) (-938))) (-15 -2250 ((-938) (-938))) (-15 -2226 ((-938) (-576))) (-15 -3262 ((-938) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4445)) |%noBranch| (IF (|has| $ (-6 -4453)) |%noBranch| (PROGN (-15 -3492 ($)) (-15 -2726 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-937) . T) ((-1021) . T) ((-1041) . T) ((-1079) . T) ((-1057 (-419 (-576))) . T) ((-1057 (-576)) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T)) -((-2477 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) -(((-417 |#1| |#2|) (-10 -7 (-15 -2477 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) -(-10 -7 (-15 -2477 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) -((-2477 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) -(((-418 |#1| |#2|) (-10 -7 (-15 -2477 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) -(-10 -7 (-15 -2477 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 13)) (-3942 ((|#1| $) 21 (|has| |#1| (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL (|has| |#1| (-832)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) 17) (((-3 (-1196) "failed") $) NIL (|has| |#1| (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576))))) (-2378 ((|#1| $) 15) (((-1196) $) NIL (|has| |#1| (-1057 (-1196)))) (((-419 (-576)) $) 69 (|has| |#1| (-1057 (-576)))) (((-576) $) NIL (|has| |#1| (-1057 (-576))))) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) 51)) (-2446 (($) NIL (|has| |#1| (-557)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| |#1| (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-1810 (((-112) $) 57)) (-4272 (($ $) NIL)) (-3894 ((|#1| $) 73)) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-3713 (((-112) $) NIL (|has| |#1| (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| |#1| (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 100)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL (|has| |#1| (-317)))) (-3892 ((|#1| $) 28 (|has| |#1| (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) 145 (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) 138 (|has| |#1| (-926)))) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-1787 (((-783) $) NIL)) (-4367 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-1490 (($ $) NIL)) (-3905 ((|#1| $) 75)) (-1505 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1041))) (((-227) $) NIL (|has| |#1| (-1041)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1196)) NIL (|has| |#1| (-1057 (-1196))))) (-3612 (((-3 $ "failed") $) 102 (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) 103 T CONST)) (-4179 ((|#1| $) 26 (|has| |#1| (-557)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3423 (($ $) NIL (|has| |#1| (-832)))) (-4300 (($) 22 T CONST)) (-4310 (($) 8 T CONST)) (-3774 (((-1178) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1178) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1292) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1292) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-4286 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) 66)) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) 24 (|has| |#1| (-862)))) (-4028 (($ $ $) 133) (($ |#1| |#1|) 53)) (-4018 (($ $) 25) (($ $ $) 56)) (-4007 (($ $ $) 54)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-419 |#1|) (-13 (-1011 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4460)) (-6 -4449) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) -NIL -(-13 (-1011 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4449)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4460)) (-6 -4449) |%noBranch|) |%noBranch|) |%noBranch|))) -((-1532 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|)) 18)) (-3006 (($ (-1287 |#2|) (-1287 $)) NIL) (($ (-1287 |#2|)) 24)) (-3754 (((-701 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) $) 40)) (-3164 ((|#3| $) 69)) (-1955 ((|#2| (-1287 $)) NIL) ((|#2|) 20)) (-3287 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $) 22) (((-701 |#2|) (-1287 $)) 38)) (-1505 (((-1287 |#2|) $) 11) (($ (-1287 |#2|)) 13)) (-3794 ((|#3| $) 55))) -(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -3754 ((-701 |#2|) |#1|)) (-15 -1955 (|#2|)) (-15 -1532 ((-701 |#2|))) (-15 -1505 (|#1| (-1287 |#2|))) (-15 -1505 ((-1287 |#2|) |#1|)) (-15 -3006 (|#1| (-1287 |#2|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1|)) (-15 -3164 (|#3| |#1|)) (-15 -3794 (|#3| |#1|)) (-15 -1532 ((-701 |#2|) (-1287 |#1|))) (-15 -1955 (|#2| (-1287 |#1|))) (-15 -3006 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3754 ((-701 |#2|) |#1| (-1287 |#1|)))) (-421 |#2| |#3|) (-174) (-1263 |#2|)) (T -420)) -((-1532 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-1955 (*1 *2) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) -(-10 -8 (-15 -3754 ((-701 |#2|) |#1|)) (-15 -1955 (|#2|)) (-15 -1532 ((-701 |#2|))) (-15 -1505 (|#1| (-1287 |#2|))) (-15 -1505 ((-1287 |#2|) |#1|)) (-15 -3006 (|#1| (-1287 |#2|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1|)) (-15 -3164 (|#3| |#1|)) (-15 -3794 (|#3| |#1|)) (-15 -1532 ((-701 |#2|) (-1287 |#1|))) (-15 -1955 (|#2| (-1287 |#1|))) (-15 -3006 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3754 ((-701 |#2|) |#1| (-1287 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1532 (((-701 |#1|) (-1287 $)) 53) (((-701 |#1|)) 68)) (-3803 ((|#1| $) 59)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3006 (($ (-1287 |#1|) (-1287 $)) 55) (($ (-1287 |#1|)) 71)) (-3754 (((-701 |#1|) $ (-1287 $)) 60) (((-701 |#1|) $) 66)) (-3179 (((-3 $ "failed") $) 37)) (-4049 (((-938)) 61)) (-1810 (((-112) $) 35)) (-4252 ((|#1| $) 58)) (-3164 ((|#2| $) 51 (|has| |#1| (-374)))) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-1955 ((|#1| (-1287 $)) 54) ((|#1|) 67)) (-3287 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56) (((-1287 |#1|) $) 73) (((-701 |#1|) (-1287 $)) 72)) (-1505 (((-1287 |#1|) $) 70) (($ (-1287 |#1|)) 69)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-3612 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3794 ((|#2| $) 52)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-1999 (((-1287 $)) 74)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) -(((-421 |#1| |#2|) (-141) (-174) (-1263 |t#1|)) (T -421)) -((-1999 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *1)) (-4 *1 (-421 *3 *4)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *3)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1263 *3)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *3)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1263 *3)))) (-1532 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-701 *3)))) (-1955 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) (-3754 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-701 *3))))) -(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -1999 ((-1287 $))) (-15 -3287 ((-1287 |t#1|) $)) (-15 -3287 ((-701 |t#1|) (-1287 $))) (-15 -3006 ($ (-1287 |t#1|))) (-15 -1505 ((-1287 |t#1|) $)) (-15 -1505 ($ (-1287 |t#1|))) (-15 -1532 ((-701 |t#1|))) (-15 -1955 (|t#1|)) (-15 -3754 ((-701 |t#1|) $)))) +((-3096 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) (-3096 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-4 *1 (-416)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-3402 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) (-3840 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-2924 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-3268 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) (-2924 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) (-5 *2 (-938)))) (-4184 (*1 *2 *3) (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) (-5 *2 (-938)))) (-2442 (*1 *1) (-12 (-4 *1 (-416)) (-2746 (|has| *1 (-6 -4452))) (-2746 (|has| *1 (-6 -4444))))) (-1893 (*1 *1) (-12 (-4 *1 (-416)) (-2746 (|has| *1 (-6 -4452))) (-2746 (|has| *1 (-6 -4444)))))) +(-13 (-1079) (-10 -8 (-6 -4125) (-15 -3096 ($ (-576) (-576))) (-15 -3096 ($ (-576) (-576) (-938))) (-15 -3333 ((-576) $)) (-15 -3402 ((-938))) (-15 -4274 ((-576) $)) (-15 -1431 ((-576) $)) (-15 -3840 ((-938))) (-15 -2924 ((-938))) (-15 -3268 ((-938))) (IF (|has| $ (-6 -4452)) (PROGN (-15 -3840 ((-938) (-938))) (-15 -2924 ((-938) (-938))) (-15 -3268 ((-938) (-938))) (-15 -2357 ((-938) (-576))) (-15 -4184 ((-938) (-576)))) |%noBranch|) (IF (|has| $ (-6 -4444)) |%noBranch| (IF (|has| $ (-6 -4452)) |%noBranch| (PROGN (-15 -2442 ($)) (-15 -1893 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-937) . T) ((-1021) . T) ((-1041) . T) ((-1079) . T) ((-1057 (-419 (-576))) . T) ((-1057 (-576)) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1240) . T)) +((-1632 (((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)) 20))) +(((-417 |#1| |#2|) (-10 -7 (-15 -1632 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) (-568) (-568)) (T -417)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-430 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-430 *6)) (-5 *1 (-417 *5 *6))))) +(-10 -7 (-15 -1632 ((-430 |#2|) (-1 |#2| |#1|) (-430 |#1|)))) +((-1632 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13))) +(((-418 |#1| |#2|) (-10 -7 (-15 -1632 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-568) (-568)) (T -418)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6))))) +(-10 -7 (-15 -1632 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 13)) (-1560 ((|#1| $) 21 (|has| |#1| (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL (|has| |#1| (-832)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) 17) (((-3 (-1195) "failed") $) NIL (|has| |#1| (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) 72 (|has| |#1| (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576))))) (-4056 ((|#1| $) 15) (((-1195) $) NIL (|has| |#1| (-1057 (-1195)))) (((-419 (-576)) $) 69 (|has| |#1| (-1057 (-576)))) (((-576) $) NIL (|has| |#1| (-1057 (-576))))) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) 51)) (-1803 (($) NIL (|has| |#1| (-557)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1910 (((-112) $) NIL (|has| |#1| (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#1| (-899 (-390))))) (-1414 (((-112) $) 57)) (-2302 (($ $) NIL)) (-1536 ((|#1| $) 73)) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-3566 (((-112) $) NIL (|has| |#1| (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| |#1| (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 100)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL (|has| |#1| (-317)))) (-3835 ((|#1| $) 28 (|has| |#1| (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) 145 (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) 138 (|has| |#1| (-926)))) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-3112 (((-783) $) NIL)) (-2871 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-1 |#1| |#1|)) 64) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-1880 (($ $) NIL)) (-1549 ((|#1| $) 75)) (-4076 (((-905 (-576)) $) NIL (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#1| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#1| (-626 (-548)))) (((-390) $) NIL (|has| |#1| (-1041))) (((-227) $) NIL (|has| |#1| (-1041)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 122 (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 10) (($ (-1195)) NIL (|has| |#1| (-1057 (-1195))))) (-2883 (((-3 $ "failed") $) 102 (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) 103 T CONST)) (-3270 ((|#1| $) 26 (|has| |#1| (-557)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2264 (($ $) NIL (|has| |#1| (-832)))) (-2800 (($) 22 T CONST)) (-2810 (($) 8 T CONST)) (-2584 (((-1177) $) 44 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1177) $ (-112)) 45 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1291) (-834) $) 46 (-12 (|has| |#1| (-557)) (|has| |#1| (-840)))) (((-1291) (-834) $ (-112)) 47 (-12 (|has| |#1| (-557)) (|has| |#1| (-840))))) (-2051 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) 66)) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) 24 (|has| |#1| (-862)))) (-3107 (($ $ $) 133) (($ |#1| |#1|) 53)) (-3095 (($ $) 25) (($ $ $) 56)) (-3083 (($ $ $) 54)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 132)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 61) (($ $ $) 58) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-419 |#1|) (-13 (-1011 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4459)) (-6 -4448) |%noBranch|) |%noBranch|) |%noBranch|))) (-568)) (T -419)) +NIL +(-13 (-1011 |#1|) (-10 -7 (IF (|has| |#1| (-557)) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4448)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4459)) (-6 -4448) |%noBranch|) |%noBranch|) |%noBranch|))) +((-4084 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|)) 18)) (-2612 (($ (-1286 |#2|) (-1286 $)) NIL) (($ (-1286 |#2|)) 24)) (-3103 (((-701 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) $) 40)) (-2554 ((|#3| $) 69)) (-1960 ((|#2| (-1286 $)) NIL) ((|#2|) 20)) (-1809 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $) 22) (((-701 |#2|) (-1286 $)) 38)) (-4076 (((-1286 |#2|) $) 11) (($ (-1286 |#2|)) 13)) (-3941 ((|#3| $) 55))) +(((-420 |#1| |#2| |#3|) (-10 -8 (-15 -3103 ((-701 |#2|) |#1|)) (-15 -1960 (|#2|)) (-15 -4084 ((-701 |#2|))) (-15 -4076 (|#1| (-1286 |#2|))) (-15 -4076 ((-1286 |#2|) |#1|)) (-15 -2612 (|#1| (-1286 |#2|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1|)) (-15 -2554 (|#3| |#1|)) (-15 -3941 (|#3| |#1|)) (-15 -4084 ((-701 |#2|) (-1286 |#1|))) (-15 -1960 (|#2| (-1286 |#1|))) (-15 -2612 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3103 ((-701 |#2|) |#1| (-1286 |#1|)))) (-421 |#2| |#3|) (-174) (-1262 |#2|)) (T -420)) +((-4084 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)) (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) (-1960 (*1 *2) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) (-4 *3 (-421 *2 *4))))) +(-10 -8 (-15 -3103 ((-701 |#2|) |#1|)) (-15 -1960 (|#2|)) (-15 -4084 ((-701 |#2|))) (-15 -4076 (|#1| (-1286 |#2|))) (-15 -4076 ((-1286 |#2|) |#1|)) (-15 -2612 (|#1| (-1286 |#2|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1|)) (-15 -2554 (|#3| |#1|)) (-15 -3941 (|#3| |#1|)) (-15 -4084 ((-701 |#2|) (-1286 |#1|))) (-15 -1960 (|#2| (-1286 |#1|))) (-15 -2612 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -3103 ((-701 |#2|) |#1| (-1286 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-4084 (((-701 |#1|) (-1286 $)) 53) (((-701 |#1|)) 68)) (-2310 ((|#1| $) 59)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-2612 (($ (-1286 |#1|) (-1286 $)) 55) (($ (-1286 |#1|)) 71)) (-3103 (((-701 |#1|) $ (-1286 $)) 60) (((-701 |#1|) $) 66)) (-1551 (((-3 $ "failed") $) 37)) (-3606 (((-938)) 61)) (-1414 (((-112) $) 35)) (-4072 ((|#1| $) 58)) (-2554 ((|#2| $) 51 (|has| |#1| (-374)))) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-1960 ((|#1| (-1286 $)) 54) ((|#1|) 67)) (-1809 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56) (((-1286 |#1|) $) 73) (((-701 |#1|) (-1286 $)) 72)) (-4076 (((-1286 |#1|) $) 70) (($ (-1286 |#1|)) 69)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44)) (-2883 (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3941 ((|#2| $) 52)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3713 (((-1286 $)) 74)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +(((-421 |#1| |#2|) (-141) (-174) (-1262 |t#1|)) (T -421)) +((-3713 (*1 *2) (-12 (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *1)) (-4 *1 (-421 *3 *4)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *3)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1262 *3)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *3)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) (-4 *4 (-1262 *3)))) (-4084 (*1 *2) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-701 *3)))) (-1960 (*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) (-3103 (*1 *2 *1) (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-701 *3))))) +(-13 (-381 |t#1| |t#2|) (-10 -8 (-15 -3713 ((-1286 $))) (-15 -1809 ((-1286 |t#1|) $)) (-15 -1809 ((-701 |t#1|) (-1286 $))) (-15 -2612 ($ (-1286 |t#1|))) (-15 -4076 ((-1286 |t#1|) $)) (-15 -4076 ($ (-1286 |t#1|))) (-15 -4084 ((-701 |t#1|))) (-15 -1960 (|t#1|)) (-15 -3103 ((-701 |t#1|) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-381 |#1| |#2|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-2378 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-4092 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) -(((-422 |#1| |#2|) (-10 -8 (-15 -4092 (|#1| (-576))) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -4092 (|#1| |#2|))) (-423 |#2|) (-1237)) (T -422)) +((-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) 27) (((-3 (-576) "failed") $) 19)) (-4056 ((|#2| $) NIL) (((-419 (-576)) $) 24) (((-576) $) 14)) (-3563 (($ |#2|) NIL) (($ (-419 (-576))) 22) (($ (-576)) 11))) +(((-422 |#1| |#2|) (-10 -8 (-15 -3563 (|#1| (-576))) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3563 (|#1| |#2|))) (-423 |#2|) (-1236)) (T -422)) NIL -(-10 -8 (-15 -4092 (|#1| (-576))) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -4092 (|#1| |#2|))) -((-2974 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1057 (-576))))) (-2378 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1057 (-576))))) (-4092 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1057 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1057 (-576)))))) -(((-423 |#1|) (-141) (-1237)) (T -423)) +(-10 -8 (-15 -3563 (|#1| (-576))) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3563 (|#1| |#2|))) +((-1539 (((-3 |#1| "failed") $) 9) (((-3 (-419 (-576)) "failed") $) 16 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 13 (|has| |#1| (-1057 (-576))))) (-4056 ((|#1| $) 8) (((-419 (-576)) $) 17 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 14 (|has| |#1| (-1057 (-576))))) (-3563 (($ |#1|) 6) (($ (-419 (-576))) 15 (|has| |#1| (-1057 (-419 (-576))))) (($ (-576)) 12 (|has| |#1| (-1057 (-576)))))) +(((-423 |#1|) (-141) (-1236)) (T -423)) NIL (-13 (-1057 |t#1|) (-10 -7 (IF (|has| |t#1| (-1057 (-576))) (-6 (-1057 (-576))) |%noBranch|) (IF (|has| |t#1| (-1057 (-419 (-576)))) (-6 (-1057 (-419 (-576)))) |%noBranch|))) (((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 #1=(-576)) |has| |#1| (-1057 (-576))) ((-628 |#1|) . T) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 #1#) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T)) -((-2477 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) -(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2477 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1011 |#1|) (-1263 |#2|) (-13 (-421 |#2| |#3|) (-1057 |#2|)) (-317) (-1011 |#5|) (-1263 |#6|) (-13 (-421 |#6| |#7|) (-1057 |#6|))) (T -424)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1011 *5)) (-4 *7 (-1263 *6)) (-4 *8 (-13 (-421 *6 *7) (-1057 *6))) (-4 *9 (-317)) (-4 *10 (-1011 *9)) (-4 *11 (-1263 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1057 *10)))))) -(-10 -7 (-15 -2477 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) -((-2034 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-1611 ((|#4| (-783) (-1287 |#4|)) 55)) (-1810 (((-112) $) NIL)) (-3894 (((-1287 |#4|) $) 15)) (-4252 ((|#2| $) 53)) (-2292 (($ $) 157)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 103)) (-2133 (($ (-1287 |#4|)) 102)) (-3139 (((-1139) $) NIL)) (-3905 ((|#1| $) 16)) (-3646 (($ $ $) NIL)) (-1361 (($ $ $) NIL)) (-4092 (((-874) $) 148)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 |#4|) $) 141)) (-4310 (($) 11 T CONST)) (-3919 (((-112) $ $) 39)) (-4028 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) -(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -2133 ($ (-1287 |#4|))) (-15 -1999 ((-1287 |#4|) $)) (-15 -4252 (|#2| $)) (-15 -3894 ((-1287 |#4|) $)) (-15 -3905 (|#1| $)) (-15 -2292 ($ $)) (-15 -1611 (|#4| (-783) (-1287 |#4|))))) (-317) (-1011 |#1|) (-1263 |#2|) (-13 (-421 |#2| |#3|) (-1057 |#2|))) (T -425)) -((-2133 (*1 *1 *2) (-12 (-5 *2 (-1287 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-1999 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) (-4252 (*1 *2 *1) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1057 *2))))) (-3894 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) (-3905 (*1 *2 *1) (-12 (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3))))) (-2292 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3))))) (-1611 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1287 *2)) (-4 *5 (-317)) (-4 *6 (-1011 *5)) (-4 *2 (-13 (-421 *6 *7) (-1057 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1263 *6))))) -(-13 (-485) (-10 -8 (-15 -2133 ($ (-1287 |#4|))) (-15 -1999 ((-1287 |#4|) $)) (-15 -4252 (|#2| $)) (-15 -3894 ((-1287 |#4|) $)) (-15 -3905 (|#1| $)) (-15 -2292 ($ $)) (-15 -1611 (|#4| (-783) (-1287 |#4|))))) -((-2034 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-4252 ((|#2| $) 71)) (-2434 (($ (-1287 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1057 |#2|)))) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 37)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 |#4|) $) 28)) (-4310 (($) 25 T CONST)) (-3919 (((-112) $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82))) -(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -1999 ((-1287 |#4|) $)) (-15 -4252 (|#2| $)) (-15 -2434 ($ (-1287 |#4|))) (IF (|has| |#4| (-1057 |#2|)) (-15 -2434 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1011 |#1|) (-1263 |#2|) (-421 |#2| |#3|) (-1287 |#4|)) (T -426)) -((-1999 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-4252 (*1 *2 *1) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1287 *5)))) (-2434 (*1 *1 *2) (-12 (-5 *2 (-1287 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2434 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1057 *4)) (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) -(-13 (-738) (-10 -8 (-15 -1999 ((-1287 |#4|) $)) (-15 -4252 (|#2| $)) (-15 -2434 ($ (-1287 |#4|))) (IF (|has| |#4| (-1057 |#2|)) (-15 -2434 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2477 ((|#3| (-1 |#4| |#2|) |#1|) 29))) -(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) -(-10 -7 (-15 -2477 (|#3| (-1 |#4| |#2|) |#1|))) -((-3500 (((-3 $ "failed")) 98)) (-3925 (((-1287 (-701 |#2|)) (-1287 $)) NIL) (((-1287 (-701 |#2|))) 103)) (-3063 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) 96)) (-4163 (((-3 $ "failed")) 95)) (-3016 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|)) 114)) (-4114 (((-701 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) $) 122)) (-4238 (((-1192 (-969 |#2|))) 63)) (-2548 ((|#2| (-1287 $)) NIL) ((|#2|) 118)) (-3006 (($ (-1287 |#2|) (-1287 $)) NIL) (($ (-1287 |#2|)) 124)) (-2416 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) 94)) (-3335 (((-3 $ "failed")) 86)) (-2472 (((-701 |#2|) (-1287 $)) NIL) (((-701 |#2|)) 112)) (-1424 (((-701 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) $) 120)) (-3517 (((-1192 (-969 |#2|))) 62)) (-4167 ((|#2| (-1287 $)) NIL) ((|#2|) 116)) (-3287 (((-1287 |#2|) $ (-1287 $)) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $) 123) (((-701 |#2|) (-1287 $)) 132)) (-1505 (((-1287 |#2|) $) 108) (($ (-1287 |#2|)) 110)) (-2180 (((-656 (-969 |#2|)) (-1287 $)) NIL) (((-656 (-969 |#2|))) 106)) (-2690 (($ (-701 |#2|) $) 102))) -(((-428 |#1| |#2|) (-10 -8 (-15 -2690 (|#1| (-701 |#2|) |#1|)) (-15 -4238 ((-1192 (-969 |#2|)))) (-15 -3517 ((-1192 (-969 |#2|)))) (-15 -4114 ((-701 |#2|) |#1|)) (-15 -1424 ((-701 |#2|) |#1|)) (-15 -3016 ((-701 |#2|))) (-15 -2472 ((-701 |#2|))) (-15 -2548 (|#2|)) (-15 -4167 (|#2|)) (-15 -1505 (|#1| (-1287 |#2|))) (-15 -1505 ((-1287 |#2|) |#1|)) (-15 -3006 (|#1| (-1287 |#2|))) (-15 -2180 ((-656 (-969 |#2|)))) (-15 -3925 ((-1287 (-701 |#2|)))) (-15 -3287 ((-701 |#2|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1|)) (-15 -3500 ((-3 |#1| "failed"))) (-15 -4163 ((-3 |#1| "failed"))) (-15 -3335 ((-3 |#1| "failed"))) (-15 -3063 ((-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-656 |#1|))) "failed"))) (-15 -2416 ((-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-656 |#1|))) "failed"))) (-15 -3016 ((-701 |#2|) (-1287 |#1|))) (-15 -2472 ((-701 |#2|) (-1287 |#1|))) (-15 -2548 (|#2| (-1287 |#1|))) (-15 -4167 (|#2| (-1287 |#1|))) (-15 -3006 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4114 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -1424 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -3925 ((-1287 (-701 |#2|)) (-1287 |#1|))) (-15 -2180 ((-656 (-969 |#2|)) (-1287 |#1|)))) (-429 |#2|) (-174)) (T -428)) -((-3925 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2180 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-969 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4167 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-2548 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-2472 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3016 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3517 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-969 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4238 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-969 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) -(-10 -8 (-15 -2690 (|#1| (-701 |#2|) |#1|)) (-15 -4238 ((-1192 (-969 |#2|)))) (-15 -3517 ((-1192 (-969 |#2|)))) (-15 -4114 ((-701 |#2|) |#1|)) (-15 -1424 ((-701 |#2|) |#1|)) (-15 -3016 ((-701 |#2|))) (-15 -2472 ((-701 |#2|))) (-15 -2548 (|#2|)) (-15 -4167 (|#2|)) (-15 -1505 (|#1| (-1287 |#2|))) (-15 -1505 ((-1287 |#2|) |#1|)) (-15 -3006 (|#1| (-1287 |#2|))) (-15 -2180 ((-656 (-969 |#2|)))) (-15 -3925 ((-1287 (-701 |#2|)))) (-15 -3287 ((-701 |#2|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1|)) (-15 -3500 ((-3 |#1| "failed"))) (-15 -4163 ((-3 |#1| "failed"))) (-15 -3335 ((-3 |#1| "failed"))) (-15 -3063 ((-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-656 |#1|))) "failed"))) (-15 -2416 ((-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-656 |#1|))) "failed"))) (-15 -3016 ((-701 |#2|) (-1287 |#1|))) (-15 -2472 ((-701 |#2|) (-1287 |#1|))) (-15 -2548 (|#2| (-1287 |#1|))) (-15 -4167 (|#2| (-1287 |#1|))) (-15 -3006 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3287 ((-701 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3287 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -4114 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -1424 ((-701 |#2|) |#1| (-1287 |#1|))) (-15 -3925 ((-1287 (-701 |#2|)) (-1287 |#1|))) (-15 -2180 ((-656 (-969 |#2|)) (-1287 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3500 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) 20)) (-3925 (((-1287 (-701 |#1|)) (-1287 $)) 83) (((-1287 (-701 |#1|))) 106)) (-3286 (((-1287 $)) 86)) (-3656 (($) 18 T CONST)) (-3063 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-4163 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-3016 (((-701 |#1|) (-1287 $)) 70) (((-701 |#1|)) 98)) (-2379 ((|#1| $) 79)) (-4114 (((-701 |#1|) $ (-1287 $)) 81) (((-701 |#1|) $) 96)) (-3046 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-4238 (((-1192 (-969 |#1|))) 94 (|has| |#1| (-374)))) (-3952 (($ $ (-938)) 31)) (-4045 ((|#1| $) 77)) (-4378 (((-1192 |#1|) $) 47 (|has| |#1| (-568)))) (-2548 ((|#1| (-1287 $)) 72) ((|#1|) 100)) (-3145 (((-1192 |#1|) $) 68)) (-4429 (((-112)) 62)) (-3006 (($ (-1287 |#1|) (-1287 $)) 74) (($ (-1287 |#1|)) 104)) (-3179 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-4049 (((-938)) 85)) (-3751 (((-112)) 59)) (-4370 (($ $ (-938)) 38)) (-3440 (((-112)) 55)) (-3903 (((-112)) 53)) (-2866 (((-112)) 57)) (-2416 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-3335 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-2472 (((-701 |#1|) (-1287 $)) 71) (((-701 |#1|)) 99)) (-3653 ((|#1| $) 80)) (-1424 (((-701 |#1|) $ (-1287 $)) 82) (((-701 |#1|) $) 97)) (-1714 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-3517 (((-1192 (-969 |#1|))) 95 (|has| |#1| (-374)))) (-2596 (($ $ (-938)) 32)) (-1891 ((|#1| $) 78)) (-3691 (((-1192 |#1|) $) 48 (|has| |#1| (-568)))) (-4167 ((|#1| (-1287 $)) 73) ((|#1|) 101)) (-1684 (((-1192 |#1|) $) 69)) (-1371 (((-112)) 63)) (-3288 (((-1178) $) 10)) (-2614 (((-112)) 54)) (-3810 (((-112)) 56)) (-2989 (((-112)) 58)) (-3139 (((-1139) $) 11)) (-4207 (((-112)) 61)) (-4367 ((|#1| $ (-576)) 110)) (-3287 (((-1287 |#1|) $ (-1287 $)) 76) (((-701 |#1|) (-1287 $) (-1287 $)) 75) (((-1287 |#1|) $) 108) (((-701 |#1|) (-1287 $)) 107)) (-1505 (((-1287 |#1|) $) 103) (($ (-1287 |#1|)) 102)) (-2180 (((-656 (-969 |#1|)) (-1287 $)) 84) (((-656 (-969 |#1|))) 105)) (-1361 (($ $ $) 28)) (-2261 (((-112)) 67)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-1999 (((-1287 $)) 109)) (-3558 (((-656 (-1287 |#1|))) 49 (|has| |#1| (-568)))) (-3911 (($ $ $ $) 29)) (-2723 (((-112)) 65)) (-2690 (($ (-701 |#1|) $) 93)) (-3771 (($ $ $) 27)) (-4393 (((-112)) 66)) (-4340 (((-112)) 64)) (-1450 (((-112)) 60)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-1632 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35))) +(((-424 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1632 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-317) (-1011 |#1|) (-1262 |#2|) (-13 (-421 |#2| |#3|) (-1057 |#2|)) (-317) (-1011 |#5|) (-1262 |#6|) (-13 (-421 |#6| |#7|) (-1057 |#6|))) (T -424)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) (-4 *6 (-1011 *5)) (-4 *7 (-1262 *6)) (-4 *8 (-13 (-421 *6 *7) (-1057 *6))) (-4 *9 (-317)) (-4 *10 (-1011 *9)) (-4 *11 (-1262 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1057 *10)))))) +(-10 -7 (-15 -1632 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) +((-3474 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-4047 ((|#4| (-783) (-1286 |#4|)) 55)) (-1414 (((-112) $) NIL)) (-1536 (((-1286 |#4|) $) 15)) (-4072 ((|#2| $) 53)) (-1787 (($ $) 157)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 103)) (-1675 (($ (-1286 |#4|)) 102)) (-1445 (((-1139) $) NIL)) (-1549 ((|#1| $) 16)) (-4026 (($ $ $) NIL)) (-4081 (($ $ $) NIL)) (-3563 (((-874) $) 148)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 |#4|) $) 141)) (-2810 (($) 11 T CONST)) (-2988 (((-112) $ $) 39)) (-3107 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 134)) (* (($ $ $) 130))) +(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -1675 ($ (-1286 |#4|))) (-15 -3713 ((-1286 |#4|) $)) (-15 -4072 (|#2| $)) (-15 -1536 ((-1286 |#4|) $)) (-15 -1549 (|#1| $)) (-15 -1787 ($ $)) (-15 -4047 (|#4| (-783) (-1286 |#4|))))) (-317) (-1011 |#1|) (-1262 |#2|) (-13 (-421 |#2| |#3|) (-1057 |#2|))) (T -425)) +((-1675 (*1 *1 *2) (-12 (-5 *2 (-1286 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))) (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-317)) (-5 *1 (-425 *3 *4 *5 *6)))) (-3713 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) (-4072 (*1 *2 *1) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1057 *2))))) (-1536 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) (-1549 (*1 *2 *1) (-12 (-4 *3 (-1011 *2)) (-4 *4 (-1262 *3)) (-4 *2 (-317)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3))))) (-1787 (*1 *1 *1) (-12 (-4 *2 (-317)) (-4 *3 (-1011 *2)) (-4 *4 (-1262 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3))))) (-4047 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1286 *2)) (-4 *5 (-317)) (-4 *6 (-1011 *5)) (-4 *2 (-13 (-421 *6 *7) (-1057 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1262 *6))))) +(-13 (-485) (-10 -8 (-15 -1675 ($ (-1286 |#4|))) (-15 -3713 ((-1286 |#4|) $)) (-15 -4072 (|#2| $)) (-15 -1536 ((-1286 |#4|) $)) (-15 -1549 (|#1| $)) (-15 -1787 ($ $)) (-15 -4047 (|#4| (-783) (-1286 |#4|))))) +((-3474 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-4072 ((|#2| $) 71)) (-3432 (($ (-1286 |#4|)) 27) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1057 |#2|)))) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 37)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 |#4|) $) 28)) (-2810 (($) 25 T CONST)) (-2988 (((-112) $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ $ $) 82))) +(((-426 |#1| |#2| |#3| |#4| |#5|) (-13 (-738) (-10 -8 (-15 -3713 ((-1286 |#4|) $)) (-15 -4072 (|#2| $)) (-15 -3432 ($ (-1286 |#4|))) (IF (|has| |#4| (-1057 |#2|)) (-15 -3432 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-317) (-1011 |#1|) (-1262 |#2|) (-421 |#2| |#3|) (-1286 |#4|)) (T -426)) +((-3713 (*1 *2 *1) (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-4 *6 (-421 *4 *5)) (-14 *7 *2))) (-4072 (*1 *2 *1) (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) (-14 *6 (-1286 *5)))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-1286 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3432 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1057 *4)) (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) (-4 *6 (-421 *4 *5)) (-14 *7 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7))))) +(-13 (-738) (-10 -8 (-15 -3713 ((-1286 |#4|) $)) (-15 -4072 (|#2| $)) (-15 -3432 ($ (-1286 |#4|))) (IF (|has| |#4| (-1057 |#2|)) (-15 -3432 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-1632 ((|#3| (-1 |#4| |#2|) |#1|) 29))) +(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#3| (-1 |#4| |#2|) |#1|))) (-429 |#2|) (-174) (-429 |#4|) (-174)) (T -427)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-429 *6)) (-5 *1 (-427 *4 *5 *2 *6)) (-4 *4 (-429 *5))))) +(-10 -7 (-15 -1632 (|#3| (-1 |#4| |#2|) |#1|))) +((-3341 (((-3 $ "failed")) 98)) (-2697 (((-1286 (-701 |#2|)) (-1286 $)) NIL) (((-1286 (-701 |#2|))) 103)) (-4130 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) 96)) (-4122 (((-3 $ "failed")) 95)) (-4252 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|)) 114)) (-1783 (((-701 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) $) 122)) (-2125 (((-1191 (-969 |#2|))) 63)) (-2639 ((|#2| (-1286 $)) NIL) ((|#2|) 118)) (-2612 (($ (-1286 |#2|) (-1286 $)) NIL) (($ (-1286 |#2|)) 124)) (-4230 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) 94)) (-2694 (((-3 $ "failed")) 86)) (-1950 (((-701 |#2|) (-1286 $)) NIL) (((-701 |#2|)) 112)) (-2269 (((-701 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) $) 120)) (-2571 (((-1191 (-969 |#2|))) 62)) (-1394 ((|#2| (-1286 $)) NIL) ((|#2|) 116)) (-1809 (((-1286 |#2|) $ (-1286 $)) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $) 123) (((-701 |#2|) (-1286 $)) 132)) (-4076 (((-1286 |#2|) $) 108) (($ (-1286 |#2|)) 110)) (-3434 (((-656 (-969 |#2|)) (-1286 $)) NIL) (((-656 (-969 |#2|))) 106)) (-3491 (($ (-701 |#2|) $) 102))) +(((-428 |#1| |#2|) (-10 -8 (-15 -3491 (|#1| (-701 |#2|) |#1|)) (-15 -2125 ((-1191 (-969 |#2|)))) (-15 -2571 ((-1191 (-969 |#2|)))) (-15 -1783 ((-701 |#2|) |#1|)) (-15 -2269 ((-701 |#2|) |#1|)) (-15 -4252 ((-701 |#2|))) (-15 -1950 ((-701 |#2|))) (-15 -2639 (|#2|)) (-15 -1394 (|#2|)) (-15 -4076 (|#1| (-1286 |#2|))) (-15 -4076 ((-1286 |#2|) |#1|)) (-15 -2612 (|#1| (-1286 |#2|))) (-15 -3434 ((-656 (-969 |#2|)))) (-15 -2697 ((-1286 (-701 |#2|)))) (-15 -1809 ((-701 |#2|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1|)) (-15 -3341 ((-3 |#1| "failed"))) (-15 -4122 ((-3 |#1| "failed"))) (-15 -2694 ((-3 |#1| "failed"))) (-15 -4130 ((-3 (-2 (|:| |particular| |#1|) (|:| -3713 (-656 |#1|))) "failed"))) (-15 -4230 ((-3 (-2 (|:| |particular| |#1|) (|:| -3713 (-656 |#1|))) "failed"))) (-15 -4252 ((-701 |#2|) (-1286 |#1|))) (-15 -1950 ((-701 |#2|) (-1286 |#1|))) (-15 -2639 (|#2| (-1286 |#1|))) (-15 -1394 (|#2| (-1286 |#1|))) (-15 -2612 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1783 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2269 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2697 ((-1286 (-701 |#2|)) (-1286 |#1|))) (-15 -3434 ((-656 (-969 |#2|)) (-1286 |#1|)))) (-429 |#2|) (-174)) (T -428)) +((-2697 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-3434 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-656 (-969 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-1394 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-2639 (*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) (-1950 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-4252 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2571 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-969 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4)))) (-2125 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-969 *4))) (-5 *1 (-428 *3 *4)) (-4 *3 (-429 *4))))) +(-10 -8 (-15 -3491 (|#1| (-701 |#2|) |#1|)) (-15 -2125 ((-1191 (-969 |#2|)))) (-15 -2571 ((-1191 (-969 |#2|)))) (-15 -1783 ((-701 |#2|) |#1|)) (-15 -2269 ((-701 |#2|) |#1|)) (-15 -4252 ((-701 |#2|))) (-15 -1950 ((-701 |#2|))) (-15 -2639 (|#2|)) (-15 -1394 (|#2|)) (-15 -4076 (|#1| (-1286 |#2|))) (-15 -4076 ((-1286 |#2|) |#1|)) (-15 -2612 (|#1| (-1286 |#2|))) (-15 -3434 ((-656 (-969 |#2|)))) (-15 -2697 ((-1286 (-701 |#2|)))) (-15 -1809 ((-701 |#2|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1|)) (-15 -3341 ((-3 |#1| "failed"))) (-15 -4122 ((-3 |#1| "failed"))) (-15 -2694 ((-3 |#1| "failed"))) (-15 -4130 ((-3 (-2 (|:| |particular| |#1|) (|:| -3713 (-656 |#1|))) "failed"))) (-15 -4230 ((-3 (-2 (|:| |particular| |#1|) (|:| -3713 (-656 |#1|))) "failed"))) (-15 -4252 ((-701 |#2|) (-1286 |#1|))) (-15 -1950 ((-701 |#2|) (-1286 |#1|))) (-15 -2639 (|#2| (-1286 |#1|))) (-15 -1394 (|#2| (-1286 |#1|))) (-15 -2612 (|#1| (-1286 |#2|) (-1286 |#1|))) (-15 -1809 ((-701 |#2|) (-1286 |#1|) (-1286 |#1|))) (-15 -1809 ((-1286 |#2|) |#1| (-1286 |#1|))) (-15 -1783 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2269 ((-701 |#2|) |#1| (-1286 |#1|))) (-15 -2697 ((-1286 (-701 |#2|)) (-1286 |#1|))) (-15 -3434 ((-656 (-969 |#2|)) (-1286 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3341 (((-3 $ "failed")) 42 (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) 20)) (-2697 (((-1286 (-701 |#1|)) (-1286 $)) 83) (((-1286 (-701 |#1|))) 106)) (-1686 (((-1286 $)) 86)) (-3767 (($) 18 T CONST)) (-4130 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) 45 (|has| |#1| (-568)))) (-4122 (((-3 $ "failed")) 43 (|has| |#1| (-568)))) (-4252 (((-701 |#1|) (-1286 $)) 70) (((-701 |#1|)) 98)) (-2828 ((|#1| $) 79)) (-1783 (((-701 |#1|) $ (-1286 $)) 81) (((-701 |#1|) $) 96)) (-2991 (((-3 $ "failed") $) 50 (|has| |#1| (-568)))) (-2125 (((-1191 (-969 |#1|))) 94 (|has| |#1| (-374)))) (-4242 (($ $ (-938)) 31)) (-3207 ((|#1| $) 77)) (-3812 (((-1191 |#1|) $) 47 (|has| |#1| (-568)))) (-2639 ((|#1| (-1286 $)) 72) ((|#1|) 100)) (-2355 (((-1191 |#1|) $) 68)) (-3411 (((-112)) 62)) (-2612 (($ (-1286 |#1|) (-1286 $)) 74) (($ (-1286 |#1|)) 104)) (-1551 (((-3 $ "failed") $) 52 (|has| |#1| (-568)))) (-3606 (((-938)) 85)) (-2995 (((-112)) 59)) (-4300 (($ $ (-938)) 38)) (-4334 (((-112)) 55)) (-1364 (((-112)) 53)) (-2272 (((-112)) 57)) (-4230 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) 46 (|has| |#1| (-568)))) (-2694 (((-3 $ "failed")) 44 (|has| |#1| (-568)))) (-1950 (((-701 |#1|) (-1286 $)) 71) (((-701 |#1|)) 99)) (-3544 ((|#1| $) 80)) (-2269 (((-701 |#1|) $ (-1286 $)) 82) (((-701 |#1|) $) 97)) (-1410 (((-3 $ "failed") $) 51 (|has| |#1| (-568)))) (-2571 (((-1191 (-969 |#1|))) 95 (|has| |#1| (-374)))) (-1428 (($ $ (-938)) 32)) (-3804 ((|#1| $) 78)) (-2904 (((-1191 |#1|) $) 48 (|has| |#1| (-568)))) (-1394 ((|#1| (-1286 $)) 73) ((|#1|) 101)) (-3764 (((-1191 |#1|) $) 69)) (-2692 (((-112)) 63)) (-1927 (((-1177) $) 10)) (-1610 (((-112)) 54)) (-3077 (((-112)) 56)) (-3276 (((-112)) 58)) (-1445 (((-1139) $) 11)) (-2775 (((-112)) 61)) (-2871 ((|#1| $ (-576)) 110)) (-1809 (((-1286 |#1|) $ (-1286 $)) 76) (((-701 |#1|) (-1286 $) (-1286 $)) 75) (((-1286 |#1|) $) 108) (((-701 |#1|) (-1286 $)) 107)) (-4076 (((-1286 |#1|) $) 103) (($ (-1286 |#1|)) 102)) (-3434 (((-656 (-969 |#1|)) (-1286 $)) 84) (((-656 (-969 |#1|))) 105)) (-4081 (($ $ $) 28)) (-2012 (((-112)) 67)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-3713 (((-1286 $)) 109)) (-2253 (((-656 (-1286 |#1|))) 49 (|has| |#1| (-568)))) (-1938 (($ $ $ $) 29)) (-1524 (((-112)) 65)) (-3491 (($ (-701 |#1|) $) 93)) (-2303 (($ $ $) 27)) (-2647 (((-112)) 66)) (-2256 (((-112)) 64)) (-4016 (((-112)) 60)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-429 |#1|) (-141) (-174)) (T -429)) -((-1999 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-429 *3)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-3925 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 (-701 *3))))) (-2180 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-969 *3))))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-1505 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-4167 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-2548 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-2472 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3016 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-3517 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1192 (-969 *3))))) (-4238 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1192 (-969 *3))))) (-2690 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) -(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -1999 ((-1287 $))) (-15 -3287 ((-1287 |t#1|) $)) (-15 -3287 ((-701 |t#1|) (-1287 $))) (-15 -3925 ((-1287 (-701 |t#1|)))) (-15 -2180 ((-656 (-969 |t#1|)))) (-15 -3006 ($ (-1287 |t#1|))) (-15 -1505 ((-1287 |t#1|) $)) (-15 -1505 ($ (-1287 |t#1|))) (-15 -4167 (|t#1|)) (-15 -2548 (|t#1|)) (-15 -2472 ((-701 |t#1|))) (-15 -3016 ((-701 |t#1|))) (-15 -1424 ((-701 |t#1|) $)) (-15 -4114 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -3517 ((-1192 (-969 |t#1|)))) (-15 -4238 ((-1192 (-969 |t#1|))))) |%noBranch|) (-15 -2690 ($ (-701 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 60)) (-3002 (($ $) 78)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 192)) (-2573 (($ $) NIL)) (-4306 (((-112) $) 48)) (-3500 ((|#1| $) 16)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| |#1| (-1241)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-1241)))) (-2540 (($ |#1| (-576)) 42)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 74)) (-3179 (((-3 $ "failed") $) 165)) (-1653 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-3863 (((-112) $) 81 (|has| |#1| (-557)))) (-4266 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-2057 (($ |#1| (-576)) 44)) (-2725 (((-112) $) 212 (|has| |#1| (-1241)))) (-1810 (((-112) $) 62)) (-4111 (((-783) $) 51)) (-1434 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-3158 ((|#1| $ (-576)) 175)) (-4160 (((-576) $ (-576)) 174)) (-3881 (($ |#1| (-576)) 41)) (-2477 (($ (-1 |#1| |#1|) $) 184)) (-3216 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3288 (((-1178) $) NIL)) (-1699 (($ |#1| (-576)) 43)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-1713 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-3791 (((-656 (-2 (|:| -1392 |#1|) (|:| -3175 (-576)))) $) 73)) (-3066 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-1392 (((-430 $) $) NIL (|has| |#1| (-1241)))) (-2022 (((-3 $ "failed") $ $) 177)) (-3175 (((-576) $) 168)) (-2824 ((|#1| $) 75)) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) $) NIL (|has| |#1| (-526 (-1196) $))) (($ $ (-656 (-1196)) (-656 $)) 108 (|has| |#1| (-526 (-1196) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-4367 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-3614 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-1505 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1041))) (((-227) $) 120 (|has| |#1| (-1041)))) (-4092 (((-874) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576)))))) (-2471 (((-783)) 67 T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-4300 (($) 53 T CONST)) (-4310 (($) 52 T CONST)) (-4286 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-3919 (((-112) $ $) 160)) (-4018 (($ $) 162) (($ $ $) NIL)) (-4007 (($ $ $) 181)) (** (($ $ (-938)) NIL) (($ $ (-783)) 126)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -2824 (|#1| $)) (-15 -3175 ((-576) $)) (-15 -3216 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -3066 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -3881 ($ |#1| (-576))) (-15 -3791 ((-656 (-2 (|:| -1392 |#1|) (|:| -3175 (-576)))) $)) (-15 -1699 ($ |#1| (-576))) (-15 -4160 ((-576) $ (-576))) (-15 -3158 (|#1| $ (-576))) (-15 -1434 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -4111 ((-783) $)) (-15 -2057 ($ |#1| (-576))) (-15 -2540 ($ |#1| (-576))) (-15 -1713 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3500 (|#1| $)) (-15 -3002 ($ $)) (-15 -2477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-1241)) (-6 (-1241)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1196) $)) (-6 (-526 (-1196) $)) |%noBranch|))) (-568)) (T -430)) -((-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-2824 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3216 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-3066 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3881 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3791 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1392 *3) (|:| -3175 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-1699 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4160 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1434 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2057 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2540 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1713 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3500 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3002 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-1653 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) -(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -2824 (|#1| $)) (-15 -3175 ((-576) $)) (-15 -3216 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -3066 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -3881 ($ |#1| (-576))) (-15 -3791 ((-656 (-2 (|:| -1392 |#1|) (|:| -3175 (-576)))) $)) (-15 -1699 ($ |#1| (-576))) (-15 -4160 ((-576) $ (-576))) (-15 -3158 (|#1| $ (-576))) (-15 -1434 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -4111 ((-783) $)) (-15 -2057 ($ |#1| (-576))) (-15 -2540 ($ |#1| (-576))) (-15 -1713 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3500 (|#1| $)) (-15 -3002 ($ $)) (-15 -2477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-1241)) (-6 (-1241)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1196) $)) (-6 (-526 (-1196) $)) |%noBranch|))) -((-2198 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-4263 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) -(((-431 |#1|) (-10 -7 (-15 -2198 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -4263 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) -((-4263 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-2198 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) -(-10 -7 (-15 -2198 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -4263 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) -((-1743 ((|#2| |#2|) 183)) (-2897 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112)) 60))) -(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2897 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112))) (-15 -1743 (|#2| |#2|))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|)) (-1196) |#2|) (T -432)) -((-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1222) (-442 *3))) (-14 *4 (-1196)) (-14 *5 *2))) (-2897 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-14 *6 (-1196)) (-14 *7 *3)))) -(-10 -7 (-15 -2897 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112))) (-15 -1743 (|#2| |#2|))) -((-2477 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#4| (-1 |#3| |#1|) |#2|))) (-1068) (-442 |#1|) (-1068) (-442 |#3|)) (T -433)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) -(-10 -7 (-15 -2477 (|#4| (-1 |#3| |#1|) |#2|))) -((-1743 ((|#2| |#2|) 106)) (-3176 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178)) 52)) (-3045 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178)) 170))) -(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3176 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -3045 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -1743 (|#2| |#2|))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|) (-10 -8 (-15 -4092 ($ |#3|)))) (-860) (-13 (-1265 |#2| |#3|) (-374) (-1222) (-10 -8 (-15 -3614 ($ $)) (-15 -3597 ($ $)))) (-1002 |#4|) (-1196)) (T -434)) -((-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1222) (-442 *3) (-10 -8 (-15 -4092 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1265 *2 *4) (-374) (-1222) (-10 -8 (-15 -3614 ($ $)) (-15 -3597 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1002 *5)) (-14 *7 (-1196)))) (-3045 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -4092 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1265 *3 *7) (-374) (-1222) (-10 -8 (-15 -3614 ($ $)) (-15 -3597 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) (-14 *10 (-1196)))) (-3176 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -4092 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1265 *3 *7) (-374) (-1222) (-10 -8 (-15 -3614 ($ $)) (-15 -3597 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) (-14 *10 (-1196))))) -(-10 -7 (-15 -3176 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -3045 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178))))) |#2| (-112) (-1178))) (-15 -1743 (|#2| |#2|))) -((-1687 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2359 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2477 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2359 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1687 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1119) (-437 |#1|) (-1119) (-437 |#3|)) (T -435)) -((-1687 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-2359 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) -(-10 -7 (-15 -2477 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2359 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1687 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1922 (($) 51)) (-4006 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-4369 (($ $ $) 46)) (-3004 (((-112) $ $) 35)) (-2247 (((-783)) 55)) (-3662 (($ (-656 |#2|)) 23) (($) NIL)) (-2446 (($) 66)) (-1583 (((-112) $ $) 15)) (-3492 ((|#2| $) 77)) (-2726 ((|#2| $) 75)) (-3225 (((-938) $) 70)) (-3586 (($ $ $) 42)) (-2550 (($ (-938)) 60)) (-3182 (($ $ |#2|) NIL) (($ $ $) 45)) (-3150 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-4103 (($ (-656 |#2|)) 27)) (-3737 (($ $) 53)) (-4092 (((-874) $) 40)) (-2214 (((-783) $) 24)) (-1460 (($ (-656 |#2|)) 22) (($) NIL)) (-3919 (((-112) $ $) 19))) -(((-436 |#1| |#2|) (-10 -8 (-15 -2247 ((-783))) (-15 -2550 (|#1| (-938))) (-15 -3225 ((-938) |#1|)) (-15 -2446 (|#1|)) (-15 -3492 (|#2| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -1922 (|#1|)) (-15 -3737 (|#1| |#1|)) (-15 -2214 ((-783) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -1583 ((-112) |#1| |#1|)) (-15 -1460 (|#1|)) (-15 -1460 (|#1| (-656 |#2|))) (-15 -3662 (|#1|)) (-15 -3662 (|#1| (-656 |#2|))) (-15 -3586 (|#1| |#1| |#1|)) (-15 -3182 (|#1| |#1| |#1|)) (-15 -3182 (|#1| |#1| |#2|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -3004 ((-112) |#1| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4103 (|#1| (-656 |#2|))) (-15 -3150 ((-783) |#2| |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1119)) (T -436)) -((-2247 (*1 *2) (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4))))) -(-10 -8 (-15 -2247 ((-783))) (-15 -2550 (|#1| (-938))) (-15 -3225 ((-938) |#1|)) (-15 -2446 (|#1|)) (-15 -3492 (|#2| |#1|)) (-15 -2726 (|#2| |#1|)) (-15 -1922 (|#1|)) (-15 -3737 (|#1| |#1|)) (-15 -2214 ((-783) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -1583 ((-112) |#1| |#1|)) (-15 -1460 (|#1|)) (-15 -1460 (|#1| (-656 |#2|))) (-15 -3662 (|#1|)) (-15 -3662 (|#1| (-656 |#2|))) (-15 -3586 (|#1| |#1| |#1|)) (-15 -3182 (|#1| |#1| |#1|)) (-15 -3182 (|#1| |#1| |#2|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -3004 ((-112) |#1| |#1|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -4006 (|#1| |#2| |#1|)) (-15 -4103 (|#1| (-656 |#2|))) (-15 -3150 ((-783) |#2| |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|))) -((-2034 (((-112) $ $) 19)) (-1922 (($) 68 (|has| |#1| (-379)))) (-4006 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-4369 (($ $ $) 79)) (-3004 (((-112) $ $) 80)) (-2835 (((-112) $ (-783)) 8)) (-2247 (((-783)) 62 (|has| |#1| (-379)))) (-3662 (($ (-656 |#1|)) 75) (($) 74)) (-3831 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-1690 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-2892 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-2446 (($) 65 (|has| |#1| (-379)))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1583 (((-112) $ $) 71)) (-1419 (((-112) $ (-783)) 9)) (-3492 ((|#1| $) 66 (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2726 ((|#1| $) 67 (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3225 (((-938) $) 64 (|has| |#1| (-379)))) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22)) (-3586 (($ $ $) 76)) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41)) (-2550 (($ (-938)) 63 (|has| |#1| (-379)))) (-3139 (((-1139) $) 21)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-3182 (($ $ |#1|) 78) (($ $ $) 77)) (-1833 (($) 50) (($ (-656 |#1|)) 49)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 51)) (-3737 (($ $) 69 (|has| |#1| (-379)))) (-4092 (((-874) $) 18)) (-2214 (((-783) $) 70)) (-1460 (($ (-656 |#1|)) 73) (($) 72)) (-1531 (((-112) $ $) 23)) (-3688 (($ (-656 |#1|)) 43)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20)) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-3713 (*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-429 *3)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) (-2697 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 (-701 *3))))) (-3434 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-969 *3))))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) (-1394 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-2639 (*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174)))) (-1950 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-4252 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2269 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3)))) (-2571 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1191 (-969 *3))))) (-2125 (*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) (-5 *2 (-1191 (-969 *3))))) (-3491 (*1 *1 *2 *1) (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174))))) +(-13 (-378 |t#1|) (-296 (-576) |t#1|) (-10 -8 (-15 -3713 ((-1286 $))) (-15 -1809 ((-1286 |t#1|) $)) (-15 -1809 ((-701 |t#1|) (-1286 $))) (-15 -2697 ((-1286 (-701 |t#1|)))) (-15 -3434 ((-656 (-969 |t#1|)))) (-15 -2612 ($ (-1286 |t#1|))) (-15 -4076 ((-1286 |t#1|) $)) (-15 -4076 ($ (-1286 |t#1|))) (-15 -1394 (|t#1|)) (-15 -2639 (|t#1|)) (-15 -1950 ((-701 |t#1|))) (-15 -4252 ((-701 |t#1|))) (-15 -2269 ((-701 |t#1|) $)) (-15 -1783 ((-701 |t#1|) $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -2571 ((-1191 (-969 |t#1|)))) (-15 -2125 ((-1191 (-969 |t#1|))))) |%noBranch|) (-15 -3491 ($ (-701 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-296 (-576) |#1|) . T) ((-378 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-756 |#1|) . T) ((-773) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 60)) (-2295 (($ $) 78)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 192)) (-4412 (($ $) NIL)) (-4176 (((-112) $) 48)) (-3341 ((|#1| $) 16)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| |#1| (-1240)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-1240)))) (-4165 (($ |#1| (-576)) 42)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 149)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 74)) (-1551 (((-3 $ "failed") $) 165)) (-3615 (((-3 (-419 (-576)) "failed") $) 85 (|has| |#1| (-557)))) (-3235 (((-112) $) 81 (|has| |#1| (-557)))) (-3113 (((-419 (-576)) $) 92 (|has| |#1| (-557)))) (-3298 (($ |#1| (-576)) 44)) (-1792 (((-112) $) 212 (|has| |#1| (-1240)))) (-1414 (((-112) $) 62)) (-1506 (((-783) $) 51)) (-1859 (((-3 "nil" "sqfr" "irred" "prime") $ (-576)) 176)) (-2281 ((|#1| $ (-576)) 175)) (-1974 (((-576) $ (-576)) 174)) (-4204 (($ |#1| (-576)) 41)) (-1632 (($ (-1 |#1| |#1|) $) 184)) (-2218 (($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576))))) 79)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1927 (((-1177) $) NIL)) (-2613 (($ |#1| (-576)) 43)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 193 (|has| |#1| (-464)))) (-4428 (($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1707 (((-656 (-2 (|:| -1839 |#1|) (|:| -4274 (-576)))) $) 73)) (-1339 (((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $) 12)) (-1839 (((-430 $) $) NIL (|has| |#1| (-1240)))) (-3463 (((-3 $ "failed") $ $) 177)) (-4274 (((-576) $) 168)) (-2465 ((|#1| $) 75)) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 101 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 107 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) $) NIL (|has| |#1| (-526 (-1195) $))) (($ $ (-656 (-1195)) (-656 $)) 108 (|has| |#1| (-526 (-1195) $))) (($ $ (-656 (-304 $))) 104 (|has| |#1| (-319 $))) (($ $ (-304 $)) NIL (|has| |#1| (-319 $))) (($ $ $ $) NIL (|has| |#1| (-319 $))) (($ $ (-656 $) (-656 $)) NIL (|has| |#1| (-319 $)))) (-2871 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|))) (($ $ $) 94 (|has| |#1| (-296 $ $)))) (-2735 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-4076 (((-548) $) 39 (|has| |#1| (-626 (-548)))) (((-390) $) 114 (|has| |#1| (-1041))) (((-227) $) 120 (|has| |#1| (-1041)))) (-3563 (((-874) $) 147) (($ (-576)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576)))))) (-1858 (((-783)) 67 T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2800 (($) 53 T CONST)) (-2810 (($) 52 T CONST)) (-2051 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-2988 (((-112) $ $) 160)) (-3095 (($ $) 162) (($ $ $) NIL)) (-3083 (($ $ $) 181)) (** (($ $ (-938)) NIL) (($ $ (-783)) 126)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-430 |#1|) (-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -2465 (|#1| $)) (-15 -4274 ((-576) $)) (-15 -2218 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1339 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -4204 ($ |#1| (-576))) (-15 -1707 ((-656 (-2 (|:| -1839 |#1|) (|:| -4274 (-576)))) $)) (-15 -2613 ($ |#1| (-576))) (-15 -1974 ((-576) $ (-576))) (-15 -2281 (|#1| $ (-576))) (-15 -1859 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -1506 ((-783) $)) (-15 -3298 ($ |#1| (-576))) (-15 -4165 ($ |#1| (-576))) (-15 -4428 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3341 (|#1| $)) (-15 -2295 ($ $)) (-15 -1632 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-1240)) (-6 (-1240)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1195) $)) (-6 (-526 (-1195) $)) |%noBranch|))) (-568)) (T -430)) +((-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-568)) (-5 *1 (-430 *3)))) (-2465 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2218 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-576))))) (-4 *2 (-568)) (-5 *1 (-430 *2)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-4204 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1839 *3) (|:| -4274 (-576))))) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2613 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1974 (*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-1859 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *4)) (-4 *4 (-568)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) (-3298 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4165 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-4428 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3341 (*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-2295 (*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) (-3615 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568))))) +(-13 (-568) (-232 |#1|) (-38 |#1|) (-349 |#1|) (-423 |#1|) (-10 -8 (-15 -2465 (|#1| $)) (-15 -4274 ((-576) $)) (-15 -2218 ($ |#1| (-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))))) (-15 -1339 ((-656 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-576)))) $)) (-15 -4204 ($ |#1| (-576))) (-15 -1707 ((-656 (-2 (|:| -1839 |#1|) (|:| -4274 (-576)))) $)) (-15 -2613 ($ |#1| (-576))) (-15 -1974 ((-576) $ (-576))) (-15 -2281 (|#1| $ (-576))) (-15 -1859 ((-3 "nil" "sqfr" "irred" "prime") $ (-576))) (-15 -1506 ((-783) $)) (-15 -3298 ($ |#1| (-576))) (-15 -4165 ($ |#1| (-576))) (-15 -4428 ($ |#1| (-576) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3341 (|#1| $)) (-15 -2295 ($ $)) (-15 -1632 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-1240)) (-6 (-1240)) |%noBranch|) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-296 $ $)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |#1| (-319 $)) (-6 (-319 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1195) $)) (-6 (-526 (-1195) $)) |%noBranch|))) +((-1565 (((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|)) 28)) (-2783 (((-430 |#1|) (-430 |#1|) (-430 |#1|)) 17))) +(((-431 |#1|) (-10 -7 (-15 -1565 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2783 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) (-568)) (T -431)) +((-2783 (*1 *2 *2 *2) (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3)))) (-1565 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) (-5 *1 (-431 *4))))) +(-10 -7 (-15 -1565 ((-430 |#1|) (-430 |#1|) (-1 (-430 |#1|) |#1|))) (-15 -2783 ((-430 |#1|) (-430 |#1|) (-430 |#1|)))) +((-2230 ((|#2| |#2|) 183)) (-2342 (((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112)) 60))) +(((-432 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2342 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112))) (-15 -2230 (|#2| |#2|))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|)) (-1195) |#2|) (T -432)) +((-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1221) (-442 *3))) (-14 *4 (-1195)) (-14 *5 *2))) (-2342 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-14 *6 (-1195)) (-14 *7 *3)))) +(-10 -7 (-15 -2342 ((-3 (|:| |%expansion| (-323 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112))) (-15 -2230 (|#2| |#2|))) +((-1632 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-433 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#4| (-1 |#3| |#1|) |#2|))) (-1068) (-442 |#1|) (-1068) (-442 |#3|)) (T -433)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-442 *6)) (-5 *1 (-433 *5 *4 *6 *2)) (-4 *4 (-442 *5))))) +(-10 -7 (-15 -1632 (|#4| (-1 |#3| |#1|) |#2|))) +((-2230 ((|#2| |#2|) 106)) (-4397 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177)) 52)) (-2864 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177)) 170))) +(((-434 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4397 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -2864 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -2230 (|#2| |#2|))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|) (-10 -8 (-15 -3563 ($ |#3|)))) (-860) (-13 (-1264 |#2| |#3|) (-374) (-1221) (-10 -8 (-15 -2735 ($ $)) (-15 -3848 ($ $)))) (-1002 |#4|) (-1195)) (T -434)) +((-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *2 (-13 (-27) (-1221) (-442 *3) (-10 -8 (-15 -3563 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1264 *2 *4) (-374) (-1221) (-10 -8 (-15 -2735 ($ $)) (-15 -3848 ($ $))))) (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1002 *5)) (-14 *7 (-1195)))) (-2864 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -3563 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1264 *3 *7) (-374) (-1221) (-10 -8 (-15 -2735 ($ $)) (-15 -3848 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1002 *8)) (-14 *10 (-1195)))) (-4397 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -3563 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1264 *3 *7) (-374) (-1221) (-10 -8 (-15 -2735 ($ $)) (-15 -3848 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1002 *8)) (-14 *10 (-1195))))) +(-10 -7 (-15 -4397 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -2864 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177))))) |#2| (-112) (-1177))) (-15 -2230 (|#2| |#2|))) +((-2874 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2521 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1632 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2874 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1119) (-437 |#1|) (-1119) (-437 |#3|)) (T -435)) +((-2874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119)) (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119)) (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5))))) +(-10 -7 (-15 -1632 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2521 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2874 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1642 (($) 51)) (-1901 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 47)) (-4195 (($ $ $) 46)) (-2529 (((-112) $ $) 35)) (-2148 (((-783)) 55)) (-2187 (($ (-656 |#2|)) 23) (($) NIL)) (-1803 (($) 66)) (-1408 (((-112) $ $) 15)) (-2442 ((|#2| $) 77)) (-1893 ((|#2| $) 75)) (-1902 (((-938) $) 70)) (-2021 (($ $ $) 42)) (-3257 (($ (-938)) 60)) (-1956 (($ $ |#2|) NIL) (($ $ $) 45)) (-1456 (((-783) (-1 (-112) |#2|) $) NIL) (((-783) |#2| $) 31)) (-3573 (($ (-656 |#2|)) 27)) (-4063 (($ $) 53)) (-3563 (((-874) $) 40)) (-3763 (((-783) $) 24)) (-1909 (($ (-656 |#2|)) 22) (($) NIL)) (-2988 (((-112) $ $) 19))) +(((-436 |#1| |#2|) (-10 -8 (-15 -2148 ((-783))) (-15 -3257 (|#1| (-938))) (-15 -1902 ((-938) |#1|)) (-15 -1803 (|#1|)) (-15 -2442 (|#2| |#1|)) (-15 -1893 (|#2| |#1|)) (-15 -1642 (|#1|)) (-15 -4063 (|#1| |#1|)) (-15 -3763 ((-783) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -1408 ((-112) |#1| |#1|)) (-15 -1909 (|#1|)) (-15 -1909 (|#1| (-656 |#2|))) (-15 -2187 (|#1|)) (-15 -2187 (|#1| (-656 |#2|))) (-15 -2021 (|#1| |#1| |#1|)) (-15 -1956 (|#1| |#1| |#1|)) (-15 -1956 (|#1| |#1| |#2|)) (-15 -4195 (|#1| |#1| |#1|)) (-15 -2529 ((-112) |#1| |#1|)) (-15 -1901 (|#1| |#1| |#1|)) (-15 -1901 (|#1| |#1| |#2|)) (-15 -1901 (|#1| |#2| |#1|)) (-15 -3573 (|#1| (-656 |#2|))) (-15 -1456 ((-783) |#2| |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|))) (-437 |#2|) (-1119)) (T -436)) +((-2148 (*1 *2) (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) (-4 *3 (-437 *4))))) +(-10 -8 (-15 -2148 ((-783))) (-15 -3257 (|#1| (-938))) (-15 -1902 ((-938) |#1|)) (-15 -1803 (|#1|)) (-15 -2442 (|#2| |#1|)) (-15 -1893 (|#2| |#1|)) (-15 -1642 (|#1|)) (-15 -4063 (|#1| |#1|)) (-15 -3763 ((-783) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -1408 ((-112) |#1| |#1|)) (-15 -1909 (|#1|)) (-15 -1909 (|#1| (-656 |#2|))) (-15 -2187 (|#1|)) (-15 -2187 (|#1| (-656 |#2|))) (-15 -2021 (|#1| |#1| |#1|)) (-15 -1956 (|#1| |#1| |#1|)) (-15 -1956 (|#1| |#1| |#2|)) (-15 -4195 (|#1| |#1| |#1|)) (-15 -2529 ((-112) |#1| |#1|)) (-15 -1901 (|#1| |#1| |#1|)) (-15 -1901 (|#1| |#1| |#2|)) (-15 -1901 (|#1| |#2| |#1|)) (-15 -3573 (|#1| (-656 |#2|))) (-15 -1456 ((-783) |#2| |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|))) +((-3474 (((-112) $ $) 19)) (-1642 (($) 68 (|has| |#1| (-379)))) (-1901 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-4195 (($ $ $) 79)) (-2529 (((-112) $ $) 80)) (-3131 (((-112) $ (-783)) 8)) (-2148 (((-783)) 62 (|has| |#1| (-379)))) (-2187 (($ (-656 |#1|)) 75) (($) 74)) (-4001 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3172 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3902 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-1803 (($) 65 (|has| |#1| (-379)))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1408 (((-112) $ $) 71)) (-3115 (((-112) $ (-783)) 9)) (-2442 ((|#1| $) 66 (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1893 ((|#1| $) 67 (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-1902 (((-938) $) 64 (|has| |#1| (-379)))) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22)) (-2021 (($ $ $) 76)) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41)) (-3257 (($ (-938)) 63 (|has| |#1| (-379)))) (-1445 (((-1139) $) 21)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1956 (($ $ |#1|) 78) (($ $ $) 77)) (-2837 (($) 50) (($ (-656 |#1|)) 49)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 51)) (-4063 (($ $) 69 (|has| |#1| (-379)))) (-3563 (((-874) $) 18)) (-3763 (((-783) $) 70)) (-1909 (($ (-656 |#1|)) 73) (($) 72)) (-3985 (((-112) $ $) 23)) (-3773 (($ (-656 |#1|)) 43)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20)) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-437 |#1|) (-141) (-1119)) (T -437)) -((-2214 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1119)) (-5 *2 (-783)))) (-3737 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-379)))) (-1922 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1119)))) (-2726 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862))))) -(-13 (-231 |t#1|) (-1117 |t#1|) (-10 -8 (-6 -4462) (-15 -2214 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -3737 ($ $)) (-15 -1922 ($))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -2726 (|t#1| $)) (-15 -3492 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1117 |#1|) . T) ((-1119) . T) ((-1237) . T)) -((-3745 (((-598 |#2|) |#2| (-1196)) 36)) (-2023 (((-598 |#2|) |#2| (-1196)) 21)) (-1977 ((|#2| |#2| (-1196)) 26))) -(((-438 |#1| |#2|) (-10 -7 (-15 -2023 ((-598 |#2|) |#2| (-1196))) (-15 -3745 ((-598 |#2|) |#2| (-1196))) (-15 -1977 (|#2| |#2| (-1196)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-29 |#1|))) (T -438)) -((-1977 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1222) (-29 *4))))) (-3745 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1222) (-29 *5)))))) -(-10 -7 (-15 -2023 ((-598 |#2|) |#2| (-1196))) (-15 -3745 ((-598 |#2|) |#2| (-1196))) (-15 -1977 (|#2| |#2| (-1196)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-2688 (($ |#2| |#1|) 37)) (-4379 (($ |#2| |#1|) 35)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 10 T CONST)) (-4310 (($) 16 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 36)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4449)) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) |%noBranch|) (-15 -4092 ($ |#1|)) (-15 -4092 ($ (-341 |#2|))) (-15 -2688 ($ |#2| |#1|)) (-15 -4379 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-862) (-21))) (T -439)) -((-4092 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-862) (-21))))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-2688 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21))))) (-4379 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4449)) (IF (|has| |#1| (-6 -4449)) (-6 -4449) |%noBranch|) |%noBranch|) (-15 -4092 ($ |#1|)) (-15 -4092 ($ (-341 |#2|))) (-15 -2688 ($ |#2| |#1|)) (-15 -4379 ($ |#2| |#1|)))) -((-3597 (((-3 |#2| (-656 |#2|)) |#2| (-1196)) 115))) -(((-440 |#1| |#2|) (-10 -7 (-15 -3597 ((-3 |#2| (-656 |#2|)) |#2| (-1196)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-976) (-29 |#1|))) (T -440)) -((-3597 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1222) (-976) (-29 *5)))))) -(-10 -7 (-15 -3597 ((-3 |#2| (-656 |#2|)) |#2| (-1196)))) -((-1541 (((-656 (-1196)) $) 81)) (-1364 (((-419 (-1192 $)) $ (-624 $)) 313)) (-1756 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-2974 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1196) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-969 |#2|)) "failed") $) 363) (((-3 (-969 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-2378 (((-624 $) $) NIL) (((-1196) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-969 |#2|)) $) 345) (((-969 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-1344 (((-115) (-115)) 47)) (-4272 (($ $) 99)) (-4348 (((-3 (-624 $) "failed") $) 268)) (-1332 (((-656 (-624 $)) $) 269)) (-3009 (((-3 (-656 $) "failed") $) 287)) (-4192 (((-3 (-2 (|:| |val| $) (|:| -3175 (-576))) "failed") $) 294)) (-2016 (((-3 (-656 $) "failed") $) 285)) (-2642 (((-3 (-2 (|:| -1856 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-3178 (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-1196)) 257)) (-1657 (((-112) $) 17)) (-1670 ((|#2| $) 19)) (-2259 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1196)) 62) (($ $ (-656 (-1196))) 280) (($ $) 281) (($ $ (-115) $ (-1196)) 65) (($ $ (-656 (-115)) (-656 $) (-1196)) 72) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1196) (-783) (-1 $ (-656 $))) 105) (($ $ (-1196) (-783) (-1 $ $)) 104)) (-4367 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-3614 (($ $ (-1196)) 278) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-1490 (($ $) 324)) (-1505 (((-905 (-576)) $) 297) (((-905 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-4092 (((-874) $) 279) (($ (-624 $)) 93) (($ (-1196)) 24) (($ |#2|) NIL) (($ (-1144 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-969 (-419 |#2|))) 368) (($ (-419 (-969 (-419 |#2|)))) 341) (($ (-419 (-969 |#2|))) 335) (($ $) NIL) (($ (-969 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-2471 (((-783)) 88)) (-3201 (((-112) (-115)) 42)) (-2407 (($ (-1196) $) 31) (($ (-1196) $ $) 32) (($ (-1196) $ $ $) 33) (($ (-1196) $ $ $ $) 34) (($ (-1196) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL))) -(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-938) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4092 (|#1| (-576))) (-15 -2471 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -4092 (|#1| (-969 |#2|))) (-15 -2974 ((-3 (-969 |#2|) "failed") |#1|)) (-15 -2378 ((-969 |#2|) |#1|)) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 * (|#1| |#1| |#2|)) (-15 -4092 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4092 (|#1| (-419 (-969 |#2|)))) (-15 -2974 ((-3 (-419 (-969 |#2|)) "failed") |#1|)) (-15 -2378 ((-419 (-969 |#2|)) |#1|)) (-15 -1364 ((-419 (-1192 |#1|)) |#1| (-624 |#1|))) (-15 -4092 (|#1| (-419 (-969 (-419 |#2|))))) (-15 -4092 (|#1| (-969 (-419 |#2|)))) (-15 -4092 (|#1| (-419 |#2|))) (-15 -1490 (|#1| |#1|)) (-15 -1505 (|#1| (-430 |#1|))) (-15 -2259 (|#1| |#1| (-1196) (-783) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-1196) (-783) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -4192 ((-3 (-2 (|:| |val| |#1|) (|:| -3175 (-576))) "failed") |#1|)) (-15 -3178 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3175 (-576))) "failed") |#1| (-1196))) (-15 -3178 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3175 (-576))) "failed") |#1| (-115))) (-15 -4272 (|#1| |#1|)) (-15 -4092 (|#1| (-1144 |#2| (-624 |#1|)))) (-15 -2642 ((-3 (-2 (|:| -1856 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2016 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3178 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3175 (-576))) "failed") |#1|)) (-15 -3009 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1196))) (-15 -2259 (|#1| |#1| (-115) |#1| (-1196))) (-15 -2259 (|#1| |#1|)) (-15 -2259 (|#1| |#1| (-656 (-1196)))) (-15 -2259 (|#1| |#1| (-1196))) (-15 -2407 (|#1| (-1196) (-656 |#1|))) (-15 -2407 (|#1| (-1196) |#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| (-1196) |#1| |#1| |#1|)) (-15 -2407 (|#1| (-1196) |#1| |#1|)) (-15 -2407 (|#1| (-1196) |#1|)) (-15 -1541 ((-656 (-1196)) |#1|)) (-15 -1670 (|#2| |#1|)) (-15 -1657 ((-112) |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -4092 (|#1| (-1196))) (-15 -2974 ((-3 (-1196) "failed") |#1|)) (-15 -2378 ((-1196) |#1|)) (-15 -2259 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2259 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -1332 ((-656 (-624 |#1|)) |#1|)) (-15 -4348 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1756 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1756 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1756 (|#1| |#1| (-304 |#1|))) (-15 -4367 (|#1| (-115) (-656 |#1|))) (-15 -4367 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2259 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -4092 (|#1| (-624 |#1|))) (-15 -2974 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2378 ((-624 |#1|) |#1|)) (-15 -4092 ((-874) |#1|))) (-442 |#2|) (-1119)) (T -441)) -((-1344 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1119)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-2471 (*1 *2) (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) -(-10 -8 (-15 * (|#1| (-938) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4092 (|#1| (-576))) (-15 -2471 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -4092 (|#1| (-969 |#2|))) (-15 -2974 ((-3 (-969 |#2|) "failed") |#1|)) (-15 -2378 ((-969 |#2|) |#1|)) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 * (|#1| |#1| |#2|)) (-15 -4092 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4092 (|#1| (-419 (-969 |#2|)))) (-15 -2974 ((-3 (-419 (-969 |#2|)) "failed") |#1|)) (-15 -2378 ((-419 (-969 |#2|)) |#1|)) (-15 -1364 ((-419 (-1192 |#1|)) |#1| (-624 |#1|))) (-15 -4092 (|#1| (-419 (-969 (-419 |#2|))))) (-15 -4092 (|#1| (-969 (-419 |#2|)))) (-15 -4092 (|#1| (-419 |#2|))) (-15 -1490 (|#1| |#1|)) (-15 -1505 (|#1| (-430 |#1|))) (-15 -2259 (|#1| |#1| (-1196) (-783) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-1196) (-783) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -4192 ((-3 (-2 (|:| |val| |#1|) (|:| -3175 (-576))) "failed") |#1|)) (-15 -3178 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3175 (-576))) "failed") |#1| (-1196))) (-15 -3178 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3175 (-576))) "failed") |#1| (-115))) (-15 -4272 (|#1| |#1|)) (-15 -4092 (|#1| (-1144 |#2| (-624 |#1|)))) (-15 -2642 ((-3 (-2 (|:| -1856 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2016 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3178 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -3175 (-576))) "failed") |#1|)) (-15 -3009 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1196))) (-15 -2259 (|#1| |#1| (-115) |#1| (-1196))) (-15 -2259 (|#1| |#1|)) (-15 -2259 (|#1| |#1| (-656 (-1196)))) (-15 -2259 (|#1| |#1| (-1196))) (-15 -2407 (|#1| (-1196) (-656 |#1|))) (-15 -2407 (|#1| (-1196) |#1| |#1| |#1| |#1|)) (-15 -2407 (|#1| (-1196) |#1| |#1| |#1|)) (-15 -2407 (|#1| (-1196) |#1| |#1|)) (-15 -2407 (|#1| (-1196) |#1|)) (-15 -1541 ((-656 (-1196)) |#1|)) (-15 -1670 (|#2| |#1|)) (-15 -1657 ((-112) |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -4092 (|#1| (-1196))) (-15 -2974 ((-3 (-1196) "failed") |#1|)) (-15 -2378 ((-1196) |#1|)) (-15 -2259 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -2259 (|#1| |#1| (-1196) (-1 |#1| |#1|))) (-15 -2259 (|#1| |#1| (-1196) (-1 |#1| (-656 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -2259 (|#1| |#1| (-656 (-1196)) (-656 (-1 |#1| |#1|)))) (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -1332 ((-656 (-624 |#1|)) |#1|)) (-15 -4348 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -1756 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -1756 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1756 (|#1| |#1| (-304 |#1|))) (-15 -4367 (|#1| (-115) (-656 |#1|))) (-15 -4367 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1| |#1|)) (-15 -4367 (|#1| (-115) |#1|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2259 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -2259 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -4092 (|#1| (-624 |#1|))) (-15 -2974 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -2378 ((-624 |#1|) |#1|)) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 117 (|has| |#1| (-25)))) (-1541 (((-656 (-1196)) $) 208)) (-1364 (((-419 (-1192 $)) $ (-624 $)) 176 (|has| |#1| (-568)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 148 (|has| |#1| (-568)))) (-2573 (($ $) 149 (|has| |#1| (-568)))) (-4306 (((-112) $) 151 (|has| |#1| (-568)))) (-4385 (((-656 (-624 $)) $) 39)) (-3788 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-1756 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-1587 (($ $) 168 (|has| |#1| (-568)))) (-2100 (((-430 $) $) 169 (|has| |#1| (-568)))) (-4407 (((-112) $ $) 159 (|has| |#1| (-568)))) (-3656 (($) 105 (-3765 (|has| |#1| (-1131)) (|has| |#1| (-25))) CONST)) (-2974 (((-3 (-624 $) "failed") $) 64) (((-3 (-1196) "failed") $) 221) (((-3 (-576) "failed") $) 215 (|has| |#1| (-1057 (-576)))) (((-3 |#1| "failed") $) 212) (((-3 (-419 (-969 |#1|)) "failed") $) 174 (|has| |#1| (-568))) (((-3 (-969 |#1|) "failed") $) 124 (|has| |#1| (-1068))) (((-3 (-419 (-576)) "failed") $) 99 (-3765 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-2378 (((-624 $) $) 65) (((-1196) $) 222) (((-576) $) 214 (|has| |#1| (-1057 (-576)))) ((|#1| $) 213) (((-419 (-969 |#1|)) $) 175 (|has| |#1| (-568))) (((-969 |#1|) $) 125 (|has| |#1| (-1068))) (((-419 (-576)) $) 100 (-3765 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-1975 (($ $ $) 163 (|has| |#1| (-568)))) (-3687 (((-701 (-576)) (-1287 $)) 143 (-2445 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 142 (-2445 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-701 (-576)) (-701 $)) 141 (-2445 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 140 (-2445 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 139 (|has| |#1| (-1068))) (((-701 |#1|) (-701 $)) 138 (|has| |#1| (-1068))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 137 (|has| |#1| (-1068))) (((-701 |#1|) (-1287 $)) 136 (|has| |#1| (-1068)))) (-3179 (((-3 $ "failed") $) 107 (|has| |#1| (-1131)))) (-1986 (($ $ $) 162 (|has| |#1| (-568)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 157 (|has| |#1| (-568)))) (-2725 (((-112) $) 170 (|has| |#1| (-568)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 217 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 216 (|has| |#1| (-899 (-390))))) (-2191 (($ $) 46) (($ (-656 $)) 45)) (-4349 (((-656 (-115)) $) 38)) (-1344 (((-115) (-115)) 37)) (-1810 (((-112) $) 106 (|has| |#1| (-1131)))) (-3082 (((-112) $) 17 (|has| $ (-1057 (-576))))) (-4272 (($ $) 191 (|has| |#1| (-1068)))) (-3894 (((-1144 |#1| (-624 $)) $) 192 (|has| |#1| (-1068)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 166 (|has| |#1| (-568)))) (-2525 (((-1192 $) (-624 $)) 20 (|has| $ (-1068)))) (-2477 (($ (-1 $ $) (-624 $)) 31)) (-4348 (((-3 (-624 $) "failed") $) 41)) (-3117 (($ (-656 $)) 155 (|has| |#1| (-568))) (($ $ $) 154 (|has| |#1| (-568)))) (-3288 (((-1178) $) 10)) (-1332 (((-656 (-624 $)) $) 40)) (-1770 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-3009 (((-3 (-656 $) "failed") $) 197 (|has| |#1| (-1131)))) (-4192 (((-3 (-2 (|:| |val| $) (|:| -3175 (-576))) "failed") $) 188 (|has| |#1| (-1068)))) (-2016 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-25)))) (-2642 (((-3 (-2 (|:| -1856 (-576)) (|:| |var| (-624 $))) "failed") $) 194 (|has| |#1| (-25)))) (-3178 (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $) 196 (|has| |#1| (-1131))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-115)) 190 (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-1196)) 189 (|has| |#1| (-1068)))) (-1412 (((-112) $ (-115)) 35) (((-112) $ (-1196)) 34)) (-1644 (($ $) 109 (-3765 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2927 (((-783) $) 42)) (-3139 (((-1139) $) 11)) (-1657 (((-112) $) 210)) (-1670 ((|#1| $) 209)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 156 (|has| |#1| (-568)))) (-3149 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-2513 (((-112) $ $) 30) (((-112) $ (-1196)) 29)) (-1392 (((-430 $) $) 167 (|has| |#1| (-568)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 164 (|has| |#1| (-568)))) (-2022 (((-3 $ "failed") $ $) 147 (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 158 (|has| |#1| (-568)))) (-2015 (((-112) $) 18 (|has| $ (-1057 (-576))))) (-2259 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1196)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1196) (-1 $ (-656 $))) 26) (($ $ (-1196) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1196)) 202 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196))) 201 (|has| |#1| (-626 (-548)))) (($ $) 200 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1196)) 199 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1196)) 198 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $))) 187 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 186 (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ (-656 $))) 185 (|has| |#1| (-1068))) (($ $ (-1196) (-783) (-1 $ $)) 184 (|has| |#1| (-1068)))) (-1787 (((-783) $) 160 (|has| |#1| (-568)))) (-4367 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 161 (|has| |#1| (-568)))) (-3724 (($ $) 44) (($ $ $) 43)) (-3614 (($ $ (-1196)) 134 (|has| |#1| (-1068))) (($ $ (-656 (-1196))) 132 (|has| |#1| (-1068))) (($ $ (-1196) (-783)) 131 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) 130 (|has| |#1| (-1068)))) (-1490 (($ $) 181 (|has| |#1| (-568)))) (-3905 (((-1144 |#1| (-624 $)) $) 182 (|has| |#1| (-568)))) (-2840 (($ $) 19 (|has| $ (-1068)))) (-1505 (((-905 (-576)) $) 219 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 218 (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) 183 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-3646 (($ $ $) 112 (|has| |#1| (-485)))) (-1361 (($ $ $) 113 (|has| |#1| (-485)))) (-4092 (((-874) $) 12) (($ (-624 $)) 63) (($ (-1196)) 220) (($ |#1|) 211) (($ (-1144 |#1| (-624 $))) 193 (|has| |#1| (-1068))) (($ (-419 |#1|)) 179 (|has| |#1| (-568))) (($ (-969 (-419 |#1|))) 178 (|has| |#1| (-568))) (($ (-419 (-969 (-419 |#1|)))) 177 (|has| |#1| (-568))) (($ (-419 (-969 |#1|))) 173 (|has| |#1| (-568))) (($ $) 146 (|has| |#1| (-568))) (($ (-969 |#1|)) 123 (|has| |#1| (-1068))) (($ (-419 (-576))) 98 (-3765 (|has| |#1| (-568)) (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576)))))) (($ (-576)) 97 (-3765 (|has| |#1| (-1068)) (|has| |#1| (-1057 (-576)))))) (-3612 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-2471 (((-783)) 126 (|has| |#1| (-1068)) CONST)) (-3163 (($ $) 48) (($ (-656 $)) 47)) (-3201 (((-112) (-115)) 36)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 150 (|has| |#1| (-568)))) (-2407 (($ (-1196) $) 207) (($ (-1196) $ $) 206) (($ (-1196) $ $ $) 205) (($ (-1196) $ $ $ $) 204) (($ (-1196) (-656 $)) 203)) (-4300 (($) 116 (|has| |#1| (-25)) CONST)) (-4310 (($) 104 (|has| |#1| (-1131)) CONST)) (-4286 (($ $ (-1196)) 133 (|has| |#1| (-1068))) (($ $ (-656 (-1196))) 129 (|has| |#1| (-1068))) (($ $ (-1196) (-783)) 128 (|has| |#1| (-1068))) (($ $ (-656 (-1196)) (-656 (-783))) 127 (|has| |#1| (-1068)))) (-3919 (((-112) $ $) 6)) (-4028 (($ (-1144 |#1| (-624 $)) (-1144 |#1| (-624 $))) 180 (|has| |#1| (-568))) (($ $ $) 110 (-3765 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-4018 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-4007 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-3765 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1131))) (($ $ (-938)) 103 (|has| |#1| (-1131)))) (* (($ (-419 (-576)) $) 172 (|has| |#1| (-568))) (($ $ (-419 (-576))) 171 (|has| |#1| (-568))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1068))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-938) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1131))))) +((-3763 (*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1119)) (-5 *2 (-783)))) (-4063 (*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-379)))) (-1642 (*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1119)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862)))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862))))) +(-13 (-231 |t#1|) (-1117 |t#1|) (-10 -8 (-6 -4461) (-15 -3763 ((-783) $)) (IF (|has| |t#1| (-379)) (PROGN (-6 (-379)) (-15 -4063 ($ $)) (-15 -1642 ($))) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -1893 (|t#1| $)) (-15 -2442 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-231 |#1|) . T) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-379) |has| |#1| (-379)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1117 |#1|) . T) ((-1119) . T) ((-1236) . T)) +((-3706 (((-598 |#2|) |#2| (-1195)) 36)) (-1958 (((-598 |#2|) |#2| (-1195)) 21)) (-3817 ((|#2| |#2| (-1195)) 26))) +(((-438 |#1| |#2|) (-10 -7 (-15 -1958 ((-598 |#2|) |#2| (-1195))) (-15 -3706 ((-598 |#2|) |#2| (-1195))) (-15 -3817 (|#2| |#2| (-1195)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1221) (-29 |#1|))) (T -438)) +((-3817 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1221) (-29 *4))))) (-3706 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1221) (-29 *5))))) (-1958 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) (-4 *3 (-13 (-1221) (-29 *5)))))) +(-10 -7 (-15 -1958 ((-598 |#2|) |#2| (-1195))) (-15 -3706 ((-598 |#2|) |#2| (-1195))) (-15 -3817 (|#2| |#2| (-1195)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-3386 (($ |#2| |#1|) 37)) (-3908 (($ |#2| |#1|) 35)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-341 |#2|)) 25)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 10 T CONST)) (-2810 (($) 16 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 36)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-439 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4448)) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) |%noBranch|) (-15 -3563 ($ |#1|)) (-15 -3563 ($ (-341 |#2|))) (-15 -3386 ($ |#2| |#1|)) (-15 -3908 ($ |#2| |#1|)))) (-13 (-174) (-38 (-419 (-576)))) (-13 (-862) (-21))) (T -439)) +((-3563 (*1 *1 *2) (-12 (-5 *1 (-439 *2 *3)) (-4 *2 (-13 (-174) (-38 (-419 (-576))))) (-4 *3 (-13 (-862) (-21))))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) (-3386 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21))))) (-3908 (*1 *1 *2 *3) (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) (-4 *2 (-13 (-862) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4448)) (IF (|has| |#1| (-6 -4448)) (-6 -4448) |%noBranch|) |%noBranch|) (-15 -3563 ($ |#1|)) (-15 -3563 ($ (-341 |#2|))) (-15 -3386 ($ |#2| |#1|)) (-15 -3908 ($ |#2| |#1|)))) +((-3848 (((-3 |#2| (-656 |#2|)) |#2| (-1195)) 115))) +(((-440 |#1| |#2|) (-10 -7 (-15 -3848 ((-3 |#2| (-656 |#2|)) |#2| (-1195)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1221) (-976) (-29 |#1|))) (T -440)) +((-3848 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1221) (-976) (-29 *5)))))) +(-10 -7 (-15 -3848 ((-3 |#2| (-656 |#2|)) |#2| (-1195)))) +((-1991 (((-656 (-1195)) $) 81)) (-3999 (((-419 (-1191 $)) $ (-624 $)) 313)) (-3340 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) 277)) (-1539 (((-3 (-624 $) "failed") $) NIL) (((-3 (-1195) "failed") $) 84) (((-3 (-576) "failed") $) NIL) (((-3 |#2| "failed") $) 273) (((-3 (-419 (-969 |#2|)) "failed") $) 363) (((-3 (-969 |#2|) "failed") $) 275) (((-3 (-419 (-576)) "failed") $) NIL)) (-4056 (((-624 $) $) NIL) (((-1195) $) 28) (((-576) $) NIL) ((|#2| $) 271) (((-419 (-969 |#2|)) $) 345) (((-969 |#2|) $) 272) (((-419 (-576)) $) NIL)) (-3974 (((-115) (-115)) 47)) (-2302 (($ $) 99)) (-2953 (((-3 (-624 $) "failed") $) 268)) (-3963 (((-656 (-624 $)) $) 269)) (-1708 (((-3 (-656 $) "failed") $) 287)) (-2027 (((-3 (-2 (|:| |val| $) (|:| -4274 (-576))) "failed") $) 294)) (-2567 (((-3 (-656 $) "failed") $) 285)) (-3656 (((-3 (-2 (|:| -1706 (-576)) (|:| |var| (-624 $))) "failed") $) 304)) (-1419 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $) 291) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-115)) 255) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-1195)) 257)) (-2105 (((-112) $) 17)) (-2116 ((|#2| $) 19)) (-3306 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) 276) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 109) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL) (($ $ (-1195)) 62) (($ $ (-656 (-1195))) 280) (($ $) 281) (($ $ (-115) $ (-1195)) 65) (($ $ (-656 (-115)) (-656 $) (-1195)) 72) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) 120) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 282) (($ $ (-1195) (-783) (-1 $ (-656 $))) 105) (($ $ (-1195) (-783) (-1 $ $)) 104)) (-2871 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) 119)) (-2735 (($ $ (-1195)) 278) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-1880 (($ $) 324)) (-4076 (((-905 (-576)) $) 297) (((-905 (-390)) $) 301) (($ (-430 $)) 359) (((-548) $) NIL)) (-3563 (((-874) $) 279) (($ (-624 $)) 93) (($ (-1195)) 24) (($ |#2|) NIL) (($ (-1144 |#2| (-624 $))) NIL) (($ (-419 |#2|)) 329) (($ (-969 (-419 |#2|))) 368) (($ (-419 (-969 (-419 |#2|)))) 341) (($ (-419 (-969 |#2|))) 335) (($ $) NIL) (($ (-969 |#2|)) 216) (($ (-576)) NIL) (($ (-419 (-576))) 373)) (-1858 (((-783)) 88)) (-3263 (((-112) (-115)) 42)) (-4017 (($ (-1195) $) 31) (($ (-1195) $ $) 32) (($ (-1195) $ $ $) 33) (($ (-1195) $ $ $ $) 34) (($ (-1195) (-656 $)) 39)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ |#2|) NIL) (($ |#2| $) 306) (($ $ $) NIL) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL))) +(((-441 |#1| |#2|) (-10 -8 (-15 * (|#1| (-938) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3563 (|#1| (-576))) (-15 -1858 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -3563 (|#1| (-969 |#2|))) (-15 -1539 ((-3 (-969 |#2|) "failed") |#1|)) (-15 -4056 ((-969 |#2|) |#1|)) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 * (|#1| |#1| |#2|)) (-15 -3563 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3563 (|#1| (-419 (-969 |#2|)))) (-15 -1539 ((-3 (-419 (-969 |#2|)) "failed") |#1|)) (-15 -4056 ((-419 (-969 |#2|)) |#1|)) (-15 -3999 ((-419 (-1191 |#1|)) |#1| (-624 |#1|))) (-15 -3563 (|#1| (-419 (-969 (-419 |#2|))))) (-15 -3563 (|#1| (-969 (-419 |#2|)))) (-15 -3563 (|#1| (-419 |#2|))) (-15 -1880 (|#1| |#1|)) (-15 -4076 (|#1| (-430 |#1|))) (-15 -3306 (|#1| |#1| (-1195) (-783) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-1195) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -2027 ((-3 (-2 (|:| |val| |#1|) (|:| -4274 (-576))) "failed") |#1|)) (-15 -1419 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4274 (-576))) "failed") |#1| (-1195))) (-15 -1419 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4274 (-576))) "failed") |#1| (-115))) (-15 -2302 (|#1| |#1|)) (-15 -3563 (|#1| (-1144 |#2| (-624 |#1|)))) (-15 -3656 ((-3 (-2 (|:| -1706 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2567 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1419 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4274 (-576))) "failed") |#1|)) (-15 -1708 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1195))) (-15 -3306 (|#1| |#1| (-115) |#1| (-1195))) (-15 -3306 (|#1| |#1|)) (-15 -3306 (|#1| |#1| (-656 (-1195)))) (-15 -3306 (|#1| |#1| (-1195))) (-15 -4017 (|#1| (-1195) (-656 |#1|))) (-15 -4017 (|#1| (-1195) |#1| |#1| |#1| |#1|)) (-15 -4017 (|#1| (-1195) |#1| |#1| |#1|)) (-15 -4017 (|#1| (-1195) |#1| |#1|)) (-15 -4017 (|#1| (-1195) |#1|)) (-15 -1991 ((-656 (-1195)) |#1|)) (-15 -2116 (|#2| |#1|)) (-15 -2105 ((-112) |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -3563 (|#1| (-1195))) (-15 -1539 ((-3 (-1195) "failed") |#1|)) (-15 -4056 ((-1195) |#1|)) (-15 -3306 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3306 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -3963 ((-656 (-624 |#1|)) |#1|)) (-15 -2953 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3340 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3340 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3340 (|#1| |#1| (-304 |#1|))) (-15 -2871 (|#1| (-115) (-656 |#1|))) (-15 -2871 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3306 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3563 (|#1| (-624 |#1|))) (-15 -1539 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4056 ((-624 |#1|) |#1|)) (-15 -3563 ((-874) |#1|))) (-442 |#2|) (-1119)) (T -441)) +((-3974 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1119)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) (-1858 (*1 *2) (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) (-4 *3 (-442 *4))))) +(-10 -8 (-15 * (|#1| (-938) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3563 (|#1| (-576))) (-15 -1858 ((-783))) (-15 * (|#1| |#2| |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -3563 (|#1| (-969 |#2|))) (-15 -1539 ((-3 (-969 |#2|) "failed") |#1|)) (-15 -4056 ((-969 |#2|) |#1|)) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 * (|#1| |#1| |#2|)) (-15 -3563 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3563 (|#1| (-419 (-969 |#2|)))) (-15 -1539 ((-3 (-419 (-969 |#2|)) "failed") |#1|)) (-15 -4056 ((-419 (-969 |#2|)) |#1|)) (-15 -3999 ((-419 (-1191 |#1|)) |#1| (-624 |#1|))) (-15 -3563 (|#1| (-419 (-969 (-419 |#2|))))) (-15 -3563 (|#1| (-969 (-419 |#2|)))) (-15 -3563 (|#1| (-419 |#2|))) (-15 -1880 (|#1| |#1|)) (-15 -4076 (|#1| (-430 |#1|))) (-15 -3306 (|#1| |#1| (-1195) (-783) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-1195) (-783) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-783)) (-656 (-1 |#1| |#1|)))) (-15 -2027 ((-3 (-2 (|:| |val| |#1|) (|:| -4274 (-576))) "failed") |#1|)) (-15 -1419 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4274 (-576))) "failed") |#1| (-1195))) (-15 -1419 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4274 (-576))) "failed") |#1| (-115))) (-15 -2302 (|#1| |#1|)) (-15 -3563 (|#1| (-1144 |#2| (-624 |#1|)))) (-15 -3656 ((-3 (-2 (|:| -1706 (-576)) (|:| |var| (-624 |#1|))) "failed") |#1|)) (-15 -2567 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1419 ((-3 (-2 (|:| |var| (-624 |#1|)) (|:| -4274 (-576))) "failed") |#1|)) (-15 -1708 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 |#1|) (-1195))) (-15 -3306 (|#1| |#1| (-115) |#1| (-1195))) (-15 -3306 (|#1| |#1|)) (-15 -3306 (|#1| |#1| (-656 (-1195)))) (-15 -3306 (|#1| |#1| (-1195))) (-15 -4017 (|#1| (-1195) (-656 |#1|))) (-15 -4017 (|#1| (-1195) |#1| |#1| |#1| |#1|)) (-15 -4017 (|#1| (-1195) |#1| |#1| |#1|)) (-15 -4017 (|#1| (-1195) |#1| |#1|)) (-15 -4017 (|#1| (-1195) |#1|)) (-15 -1991 ((-656 (-1195)) |#1|)) (-15 -2116 (|#2| |#1|)) (-15 -2105 ((-112) |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -3563 (|#1| (-1195))) (-15 -1539 ((-3 (-1195) "failed") |#1|)) (-15 -4056 ((-1195) |#1|)) (-15 -3306 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-115) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-115)) (-656 (-1 |#1| |#1|)))) (-15 -3306 (|#1| |#1| (-1195) (-1 |#1| |#1|))) (-15 -3306 (|#1| |#1| (-1195) (-1 |#1| (-656 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| (-656 |#1|))))) (-15 -3306 (|#1| |#1| (-656 (-1195)) (-656 (-1 |#1| |#1|)))) (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -3963 ((-656 (-624 |#1|)) |#1|)) (-15 -2953 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -3340 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3340 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3340 (|#1| |#1| (-304 |#1|))) (-15 -2871 (|#1| (-115) (-656 |#1|))) (-15 -2871 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1| |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1| |#1|)) (-15 -2871 (|#1| (-115) |#1|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -3306 (|#1| |#1| (-656 (-624 |#1|)) (-656 |#1|))) (-15 -3306 (|#1| |#1| (-624 |#1|) |#1|)) (-15 -3563 (|#1| (-624 |#1|))) (-15 -1539 ((-3 (-624 |#1|) "failed") |#1|)) (-15 -4056 ((-624 |#1|) |#1|)) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 117 (|has| |#1| (-25)))) (-1991 (((-656 (-1195)) $) 208)) (-3999 (((-419 (-1191 $)) $ (-624 $)) 176 (|has| |#1| (-568)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 148 (|has| |#1| (-568)))) (-4412 (($ $) 149 (|has| |#1| (-568)))) (-4176 (((-112) $) 151 (|has| |#1| (-568)))) (-3887 (((-656 (-624 $)) $) 39)) (-1367 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)))) (-3340 (($ $ (-304 $)) 51) (($ $ (-656 (-304 $))) 50) (($ $ (-656 (-624 $)) (-656 $)) 49)) (-1760 (($ $) 168 (|has| |#1| (-568)))) (-2732 (((-430 $) $) 169 (|has| |#1| (-568)))) (-1727 (((-112) $ $) 159 (|has| |#1| (-568)))) (-3767 (($) 105 (-2835 (|has| |#1| (-1131)) (|has| |#1| (-25))) CONST)) (-1539 (((-3 (-624 $) "failed") $) 64) (((-3 (-1195) "failed") $) 221) (((-3 (-576) "failed") $) 215 (|has| |#1| (-1057 (-576)))) (((-3 |#1| "failed") $) 212) (((-3 (-419 (-969 |#1|)) "failed") $) 174 (|has| |#1| (-568))) (((-3 (-969 |#1|) "failed") $) 124 (|has| |#1| (-1068))) (((-3 (-419 (-576)) "failed") $) 99 (-2835 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-4056 (((-624 $) $) 65) (((-1195) $) 222) (((-576) $) 214 (|has| |#1| (-1057 (-576)))) ((|#1| $) 213) (((-419 (-969 |#1|)) $) 175 (|has| |#1| (-568))) (((-969 |#1|) $) 125 (|has| |#1| (-1068))) (((-419 (-576)) $) 100 (-2835 (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576))))))) (-3420 (($ $ $) 163 (|has| |#1| (-568)))) (-3687 (((-701 (-576)) (-1286 $)) 143 (-2758 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 142 (-2758 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-701 (-576)) (-701 $)) 141 (-2758 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 140 (-2758 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 139 (|has| |#1| (-1068))) (((-701 |#1|) (-701 $)) 138 (|has| |#1| (-1068))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 137 (|has| |#1| (-1068))) (((-701 |#1|) (-1286 $)) 136 (|has| |#1| (-1068)))) (-1551 (((-3 $ "failed") $) 107 (|has| |#1| (-1131)))) (-3431 (($ $ $) 162 (|has| |#1| (-568)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 157 (|has| |#1| (-568)))) (-1792 (((-112) $) 170 (|has| |#1| (-568)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 217 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 216 (|has| |#1| (-899 (-390))))) (-2188 (($ $) 46) (($ (-656 $)) 45)) (-3061 (((-656 (-115)) $) 38)) (-3974 (((-115) (-115)) 37)) (-1414 (((-112) $) 106 (|has| |#1| (-1131)))) (-3828 (((-112) $) 17 (|has| $ (-1057 (-576))))) (-2302 (($ $) 191 (|has| |#1| (-1068)))) (-1536 (((-1144 |#1| (-624 $)) $) 192 (|has| |#1| (-1068)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 166 (|has| |#1| (-568)))) (-3121 (((-1191 $) (-624 $)) 20 (|has| $ (-1068)))) (-1632 (($ (-1 $ $) (-624 $)) 31)) (-2953 (((-3 (-624 $) "failed") $) 41)) (-3459 (($ (-656 $)) 155 (|has| |#1| (-568))) (($ $ $) 154 (|has| |#1| (-568)))) (-1927 (((-1177) $) 10)) (-3963 (((-656 (-624 $)) $) 40)) (-1616 (($ (-115) $) 33) (($ (-115) (-656 $)) 32)) (-1708 (((-3 (-656 $) "failed") $) 197 (|has| |#1| (-1131)))) (-2027 (((-3 (-2 (|:| |val| $) (|:| -4274 (-576))) "failed") $) 188 (|has| |#1| (-1068)))) (-2567 (((-3 (-656 $) "failed") $) 195 (|has| |#1| (-25)))) (-3656 (((-3 (-2 (|:| -1706 (-576)) (|:| |var| (-624 $))) "failed") $) 194 (|has| |#1| (-25)))) (-1419 (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $) 196 (|has| |#1| (-1131))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-115)) 190 (|has| |#1| (-1068))) (((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-1195)) 189 (|has| |#1| (-1068)))) (-3718 (((-112) $ (-115)) 35) (((-112) $ (-1195)) 34)) (-2095 (($ $) 109 (-2835 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-2331 (((-783) $) 42)) (-1445 (((-1139) $) 11)) (-2105 (((-112) $) 210)) (-2116 ((|#1| $) 209)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 156 (|has| |#1| (-568)))) (-3495 (($ (-656 $)) 153 (|has| |#1| (-568))) (($ $ $) 152 (|has| |#1| (-568)))) (-4245 (((-112) $ $) 30) (((-112) $ (-1195)) 29)) (-1839 (((-430 $) $) 167 (|has| |#1| (-568)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-568))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 164 (|has| |#1| (-568)))) (-3463 (((-3 $ "failed") $ $) 147 (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 158 (|has| |#1| (-568)))) (-2489 (((-112) $) 18 (|has| $ (-1057 (-576))))) (-3306 (($ $ (-624 $) $) 62) (($ $ (-656 (-624 $)) (-656 $)) 61) (($ $ (-656 (-304 $))) 60) (($ $ (-304 $)) 59) (($ $ $ $) 58) (($ $ (-656 $) (-656 $)) 57) (($ $ (-656 (-1195)) (-656 (-1 $ $))) 28) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) 27) (($ $ (-1195) (-1 $ (-656 $))) 26) (($ $ (-1195) (-1 $ $)) 25) (($ $ (-656 (-115)) (-656 (-1 $ $))) 24) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) 23) (($ $ (-115) (-1 $ (-656 $))) 22) (($ $ (-115) (-1 $ $)) 21) (($ $ (-1195)) 202 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195))) 201 (|has| |#1| (-626 (-548)))) (($ $) 200 (|has| |#1| (-626 (-548)))) (($ $ (-115) $ (-1195)) 199 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-115)) (-656 $) (-1195)) 198 (|has| |#1| (-626 (-548)))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $))) 187 (|has| |#1| (-1068))) (($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $)))) 186 (|has| |#1| (-1068))) (($ $ (-1195) (-783) (-1 $ (-656 $))) 185 (|has| |#1| (-1068))) (($ $ (-1195) (-783) (-1 $ $)) 184 (|has| |#1| (-1068)))) (-3112 (((-783) $) 160 (|has| |#1| (-568)))) (-2871 (($ (-115) $) 56) (($ (-115) $ $) 55) (($ (-115) $ $ $) 54) (($ (-115) $ $ $ $) 53) (($ (-115) (-656 $)) 52)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 161 (|has| |#1| (-568)))) (-2114 (($ $) 44) (($ $ $) 43)) (-2735 (($ $ (-1195)) 134 (|has| |#1| (-1068))) (($ $ (-656 (-1195))) 132 (|has| |#1| (-1068))) (($ $ (-1195) (-783)) 131 (|has| |#1| (-1068))) (($ $ (-656 (-1195)) (-656 (-783))) 130 (|has| |#1| (-1068)))) (-1880 (($ $) 181 (|has| |#1| (-568)))) (-1549 (((-1144 |#1| (-624 $)) $) 182 (|has| |#1| (-568)))) (-1372 (($ $) 19 (|has| $ (-1068)))) (-4076 (((-905 (-576)) $) 219 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 218 (|has| |#1| (-626 (-905 (-390))))) (($ (-430 $)) 183 (|has| |#1| (-568))) (((-548) $) 101 (|has| |#1| (-626 (-548))))) (-4026 (($ $ $) 112 (|has| |#1| (-485)))) (-4081 (($ $ $) 113 (|has| |#1| (-485)))) (-3563 (((-874) $) 12) (($ (-624 $)) 63) (($ (-1195)) 220) (($ |#1|) 211) (($ (-1144 |#1| (-624 $))) 193 (|has| |#1| (-1068))) (($ (-419 |#1|)) 179 (|has| |#1| (-568))) (($ (-969 (-419 |#1|))) 178 (|has| |#1| (-568))) (($ (-419 (-969 (-419 |#1|)))) 177 (|has| |#1| (-568))) (($ (-419 (-969 |#1|))) 173 (|has| |#1| (-568))) (($ $) 146 (|has| |#1| (-568))) (($ (-969 |#1|)) 123 (|has| |#1| (-1068))) (($ (-419 (-576))) 98 (-2835 (|has| |#1| (-568)) (-12 (|has| |#1| (-1057 (-576))) (|has| |#1| (-568))) (|has| |#1| (-1057 (-419 (-576)))))) (($ (-576)) 97 (-2835 (|has| |#1| (-1068)) (|has| |#1| (-1057 (-576)))))) (-2883 (((-3 $ "failed") $) 144 (|has| |#1| (-146)))) (-1858 (((-783)) 126 (|has| |#1| (-1068)) CONST)) (-4102 (($ $) 48) (($ (-656 $)) 47)) (-3263 (((-112) (-115)) 36)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 150 (|has| |#1| (-568)))) (-4017 (($ (-1195) $) 207) (($ (-1195) $ $) 206) (($ (-1195) $ $ $) 205) (($ (-1195) $ $ $ $) 204) (($ (-1195) (-656 $)) 203)) (-2800 (($) 116 (|has| |#1| (-25)) CONST)) (-2810 (($) 104 (|has| |#1| (-1131)) CONST)) (-2051 (($ $ (-1195)) 133 (|has| |#1| (-1068))) (($ $ (-656 (-1195))) 129 (|has| |#1| (-1068))) (($ $ (-1195) (-783)) 128 (|has| |#1| (-1068))) (($ $ (-656 (-1195)) (-656 (-783))) 127 (|has| |#1| (-1068)))) (-2988 (((-112) $ $) 6)) (-3107 (($ (-1144 |#1| (-624 $)) (-1144 |#1| (-624 $))) 180 (|has| |#1| (-568))) (($ $ $) 110 (-2835 (|has| |#1| (-485)) (|has| |#1| (-568))))) (-3095 (($ $ $) 122 (|has| |#1| (-21))) (($ $) 121 (|has| |#1| (-21)))) (-3083 (($ $ $) 114 (|has| |#1| (-25)))) (** (($ $ (-576)) 111 (-2835 (|has| |#1| (-485)) (|has| |#1| (-568)))) (($ $ (-783)) 108 (|has| |#1| (-1131))) (($ $ (-938)) 103 (|has| |#1| (-1131)))) (* (($ (-419 (-576)) $) 172 (|has| |#1| (-568))) (($ $ (-419 (-576))) 171 (|has| |#1| (-568))) (($ $ |#1|) 145 (|has| |#1| (-174))) (($ |#1| $) 135 (|has| |#1| (-1068))) (($ (-576) $) 120 (|has| |#1| (-21))) (($ (-783) $) 118 (|has| |#1| (-25))) (($ (-938) $) 115 (|has| |#1| (-25))) (($ $ $) 102 (|has| |#1| (-1131))))) (((-442 |#1|) (-141) (-1119)) (T -442)) -((-1657 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-1670 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-1196))))) (-2407 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-2407 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-2407 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-2407 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-2407 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1119)))) (-2259 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-4 *3 (-626 (-548))))) (-2259 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1196))) (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-4 *3 (-626 (-548))))) (-2259 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-626 (-548))))) (-2259 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1196)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) (-4 *4 (-626 (-548))))) (-2259 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1196)) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-626 (-548))))) (-3009 (*1 *2 *1) (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-3178 (*1 *2 *1) (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3175 (-576)))) (-4 *1 (-442 *3)))) (-2016 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-2642 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| -1856 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-1144 *3 (-624 *1))) (-4 *3 (-1068)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-3894 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-4272 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-1068)))) (-3178 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1068)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3175 (-576)))) (-4 *1 (-442 *4)))) (-3178 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-1068)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3175 (-576)))) (-4 *1 (-442 *4)))) (-4192 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| |val| *1) (|:| -3175 (-576)))) (-4 *1 (-442 *3)))) (-2259 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-2259 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-2259 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-2259 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))) (-3905 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-1490 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-568)))) (-4028 (*1 *1 *2 *2) (-12 (-5 *2 (-1144 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-969 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-1364 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) (-4 *4 (-568)) (-5 *2 (-419 (-1192 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-4 *3 (-1131))))) -(-13 (-312) (-1057 (-1196)) (-897 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -1657 ((-112) $)) (-15 -1670 (|t#1| $)) (-15 -1541 ((-656 (-1196)) $)) (-15 -2407 ($ (-1196) $)) (-15 -2407 ($ (-1196) $ $)) (-15 -2407 ($ (-1196) $ $ $)) (-15 -2407 ($ (-1196) $ $ $ $)) (-15 -2407 ($ (-1196) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -2259 ($ $ (-1196))) (-15 -2259 ($ $ (-656 (-1196)))) (-15 -2259 ($ $)) (-15 -2259 ($ $ (-115) $ (-1196))) (-15 -2259 ($ $ (-656 (-115)) (-656 $) (-1196)))) |%noBranch|) (IF (|has| |t#1| (-1131)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -3009 ((-3 (-656 $) "failed") $)) (-15 -3178 ((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2016 ((-3 (-656 $) "failed") $)) (-15 -2642 ((-3 (-2 (|:| -1856 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-1057 (-969 |t#1|))) (-6 (-915 (-1196))) (-6 (-388 |t#1|)) (-15 -4092 ($ (-1144 |t#1| (-624 $)))) (-15 -3894 ((-1144 |t#1| (-624 $)) $)) (-15 -4272 ($ $)) (-15 -3178 ((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-115))) (-15 -3178 ((-3 (-2 (|:| |var| (-624 $)) (|:| -3175 (-576))) "failed") $ (-1196))) (-15 -4192 ((-3 (-2 (|:| |val| $) (|:| -3175 (-576))) "failed") $)) (-15 -2259 ($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -2259 ($ $ (-656 (-1196)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -2259 ($ $ (-1196) (-783) (-1 $ (-656 $)))) (-15 -2259 ($ $ (-1196) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1057 (-419 (-969 |t#1|)))) (-15 -1505 ($ (-430 $))) (-15 -3905 ((-1144 |t#1| (-624 $)) $)) (-15 -1490 ($ $)) (-15 -4028 ($ (-1144 |t#1| (-624 $)) (-1144 |t#1| (-624 $)))) (-15 -4092 ($ (-419 |t#1|))) (-15 -4092 ($ (-969 (-419 |t#1|)))) (-15 -4092 ($ (-419 (-969 (-419 |t#1|))))) (-15 -1364 ((-419 (-1192 $)) $ (-624 $))) (IF (|has| |t#1| (-1057 (-576))) (-6 (-1057 (-419 (-576)))) |%noBranch|)) |%noBranch|))) -(((-21) -3765 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -3765 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3765 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -3765 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-969 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -3765 (|has| |#1| (-1068)) (|has| |#1| (-1057 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-969 |#1|)) |has| |#1| (-1068)) ((-628 #4=(-1196)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1068)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -3765 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -3765 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-658 $) -3765 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-660 |#1|) -3765 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-660 $) -3765 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-651 |#1|) |has| |#1| (-1068)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -3765 (|has| |#1| (-1131)) (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-909 $ #6=(-1196)) |has| |#1| (-1068)) ((-915 #6#) |has| |#1| (-1068)) ((-917 #6#) |has| |#1| (-1068)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-937) |has| |#1| (-568)) ((-1057 (-419 (-576))) -3765 (|has| |#1| (-1057 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) ((-1057 #1#) |has| |#1| (-568)) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #2#) . T) ((-1057 #3#) |has| |#1| (-1068)) ((-1057 #4#) . T) ((-1057 |#1|) . T) ((-1070 #0#) |has| |#1| (-568)) ((-1070 |#1|) |has| |#1| (-174)) ((-1070 $) |has| |#1| (-568)) ((-1075 #0#) |has| |#1| (-568)) ((-1075 |#1|) |has| |#1| (-174)) ((-1075 $) |has| |#1| (-568)) ((-1068) -3765 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1077) -3765 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1131) -3765 (|has| |#1| (-1131)) (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1119) . T) ((-1237) . T) ((-1241) |has| |#1| (-568))) -((-3381 ((|#2| |#2| |#2|) 31)) (-1344 (((-115) (-115)) 43)) (-2783 ((|#2| |#2|) 63)) (-2782 ((|#2| |#2|) 66)) (-1382 ((|#2| |#2|) 30)) (-3400 ((|#2| |#2| |#2|) 33)) (-2621 ((|#2| |#2| |#2|) 35)) (-4199 ((|#2| |#2| |#2|) 32)) (-2624 ((|#2| |#2| |#2|) 34)) (-3201 (((-112) (-115)) 41)) (-2456 ((|#2| |#2|) 37)) (-2154 ((|#2| |#2|) 36)) (-3423 ((|#2| |#2|) 25)) (-2917 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-1802 ((|#2| |#2| |#2|) 29))) -(((-443 |#1| |#2|) (-10 -7 (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -3423 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -2917 (|#2| |#2| |#2|)) (-15 -1802 (|#2| |#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -3381 (|#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2|)) (-15 -3400 (|#2| |#2| |#2|)) (-15 -2624 (|#2| |#2| |#2|)) (-15 -2621 (|#2| |#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2782 (|#2| |#2|)) (-15 -2783 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) -((-2783 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2782 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2154 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2621 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2624 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3400 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4199 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3381 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1802 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2917 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2917 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3423 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1344 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) -(-10 -7 (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -3423 (|#2| |#2|)) (-15 -2917 (|#2| |#2|)) (-15 -2917 (|#2| |#2| |#2|)) (-15 -1802 (|#2| |#2| |#2|)) (-15 -1382 (|#2| |#2|)) (-15 -3381 (|#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2|)) (-15 -3400 (|#2| |#2| |#2|)) (-15 -2624 (|#2| |#2| |#2|)) (-15 -2621 (|#2| |#2| |#2|)) (-15 -2154 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2782 (|#2| |#2|)) (-15 -2783 (|#2| |#2|))) -((-1554 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-656 |#2|)) 65))) -(((-444 |#1| |#2|) (-10 -7 (-15 -1554 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -1554 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) -((-1554 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1192 *3)) (|:| |pol2| (-1192 *3)) (|:| |prim| (-1192 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1192 *5))) (|:| |prim| (-1192 *5)))) (-5 *1 (-444 *4 *5))))) -(-10 -7 (-15 -1554 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -1554 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|)) |%noBranch|)) -((-2401 (((-1292)) 18)) (-2263 (((-1192 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) -(((-445 |#1| |#2|) (-10 -7 (-15 -2263 ((-419 (-576)) |#2|)) (-15 -2263 ((-1192 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2401 ((-1292)))) (-13 (-568) (-1057 (-576))) (-442 |#1|)) (T -445)) -((-2401 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1292)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-2263 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) -(-10 -7 (-15 -2263 ((-419 (-576)) |#2|)) (-15 -2263 ((-1192 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2401 ((-1292)))) -((-4398 (((-112) $) 33)) (-2846 (((-112) $) 35)) (-3738 (((-112) $) 36)) (-3885 (((-112) $) 39)) (-2193 (((-112) $) 34)) (-2868 (((-112) $) 38)) (-4092 (((-874) $) 20) (($ (-1178)) 32) (($ (-1196)) 30) (((-1196) $) 24) (((-1123) $) 23)) (-3426 (((-112) $) 37)) (-3919 (((-112) $ $) 17))) -(((-446) (-13 (-625 (-874)) (-10 -8 (-15 -4092 ($ (-1178))) (-15 -4092 ($ (-1196))) (-15 -4092 ((-1196) $)) (-15 -4092 ((-1123) $)) (-15 -4398 ((-112) $)) (-15 -2193 ((-112) $)) (-15 -3738 ((-112) $)) (-15 -2868 ((-112) $)) (-15 -3885 ((-112) $)) (-15 -3426 ((-112) $)) (-15 -2846 ((-112) $)) (-15 -3919 ((-112) $ $))))) (T -446)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-446)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-446)))) (-4398 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2846 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3919 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(-13 (-625 (-874)) (-10 -8 (-15 -4092 ($ (-1178))) (-15 -4092 ($ (-1196))) (-15 -4092 ((-1196) $)) (-15 -4092 ((-1123) $)) (-15 -4398 ((-112) $)) (-15 -2193 ((-112) $)) (-15 -3738 ((-112) $)) (-15 -2868 ((-112) $)) (-15 -3885 ((-112) $)) (-15 -3426 ((-112) $)) (-15 -2846 ((-112) $)) (-15 -3919 ((-112) $ $)))) -((-1763 (((-3 (-430 (-1192 (-419 (-576)))) "failed") |#3|) 72)) (-2766 (((-430 |#3|) |#3|) 34)) (-3227 (((-3 (-430 (-1192 (-48))) "failed") |#3|) 46 (|has| |#2| (-1057 (-48))))) (-1809 (((-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -2652 (-112))) |#3|) 37))) -(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2766 ((-430 |#3|) |#3|)) (-15 -1763 ((-3 (-430 (-1192 (-419 (-576)))) "failed") |#3|)) (-15 -1809 ((-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -2652 (-112))) |#3|)) (IF (|has| |#2| (-1057 (-48))) (-15 -3227 ((-3 (-430 (-1192 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1057 (-576))) (-442 |#1|) (-1263 |#2|)) (T -447)) -((-3227 (*1 *2 *3) (|partial| -12 (-4 *5 (-1057 (-48))) (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1192 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-1809 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -2652 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-1763 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1192 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-2766 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -2766 ((-430 |#3|) |#3|)) (-15 -1763 ((-3 (-430 (-1192 (-419 (-576)))) "failed") |#3|)) (-15 -1809 ((-3 (|:| |overq| (-1192 (-419 (-576)))) (|:| |overan| (-1192 (-48))) (|:| -2652 (-112))) |#3|)) (IF (|has| |#2| (-1057 (-48))) (-15 -3227 ((-3 (-430 (-1192 (-48))) "failed") |#3|)) |%noBranch|)) -((-2034 (((-112) $ $) NIL)) (-3183 (((-1178) $ (-1178)) NIL)) (-3490 (($ $ (-1178)) NIL)) (-1422 (((-1178) $) NIL)) (-4426 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-3709 (($ (-400)) NIL) (($ (-400) (-1178)) NIL)) (-4124 (((-400) $) NIL)) (-3288 (((-1178) $) NIL)) (-1767 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3499 (((-1292) (-1178)) 9)) (-2774 (((-1292) (-1178)) 10)) (-3264 (((-1292)) 11)) (-4092 (((-874) $) NIL)) (-3603 (($ $) 39)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-448) (-13 (-375 (-400) (-1178)) (-10 -7 (-15 -4426 ((-400) (-400) (-400))) (-15 -4426 ((-400) (-400))) (-15 -3499 ((-1292) (-1178))) (-15 -2774 ((-1292) (-1178))) (-15 -3264 ((-1292)))))) (T -448)) -((-4426 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-4426 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448)))) (-2774 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448)))) (-3264 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-448))))) -(-13 (-375 (-400) (-1178)) (-10 -7 (-15 -4426 ((-400) (-400) (-400))) (-15 -4426 ((-400) (-400))) (-15 -3499 ((-1292) (-1178))) (-15 -2774 ((-1292) (-1178))) (-15 -3264 ((-1292))))) -((-2034 (((-112) $ $) NIL)) (-1871 (((-3 (|:| |fst| (-446)) (|:| -2502 "void")) $) 11)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1386 (($) 35)) (-3812 (($) 41)) (-2062 (($) 37)) (-4193 (($) 39)) (-1676 (($) 36)) (-1560 (($) 38)) (-2937 (($) 40)) (-2216 (((-112) $) 8)) (-2308 (((-656 (-969 (-576))) $) 19)) (-4103 (($ (-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-656 (-1196)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-656 (-969 (-576))) (-112)) 30)) (-4092 (((-874) $) 24) (($ (-446)) 32)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-449) (-13 (-1119) (-10 -8 (-15 -4092 ($ (-446))) (-15 -1871 ((-3 (|:| |fst| (-446)) (|:| -2502 "void")) $)) (-15 -2308 ((-656 (-969 (-576))) $)) (-15 -2216 ((-112) $)) (-15 -4103 ($ (-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-656 (-1196)) (-112))) (-15 -4103 ($ (-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-656 (-969 (-576))) (-112))) (-15 -1386 ($)) (-15 -1676 ($)) (-15 -2062 ($)) (-15 -3812 ($)) (-15 -1560 ($)) (-15 -4193 ($)) (-15 -2937 ($))))) (T -449)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *1 (-449)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-656 (-969 (-576)))) (-5 *1 (-449)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-4103 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *3 (-656 (-1196))) (-5 *4 (-112)) (-5 *1 (-449)))) (-4103 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-1386 (*1 *1) (-5 *1 (-449))) (-1676 (*1 *1) (-5 *1 (-449))) (-2062 (*1 *1) (-5 *1 (-449))) (-3812 (*1 *1) (-5 *1 (-449))) (-1560 (*1 *1) (-5 *1 (-449))) (-4193 (*1 *1) (-5 *1 (-449))) (-2937 (*1 *1) (-5 *1 (-449)))) -(-13 (-1119) (-10 -8 (-15 -4092 ($ (-446))) (-15 -1871 ((-3 (|:| |fst| (-446)) (|:| -2502 "void")) $)) (-15 -2308 ((-656 (-969 (-576))) $)) (-15 -2216 ((-112) $)) (-15 -4103 ($ (-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-656 (-1196)) (-112))) (-15 -4103 ($ (-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-656 (-969 (-576))) (-112))) (-15 -1386 ($)) (-15 -1676 ($)) (-15 -2062 ($)) (-15 -3812 ($)) (-15 -1560 ($)) (-15 -4193 ($)) (-15 -2937 ($)))) -((-2034 (((-112) $ $) NIL)) (-4124 (((-1196) $) 8)) (-3288 (((-1178) $) 17)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 11)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 14))) -(((-450 |#1|) (-13 (-1119) (-10 -8 (-15 -4124 ((-1196) $)))) (-1196)) (T -450)) -((-4124 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-450 *3)) (-14 *3 *2)))) -(-13 (-1119) (-10 -8 (-15 -4124 ((-1196) $)))) -((-2034 (((-112) $ $) NIL)) (-3404 (((-1137) $) 7)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 13)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 9))) -(((-451) (-13 (-1119) (-10 -8 (-15 -3404 ((-1137) $))))) (T -451)) -((-3404 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-451))))) -(-13 (-1119) (-10 -8 (-15 -3404 ((-1137) $)))) -((-3472 (((-1292) $) 7)) (-4092 (((-874) $) 8) (($ (-1287 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 11))) +((-2105 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-1195))))) (-4017 (*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-4017 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-4017 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-4017 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) (-4017 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1119)))) (-3306 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-4 *3 (-626 (-548))))) (-3306 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1195))) (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-4 *3 (-626 (-548))))) (-3306 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-626 (-548))))) (-3306 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1195)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) (-4 *4 (-626 (-548))))) (-3306 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1195)) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-626 (-548))))) (-1708 (*1 *2 *1) (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-1419 (*1 *2 *1) (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4274 (-576)))) (-4 *1 (-442 *3)))) (-2567 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-442 *3)))) (-3656 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| -1706 (-576)) (|:| |var| (-624 *1)))) (-4 *1 (-442 *3)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1144 *3 (-624 *1))) (-4 *3 (-1068)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-1536 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-1068)))) (-1419 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1068)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4274 (-576)))) (-4 *1 (-442 *4)))) (-1419 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-1068)) (-4 *4 (-1119)) (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4274 (-576)))) (-4 *1 (-442 *4)))) (-2027 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *3 (-1119)) (-5 *2 (-2 (|:| |val| *1) (|:| -4274 (-576)))) (-4 *1 (-442 *3)))) (-3306 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-3306 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-3306 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-3306 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) (-4 *3 (-1119)))) (-1549 (*1 *2 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) (-4 *1 (-442 *3)))) (-1880 (*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-568)))) (-3107 (*1 *1 *2 *2) (-12 (-5 *2 (-1144 *3 (-624 *1))) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-969 (-419 *3))) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-419 *3)))) (-4 *3 (-568)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) (-3999 (*1 *2 *1 *3) (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) (-4 *4 (-568)) (-5 *2 (-419 (-1191 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-4 *3 (-1131))))) +(-13 (-312) (-1057 (-1195)) (-897 |t#1|) (-412 |t#1|) (-423 |t#1|) (-10 -8 (-15 -2105 ((-112) $)) (-15 -2116 (|t#1| $)) (-15 -1991 ((-656 (-1195)) $)) (-15 -4017 ($ (-1195) $)) (-15 -4017 ($ (-1195) $ $)) (-15 -4017 ($ (-1195) $ $ $)) (-15 -4017 ($ (-1195) $ $ $ $)) (-15 -4017 ($ (-1195) (-656 $))) (IF (|has| |t#1| (-626 (-548))) (PROGN (-6 (-626 (-548))) (-15 -3306 ($ $ (-1195))) (-15 -3306 ($ $ (-656 (-1195)))) (-15 -3306 ($ $)) (-15 -3306 ($ $ (-115) $ (-1195))) (-15 -3306 ($ $ (-656 (-115)) (-656 $) (-1195)))) |%noBranch|) (IF (|has| |t#1| (-1131)) (PROGN (-6 (-738)) (-15 ** ($ $ (-783))) (-15 -1708 ((-3 (-656 $) "failed") $)) (-15 -1419 ((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2567 ((-3 (-656 $) "failed") $)) (-15 -3656 ((-3 (-2 (|:| -1706 (-576)) (|:| |var| (-624 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1068)) (PROGN (-6 (-1068)) (-6 (-1057 (-969 |t#1|))) (-6 (-915 (-1195))) (-6 (-388 |t#1|)) (-15 -3563 ($ (-1144 |t#1| (-624 $)))) (-15 -1536 ((-1144 |t#1| (-624 $)) $)) (-15 -2302 ($ $)) (-15 -1419 ((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-115))) (-15 -1419 ((-3 (-2 (|:| |var| (-624 $)) (|:| -4274 (-576))) "failed") $ (-1195))) (-15 -2027 ((-3 (-2 (|:| |val| $) (|:| -4274 (-576))) "failed") $)) (-15 -3306 ($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ $)))) (-15 -3306 ($ $ (-656 (-1195)) (-656 (-783)) (-656 (-1 $ (-656 $))))) (-15 -3306 ($ $ (-1195) (-783) (-1 $ (-656 $)))) (-15 -3306 ($ $ (-1195) (-783) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-374)) (-6 (-1057 (-419 (-969 |t#1|)))) (-15 -4076 ($ (-430 $))) (-15 -1549 ((-1144 |t#1| (-624 $)) $)) (-15 -1880 ($ $)) (-15 -3107 ($ (-1144 |t#1| (-624 $)) (-1144 |t#1| (-624 $)))) (-15 -3563 ($ (-419 |t#1|))) (-15 -3563 ($ (-969 (-419 |t#1|)))) (-15 -3563 ($ (-419 (-969 (-419 |t#1|))))) (-15 -3999 ((-419 (-1191 $)) $ (-624 $))) (IF (|has| |t#1| (-1057 (-576))) (-6 (-1057 (-419 (-576)))) |%noBranch|)) |%noBranch|))) +(((-21) -2835 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-23) -2835 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2835 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-419 (-576))) |has| |#1| (-568)) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-568)) ((-111 |#1| |#1|) |has| |#1| (-174)) ((-111 $ $) |has| |#1| (-568)) ((-132) -2835 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-568))) ((-628 #1=(-419 (-969 |#1|))) |has| |#1| (-568)) ((-628 (-576)) -2835 (|has| |#1| (-1068)) (|has| |#1| (-1057 (-576))) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-628 #2=(-624 $)) . T) ((-628 #3=(-969 |#1|)) |has| |#1| (-1068)) ((-628 #4=(-1195)) . T) ((-628 |#1|) . T) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) |has| |#1| (-568)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-248) |has| |#1| (-568)) ((-300) |has| |#1| (-568)) ((-317) |has| |#1| (-568)) ((-319 $) . T) ((-312) . T) ((-374) |has| |#1| (-568)) ((-388 |#1|) |has| |#1| (-1068)) ((-412 |#1|) . T) ((-423 |#1|) . T) ((-464) |has| |#1| (-568)) ((-485) |has| |#1| (-485)) ((-526 (-624 $) $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-568)) ((-658 (-576)) -2835 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146)) (|has| |#1| (-21))) ((-658 |#1|) -2835 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-658 $) -2835 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-660 #0#) |has| |#1| (-568)) ((-660 #5=(-576)) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-660 |#1|) -2835 (|has| |#1| (-1068)) (|has| |#1| (-174))) ((-660 $) -2835 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-652 #0#) |has| |#1| (-568)) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-651 #5#) -12 (|has| |#1| (-651 (-576))) (|has| |#1| (-1068))) ((-651 |#1|) |has| |#1| (-1068)) ((-729 #0#) |has| |#1| (-568)) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) -2835 (|has| |#1| (-1131)) (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-909 $ #6=(-1195)) |has| |#1| (-1068)) ((-915 #6#) |has| |#1| (-1068)) ((-917 #6#) |has| |#1| (-1068)) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-937) |has| |#1| (-568)) ((-1057 (-419 (-576))) -2835 (|has| |#1| (-1057 (-419 (-576)))) (-12 (|has| |#1| (-568)) (|has| |#1| (-1057 (-576))))) ((-1057 #1#) |has| |#1| (-568)) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #2#) . T) ((-1057 #3#) |has| |#1| (-1068)) ((-1057 #4#) . T) ((-1057 |#1|) . T) ((-1070 #0#) |has| |#1| (-568)) ((-1070 |#1|) |has| |#1| (-174)) ((-1070 $) |has| |#1| (-568)) ((-1075 #0#) |has| |#1| (-568)) ((-1075 |#1|) |has| |#1| (-174)) ((-1075 $) |has| |#1| (-568)) ((-1068) -2835 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1077) -2835 (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1131) -2835 (|has| |#1| (-1131)) (|has| |#1| (-1068)) (|has| |#1| (-568)) (|has| |#1| (-485)) (|has| |#1| (-174)) (|has| |#1| (-148)) (|has| |#1| (-146))) ((-1119) . T) ((-1236) . T) ((-1240) |has| |#1| (-568))) +((-3415 ((|#2| |#2| |#2|) 31)) (-3974 (((-115) (-115)) 43)) (-3967 ((|#2| |#2|) 63)) (-2022 ((|#2| |#2|) 66)) (-1440 ((|#2| |#2|) 30)) (-3946 ((|#2| |#2| |#2|) 33)) (-4054 ((|#2| |#2| |#2|) 35)) (-1432 ((|#2| |#2| |#2|) 32)) (-4381 ((|#2| |#2| |#2|) 34)) (-3263 (((-112) (-115)) 41)) (-1678 ((|#2| |#2|) 37)) (-2907 ((|#2| |#2|) 36)) (-2264 ((|#2| |#2|) 25)) (-2402 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3177 ((|#2| |#2| |#2|) 29))) +(((-443 |#1| |#2|) (-10 -7 (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -2264 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2402 (|#2| |#2| |#2|)) (-15 -3177 (|#2| |#2| |#2|)) (-15 -1440 (|#2| |#2|)) (-15 -3415 (|#2| |#2| |#2|)) (-15 -1432 (|#2| |#2| |#2|)) (-15 -3946 (|#2| |#2| |#2|)) (-15 -4381 (|#2| |#2| |#2|)) (-15 -4054 (|#2| |#2| |#2|)) (-15 -2907 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -3967 (|#2| |#2|))) (-568) (-442 |#1|)) (T -443)) +((-3967 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2022 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2907 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4054 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-4381 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3946 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1432 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3415 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-1440 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3177 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2402 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2402 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) (-4 *4 (-442 *3)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4))))) +(-10 -7 (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -2264 (|#2| |#2|)) (-15 -2402 (|#2| |#2|)) (-15 -2402 (|#2| |#2| |#2|)) (-15 -3177 (|#2| |#2| |#2|)) (-15 -1440 (|#2| |#2|)) (-15 -3415 (|#2| |#2| |#2|)) (-15 -1432 (|#2| |#2| |#2|)) (-15 -3946 (|#2| |#2| |#2|)) (-15 -4381 (|#2| |#2| |#2|)) (-15 -4054 (|#2| |#2| |#2|)) (-15 -2907 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -3967 (|#2| |#2|))) +((-2580 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-656 |#2|)) 65))) +(((-444 |#1| |#2|) (-10 -7 (-15 -2580 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -2580 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-568) (-148)) (-442 |#1|)) (T -444)) +((-2580 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1191 *3)) (|:| |pol2| (-1191 *3)) (|:| |prim| (-1191 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1191 *5))) (|:| |prim| (-1191 *5)))) (-5 *1 (-444 *4 *5))))) +(-10 -7 (-15 -2580 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-656 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-656 |#2|))) (IF (|has| |#2| (-27)) (-15 -2580 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|)) |%noBranch|)) +((-2238 (((-1291)) 18)) (-4059 (((-1191 (-419 (-576))) |#2| (-624 |#2|)) 40) (((-419 (-576)) |#2|) 24))) +(((-445 |#1| |#2|) (-10 -7 (-15 -4059 ((-419 (-576)) |#2|)) (-15 -4059 ((-1191 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2238 ((-1291)))) (-13 (-568) (-1057 (-576))) (-442 |#1|)) (T -445)) +((-2238 (*1 *2) (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1291)) (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-445 *5 *3)))) (-4059 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 (-576))) (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4))))) +(-10 -7 (-15 -4059 ((-419 (-576)) |#2|)) (-15 -4059 ((-1191 (-419 (-576))) |#2| (-624 |#2|))) (-15 -2238 ((-1291)))) +((-1883 (((-112) $) 33)) (-3911 (((-112) $) 35)) (-4185 (((-112) $) 36)) (-1379 (((-112) $) 39)) (-2392 (((-112) $) 34)) (-2487 (((-112) $) 38)) (-3563 (((-874) $) 20) (($ (-1177)) 32) (($ (-1195)) 30) (((-1195) $) 24) (((-1123) $) 23)) (-2444 (((-112) $) 37)) (-2988 (((-112) $ $) 17))) +(((-446) (-13 (-625 (-874)) (-10 -8 (-15 -3563 ($ (-1177))) (-15 -3563 ($ (-1195))) (-15 -3563 ((-1195) $)) (-15 -3563 ((-1123) $)) (-15 -1883 ((-112) $)) (-15 -2392 ((-112) $)) (-15 -4185 ((-112) $)) (-15 -2487 ((-112) $)) (-15 -1379 ((-112) $)) (-15 -2444 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -2988 ((-112) $ $))))) (T -446)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-446)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-446)))) (-1883 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2392 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-4185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-1379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2444 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-3911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) (-2988 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(-13 (-625 (-874)) (-10 -8 (-15 -3563 ($ (-1177))) (-15 -3563 ($ (-1195))) (-15 -3563 ((-1195) $)) (-15 -3563 ((-1123) $)) (-15 -1883 ((-112) $)) (-15 -2392 ((-112) $)) (-15 -4185 ((-112) $)) (-15 -2487 ((-112) $)) (-15 -1379 ((-112) $)) (-15 -2444 ((-112) $)) (-15 -3911 ((-112) $)) (-15 -2988 ((-112) $ $)))) +((-1322 (((-3 (-430 (-1191 (-419 (-576)))) "failed") |#3|) 72)) (-1545 (((-430 |#3|) |#3|) 34)) (-3955 (((-3 (-430 (-1191 (-48))) "failed") |#3|) 46 (|has| |#2| (-1057 (-48))))) (-2561 (((-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -4170 (-112))) |#3|) 37))) +(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -1545 ((-430 |#3|) |#3|)) (-15 -1322 ((-3 (-430 (-1191 (-419 (-576)))) "failed") |#3|)) (-15 -2561 ((-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -4170 (-112))) |#3|)) (IF (|has| |#2| (-1057 (-48))) (-15 -3955 ((-3 (-430 (-1191 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-568) (-1057 (-576))) (-442 |#1|) (-1262 |#2|)) (T -447)) +((-3955 (*1 *2 *3) (|partial| -12 (-4 *5 (-1057 (-48))) (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1191 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-2561 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -4170 (-112)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-1322 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 (-1191 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-1545 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5))))) +(-10 -7 (-15 -1545 ((-430 |#3|) |#3|)) (-15 -1322 ((-3 (-430 (-1191 (-419 (-576)))) "failed") |#3|)) (-15 -2561 ((-3 (|:| |overq| (-1191 (-419 (-576)))) (|:| |overan| (-1191 (-48))) (|:| -4170 (-112))) |#3|)) (IF (|has| |#2| (-1057 (-48))) (-15 -3955 ((-3 (-430 (-1191 (-48))) "failed") |#3|)) |%noBranch|)) +((-3474 (((-112) $ $) NIL)) (-3917 (((-1177) $ (-1177)) NIL)) (-1606 (($ $ (-1177)) NIL)) (-3280 (((-1177) $) NIL)) (-4310 (((-400) (-400) (-400)) 17) (((-400) (-400)) 15)) (-3223 (($ (-400)) NIL) (($ (-400) (-1177)) NIL)) (-2706 (((-400) $) NIL)) (-1927 (((-1177) $) NIL)) (-1746 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-1324 (((-1291) (-1177)) 9)) (-4101 (((-1291) (-1177)) 10)) (-4377 (((-1291)) 11)) (-3563 (((-874) $) NIL)) (-4382 (($ $) 39)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-448) (-13 (-375 (-400) (-1177)) (-10 -7 (-15 -4310 ((-400) (-400) (-400))) (-15 -4310 ((-400) (-400))) (-15 -1324 ((-1291) (-1177))) (-15 -4101 ((-1291) (-1177))) (-15 -4377 ((-1291)))))) (T -448)) +((-4310 (*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-4310 (*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448)))) (-4377 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-448))))) +(-13 (-375 (-400) (-1177)) (-10 -7 (-15 -4310 ((-400) (-400) (-400))) (-15 -4310 ((-400) (-400))) (-15 -1324 ((-1291) (-1177))) (-15 -4101 ((-1291) (-1177))) (-15 -4377 ((-1291))))) +((-3474 (((-112) $ $) NIL)) (-2321 (((-3 (|:| |fst| (-446)) (|:| -2910 "void")) $) 11)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4189 (($) 35)) (-2090 (($) 41)) (-2462 (($) 37)) (-3972 (($) 39)) (-4371 (($) 36)) (-3867 (($) 38)) (-3644 (($) 40)) (-2801 (((-112) $) 8)) (-3634 (((-656 (-969 (-576))) $) 19)) (-3573 (($ (-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-656 (-1195)) (-112)) 29) (($ (-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-656 (-969 (-576))) (-112)) 30)) (-3563 (((-874) $) 24) (($ (-446)) 32)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-449) (-13 (-1119) (-10 -8 (-15 -3563 ($ (-446))) (-15 -2321 ((-3 (|:| |fst| (-446)) (|:| -2910 "void")) $)) (-15 -3634 ((-656 (-969 (-576))) $)) (-15 -2801 ((-112) $)) (-15 -3573 ($ (-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-656 (-1195)) (-112))) (-15 -3573 ($ (-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-656 (-969 (-576))) (-112))) (-15 -4189 ($)) (-15 -4371 ($)) (-15 -2462 ($)) (-15 -2090 ($)) (-15 -3867 ($)) (-15 -3972 ($)) (-15 -3644 ($))))) (T -449)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *1 (-449)))) (-3634 (*1 *2 *1) (-12 (-5 *2 (-656 (-969 (-576)))) (-5 *1 (-449)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449)))) (-3573 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *3 (-656 (-1195))) (-5 *4 (-112)) (-5 *1 (-449)))) (-3573 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) (-4189 (*1 *1) (-5 *1 (-449))) (-4371 (*1 *1) (-5 *1 (-449))) (-2462 (*1 *1) (-5 *1 (-449))) (-2090 (*1 *1) (-5 *1 (-449))) (-3867 (*1 *1) (-5 *1 (-449))) (-3972 (*1 *1) (-5 *1 (-449))) (-3644 (*1 *1) (-5 *1 (-449)))) +(-13 (-1119) (-10 -8 (-15 -3563 ($ (-446))) (-15 -2321 ((-3 (|:| |fst| (-446)) (|:| -2910 "void")) $)) (-15 -3634 ((-656 (-969 (-576))) $)) (-15 -2801 ((-112) $)) (-15 -3573 ($ (-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-656 (-1195)) (-112))) (-15 -3573 ($ (-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-656 (-969 (-576))) (-112))) (-15 -4189 ($)) (-15 -4371 ($)) (-15 -2462 ($)) (-15 -2090 ($)) (-15 -3867 ($)) (-15 -3972 ($)) (-15 -3644 ($)))) +((-3474 (((-112) $ $) NIL)) (-2706 (((-1195) $) 8)) (-1927 (((-1177) $) 17)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 11)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 14))) +(((-450 |#1|) (-13 (-1119) (-10 -8 (-15 -2706 ((-1195) $)))) (-1195)) (T -450)) +((-2706 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-450 *3)) (-14 *3 *2)))) +(-13 (-1119) (-10 -8 (-15 -2706 ((-1195) $)))) +((-3474 (((-112) $ $) NIL)) (-2707 (((-1137) $) 7)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 13)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 9))) +(((-451) (-13 (-1119) (-10 -8 (-15 -2707 ((-1137) $))))) (T -451)) +((-2707 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-451))))) +(-13 (-1119) (-10 -8 (-15 -2707 ((-1137) $)))) +((-3188 (((-1291) $) 7)) (-3563 (((-874) $) 8) (($ (-1286 (-711))) 14) (($ (-656 (-340))) 13) (($ (-340)) 12) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 11))) (((-452) (-141)) (T -452)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-711))) (-4 *1 (-452)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) (-4 *1 (-452))))) -(-13 (-407) (-10 -8 (-15 -4092 ($ (-1287 (-711)))) (-15 -4092 ($ (-656 (-340)))) (-15 -4092 ($ (-340))) (-15 -4092 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340)))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1237) . T)) -((-2974 (((-3 $ "failed") (-1287 (-326 (-390)))) 21) (((-3 $ "failed") (-1287 (-326 (-576)))) 19) (((-3 $ "failed") (-1287 (-969 (-390)))) 17) (((-3 $ "failed") (-1287 (-969 (-576)))) 15) (((-3 $ "failed") (-1287 (-419 (-969 (-390))))) 13) (((-3 $ "failed") (-1287 (-419 (-969 (-576))))) 11)) (-2378 (($ (-1287 (-326 (-390)))) 22) (($ (-1287 (-326 (-576)))) 20) (($ (-1287 (-969 (-390)))) 18) (($ (-1287 (-969 (-576)))) 16) (($ (-1287 (-419 (-969 (-390))))) 14) (($ (-1287 (-419 (-969 (-576))))) 12)) (-3472 (((-1292) $) 7)) (-4092 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) 23))) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-711))) (-4 *1 (-452)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-452))))) +(-13 (-407) (-10 -8 (-15 -3563 ($ (-1286 (-711)))) (-15 -3563 ($ (-656 (-340)))) (-15 -3563 ($ (-340))) (-15 -3563 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340)))))))) +(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) +((-1539 (((-3 $ "failed") (-1286 (-326 (-390)))) 21) (((-3 $ "failed") (-1286 (-326 (-576)))) 19) (((-3 $ "failed") (-1286 (-969 (-390)))) 17) (((-3 $ "failed") (-1286 (-969 (-576)))) 15) (((-3 $ "failed") (-1286 (-419 (-969 (-390))))) 13) (((-3 $ "failed") (-1286 (-419 (-969 (-576))))) 11)) (-4056 (($ (-1286 (-326 (-390)))) 22) (($ (-1286 (-326 (-576)))) 20) (($ (-1286 (-969 (-390)))) 18) (($ (-1286 (-969 (-576)))) 16) (($ (-1286 (-419 (-969 (-390))))) 14) (($ (-1286 (-419 (-969 (-576))))) 12)) (-3188 (((-1291) $) 7)) (-3563 (((-874) $) 8) (($ (-656 (-340))) 25) (($ (-340)) 24) (($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) 23))) (((-453) (-141)) (T -453)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) (-4 *1 (-453)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1287 (-969 (-390)))) (-4 *1 (-453)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-969 (-390)))) (-4 *1 (-453)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1287 (-969 (-576)))) (-4 *1 (-453)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-969 (-576)))) (-4 *1 (-453)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 (-390))))) (-4 *1 (-453)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-419 (-969 (-390))))) (-4 *1 (-453)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 (-576))))) (-4 *1 (-453)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-419 (-969 (-576))))) (-4 *1 (-453))))) -(-13 (-407) (-10 -8 (-15 -4092 ($ (-656 (-340)))) (-15 -4092 ($ (-340))) (-15 -4092 ($ (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340)))))) (-15 -2378 ($ (-1287 (-326 (-390))))) (-15 -2974 ((-3 $ "failed") (-1287 (-326 (-390))))) (-15 -2378 ($ (-1287 (-326 (-576))))) (-15 -2974 ((-3 $ "failed") (-1287 (-326 (-576))))) (-15 -2378 ($ (-1287 (-969 (-390))))) (-15 -2974 ((-3 $ "failed") (-1287 (-969 (-390))))) (-15 -2378 ($ (-1287 (-969 (-576))))) (-15 -2974 ((-3 $ "failed") (-1287 (-969 (-576))))) (-15 -2378 ($ (-1287 (-419 (-969 (-390)))))) (-15 -2974 ((-3 $ "failed") (-1287 (-419 (-969 (-390)))))) (-15 -2378 ($ (-1287 (-419 (-969 (-576)))))) (-15 -2974 ((-3 $ "failed") (-1287 (-419 (-969 (-576)))))))) -(((-625 (-874)) . T) ((-407) . T) ((-1237) . T)) -((-3951 (((-112)) 18)) (-1908 (((-112) (-112)) 19)) (-2898 (((-112)) 14)) (-3170 (((-112) (-112)) 15)) (-3574 (((-112)) 16)) (-1733 (((-112) (-112)) 17)) (-3970 (((-938) (-938)) 22) (((-938)) 21)) (-4111 (((-783) (-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576))))) 52)) (-1883 (((-938) (-938)) 24) (((-938)) 23)) (-3295 (((-2 (|:| -4165 (-576)) (|:| -3791 (-656 |#1|))) |#1|) 94)) (-3216 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576))))))) 174)) (-3936 (((-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))) |#1| (-112)) 207)) (-3029 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-2899 (((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-938) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-938) |#1| (-783)) 226) (((-3 |#1| "failed") (-938) |#1|) 228)) (-1392 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-3654 (((-112) |#1|) 44)) (-2694 (((-749 (-783)) (-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576))))) 99)) (-1703 (((-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))) |#1| (-112) (-1121 (-783)) (-783)) 211))) -(((-454 |#1|) (-10 -7 (-15 -3216 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))))) (-15 -2694 ((-749 (-783)) (-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))))) (-15 -1883 ((-938))) (-15 -1883 ((-938) (-938))) (-15 -3970 ((-938))) (-15 -3970 ((-938) (-938))) (-15 -4111 ((-783) (-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))))) (-15 -3295 ((-2 (|:| -4165 (-576)) (|:| -3791 (-656 |#1|))) |#1|)) (-15 -3951 ((-112))) (-15 -1908 ((-112) (-112))) (-15 -2898 ((-112))) (-15 -3170 ((-112) (-112))) (-15 -3654 ((-112) |#1|)) (-15 -3574 ((-112))) (-15 -1733 ((-112) (-112))) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -1392 ((-430 |#1|) |#1| (-783))) (-15 -1392 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1392 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1392 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3029 ((-430 |#1|) |#1|)) (-15 -3029 ((-430 |#1|) |#1| (-783))) (-15 -3029 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -3029 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -3029 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2899 ((-3 |#1| "failed") (-938) |#1|)) (-15 -2899 ((-3 |#1| "failed") (-938) |#1| (-783))) (-15 -2899 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)))) (-15 -2899 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783))) (-15 -2899 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783) (-112))) (-15 -3936 ((-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))) |#1| (-112))) (-15 -1703 ((-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))) |#1| (-112) (-1121 (-783)) (-783)))) (-1263 (-576))) (T -454)) -((-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1121 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| *3) (|:| -2136 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| *3) (|:| -2136 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2899 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-2899 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-2899 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-2899 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-2899 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-938)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) (-3029 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3029 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3029 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3029 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3029 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1392 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1392 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1733 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3574 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3654 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3170 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2898 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3951 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3295 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4165 (-576)) (|:| -3791 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1392 *4) (|:| -2369 (-576))))) (-4 *4 (-1263 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-3970 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1883 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-1883 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1392 *4) (|:| -2369 (-576))))) (-4 *4 (-1263 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| *4) (|:| -2136 (-576))))))) (-4 *4 (-1263 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(-10 -7 (-15 -3216 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))))) (-15 -2694 ((-749 (-783)) (-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))))) (-15 -1883 ((-938))) (-15 -1883 ((-938) (-938))) (-15 -3970 ((-938))) (-15 -3970 ((-938) (-938))) (-15 -4111 ((-783) (-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))))) (-15 -3295 ((-2 (|:| -4165 (-576)) (|:| -3791 (-656 |#1|))) |#1|)) (-15 -3951 ((-112))) (-15 -1908 ((-112) (-112))) (-15 -2898 ((-112))) (-15 -3170 ((-112) (-112))) (-15 -3654 ((-112) |#1|)) (-15 -3574 ((-112))) (-15 -1733 ((-112) (-112))) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -1392 ((-430 |#1|) |#1| (-783))) (-15 -1392 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1392 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1392 ((-430 |#1|) |#1| (-783) (-783))) (-15 -3029 ((-430 |#1|) |#1|)) (-15 -3029 ((-430 |#1|) |#1| (-783))) (-15 -3029 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -3029 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -3029 ((-430 |#1|) |#1| (-783) (-783))) (-15 -2899 ((-3 |#1| "failed") (-938) |#1|)) (-15 -2899 ((-3 |#1| "failed") (-938) |#1| (-783))) (-15 -2899 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)))) (-15 -2899 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783))) (-15 -2899 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783) (-112))) (-15 -3936 ((-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))) |#1| (-112))) (-15 -1703 ((-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))) |#1| (-112) (-1121 (-783)) (-783)))) -((-2972 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-1501 (((-576) |#2|) 64)) (-2204 ((|#3| |#2|) 26)) (-4252 ((|#3| |#2| (-938)) 15)) (-1325 ((|#3| |#2|) 16)) (-2872 ((|#3| |#2|) 9)) (-2927 ((|#3| |#2|) 10)) (-2227 ((|#3| |#2| (-938)) 71) ((|#3| |#2|) 34)) (-2999 (((-576) |#2|) 66))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -2999 ((-576) |#2|)) (-15 -2227 (|#3| |#2|)) (-15 -2227 (|#3| |#2| (-938))) (-15 -1501 ((-576) |#2|)) (-15 -2972 ((-576) |#2| (-783))) (-15 -2972 ((-576) |#2|)) (-15 -4252 (|#3| |#2| (-938))) (-15 -2204 (|#3| |#2|)) (-15 -2872 (|#3| |#2|)) (-15 -2927 (|#3| |#2|)) (-15 -1325 (|#3| |#2|))) (-1068) (-1263 |#1|) (-13 (-416) (-1057 |#1|) (-374) (-1222) (-294))) (T -455)) -((-1325 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2927 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2872 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2204 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-4252 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1222) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) (-2972 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))))) (-2972 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1263 *5)) (-4 *6 (-13 (-416) (-1057 *5) (-374) (-1222) (-294))))) (-1501 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))))) (-2227 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1222) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) (-2227 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2999 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294)))))) -(-10 -7 (-15 -2999 ((-576) |#2|)) (-15 -2227 (|#3| |#2|)) (-15 -2227 (|#3| |#2| (-938))) (-15 -1501 ((-576) |#2|)) (-15 -2972 ((-576) |#2| (-783))) (-15 -2972 ((-576) |#2|)) (-15 -4252 (|#3| |#2| (-938))) (-15 -2204 (|#3| |#2|)) (-15 -2872 (|#3| |#2|)) (-15 -2927 (|#3| |#2|)) (-15 -1325 (|#3| |#2|))) -((-1389 ((|#2| (-1287 |#1|)) 42)) (-2646 ((|#2| |#2| |#1|) 58)) (-2508 ((|#2| |#2| |#1|) 49)) (-4112 ((|#2| |#2|) 44)) (-2863 (((-112) |#2|) 32)) (-3055 (((-656 |#2|) (-938) (-430 |#2|)) 21)) (-2899 ((|#2| (-938) (-430 |#2|)) 25)) (-2694 (((-749 (-783)) (-430 |#2|)) 29))) -(((-456 |#1| |#2|) (-10 -7 (-15 -2863 ((-112) |#2|)) (-15 -1389 (|#2| (-1287 |#1|))) (-15 -4112 (|#2| |#2|)) (-15 -2508 (|#2| |#2| |#1|)) (-15 -2646 (|#2| |#2| |#1|)) (-15 -2694 ((-749 (-783)) (-430 |#2|))) (-15 -2899 (|#2| (-938) (-430 |#2|))) (-15 -3055 ((-656 |#2|) (-938) (-430 |#2|)))) (-1068) (-1263 |#1|)) (T -456)) -((-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-430 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-1068)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-430 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1068)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1068)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-2646 (*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-2508 (*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-4112 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-1068)) (-4 *2 (-1263 *4)) (-5 *1 (-456 *4 *2)))) (-2863 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -2863 ((-112) |#2|)) (-15 -1389 (|#2| (-1287 |#1|))) (-15 -4112 (|#2| |#2|)) (-15 -2508 (|#2| |#2| |#1|)) (-15 -2646 (|#2| |#2| |#1|)) (-15 -2694 ((-749 (-783)) (-430 |#2|))) (-15 -2899 (|#2| (-938) (-430 |#2|))) (-15 -3055 ((-656 |#2|) (-938) (-430 |#2|)))) -((-2780 (((-783)) 59)) (-4131 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-1910 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-4021 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-3155 (((-783)) 58) (((-783) (-783)) 57)) (-1901 ((|#1| (-783) (-576)) 37)) (-3891 (((-1292)) 61))) -(((-457 |#1|) (-10 -7 (-15 -1901 (|#1| (-783) (-576))) (-15 -3155 ((-783) (-783))) (-15 -3155 ((-783))) (-15 -2780 ((-783))) (-15 -3891 ((-1292))) (IF (|has| |#1| (-416)) (PROGN (-15 -4021 ((-576) |#1|)) (-15 -1910 ((-576) |#1|)) (-15 -4131 ((-783) (-783))) (-15 -4131 ((-783)))) |%noBranch|)) (-1068)) (T -457)) -((-4131 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-4131 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-1910 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-4021 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-3891 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-2780 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-3155 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-3155 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1068))))) -(-10 -7 (-15 -1901 (|#1| (-783) (-576))) (-15 -3155 ((-783) (-783))) (-15 -3155 ((-783))) (-15 -2780 ((-783))) (-15 -3891 ((-1292))) (IF (|has| |#1| (-416)) (PROGN (-15 -4021 ((-576) |#1|)) (-15 -1910 ((-576) |#1|)) (-15 -4131 ((-783) (-783))) (-15 -4131 ((-783)))) |%noBranch|)) -((-3993 (((-656 (-576)) (-576)) 76)) (-2725 (((-112) (-171 (-576))) 82)) (-1392 (((-430 (-171 (-576))) (-171 (-576))) 75))) -(((-458) (-10 -7 (-15 -1392 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -3993 ((-656 (-576)) (-576))) (-15 -2725 ((-112) (-171 (-576)))))) (T -458)) -((-2725 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-3993 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) -(-10 -7 (-15 -1392 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -3993 ((-656 (-576)) (-576))) (-15 -2725 ((-112) (-171 (-576))))) -((-1511 ((|#4| |#4| (-656 |#4|)) 82)) (-1401 (((-656 |#4|) (-656 |#4|) (-1178) (-1178)) 22) (((-656 |#4|) (-656 |#4|) (-1178)) 21) (((-656 |#4|) (-656 |#4|)) 13))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1511 (|#4| |#4| (-656 |#4|))) (-15 -1401 ((-656 |#4|) (-656 |#4|))) (-15 -1401 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -1401 ((-656 |#4|) (-656 |#4|) (-1178) (-1178)))) (-317) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -459)) -((-1401 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1401 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1401 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) (-1511 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) -(-10 -7 (-15 -1511 (|#4| |#4| (-656 |#4|))) (-15 -1401 ((-656 |#4|) (-656 |#4|))) (-15 -1401 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -1401 ((-656 |#4|) (-656 |#4|) (-1178) (-1178)))) -((-3613 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-3203 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3203 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3203 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -3613 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -3613 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3613 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3613 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -460)) -((-3613 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3613 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3613 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3203 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-3203 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(-10 -7 (-15 -3203 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3203 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -3613 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -3613 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3613 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -3613 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) -((-3717 (((-783) |#4|) 12)) (-1820 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -2248 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2248 |#4|)))) 39)) (-3239 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2121 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-3206 ((|#4| |#4| (-656 |#4|)) 54)) (-2319 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-4201 (((-1292) |#4|) 59)) (-2744 (((-1292) (-656 |#4|)) 69)) (-2735 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-3214 (((-1292) (-576)) 110)) (-1646 (((-656 |#4|) (-656 |#4|)) 104)) (-2683 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2248 |#4|)) |#4| (-783)) 31)) (-3007 (((-576) |#4|) 109)) (-2035 ((|#4| |#4|) 37)) (-2789 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-2163 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-1966 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3454 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-1941 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2164 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1443 (((-112) |#2| |#2|) 75)) (-3441 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-1848 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3994 ((|#4| |#4| (-656 |#4|)) 97))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3994 (|#4| |#4| (-656 |#4|))) (-15 -3206 (|#4| |#4| (-656 |#4|))) (-15 -2789 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3454 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1443 ((-112) |#2| |#2|)) (-15 -1848 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3441 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2164 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1941 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2319 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -2035 (|#4| |#4|)) (-15 -1820 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2248 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2248 |#4|))))) (-15 -2121 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3239 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1646 ((-656 |#4|) (-656 |#4|))) (-15 -3007 ((-576) |#4|)) (-15 -4201 ((-1292) |#4|)) (-15 -2735 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2163 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2744 ((-1292) (-656 |#4|))) (-15 -3214 ((-1292) (-576))) (-15 -1966 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2683 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2248 |#4|)) |#4| (-783))) (-15 -3717 ((-783) |#4|))) (-464) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -461)) -((-3717 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-2683 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2248 *4))) (-5 *5 (-783)) (-4 *4 (-966 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-1966 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2163 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-2735 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-3007 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-1646 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-3239 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-966 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-862)))) (-1820 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2248 *3)))) (-5 *4 (-783)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3)))) (-2035 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-1941 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-966 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *4 *3 *5 *6)))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-3441 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *3)))) (-1848 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5)))) (-1443 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2789 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3206 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))) (-3994 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) -(-10 -7 (-15 -3994 (|#4| |#4| (-656 |#4|))) (-15 -3206 (|#4| |#4| (-656 |#4|))) (-15 -2789 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3454 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1443 ((-112) |#2| |#2|)) (-15 -1848 ((-112) |#2| |#2| |#2| |#2|)) (-15 -3441 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2164 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1941 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2319 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -2035 (|#4| |#4|)) (-15 -1820 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -2248 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -2248 |#4|))))) (-15 -2121 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3239 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1646 ((-656 |#4|) (-656 |#4|))) (-15 -3007 ((-576) |#4|)) (-15 -4201 ((-1292) |#4|)) (-15 -2735 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2163 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -2744 ((-1292) (-656 |#4|))) (-15 -3214 ((-1292) (-576))) (-15 -1966 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2683 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -2248 |#4|)) |#4| (-783))) (-15 -3717 ((-783) |#4|))) -((-3513 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-2686 (((-656 |#4|) (-656 |#4|) (-1178) (-1178)) 46) (((-656 |#4|) (-656 |#4|) (-1178)) 45) (((-656 |#4|) (-656 |#4|)) 34))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2686 ((-656 |#4|) (-656 |#4|))) (-15 -2686 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -2686 ((-656 |#4|) (-656 |#4|) (-1178) (-1178))) (IF (|has| |#1| (-374)) (-15 -3513 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -462)) -((-3513 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2686 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2686 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2686 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6))))) -(-10 -7 (-15 -2686 ((-656 |#4|) (-656 |#4|))) (-15 -2686 ((-656 |#4|) (-656 |#4|) (-1178))) (-15 -2686 ((-656 |#4|) (-656 |#4|) (-1178) (-1178))) (IF (|has| |#1| (-374)) (-15 -3513 (|#4| |#4| (-656 |#4|))) |%noBranch|)) -((-3117 (($ $ $) 14) (($ (-656 $)) 21)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 46)) (-3149 (($ $ $) NIL) (($ (-656 $)) 22))) -(((-463 |#1|) (-10 -8 (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3117 (|#1| (-656 |#1|))) (-15 -3117 (|#1| |#1| |#1|)) (-15 -3149 (|#1| (-656 |#1|))) (-15 -3149 (|#1| |#1| |#1|))) (-464)) (T -463)) -NIL -(-10 -8 (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3117 (|#1| (-656 |#1|))) (-15 -3117 (|#1| |#1| |#1|)) (-15 -3149 (|#1| (-656 |#1|))) (-15 -3149 (|#1| |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-2022 (((-3 $ "failed") $ $) 48)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-453)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-1286 (-969 (-390)))) (-4 *1 (-453)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-969 (-390)))) (-4 *1 (-453)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-1286 (-969 (-576)))) (-4 *1 (-453)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-969 (-576)))) (-4 *1 (-453)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-969 (-390))))) (-4 *1 (-453)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-419 (-969 (-390))))) (-4 *1 (-453)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-969 (-576))))) (-4 *1 (-453)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1286 (-419 (-969 (-576))))) (-4 *1 (-453))))) +(-13 (-407) (-10 -8 (-15 -3563 ($ (-656 (-340)))) (-15 -3563 ($ (-340))) (-15 -3563 ($ (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340)))))) (-15 -4056 ($ (-1286 (-326 (-390))))) (-15 -1539 ((-3 $ "failed") (-1286 (-326 (-390))))) (-15 -4056 ($ (-1286 (-326 (-576))))) (-15 -1539 ((-3 $ "failed") (-1286 (-326 (-576))))) (-15 -4056 ($ (-1286 (-969 (-390))))) (-15 -1539 ((-3 $ "failed") (-1286 (-969 (-390))))) (-15 -4056 ($ (-1286 (-969 (-576))))) (-15 -1539 ((-3 $ "failed") (-1286 (-969 (-576))))) (-15 -4056 ($ (-1286 (-419 (-969 (-390)))))) (-15 -1539 ((-3 $ "failed") (-1286 (-419 (-969 (-390)))))) (-15 -4056 ($ (-1286 (-419 (-969 (-576)))))) (-15 -1539 ((-3 $ "failed") (-1286 (-419 (-969 (-576)))))))) +(((-625 (-874)) . T) ((-407) . T) ((-1236) . T)) +((-4115 (((-112)) 18)) (-3918 (((-112) (-112)) 19)) (-4180 (((-112)) 14)) (-1987 (((-112) (-112)) 15)) (-4335 (((-112)) 16)) (-3751 (((-112) (-112)) 17)) (-2353 (((-938) (-938)) 22) (((-938)) 21)) (-1506 (((-783) (-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576))))) 52)) (-4144 (((-938) (-938)) 24) (((-938)) 23)) (-3317 (((-2 (|:| -4317 (-576)) (|:| -1707 (-656 |#1|))) |#1|) 94)) (-2218 (((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576))))))) 174)) (-2388 (((-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))) |#1| (-112)) 207)) (-1770 (((-430 |#1|) |#1| (-783) (-783)) 222) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 219) (((-430 |#1|) |#1| (-656 (-783))) 221) (((-430 |#1|) |#1| (-783)) 220) (((-430 |#1|) |#1|) 218)) (-4296 (((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783) (-112)) 224) (((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783)) 225) (((-3 |#1| "failed") (-938) |#1| (-656 (-783))) 227) (((-3 |#1| "failed") (-938) |#1| (-783)) 226) (((-3 |#1| "failed") (-938) |#1|) 228)) (-1839 (((-430 |#1|) |#1| (-783) (-783)) 217) (((-430 |#1|) |#1| (-656 (-783)) (-783)) 213) (((-430 |#1|) |#1| (-656 (-783))) 215) (((-430 |#1|) |#1| (-783)) 214) (((-430 |#1|) |#1|) 212)) (-3650 (((-112) |#1|) 44)) (-3885 (((-749 (-783)) (-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576))))) 99)) (-1806 (((-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))) |#1| (-112) (-1121 (-783)) (-783)) 211))) +(((-454 |#1|) (-10 -7 (-15 -2218 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))))) (-15 -3885 ((-749 (-783)) (-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))))) (-15 -4144 ((-938))) (-15 -4144 ((-938) (-938))) (-15 -2353 ((-938))) (-15 -2353 ((-938) (-938))) (-15 -1506 ((-783) (-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))))) (-15 -3317 ((-2 (|:| -4317 (-576)) (|:| -1707 (-656 |#1|))) |#1|)) (-15 -4115 ((-112))) (-15 -3918 ((-112) (-112))) (-15 -4180 ((-112))) (-15 -1987 ((-112) (-112))) (-15 -3650 ((-112) |#1|)) (-15 -4335 ((-112))) (-15 -3751 ((-112) (-112))) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1839 ((-430 |#1|) |#1| (-783))) (-15 -1839 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1839 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1839 ((-430 |#1|) |#1| (-783) (-783))) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1| (-783))) (-15 -1770 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1770 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1770 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4296 ((-3 |#1| "failed") (-938) |#1|)) (-15 -4296 ((-3 |#1| "failed") (-938) |#1| (-783))) (-15 -4296 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)))) (-15 -4296 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783))) (-15 -4296 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783) (-112))) (-15 -2388 ((-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))) |#1| (-112))) (-15 -1806 ((-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))) |#1| (-112) (-1121 (-783)) (-783)))) (-1262 (-576))) (T -454)) +((-1806 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1121 (-783))) (-5 *6 (-783)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| *3) (|:| -2011 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2388 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| *3) (|:| -2011 (-576))))))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4296 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-4296 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-4296 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-4296 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-783)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-4296 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-938)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) (-1770 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1770 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1770 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1770 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1839 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1839 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4335 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3650 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1987 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4180 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4115 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3317 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4317 (-576)) (|:| -1707 (-656 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1839 *4) (|:| -1433 (-576))))) (-4 *4 (-1262 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4)))) (-2353 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-2353 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-4144 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1839 *4) (|:| -1433 (-576))))) (-4 *4 (-1262 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| *4) (|:| -2011 (-576))))))) (-4 *4 (-1262 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) +(-10 -7 (-15 -2218 ((-430 |#1|) (-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))))) (-15 -3885 ((-749 (-783)) (-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))))) (-15 -4144 ((-938))) (-15 -4144 ((-938) (-938))) (-15 -2353 ((-938))) (-15 -2353 ((-938) (-938))) (-15 -1506 ((-783) (-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))))) (-15 -3317 ((-2 (|:| -4317 (-576)) (|:| -1707 (-656 |#1|))) |#1|)) (-15 -4115 ((-112))) (-15 -3918 ((-112) (-112))) (-15 -4180 ((-112))) (-15 -1987 ((-112) (-112))) (-15 -3650 ((-112) |#1|)) (-15 -4335 ((-112))) (-15 -3751 ((-112) (-112))) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1839 ((-430 |#1|) |#1| (-783))) (-15 -1839 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1839 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1839 ((-430 |#1|) |#1| (-783) (-783))) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1| (-783))) (-15 -1770 ((-430 |#1|) |#1| (-656 (-783)))) (-15 -1770 ((-430 |#1|) |#1| (-656 (-783)) (-783))) (-15 -1770 ((-430 |#1|) |#1| (-783) (-783))) (-15 -4296 ((-3 |#1| "failed") (-938) |#1|)) (-15 -4296 ((-3 |#1| "failed") (-938) |#1| (-783))) (-15 -4296 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)))) (-15 -4296 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783))) (-15 -4296 ((-3 |#1| "failed") (-938) |#1| (-656 (-783)) (-783) (-112))) (-15 -2388 ((-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))) |#1| (-112))) (-15 -1806 ((-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))) |#1| (-112) (-1121 (-783)) (-783)))) +((-2099 (((-576) |#2|) 52) (((-576) |#2| (-783)) 51)) (-3400 (((-576) |#2|) 64)) (-4110 ((|#3| |#2|) 26)) (-4072 ((|#3| |#2| (-938)) 15)) (-4261 ((|#3| |#2|) 16)) (-1550 ((|#3| |#2|) 9)) (-2331 ((|#3| |#2|) 10)) (-2467 ((|#3| |#2| (-938)) 71) ((|#3| |#2|) 34)) (-3204 (((-576) |#2|) 66))) +(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -3204 ((-576) |#2|)) (-15 -2467 (|#3| |#2|)) (-15 -2467 (|#3| |#2| (-938))) (-15 -3400 ((-576) |#2|)) (-15 -2099 ((-576) |#2| (-783))) (-15 -2099 ((-576) |#2|)) (-15 -4072 (|#3| |#2| (-938))) (-15 -4110 (|#3| |#2|)) (-15 -1550 (|#3| |#2|)) (-15 -2331 (|#3| |#2|)) (-15 -4261 (|#3| |#2|))) (-1068) (-1262 |#1|) (-13 (-416) (-1057 |#1|) (-374) (-1221) (-294))) (T -455)) +((-4261 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-2331 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-1550 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-4110 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1221) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) (-2099 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))))) (-2099 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1262 *5)) (-4 *6 (-13 (-416) (-1057 *5) (-374) (-1221) (-294))))) (-3400 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))))) (-2467 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1221) (-294))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) (-2467 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) (-3204 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1262 *4)) (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1221) (-294)))))) +(-10 -7 (-15 -3204 ((-576) |#2|)) (-15 -2467 (|#3| |#2|)) (-15 -2467 (|#3| |#2| (-938))) (-15 -3400 ((-576) |#2|)) (-15 -2099 ((-576) |#2| (-783))) (-15 -2099 ((-576) |#2|)) (-15 -4072 (|#3| |#2| (-938))) (-15 -4110 (|#3| |#2|)) (-15 -1550 (|#3| |#2|)) (-15 -2331 (|#3| |#2|)) (-15 -4261 (|#3| |#2|))) +((-2384 ((|#2| (-1286 |#1|)) 42)) (-2921 ((|#2| |#2| |#1|) 58)) (-2001 ((|#2| |#2| |#1|) 49)) (-3733 ((|#2| |#2|) 44)) (-3182 (((-112) |#2|) 32)) (-2624 (((-656 |#2|) (-938) (-430 |#2|)) 21)) (-4296 ((|#2| (-938) (-430 |#2|)) 25)) (-3885 (((-749 (-783)) (-430 |#2|)) 29))) +(((-456 |#1| |#2|) (-10 -7 (-15 -3182 ((-112) |#2|)) (-15 -2384 (|#2| (-1286 |#1|))) (-15 -3733 (|#2| |#2|)) (-15 -2001 (|#2| |#2| |#1|)) (-15 -2921 (|#2| |#2| |#1|)) (-15 -3885 ((-749 (-783)) (-430 |#2|))) (-15 -4296 (|#2| (-938) (-430 |#2|))) (-15 -2624 ((-656 |#2|) (-938) (-430 |#2|)))) (-1068) (-1262 |#1|)) (T -456)) +((-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-430 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-1068)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6)))) (-4296 (*1 *2 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-430 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1068)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-430 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1068)) (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5)))) (-2921 (*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-2001 (*1 *2 *2 *3) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-3733 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-1068)) (-4 *2 (-1262 *4)) (-5 *1 (-456 *4 *2)))) (-3182 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -3182 ((-112) |#2|)) (-15 -2384 (|#2| (-1286 |#1|))) (-15 -3733 (|#2| |#2|)) (-15 -2001 (|#2| |#2| |#1|)) (-15 -2921 (|#2| |#2| |#1|)) (-15 -3885 ((-749 (-783)) (-430 |#2|))) (-15 -4296 (|#2| (-938) (-430 |#2|))) (-15 -2624 ((-656 |#2|) (-938) (-430 |#2|)))) +((-1810 (((-783)) 59)) (-2912 (((-783)) 29 (|has| |#1| (-416))) (((-783) (-783)) 28 (|has| |#1| (-416)))) (-4138 (((-576) |#1|) 25 (|has| |#1| (-416)))) (-1663 (((-576) |#1|) 27 (|has| |#1| (-416)))) (-3221 (((-783)) 58) (((-783) (-783)) 57)) (-2507 ((|#1| (-783) (-576)) 37)) (-3728 (((-1291)) 61))) +(((-457 |#1|) (-10 -7 (-15 -2507 (|#1| (-783) (-576))) (-15 -3221 ((-783) (-783))) (-15 -3221 ((-783))) (-15 -1810 ((-783))) (-15 -3728 ((-1291))) (IF (|has| |#1| (-416)) (PROGN (-15 -1663 ((-576) |#1|)) (-15 -4138 ((-576) |#1|)) (-15 -2912 ((-783) (-783))) (-15 -2912 ((-783)))) |%noBranch|)) (-1068)) (T -457)) +((-2912 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-2912 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-4138 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-1663 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) (-3728 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-1810 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-3221 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1068))))) +(-10 -7 (-15 -2507 (|#1| (-783) (-576))) (-15 -3221 ((-783) (-783))) (-15 -3221 ((-783))) (-15 -1810 ((-783))) (-15 -3728 ((-1291))) (IF (|has| |#1| (-416)) (PROGN (-15 -1663 ((-576) |#1|)) (-15 -4138 ((-576) |#1|)) (-15 -2912 ((-783) (-783))) (-15 -2912 ((-783)))) |%noBranch|)) +((-1564 (((-656 (-576)) (-576)) 76)) (-1792 (((-112) (-171 (-576))) 82)) (-1839 (((-430 (-171 (-576))) (-171 (-576))) 75))) +(((-458) (-10 -7 (-15 -1839 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -1564 ((-656 (-576)) (-576))) (-15 -1792 ((-112) (-171 (-576)))))) (T -458)) +((-1792 (*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) (-1564 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576)))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) (-5 *3 (-171 (-576)))))) +(-10 -7 (-15 -1839 ((-430 (-171 (-576))) (-171 (-576)))) (-15 -1564 ((-656 (-576)) (-576))) (-15 -1792 ((-112) (-171 (-576))))) +((-2989 ((|#4| |#4| (-656 |#4|)) 82)) (-1793 (((-656 |#4|) (-656 |#4|) (-1177) (-1177)) 22) (((-656 |#4|) (-656 |#4|) (-1177)) 21) (((-656 |#4|) (-656 |#4|)) 13))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2989 (|#4| |#4| (-656 |#4|))) (-15 -1793 ((-656 |#4|) (-656 |#4|))) (-15 -1793 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -1793 ((-656 |#4|) (-656 |#4|) (-1177) (-1177)))) (-317) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -459)) +((-1793 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1793 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *7)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) (-2989 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) +(-10 -7 (-15 -2989 (|#4| |#4| (-656 |#4|))) (-15 -1793 ((-656 |#4|) (-656 |#4|))) (-15 -1793 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -1793 ((-656 |#4|) (-656 |#4|) (-1177) (-1177)))) +((-2987 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 89) (((-656 (-656 |#4|)) (-656 |#4|)) 88) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112)) 82) (((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|)) 83)) (-2280 (((-656 (-656 |#4|)) (-656 |#4|) (-112)) 55) (((-656 (-656 |#4|)) (-656 |#4|)) 77))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2280 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -2280 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -2987 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -2987 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2987 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -2987 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) (-13 (-317) (-148)) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -460)) +((-2987 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-2987 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2987 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-2987 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2280 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) (-2280 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(-10 -7 (-15 -2280 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -2280 ((-656 (-656 |#4|)) (-656 |#4|) (-112))) (-15 -2987 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|))) (-15 -2987 ((-656 (-656 |#4|)) (-656 |#4|) (-656 |#4|) (-112))) (-15 -2987 ((-656 (-656 |#4|)) (-656 |#4|))) (-15 -2987 ((-656 (-656 |#4|)) (-656 |#4|) (-112)))) +((-3827 (((-783) |#4|) 12)) (-4284 (((-656 (-2 (|:| |totdeg| (-783)) (|:| -3789 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -3789 |#4|)))) 39)) (-2698 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2109 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-2525 ((|#4| |#4| (-656 |#4|)) 54)) (-2727 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|)) 96)) (-3512 (((-1291) |#4|) 59)) (-4172 (((-1291) (-656 |#4|)) 69)) (-1406 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576)) 66)) (-3247 (((-1291) (-576)) 110)) (-4186 (((-656 |#4|) (-656 |#4|)) 104)) (-4073 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -3789 |#4|)) |#4| (-783)) 31)) (-1462 (((-576) |#4|) 109)) (-3771 ((|#4| |#4|) 37)) (-3354 (((-656 |#4|) (-656 |#4|) (-576) (-576)) 74)) (-2488 (((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576)) 123)) (-3783 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-3046 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-2875 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-2586 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1375 (((-112) |#2| |#2|) 75)) (-4438 (((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-1670 (((-112) |#2| |#2| |#2| |#2|) 80)) (-1685 ((|#4| |#4| (-656 |#4|)) 97))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1685 (|#4| |#4| (-656 |#4|))) (-15 -2525 (|#4| |#4| (-656 |#4|))) (-15 -3354 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3046 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1375 ((-112) |#2| |#2|)) (-15 -1670 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4438 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2586 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2875 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2727 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3771 (|#4| |#4|)) (-15 -4284 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -3789 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -3789 |#4|))))) (-15 -2109 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2698 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4186 ((-656 |#4|) (-656 |#4|))) (-15 -1462 ((-576) |#4|)) (-15 -3512 ((-1291) |#4|)) (-15 -1406 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2488 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -4172 ((-1291) (-656 |#4|))) (-15 -3247 ((-1291) (-576))) (-15 -3783 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4073 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -3789 |#4|)) |#4| (-783))) (-15 -3827 ((-783) |#4|))) (-464) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -461)) +((-3827 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-4073 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -3789 *4))) (-5 *5 (-783)) (-4 *4 (-966 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-461 *6 *7 *8 *4)))) (-3783 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3247 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2488 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-1406 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *4)))) (-3512 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-1462 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576)) (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-4186 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2698 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-805)) (-4 *2 (-966 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-862)))) (-4284 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -3789 *3)))) (-5 *4 (-783)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3)))) (-3771 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) (-2727 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-461 *5 *6 *7 *3)))) (-2875 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-805)) (-4 *6 (-966 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *4 *3 *5 *6)))) (-2586 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6)))) (-4438 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-805)) (-4 *3 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *3)))) (-1670 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5)))) (-1375 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3354 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2525 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2)))) (-1685 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) +(-10 -7 (-15 -1685 (|#4| |#4| (-656 |#4|))) (-15 -2525 (|#4| |#4| (-656 |#4|))) (-15 -3354 ((-656 |#4|) (-656 |#4|) (-576) (-576))) (-15 -3046 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1375 ((-112) |#2| |#2|)) (-15 -1670 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4438 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2586 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2875 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2727 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-656 |#4|))) (-15 -3771 (|#4| |#4|)) (-15 -4284 ((-656 (-2 (|:| |totdeg| (-783)) (|:| -3789 |#4|))) |#4| (-783) (-656 (-2 (|:| |totdeg| (-783)) (|:| -3789 |#4|))))) (-15 -2109 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2698 ((-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-656 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4186 ((-656 |#4|) (-656 |#4|))) (-15 -1462 ((-576) |#4|)) (-15 -3512 ((-1291) |#4|)) (-15 -1406 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576))) (-15 -2488 ((-576) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-576) (-576) (-576) (-576))) (-15 -4172 ((-1291) (-656 |#4|))) (-15 -3247 ((-1291) (-576))) (-15 -3783 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4073 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-783)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-783)) (|:| -3789 |#4|)) |#4| (-783))) (-15 -3827 ((-783) |#4|))) +((-2237 ((|#4| |#4| (-656 |#4|)) 20 (|has| |#1| (-374)))) (-4390 (((-656 |#4|) (-656 |#4|) (-1177) (-1177)) 46) (((-656 |#4|) (-656 |#4|) (-1177)) 45) (((-656 |#4|) (-656 |#4|)) 34))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 ((-656 |#4|) (-656 |#4|))) (-15 -4390 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -4390 ((-656 |#4|) (-656 |#4|) (-1177) (-1177))) (IF (|has| |#1| (-374)) (-15 -2237 (|#4| |#4| (-656 |#4|))) |%noBranch|)) (-464) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -462)) +((-2237 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-374)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *2)))) (-4390 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-4390 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-462 *4 *5 *6 *7)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6))))) +(-10 -7 (-15 -4390 ((-656 |#4|) (-656 |#4|))) (-15 -4390 ((-656 |#4|) (-656 |#4|) (-1177))) (-15 -4390 ((-656 |#4|) (-656 |#4|) (-1177) (-1177))) (IF (|has| |#1| (-374)) (-15 -2237 (|#4| |#4| (-656 |#4|))) |%noBranch|)) +((-3459 (($ $ $) 14) (($ (-656 $)) 21)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 46)) (-3495 (($ $ $) NIL) (($ (-656 $)) 22))) +(((-463 |#1|) (-10 -8 (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -3459 (|#1| (-656 |#1|))) (-15 -3459 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-656 |#1|))) (-15 -3495 (|#1| |#1| |#1|))) (-464)) (T -463)) +NIL +(-10 -8 (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -3459 (|#1| (-656 |#1|))) (-15 -3459 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-656 |#1|))) (-15 -3495 (|#1| |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-3463 (((-3 $ "failed") $ $) 48)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-464) (-141)) (T -464)) -((-3149 (*1 *1 *1 *1) (-4 *1 (-464))) (-3149 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3117 (*1 *1 *1 *1) (-4 *1 (-464))) (-3117 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3142 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-464))))) -(-13 (-568) (-10 -8 (-15 -3149 ($ $ $)) (-15 -3149 ($ (-656 $))) (-15 -3117 ($ $ $)) (-15 -3117 ($ (-656 $))) (-15 -3142 ((-1192 $) (-1192 $) (-1192 $))))) +((-3495 (*1 *1 *1 *1) (-4 *1 (-464))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-3459 (*1 *1 *1 *1) (-4 *1 (-464))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) (-2183 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-464))))) +(-13 (-568) (-10 -8 (-15 -3495 ($ $ $)) (-15 -3495 ($ (-656 $))) (-15 -3459 ($ $ $)) (-15 -3459 ($ (-656 $))) (-15 -2183 ((-1191 $) (-1191 $) (-1191 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3500 (((-3 $ "failed")) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3925 (((-1287 (-701 (-419 (-969 |#1|)))) (-1287 $)) NIL) (((-1287 (-701 (-419 (-969 |#1|))))) NIL)) (-3286 (((-1287 $)) NIL)) (-3656 (($) NIL T CONST)) (-3063 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL)) (-4163 (((-3 $ "failed")) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-3016 (((-701 (-419 (-969 |#1|))) (-1287 $)) NIL) (((-701 (-419 (-969 |#1|)))) NIL)) (-2379 (((-419 (-969 |#1|)) $) NIL)) (-4114 (((-701 (-419 (-969 |#1|))) $ (-1287 $)) NIL) (((-701 (-419 (-969 |#1|))) $) NIL)) (-3046 (((-3 $ "failed") $) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-4238 (((-1192 (-969 (-419 (-969 |#1|))))) NIL (|has| (-419 (-969 |#1|)) (-374))) (((-1192 (-419 (-969 |#1|)))) 90 (|has| |#1| (-568)))) (-3952 (($ $ (-938)) NIL)) (-4045 (((-419 (-969 |#1|)) $) NIL)) (-4378 (((-1192 (-419 (-969 |#1|))) $) 88 (|has| (-419 (-969 |#1|)) (-568)))) (-2548 (((-419 (-969 |#1|)) (-1287 $)) NIL) (((-419 (-969 |#1|))) NIL)) (-3145 (((-1192 (-419 (-969 |#1|))) $) NIL)) (-4429 (((-112)) NIL)) (-3006 (($ (-1287 (-419 (-969 |#1|))) (-1287 $)) 114) (($ (-1287 (-419 (-969 |#1|)))) NIL)) (-3179 (((-3 $ "failed") $) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-4049 (((-938)) NIL)) (-3751 (((-112)) NIL)) (-4370 (($ $ (-938)) NIL)) (-3440 (((-112)) NIL)) (-3903 (((-112)) NIL)) (-2866 (((-112)) NIL)) (-2416 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL)) (-3335 (((-3 $ "failed")) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-2472 (((-701 (-419 (-969 |#1|))) (-1287 $)) NIL) (((-701 (-419 (-969 |#1|)))) NIL)) (-3653 (((-419 (-969 |#1|)) $) NIL)) (-1424 (((-701 (-419 (-969 |#1|))) $ (-1287 $)) NIL) (((-701 (-419 (-969 |#1|))) $) NIL)) (-1714 (((-3 $ "failed") $) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-3517 (((-1192 (-969 (-419 (-969 |#1|))))) NIL (|has| (-419 (-969 |#1|)) (-374))) (((-1192 (-419 (-969 |#1|)))) 89 (|has| |#1| (-568)))) (-2596 (($ $ (-938)) NIL)) (-1891 (((-419 (-969 |#1|)) $) NIL)) (-3691 (((-1192 (-419 (-969 |#1|))) $) 85 (|has| (-419 (-969 |#1|)) (-568)))) (-4167 (((-419 (-969 |#1|)) (-1287 $)) NIL) (((-419 (-969 |#1|))) NIL)) (-1684 (((-1192 (-419 (-969 |#1|))) $) NIL)) (-1371 (((-112)) NIL)) (-3288 (((-1178) $) NIL)) (-2614 (((-112)) NIL)) (-3810 (((-112)) NIL)) (-2989 (((-112)) NIL)) (-3139 (((-1139) $) NIL)) (-1488 (((-419 (-969 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-3962 (((-419 (-969 |#1|)) $) 100 (|has| |#1| (-568)))) (-4235 (((-419 (-969 |#1|)) $) 104 (|has| |#1| (-568)))) (-2415 (((-1192 (-419 (-969 |#1|))) $) 94 (|has| |#1| (-568)))) (-1575 (((-419 (-969 |#1|))) 77 (|has| |#1| (-568)))) (-2423 (((-419 (-969 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-3018 (((-419 (-969 |#1|)) $) 99 (|has| |#1| (-568)))) (-3702 (((-419 (-969 |#1|)) $) 103 (|has| |#1| (-568)))) (-4121 (((-1192 (-419 (-969 |#1|))) $) 93 (|has| |#1| (-568)))) (-3960 (((-419 (-969 |#1|))) 73 (|has| |#1| (-568)))) (-3368 (($) 110) (($ (-1196)) 118) (($ (-1287 (-1196))) 117) (($ (-1287 $)) 105) (($ (-1196) (-1287 $)) 116) (($ (-1287 (-1196)) (-1287 $)) 115)) (-4207 (((-112)) NIL)) (-4367 (((-419 (-969 |#1|)) $ (-576)) NIL)) (-3287 (((-1287 (-419 (-969 |#1|))) $ (-1287 $)) 107) (((-701 (-419 (-969 |#1|))) (-1287 $) (-1287 $)) NIL) (((-1287 (-419 (-969 |#1|))) $) 43) (((-701 (-419 (-969 |#1|))) (-1287 $)) NIL)) (-1505 (((-1287 (-419 (-969 |#1|))) $) NIL) (($ (-1287 (-419 (-969 |#1|)))) 40)) (-2180 (((-656 (-969 (-419 (-969 |#1|)))) (-1287 $)) NIL) (((-656 (-969 (-419 (-969 |#1|))))) NIL) (((-656 (-969 |#1|)) (-1287 $)) 108 (|has| |#1| (-568))) (((-656 (-969 |#1|))) 109 (|has| |#1| (-568)))) (-1361 (($ $ $) NIL)) (-2261 (((-112)) NIL)) (-4092 (((-874) $) NIL) (($ (-1287 (-419 (-969 |#1|)))) NIL)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) 65)) (-3558 (((-656 (-1287 (-419 (-969 |#1|))))) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-3911 (($ $ $ $) NIL)) (-2723 (((-112)) NIL)) (-2690 (($ (-701 (-419 (-969 |#1|))) $) NIL)) (-3771 (($ $ $) NIL)) (-4393 (((-112)) NIL)) (-4340 (((-112)) NIL)) (-1450 (((-112)) NIL)) (-4300 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) 106)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-969 |#1|))) NIL) (($ (-419 (-969 |#1|)) $) NIL) (($ (-1161 |#2| (-419 (-969 |#1|))) $) NIL))) -(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-969 |#1|))) (-660 (-1161 |#2| (-419 (-969 |#1|)))) (-10 -8 (-15 -4092 ($ (-1287 (-419 (-969 |#1|))))) (-15 -2416 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed"))) (-15 -3063 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed"))) (-15 -3368 ($)) (-15 -3368 ($ (-1196))) (-15 -3368 ($ (-1287 (-1196)))) (-15 -3368 ($ (-1287 $))) (-15 -3368 ($ (-1196) (-1287 $))) (-15 -3368 ($ (-1287 (-1196)) (-1287 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3517 ((-1192 (-419 (-969 |#1|))))) (-15 -4121 ((-1192 (-419 (-969 |#1|))) $)) (-15 -3018 ((-419 (-969 |#1|)) $)) (-15 -3702 ((-419 (-969 |#1|)) $)) (-15 -4238 ((-1192 (-419 (-969 |#1|))))) (-15 -2415 ((-1192 (-419 (-969 |#1|))) $)) (-15 -3962 ((-419 (-969 |#1|)) $)) (-15 -4235 ((-419 (-969 |#1|)) $)) (-15 -2423 ((-419 (-969 |#1|)) $ $)) (-15 -3960 ((-419 (-969 |#1|)))) (-15 -1488 ((-419 (-969 |#1|)) $ $)) (-15 -1575 ((-419 (-969 |#1|)))) (-15 -2180 ((-656 (-969 |#1|)) (-1287 $))) (-15 -2180 ((-656 (-969 |#1|))))) |%noBranch|))) (-174) (-938) (-656 (-1196)) (-1287 (-701 |#1|))) (T -465)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 *3)))) (-4 *3 (-174)) (-14 *6 (-1287 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))))) (-2416 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -1999 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3063 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -1999 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3368 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-938)) (-14 *4 (-656 (-1196))) (-14 *5 (-1287 (-701 *2))))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 *2)) (-14 *6 (-1287 (-701 *3))))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-1287 (-1196))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-1287 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3368 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) (-14 *6 (-656 *2)) (-14 *7 (-1287 (-701 *4))))) (-3368 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 (-1196))) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4))))) (-3517 (*1 *2) (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3018 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-4238 (*1 *2) (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-4235 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2423 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-3960 (*1 *2) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1488 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-1575 (*1 *2) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-969 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-938)) (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4))))) (-2180 (*1 *2) (-12 (-5 *2 (-656 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(-13 (-429 (-419 (-969 |#1|))) (-660 (-1161 |#2| (-419 (-969 |#1|)))) (-10 -8 (-15 -4092 ($ (-1287 (-419 (-969 |#1|))))) (-15 -2416 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed"))) (-15 -3063 ((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed"))) (-15 -3368 ($)) (-15 -3368 ($ (-1196))) (-15 -3368 ($ (-1287 (-1196)))) (-15 -3368 ($ (-1287 $))) (-15 -3368 ($ (-1196) (-1287 $))) (-15 -3368 ($ (-1287 (-1196)) (-1287 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -3517 ((-1192 (-419 (-969 |#1|))))) (-15 -4121 ((-1192 (-419 (-969 |#1|))) $)) (-15 -3018 ((-419 (-969 |#1|)) $)) (-15 -3702 ((-419 (-969 |#1|)) $)) (-15 -4238 ((-1192 (-419 (-969 |#1|))))) (-15 -2415 ((-1192 (-419 (-969 |#1|))) $)) (-15 -3962 ((-419 (-969 |#1|)) $)) (-15 -4235 ((-419 (-969 |#1|)) $)) (-15 -2423 ((-419 (-969 |#1|)) $ $)) (-15 -3960 ((-419 (-969 |#1|)))) (-15 -1488 ((-419 (-969 |#1|)) $ $)) (-15 -1575 ((-419 (-969 |#1|)))) (-15 -2180 ((-656 (-969 |#1|)) (-1287 $))) (-15 -2180 ((-656 (-969 |#1|))))) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 18)) (-1541 (((-656 (-876 |#1|)) $) 87)) (-1364 (((-1192 $) $ (-876 |#1|)) 52) (((-1192 |#2|) $) 138)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2573 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1736 (((-783) $) 27) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1587 (($ $) NIL (|has| |#2| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#2| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-2378 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2996 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-1338 (($ $ (-656 (-576))) 93)) (-1717 (($ $) 80)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-926)))) (-2291 (($ $ |#2| |#3| $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) 65)) (-1529 (($ (-1192 |#2|) (-876 |#1|)) 143) (($ (-1192 $) (-876 |#1|)) 58)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) 68)) (-1518 (($ |#2| |#3|) 35) (($ $ (-876 |#1|) (-783)) 37) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-876 |#1|)) NIL)) (-1915 ((|#3| $) NIL) (((-783) $ (-876 |#1|)) 56) (((-656 (-783)) $ (-656 (-876 |#1|))) 63)) (-3968 (($ (-1 |#3| |#3|) $) NIL)) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-3403 (((-3 (-876 |#1|) "failed") $) 45)) (-1681 (($ $) NIL)) (-1692 ((|#2| $) 47)) (-3117 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3288 (((-1178) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -3175 (-783))) "failed") $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) 46)) (-1670 ((|#2| $) 136)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#2| (-926)))) (-2022 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) 100) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) 106) (($ $ (-876 |#1|) $) 98) (($ $ (-656 (-876 |#1|)) (-656 $)) 124)) (-1955 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3614 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) 59)) (-2369 ((|#3| $) 79) (((-783) $ (-876 |#1|)) 42) (((-656 (-783)) $ (-656 (-876 |#1|))) 62)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3714 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-4092 (((-874) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-876 |#1|)) 39) (($ (-419 (-576))) NIL (-3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3076 (((-656 |#2|) $) NIL)) (-2430 ((|#2| $ |#3|) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4300 (($) 22 T CONST)) (-4310 (($) 31 T CONST)) (-4286 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 131)) (** (($ $ (-938)) NIL) (($ $ (-783)) 129)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) -(((-466 |#1| |#2| |#3|) (-13 (-966 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -1338 ($ $ (-656 (-576)))))) (-656 (-1196)) (-1068) (-243 (-2048 |#1|) (-783))) (T -466)) -((-1338 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1196))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-243 (-2048 *3) (-783)))))) -(-13 (-966 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -1338 ($ $ (-656 (-576)))))) -((-1764 (((-112) |#1| (-656 |#2|)) 91)) (-2830 (((-3 (-1287 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-4172 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1287 (-656 |#2|))) 102)) (-1597 ((|#2| |#2| |#1|) 35)) (-3518 (((-783) |#2| (-656 |#2|)) 26))) -(((-467 |#1| |#2|) (-10 -7 (-15 -1597 (|#2| |#2| |#1|)) (-15 -3518 ((-783) |#2| (-656 |#2|))) (-15 -2830 ((-3 (-1287 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -4172 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1287 (-656 |#2|)))) (-15 -1764 ((-112) |#1| (-656 |#2|)))) (-317) (-1263 |#1|)) (T -467)) -((-1764 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1263 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-4172 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1287 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1263 *4)))) (-2830 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1263 *4)) (-5 *2 (-1287 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-3518 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-1597 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1263 *3))))) -(-10 -7 (-15 -1597 (|#2| |#2| |#1|)) (-15 -3518 ((-783) |#2| (-656 |#2|))) (-15 -2830 ((-3 (-1287 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -4172 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1287 (-656 |#2|)))) (-15 -1764 ((-112) |#1| (-656 |#2|)))) -((-1392 (((-430 |#5|) |#5|) 24))) -(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1392 ((-430 |#5|) |#5|))) (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196))))) (-805) (-568) (-568) (-966 |#4| |#2| |#1|)) (T -468)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-966 *7 *5 *4))))) -(-10 -7 (-15 -1392 ((-430 |#5|) |#5|))) -((-3008 ((|#3|) 38)) (-3142 (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 34))) -(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3142 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3008 (|#3|))) (-805) (-862) (-926) (-966 |#3| |#1| |#2|)) (T -469)) -((-3008 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-966 *2 *3 *4)))) (-3142 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-926)) (-5 *1 (-469 *3 *4 *5 *6))))) -(-10 -7 (-15 -3142 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3008 (|#3|))) -((-1392 (((-430 (-1192 |#1|)) (-1192 |#1|)) 43))) -(((-470 |#1|) (-10 -7 (-15 -1392 ((-430 (-1192 |#1|)) (-1192 |#1|)))) (-317)) (T -470)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1192 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1192 *4))))) -(-10 -7 (-15 -1392 ((-430 (-1192 |#1|)) (-1192 |#1|)))) -((-1596 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-783))) 43) (((-52) |#2| (-1196) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-3451 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576))) 85) (((-52) |#2| (-1196) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-1621 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))) 72)) (-1608 (((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576))) 50))) -(((-471 |#1| |#2|) (-10 -7 (-15 -1596 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1596 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -1596 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-783)))) (-15 -1596 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-783)))) (-15 -1608 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -1608 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -1621 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -1621 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -3451 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3451 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -3451 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -3451 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -3451 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -3451 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -471)) -((-3451 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-3451 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-3451 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-3451 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) (-4 *7 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-3451 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-1621 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-1621 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-1608 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-1608 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) (-4 *7 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-1596 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-783))) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-1596 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-783))) (-4 *7 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-1596 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-1596 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) -(-10 -7 (-15 -1596 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -1596 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -1596 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-783)))) (-15 -1596 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-783)))) (-15 -1608 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -1608 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -1621 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -1621 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -3451 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -3451 ((-52) |#2| (-1196) (-304 |#2|))) (-15 -3451 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1254 (-576)))) (-15 -3451 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-576)))) (-15 -3451 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576)))) (-15 -3451 ((-52) |#2| (-1196) (-304 |#2|) (-1254 (-419 (-576))) (-419 (-576))))) -((-1597 ((|#2| |#2| |#1|) 15)) (-1561 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-938)) 82)) (-2823 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-938)) 72))) -(((-472 |#1| |#2|) (-10 -7 (-15 -2823 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-938))) (-15 -1561 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-938))) (-15 -1597 (|#2| |#2| |#1|))) (-317) (-1263 |#1|)) (T -472)) -((-1597 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1263 *3)))) (-1561 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-938)) (-4 *3 (-1263 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-2823 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-938)) (-4 *5 (-317)) (-4 *3 (-1263 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) -(-10 -7 (-15 -2823 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-938))) (-15 -1561 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-938))) (-15 -1597 (|#2| |#2| |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 28)) (-3001 (($ |#3|) 25)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-1717 (($ $) 32)) (-3663 (($ |#2| |#4| $) 33)) (-1518 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-1681 (((-725 |#3| |#4| |#5|) $) 15)) (-3931 ((|#3| $) 19)) (-1350 ((|#4| $) 17)) (-1692 ((|#2| $) 29)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-3696 (($ |#2| |#3| |#4|) 26)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 36 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 34)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -1692 (|#2| $)) (-15 -1681 ((-725 |#3| |#4| |#5|) $)) (-15 -1350 (|#4| $)) (-15 -3931 (|#3| $)) (-15 -1717 ($ $)) (-15 -1518 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -3001 ($ |#3|)) (-15 -3696 ($ |#2| |#3| |#4|)) (-15 -3663 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1196)) (-174) (-862) (-243 (-2048 |#1|) (-783)) (-1 (-112) (-2 (|:| -2550 |#3|) (|:| -3175 |#4|)) (-2 (|:| -2550 |#3|) (|:| -3175 |#4|))) (-966 |#2| |#4| (-876 |#1|))) (T -473)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *6 (-243 (-2048 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *6)) (-2 (|:| -2550 *5) (|:| -3175 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) (-4 *2 (-966 *4 *6 (-876 *3))))) (-1692 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *5 (-243 (-2048 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2550 *4) (|:| -3175 *5)) (-2 (|:| -2550 *4) (|:| -3175 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-966 *2 *5 (-876 *3))))) (-1681 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *6 (-243 (-2048 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *6)) (-2 (|:| -2550 *5) (|:| -3175 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862)) (-4 *8 (-966 *4 *6 (-876 *3))))) (-1350 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *2)) (-2 (|:| -2550 *5) (|:| -3175 *2)))) (-4 *2 (-243 (-2048 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-862)) (-4 *7 (-966 *4 *2 (-876 *3))))) (-3931 (*1 *2 *1) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *5 (-243 (-2048 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2550 *2) (|:| -3175 *5)) (-2 (|:| -2550 *2) (|:| -3175 *5)))) (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-966 *4 *5 (-876 *3))))) (-1717 (*1 *1 *1) (-12 (-14 *2 (-656 (-1196))) (-4 *3 (-174)) (-4 *5 (-243 (-2048 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2550 *4) (|:| -3175 *5)) (-2 (|:| -2550 *4) (|:| -3175 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-966 *3 *5 (-876 *2))))) (-1518 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862)) (-4 *6 (-243 (-2048 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *6)) (-2 (|:| -2550 *5) (|:| -3175 *6)))) (-14 *4 (-656 (-1196))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-966 *2 *6 (-876 *4))))) (-3001 (*1 *1 *2) (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) (-4 *5 (-243 (-2048 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2550 *2) (|:| -3175 *5)) (-2 (|:| -2550 *2) (|:| -3175 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) (-4 *7 (-966 *4 *5 (-876 *3))))) (-3696 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1196))) (-4 *2 (-174)) (-4 *4 (-243 (-2048 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2550 *3) (|:| -3175 *4)) (-2 (|:| -2550 *3) (|:| -3175 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) (-4 *7 (-966 *2 *4 (-876 *5))))) (-3663 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1196))) (-4 *2 (-174)) (-4 *3 (-243 (-2048 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *3)) (-2 (|:| -2550 *5) (|:| -3175 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) (-4 *7 (-966 *2 *3 (-876 *4)))))) -(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -1692 (|#2| $)) (-15 -1681 ((-725 |#3| |#4| |#5|) $)) (-15 -1350 (|#4| $)) (-15 -3931 (|#3| $)) (-15 -1717 ($ $)) (-15 -1518 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -3001 ($ |#3|)) (-15 -3696 ($ |#2| |#3| |#4|)) (-15 -3663 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-1852 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1852 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-862) (-568) (-966 |#3| |#1| |#2|) (-13 (-1057 (-419 (-576))) (-374) (-10 -8 (-15 -4092 ($ |#4|)) (-15 -3894 (|#4| $)) (-15 -3905 (|#4| $))))) (T -474)) -((-1852 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-966 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1057 (-419 (-576))) (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $)))))))) -(-10 -7 (-15 -1852 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2034 (((-112) $ $) NIL)) (-1541 (((-656 |#3|) $) 41)) (-3522 (((-112) $) NIL)) (-2932 (((-112) $) NIL (|has| |#1| (-568)))) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3457 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3425 (((-112) $) NIL (|has| |#1| (-568)))) (-2623 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3347 (((-112) $) NIL (|has| |#1| (-568)))) (-4135 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) 49)) (-2378 (($ (-656 |#4|)) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-2892 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462)))) (-4260 (((-656 |#4|) $) 18 (|has| $ (-6 -4462)))) (-2565 ((|#3| $) 47)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#4|) $) 14 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3874 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 21)) (-2964 (((-656 |#3|) $) NIL)) (-2459 (((-112) |#3| $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3139 (((-1139) $) NIL)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3292 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 39)) (-2643 (($) 17)) (-3150 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) 16)) (-1505 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-4103 (($ (-656 |#4|)) 13)) (-1606 (($ $ |#3|) NIL)) (-2333 (($ $ |#3|) NIL)) (-2875 (($ $ |#3|) NIL)) (-4092 (((-874) $) 38) (((-656 |#4|) $) 50)) (-1531 (((-112) $ $) NIL)) (-2190 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 30)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-475 |#1| |#2| |#3| |#4|) (-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1505 ($ (-656 |#4|))) (-6 -4462) (-6 -4463))) (-1068) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -475)) -((-1505 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6))))) -(-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1505 ($ (-656 |#4|))) (-6 -4462) (-6 -4463))) -((-4300 (($) 11)) (-4310 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -4310 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4300 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) -NIL -(-10 -8 (-15 -4310 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4300 (|#1|))) -((-2034 (((-112) $ $) 7)) (-2974 (((-3 |#1| "failed") $) 27)) (-2378 ((|#1| $) 28)) (-3390 (($ $ $) 24)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2369 ((|#2| $) 20)) (-4092 (((-874) $) 12) (($ |#1|) 26)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 25 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 16) (($ $ $) 14)) (-4007 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3341 (((-3 $ "failed")) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-2697 (((-1286 (-701 (-419 (-969 |#1|)))) (-1286 $)) NIL) (((-1286 (-701 (-419 (-969 |#1|))))) NIL)) (-1686 (((-1286 $)) NIL)) (-3767 (($) NIL T CONST)) (-4130 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL)) (-4122 (((-3 $ "failed")) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-4252 (((-701 (-419 (-969 |#1|))) (-1286 $)) NIL) (((-701 (-419 (-969 |#1|)))) NIL)) (-2828 (((-419 (-969 |#1|)) $) NIL)) (-1783 (((-701 (-419 (-969 |#1|))) $ (-1286 $)) NIL) (((-701 (-419 (-969 |#1|))) $) NIL)) (-2991 (((-3 $ "failed") $) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-2125 (((-1191 (-969 (-419 (-969 |#1|))))) NIL (|has| (-419 (-969 |#1|)) (-374))) (((-1191 (-419 (-969 |#1|)))) 90 (|has| |#1| (-568)))) (-4242 (($ $ (-938)) NIL)) (-3207 (((-419 (-969 |#1|)) $) NIL)) (-3812 (((-1191 (-419 (-969 |#1|))) $) 88 (|has| (-419 (-969 |#1|)) (-568)))) (-2639 (((-419 (-969 |#1|)) (-1286 $)) NIL) (((-419 (-969 |#1|))) NIL)) (-2355 (((-1191 (-419 (-969 |#1|))) $) NIL)) (-3411 (((-112)) NIL)) (-2612 (($ (-1286 (-419 (-969 |#1|))) (-1286 $)) 114) (($ (-1286 (-419 (-969 |#1|)))) NIL)) (-1551 (((-3 $ "failed") $) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-3606 (((-938)) NIL)) (-2995 (((-112)) NIL)) (-4300 (($ $ (-938)) NIL)) (-4334 (((-112)) NIL)) (-1364 (((-112)) NIL)) (-2272 (((-112)) NIL)) (-4230 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL)) (-2694 (((-3 $ "failed")) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-1950 (((-701 (-419 (-969 |#1|))) (-1286 $)) NIL) (((-701 (-419 (-969 |#1|)))) NIL)) (-3544 (((-419 (-969 |#1|)) $) NIL)) (-2269 (((-701 (-419 (-969 |#1|))) $ (-1286 $)) NIL) (((-701 (-419 (-969 |#1|))) $) NIL)) (-1410 (((-3 $ "failed") $) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-2571 (((-1191 (-969 (-419 (-969 |#1|))))) NIL (|has| (-419 (-969 |#1|)) (-374))) (((-1191 (-419 (-969 |#1|)))) 89 (|has| |#1| (-568)))) (-1428 (($ $ (-938)) NIL)) (-3804 (((-419 (-969 |#1|)) $) NIL)) (-2904 (((-1191 (-419 (-969 |#1|))) $) 85 (|has| (-419 (-969 |#1|)) (-568)))) (-1394 (((-419 (-969 |#1|)) (-1286 $)) NIL) (((-419 (-969 |#1|))) NIL)) (-3764 (((-1191 (-419 (-969 |#1|))) $) NIL)) (-2692 (((-112)) NIL)) (-1927 (((-1177) $) NIL)) (-1610 (((-112)) NIL)) (-3077 (((-112)) NIL)) (-3276 (((-112)) NIL)) (-1445 (((-1139) $) NIL)) (-1664 (((-419 (-969 |#1|)) $ $) 76 (|has| |#1| (-568)))) (-2844 (((-419 (-969 |#1|)) $) 100 (|has| |#1| (-568)))) (-3009 (((-419 (-969 |#1|)) $) 104 (|has| |#1| (-568)))) (-4134 (((-1191 (-419 (-969 |#1|))) $) 94 (|has| |#1| (-568)))) (-3023 (((-419 (-969 |#1|))) 77 (|has| |#1| (-568)))) (-1617 (((-419 (-969 |#1|)) $ $) 69 (|has| |#1| (-568)))) (-3296 (((-419 (-969 |#1|)) $) 99 (|has| |#1| (-568)))) (-1765 (((-419 (-969 |#1|)) $) 103 (|has| |#1| (-568)))) (-4352 (((-1191 (-419 (-969 |#1|))) $) 93 (|has| |#1| (-568)))) (-3810 (((-419 (-969 |#1|))) 73 (|has| |#1| (-568)))) (-1554 (($) 110) (($ (-1195)) 118) (($ (-1286 (-1195))) 117) (($ (-1286 $)) 105) (($ (-1195) (-1286 $)) 116) (($ (-1286 (-1195)) (-1286 $)) 115)) (-2775 (((-112)) NIL)) (-2871 (((-419 (-969 |#1|)) $ (-576)) NIL)) (-1809 (((-1286 (-419 (-969 |#1|))) $ (-1286 $)) 107) (((-701 (-419 (-969 |#1|))) (-1286 $) (-1286 $)) NIL) (((-1286 (-419 (-969 |#1|))) $) 43) (((-701 (-419 (-969 |#1|))) (-1286 $)) NIL)) (-4076 (((-1286 (-419 (-969 |#1|))) $) NIL) (($ (-1286 (-419 (-969 |#1|)))) 40)) (-3434 (((-656 (-969 (-419 (-969 |#1|)))) (-1286 $)) NIL) (((-656 (-969 (-419 (-969 |#1|))))) NIL) (((-656 (-969 |#1|)) (-1286 $)) 108 (|has| |#1| (-568))) (((-656 (-969 |#1|))) 109 (|has| |#1| (-568)))) (-4081 (($ $ $) NIL)) (-2012 (((-112)) NIL)) (-3563 (((-874) $) NIL) (($ (-1286 (-419 (-969 |#1|)))) NIL)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) 65)) (-2253 (((-656 (-1286 (-419 (-969 |#1|))))) NIL (|has| (-419 (-969 |#1|)) (-568)))) (-1938 (($ $ $ $) NIL)) (-1524 (((-112)) NIL)) (-3491 (($ (-701 (-419 (-969 |#1|))) $) NIL)) (-2303 (($ $ $) NIL)) (-2647 (((-112)) NIL)) (-2256 (((-112)) NIL)) (-4016 (((-112)) NIL)) (-2800 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) 106)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 61) (($ $ (-419 (-969 |#1|))) NIL) (($ (-419 (-969 |#1|)) $) NIL) (($ (-1161 |#2| (-419 (-969 |#1|))) $) NIL))) +(((-465 |#1| |#2| |#3| |#4|) (-13 (-429 (-419 (-969 |#1|))) (-660 (-1161 |#2| (-419 (-969 |#1|)))) (-10 -8 (-15 -3563 ($ (-1286 (-419 (-969 |#1|))))) (-15 -4230 ((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed"))) (-15 -4130 ((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed"))) (-15 -1554 ($)) (-15 -1554 ($ (-1195))) (-15 -1554 ($ (-1286 (-1195)))) (-15 -1554 ($ (-1286 $))) (-15 -1554 ($ (-1195) (-1286 $))) (-15 -1554 ($ (-1286 (-1195)) (-1286 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -2571 ((-1191 (-419 (-969 |#1|))))) (-15 -4352 ((-1191 (-419 (-969 |#1|))) $)) (-15 -3296 ((-419 (-969 |#1|)) $)) (-15 -1765 ((-419 (-969 |#1|)) $)) (-15 -2125 ((-1191 (-419 (-969 |#1|))))) (-15 -4134 ((-1191 (-419 (-969 |#1|))) $)) (-15 -2844 ((-419 (-969 |#1|)) $)) (-15 -3009 ((-419 (-969 |#1|)) $)) (-15 -1617 ((-419 (-969 |#1|)) $ $)) (-15 -3810 ((-419 (-969 |#1|)))) (-15 -1664 ((-419 (-969 |#1|)) $ $)) (-15 -3023 ((-419 (-969 |#1|)))) (-15 -3434 ((-656 (-969 |#1|)) (-1286 $))) (-15 -3434 ((-656 (-969 |#1|))))) |%noBranch|))) (-174) (-938) (-656 (-1195)) (-1286 (-701 |#1|))) (T -465)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-969 *3)))) (-4 *3 (-174)) (-14 *6 (-1286 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))))) (-4230 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -3713 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-4130 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -3713 (-656 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1554 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-938)) (-14 *4 (-656 (-1195))) (-14 *5 (-1286 (-701 *2))))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 *2)) (-14 *6 (-1286 (-701 *3))))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1286 (-1195))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1554 (*1 *1 *2) (-12 (-5 *2 (-1286 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1554 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) (-14 *6 (-656 *2)) (-14 *7 (-1286 (-701 *4))))) (-1554 (*1 *1 *2 *3) (-12 (-5 *2 (-1286 (-1195))) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4))))) (-2571 (*1 *2) (-12 (-5 *2 (-1191 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1191 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-2125 (*1 *2) (-12 (-5 *2 (-1191 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-1191 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-2844 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3009 (*1 *2 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1617 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3810 (*1 *2) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-1664 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3023 (*1 *2) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) (-3434 (*1 *2 *3) (-12 (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-969 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) (-14 *5 (-938)) (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4))))) (-3434 (*1 *2) (-12 (-5 *2 (-656 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(-13 (-429 (-419 (-969 |#1|))) (-660 (-1161 |#2| (-419 (-969 |#1|)))) (-10 -8 (-15 -3563 ($ (-1286 (-419 (-969 |#1|))))) (-15 -4230 ((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed"))) (-15 -4130 ((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed"))) (-15 -1554 ($)) (-15 -1554 ($ (-1195))) (-15 -1554 ($ (-1286 (-1195)))) (-15 -1554 ($ (-1286 $))) (-15 -1554 ($ (-1195) (-1286 $))) (-15 -1554 ($ (-1286 (-1195)) (-1286 $))) (IF (|has| |#1| (-568)) (PROGN (-15 -2571 ((-1191 (-419 (-969 |#1|))))) (-15 -4352 ((-1191 (-419 (-969 |#1|))) $)) (-15 -3296 ((-419 (-969 |#1|)) $)) (-15 -1765 ((-419 (-969 |#1|)) $)) (-15 -2125 ((-1191 (-419 (-969 |#1|))))) (-15 -4134 ((-1191 (-419 (-969 |#1|))) $)) (-15 -2844 ((-419 (-969 |#1|)) $)) (-15 -3009 ((-419 (-969 |#1|)) $)) (-15 -1617 ((-419 (-969 |#1|)) $ $)) (-15 -3810 ((-419 (-969 |#1|)))) (-15 -1664 ((-419 (-969 |#1|)) $ $)) (-15 -3023 ((-419 (-969 |#1|)))) (-15 -3434 ((-656 (-969 |#1|)) (-1286 $))) (-15 -3434 ((-656 (-969 |#1|))))) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 18)) (-1991 (((-656 (-876 |#1|)) $) 87)) (-3999 (((-1191 $) $ (-876 |#1|)) 52) (((-1191 |#2|) $) 138)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4412 (($ $) NIL (|has| |#2| (-568)))) (-4176 (((-112) $) NIL (|has| |#2| (-568)))) (-2846 (((-783) $) 27) (((-783) $ (-656 (-876 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1760 (($ $) NIL (|has| |#2| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) 50) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4056 ((|#2| $) 48) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2861 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3102 (($ $ (-656 (-576))) 93)) (-2166 (($ $) 80)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#2| (-926)))) (-1660 (($ $ |#2| |#3| $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) 65)) (-1980 (($ (-1191 |#2|) (-876 |#1|)) 143) (($ (-1191 $) (-876 |#1|)) 58)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) 68)) (-1970 (($ |#2| |#3|) 35) (($ $ (-876 |#1|) (-783)) 37) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-876 |#1|)) NIL)) (-3403 ((|#3| $) NIL) (((-783) $ (-876 |#1|)) 56) (((-656 (-783)) $ (-656 (-876 |#1|))) 63)) (-2133 (($ (-1 |#3| |#3|) $) NIL)) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-4209 (((-3 (-876 |#1|) "failed") $) 45)) (-2129 (($ $) NIL)) (-2142 ((|#2| $) 47)) (-3459 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1927 (((-1177) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -4274 (-783))) "failed") $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) 46)) (-2116 ((|#2| $) 136)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) 149 (|has| |#2| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#2| (-926)))) (-3463 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) 100) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) 106) (($ $ (-876 |#1|) $) 98) (($ $ (-656 (-876 |#1|)) (-656 $)) 124)) (-1960 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2735 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) 59)) (-1433 ((|#3| $) 79) (((-783) $ (-876 |#1|)) 42) (((-656 (-783)) $ (-656 (-876 |#1|))) 62)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3648 ((|#2| $) 145 (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-3563 (((-874) $) 173) (($ (-576)) NIL) (($ |#2|) 99) (($ (-876 |#1|)) 39) (($ (-419 (-576))) NIL (-2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2927 (((-656 |#2|) $) NIL)) (-4333 ((|#2| $ |#3|) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2800 (($) 22 T CONST)) (-2810 (($) 31 T CONST)) (-2051 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) 76 (|has| |#2| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 131)) (** (($ $ (-938)) NIL) (($ $ (-783)) 129)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 36) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) 75) (($ $ |#2|) NIL))) +(((-466 |#1| |#2| |#3|) (-13 (-966 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -3102 ($ $ (-656 (-576)))))) (-656 (-1195)) (-1068) (-243 (-3485 |#1|) (-783))) (T -466)) +((-3102 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1195))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-243 (-3485 *3) (-783)))))) +(-13 (-966 |#2| |#3| (-876 |#1|)) (-10 -8 (-15 -3102 ($ $ (-656 (-576)))))) +((-1448 (((-112) |#1| (-656 |#2|)) 91)) (-3823 (((-3 (-1286 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|)) 100)) (-3776 (((-3 (-656 |#2|) "failed") |#2| |#1| (-1286 (-656 |#2|))) 102)) (-2314 ((|#2| |#2| |#1|) 35)) (-2645 (((-783) |#2| (-656 |#2|)) 26))) +(((-467 |#1| |#2|) (-10 -7 (-15 -2314 (|#2| |#2| |#1|)) (-15 -2645 ((-783) |#2| (-656 |#2|))) (-15 -3823 ((-3 (-1286 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -3776 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1286 (-656 |#2|)))) (-15 -1448 ((-112) |#1| (-656 |#2|)))) (-317) (-1262 |#1|)) (T -467)) +((-1448 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-1262 *3)) (-4 *3 (-317)) (-5 *2 (-112)) (-5 *1 (-467 *3 *5)))) (-3776 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1286 (-656 *3))) (-4 *4 (-317)) (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1262 *4)))) (-3823 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1262 *4)) (-5 *2 (-1286 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-317)) (-5 *2 (-783)) (-5 *1 (-467 *5 *3)))) (-2314 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1262 *3))))) +(-10 -7 (-15 -2314 (|#2| |#2| |#1|)) (-15 -2645 ((-783) |#2| (-656 |#2|))) (-15 -3823 ((-3 (-1286 (-656 |#2|)) "failed") (-783) |#1| (-656 |#2|))) (-15 -3776 ((-3 (-656 |#2|) "failed") |#2| |#1| (-1286 (-656 |#2|)))) (-15 -1448 ((-112) |#1| (-656 |#2|)))) +((-1839 (((-430 |#5|) |#5|) 24))) +(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1839 ((-430 |#5|) |#5|))) (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195))))) (-805) (-568) (-568) (-966 |#4| |#2| |#1|)) (T -468)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195)))))) (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) (-4 *3 (-966 *7 *5 *4))))) +(-10 -7 (-15 -1839 ((-430 |#5|) |#5|))) +((-1596 ((|#3|) 38)) (-2183 (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 34))) +(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2183 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -1596 (|#3|))) (-805) (-862) (-926) (-966 |#3| |#1| |#2|)) (T -469)) +((-1596 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-966 *2 *3 *4)))) (-2183 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-926)) (-5 *1 (-469 *3 *4 *5 *6))))) +(-10 -7 (-15 -2183 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -1596 (|#3|))) +((-1839 (((-430 (-1191 |#1|)) (-1191 |#1|)) 43))) +(((-470 |#1|) (-10 -7 (-15 -1839 ((-430 (-1191 |#1|)) (-1191 |#1|)))) (-317)) (T -470)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1191 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1191 *4))))) +(-10 -7 (-15 -1839 ((-430 (-1191 |#1|)) (-1191 |#1|)))) +((-2052 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-783))) 44) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-783))) 43) (((-52) |#2| (-1195) (-304 |#2|)) 36) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 29)) (-2398 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 88) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 87) (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576))) 86) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576))) 85) (((-52) |#2| (-1195) (-304 |#2|)) 80) (((-52) (-1 |#2| (-576)) (-304 |#2|)) 79)) (-2074 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 74) (((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))) 72)) (-2065 (((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576))) 51) (((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576))) 50))) +(((-471 |#1| |#2|) (-10 -7 (-15 -2052 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2052 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -2052 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-783)))) (-15 -2052 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-783)))) (-15 -2065 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -2065 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -2074 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -2074 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -2398 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2398 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -2398 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -2398 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -2398 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -2398 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))))) (-13 (-568) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -471)) +((-2398 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-2398 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-2398 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2398 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2398 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) (-2074 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) (-2074 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) (-4 *8 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) (-2065 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2065 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2052 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-783))) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) (-2052 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-783))) (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) (-2052 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) (-4 *6 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6))))) +(-10 -7 (-15 -2052 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2052 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -2052 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-783)))) (-15 -2052 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-783)))) (-15 -2065 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -2065 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -2074 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -2074 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -2398 ((-52) (-1 |#2| (-576)) (-304 |#2|))) (-15 -2398 ((-52) |#2| (-1195) (-304 |#2|))) (-15 -2398 ((-52) (-1 |#2| (-576)) (-304 |#2|) (-1253 (-576)))) (-15 -2398 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-576)))) (-15 -2398 ((-52) (-1 |#2| (-419 (-576))) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576)))) (-15 -2398 ((-52) |#2| (-1195) (-304 |#2|) (-1253 (-419 (-576))) (-419 (-576))))) +((-2314 ((|#2| |#2| |#1|) 15)) (-3976 (((-656 |#2|) |#2| (-656 |#2|) |#1| (-938)) 82)) (-3377 (((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-938)) 72))) +(((-472 |#1| |#2|) (-10 -7 (-15 -3377 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-938))) (-15 -3976 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-938))) (-15 -2314 (|#2| |#2| |#1|))) (-317) (-1262 |#1|)) (T -472)) +((-2314 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1262 *3)))) (-3976 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-656 *3)) (-5 *5 (-938)) (-4 *3 (-1262 *4)) (-4 *4 (-317)) (-5 *1 (-472 *4 *3)))) (-3377 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-938)) (-4 *5 (-317)) (-4 *3 (-1262 *5)) (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) +(-10 -7 (-15 -3377 ((-2 (|:| |plist| (-656 |#2|)) (|:| |modulo| |#1|)) |#2| (-656 |#2|) |#1| (-938))) (-15 -3976 ((-656 |#2|) |#2| (-656 |#2|) |#1| (-938))) (-15 -2314 (|#2| |#2| |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 28)) (-2204 (($ |#3|) 25)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2166 (($ $) 32)) (-3227 (($ |#2| |#4| $) 33)) (-1970 (($ |#2| (-725 |#3| |#4| |#5|)) 24)) (-2129 (((-725 |#3| |#4| |#5|) $) 15)) (-3060 ((|#3| $) 19)) (-2137 ((|#4| $) 17)) (-2142 ((|#2| $) 29)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-2430 (($ |#2| |#3| |#4|) 26)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 36 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 34)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -2142 (|#2| $)) (-15 -2129 ((-725 |#3| |#4| |#5|) $)) (-15 -2137 (|#4| $)) (-15 -3060 (|#3| $)) (-15 -2166 ($ $)) (-15 -1970 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2204 ($ |#3|)) (-15 -2430 ($ |#2| |#3| |#4|)) (-15 -3227 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-656 (-1195)) (-174) (-862) (-243 (-3485 |#1|) (-783)) (-1 (-112) (-2 (|:| -3257 |#3|) (|:| -4274 |#4|)) (-2 (|:| -3257 |#3|) (|:| -4274 |#4|))) (-966 |#2| |#4| (-876 |#1|))) (T -473)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *6 (-243 (-3485 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *6)) (-2 (|:| -3257 *5) (|:| -4274 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) (-4 *2 (-966 *4 *6 (-876 *3))))) (-2142 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *5 (-243 (-3485 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3257 *4) (|:| -4274 *5)) (-2 (|:| -3257 *4) (|:| -4274 *5)))) (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-966 *2 *5 (-876 *3))))) (-2129 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *6 (-243 (-3485 *3) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *6)) (-2 (|:| -3257 *5) (|:| -4274 *6)))) (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-862)) (-4 *8 (-966 *4 *6 (-876 *3))))) (-2137 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-14 *6 (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *2)) (-2 (|:| -3257 *5) (|:| -4274 *2)))) (-4 *2 (-243 (-3485 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-862)) (-4 *7 (-966 *4 *2 (-876 *3))))) (-3060 (*1 *2 *1) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *5 (-243 (-3485 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3257 *2) (|:| -4274 *5)) (-2 (|:| -3257 *2) (|:| -4274 *5)))) (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-966 *4 *5 (-876 *3))))) (-2166 (*1 *1 *1) (-12 (-14 *2 (-656 (-1195))) (-4 *3 (-174)) (-4 *5 (-243 (-3485 *2) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3257 *4) (|:| -4274 *5)) (-2 (|:| -3257 *4) (|:| -4274 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) (-4 *7 (-966 *3 *5 (-876 *2))))) (-1970 (*1 *1 *2 *3) (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862)) (-4 *6 (-243 (-3485 *4) (-783))) (-14 *7 (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *6)) (-2 (|:| -3257 *5) (|:| -4274 *6)))) (-14 *4 (-656 (-1195))) (-4 *2 (-174)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-966 *2 *6 (-876 *4))))) (-2204 (*1 *1 *2) (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) (-4 *5 (-243 (-3485 *3) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3257 *2) (|:| -4274 *5)) (-2 (|:| -3257 *2) (|:| -4274 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) (-4 *7 (-966 *4 *5 (-876 *3))))) (-2430 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-656 (-1195))) (-4 *2 (-174)) (-4 *4 (-243 (-3485 *5) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3257 *3) (|:| -4274 *4)) (-2 (|:| -3257 *3) (|:| -4274 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) (-4 *7 (-966 *2 *4 (-876 *5))))) (-3227 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-656 (-1195))) (-4 *2 (-174)) (-4 *3 (-243 (-3485 *4) (-783))) (-14 *6 (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *3)) (-2 (|:| -3257 *5) (|:| -4274 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) (-4 *7 (-966 *2 *3 (-876 *4)))))) +(-13 (-729 |#6|) (-729 |#2|) (-10 -8 (-15 -2142 (|#2| $)) (-15 -2129 ((-725 |#3| |#4| |#5|) $)) (-15 -2137 (|#4| $)) (-15 -3060 (|#3| $)) (-15 -2166 ($ $)) (-15 -1970 ($ |#2| (-725 |#3| |#4| |#5|))) (-15 -2204 ($ |#3|)) (-15 -2430 ($ |#2| |#3| |#4|)) (-15 -3227 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2094 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2094 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-805) (-862) (-568) (-966 |#3| |#1| |#2|) (-13 (-1057 (-419 (-576))) (-374) (-10 -8 (-15 -3563 ($ |#4|)) (-15 -1536 (|#4| $)) (-15 -1549 (|#4| $))))) (T -474)) +((-2094 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805)) (-4 *6 (-568)) (-4 *7 (-966 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1057 (-419 (-576))) (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $)))))))) +(-10 -7 (-15 -2094 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1991 (((-656 |#3|) $) 41)) (-1665 (((-112) $) NIL)) (-4324 (((-112) $) NIL (|has| |#1| (-568)))) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2496 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-2359 (((-112) $) NIL (|has| |#1| (-568)))) (-4268 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2556 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1376 (((-112) $) NIL (|has| |#1| (-568)))) (-2147 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) 49)) (-4056 (($ (-656 |#4|)) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-3902 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461)))) (-3825 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-1734 ((|#3| $) 47)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#4|) $) 14 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-1763 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 21)) (-2653 (((-656 |#3|) $) NIL)) (-1845 (((-112) |#3| $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1445 (((-1139) $) NIL)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 39)) (-2597 (($) 17)) (-1456 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) 16)) (-4076 (((-548) $) NIL (|has| |#4| (-626 (-548)))) (($ (-656 |#4|)) 51)) (-3573 (($ (-656 |#4|)) 13)) (-1813 (($ $ |#3|) NIL)) (-3418 (($ $ |#3|) NIL)) (-1794 (($ $ |#3|) NIL)) (-3563 (((-874) $) 38) (((-656 |#4|) $) 50)) (-3985 (((-112) $ $) NIL)) (-2043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 30)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-475 |#1| |#2| |#3| |#4|) (-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4076 ($ (-656 |#4|))) (-6 -4461) (-6 -4462))) (-1068) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -475)) +((-4076 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6))))) +(-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4076 ($ (-656 |#4|))) (-6 -4461) (-6 -4462))) +((-2800 (($) 11)) (-2810 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-476 |#1| |#2| |#3|) (-10 -8 (-15 -2810 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2800 (|#1|))) (-477 |#2| |#3|) (-174) (-23)) (T -476)) +NIL +(-10 -8 (-15 -2810 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2800 (|#1|))) +((-3474 (((-112) $ $) 7)) (-1539 (((-3 |#1| "failed") $) 27)) (-4056 ((|#1| $) 28)) (-3105 (($ $ $) 24)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-1433 ((|#2| $) 20)) (-3563 (((-874) $) 12) (($ |#1|) 26)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 25 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 16) (($ $ $) 14)) (-3083 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-477 |#1| |#2|) (-141) (-174) (-23)) (T -477)) -((-4310 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3390 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-482 |t#1| |t#2|) (-1057 |t#1|) (-10 -8 (-15 (-4310) ($) -2670) (-15 -3390 ($ $ $)))) +((-2810 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3105 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-482 |t#1| |t#2|) (-1057 |t#1|) (-10 -8 (-15 (-2810) ($) -1398) (-15 -3105 ($ $ $)))) (((-102) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-482 |#1| |#2|) . T) ((-1057 |#1|) . T) ((-1119) . T)) -((-3787 (((-1287 (-1287 (-576))) (-1287 (-1287 (-576))) (-938)) 26)) (-4277 (((-1287 (-1287 (-576))) (-938)) 21))) -(((-478) (-10 -7 (-15 -3787 ((-1287 (-1287 (-576))) (-1287 (-1287 (-576))) (-938))) (-15 -4277 ((-1287 (-1287 (-576))) (-938))))) (T -478)) -((-4277 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 (-1287 (-576)))) (-5 *1 (-478)))) (-3787 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 (-1287 (-576)))) (-5 *3 (-938)) (-5 *1 (-478))))) -(-10 -7 (-15 -3787 ((-1287 (-1287 (-576))) (-1287 (-1287 (-576))) (-938))) (-15 -4277 ((-1287 (-1287 (-576))) (-938)))) -((-3242 (((-576) (-576)) 32) (((-576)) 24)) (-2981 (((-576) (-576)) 28) (((-576)) 20)) (-3078 (((-576) (-576)) 30) (((-576)) 22)) (-3184 (((-112) (-112)) 14) (((-112)) 12)) (-1768 (((-112) (-112)) 13) (((-112)) 11)) (-2262 (((-112) (-112)) 26) (((-112)) 17))) -(((-479) (-10 -7 (-15 -1768 ((-112))) (-15 -3184 ((-112))) (-15 -1768 ((-112) (-112))) (-15 -3184 ((-112) (-112))) (-15 -2262 ((-112))) (-15 -3078 ((-576))) (-15 -2981 ((-576))) (-15 -3242 ((-576))) (-15 -2262 ((-112) (-112))) (-15 -3078 ((-576) (-576))) (-15 -2981 ((-576) (-576))) (-15 -3242 ((-576) (-576))))) (T -479)) -((-3242 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2981 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3078 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3242 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2981 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3078 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2262 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3184 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1768 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(-10 -7 (-15 -1768 ((-112))) (-15 -3184 ((-112))) (-15 -1768 ((-112) (-112))) (-15 -3184 ((-112) (-112))) (-15 -2262 ((-112))) (-15 -3078 ((-576))) (-15 -2981 ((-576))) (-15 -3242 ((-576))) (-15 -2262 ((-112) (-112))) (-15 -3078 ((-576) (-576))) (-15 -2981 ((-576) (-576))) (-15 -3242 ((-576) (-576)))) -((-2034 (((-112) $ $) NIL)) (-3374 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-1769 (((-656 (-1113 (-390))) $) 16) (((-656 (-1113 (-390))) $ (-656 (-1113 (-390)))) 142)) (-1792 (((-656 (-656 (-960 (-227)))) (-656 (-656 (-960 (-227)))) (-656 (-886))) 58)) (-2611 (((-656 (-656 (-960 (-227)))) $) 137)) (-3418 (((-1292) $ (-960 (-227)) (-886)) 163)) (-4095 (($ $) 136) (($ (-656 (-656 (-960 (-227))))) 149) (($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938))) 148) (($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)) (-656 (-270))) 150)) (-3288 (((-1178) $) NIL)) (-2371 (((-576) $) 110)) (-3139 (((-1139) $) NIL)) (-3466 (($) 147)) (-2982 (((-656 (-227)) (-656 (-656 (-960 (-227))))) 89)) (-1502 (((-1292) $ (-656 (-960 (-227))) (-886) (-886) (-938)) 155) (((-1292) $ (-960 (-227))) 157) (((-1292) $ (-960 (-227)) (-886) (-886) (-938)) 156)) (-4092 (((-874) $) 169) (($ (-656 (-656 (-960 (-227))))) 164)) (-1531 (((-112) $ $) NIL)) (-2112 (((-1292) $ (-960 (-227))) 162)) (-3919 (((-112) $ $) NIL))) -(((-480) (-13 (-1119) (-10 -8 (-15 -3466 ($)) (-15 -4095 ($ $)) (-15 -4095 ($ (-656 (-656 (-960 (-227)))))) (-15 -4095 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)))) (-15 -4095 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)) (-656 (-270)))) (-15 -2611 ((-656 (-656 (-960 (-227)))) $)) (-15 -2371 ((-576) $)) (-15 -1769 ((-656 (-1113 (-390))) $)) (-15 -1769 ((-656 (-1113 (-390))) $ (-656 (-1113 (-390))))) (-15 -3374 ((-656 (-390)) $)) (-15 -3374 ((-656 (-390)) $ (-656 (-390)))) (-15 -1502 ((-1292) $ (-656 (-960 (-227))) (-886) (-886) (-938))) (-15 -1502 ((-1292) $ (-960 (-227)))) (-15 -1502 ((-1292) $ (-960 (-227)) (-886) (-886) (-938))) (-15 -2112 ((-1292) $ (-960 (-227)))) (-15 -3418 ((-1292) $ (-960 (-227)) (-886))) (-15 -4092 ($ (-656 (-656 (-960 (-227)))))) (-15 -4092 ((-874) $)) (-15 -1792 ((-656 (-656 (-960 (-227)))) (-656 (-656 (-960 (-227)))) (-656 (-886)))) (-15 -2982 ((-656 (-227)) (-656 (-656 (-960 (-227))))))))) (T -480)) -((-4092 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-480)))) (-3466 (*1 *1) (-5 *1 (-480))) (-4095 (*1 *1 *1) (-5 *1 (-480))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) (-4095 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-938))) (-5 *1 (-480)))) (-4095 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-938))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480)))) (-1769 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-3374 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-1502 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-1502 (*1 *2 *1 *3) (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-480)))) (-1502 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-2112 (*1 *2 *1 *3) (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-480)))) (-3418 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-480)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) (-1792 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) (-5 *1 (-480)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480))))) -(-13 (-1119) (-10 -8 (-15 -3466 ($)) (-15 -4095 ($ $)) (-15 -4095 ($ (-656 (-656 (-960 (-227)))))) (-15 -4095 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)))) (-15 -4095 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)) (-656 (-270)))) (-15 -2611 ((-656 (-656 (-960 (-227)))) $)) (-15 -2371 ((-576) $)) (-15 -1769 ((-656 (-1113 (-390))) $)) (-15 -1769 ((-656 (-1113 (-390))) $ (-656 (-1113 (-390))))) (-15 -3374 ((-656 (-390)) $)) (-15 -3374 ((-656 (-390)) $ (-656 (-390)))) (-15 -1502 ((-1292) $ (-656 (-960 (-227))) (-886) (-886) (-938))) (-15 -1502 ((-1292) $ (-960 (-227)))) (-15 -1502 ((-1292) $ (-960 (-227)) (-886) (-886) (-938))) (-15 -2112 ((-1292) $ (-960 (-227)))) (-15 -3418 ((-1292) $ (-960 (-227)) (-886))) (-15 -4092 ($ (-656 (-656 (-960 (-227)))))) (-15 -4092 ((-874) $)) (-15 -1792 ((-656 (-656 (-960 (-227)))) (-656 (-656 (-960 (-227)))) (-656 (-886)))) (-15 -2982 ((-656 (-227)) (-656 (-656 (-960 (-227)))))))) -((-4018 (($ $) NIL) (($ $ $) 11))) -(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) -NIL -(-10 -8 (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2369 ((|#2| $) 20)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 16) (($ $ $) 14)) (-4007 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) +((-4410 (((-1286 (-1286 (-576))) (-1286 (-1286 (-576))) (-938)) 26)) (-1446 (((-1286 (-1286 (-576))) (-938)) 21))) +(((-478) (-10 -7 (-15 -4410 ((-1286 (-1286 (-576))) (-1286 (-1286 (-576))) (-938))) (-15 -1446 ((-1286 (-1286 (-576))) (-938))))) (T -478)) +((-1446 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1286 (-1286 (-576)))) (-5 *1 (-478)))) (-4410 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 (-1286 (-576)))) (-5 *3 (-938)) (-5 *1 (-478))))) +(-10 -7 (-15 -4410 ((-1286 (-1286 (-576))) (-1286 (-1286 (-576))) (-938))) (-15 -1446 ((-1286 (-1286 (-576))) (-938)))) +((-3012 (((-576) (-576)) 32) (((-576)) 24)) (-1741 (((-576) (-576)) 28) (((-576)) 20)) (-3137 (((-576) (-576)) 30) (((-576)) 22)) (-4028 (((-112) (-112)) 14) (((-112)) 12)) (-1875 (((-112) (-112)) 13) (((-112)) 11)) (-2123 (((-112) (-112)) 26) (((-112)) 17))) +(((-479) (-10 -7 (-15 -1875 ((-112))) (-15 -4028 ((-112))) (-15 -1875 ((-112) (-112))) (-15 -4028 ((-112) (-112))) (-15 -2123 ((-112))) (-15 -3137 ((-576))) (-15 -1741 ((-576))) (-15 -3012 ((-576))) (-15 -2123 ((-112) (-112))) (-15 -3137 ((-576) (-576))) (-15 -1741 ((-576) (-576))) (-15 -3012 ((-576) (-576))))) (T -479)) +((-3012 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1741 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3137 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-3012 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-1741 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-3137 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) (-2123 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4028 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1875 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-4028 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) (-1875 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(-10 -7 (-15 -1875 ((-112))) (-15 -4028 ((-112))) (-15 -1875 ((-112) (-112))) (-15 -4028 ((-112) (-112))) (-15 -2123 ((-112))) (-15 -3137 ((-576))) (-15 -1741 ((-576))) (-15 -3012 ((-576))) (-15 -2123 ((-112) (-112))) (-15 -3137 ((-576) (-576))) (-15 -1741 ((-576) (-576))) (-15 -3012 ((-576) (-576)))) +((-3474 (((-112) $ $) NIL)) (-2350 (((-656 (-390)) $) 34) (((-656 (-390)) $ (-656 (-390))) 146)) (-2002 (((-656 (-1113 (-390))) $) 16) (((-656 (-1113 (-390))) $ (-656 (-1113 (-390)))) 142)) (-2219 (((-656 (-656 (-960 (-227)))) (-656 (-656 (-960 (-227)))) (-656 (-886))) 58)) (-2541 (((-656 (-656 (-960 (-227)))) $) 137)) (-2368 (((-1291) $ (-960 (-227)) (-886)) 163)) (-2536 (($ $) 136) (($ (-656 (-656 (-960 (-227))))) 149) (($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938))) 148) (($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)) (-656 (-270))) 150)) (-1927 (((-1177) $) NIL)) (-4282 (((-576) $) 110)) (-1445 (((-1139) $) NIL)) (-3057 (($) 147)) (-1856 (((-656 (-227)) (-656 (-656 (-960 (-227))))) 89)) (-3494 (((-1291) $ (-656 (-960 (-227))) (-886) (-886) (-938)) 155) (((-1291) $ (-960 (-227))) 157) (((-1291) $ (-960 (-227)) (-886) (-886) (-938)) 156)) (-3563 (((-874) $) 169) (($ (-656 (-656 (-960 (-227))))) 164)) (-3985 (((-112) $ $) NIL)) (-2534 (((-1291) $ (-960 (-227))) 162)) (-2988 (((-112) $ $) NIL))) +(((-480) (-13 (-1119) (-10 -8 (-15 -3057 ($)) (-15 -2536 ($ $)) (-15 -2536 ($ (-656 (-656 (-960 (-227)))))) (-15 -2536 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)))) (-15 -2536 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)) (-656 (-270)))) (-15 -2541 ((-656 (-656 (-960 (-227)))) $)) (-15 -4282 ((-576) $)) (-15 -2002 ((-656 (-1113 (-390))) $)) (-15 -2002 ((-656 (-1113 (-390))) $ (-656 (-1113 (-390))))) (-15 -2350 ((-656 (-390)) $)) (-15 -2350 ((-656 (-390)) $ (-656 (-390)))) (-15 -3494 ((-1291) $ (-656 (-960 (-227))) (-886) (-886) (-938))) (-15 -3494 ((-1291) $ (-960 (-227)))) (-15 -3494 ((-1291) $ (-960 (-227)) (-886) (-886) (-938))) (-15 -2534 ((-1291) $ (-960 (-227)))) (-15 -2368 ((-1291) $ (-960 (-227)) (-886))) (-15 -3563 ($ (-656 (-656 (-960 (-227)))))) (-15 -3563 ((-874) $)) (-15 -2219 ((-656 (-656 (-960 (-227)))) (-656 (-656 (-960 (-227)))) (-656 (-886)))) (-15 -1856 ((-656 (-227)) (-656 (-656 (-960 (-227))))))))) (T -480)) +((-3563 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-480)))) (-3057 (*1 *1) (-5 *1 (-480))) (-2536 (*1 *1 *1) (-5 *1 (-480))) (-2536 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) (-2536 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-938))) (-5 *1 (-480)))) (-2536 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) (-5 *4 (-656 (-938))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480)))) (-2002 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-2350 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) (-3494 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *2 (-1291)) (-5 *1 (-480)))) (-3494 (*1 *2 *1 *3) (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1291)) (-5 *1 (-480)))) (-3494 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *2 (-1291)) (-5 *1 (-480)))) (-2534 (*1 *2 *1 *3) (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1291)) (-5 *1 (-480)))) (-2368 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-480)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) (-2219 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) (-5 *1 (-480)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-656 (-227))) (-5 *1 (-480))))) +(-13 (-1119) (-10 -8 (-15 -3057 ($)) (-15 -2536 ($ $)) (-15 -2536 ($ (-656 (-656 (-960 (-227)))))) (-15 -2536 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)))) (-15 -2536 ($ (-656 (-656 (-960 (-227)))) (-656 (-886)) (-656 (-886)) (-656 (-938)) (-656 (-270)))) (-15 -2541 ((-656 (-656 (-960 (-227)))) $)) (-15 -4282 ((-576) $)) (-15 -2002 ((-656 (-1113 (-390))) $)) (-15 -2002 ((-656 (-1113 (-390))) $ (-656 (-1113 (-390))))) (-15 -2350 ((-656 (-390)) $)) (-15 -2350 ((-656 (-390)) $ (-656 (-390)))) (-15 -3494 ((-1291) $ (-656 (-960 (-227))) (-886) (-886) (-938))) (-15 -3494 ((-1291) $ (-960 (-227)))) (-15 -3494 ((-1291) $ (-960 (-227)) (-886) (-886) (-938))) (-15 -2534 ((-1291) $ (-960 (-227)))) (-15 -2368 ((-1291) $ (-960 (-227)) (-886))) (-15 -3563 ($ (-656 (-656 (-960 (-227)))))) (-15 -3563 ((-874) $)) (-15 -2219 ((-656 (-656 (-960 (-227)))) (-656 (-656 (-960 (-227)))) (-656 (-886)))) (-15 -1856 ((-656 (-227)) (-656 (-656 (-960 (-227)))))))) +((-3095 (($ $) NIL) (($ $ $) 11))) +(((-481 |#1| |#2| |#3|) (-10 -8 (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|))) (-482 |#2| |#3|) (-174) (-23)) (T -481)) +NIL +(-10 -8 (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-1433 ((|#2| $) 20)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 16) (($ $ $) 14)) (-3083 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17))) (((-482 |#1| |#2|) (-141) (-174) (-23)) (T -482)) -((-2369 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-4300 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4018 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4007 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) -(-13 (-1119) (-10 -8 (-15 -2369 (|t#2| $)) (-15 (-4300) ($) -2670) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4018 ($ $)) (-15 -4007 ($ $ $)) (-15 -4018 ($ $ $)))) +((-1433 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) (-2800 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3083 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) (-3095 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23))))) +(-13 (-1119) (-10 -8 (-15 -1433 (|t#2| $)) (-15 (-2800) ($) -1398) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3095 ($ $)) (-15 -3083 ($ $ $)) (-15 -3095 ($ $ $)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-4145 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|))) 134)) (-1782 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 131)) (-3592 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 86))) -(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -1782 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -4145 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -3592 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))))) (-656 (-1196)) (-464) (-464)) (T -483)) -((-3592 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-4145 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-1782 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(-10 -7 (-15 -1782 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -4145 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -3592 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))))) -((-3179 (((-3 $ "failed") $) 11)) (-3646 (($ $ $) 23)) (-1361 (($ $ $) 24)) (-4028 (($ $ $) 9)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22))) -(((-484 |#1|) (-10 -8 (-15 -1361 (|#1| |#1| |#1|)) (-15 -3646 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4028 (|#1| |#1| |#1|)) (-15 -3179 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) (-485)) (T -484)) -NIL -(-10 -8 (-15 -1361 (|#1| |#1| |#1|)) (-15 -3646 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4028 (|#1| |#1| |#1|)) (-15 -3179 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) -((-2034 (((-112) $ $) 7)) (-3656 (($) 19 T CONST)) (-3179 (((-3 $ "failed") $) 16)) (-1810 (((-112) $) 18)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 25)) (-3139 (((-1139) $) 11)) (-3646 (($ $ $) 22)) (-1361 (($ $ $) 21)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4310 (($) 20 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 24)) (** (($ $ (-938)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) +((-1687 (((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|))) 134)) (-3853 (((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 131)) (-1404 (((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))) 86))) +(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -3853 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -1687 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -1404 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))))) (-656 (-1195)) (-464) (-464)) (T -483)) +((-1404 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-656 (-253 *5 *6))) (|:| |coords| (-656 (-576))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464)))) (-1687 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) +(-10 -7 (-15 -3853 ((-656 (-656 (-253 |#1| |#2|))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -1687 ((-3 (-656 (-493 |#1| |#2|)) "failed") (-656 (-493 |#1| |#2|)) (-656 (-876 |#1|)))) (-15 -1404 ((-2 (|:| |dpolys| (-656 (-253 |#1| |#2|))) (|:| |coords| (-656 (-576)))) (-656 (-253 |#1| |#2|)) (-656 (-876 |#1|))))) +((-1551 (((-3 $ "failed") $) 11)) (-4026 (($ $ $) 23)) (-4081 (($ $ $) 24)) (-3107 (($ $ $) 9)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 22))) +(((-484 |#1|) (-10 -8 (-15 -4081 (|#1| |#1| |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) (-485)) (T -484)) +NIL +(-10 -8 (-15 -4081 (|#1| |#1| |#1|)) (-15 -4026 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3107 (|#1| |#1| |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) +((-3474 (((-112) $ $) 7)) (-3767 (($) 19 T CONST)) (-1551 (((-3 $ "failed") $) 16)) (-1414 (((-112) $) 18)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 25)) (-1445 (((-1139) $) 11)) (-4026 (($ $ $) 22)) (-4081 (($ $ $) 21)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2810 (($) 20 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 24)) (** (($ $ (-938)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) (((-485) (-141)) (T -485)) -((-1644 (*1 *1 *1) (-4 *1 (-485))) (-4028 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-3646 (*1 *1 *1 *1) (-4 *1 (-485))) (-1361 (*1 *1 *1 *1) (-4 *1 (-485)))) -(-13 (-738) (-10 -8 (-15 -1644 ($ $)) (-15 -4028 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4459) (-15 -3646 ($ $ $)) (-15 -1361 ($ $ $)))) +((-2095 (*1 *1 *1) (-4 *1 (-485))) (-3107 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) (-4026 (*1 *1 *1 *1) (-4 *1 (-485))) (-4081 (*1 *1 *1 *1) (-4 *1 (-485)))) +(-13 (-738) (-10 -8 (-15 -2095 ($ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ (-576))) (-6 -4458) (-15 -4026 ($ $ $)) (-15 -4081 ($ $ $)))) (((-102) . T) ((-625 (-874)) . T) ((-738) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) 18)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2255 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-1655 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2266 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| |#1| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2236 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2294 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2725 (((-112) $) NIL (|has| |#1| (-374)))) (-3840 (((-112) $) NIL)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-419 (-576))) NIL) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-2477 (($ (-1 |#1| |#1|) $) 25)) (-2703 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-3597 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 35 (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2843 (($ $ (-419 (-576))) NIL)) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-3614 (($ $ (-1196)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) 16)) (-2369 (((-419 (-576)) $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1283 |#2|)) NIL) (($ (-1272 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2430 ((|#1| $ (-419 (-576))) NIL)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-2553 ((|#1| $) 21)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) 27)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-486 |#1| |#2| |#3|) (-13 (-1268 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1283 |#2|))) (-15 -4092 ($ (-1272 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -486)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) -(-13 (-1268 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1283 |#2|))) (-15 -4092 ($ (-1272 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2449 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#2| $ |#1| |#2|) 18)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 |#2| "failed") |#1| $) 19)) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 16)) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) NIL)) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 ((|#1| $) NIL (|has| |#1| (-862)))) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4315 ((|#1| $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2364 (((-656 |#1|) $) NIL)) (-3700 (((-112) |#1| $) NIL)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-4428 (((-656 |#1|) $) NIL)) (-2013 (((-112) |#1| $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2701 ((|#2| $) NIL (|has| |#1| (-862)))) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-4092 (((-874) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-487 |#1| |#2| |#3| |#4|) (-1213 |#1| |#2|) (-1119) (-1119) (-1213 |#1| |#2|) |#2|) (T -487)) -NIL -(-1213 |#1| |#2|) -((-2034 (((-112) $ $) NIL)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2567 (((-656 $) (-656 |#4|)) NIL)) (-1541 (((-656 |#3|) $) NIL)) (-3522 (((-112) $) NIL)) (-2932 (((-112) $) NIL (|has| |#1| (-568)))) (-1701 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2919 ((|#4| |#4| $) NIL)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3457 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3656 (($) NIL T CONST)) (-3425 (((-112) $) 29 (|has| |#1| (-568)))) (-2623 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3347 (((-112) $) NIL (|has| |#1| (-568)))) (-1574 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4135 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2378 (($ (-656 |#4|)) NIL)) (-2712 (((-3 $ "failed") $) 45)) (-3996 ((|#4| |#4| $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-2892 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3532 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2948 ((|#4| |#4| $) NIL)) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2740 (((-2 (|:| -1627 (-656 |#4|)) (|:| -3709 (-656 |#4|))) $) NIL)) (-4260 (((-656 |#4|) $) 18 (|has| $ (-6 -4462)))) (-3871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2565 ((|#3| $) 38)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#4|) $) 19 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3874 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 23)) (-2964 (((-656 |#3|) $) NIL)) (-2459 (((-112) |#3| $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-2912 (((-3 |#4| "failed") $) 42)) (-2106 (((-656 |#4|) $) NIL)) (-3593 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4395 ((|#4| |#4| $) NIL)) (-3711 (((-112) $ $) NIL)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1875 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3987 ((|#4| |#4| $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 (((-3 |#4| "failed") $) 40)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1479 (((-3 $ "failed") $ |#4|) 58)) (-2843 (($ $ |#4|) NIL)) (-3292 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 17)) (-2643 (($) 14)) (-2369 (((-783) $) NIL)) (-3150 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) 13)) (-1505 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) 22)) (-1606 (($ $ |#3|) 52)) (-2333 (($ $ |#3|) 54)) (-2792 (($ $) NIL)) (-2875 (($ $ |#3|) NIL)) (-4092 (((-874) $) 35) (((-656 |#4|) $) 46)) (-2727 (((-783) $) NIL (|has| |#3| (-379)))) (-1531 (((-112) $ $) NIL)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2196 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2190 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-1895 (((-656 |#3|) $) NIL)) (-4101 (((-112) |#3| $) NIL)) (-3919 (((-112) $ $) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-488 |#1| |#2| |#3| |#4|) (-1230 |#1| |#2| |#3| |#4|) (-568) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -488)) -NIL -(-1230 |#1| |#2| |#3| |#4|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2378 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3926 (($) 17)) (-1810 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-1505 (((-390) $) 21) (((-227) $) 24) (((-419 (-1192 (-576))) $) 18) (((-548) $) 53)) (-4092 (((-874) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-4300 (($) 37 T CONST)) (-4310 (($) 8 T CONST)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-489) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))) (-1041) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1192 (-576)))) (-626 (-548)) (-10 -8 (-15 -3926 ($))))) (T -489)) -((-3926 (*1 *1) (-5 *1 (-489)))) -(-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))) (-1041) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1192 (-576)))) (-626 (-548)) (-10 -8 (-15 -3926 ($)))) -((-2034 (((-112) $ $) NIL)) (-1804 (((-1154) $) 11)) (-1790 (((-1154) $) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-490) (-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1154) $))))) (T -490)) -((-1790 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490))))) -(-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1154) $)))) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2449 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#2| $ |#1| |#2|) 16)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 |#2| "failed") |#1| $) 20)) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 18)) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) NIL)) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 ((|#1| $) NIL (|has| |#1| (-862)))) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4315 ((|#1| $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2364 (((-656 |#1|) $) 13)) (-3700 (((-112) |#1| $) NIL)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-4428 (((-656 |#1|) $) NIL)) (-2013 (((-112) |#1| $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2701 ((|#2| $) NIL (|has| |#1| (-862)))) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) 19)) (-4367 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-4092 (((-874) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 11 (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2048 (((-783) $) 15 (|has| $ (-6 -4462))))) -(((-491 |#1| |#2| |#3|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) (-1119) (-1119) (-1178)) (T -491)) -NIL -(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) -((-2825 (((-576) (-576) (-576)) 19)) (-3468 (((-112) (-576) (-576) (-576) (-576)) 28)) (-2790 (((-1287 (-656 (-576))) (-783) (-783)) 41))) -(((-492) (-10 -7 (-15 -2825 ((-576) (-576) (-576))) (-15 -3468 ((-112) (-576) (-576) (-576) (-576))) (-15 -2790 ((-1287 (-656 (-576))) (-783) (-783))))) (T -492)) -((-2790 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1287 (-656 (-576)))) (-5 *1 (-492)))) (-3468 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-2825 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(-10 -7 (-15 -2825 ((-576) (-576) (-576))) (-15 -3468 ((-112) (-576) (-576) (-576) (-576))) (-15 -2790 ((-1287 (-656 (-576))) (-783) (-783)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-876 |#1|)) $) NIL)) (-1364 (((-1192 $) $ (-876 |#1|)) NIL) (((-1192 |#2|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2573 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1587 (($ $) NIL (|has| |#2| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#2| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-2378 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2996 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-1338 (($ $ (-656 (-576))) NIL)) (-1717 (($ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-926)))) (-2291 (($ $ |#2| (-494 (-2048 |#1|) (-783)) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-1529 (($ (-1192 |#2|) (-876 |#1|)) NIL) (($ (-1192 $) (-876 |#1|)) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#2| (-494 (-2048 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-876 |#1|)) NIL)) (-1915 (((-494 (-2048 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-3968 (($ (-1 (-494 (-2048 |#1|) (-783)) (-494 (-2048 |#1|) (-783))) $) NIL)) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-3403 (((-3 (-876 |#1|) "failed") $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#2| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3288 (((-1178) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -3175 (-783))) "failed") $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#2| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#2| (-926)))) (-2022 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-1955 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3614 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2369 (((-494 (-2048 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3714 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3076 (((-656 |#2|) $) NIL)) (-2430 ((|#2| $ (-494 (-2048 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-493 |#1| |#2|) (-13 (-966 |#2| (-494 (-2048 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -1338 ($ $ (-656 (-576)))))) (-656 (-1196)) (-1068)) (T -493)) -((-1338 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1196))) (-4 *4 (-1068))))) -(-13 (-966 |#2| (-494 (-2048 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -1338 ($ $ (-656 (-576)))))) -((-2034 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-1962 (((-112) $) NIL (|has| |#2| (-23)))) (-3001 (($ (-938)) NIL (|has| |#2| (-1068)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2746 (($ $ $) NIL (|has| |#2| (-805)))) (-3788 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2835 (((-112) $ (-783)) NIL)) (-2247 (((-783)) NIL (|has| |#2| (-379)))) (-4248 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1119)))) (-2378 (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) NIL (|has| |#2| (-1119)))) (-3687 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1068))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-1287 $)) NIL (|has| |#2| (-1068)))) (-3179 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-2446 (($) NIL (|has| |#2| (-379)))) (-3888 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ (-576)) 11)) (-4260 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1810 (((-112) $) NIL (|has| |#2| (-1068)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#2| (-862)))) (-1750 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#2| (-862)))) (-3874 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-3225 (((-938) $) NIL (|has| |#2| (-379)))) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#2| (-1119)))) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-2550 (($ (-938)) NIL (|has| |#2| (-379)))) (-3139 (((-1139) $) NIL (|has| |#2| (-1119)))) (-2701 ((|#2| $) NIL (|has| (-576) (-862)))) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-1660 ((|#2| $ $) NIL (|has| |#2| (-1068)))) (-1440 (($ (-1287 |#2|)) NIL)) (-3667 (((-135)) NIL (|has| |#2| (-374)))) (-3614 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3150 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-1287 |#2|) $) NIL) (($ (-576)) NIL (-3765 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) NIL (|has| |#2| (-1119))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-2471 (((-783)) NIL (|has| |#2| (-1068)) CONST)) (-1531 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-2190 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-4300 (($) NIL (|has| |#2| (-23)) CONST)) (-4310 (($) NIL (|has| |#2| (-1068)) CONST)) (-4286 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3977 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3944 (((-112) $ $) 17 (|has| |#2| (-862)))) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4007 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1068))) (($ $ (-938)) NIL (|has| |#2| (-1068)))) (* (($ $ $) NIL (|has| |#2| (-1068))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-938) $) NIL (|has| |#2| (-25)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) 18)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1615 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3826 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| |#1| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3872 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1792 (((-112) $) NIL (|has| |#1| (-374)))) (-1822 (((-112) $) NIL)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-419 (-576))) NIL) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-1632 (($ (-1 |#1| |#1|) $) 25)) (-3710 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-3848 (($ $) 29 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 35 (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 30 (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1714 (($ $ (-419 (-576))) NIL)) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3984 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ (-1195)) 28 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) 16)) (-1433 (((-419 (-576)) $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1282 |#2|)) NIL) (($ (-1271 |#1| |#2| |#3|)) 9) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4333 ((|#1| $ (-419 (-576))) NIL)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-2387 ((|#1| $) 21)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) 27)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-486 |#1| |#2| |#3|) (-13 (-1267 |#1|) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1282 |#2|))) (-15 -3563 ($ (-1271 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) (-1068) (-1195) |#1|) (T -486)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) +(-13 (-1267 |#1|) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1282 |#2|))) (-15 -3563 ($ (-1271 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2333 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#2| $ |#1| |#2|) 18)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 |#2| "failed") |#1| $) 19)) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 16)) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) NIL)) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 ((|#1| $) NIL (|has| |#1| (-862)))) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-3814 ((|#1| $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3135 (((-656 |#1|) $) NIL)) (-2937 (((-112) |#1| $) NIL)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-3321 (((-656 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3504 ((|#2| $) NIL (|has| |#1| (-862)))) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-3563 (((-874) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-487 |#1| |#2| |#3| |#4|) (-1212 |#1| |#2|) (-1119) (-1119) (-1212 |#1| |#2|) |#2|) (T -487)) +NIL +(-1212 |#1| |#2|) +((-3474 (((-112) $ $) NIL)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |#4|)))) (-656 |#4|)) NIL)) (-1968 (((-656 $) (-656 |#4|)) NIL)) (-1991 (((-656 |#3|) $) NIL)) (-1665 (((-112) $) NIL)) (-4324 (((-112) $) NIL (|has| |#1| (-568)))) (-1587 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2596 ((|#4| |#4| $) NIL)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2496 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3767 (($) NIL T CONST)) (-2359 (((-112) $) 29 (|has| |#1| (-568)))) (-4268 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2556 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1376 (((-112) $) NIL (|has| |#1| (-568)))) (-2905 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2147 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4056 (($ (-656 |#4|)) NIL)) (-3515 (((-3 $ "failed") $) 45)) (-1937 ((|#4| |#4| $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-3902 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1426 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1679 ((|#4| |#4| $) NIL)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1852 (((-2 (|:| -2055 (-656 |#4|)) (|:| -3223 (-656 |#4|))) $) NIL)) (-3825 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-1453 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1734 ((|#3| $) 38)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#4|) $) 19 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-1763 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 23)) (-2653 (((-656 |#3|) $) NIL)) (-1845 (((-112) |#3| $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-3923 (((-3 |#4| "failed") $) 42)) (-2181 (((-656 |#4|) $) NIL)) (-1521 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1582 ((|#4| |#4| $) NIL)) (-3391 (((-112) $ $) NIL)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1393 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2196 ((|#4| |#4| $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 (((-3 |#4| "failed") $) 40)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3229 (((-3 $ "failed") $ |#4|) 58)) (-1714 (($ $ |#4|) NIL)) (-4207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 17)) (-2597 (($) 14)) (-1433 (((-783) $) NIL)) (-1456 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) 13)) (-4076 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) 22)) (-1813 (($ $ |#3|) 52)) (-3418 (($ $ |#3|) 54)) (-3543 (($ $) NIL)) (-1794 (($ $ |#3|) NIL)) (-3563 (((-874) $) 35) (((-656 |#4|) $) 46)) (-2025 (((-783) $) NIL (|has| |#3| (-379)))) (-3985 (((-112) $ $) NIL)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1352 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3094 (((-656 |#3|) $) NIL)) (-1847 (((-112) |#3| $) NIL)) (-2988 (((-112) $ $) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-488 |#1| |#2| |#3| |#4|) (-1229 |#1| |#2| |#3| |#4|) (-568) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -488)) +NIL +(-1229 |#1| |#2| |#3| |#4|) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-4056 (((-576) $) NIL) (((-419 (-576)) $) NIL)) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1570 (($) 17)) (-1414 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-4076 (((-390) $) 21) (((-227) $) 24) (((-419 (-1191 (-576))) $) 18) (((-548) $) 53)) (-3563 (((-874) $) 51) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (((-227) $) 23) (((-390) $) 20)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2800 (($) 37 T CONST)) (-2810 (($) 8 T CONST)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-489) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))) (-1041) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1191 (-576)))) (-626 (-548)) (-10 -8 (-15 -1570 ($))))) (T -489)) +((-1570 (*1 *1) (-5 *1 (-489)))) +(-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))) (-1041) (-625 (-227)) (-625 (-390)) (-626 (-419 (-1191 (-576)))) (-626 (-548)) (-10 -8 (-15 -1570 ($)))) +((-3474 (((-112) $ $) NIL)) (-1649 (((-1154) $) 11)) (-1637 (((-1154) $) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-490) (-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1154) $))))) (T -490)) +((-1637 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490))))) +(-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1154) $)))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2333 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#2| $ |#1| |#2|) 16)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 |#2| "failed") |#1| $) 20)) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 18)) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) NIL)) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 ((|#1| $) NIL (|has| |#1| (-862)))) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-3814 ((|#1| $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3135 (((-656 |#1|) $) 13)) (-2937 (((-112) |#1| $) NIL)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-3321 (((-656 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3504 ((|#2| $) NIL (|has| |#1| (-862)))) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) 19)) (-2871 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-3563 (((-874) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 11 (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3485 (((-783) $) 15 (|has| $ (-6 -4461))))) +(((-491 |#1| |#2| |#3|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1119) (-1119) (-1177)) (T -491)) +NIL +(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) +((-3467 (((-576) (-576) (-576)) 19)) (-3248 (((-112) (-576) (-576) (-576) (-576)) 28)) (-2429 (((-1286 (-656 (-576))) (-783) (-783)) 41))) +(((-492) (-10 -7 (-15 -3467 ((-576) (-576) (-576))) (-15 -3248 ((-112) (-576) (-576) (-576) (-576))) (-15 -2429 ((-1286 (-656 (-576))) (-783) (-783))))) (T -492)) +((-2429 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1286 (-656 (-576)))) (-5 *1 (-492)))) (-3248 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492)))) (-3467 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) +(-10 -7 (-15 -3467 ((-576) (-576) (-576))) (-15 -3248 ((-112) (-576) (-576) (-576) (-576))) (-15 -2429 ((-1286 (-656 (-576))) (-783) (-783)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-876 |#1|)) $) NIL)) (-3999 (((-1191 $) $ (-876 |#1|)) NIL) (((-1191 |#2|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4412 (($ $) NIL (|has| |#2| (-568)))) (-4176 (((-112) $) NIL (|has| |#2| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1760 (($ $) NIL (|has| |#2| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4056 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2861 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3102 (($ $ (-656 (-576))) NIL)) (-2166 (($ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#2| (-926)))) (-1660 (($ $ |#2| (-494 (-3485 |#1|) (-783)) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1980 (($ (-1191 |#2|) (-876 |#1|)) NIL) (($ (-1191 $) (-876 |#1|)) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#2| (-494 (-3485 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-876 |#1|)) NIL)) (-3403 (((-494 (-3485 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2133 (($ (-1 (-494 (-3485 |#1|) (-783)) (-494 (-3485 |#1|) (-783))) $) NIL)) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-4209 (((-3 (-876 |#1|) "failed") $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#2| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1927 (((-1177) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -4274 (-783))) "failed") $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#2| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#2| (-926)))) (-3463 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-1960 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2735 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-1433 (((-494 (-3485 |#1|) (-783)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3648 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ (-419 (-576))) NIL (-2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2927 (((-656 |#2|) $) NIL)) (-4333 ((|#2| $ (-494 (-3485 |#1|) (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-493 |#1| |#2|) (-13 (-966 |#2| (-494 (-3485 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -3102 ($ $ (-656 (-576)))))) (-656 (-1195)) (-1068)) (T -493)) +((-3102 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) (-14 *3 (-656 (-1195))) (-4 *4 (-1068))))) +(-13 (-966 |#2| (-494 (-3485 |#1|) (-783)) (-876 |#1|)) (-10 -8 (-15 -3102 ($ $ (-656 (-576)))))) +((-3474 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-1454 (((-112) $) NIL (|has| |#2| (-23)))) (-2204 (($ (-938)) NIL (|has| |#2| (-1068)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-4415 (($ $ $) NIL (|has| |#2| (-805)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3131 (((-112) $ (-783)) NIL)) (-2148 (((-783)) NIL (|has| |#2| (-379)))) (-3731 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1119)))) (-4056 (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) NIL (|has| |#2| (-1119)))) (-3687 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1068))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-1286 $)) NIL (|has| |#2| (-1068)))) (-1551 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-1803 (($) NIL (|has| |#2| (-379)))) (-1776 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ (-576)) 11)) (-3825 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-1414 (((-112) $) NIL (|has| |#2| (-1068)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#2| (-862)))) (-2591 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#2| (-862)))) (-1763 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-1902 (((-938) $) NIL (|has| |#2| (-379)))) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#2| (-1119)))) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-3257 (($ (-938)) NIL (|has| |#2| (-379)))) (-1445 (((-1139) $) NIL (|has| |#2| (-1119)))) (-3504 ((|#2| $) NIL (|has| (-576) (-862)))) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-2962 ((|#2| $ $) NIL (|has| |#2| (-1068)))) (-1887 (($ (-1286 |#2|)) NIL)) (-2446 (((-135)) NIL (|has| |#2| (-374)))) (-2735 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-1456 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-1286 |#2|) $) NIL) (($ (-576)) NIL (-2835 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) NIL (|has| |#2| (-1119))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-1858 (((-783)) NIL (|has| |#2| (-1068)) CONST)) (-3985 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-2043 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2800 (($) NIL (|has| |#2| (-23)) CONST)) (-2810 (($) NIL (|has| |#2| (-1068)) CONST)) (-2051 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3049 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3010 (((-112) $ $) 17 (|has| |#2| (-862)))) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3083 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1068))) (($ $ (-938)) NIL (|has| |#2| (-1068)))) (* (($ $ $) NIL (|has| |#2| (-1068))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-938) $) NIL (|has| |#2| (-25)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) (((-494 |#1| |#2|) (-243 |#1| |#2|) (-783) (-805)) (T -494)) NIL (-243 |#1| |#2|) -((-2034 (((-112) $ $) NIL)) (-2088 (((-656 (-888)) $) 15)) (-4124 (((-518) $) 13)) (-3288 (((-1178) $) NIL)) (-2929 (($ (-518) (-656 (-888))) 11)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 22) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-495) (-13 (-1102) (-10 -8 (-15 -2929 ($ (-518) (-656 (-888)))) (-15 -4124 ((-518) $)) (-15 -2088 ((-656 (-888)) $))))) (T -495)) -((-2929 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2088 (*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495))))) -(-13 (-1102) (-10 -8 (-15 -2929 ($ (-518) (-656 (-888)))) (-15 -4124 ((-518) $)) (-15 -2088 ((-656 (-888)) $)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) NIL)) (-3656 (($) NIL T CONST)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-1897 (($ $ $) 48)) (-3257 (($ $ $) 47)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2726 ((|#1| $) 40)) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3576 ((|#1| $) 41)) (-2361 (($ |#1| $) 18)) (-2945 (($ (-656 |#1|)) 19)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1679 ((|#1| $) 34)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) 11)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 45)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) 29 (|has| $ (-6 -4462))))) -(((-496 |#1|) (-13 (-987 |#1|) (-10 -8 (-15 -2945 ($ (-656 |#1|))))) (-862)) (T -496)) -((-2945 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) -(-13 (-987 |#1|) (-10 -8 (-15 -2945 ($ (-656 |#1|))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2359 (($ $) 71)) (-4153 (((-112) $) NIL)) (-3288 (((-1178) $) NIL)) (-2133 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-3139 (((-1139) $) NIL)) (-2582 (((-3 |#4| "failed") $) 117)) (-1586 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-3205 (((-2 (|:| -2954 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4092 (((-874) $) 110)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 32 T CONST)) (-3919 (((-112) $ $) 121)) (-4018 (($ $) 77) (($ $ $) NIL)) (-4007 (($ $ $) 72)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78))) -(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497)) +((-3474 (((-112) $ $) NIL)) (-1435 (((-656 (-888)) $) 15)) (-2706 (((-518) $) 13)) (-1927 (((-1177) $) NIL)) (-2155 (($ (-518) (-656 (-888))) 11)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 22) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-495) (-13 (-1102) (-10 -8 (-15 -2155 ($ (-518) (-656 (-888)))) (-15 -2706 ((-518) $)) (-15 -1435 ((-656 (-888)) $))))) (T -495)) +((-2155 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495))))) +(-13 (-1102) (-10 -8 (-15 -2155 ($ (-518) (-656 (-888)))) (-15 -2706 ((-518) $)) (-15 -1435 ((-656 (-888)) $)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) NIL)) (-3767 (($) NIL T CONST)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-2093 (($ $ $) 48)) (-1854 (($ $ $) 47)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1893 ((|#1| $) 40)) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1409 ((|#1| $) 41)) (-2040 (($ |#1| $) 18)) (-2050 (($ (-656 |#1|)) 19)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3399 ((|#1| $) 34)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) 11)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 45)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) 29 (|has| $ (-6 -4461))))) +(((-496 |#1|) (-13 (-987 |#1|) (-10 -8 (-15 -2050 ($ (-656 |#1|))))) (-862)) (T -496)) +((-2050 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) +(-13 (-987 |#1|) (-10 -8 (-15 -2050 ($ (-656 |#1|))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2521 (($ $) 71)) (-4156 (((-112) $) NIL)) (-1927 (((-1177) $) NIL)) (-1675 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45)) (-1445 (((-1139) $) NIL)) (-2202 (((-3 |#4| "failed") $) 117)) (-1629 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 81) (($ |#4|) 31) (($ |#1| |#1|) 127) (($ |#1| |#1| (-576)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 140)) (-2450 (((-2 (|:| -3081 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-3563 (((-874) $) 110)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 32 T CONST)) (-2988 (((-112) $ $) 121)) (-3095 (($ $) 77) (($ $ $) NIL)) (-3083 (($ $ $) 72)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 78))) +(((-497 |#1| |#2| |#3| |#4|) (-346 |#1| |#2| |#3| |#4|) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -497)) NIL (-346 |#1| |#2| |#3| |#4|) -((-3041 (((-576) (-656 (-576))) 53)) (-1862 ((|#1| (-656 |#1|)) 94)) (-3818 (((-656 |#1|) (-656 |#1|)) 95)) (-2418 (((-656 |#1|) (-656 |#1|)) 97)) (-3149 ((|#1| (-656 |#1|)) 96)) (-3714 (((-656 (-576)) (-656 |#1|)) 56))) -(((-498 |#1|) (-10 -7 (-15 -3149 (|#1| (-656 |#1|))) (-15 -1862 (|#1| (-656 |#1|))) (-15 -2418 ((-656 |#1|) (-656 |#1|))) (-15 -3818 ((-656 |#1|) (-656 |#1|))) (-15 -3714 ((-656 (-576)) (-656 |#1|))) (-15 -3041 ((-576) (-656 (-576))))) (-1263 (-576))) (T -498)) -((-3041 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1263 *2)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1263 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-3818 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3)))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3)))) (-1862 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576))))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576)))))) -(-10 -7 (-15 -3149 (|#1| (-656 |#1|))) (-15 -1862 (|#1| (-656 |#1|))) (-15 -2418 ((-656 |#1|) (-656 |#1|))) (-15 -3818 ((-656 |#1|) (-656 |#1|))) (-15 -3714 ((-656 (-576)) (-656 |#1|))) (-15 -3041 ((-576) (-656 (-576))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 (((-576) $) NIL (|has| (-576) (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL (|has| (-576) (-832)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1057 (-576))))) (-2378 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-576) (-557)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-576) (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-3894 (((-576) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3713 (((-112) $) NIL (|has| (-576) (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| (-576) (-862)))) (-2477 (($ (-1 (-576) (-576)) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-576) (-1171)) CONST)) (-3384 (($ (-419 (-576))) 9)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3892 (((-576) $) NIL (|has| (-576) (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2259 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-1787 (((-783) $) NIL)) (-4367 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-1490 (($ $) NIL)) (-3905 (((-576) $) NIL)) (-1505 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1196)) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL) (((-1023 16) $) 10)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-2471 (((-783)) NIL T CONST)) (-4179 (((-576) $) NIL (|has| (-576) (-557)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3423 (($ $) NIL (|has| (-576) (-832)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3977 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3944 (((-112) $ $) NIL (|has| (-576) (-862)))) (-4028 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) -(((-499) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 16)) (-10 -8 (-15 -1846 ((-419 (-576)) $)) (-15 -3384 ($ (-419 (-576))))))) (T -499)) -((-1846 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-3384 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) -(-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 16)) (-10 -8 (-15 -1846 ((-419 (-576)) $)) (-15 -3384 ($ (-419 (-576)))))) -((-1750 (((-656 |#2|) $) 31)) (-3990 (((-112) |#2| $) 36)) (-3292 (((-112) (-1 (-112) |#2|) $) 26)) (-2259 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-3150 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 34)) (-4092 (((-874) $) 45)) (-2190 (((-112) (-1 (-112) |#2|) $) 23)) (-3919 (((-112) $ $) 39)) (-2048 (((-783) $) 18))) -(((-500 |#1| |#2|) (-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -2259 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#2| |#2|)) (-15 -2259 (|#1| |#1| (-304 |#2|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3990 ((-112) |#2| |#1|)) (-15 -3150 ((-783) |#2| |#1|)) (-15 -1750 ((-656 |#2|) |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2048 ((-783) |#1|))) (-501 |#2|) (-1237)) (T -500)) -NIL -(-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -2259 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#2| |#2|)) (-15 -2259 (|#1| |#1| (-304 |#2|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -3990 ((-112) |#2| |#1|)) (-15 -3150 ((-783) |#2| |#1|)) (-15 -1750 ((-656 |#2|) |#1|)) (-15 -3150 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2048 ((-783) |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-3656 (($) 7 T CONST)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-501 |#1|) (-141) (-1237)) (T -501)) -((-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) (-3874 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) (-2190 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-3292 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-3150 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-783)))) (-4260 (*1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))) (-1750 (*1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))) (-3150 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-783)))) (-3990 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |t#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |t#1| (-1119)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2477 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4463)) (-15 -3874 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -2190 ((-112) (-1 (-112) |t#1|) $)) (-15 -3292 ((-112) (-1 (-112) |t#1|) $)) (-15 -3150 ((-783) (-1 (-112) |t#1|) $)) (-15 -4260 ((-656 |t#1|) $)) (-15 -1750 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -3150 ((-783) |t#1| $)) (-15 -3990 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-4092 ((|#1| $) 6) (($ |#1|) 9))) -(((-502 |#1|) (-141) (-1237)) (T -502)) +((-3628 (((-576) (-656 (-576))) 53)) (-1740 ((|#1| (-656 |#1|)) 94)) (-2461 (((-656 |#1|) (-656 |#1|)) 95)) (-1344 (((-656 |#1|) (-656 |#1|)) 97)) (-3495 ((|#1| (-656 |#1|)) 96)) (-3648 (((-656 (-576)) (-656 |#1|)) 56))) +(((-498 |#1|) (-10 -7 (-15 -3495 (|#1| (-656 |#1|))) (-15 -1740 (|#1| (-656 |#1|))) (-15 -1344 ((-656 |#1|) (-656 |#1|))) (-15 -2461 ((-656 |#1|) (-656 |#1|))) (-15 -3648 ((-656 (-576)) (-656 |#1|))) (-15 -3628 ((-576) (-656 (-576))))) (-1262 (-576))) (T -498)) +((-3628 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) (-4 *4 (-1262 *2)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1262 (-576))) (-5 *2 (-656 (-576))) (-5 *1 (-498 *4)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3)))) (-1344 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576))))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576)))))) +(-10 -7 (-15 -3495 (|#1| (-656 |#1|))) (-15 -1740 (|#1| (-656 |#1|))) (-15 -1344 ((-656 |#1|) (-656 |#1|))) (-15 -2461 ((-656 |#1|) (-656 |#1|))) (-15 -3648 ((-656 (-576)) (-656 |#1|))) (-15 -3628 ((-576) (-656 (-576))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 (((-576) $) NIL (|has| (-576) (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL (|has| (-576) (-832)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-576) (-1057 (-576))))) (-4056 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1057 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-576) (-557)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1910 (((-112) $) NIL (|has| (-576) (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL)) (-1536 (((-576) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3566 (((-112) $) NIL (|has| (-576) (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| (-576) (-862)))) (-1632 (($ (-1 (-576) (-576)) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-576) (-1171)) CONST)) (-3624 (($ (-419 (-576))) 9)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) NIL)) (-3835 (((-576) $) NIL (|has| (-576) (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3306 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-3112 (((-783) $) NIL)) (-2871 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-917 (-1195)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-1880 (($ $) NIL)) (-1549 (((-576) $) NIL)) (-4076 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 8) (($ (-576)) NIL) (($ (-1195)) NIL (|has| (-576) (-1057 (-1195)))) (((-419 (-576)) $) NIL) (((-1023 16) $) 10)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-1858 (((-783)) NIL T CONST)) (-3270 (((-576) $) NIL (|has| (-576) (-557)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2264 (($ $) NIL (|has| (-576) (-832)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-917 (-1195)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3049 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3010 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3107 (($ $ $) NIL) (($ (-576) (-576)) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) NIL) (($ $ (-576)) NIL))) +(((-499) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 16)) (-10 -8 (-15 -1465 ((-419 (-576)) $)) (-15 -3624 ($ (-419 (-576))))))) (T -499)) +((-1465 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) (-3624 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) +(-13 (-1011 (-576)) (-625 (-419 (-576))) (-625 (-1023 16)) (-10 -8 (-15 -1465 ((-419 (-576)) $)) (-15 -3624 ($ (-419 (-576)))))) +((-2591 (((-656 |#2|) $) 31)) (-2511 (((-112) |#2| $) 36)) (-4207 (((-112) (-1 (-112) |#2|) $) 26)) (-3306 (($ $ (-656 (-304 |#2|))) 13) (($ $ (-304 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-656 |#2|) (-656 |#2|)) NIL)) (-1456 (((-783) (-1 (-112) |#2|) $) 30) (((-783) |#2| $) 34)) (-3563 (((-874) $) 45)) (-2043 (((-112) (-1 (-112) |#2|) $) 23)) (-2988 (((-112) $ $) 39)) (-3485 (((-783) $) 18))) +(((-500 |#1| |#2|) (-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -3306 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#2| |#2|)) (-15 -3306 (|#1| |#1| (-304 |#2|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2511 ((-112) |#2| |#1|)) (-15 -1456 ((-783) |#2| |#1|)) (-15 -2591 ((-656 |#2|) |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3485 ((-783) |#1|))) (-501 |#2|) (-1236)) (T -500)) +NIL +(-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -3306 (|#1| |#1| (-656 |#2|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#2| |#2|)) (-15 -3306 (|#1| |#1| (-304 |#2|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#2|)))) (-15 -2511 ((-112) |#2| |#1|)) (-15 -1456 ((-783) |#2| |#1|)) (-15 -2591 ((-656 |#2|) |#1|)) (-15 -1456 ((-783) (-1 (-112) |#2|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3485 ((-783) |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-3767 (($) 7 T CONST)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-501 |#1|) (-141) (-1236)) (T -501)) +((-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) (-1763 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) (-2043 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-4207 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-1456 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) (-4 *4 (-1236)) (-5 *2 (-783)))) (-3825 (*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))) (-2591 (*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))) (-1456 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1119)) (-5 *2 (-783)))) (-2511 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) (-4 *3 (-1119)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |t#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |t#1| (-1119)) (IF (|has| |t#1| (-319 |t#1|)) (-6 (-319 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1632 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4462)) (-15 -1763 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4461)) (PROGN (-15 -2043 ((-112) (-1 (-112) |t#1|) $)) (-15 -4207 ((-112) (-1 (-112) |t#1|) $)) (-15 -1456 ((-783) (-1 (-112) |t#1|) $)) (-15 -3825 ((-656 |t#1|) $)) (-15 -2591 ((-656 |t#1|) $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -1456 ((-783) |t#1| $)) (-15 -2511 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-3563 ((|#1| $) 6) (($ |#1|) 9))) +(((-502 |#1|) (-141) (-1236)) (T -502)) NIL (-13 (-625 |t#1|) (-628 |t#1|)) (((-628 |#1|) . T) ((-625 |#1|) . T)) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3621 (($ (-1178)) 8)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 15) (((-1178) $) 12)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 11))) -(((-503) (-13 (-1119) (-625 (-1178)) (-10 -8 (-15 -3621 ($ (-1178)))))) (T -503)) -((-3621 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-503))))) -(-13 (-1119) (-625 (-1178)) (-10 -8 (-15 -3621 ($ (-1178))))) -((-2266 (($ $) 15)) (-2236 (($ $) 24)) (-2294 (($ $) 12)) (-2307 (($ $) 10)) (-2281 (($ $) 17)) (-2253 (($ $) 22))) -(((-504 |#1|) (-10 -8 (-15 -2253 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2266 (|#1| |#1|))) (-505)) (T -504)) -NIL -(-10 -8 (-15 -2253 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2266 (|#1| |#1|))) -((-2266 (($ $) 11)) (-2236 (($ $) 10)) (-2294 (($ $) 9)) (-2307 (($ $) 8)) (-2281 (($ $) 7)) (-2253 (($ $) 6))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-2517 (($ (-1177)) 8)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 15) (((-1177) $) 12)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 11))) +(((-503) (-13 (-1119) (-625 (-1177)) (-10 -8 (-15 -2517 ($ (-1177)))))) (T -503)) +((-2517 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-503))))) +(-13 (-1119) (-625 (-1177)) (-10 -8 (-15 -2517 ($ (-1177))))) +((-3894 (($ $) 15)) (-3872 (($ $) 24)) (-3916 (($ $) 12)) (-3928 (($ $) 10)) (-3905 (($ $) 17)) (-3882 (($ $) 22))) +(((-504 |#1|) (-10 -8 (-15 -3882 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -3894 (|#1| |#1|))) (-505)) (T -504)) +NIL +(-10 -8 (-15 -3882 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -3894 (|#1| |#1|))) +((-3894 (($ $) 11)) (-3872 (($ $) 10)) (-3916 (($ $) 9)) (-3928 (($ $) 8)) (-3905 (($ $) 7)) (-3882 (($ $) 6))) (((-505) (-141)) (T -505)) -((-2266 (*1 *1 *1) (-4 *1 (-505))) (-2236 (*1 *1 *1) (-4 *1 (-505))) (-2294 (*1 *1 *1) (-4 *1 (-505))) (-2307 (*1 *1 *1) (-4 *1 (-505))) (-2281 (*1 *1 *1) (-4 *1 (-505))) (-2253 (*1 *1 *1) (-4 *1 (-505)))) -(-13 (-10 -8 (-15 -2253 ($ $)) (-15 -2281 ($ $)) (-15 -2307 ($ $)) (-15 -2294 ($ $)) (-15 -2236 ($ $)) (-15 -2266 ($ $)))) -((-1392 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1392 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1263 |#1|) (-13 (-374) (-148) (-736 |#1| |#2|)) (-1263 |#3|)) (T -506)) -((-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1263 *7))))) -(-10 -7 (-15 -1392 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) -((-2034 (((-112) $ $) NIL)) (-1559 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-969 $)) NIL)) (-1669 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-969 $)) NIL)) (-1962 (((-112) $) 39)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4043 (((-112) $ $) 73)) (-4385 (((-656 (-624 $)) $) 50)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1756 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-1403 (($ $) NIL)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-4189 (((-656 $) (-1192 $) (-1196)) NIL) (((-656 $) (-1192 $)) NIL) (((-656 $) (-969 $)) NIL)) (-1935 (($ (-1192 $) (-1196)) NIL) (($ (-1192 $)) NIL) (($ (-969 $)) NIL)) (-2974 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-2378 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-1975 (($ $ $) NIL)) (-3687 (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-701 $) (-1287 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-419 (-576)))) (|:| |vec| (-1287 (-419 (-576))))) (-1287 $) $) NIL) (((-701 (-419 (-576))) (-1287 $)) NIL)) (-2359 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-2191 (($ $) NIL) (($ (-656 $)) NIL)) (-4349 (((-656 (-115)) $) NIL)) (-1344 (((-115) (-115)) NIL)) (-1810 (((-112) $) 42)) (-3082 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3894 (((-1144 (-576) (-624 $)) $) 37)) (-3355 (($ $ (-576)) NIL)) (-4252 (((-1192 $) (-1192 $) (-624 $)) 87) (((-1192 $) (-1192 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2525 (((-1192 $) (-624 $)) 74 (|has| $ (-1068)))) (-2477 (($ (-1 $ $) (-624 $)) NIL)) (-4348 (((-3 (-624 $) "failed") $) NIL)) (-3117 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-1332 (((-656 (-624 $)) $) NIL)) (-1770 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-1412 (((-112) $ (-115)) NIL) (((-112) $ (-1196)) NIL)) (-1644 (($ $) NIL)) (-2927 (((-783) $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ (-656 $)) NIL) (($ $ $) NIL)) (-2513 (((-112) $ $) NIL) (((-112) $ (-1196)) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2015 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-2259 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1196)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1196) (-1 $ (-656 $))) NIL) (($ $ (-1196) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-1787 (((-783) $) NIL)) (-4367 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3724 (($ $) NIL) (($ $ $) NIL)) (-3614 (($ $) 36) (($ $ (-783)) NIL)) (-3905 (((-1144 (-576) (-624 $)) $) 20)) (-2840 (($ $) NIL (|has| $ (-1068)))) (-1505 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-4092 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1144 (-576) (-624 $))) 21)) (-2471 (((-783)) NIL T CONST)) (-3163 (($ $) NIL) (($ (-656 $)) NIL)) (-3201 (((-112) (-115)) 93)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-4300 (($) 10 T CONST)) (-4310 (($) 22 T CONST)) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-3919 (((-112) $ $) 24)) (-4028 (($ $ $) 44)) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL))) -(((-507) (-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4092 ($ (-1144 (-576) (-624 $)))) (-15 -3894 ((-1144 (-576) (-624 $)) $)) (-15 -3905 ((-1144 (-576) (-624 $)) $)) (-15 -2359 ($ $)) (-15 -4043 ((-112) $ $)) (-15 -4252 ((-1192 $) (-1192 $) (-624 $))) (-15 -4252 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -4252 ($ $ (-624 $))) (-15 -4252 ($ $ (-656 (-624 $))))))) (T -507)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2359 (*1 *1 *1) (-5 *1 (-507))) (-4043 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-4252 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-4252 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-4252 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-4252 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))) -(-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -4092 ($ (-1144 (-576) (-624 $)))) (-15 -3894 ((-1144 (-576) (-624 $)) $)) (-15 -3905 ((-1144 (-576) (-624 $)) $)) (-15 -2359 ($ $)) (-15 -4043 ((-112) $ $)) (-15 -4252 ((-1192 $) (-1192 $) (-624 $))) (-15 -4252 ((-1192 $) (-1192 $) (-656 (-624 $)))) (-15 -4252 ($ $ (-624 $))) (-15 -4252 ($ $ (-656 (-624 $)))))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 38)) (-3433 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1992 (($ (-783) |#1|) 21)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) 17 (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) 41 (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2701 ((|#1| $) NIL (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) 15 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) 19)) (-4367 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1254 (-576))) NIL)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) 13)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 24)) (-2851 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2048 (((-783) $) 11 (|has| $ (-6 -4462))))) -(((-508 |#1| |#2|) (-19 |#1|) (-1237) (-576)) (T -508)) +((-3894 (*1 *1 *1) (-4 *1 (-505))) (-3872 (*1 *1 *1) (-4 *1 (-505))) (-3916 (*1 *1 *1) (-4 *1 (-505))) (-3928 (*1 *1 *1) (-4 *1 (-505))) (-3905 (*1 *1 *1) (-4 *1 (-505))) (-3882 (*1 *1 *1) (-4 *1 (-505)))) +(-13 (-10 -8 (-15 -3882 ($ $)) (-15 -3905 ($ $)) (-15 -3928 ($ $)) (-15 -3916 ($ $)) (-15 -3872 ($ $)) (-15 -3894 ($ $)))) +((-1839 (((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)) 54))) +(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1839 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) (-374) (-1262 |#1|) (-13 (-374) (-148) (-736 |#1| |#2|)) (-1262 |#3|)) (T -506)) +((-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1262 *7))))) +(-10 -7 (-15 -1839 ((-430 |#4|) |#4| (-1 (-430 |#2|) |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1900 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-969 $)) NIL)) (-2010 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-969 $)) NIL)) (-1454 (((-112) $) 39)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2999 (((-112) $ $) 73)) (-3887 (((-656 (-624 $)) $) 50)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3340 (($ $ (-304 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1853 (($ $) NIL)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-1816 (((-656 $) (-1191 $) (-1195)) NIL) (((-656 $) (-1191 $)) NIL) (((-656 $) (-969 $)) NIL)) (-3532 (($ (-1191 $) (-1195)) NIL) (($ (-1191 $)) NIL) (($ (-969 $)) NIL)) (-1539 (((-3 (-624 $) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL)) (-4056 (((-624 $) $) NIL) (((-576) $) NIL) (((-419 (-576)) $) 55)) (-3420 (($ $ $) NIL)) (-3687 (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-419 (-576)))) (|:| |vec| (-1286 (-419 (-576))))) (-701 $) (-1286 $)) NIL) (((-701 (-419 (-576))) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-419 (-576)))) (|:| |vec| (-1286 (-419 (-576))))) (-1286 $) $) NIL) (((-701 (-419 (-576))) (-1286 $)) NIL)) (-2521 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-2188 (($ $) NIL) (($ (-656 $)) NIL)) (-3061 (((-656 (-115)) $) NIL)) (-3974 (((-115) (-115)) NIL)) (-1414 (((-112) $) 42)) (-3828 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-1536 (((-1144 (-576) (-624 $)) $) 37)) (-2826 (($ $ (-576)) NIL)) (-4072 (((-1191 $) (-1191 $) (-624 $)) 87) (((-1191 $) (-1191 $) (-656 (-624 $))) 62) (($ $ (-624 $)) 76) (($ $ (-656 (-624 $))) 77)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3121 (((-1191 $) (-624 $)) 74 (|has| $ (-1068)))) (-1632 (($ (-1 $ $) (-624 $)) NIL)) (-2953 (((-3 (-624 $) "failed") $) NIL)) (-3459 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-3963 (((-656 (-624 $)) $) NIL)) (-1616 (($ (-115) $) NIL) (($ (-115) (-656 $)) NIL)) (-3718 (((-112) $ (-115)) NIL) (((-112) $ (-1195)) NIL)) (-2095 (($ $) NIL)) (-2331 (((-783) $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ (-656 $)) NIL) (($ $ $) NIL)) (-4245 (((-112) $ $) NIL) (((-112) $ (-1195)) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2489 (((-112) $) NIL (|has| $ (-1057 (-576))))) (-3306 (($ $ (-624 $) $) NIL) (($ $ (-656 (-624 $)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-1195)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-1195) (-1 $ (-656 $))) NIL) (($ $ (-1195) (-1 $ $)) NIL) (($ $ (-656 (-115)) (-656 (-1 $ $))) NIL) (($ $ (-656 (-115)) (-656 (-1 $ (-656 $)))) NIL) (($ $ (-115) (-1 $ (-656 $))) NIL) (($ $ (-115) (-1 $ $)) NIL)) (-3112 (((-783) $) NIL)) (-2871 (($ (-115) $) NIL) (($ (-115) $ $) NIL) (($ (-115) $ $ $) NIL) (($ (-115) $ $ $ $) NIL) (($ (-115) (-656 $)) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2114 (($ $) NIL) (($ $ $) NIL)) (-2735 (($ $) 36) (($ $ (-783)) NIL)) (-1549 (((-1144 (-576) (-624 $)) $) 20)) (-1372 (($ $) NIL (|has| $ (-1068)))) (-4076 (((-390) $) 101) (((-227) $) 109) (((-171 (-390)) $) 117)) (-3563 (((-874) $) NIL) (($ (-624 $)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-1144 (-576) (-624 $))) 21)) (-1858 (((-783)) NIL T CONST)) (-4102 (($ $) NIL) (($ (-656 $)) NIL)) (-3263 (((-112) (-115)) 93)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2800 (($) 10 T CONST)) (-2810 (($) 22 T CONST)) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-2988 (((-112) $ $) 24)) (-3107 (($ $ $) 44)) (-3095 (($ $ $) NIL) (($ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-419 (-576))) NIL) (($ $ (-576)) 48) (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ $ $) 27) (($ (-576) $) NIL) (($ (-783) $) NIL) (($ (-938) $) NIL))) +(((-507) (-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3563 ($ (-1144 (-576) (-624 $)))) (-15 -1536 ((-1144 (-576) (-624 $)) $)) (-15 -1549 ((-1144 (-576) (-624 $)) $)) (-15 -2521 ($ $)) (-15 -2999 ((-112) $ $)) (-15 -4072 ((-1191 $) (-1191 $) (-624 $))) (-15 -4072 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -4072 ($ $ (-624 $))) (-15 -4072 ($ $ (-656 (-624 $))))))) (T -507)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) (-2521 (*1 *1 *1) (-5 *1 (-507))) (-2999 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507)))) (-4072 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) (-4072 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) (-4072 (*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) (-4072 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507))))) +(-13 (-312) (-27) (-1057 (-576)) (-1057 (-419 (-576))) (-651 (-576)) (-1041) (-651 (-419 (-576))) (-148) (-626 (-171 (-390))) (-238) (-10 -8 (-15 -3563 ($ (-1144 (-576) (-624 $)))) (-15 -1536 ((-1144 (-576) (-624 $)) $)) (-15 -1549 ((-1144 (-576) (-624 $)) $)) (-15 -2521 ($ $)) (-15 -2999 ((-112) $ $)) (-15 -4072 ((-1191 $) (-1191 $) (-624 $))) (-15 -4072 ((-1191 $) (-1191 $) (-656 (-624 $)))) (-15 -4072 ($ $ (-624 $))) (-15 -4072 ($ $ (-656 (-624 $)))))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-576) |#1|) 44 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) 39 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 38)) (-3584 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-4033 (($ (-783) |#1|) 21)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) 17 (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) 41 (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 32) (($ (-1 |#1| |#1| |#1|) $ $) 35)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3504 ((|#1| $) NIL (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) 15 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) 19)) (-2871 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 43) (($ $ (-1253 (-576))) NIL)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) 13)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 24)) (-1661 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3485 (((-783) $) 11 (|has| $ (-6 -4461))))) +(((-508 |#1| |#2|) (-19 |#1|) (-1236) (-576)) (T -508)) NIL (-19 |#1|) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3344 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-1806 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-3656 (($) NIL T CONST)) (-4059 (((-508 |#1| |#3|) $ (-576)) NIL)) (-3888 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3817 ((|#1| $ (-576) (-576)) NIL)) (-4260 (((-656 |#1|) $) NIL)) (-2126 (((-783) $) NIL)) (-1992 (($ (-783) (-783) |#1|) NIL)) (-2140 (((-783) $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-4217 (((-576) $) NIL)) (-1961 (((-576) $) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-1439 (((-576) $) NIL)) (-2743 (((-576) $) NIL)) (-3874 (($ (-1 |#1| |#1|) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2918 (($ $ |#1|) NIL)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-1762 (((-508 |#1| |#2|) $ (-576)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1237) (-576) (-576)) (T -509)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-576) (-576) |#1|) NIL)) (-4158 (($ $ (-576) (-508 |#1| |#3|)) NIL)) (-2257 (($ $ (-576) (-508 |#1| |#2|)) NIL)) (-3767 (($) NIL T CONST)) (-1946 (((-508 |#1| |#3|) $ (-576)) NIL)) (-1776 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1698 ((|#1| $ (-576) (-576)) NIL)) (-3825 (((-656 |#1|) $) NIL)) (-1622 (((-783) $) NIL)) (-4033 (($ (-783) (-783) |#1|) NIL)) (-1636 (((-783) $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1650 (((-576) $) NIL)) (-1351 (((-576) $) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-4159 (((-576) $) NIL)) (-4062 (((-576) $) NIL)) (-1763 (($ (-1 |#1| |#1|) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2500 (($ $ |#1|) NIL)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-4331 (((-508 |#1| |#2|) $ (-576)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1236) (-576) (-576)) (T -509)) NIL (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) -((-4399 (((-656 (-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-3066 (((-656 (-1192 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-2011 (((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107))) -(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -3066 ((-656 (-1192 |#1|)) |#1| (-783) (-783) (-783))) (-15 -4399 ((-656 (-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -2011 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1263 |#1|) (-1263 |#2|)) (T -510)) -((-2011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -1999 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1263 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -1999 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-4399 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -1999 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -1999 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1263 *6)))) (-3066 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1263 *3)) (-5 *2 (-656 (-1192 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1263 *5))))) -(-10 -7 (-15 -3066 ((-656 (-1192 |#1|)) |#1| (-783) (-783) (-783))) (-15 -4399 ((-656 (-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -2011 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) -((-2662 (((-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-3550 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-1647 (((-783) (-783) (-783)) 34)) (-2455 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-4014 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-1524 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-2888 ((|#1| (-701 |#1|)) 18))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -2888 (|#1| (-701 |#1|))) (-15 -3550 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1524 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -1647 ((-783) (-783) (-783))) (-15 -4014 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4014 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2455 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2662 ((-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $)))) (-1263 |#1|) (-421 |#1| |#2|)) (T -511)) -((-2662 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2455 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4014 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4014 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1647 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1524 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-3550 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1263 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) -(-10 -7 (-15 -2888 (|#1| (-701 |#1|))) (-15 -3550 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1524 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -1647 ((-783) (-783) (-783))) (-15 -4014 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -4014 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2455 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2662 ((-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -1999 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) -((-2034 (((-112) $ $) NIL)) (-2060 (($ $) NIL)) (-4279 (($ $ $) 40)) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3362 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2398 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-4248 (((-112) $ (-1254 (-576)) (-112)) NIL (|has| $ (-6 -4463))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-2892 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-2359 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3888 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4463)))) (-3817 (((-112) $ (-576)) NIL)) (-3433 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1119))) (((-576) (-112) $) NIL (|has| (-112) (-1119))) (((-576) (-1 (-112) (-112)) $) NIL)) (-4260 (((-656 (-112)) $) NIL (|has| $ (-6 -4462)))) (-2457 (($ $ $) 38)) (-2433 (($ $) NIL)) (-4401 (($ $ $) NIL)) (-1992 (($ (-783) (-112)) 27)) (-2684 (($ $ $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) 8 (|has| (-576) (-862)))) (-3492 (($ $ $) NIL)) (-3257 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1750 (((-656 (-112)) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL)) (-3874 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-3371 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 (((-112) $) NIL (|has| (-576) (-862)))) (-1863 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2918 (($ $ (-112)) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119))))) (-3060 (((-656 (-112)) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) 28)) (-4367 (($ $ (-1254 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-2470 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-3150 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-1119)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) 29)) (-1505 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-4103 (($ (-656 (-112))) NIL)) (-2851 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4092 (((-874) $) 26)) (-1531 (((-112) $ $) NIL)) (-2190 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-2445 (($ $ $) 36)) (-2107 (($ $ $) NIL)) (-1741 (($ $ $) 45)) (-1755 (($ $) 43)) (-1729 (($ $ $) 44)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 30)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 31)) (-2094 (($ $ $) NIL)) (-2048 (((-783) $) 13 (|has| $ (-6 -4462))))) -(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -1755 ($ $)) (-15 -1741 ($ $ $)) (-15 -1729 ($ $ $)))) (-576)) (T -512)) -((-1755 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-1741 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-1729 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) -(-13 (-124) (-10 -8 (-15 -1755 ($ $)) (-15 -1741 ($ $ $)) (-15 -1729 ($ $ $)))) -((-2110 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1192 |#4|)) 35)) (-2915 (((-1192 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1192 |#4|)) 22)) (-3785 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1192 |#4|))) 46)) (-3115 (((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2915 (|#2| (-1 |#1| |#4|) (-1192 |#4|))) (-15 -2915 ((-1192 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2110 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1192 |#4|))) (-15 -3785 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1192 |#4|)))) (-15 -3115 ((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|))) (-1068) (-1263 |#1|) (-1263 |#2|) (-1068)) (T -513)) -((-3115 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *6 (-1263 *5)) (-5 *2 (-1192 (-1192 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1263 *6)))) (-3785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1192 *8))) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-1263 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1263 *6)))) (-2110 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *4 (-1263 *5)) (-5 *2 (-1192 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1263 *4)))) (-2915 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2))))) -(-10 -7 (-15 -2915 (|#2| (-1 |#1| |#4|) (-1192 |#4|))) (-15 -2915 ((-1192 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2110 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1192 |#4|))) (-15 -3785 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1192 |#4|)))) (-15 -3115 ((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2034 (((-112) $ $) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3237 (((-1292) $) 25)) (-4367 (((-1178) $ (-1196)) 30)) (-1650 (((-1292) $) 17)) (-4092 (((-874) $) 27) (($ (-1178)) 26)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 11)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 9))) -(((-514) (-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 ((-1292) $)) (-15 -3237 ((-1292) $)) (-15 -4092 ($ (-1178)))))) (T -514)) -((-4367 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1178)) (-5 *1 (-514)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-514))))) -(-13 (-862) (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 ((-1292) $)) (-15 -3237 ((-1292) $)) (-15 -4092 ($ (-1178))))) -((-2324 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3634 ((|#1| |#4|) 10)) (-4077 ((|#3| |#4|) 17))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3634 (|#1| |#4|)) (-15 -4077 (|#3| |#4|)) (-15 -2324 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1011 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) -((-2324 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-4077 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-3634 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) -(-10 -7 (-15 -3634 (|#1| |#4|)) (-15 -4077 (|#3| |#4|)) (-15 -2324 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2034 (((-112) $ $) NIL)) (-2940 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-1962 (((-112) $) 178)) (-4302 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-3259 (((-1185 (-656 (-969 |#1|)) (-656 (-304 (-969 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1196))))) (-1720 (($ $ $) 107) (($ $ |#4|) 105)) (-1810 (((-112) $) 177)) (-1812 (($ $) 131)) (-3288 (((-1178) $) NIL)) (-3586 (($ $ $) 99) (($ (-656 $)) 101)) (-3360 (((-112) |#4| $) 129)) (-2578 (((-112) $ $) 82)) (-2133 (($ (-656 |#4|)) 106)) (-3139 (((-1139) $) NIL)) (-2536 (($ (-656 |#4|)) 175)) (-3215 (((-112) $) 176)) (-2686 (($ $) 85)) (-3596 (((-656 |#4|) $) 73)) (-4162 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-1388 (((-112) |#4| $) 89)) (-3667 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-4092 (((-874) $) 174) (($ (-656 |#4|)) 102)) (-1531 (((-112) $ $) NIL)) (-4140 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-3919 (((-112) $ $) 84)) (-4007 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113))) -(((-516 |#1| |#2| |#3| |#4|) (-13 (-1119) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -4007 ($ $ $)) (-15 -1810 ((-112) $)) (-15 -1962 ((-112) $)) (-15 -1388 ((-112) |#4| $)) (-15 -2578 ((-112) $ $)) (-15 -3360 ((-112) |#4| $)) (-15 -2940 ((-112) $ (-656 |#3|))) (-15 -2940 ((-112) $)) (-15 -3586 ($ $ $)) (-15 -3586 ($ (-656 $))) (-15 -1720 ($ $ $)) (-15 -1720 ($ $ |#4|)) (-15 -2686 ($ $)) (-15 -4162 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -4140 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -3667 ((-576) $ (-656 |#3|))) (-15 -3667 ((-576) $)) (-15 -1812 ($ $)) (-15 -2133 ($ (-656 |#4|))) (-15 -2536 ($ (-656 |#4|))) (-15 -3215 ((-112) $)) (-15 -3596 ((-656 |#4|) $)) (-15 -4092 ($ (-656 |#4|))) (-15 -4302 ($ $ |#4|)) (-15 -4302 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1196))) (-15 -3259 ((-1185 (-656 (-969 |#1|)) (-656 (-304 (-969 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -516)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-4007 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-1810 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-1962 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-1388 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-2578 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3360 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-2940 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-2940 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3586 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-3586 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-1720 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-1720 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) (-2686 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-4162 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-4140 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3667 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-3667 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-1812 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-2133 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2536 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-3215 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3596 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-4302 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) (-4302 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-966 *4 *5 *6)))) (-3259 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *6 (-626 (-1196))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1185 (-656 (-969 *4)) (-656 (-304 (-969 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) -(-13 (-1119) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -4007 ($ $ $)) (-15 -1810 ((-112) $)) (-15 -1962 ((-112) $)) (-15 -1388 ((-112) |#4| $)) (-15 -2578 ((-112) $ $)) (-15 -3360 ((-112) |#4| $)) (-15 -2940 ((-112) $ (-656 |#3|))) (-15 -2940 ((-112) $)) (-15 -3586 ($ $ $)) (-15 -3586 ($ (-656 $))) (-15 -1720 ($ $ $)) (-15 -1720 ($ $ |#4|)) (-15 -2686 ($ $)) (-15 -4162 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -4140 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -3667 ((-576) $ (-656 |#3|))) (-15 -3667 ((-576) $)) (-15 -1812 ($ $)) (-15 -2133 ($ (-656 |#4|))) (-15 -2536 ($ (-656 |#4|))) (-15 -3215 ((-112) $)) (-15 -3596 ((-656 |#4|) $)) (-15 -4092 ($ (-656 |#4|))) (-15 -4302 ($ $ |#4|)) (-15 -4302 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1196))) (-15 -3259 ((-1185 (-656 (-969 |#1|)) (-656 (-304 (-969 |#1|)))) (-656 |#4|))) |%noBranch|))) -((-3351 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-2139 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-2405 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-2725 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-2311 (((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-4185 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))) 195))) -(((-517 |#1| |#2|) (-10 -7 (-15 -3351 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2139 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2725 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2405 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2311 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4185 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))))) (-656 (-1196)) (-783)) (T -517)) -((-4185 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-2311 (*1 *2 *3) (-12 (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))))) (-2405 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-783)) (-876 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) -(-10 -7 (-15 -3351 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2139 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2725 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2405 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2311 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4185 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2467 (($) 6)) (-4092 (((-874) $) 12) (((-1196) $) 10)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 8))) -(((-518) (-13 (-1119) (-625 (-1196)) (-10 -8 (-15 -2467 ($))))) (T -518)) -((-2467 (*1 *1) (-5 *1 (-518)))) -(-13 (-1119) (-625 (-1196)) (-10 -8 (-15 -2467 ($)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-1518 (($ |#1| |#2|) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3369 ((|#2| $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 12 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) 11) (($ $ $) 35)) (-4007 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21))) +((-1988 (((-656 (-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783)) 32)) (-1339 (((-656 (-1191 |#1|)) |#1| (-783) (-783) (-783)) 43)) (-2285 (((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)) 107))) +(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -1339 ((-656 (-1191 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1988 ((-656 (-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -2285 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) (-360) (-1262 |#1|) (-1262 |#2|)) (T -510)) +((-2285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-2 (|:| -3713 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7))))) (-5 *5 (-783)) (-4 *8 (-1262 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-360)) (-5 *2 (-2 (|:| -3713 (-701 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-701 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-1988 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -3713 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -3713 (-701 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-701 *6)))) (-4 *7 (-1262 *6)))) (-1339 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1262 *3)) (-5 *2 (-656 (-1191 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1262 *5))))) +(-10 -7 (-15 -1339 ((-656 (-1191 |#1|)) |#1| (-783) (-783) (-783))) (-15 -1988 ((-656 (-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-783) (-783))) (-15 -2285 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) (-656 |#3|) (-656 (-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) (-783)))) +((-3051 (((-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))) 70)) (-3849 ((|#1| (-701 |#1|) |#1| (-783)) 24)) (-4292 (((-783) (-783) (-783)) 34)) (-1566 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 50)) (-2997 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 58) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 55)) (-1509 ((|#1| (-701 |#1|) (-701 |#1|) |#1| (-576)) 28)) (-2731 ((|#1| (-701 |#1|)) 18))) +(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -2731 (|#1| (-701 |#1|))) (-15 -3849 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1509 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -4292 ((-783) (-783) (-783))) (-15 -2997 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2997 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1566 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3051 ((-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $)))) (-1262 |#1|) (-421 |#1| |#2|)) (T -511)) +((-3051 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1566 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2997 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2997 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-4292 (*1 *2 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) (-1509 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) (-4 *2 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-3849 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) (-4 *2 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5)))) (-2731 (*1 *2 *3) (-12 (-5 *3 (-701 *2)) (-4 *4 (-1262 *2)) (-4 *2 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4))))) +(-10 -7 (-15 -2731 (|#1| (-701 |#1|))) (-15 -3849 (|#1| (-701 |#1|) |#1| (-783))) (-15 -1509 (|#1| (-701 |#1|) (-701 |#1|) |#1| (-576))) (-15 -4292 ((-783) (-783) (-783))) (-15 -2997 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2997 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -1566 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3051 ((-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|))) (-2 (|:| -3713 (-701 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-701 |#1|)))))) +((-3474 (((-112) $ $) NIL)) (-3498 (($ $) NIL)) (-2777 (($ $ $) 40)) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) $) NIL (|has| (-112) (-862))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2265 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-112) (-862)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-1758 (($ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-3731 (((-112) $ (-1253 (-576)) (-112)) NIL (|has| $ (-6 -4462))) (((-112) $ (-576) (-112)) 42 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-3902 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-2521 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-1776 (((-112) $ (-576) (-112)) NIL (|has| $ (-6 -4462)))) (-1698 (((-112) $ (-576)) NIL)) (-3584 (((-576) (-112) $ (-576)) NIL (|has| (-112) (-1119))) (((-576) (-112) $) NIL (|has| (-112) (-1119))) (((-576) (-1 (-112) (-112)) $) NIL)) (-3825 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-2768 (($ $ $) 38)) (-2746 (($ $) NIL)) (-4037 (($ $ $) NIL)) (-4033 (($ (-783) (-112)) 27)) (-4174 (($ $ $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) 8 (|has| (-576) (-862)))) (-2442 (($ $ $) NIL)) (-1854 (($ $ $) NIL (|has| (-112) (-862))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2591 (((-656 (-112)) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL)) (-1763 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-2277 (($ $ $ (-576)) NIL) (($ (-112) $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 (((-112) $) NIL (|has| (-576) (-862)))) (-2644 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2500 (($ $ (-112)) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-112)) (-656 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-304 (-112))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119)))) (($ $ (-656 (-304 (-112)))) NIL (-12 (|has| (-112) (-319 (-112))) (|has| (-112) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119))))) (-1947 (((-656 (-112)) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) 28)) (-2871 (($ $ (-1253 (-576))) NIL) (((-112) $ (-576)) 22) (((-112) $ (-576) (-112)) NIL)) (-3464 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-1456 (((-783) (-112) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-112) (-1119)))) (((-783) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) 29)) (-4076 (((-548) $) NIL (|has| (-112) (-626 (-548))))) (-3573 (($ (-656 (-112))) NIL)) (-1661 (($ (-656 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3563 (((-874) $) 26)) (-3985 (((-112) $ $) NIL)) (-2043 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4461)))) (-2758 (($ $ $) 36)) (-3546 (($ $ $) NIL)) (-3533 (($ $ $) 45)) (-3545 (($ $) 43)) (-3521 (($ $ $) 44)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 30)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 31)) (-3534 (($ $ $) NIL)) (-3485 (((-783) $) 13 (|has| $ (-6 -4461))))) +(((-512 |#1|) (-13 (-124) (-10 -8 (-15 -3545 ($ $)) (-15 -3533 ($ $ $)) (-15 -3521 ($ $ $)))) (-576)) (T -512)) +((-3545 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3533 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) (-3521 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576))))) +(-13 (-124) (-10 -8 (-15 -3545 ($ $)) (-15 -3533 ($ $ $)) (-15 -3521 ($ $ $)))) +((-2438 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1191 |#4|)) 35)) (-3367 (((-1191 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1191 |#4|)) 22)) (-4190 (((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1191 |#4|))) 46)) (-2659 (((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3367 (|#2| (-1 |#1| |#4|) (-1191 |#4|))) (-15 -3367 ((-1191 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2438 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1191 |#4|))) (-15 -4190 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1191 |#4|)))) (-15 -2659 ((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|))) (-1068) (-1262 |#1|) (-1262 |#2|) (-1068)) (T -513)) +((-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *6 (-1262 *5)) (-5 *2 (-1191 (-1191 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1262 *6)))) (-4190 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-701 (-1191 *8))) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-1262 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1262 *6)))) (-2438 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *4 (-1262 *5)) (-5 *2 (-1191 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1262 *4)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2))))) +(-10 -7 (-15 -3367 (|#2| (-1 |#1| |#4|) (-1191 |#4|))) (-15 -3367 ((-1191 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2438 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1191 |#4|))) (-15 -4190 ((-3 (-701 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-701 (-1191 |#4|)))) (-15 -2659 ((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3474 (((-112) $ $) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3712 (((-1291) $) 25)) (-2871 (((-1177) $ (-1195)) 30)) (-2076 (((-1291) $) 17)) (-3563 (((-874) $) 27) (($ (-1177)) 26)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 11)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 9))) +(((-514) (-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 ((-1291) $)) (-15 -3712 ((-1291) $)) (-15 -3563 ($ (-1177)))))) (T -514)) +((-2871 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1177)) (-5 *1 (-514)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514)))) (-3712 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-514))))) +(-13 (-862) (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 ((-1291) $)) (-15 -3712 ((-1291) $)) (-15 -3563 ($ (-1177))))) +((-3956 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3412 ((|#1| |#4|) 10)) (-3266 ((|#3| |#4|) 17))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3412 (|#1| |#4|)) (-15 -3266 (|#3| |#4|)) (-15 -3956 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-568) (-1011 |#1|) (-384 |#1|) (-384 |#2|)) (T -515)) +((-3956 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) (-3266 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-4 *2 (-384 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-384 *5)))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-384 *4))))) +(-10 -7 (-15 -3412 (|#1| |#4|)) (-15 -3266 (|#3| |#4|)) (-15 -3956 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3474 (((-112) $ $) NIL)) (-3964 (((-112) $ (-656 |#3|)) 126) (((-112) $) 127)) (-1454 (((-112) $) 178)) (-1878 (($ $ |#4|) 117) (($ $ |#4| (-656 |#3|)) 121)) (-2064 (((-1184 (-656 (-969 |#1|)) (-656 (-304 (-969 |#1|)))) (-656 |#4|)) 171 (|has| |#3| (-626 (-1195))))) (-3824 (($ $ $) 107) (($ $ |#4|) 105)) (-1414 (((-112) $) 177)) (-1612 (($ $) 131)) (-1927 (((-1177) $) NIL)) (-2021 (($ $ $) 99) (($ (-656 $)) 101)) (-3262 (((-112) |#4| $) 129)) (-3641 (((-112) $ $) 82)) (-1675 (($ (-656 |#4|)) 106)) (-1445 (((-1139) $) NIL)) (-1868 (($ (-656 |#4|)) 175)) (-2121 (((-112) $) 176)) (-4390 (($ $) 85)) (-1879 (((-656 |#4|) $) 73)) (-4024 (((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|)) NIL)) (-2372 (((-112) |#4| $) 89)) (-2446 (((-576) $ (-656 |#3|)) 133) (((-576) $) 134)) (-3563 (((-874) $) 174) (($ (-656 |#4|)) 102)) (-3985 (((-112) $ $) NIL)) (-2513 (($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $))) NIL)) (-2988 (((-112) $ $) 84)) (-3083 (($ $ $) 109)) (** (($ $ (-783)) 115)) (* (($ $ $) 113))) +(((-516 |#1| |#2| |#3| |#4|) (-13 (-1119) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3083 ($ $ $)) (-15 -1414 ((-112) $)) (-15 -1454 ((-112) $)) (-15 -2372 ((-112) |#4| $)) (-15 -3641 ((-112) $ $)) (-15 -3262 ((-112) |#4| $)) (-15 -3964 ((-112) $ (-656 |#3|))) (-15 -3964 ((-112) $)) (-15 -2021 ($ $ $)) (-15 -2021 ($ (-656 $))) (-15 -3824 ($ $ $)) (-15 -3824 ($ $ |#4|)) (-15 -4390 ($ $)) (-15 -4024 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -2513 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -2446 ((-576) $ (-656 |#3|))) (-15 -2446 ((-576) $)) (-15 -1612 ($ $)) (-15 -1675 ($ (-656 |#4|))) (-15 -1868 ($ (-656 |#4|))) (-15 -2121 ((-112) $)) (-15 -1879 ((-656 |#4|) $)) (-15 -3563 ($ (-656 |#4|))) (-15 -1878 ($ $ |#4|)) (-15 -1878 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1195))) (-15 -2064 ((-1184 (-656 (-969 |#1|)) (-656 (-304 (-969 |#1|)))) (-656 |#4|))) |%noBranch|))) (-374) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -516)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3083 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-1414 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-1454 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-2372 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-3641 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3262 (*1 *2 *3 *1) (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-3964 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-2021 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-2021 (*1 *1 *2) (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3824 (*1 *1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-3824 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) (-4390 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-4024 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-2513 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) (-2446 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-1612 (*1 *1 *1) (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-1675 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2121 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-1879 (*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) (-1878 (*1 *1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) (-1878 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-966 *4 *5 *6)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *6 (-626 (-1195))) (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1184 (-656 (-969 *4)) (-656 (-304 (-969 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) +(-13 (-1119) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 -3083 ($ $ $)) (-15 -1414 ((-112) $)) (-15 -1454 ((-112) $)) (-15 -2372 ((-112) |#4| $)) (-15 -3641 ((-112) $ $)) (-15 -3262 ((-112) |#4| $)) (-15 -3964 ((-112) $ (-656 |#3|))) (-15 -3964 ((-112) $)) (-15 -2021 ($ $ $)) (-15 -2021 ($ (-656 $))) (-15 -3824 ($ $ $)) (-15 -3824 ($ $ |#4|)) (-15 -4390 ($ $)) (-15 -4024 ((-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)) $ (-656 |#3|))) (-15 -2513 ($ (-2 (|:| |mval| (-701 |#1|)) (|:| |invmval| (-701 |#1|)) (|:| |genIdeal| $)))) (-15 -2446 ((-576) $ (-656 |#3|))) (-15 -2446 ((-576) $)) (-15 -1612 ($ $)) (-15 -1675 ($ (-656 |#4|))) (-15 -1868 ($ (-656 |#4|))) (-15 -2121 ((-112) $)) (-15 -1879 ((-656 |#4|) $)) (-15 -3563 ($ (-656 |#4|))) (-15 -1878 ($ $ |#4|)) (-15 -1878 ($ $ |#4| (-656 |#3|))) (IF (|has| |#3| (-626 (-1195))) (-15 -2064 ((-1184 (-656 (-969 |#1|)) (-656 (-304 (-969 |#1|)))) (-656 |#4|))) |%noBranch|))) +((-3691 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 176)) (-4035 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 177)) (-1928 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 129)) (-1792 (((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) NIL)) (-3942 (((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) 179)) (-2641 (((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))) 195))) +(((-517 |#1| |#2|) (-10 -7 (-15 -3691 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4035 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1792 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1928 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3942 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2641 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))))) (-656 (-1195)) (-783)) (T -517)) +((-2641 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *1 (-517 *4 *5)))) (-3942 (*1 *2 *3) (-12 (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-656 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))))) (-1928 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-576)) (-245 *4 (-783)) (-876 *3) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4)))) (-1792 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-4035 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) +(-10 -7 (-15 -3691 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -4035 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1792 ((-112) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -1928 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -3942 ((-656 (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576))))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))))) (-15 -2641 ((-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-516 (-419 (-576)) (-245 |#2| (-783)) (-876 |#1|) (-253 |#1| (-419 (-576)))) (-656 (-876 |#1|))))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-1546 (($) 6)) (-3563 (((-874) $) 12) (((-1195) $) 10)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 8))) +(((-518) (-13 (-1119) (-625 (-1195)) (-10 -8 (-15 -1546 ($))))) (T -518)) +((-1546 (*1 *1) (-5 *1 (-518)))) +(-13 (-1119) (-625 (-1195)) (-10 -8 (-15 -1546 ($)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1970 (($ |#1| |#2|) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1672 ((|#2| $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 12 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) 11) (($ $ $) 35)) (-3083 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21))) (((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-862)) (T -519)) NIL (-13 (-21) (-521 |#1| |#2|)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 13)) (-3656 (($) NIL T CONST)) (-1717 (($ $) 41)) (-1518 (($ |#1| |#2|) 38)) (-2477 (($ (-1 |#1| |#1|) $) 40)) (-3369 ((|#2| $) NIL)) (-1692 ((|#1| $) 42)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 10 T CONST)) (-3919 (((-112) $ $) NIL)) (-4007 (($ $ $) 26)) (* (($ (-938) $) NIL) (($ (-783) $) 36))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 13)) (-3767 (($) NIL T CONST)) (-2166 (($ $) 41)) (-1970 (($ |#1| |#2|) 38)) (-1632 (($ (-1 |#1| |#1|) $) 40)) (-1672 ((|#2| $) NIL)) (-2142 ((|#1| $) 42)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 10 T CONST)) (-2988 (((-112) $ $) NIL)) (-3083 (($ $ $) 26)) (* (($ (-938) $) NIL) (($ (-783) $) 36))) (((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-862)) (T -520)) NIL (-13 (-23) (-521 |#1| |#2|)) -((-2034 (((-112) $ $) 7)) (-1717 (($ $) 14)) (-1518 (($ |#1| |#2|) 17)) (-2477 (($ (-1 |#1| |#1|) $) 18)) (-3369 ((|#2| $) 15)) (-1692 ((|#1| $) 16)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-3474 (((-112) $ $) 7)) (-2166 (($ $) 14)) (-1970 (($ |#1| |#2|) 17)) (-1632 (($ (-1 |#1| |#1|) $) 18)) (-1672 ((|#2| $) 15)) (-2142 ((|#1| $) 16)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-521 |#1| |#2|) (-141) (-1119) (-862)) (T -521)) -((-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-862)))) (-1518 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1119)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-862)))) (-1717 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862))))) -(-13 (-1119) (-10 -8 (-15 -2477 ($ (-1 |t#1| |t#1|) $)) (-15 -1518 ($ |t#1| |t#2|)) (-15 -1692 (|t#1| $)) (-15 -3369 (|t#2| $)) (-15 -1717 ($ $)))) +((-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-862)))) (-1970 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1119)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-862)))) (-2166 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862))))) +(-13 (-1119) (-10 -8 (-15 -1632 ($ (-1 |t#1| |t#1|) $)) (-15 -1970 ($ |t#1| |t#2|)) (-15 -2142 (|t#1| $)) (-15 -1672 (|t#2| $)) (-15 -2166 ($ $)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-1518 (($ |#1| |#2|) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3369 ((|#2| $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 22)) (-4007 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1970 (($ |#1| |#2|) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1672 ((|#2| $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 22)) (-3083 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL))) (((-522 |#1| |#2|) (-13 (-804) (-521 |#1| |#2|)) (-804) (-862)) (T -522)) NIL (-13 (-804) (-521 |#1| |#2|)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2746 (($ $ $) 23)) (-3788 (((-3 $ "failed") $ $) 19)) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-1518 (($ |#1| |#2|) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3369 ((|#2| $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-4007 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-4415 (($ $ $) 23)) (-1367 (((-3 $ "failed") $ $) 19)) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1970 (($ |#1| |#2|) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1672 ((|#2| $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL)) (-3083 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL))) (((-523 |#1| |#2|) (-13 (-805) (-521 |#1| |#2|)) (-805) (-862)) (T -523)) NIL (-13 (-805) (-521 |#1| |#2|)) -((-2034 (((-112) $ $) NIL)) (-1717 (($ $) 32)) (-1518 (($ |#1| |#2|) 28)) (-2477 (($ (-1 |#1| |#1|) $) 30)) (-3369 ((|#2| $) 34)) (-1692 ((|#1| $) 33)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 27)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 20))) +((-3474 (((-112) $ $) NIL)) (-2166 (($ $) 32)) (-1970 (($ |#1| |#2|) 28)) (-1632 (($ (-1 |#1| |#1|) $) 30)) (-1672 ((|#2| $) 34)) (-2142 ((|#1| $) 33)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 27)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 20))) (((-524 |#1| |#2|) (-521 |#1| |#2|) (-1119) (-862)) (T -524)) NIL (-521 |#1| |#2|) -((-2259 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -2259 (|#1| |#1| |#2| |#3|)) (-15 -2259 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1119) (-1237)) (T -525)) -NIL -(-10 -8 (-15 -2259 (|#1| |#1| |#2| |#3|)) (-15 -2259 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) -((-2259 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-526 |#1| |#2|) (-141) (-1119) (-1237)) (T -526)) -((-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1237)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1237))))) -(-13 (-10 -8 (-15 -2259 ($ $ |t#1| |t#2|)) (-15 -2259 ($ $ (-656 |t#1|) (-656 |t#2|))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 17)) (-1655 (((-656 (-2 (|:| |gen| |#1|) (|:| -3353 |#2|))) $) 19)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2247 (((-783) $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-3158 ((|#1| $ (-576)) 24)) (-3902 ((|#2| $ (-576)) 22)) (-3230 (($ (-1 |#1| |#1|) $) 48)) (-2208 (($ (-1 |#2| |#2|) $) 45)) (-3288 (((-1178) $) NIL)) (-1885 (($ $ $) 55 (|has| |#2| (-804)))) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 44) (($ |#1|) NIL)) (-2430 ((|#2| |#1| $) 51)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 11 T CONST)) (-3919 (((-112) $ $) 30)) (-4007 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-938) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32))) +((-3306 (($ $ (-656 |#2|) (-656 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-525 |#1| |#2| |#3|) (-10 -8 (-15 -3306 (|#1| |#1| |#2| |#3|)) (-15 -3306 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) (-526 |#2| |#3|) (-1119) (-1236)) (T -525)) +NIL +(-10 -8 (-15 -3306 (|#1| |#1| |#2| |#3|)) (-15 -3306 (|#1| |#1| (-656 |#2|) (-656 |#3|)))) +((-3306 (($ $ (-656 |#1|) (-656 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-526 |#1| |#2|) (-141) (-1119) (-1236)) (T -526)) +((-3306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1236)))) (-3306 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1236))))) +(-13 (-10 -8 (-15 -3306 ($ $ |t#1| |t#2|)) (-15 -3306 ($ $ (-656 |t#1|) (-656 |t#2|))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 17)) (-3826 (((-656 (-2 (|:| |gen| |#1|) (|:| -3984 |#2|))) $) 19)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2148 (((-783) $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-2281 ((|#1| $ (-576)) 24)) (-2523 ((|#2| $ (-576)) 22)) (-4239 (($ (-1 |#1| |#1|) $) 48)) (-4441 (($ (-1 |#2| |#2|) $) 45)) (-1927 (((-1177) $) NIL)) (-4370 (($ $ $) 55 (|has| |#2| (-804)))) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 44) (($ |#1|) NIL)) (-4333 ((|#2| |#1| $) 51)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 11 T CONST)) (-2988 (((-112) $ $) 30)) (-3083 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-938) $) NIL) (($ (-783) $) 37) (($ |#2| |#1|) 32))) (((-527 |#1| |#2| |#3|) (-333 |#1| |#2|) (-1119) (-132) |#2|) (T -527)) NIL (-333 |#1| |#2|) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-2390 (((-112) (-112)) 32)) (-4248 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3831 (($ (-1 (-112) |#1|) $) 77)) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-4329 (($ $) 81 (|has| |#1| (-1119)))) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4376 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) 64)) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3433 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-4362 (($ $ (-576)) 19)) (-2081 (((-783) $) 13)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1992 (($ (-783) |#1|) 31)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) 29 (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-1897 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) 28 (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2361 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-3371 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1906 (($ (-656 |#1|)) 43)) (-2701 ((|#1| $) NIL (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) 24 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 60)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) 21)) (-4367 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1254 (-576))) NIL)) (-2531 (($ $ (-1254 (-576))) 71) (($ $ (-576)) 65)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) 61 (|has| $ (-6 -4463)))) (-4268 (($ $) 51)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) NIL)) (-2116 (($ $ $) 62) (($ $ |#1|) 59)) (-2851 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2048 (((-783) $) 22 (|has| $ (-6 -4462))))) -(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1906 ($ (-656 |#1|))) (-15 -2081 ((-783) $)) (-15 -4362 ($ $ (-576))) (-15 -2390 ((-112) (-112))))) (-1237) (-576)) (T -528)) -((-1906 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-576)))) (-4362 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 *2))) (-2390 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-576))))) -(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1906 ($ (-656 |#1|))) (-15 -2081 ((-783) $)) (-15 -4362 ($ $ (-576))) (-15 -2390 ((-112) (-112))))) -((-2034 (((-112) $ $) NIL)) (-2270 (((-1154) $) 11)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2380 (((-1154) $) 13)) (-3193 (((-1154) $) 9)) (-4092 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-529) (-13 (-1102) (-10 -8 (-15 -3193 ((-1154) $)) (-15 -2270 ((-1154) $)) (-15 -2380 ((-1154) $))))) (T -529)) -((-3193 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))) -(-13 (-1102) (-10 -8 (-15 -3193 ((-1154) $)) (-15 -2270 ((-1154) $)) (-15 -2380 ((-1154) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 (((-593 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-593 |#1|) "failed") $) NIL)) (-2378 (((-593 |#1|) $) NIL)) (-3006 (($ (-1287 (-593 |#1|))) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-593 |#1|) (-379)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) NIL (|has| (-593 |#1|) (-379)))) (-3506 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-1329 (($ $ (-783)) NIL (-3765 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-3765 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2725 (((-112) $) NIL)) (-1538 (((-938) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-938)) $) NIL (-3765 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1810 (((-112) $) NIL)) (-3783 (($) NIL (|has| (-593 |#1|) (-379)))) (-2172 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-4252 (((-593 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-2083 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 (-593 |#1|)) $) NIL) (((-1192 $) $ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-3225 (((-938) $) NIL (|has| (-593 |#1|) (-379)))) (-3392 (((-1192 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-4212 (((-1192 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1192 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-4216 (($ $ (-1192 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-2550 (($ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-3377 (((-112) $) NIL)) (-3139 (((-1139) $) NIL)) (-2582 (($) NIL (|has| (-593 |#1|) (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-1392 (((-430 $) $) NIL)) (-2588 (((-845 (-938))) NIL) (((-938)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-3765 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-3667 (((-135)) NIL)) (-3614 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2369 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-2840 (((-1192 (-593 |#1|))) NIL)) (-3870 (($) NIL (|has| (-593 |#1|) (-379)))) (-2506 (($) NIL (|has| (-593 |#1|) (-379)))) (-3287 (((-1287 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1287 $)) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-3612 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-3765 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL) (((-1287 $) (-938)) NIL)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3847 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-4286 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-2579 (((-112) (-112)) 32)) (-3731 ((|#1| $ (-576) |#1|) 42 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-4001 (($ (-1 (-112) |#1|) $) 77)) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3315 (($ $) 81 (|has| |#1| (-1119)))) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3623 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) 64)) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3584 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-1683 (($ $ (-576)) 19)) (-1815 (((-783) $) 13)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-4033 (($ (-783) |#1|) 31)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) 29 (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-2093 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 55)) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) 56) (($ $ $) NIL (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) 28 (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2040 (($ $ $ (-576)) 73) (($ |#1| $ (-576)) 57)) (-2277 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1825 (($ (-656 |#1|)) 43)) (-3504 ((|#1| $) NIL (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) 24 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 60)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) 21)) (-2871 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 53) (($ $ (-1253 (-576))) NIL)) (-2560 (($ $ (-1253 (-576))) 71) (($ $ (-576)) 65)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) 61 (|has| $ (-6 -4462)))) (-1954 (($ $) 51)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) NIL)) (-1523 (($ $ $) 62) (($ $ |#1|) 59)) (-1661 (($ $ |#1|) NIL) (($ |#1| $) 58) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3485 (((-783) $) 22 (|has| $ (-6 -4461))))) +(((-528 |#1| |#2|) (-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1825 ($ (-656 |#1|))) (-15 -1815 ((-783) $)) (-15 -1683 ($ $ (-576))) (-15 -2579 ((-112) (-112))))) (-1236) (-576)) (T -528)) +((-1825 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-528 *3 *4)) (-14 *4 (-576)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-576)))) (-1683 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 *2))) (-2579 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 (-576))))) +(-13 (-19 |#1|) (-292 |#1|) (-10 -8 (-15 -1825 ($ (-656 |#1|))) (-15 -1815 ((-783) $)) (-15 -1683 ($ $ (-576))) (-15 -2579 ((-112) (-112))))) +((-3474 (((-112) $ $) NIL)) (-3473 (((-1154) $) 11)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2935 (((-1154) $) 13)) (-2006 (((-1154) $) 9)) (-3563 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-529) (-13 (-1102) (-10 -8 (-15 -2006 ((-1154) $)) (-15 -3473 ((-1154) $)) (-15 -2935 ((-1154) $))))) (T -529)) +((-2006 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))) +(-13 (-1102) (-10 -8 (-15 -2006 ((-1154) $)) (-15 -3473 ((-1154) $)) (-15 -2935 ((-1154) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 (((-593 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| (-593 |#1|) (-379)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL (|has| (-593 |#1|) (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-593 |#1|) "failed") $) NIL)) (-4056 (((-593 |#1|) $) NIL)) (-2612 (($ (-1286 (-593 |#1|))) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-379)))) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-593 |#1|) (-379)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) NIL (|has| (-593 |#1|) (-379)))) (-2664 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-3499 (($ $ (-783)) NIL (-2835 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379)))) (($ $) NIL (-2835 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1792 (((-112) $) NIL)) (-3333 (((-938) $) NIL (|has| (-593 |#1|) (-379))) (((-845 (-938)) $) NIL (-2835 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1414 (((-112) $) NIL)) (-2136 (($) NIL (|has| (-593 |#1|) (-379)))) (-3996 (((-112) $) NIL (|has| (-593 |#1|) (-379)))) (-4072 (((-593 |#1|) $) NIL) (($ $ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-3930 (((-3 $ "failed") $) NIL (|has| (-593 |#1|) (-379)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 (-593 |#1|)) $) NIL) (((-1191 $) $ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-1902 (((-938) $) NIL (|has| (-593 |#1|) (-379)))) (-1936 (((-1191 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379)))) (-3275 (((-1191 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-1191 (-593 |#1|)) "failed") $ $) NIL (|has| (-593 |#1|) (-379)))) (-1531 (($ $ (-1191 (-593 |#1|))) NIL (|has| (-593 |#1|) (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-593 |#1|) (-379)) CONST)) (-3257 (($ (-938)) NIL (|has| (-593 |#1|) (-379)))) (-4206 (((-112) $) NIL)) (-1445 (((-1139) $) NIL)) (-2202 (($) NIL (|has| (-593 |#1|) (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| (-593 |#1|) (-379)))) (-1839 (((-430 $) $) NIL)) (-3201 (((-845 (-938))) NIL) (((-938)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-783) $) NIL (|has| (-593 |#1|) (-379))) (((-3 (-783) "failed") $ $) NIL (-2835 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-2446 (((-135)) NIL)) (-2735 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-1433 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1372 (((-1191 (-593 |#1|))) NIL)) (-2594 (($) NIL (|has| (-593 |#1|) (-379)))) (-1795 (($) NIL (|has| (-593 |#1|) (-379)))) (-1809 (((-1286 (-593 |#1|)) $) NIL) (((-701 (-593 |#1|)) (-1286 $)) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-593 |#1|) (-379)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-593 |#1|)) NIL)) (-2883 (($ $) NIL (|has| (-593 |#1|) (-379))) (((-3 $ "failed") $) NIL (-2835 (|has| (-593 |#1|) (-146)) (|has| (-593 |#1|) (-379))))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL) (((-1286 $) (-938)) NIL)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-4273 (($ $) NIL (|has| (-593 |#1|) (-379))) (($ $ (-783)) NIL (|has| (-593 |#1|) (-379)))) (-2051 (($ $ (-783)) NIL (|has| (-593 |#1|) (-379))) (($ $) NIL (|has| (-593 |#1|) (-379)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL) (($ $ (-593 |#1|)) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-593 |#1|)) NIL) (($ (-593 |#1|) $) NIL))) (((-530 |#1| |#2|) (-339 (-593 |#1|)) (-938) (-938)) (T -530)) NIL (-339 (-593 |#1|)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-576) (-576) |#1|) 51)) (-3344 (($ $ (-576) |#4|) NIL)) (-1806 (($ $ (-576) |#5|) NIL)) (-3656 (($) NIL T CONST)) (-4059 ((|#4| $ (-576)) NIL)) (-3888 ((|#1| $ (-576) (-576) |#1|) 50)) (-3817 ((|#1| $ (-576) (-576)) 45)) (-4260 (((-656 |#1|) $) NIL)) (-2126 (((-783) $) 33)) (-1992 (($ (-783) (-783) |#1|) 30)) (-2140 (((-783) $) 38)) (-1419 (((-112) $ (-783)) NIL)) (-4217 (((-576) $) 31)) (-1961 (((-576) $) 32)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-1439 (((-576) $) 37)) (-2743 (((-576) $) 39)) (-3874 (($ (-1 |#1| |#1|) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) 55 (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2918 (($ $ |#1|) NIL)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 14)) (-2643 (($) 16)) (-4367 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-1762 ((|#5| $ (-576)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1237) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-576) (-576) |#1|) 51)) (-4158 (($ $ (-576) |#4|) NIL)) (-2257 (($ $ (-576) |#5|) NIL)) (-3767 (($) NIL T CONST)) (-1946 ((|#4| $ (-576)) NIL)) (-1776 ((|#1| $ (-576) (-576) |#1|) 50)) (-1698 ((|#1| $ (-576) (-576)) 45)) (-3825 (((-656 |#1|) $) NIL)) (-1622 (((-783) $) 33)) (-4033 (($ (-783) (-783) |#1|) 30)) (-1636 (((-783) $) 38)) (-3115 (((-112) $ (-783)) NIL)) (-1650 (((-576) $) 31)) (-1351 (((-576) $) 32)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-4159 (((-576) $) 37)) (-4062 (((-576) $) 39)) (-1763 (($ (-1 |#1| |#1|) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) 55 (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2500 (($ $ |#1|) NIL)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 14)) (-2597 (($) 16)) (-2871 ((|#1| $ (-576) (-576)) 48) ((|#1| $ (-576) (-576) |#1|) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-4331 ((|#5| $ (-576)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1236) (-576) (-576) (-384 |#1|) (-384 |#1|)) (T -531)) NIL (-57 |#1| |#4| |#5|) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) NIL)) (-3367 ((|#1| $) NIL)) (-3053 (($ $) NIL)) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2633 (($ $ (-576)) 70 (|has| $ (-6 -4463)))) (-2761 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3362 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4463)))) (-2398 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-2597 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-3744 (($ $ $) 23 (|has| $ (-6 -4463)))) (-3476 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2466 ((|#1| $ |#1|) 21 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4463))) (($ $ "rest" $) 24 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3831 (($ (-1 (-112) |#1|) $) NIL)) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3357 ((|#1| $) NIL)) (-3656 (($) NIL T CONST)) (-3129 (($ $) 28 (|has| $ (-6 -4463)))) (-4112 (($ $) 29)) (-2712 (($ $) 18) (($ $ (-783)) 32)) (-4329 (($ $) 62 (|has| |#1| (-1119)))) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4376 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-2892 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3235 (((-112) $) NIL)) (-3433 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119))) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) NIL)) (-4260 (((-656 |#1|) $) 27 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1992 (($ (-783) |#1|) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) 31 (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-1897 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-3257 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1783 (($ |#1|) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3699 (((-656 |#1|) $) NIL)) (-3781 (((-112) $) NIL)) (-3288 (((-1178) $) 58 (|has| |#1| (-1119)))) (-2912 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2361 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3371 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2701 ((|#1| $) 13) (($ $ (-783)) NIL)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3020 (((-112) $) NIL)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 12)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) 17)) (-2643 (($) 16)) (-4367 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-3136 (((-576) $ $) NIL)) (-2531 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2470 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2492 (((-112) $) 35)) (-1398 (($ $) NIL)) (-1556 (($ $) NIL (|has| $ (-6 -4463)))) (-2212 (((-783) $) NIL)) (-2251 (($ $) 40)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) 36)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 26)) (-2116 (($ $ $) 61) (($ $ |#1|) NIL)) (-2851 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-4092 (((-874) $) 50 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) 54 (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2048 (((-783) $) 9 (|has| $ (-6 -4462))))) -(((-532 |#1| |#2|) (-678 |#1|) (-1237) (-576)) (T -532)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) NIL)) (-2893 ((|#1| $) NIL)) (-2464 (($ $) NIL)) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2938 (($ $ (-576)) 70 (|has| $ (-6 -4462)))) (-2373 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2265 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) 64 (|has| $ (-6 -4462)))) (-1758 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-3429 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3614 (($ $ $) 23 (|has| $ (-6 -4462)))) (-2611 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1438 ((|#1| $ |#1|) 21 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4462))) (($ $ "rest" $) 24 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-4001 (($ (-1 (-112) |#1|) $) NIL)) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2882 ((|#1| $) NIL)) (-3767 (($) NIL T CONST)) (-3478 (($ $) 28 (|has| $ (-6 -4462)))) (-3733 (($ $) 29)) (-3515 (($ $) 18) (($ $ (-783)) 32)) (-3315 (($ $) 62 (|has| |#1| (-1119)))) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3623 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-3902 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3518 (((-112) $) NIL)) (-3584 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119))) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3825 (((-656 |#1|) $) 27 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4033 (($ (-783) |#1|) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) 31 (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-2093 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 65)) (-1854 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 60 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1628 (($ |#1|) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-2942 (((-656 |#1|) $) NIL)) (-1905 (((-112) $) NIL)) (-1927 (((-1177) $) 58 (|has| |#1| (-1119)))) (-3923 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2040 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2277 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3504 ((|#1| $) 13) (($ $ (-783)) NIL)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-3524 (((-112) $) NIL)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 12)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) 17)) (-2597 (($) 16)) (-2871 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) NIL) ((|#1| $ (-576) |#1|) NIL)) (-2972 (((-576) $ $) NIL)) (-2560 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3464 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3173 (((-112) $) 35)) (-1442 (($ $) NIL)) (-1544 (($ $) NIL (|has| $ (-6 -4462)))) (-3564 (((-783) $) NIL)) (-2705 (($ $) 40)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) 36)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 26)) (-1523 (($ $ $) 61) (($ $ |#1|) NIL)) (-1661 (($ $ $) NIL) (($ |#1| $) 10) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3563 (((-874) $) 50 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) 54 (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3485 (((-783) $) 9 (|has| $ (-6 -4461))))) +(((-532 |#1| |#2|) (-678 |#1|) (-1236) (-576)) (T -532)) NIL (-678 |#1|) -((-2664 ((|#4| |#4|) 38)) (-4049 (((-783) |#4|) 44)) (-1659 (((-783) |#4|) 45)) (-3865 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4463)))) (-2295 (((-3 |#4| "failed") |#4|) 67)) (-3401 ((|#4| |#4|) 59)) (-2058 ((|#1| |#4|) 58))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2664 (|#4| |#4|)) (-15 -4049 ((-783) |#4|)) (-15 -1659 ((-783) |#4|)) (IF (|has| |#3| (-6 -4463)) (-15 -3865 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -2058 (|#1| |#4|)) (-15 -3401 (|#4| |#4|)) (-15 -2295 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533)) -((-2295 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3401 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2058 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-3865 (*1 *2 *3) (-12 (|has| *6 (-6 -4463)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1659 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4049 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2664 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -2664 (|#4| |#4|)) (-15 -4049 ((-783) |#4|)) (-15 -1659 ((-783) |#4|)) (IF (|has| |#3| (-6 -4463)) (-15 -3865 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -2058 (|#1| |#4|)) (-15 -3401 (|#4| |#4|)) (-15 -2295 ((-3 |#4| "failed") |#4|))) -((-2664 ((|#8| |#4|) 20)) (-3865 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4463)))) (-2295 (((-3 |#8| "failed") |#4|) 23))) -(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2664 (|#8| |#4|)) (-15 -2295 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4463)) (-15 -3865 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1011 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534)) -((-3865 (*1 *2 *3) (-12 (|has| *9 (-6 -4463)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-2295 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-2664 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) -(-10 -7 (-15 -2664 (|#8| |#4|)) (-15 -2295 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4463)) (-15 -3865 ((-656 |#3|) |#4|)) |%noBranch|)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1705 (($ (-783) (-783)) NIL)) (-3207 (($ $ $) NIL)) (-2645 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-2454 (((-112) $) NIL)) (-1573 (($ $ (-576) (-576)) 21)) (-4230 (($ $ (-576) (-576)) NIL)) (-4175 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2144 (($ $) NIL)) (-2478 (((-112) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3482 (($ $ (-576) (-576) $) NIL)) (-4248 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-3344 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-1806 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-3483 (($ (-783) |#1|) NIL)) (-3656 (($) NIL T CONST)) (-2664 (($ $) 30 (|has| |#1| (-317)))) (-4059 (((-614 |#1| |#3|) $ (-576)) NIL)) (-4049 (((-783) $) 33 (|has| |#1| (-568)))) (-3888 ((|#1| $ (-576) (-576) |#1|) NIL)) (-3817 ((|#1| $ (-576) (-576)) NIL)) (-4260 (((-656 |#1|) $) NIL)) (-1659 (((-783) $) 35 (|has| |#1| (-568)))) (-3865 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-2126 (((-783) $) NIL)) (-1992 (($ (-783) (-783) |#1|) NIL)) (-2140 (((-783) $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-1497 ((|#1| $) 28 (|has| |#1| (-6 (-4464 "*"))))) (-4217 (((-576) $) 10)) (-1961 (((-576) $) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-1439 (((-576) $) 13)) (-2743 (((-576) $) NIL)) (-3297 (($ (-656 (-656 |#1|))) NIL)) (-3874 (($ (-1 |#1| |#1|) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2318 (((-656 (-656 |#1|)) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2295 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-2437 (($ $ $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2918 (($ $ |#1|) NIL)) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-2779 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-2849 (((-112) $) NIL)) (-2058 ((|#1| $) 26 (|has| |#1| (-6 (-4464 "*"))))) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-1762 (((-614 |#1| |#2|) $ (-576)) NIL)) (-4092 (($ (-614 |#1| |#2|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-1485 (((-112) $) NIL)) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) +((-3243 ((|#4| |#4|) 38)) (-3606 (((-783) |#4|) 44)) (-2849 (((-783) |#4|) 45)) (-2115 (((-656 |#3|) |#4|) 55 (|has| |#3| (-6 -4462)))) (-2030 (((-3 |#4| "failed") |#4|) 67)) (-4036 ((|#4| |#4|) 59)) (-2201 ((|#1| |#4|) 58))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3243 (|#4| |#4|)) (-15 -3606 ((-783) |#4|)) (-15 -2849 ((-783) |#4|)) (IF (|has| |#3| (-6 -4462)) (-15 -2115 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -2201 (|#1| |#4|)) (-15 -4036 (|#4| |#4|)) (-15 -2030 ((-3 |#4| "failed") |#4|))) (-374) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -533)) +((-2030 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2201 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-2115 (*1 *2 *3) (-12 (|has| *6 (-6 -4462)) (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2849 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3243 (*1 *2 *2) (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(-10 -7 (-15 -3243 (|#4| |#4|)) (-15 -3606 ((-783) |#4|)) (-15 -2849 ((-783) |#4|)) (IF (|has| |#3| (-6 -4462)) (-15 -2115 ((-656 |#3|) |#4|)) |%noBranch|) (-15 -2201 (|#1| |#4|)) (-15 -4036 (|#4| |#4|)) (-15 -2030 ((-3 |#4| "failed") |#4|))) +((-3243 ((|#8| |#4|) 20)) (-2115 (((-656 |#3|) |#4|) 29 (|has| |#7| (-6 -4462)))) (-2030 (((-3 |#8| "failed") |#4|) 23))) +(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3243 (|#8| |#4|)) (-15 -2030 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4462)) (-15 -2115 ((-656 |#3|) |#4|)) |%noBranch|)) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1011 |#1|) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -534)) +((-2115 (*1 *2 *3) (-12 (|has| *9 (-6 -4462)) (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) (-4 *10 (-699 *7 *8 *9)))) (-2030 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) (-3243 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) (-4 *8 (-384 *7)) (-4 *9 (-384 *7))))) +(-10 -7 (-15 -3243 (|#8| |#4|)) (-15 -2030 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4462)) (-15 -2115 ((-656 |#3|) |#4|)) |%noBranch|)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3497 (($ (-783) (-783)) NIL)) (-2618 (($ $ $) NIL)) (-2793 (($ (-614 |#1| |#3|)) NIL) (($ $) NIL)) (-1491 (((-112) $) NIL)) (-2789 (($ $ (-576) (-576)) 21)) (-3636 (($ $ (-576) (-576)) NIL)) (-2873 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1331 (($ $) NIL)) (-4294 (((-112) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2058 (($ $ (-576) (-576) $) NIL)) (-3731 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-4158 (($ $ (-576) (-614 |#1| |#3|)) NIL)) (-2257 (($ $ (-576) (-614 |#1| |#2|)) NIL)) (-4027 (($ (-783) |#1|) NIL)) (-3767 (($) NIL T CONST)) (-3243 (($ $) 30 (|has| |#1| (-317)))) (-1946 (((-614 |#1| |#3|) $ (-576)) NIL)) (-3606 (((-783) $) 33 (|has| |#1| (-568)))) (-1776 ((|#1| $ (-576) (-576) |#1|) NIL)) (-1698 ((|#1| $ (-576) (-576)) NIL)) (-3825 (((-656 |#1|) $) NIL)) (-2849 (((-783) $) 35 (|has| |#1| (-568)))) (-2115 (((-656 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-568)))) (-1622 (((-783) $) NIL)) (-4033 (($ (-783) (-783) |#1|) NIL)) (-1636 (((-783) $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-4329 ((|#1| $) 28 (|has| |#1| (-6 (-4463 "*"))))) (-1650 (((-576) $) 10)) (-1351 (((-576) $) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-4159 (((-576) $) 13)) (-4062 (((-576) $) NIL)) (-2457 (($ (-656 (-656 |#1|))) NIL)) (-1763 (($ (-1 |#1| |#1|) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2156 (((-656 (-656 |#1|)) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2030 (((-3 $ "failed") $) 42 (|has| |#1| (-374)))) (-3758 (($ $ $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2500 (($ $ |#1|) NIL)) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-1716 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL)) (-4237 (((-112) $) NIL)) (-2201 ((|#1| $) 26 (|has| |#1| (-6 (-4463 "*"))))) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-4331 (((-614 |#1| |#2|) $ (-576)) NIL)) (-3563 (($ (-614 |#1| |#2|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2609 (((-112) $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $ $) NIL) (($ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) (((-535 |#1| |#2| |#3|) (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1068) (-576) (-576)) (T -535)) NIL (-699 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-2702 (((-656 (-1236)) $) 13)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL) (($ (-656 (-1236))) 11)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-536) (-13 (-1102) (-10 -8 (-15 -4092 ($ (-656 (-1236)))) (-15 -2702 ((-656 (-1236)) $))))) (T -536)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536))))) -(-13 (-1102) (-10 -8 (-15 -4092 ($ (-656 (-1236)))) (-15 -2702 ((-656 (-1236)) $)))) -((-2034 (((-112) $ $) NIL)) (-3797 (((-1154) $) 14)) (-3288 (((-1178) $) NIL)) (-1489 (((-518) $) 11)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 21) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-537) (-13 (-1102) (-10 -8 (-15 -1489 ((-518) $)) (-15 -3797 ((-1154) $))))) (T -537)) -((-1489 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-537))))) -(-13 (-1102) (-10 -8 (-15 -1489 ((-518) $)) (-15 -3797 ((-1154) $)))) -((-1519 (((-703 (-1245)) $) 15)) (-2145 (((-703 (-1243)) $) 38)) (-3845 (((-703 (-1242)) $) 29)) (-3544 (((-703 (-561)) $) 12)) (-1995 (((-703 (-559)) $) 42)) (-3240 (((-703 (-558)) $) 33)) (-3859 (((-783) $ (-129)) 54))) -(((-538 |#1|) (-10 -8 (-15 -3859 ((-783) |#1| (-129))) (-15 -2145 ((-703 (-1243)) |#1|)) (-15 -1995 ((-703 (-559)) |#1|)) (-15 -3845 ((-703 (-1242)) |#1|)) (-15 -3240 ((-703 (-558)) |#1|)) (-15 -1519 ((-703 (-1245)) |#1|)) (-15 -3544 ((-703 (-561)) |#1|))) (-539)) (T -538)) -NIL -(-10 -8 (-15 -3859 ((-783) |#1| (-129))) (-15 -2145 ((-703 (-1243)) |#1|)) (-15 -1995 ((-703 (-559)) |#1|)) (-15 -3845 ((-703 (-1242)) |#1|)) (-15 -3240 ((-703 (-558)) |#1|)) (-15 -1519 ((-703 (-1245)) |#1|)) (-15 -3544 ((-703 (-561)) |#1|))) -((-1519 (((-703 (-1245)) $) 12)) (-2145 (((-703 (-1243)) $) 8)) (-3845 (((-703 (-1242)) $) 10)) (-3544 (((-703 (-561)) $) 13)) (-1995 (((-703 (-559)) $) 9)) (-3240 (((-703 (-558)) $) 11)) (-3859 (((-783) $ (-129)) 7)) (-3910 (((-703 (-130)) $) 14)) (-3603 (($ $) 6))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-3299 (((-656 (-1235)) $) 13)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL) (($ (-656 (-1235))) 11)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-536) (-13 (-1102) (-10 -8 (-15 -3563 ($ (-656 (-1235)))) (-15 -3299 ((-656 (-1235)) $))))) (T -536)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536))))) +(-13 (-1102) (-10 -8 (-15 -3563 ($ (-656 (-1235)))) (-15 -3299 ((-656 (-1235)) $)))) +((-3474 (((-112) $ $) NIL)) (-4183 (((-1154) $) 14)) (-1927 (((-1177) $) NIL)) (-1780 (((-518) $) 11)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 21) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-537) (-13 (-1102) (-10 -8 (-15 -1780 ((-518) $)) (-15 -4183 ((-1154) $))))) (T -537)) +((-1780 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-4183 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-537))))) +(-13 (-1102) (-10 -8 (-15 -1780 ((-518) $)) (-15 -4183 ((-1154) $)))) +((-2284 (((-703 (-1244)) $) 15)) (-3326 (((-703 (-1242)) $) 38)) (-4067 (((-703 (-1241)) $) 29)) (-1373 (((-703 (-561)) $) 12)) (-3438 (((-703 (-559)) $) 42)) (-2790 (((-703 (-558)) $) 33)) (-2812 (((-783) $ (-129)) 54))) +(((-538 |#1|) (-10 -8 (-15 -2812 ((-783) |#1| (-129))) (-15 -3326 ((-703 (-1242)) |#1|)) (-15 -3438 ((-703 (-559)) |#1|)) (-15 -4067 ((-703 (-1241)) |#1|)) (-15 -2790 ((-703 (-558)) |#1|)) (-15 -2284 ((-703 (-1244)) |#1|)) (-15 -1373 ((-703 (-561)) |#1|))) (-539)) (T -538)) +NIL +(-10 -8 (-15 -2812 ((-783) |#1| (-129))) (-15 -3326 ((-703 (-1242)) |#1|)) (-15 -3438 ((-703 (-559)) |#1|)) (-15 -4067 ((-703 (-1241)) |#1|)) (-15 -2790 ((-703 (-558)) |#1|)) (-15 -2284 ((-703 (-1244)) |#1|)) (-15 -1373 ((-703 (-561)) |#1|))) +((-2284 (((-703 (-1244)) $) 12)) (-3326 (((-703 (-1242)) $) 8)) (-4067 (((-703 (-1241)) $) 10)) (-1373 (((-703 (-561)) $) 13)) (-3438 (((-703 (-559)) $) 9)) (-2790 (((-703 (-558)) $) 11)) (-2812 (((-783) $ (-129)) 7)) (-1831 (((-703 (-130)) $) 14)) (-4382 (($ $) 6))) (((-539) (-141)) (T -539)) -((-3910 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-1519 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1245))))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242))))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-2145 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243))))) (-3859 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -3910 ((-703 (-130)) $)) (-15 -3544 ((-703 (-561)) $)) (-15 -1519 ((-703 (-1245)) $)) (-15 -3240 ((-703 (-558)) $)) (-15 -3845 ((-703 (-1242)) $)) (-15 -1995 ((-703 (-559)) $)) (-15 -2145 ((-703 (-1243)) $)) (-15 -3859 ((-783) $ (-129))))) +((-1831 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130))))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561))))) (-2284 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244))))) (-2790 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558))))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1241))))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559))))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242))))) (-2812 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) +(-13 (-175) (-10 -8 (-15 -1831 ((-703 (-130)) $)) (-15 -1373 ((-703 (-561)) $)) (-15 -2284 ((-703 (-1244)) $)) (-15 -2790 ((-703 (-558)) $)) (-15 -4067 ((-703 (-1241)) $)) (-15 -3438 ((-703 (-559)) $)) (-15 -3326 ((-703 (-1242)) $)) (-15 -2812 ((-783) $ (-129))))) (((-175) . T)) -((-3608 (((-1192 |#1|) (-783)) 115)) (-3803 (((-1287 |#1|) (-1287 |#1|) (-938)) 108)) (-3092 (((-1292) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))) |#1|) 123)) (-4416 (((-1287 |#1|) (-1287 |#1|) (-783)) 53)) (-2446 (((-1287 |#1|) (-938)) 110)) (-2406 (((-1287 |#1|) (-1287 |#1|) (-576)) 30)) (-2248 (((-1192 |#1|) (-1287 |#1|)) 116)) (-3783 (((-1287 |#1|) (-938)) 137)) (-2172 (((-112) (-1287 |#1|)) 120)) (-4252 (((-1287 |#1|) (-1287 |#1|) (-938)) 100)) (-3164 (((-1192 |#1|) (-1287 |#1|)) 131)) (-3225 (((-938) (-1287 |#1|)) 96)) (-1644 (((-1287 |#1|) (-1287 |#1|)) 38)) (-2550 (((-1287 |#1|) (-938) (-938)) 140)) (-1470 (((-1287 |#1|) (-1287 |#1|) (-1139) (-1139)) 29)) (-2764 (((-1287 |#1|) (-1287 |#1|) (-783) (-1139)) 54)) (-1999 (((-1287 (-1287 |#1|)) (-938)) 136)) (-4028 (((-1287 |#1|) (-1287 |#1|) (-1287 |#1|)) 121)) (** (((-1287 |#1|) (-1287 |#1|) (-576)) 67)) (* (((-1287 |#1|) (-1287 |#1|) (-1287 |#1|)) 31))) -(((-540 |#1|) (-10 -7 (-15 -3092 ((-1292) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))) |#1|)) (-15 -2446 ((-1287 |#1|) (-938))) (-15 -2550 ((-1287 |#1|) (-938) (-938))) (-15 -2248 ((-1192 |#1|) (-1287 |#1|))) (-15 -3608 ((-1192 |#1|) (-783))) (-15 -2764 ((-1287 |#1|) (-1287 |#1|) (-783) (-1139))) (-15 -4416 ((-1287 |#1|) (-1287 |#1|) (-783))) (-15 -1470 ((-1287 |#1|) (-1287 |#1|) (-1139) (-1139))) (-15 -2406 ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 ** ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 * ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -4028 ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -4252 ((-1287 |#1|) (-1287 |#1|) (-938))) (-15 -3803 ((-1287 |#1|) (-1287 |#1|) (-938))) (-15 -1644 ((-1287 |#1|) (-1287 |#1|))) (-15 -3225 ((-938) (-1287 |#1|))) (-15 -2172 ((-112) (-1287 |#1|))) (-15 -1999 ((-1287 (-1287 |#1|)) (-938))) (-15 -3783 ((-1287 |#1|) (-938))) (-15 -3164 ((-1192 |#1|) (-1287 |#1|)))) (-360)) (T -540)) -((-3164 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)))) (-3783 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 (-1287 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2172 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-938)) (-5 *1 (-540 *4)))) (-1644 (*1 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-3803 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-938)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4252 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-938)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4028 (*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2406 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1470 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1139)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4416 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2764 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1287 *5)) (-5 *3 (-783)) (-5 *4 (-1139)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2248 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)))) (-2550 (*1 *2 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-1292)) (-5 *1 (-540 *4))))) -(-10 -7 (-15 -3092 ((-1292) (-1287 (-656 (-2 (|:| -1731 |#1|) (|:| -2550 (-1139))))) |#1|)) (-15 -2446 ((-1287 |#1|) (-938))) (-15 -2550 ((-1287 |#1|) (-938) (-938))) (-15 -2248 ((-1192 |#1|) (-1287 |#1|))) (-15 -3608 ((-1192 |#1|) (-783))) (-15 -2764 ((-1287 |#1|) (-1287 |#1|) (-783) (-1139))) (-15 -4416 ((-1287 |#1|) (-1287 |#1|) (-783))) (-15 -1470 ((-1287 |#1|) (-1287 |#1|) (-1139) (-1139))) (-15 -2406 ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 ** ((-1287 |#1|) (-1287 |#1|) (-576))) (-15 * ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -4028 ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -4252 ((-1287 |#1|) (-1287 |#1|) (-938))) (-15 -3803 ((-1287 |#1|) (-1287 |#1|) (-938))) (-15 -1644 ((-1287 |#1|) (-1287 |#1|))) (-15 -3225 ((-938) (-1287 |#1|))) (-15 -2172 ((-112) (-1287 |#1|))) (-15 -1999 ((-1287 (-1287 |#1|)) (-938))) (-15 -3783 ((-1287 |#1|) (-938))) (-15 -3164 ((-1192 |#1|) (-1287 |#1|)))) -((-1519 (((-703 (-1245)) $) NIL)) (-2145 (((-703 (-1243)) $) NIL)) (-3845 (((-703 (-1242)) $) NIL)) (-3544 (((-703 (-561)) $) NIL)) (-1995 (((-703 (-559)) $) NIL)) (-3240 (((-703 (-558)) $) NIL)) (-3859 (((-783) $ (-129)) NIL)) (-3910 (((-703 (-130)) $) 26)) (-3981 (((-1139) $ (-1139)) 31)) (-3433 (((-1139) $) 30)) (-2669 (((-112) $) 20)) (-1865 (($ (-400)) 14) (($ (-1178)) 16)) (-4261 (((-112) $) 27)) (-4092 (((-874) $) 34)) (-3603 (($ $) 28))) -(((-541) (-13 (-539) (-625 (-874)) (-10 -8 (-15 -1865 ($ (-400))) (-15 -1865 ($ (-1178))) (-15 -4261 ((-112) $)) (-15 -2669 ((-112) $)) (-15 -3433 ((-1139) $)) (-15 -3981 ((-1139) $ (-1139)))))) (T -541)) -((-1865 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-1865 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-541)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-541)))) (-3981 (*1 *2 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-541))))) -(-13 (-539) (-625 (-874)) (-10 -8 (-15 -1865 ($ (-400))) (-15 -1865 ($ (-1178))) (-15 -4261 ((-112) $)) (-15 -2669 ((-112) $)) (-15 -3433 ((-1139) $)) (-15 -3981 ((-1139) $ (-1139))))) -((-2812 (((-1 |#1| |#1|) |#1|) 11)) (-1416 (((-1 |#1| |#1|)) 10))) -(((-542 |#1|) (-10 -7 (-15 -1416 ((-1 |#1| |#1|))) (-15 -2812 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542)) -((-2812 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-1416 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(-10 -7 (-15 -1416 ((-1 |#1| |#1|))) (-15 -2812 ((-1 |#1| |#1|) |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2746 (($ $ $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-1518 (($ (-783) |#1|) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-2477 (($ (-1 (-783) (-783)) $) NIL)) (-3369 ((|#1| $) NIL)) (-1692 (((-783) $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 27)) (-1531 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-4007 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL))) +((-3732 (((-1191 |#1|) (-783)) 115)) (-2310 (((-1286 |#1|) (-1286 |#1|) (-938)) 108)) (-4178 (((-1291) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))) |#1|) 123)) (-1427 (((-1286 |#1|) (-1286 |#1|) (-783)) 53)) (-1803 (((-1286 |#1|) (-938)) 110)) (-2600 (((-1286 |#1|) (-1286 |#1|) (-576)) 30)) (-3789 (((-1191 |#1|) (-1286 |#1|)) 116)) (-2136 (((-1286 |#1|) (-938)) 137)) (-3996 (((-112) (-1286 |#1|)) 120)) (-4072 (((-1286 |#1|) (-1286 |#1|) (-938)) 100)) (-2554 (((-1191 |#1|) (-1286 |#1|)) 131)) (-1902 (((-938) (-1286 |#1|)) 96)) (-2095 (((-1286 |#1|) (-1286 |#1|)) 38)) (-3257 (((-1286 |#1|) (-938) (-938)) 140)) (-3568 (((-1286 |#1|) (-1286 |#1|) (-1139) (-1139)) 29)) (-2626 (((-1286 |#1|) (-1286 |#1|) (-783) (-1139)) 54)) (-3713 (((-1286 (-1286 |#1|)) (-938)) 136)) (-3107 (((-1286 |#1|) (-1286 |#1|) (-1286 |#1|)) 121)) (** (((-1286 |#1|) (-1286 |#1|) (-576)) 67)) (* (((-1286 |#1|) (-1286 |#1|) (-1286 |#1|)) 31))) +(((-540 |#1|) (-10 -7 (-15 -4178 ((-1291) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))) |#1|)) (-15 -1803 ((-1286 |#1|) (-938))) (-15 -3257 ((-1286 |#1|) (-938) (-938))) (-15 -3789 ((-1191 |#1|) (-1286 |#1|))) (-15 -3732 ((-1191 |#1|) (-783))) (-15 -2626 ((-1286 |#1|) (-1286 |#1|) (-783) (-1139))) (-15 -1427 ((-1286 |#1|) (-1286 |#1|) (-783))) (-15 -3568 ((-1286 |#1|) (-1286 |#1|) (-1139) (-1139))) (-15 -2600 ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 ** ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 * ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -3107 ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -4072 ((-1286 |#1|) (-1286 |#1|) (-938))) (-15 -2310 ((-1286 |#1|) (-1286 |#1|) (-938))) (-15 -2095 ((-1286 |#1|) (-1286 |#1|))) (-15 -1902 ((-938) (-1286 |#1|))) (-15 -3996 ((-112) (-1286 |#1|))) (-15 -3713 ((-1286 (-1286 |#1|)) (-938))) (-15 -2136 ((-1286 |#1|) (-938))) (-15 -2554 ((-1191 |#1|) (-1286 |#1|)))) (-360)) (T -540)) +((-2554 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1286 (-1286 *4))) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-540 *4)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-938)) (-5 *1 (-540 *4)))) (-2095 (*1 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (-2310 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-938)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-4072 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-938)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3107 (*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2600 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-3568 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1139)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-1427 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) (-2626 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1286 *5)) (-5 *3 (-783)) (-5 *4 (-1139)) (-4 *5 (-360)) (-5 *1 (-540 *5)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)))) (-3257 (*1 *2 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) (-4 *4 (-360)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-1291)) (-5 *1 (-540 *4))))) +(-10 -7 (-15 -4178 ((-1291) (-1286 (-656 (-2 (|:| -3142 |#1|) (|:| -3257 (-1139))))) |#1|)) (-15 -1803 ((-1286 |#1|) (-938))) (-15 -3257 ((-1286 |#1|) (-938) (-938))) (-15 -3789 ((-1191 |#1|) (-1286 |#1|))) (-15 -3732 ((-1191 |#1|) (-783))) (-15 -2626 ((-1286 |#1|) (-1286 |#1|) (-783) (-1139))) (-15 -1427 ((-1286 |#1|) (-1286 |#1|) (-783))) (-15 -3568 ((-1286 |#1|) (-1286 |#1|) (-1139) (-1139))) (-15 -2600 ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 ** ((-1286 |#1|) (-1286 |#1|) (-576))) (-15 * ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -3107 ((-1286 |#1|) (-1286 |#1|) (-1286 |#1|))) (-15 -4072 ((-1286 |#1|) (-1286 |#1|) (-938))) (-15 -2310 ((-1286 |#1|) (-1286 |#1|) (-938))) (-15 -2095 ((-1286 |#1|) (-1286 |#1|))) (-15 -1902 ((-938) (-1286 |#1|))) (-15 -3996 ((-112) (-1286 |#1|))) (-15 -3713 ((-1286 (-1286 |#1|)) (-938))) (-15 -2136 ((-1286 |#1|) (-938))) (-15 -2554 ((-1191 |#1|) (-1286 |#1|)))) +((-2284 (((-703 (-1244)) $) NIL)) (-3326 (((-703 (-1242)) $) NIL)) (-4067 (((-703 (-1241)) $) NIL)) (-1373 (((-703 (-561)) $) NIL)) (-3438 (((-703 (-559)) $) NIL)) (-2790 (((-703 (-558)) $) NIL)) (-2812 (((-783) $ (-129)) NIL)) (-1831 (((-703 (-130)) $) 26)) (-3926 (((-1139) $ (-1139)) 31)) (-3584 (((-1139) $) 30)) (-2508 (((-112) $) 20)) (-2899 (($ (-400)) 14) (($ (-1177)) 16)) (-3769 (((-112) $) 27)) (-3563 (((-874) $) 34)) (-4382 (($ $) 28))) +(((-541) (-13 (-539) (-625 (-874)) (-10 -8 (-15 -2899 ($ (-400))) (-15 -2899 ($ (-1177))) (-15 -3769 ((-112) $)) (-15 -2508 ((-112) $)) (-15 -3584 ((-1139) $)) (-15 -3926 ((-1139) $ (-1139)))))) (T -541)) +((-2899 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-541)))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-541)))) (-3926 (*1 *2 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-541))))) +(-13 (-539) (-625 (-874)) (-10 -8 (-15 -2899 ($ (-400))) (-15 -2899 ($ (-1177))) (-15 -3769 ((-112) $)) (-15 -2508 ((-112) $)) (-15 -3584 ((-1139) $)) (-15 -3926 ((-1139) $ (-1139))))) +((-2453 (((-1 |#1| |#1|) |#1|) 11)) (-2785 (((-1 |#1| |#1|)) 10))) +(((-542 |#1|) (-10 -7 (-15 -2785 ((-1 |#1| |#1|))) (-15 -2453 ((-1 |#1| |#1|) |#1|))) (-13 (-738) (-25))) (T -542)) +((-2453 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25))))) (-2785 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) +(-10 -7 (-15 -2785 ((-1 |#1| |#1|))) (-15 -2453 ((-1 |#1| |#1|) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-4415 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1970 (($ (-783) |#1|) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1632 (($ (-1 (-783) (-783)) $) NIL)) (-1672 ((|#1| $) NIL)) (-2142 (((-783) $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 27)) (-3985 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL)) (-3083 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL))) (((-543 |#1|) (-13 (-805) (-521 (-783) |#1|)) (-862)) (T -543)) NIL (-13 (-805) (-521 (-783) |#1|)) -((-1448 (((-656 |#2|) (-1192 |#1|) |#3|) 98)) (-1948 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1192 |#1|)) (-1192 |#1|))) 114)) (-3710 (((-1192 |#1|) (-701 |#1|)) 110))) -(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -3710 ((-1192 |#1|) (-701 |#1|))) (-15 -1448 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -1948 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1192 |#1|)) (-1192 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544)) -((-1948 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1192 *6)) (-1192 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-1448 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1192 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3710 ((-1192 |#1|) (-701 |#1|))) (-15 -1448 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -1948 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1192 |#1|)) (-1192 |#1|))))) -((-4411 (((-703 (-1245)) $ (-1245)) NIL)) (-2950 (((-703 (-561)) $ (-561)) NIL)) (-4219 (((-783) $ (-129)) 39)) (-2925 (((-703 (-130)) $ (-130)) 40)) (-1519 (((-703 (-1245)) $) NIL)) (-2145 (((-703 (-1243)) $) NIL)) (-3845 (((-703 (-1242)) $) NIL)) (-3544 (((-703 (-561)) $) NIL)) (-1995 (((-703 (-559)) $) NIL)) (-3240 (((-703 (-558)) $) NIL)) (-3859 (((-783) $ (-129)) 35)) (-3910 (((-703 (-130)) $) 37)) (-3254 (((-112) $) 27)) (-3611 (((-703 $) (-591) (-971)) 18) (((-703 $) (-503) (-971)) 24)) (-4092 (((-874) $) 48)) (-3603 (($ $) 42))) -(((-545) (-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -3611 ((-703 $) (-503) (-971)))))) (T -545)) -((-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-971)) (-5 *2 (-703 (-545))) (-5 *1 (-545))))) -(-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -3611 ((-703 $) (-503) (-971))))) -((-4338 (((-855 (-576))) 12)) (-4351 (((-855 (-576))) 14)) (-3937 (((-845 (-576))) 9))) -(((-546) (-10 -7 (-15 -3937 ((-845 (-576)))) (-15 -4338 ((-855 (-576)))) (-15 -4351 ((-855 (-576)))))) (T -546)) -((-4351 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-4338 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-3937 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))) -(-10 -7 (-15 -3937 ((-845 (-576)))) (-15 -4338 ((-855 (-576)))) (-15 -4351 ((-855 (-576))))) -((-1824 (((-548) (-1196)) 15)) (-3814 ((|#1| (-548)) 20))) -(((-547 |#1|) (-10 -7 (-15 -1824 ((-548) (-1196))) (-15 -3814 (|#1| (-548)))) (-1237)) (T -547)) -((-3814 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1237)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1237))))) -(-10 -7 (-15 -1824 ((-548) (-1196))) (-15 -3814 (|#1| (-548)))) -((-2034 (((-112) $ $) NIL)) (-2564 (((-1178) $) 55)) (-4285 (((-112) $) 51)) (-2258 (((-1196) $) 52)) (-1327 (((-112) $) 49)) (-1552 (((-1178) $) 50)) (-2562 (($ (-1178)) 56)) (-1379 (((-112) $) NIL)) (-3878 (((-112) $) NIL)) (-1433 (((-112) $) NIL)) (-3288 (((-1178) $) NIL)) (-1426 (($ $ (-656 (-1196))) 21)) (-3814 (((-52) $) 23)) (-3738 (((-112) $) NIL)) (-2284 (((-576) $) NIL)) (-3139 (((-1139) $) NIL)) (-3021 (($ $ (-656 (-1196)) (-1196)) 73)) (-4211 (((-112) $) NIL)) (-2733 (((-227) $) NIL)) (-1498 (($ $) 44)) (-2870 (((-874) $) NIL)) (-3278 (((-112) $ $) NIL)) (-4367 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1471 (((-656 $) $) 30)) (-3067 (((-1196) (-656 $)) 57)) (-1505 (($ (-1178)) NIL) (($ (-1196)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-874)) NIL) (($ (-656 $)) 65) (((-1123) $) 12) (($ (-1123)) 13)) (-3329 (((-1196) (-1196) (-656 $)) 60)) (-4092 (((-874) $) 54)) (-3456 (($ $) 59)) (-2979 (($ $) 58)) (-2302 (($ $ (-656 $)) 66)) (-1531 (((-112) $ $) NIL)) (-3263 (((-112) $) 29)) (-4300 (($) 9 T CONST)) (-4310 (($) 11 T CONST)) (-3919 (((-112) $ $) 74)) (-4028 (($ $ $) 82)) (-4007 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-2048 (((-576) $) NIL))) -(((-548) (-13 (-1122 (-1178) (-1196) (-576) (-227) (-874)) (-626 (-1123)) (-10 -8 (-15 -3814 ((-52) $)) (-15 -1505 ($ (-1123))) (-15 -2302 ($ $ (-656 $))) (-15 -3021 ($ $ (-656 (-1196)) (-1196))) (-15 -1426 ($ $ (-656 (-1196)))) (-15 -4007 ($ $ $)) (-15 * ($ $ $)) (-15 -4028 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -2670) (-15 1 ($) -2670) (-15 -1498 ($ $)) (-15 -2564 ((-1178) $)) (-15 -2562 ($ (-1178))) (-15 -3067 ((-1196) (-656 $))) (-15 -3329 ((-1196) (-1196) (-656 $)))))) (T -548)) -((-3814 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-548)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-3021 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1196)) (-5 *1 (-548)))) (-1426 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-548)))) (-4007 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-4028 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-4300 (*1 *1) (-5 *1 (-548))) (-4310 (*1 *1) (-5 *1 (-548))) (-1498 (*1 *1 *1) (-5 *1 (-548))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-548)))) (-2562 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-548)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1196)) (-5 *1 (-548)))) (-3329 (*1 *2 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) -(-13 (-1122 (-1178) (-1196) (-576) (-227) (-874)) (-626 (-1123)) (-10 -8 (-15 -3814 ((-52) $)) (-15 -1505 ($ (-1123))) (-15 -2302 ($ $ (-656 $))) (-15 -3021 ($ $ (-656 (-1196)) (-1196))) (-15 -1426 ($ $ (-656 (-1196)))) (-15 -4007 ($ $ $)) (-15 * ($ $ $)) (-15 -4028 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-4300) ($) -2670) (-15 (-4310) ($) -2670) (-15 -1498 ($ $)) (-15 -2564 ((-1178) $)) (-15 -2562 ($ (-1178))) (-15 -3067 ((-1196) (-656 $))) (-15 -3329 ((-1196) (-1196) (-656 $))))) -((-3755 ((|#2| |#2|) 17)) (-2806 ((|#2| |#2|) 13)) (-4188 ((|#2| |#2| (-576) (-576)) 20)) (-1566 ((|#2| |#2|) 15))) -(((-549 |#1| |#2|) (-10 -7 (-15 -2806 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -4188 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1278 |#1|)) (T -549)) -((-4188 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1278 *4)))) (-3755 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1278 *3)))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1278 *3)))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1278 *3))))) -(-10 -7 (-15 -2806 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -4188 (|#2| |#2| (-576) (-576)))) -((-1423 (((-656 (-304 (-969 |#2|))) (-656 |#2|) (-656 (-1196))) 32)) (-2678 (((-656 |#2|) (-969 |#1|) |#3|) 54) (((-656 |#2|) (-1192 |#1|) |#3|) 53)) (-3692 (((-656 (-656 |#2|)) (-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)) |#3|) 106))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2678 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -2678 ((-656 |#2|) (-969 |#1|) |#3|)) (-15 -3692 ((-656 (-656 |#2|)) (-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)) |#3|)) (-15 -1423 ((-656 (-304 (-969 |#2|))) (-656 |#2|) (-656 (-1196))))) (-464) (-374) (-13 (-374) (-860))) (T -550)) -((-1423 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1196))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-969 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-3692 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-2678 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -2678 ((-656 |#2|) (-1192 |#1|) |#3|)) (-15 -2678 ((-656 |#2|) (-969 |#1|) |#3|)) (-15 -3692 ((-656 (-656 |#2|)) (-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)) |#3|)) (-15 -1423 ((-656 (-304 (-969 |#2|))) (-656 |#2|) (-656 (-1196))))) -((-1597 ((|#2| |#2| |#1|) 17)) (-3742 ((|#2| (-656 |#2|)) 31)) (-4258 ((|#2| (-656 |#2|)) 52))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3742 (|#2| (-656 |#2|))) (-15 -4258 (|#2| (-656 |#2|))) (-15 -1597 (|#2| |#2| |#1|))) (-317) (-1263 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551)) -((-1597 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1263 *3)))) (-4258 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(-10 -7 (-15 -3742 (|#2| (-656 |#2|))) (-15 -4258 (|#2| (-656 |#2|))) (-15 -1597 (|#2| |#2| |#1|))) -((-1392 (((-430 (-1192 |#4|)) (-1192 |#4|) (-1 (-430 (-1192 |#3|)) (-1192 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1192 |#3|)) (-1192 |#3|))) 210))) -(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1392 ((-430 |#4|) |#4| (-1 (-430 (-1192 |#3|)) (-1192 |#3|)))) (-15 -1392 ((-430 (-1192 |#4|)) (-1192 |#4|) (-1 (-430 (-1192 |#3|)) (-1192 |#3|))))) (-862) (-805) (-13 (-317) (-148)) (-966 |#3| |#2| |#1|)) (T -552)) -((-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-966 *7 *6 *5)) (-5 *2 (-430 (-1192 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1192 *8)))) (-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-966 *7 *6 *5))))) -(-10 -7 (-15 -1392 ((-430 |#4|) |#4| (-1 (-430 (-1192 |#3|)) (-1192 |#3|)))) (-15 -1392 ((-430 (-1192 |#4|)) (-1192 |#4|) (-1 (-430 (-1192 |#3|)) (-1192 |#3|))))) -((-3755 ((|#4| |#4|) 74)) (-2806 ((|#4| |#4|) 70)) (-4188 ((|#4| |#4| (-576) (-576)) 76)) (-1566 ((|#4| |#4|) 72))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2806 (|#4| |#4|)) (-15 -1566 (|#4| |#4|)) (-15 -3755 (|#4| |#4|)) (-15 -4188 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1263 |#1|) (-736 |#1| |#2|) (-1278 |#3|)) (T -553)) -((-4188 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1263 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1278 *6)))) (-3755 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5))))) -(-10 -7 (-15 -2806 (|#4| |#4|)) (-15 -1566 (|#4| |#4|)) (-15 -3755 (|#4| |#4|)) (-15 -4188 (|#4| |#4| (-576) (-576)))) -((-3755 ((|#2| |#2|) 27)) (-2806 ((|#2| |#2|) 23)) (-4188 ((|#2| |#2| (-576) (-576)) 29)) (-1566 ((|#2| |#2|) 25))) -(((-554 |#1| |#2|) (-10 -7 (-15 -2806 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -4188 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1278 |#1|)) (T -554)) -((-4188 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1278 *4)))) (-3755 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1278 *3)))) (-1566 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1278 *3)))) (-2806 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1278 *3))))) -(-10 -7 (-15 -2806 (|#2| |#2|)) (-15 -1566 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -4188 (|#2| |#2| (-576) (-576)))) -((-3143 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) -(((-555 |#1| |#2|) (-10 -7 (-15 -3143 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3143 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3143 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1068) (-1263 |#1|)) (T -555)) -((-3143 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) (-3143 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) (-3143 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1068)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -3143 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3143 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -3143 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) -((-4253 (($ $ $) 84)) (-2100 (((-430 $) $) 52)) (-2974 (((-3 (-576) "failed") $) 64)) (-2378 (((-576) $) 42)) (-1653 (((-3 (-419 (-576)) "failed") $) 79)) (-3863 (((-112) $) 26)) (-4266 (((-419 (-576)) $) 77)) (-2725 (((-112) $) 55)) (-2217 (($ $ $ $) 92)) (-3567 (((-112) $) 17)) (-2135 (($ $ $) 62)) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 74)) (-2083 (((-3 $ "failed") $) 69)) (-2391 (($ $) 24)) (-2268 (($ $ $) 90)) (-3503 (($) 65)) (-1765 (($ $) 58)) (-1392 (((-430 $) $) 50)) (-2015 (((-112) $) 15)) (-1787 (((-783) $) 32)) (-3614 (($ $) 11) (($ $ (-783)) NIL)) (-4268 (($ $) 18)) (-1505 (((-576) $) NIL) (((-548) $) 41) (((-905 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-2471 (((-783)) 9)) (-4276 (((-112) $ $) 21)) (-1760 (($ $ $) 60))) -(((-556 |#1|) (-10 -8 (-15 -2268 (|#1| |#1| |#1|)) (-15 -2217 (|#1| |#1| |#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -4268 (|#1| |#1|)) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -4253 (|#1| |#1| |#1|)) (-15 -4276 ((-112) |#1| |#1|)) (-15 -2015 ((-112) |#1|)) (-15 -3503 (|#1|)) (-15 -2083 ((-3 |#1| "failed") |#1|)) (-15 -1505 ((-227) |#1|)) (-15 -1505 ((-390) |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1760 (|#1| |#1| |#1|)) (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -1505 ((-576) |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3567 ((-112) |#1|)) (-15 -1787 ((-783) |#1|)) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -2725 ((-112) |#1|)) (-15 -2471 ((-783)))) (-557)) (T -556)) -((-2471 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) -(-10 -8 (-15 -2268 (|#1| |#1| |#1|)) (-15 -2217 (|#1| |#1| |#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -4268 (|#1| |#1|)) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -4253 (|#1| |#1| |#1|)) (-15 -4276 ((-112) |#1| |#1|)) (-15 -2015 ((-112) |#1|)) (-15 -3503 (|#1|)) (-15 -2083 ((-3 |#1| "failed") |#1|)) (-15 -1505 ((-227) |#1|)) (-15 -1505 ((-390) |#1|)) (-15 -2135 (|#1| |#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1760 (|#1| |#1| |#1|)) (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -1505 ((-576) |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3567 ((-112) |#1|)) (-15 -1787 ((-783) |#1|)) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -2725 ((-112) |#1|)) (-15 -2471 ((-783)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-4253 (($ $ $) 92)) (-3788 (((-3 $ "failed") $ $) 20)) (-2908 (($ $ $ $) 81)) (-1587 (($ $) 57)) (-2100 (((-430 $) $) 58)) (-4407 (((-112) $ $) 135)) (-3934 (((-576) $) 124)) (-3298 (($ $ $) 95)) (-3656 (($) 18 T CONST)) (-2974 (((-3 (-576) "failed") $) 116)) (-2378 (((-576) $) 117)) (-1975 (($ $ $) 139)) (-3687 (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 114) (((-701 (-576)) (-701 $)) 113) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 112) (((-701 (-576)) (-1287 $)) 111)) (-3179 (((-3 $ "failed") $) 37)) (-1653 (((-3 (-419 (-576)) "failed") $) 89)) (-3863 (((-112) $) 91)) (-4266 (((-419 (-576)) $) 90)) (-2446 (($) 88) (($ $) 87)) (-1986 (($ $ $) 138)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 133)) (-2725 (((-112) $) 59)) (-2217 (($ $ $ $) 79)) (-3166 (($ $ $) 93)) (-3567 (((-112) $) 126)) (-2135 (($ $ $) 104)) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 107)) (-1810 (((-112) $) 35)) (-3082 (((-112) $) 99)) (-2083 (((-3 $ "failed") $) 101)) (-3713 (((-112) $) 125)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 142)) (-3077 (($ $ $ $) 80)) (-3492 (($ $ $) 127)) (-2726 (($ $ $) 128)) (-2391 (($ $) 83)) (-1325 (($ $) 96)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-2268 (($ $ $) 78)) (-3503 (($) 100 T CONST)) (-3796 (($ $) 85)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1765 (($ $) 105)) (-1392 (((-430 $) $) 56)) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 141) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 140)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 134)) (-2015 (((-112) $) 98)) (-1787 (((-783) $) 136)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 137)) (-3614 (($ $) 122) (($ $ (-783)) 120)) (-3273 (($ $) 84)) (-4268 (($ $) 86)) (-1505 (((-576) $) 118) (((-548) $) 109) (((-905 (-576)) $) 108) (((-390) $) 103) (((-227) $) 102)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 115)) (-2471 (((-783)) 32 T CONST)) (-4276 (((-112) $ $) 94)) (-1760 (($ $ $) 106)) (-1531 (((-112) $ $) 9)) (-1841 (($) 97)) (-2947 (((-112) $ $) 45)) (-2967 (($ $ $ $) 82)) (-3423 (($ $) 123)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $) 121) (($ $ (-783)) 119)) (-3977 (((-112) $ $) 130)) (-3955 (((-112) $ $) 131)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 129)) (-3944 (((-112) $ $) 132)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 110))) +((-1932 (((-656 |#2|) (-1191 |#1|) |#3|) 98)) (-2412 (((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1191 |#1|)) (-1191 |#1|))) 114)) (-1395 (((-1191 |#1|) (-701 |#1|)) 110))) +(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -1395 ((-1191 |#1|) (-701 |#1|))) (-15 -1932 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -2412 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1191 |#1|)) (-1191 |#1|))))) (-374) (-374) (-13 (-374) (-860))) (T -544)) +((-2412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1191 *6)) (-1191 *6))) (-4 *6 (-374)) (-5 *2 (-656 (-2 (|:| |outval| *7) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860))))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-1395 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1191 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) +(-10 -7 (-15 -1395 ((-1191 |#1|) (-701 |#1|))) (-15 -1932 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -2412 ((-656 (-2 (|:| |outval| |#2|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#2|))))) (-701 |#1|) |#3| (-1 (-430 (-1191 |#1|)) (-1191 |#1|))))) +((-4103 (((-703 (-1244)) $ (-1244)) NIL)) (-2139 (((-703 (-561)) $ (-561)) NIL)) (-1890 (((-783) $ (-129)) 39)) (-1925 (((-703 (-130)) $ (-130)) 40)) (-2284 (((-703 (-1244)) $) NIL)) (-3326 (((-703 (-1242)) $) NIL)) (-4067 (((-703 (-1241)) $) NIL)) (-1373 (((-703 (-561)) $) NIL)) (-3438 (((-703 (-559)) $) NIL)) (-2790 (((-703 (-558)) $) NIL)) (-2812 (((-783) $ (-129)) 35)) (-1831 (((-703 (-130)) $) 37)) (-1619 (((-112) $) 27)) (-2759 (((-703 $) (-591) (-971)) 18) (((-703 $) (-503) (-971)) 24)) (-3563 (((-874) $) 48)) (-4382 (($ $) 42))) +(((-545) (-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -2759 ((-703 $) (-503) (-971)))))) (T -545)) +((-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-971)) (-5 *2 (-703 (-545))) (-5 *1 (-545))))) +(-13 (-779 (-591)) (-625 (-874)) (-10 -8 (-15 -2759 ((-703 $) (-503) (-971))))) +((-3003 (((-855 (-576))) 12)) (-3015 (((-855 (-576))) 14)) (-1583 (((-845 (-576))) 9))) +(((-546) (-10 -7 (-15 -1583 ((-845 (-576)))) (-15 -3003 ((-855 (-576)))) (-15 -3015 ((-855 (-576)))))) (T -546)) +((-3015 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-3003 (*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) (-1583 (*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546))))) +(-10 -7 (-15 -1583 ((-845 (-576)))) (-15 -3003 ((-855 (-576)))) (-15 -3015 ((-855 (-576))))) +((-1365 (((-548) (-1195)) 15)) (-2029 ((|#1| (-548)) 20))) +(((-547 |#1|) (-10 -7 (-15 -1365 ((-548) (-1195))) (-15 -2029 (|#1| (-548)))) (-1236)) (T -547)) +((-2029 (*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1236)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-548)) (-5 *1 (-547 *4)) (-4 *4 (-1236))))) +(-10 -7 (-15 -1365 ((-548) (-1195))) (-15 -2029 (|#1| (-548)))) +((-3474 (((-112) $ $) NIL)) (-1571 (((-1177) $) 55)) (-2792 (((-112) $) 51)) (-4257 (((-1195) $) 52)) (-3342 (((-112) $) 49)) (-1328 (((-1177) $) 50)) (-1389 (($ (-1177)) 56)) (-1520 (((-112) $) NIL)) (-2084 (((-112) $) NIL)) (-1745 (((-112) $) NIL)) (-1927 (((-1177) $) NIL)) (-3599 (($ $ (-656 (-1195))) 21)) (-2029 (((-52) $) 23)) (-4185 (((-112) $) NIL)) (-4281 (((-576) $) NIL)) (-1445 (((-1139) $) NIL)) (-3356 (($ $ (-656 (-1195)) (-1195)) 73)) (-3203 (((-112) $) NIL)) (-3096 (((-227) $) NIL)) (-3430 (($ $) 44)) (-2975 (((-874) $) NIL)) (-3896 (((-112) $ $) NIL)) (-2871 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1923 (((-656 $) $) 30)) (-2408 (((-1195) (-656 $)) 57)) (-4076 (($ (-1177)) NIL) (($ (-1195)) 19) (($ (-576)) 8) (($ (-227)) 28) (($ (-874)) NIL) (($ (-656 $)) 65) (((-1123) $) 12) (($ (-1123)) 13)) (-4018 (((-1195) (-1195) (-656 $)) 60)) (-3563 (((-874) $) 54)) (-3256 (($ $) 59)) (-1501 (($ $) 58)) (-4430 (($ $ (-656 $)) 66)) (-3985 (((-112) $ $) NIL)) (-4291 (((-112) $) 29)) (-2800 (($) 9 T CONST)) (-2810 (($) 11 T CONST)) (-2988 (((-112) $ $) 74)) (-3107 (($ $ $) 82)) (-3083 (($ $ $) 75)) (** (($ $ (-783)) 81) (($ $ (-576)) 80)) (* (($ $ $) 76)) (-3485 (((-576) $) NIL))) +(((-548) (-13 (-1122 (-1177) (-1195) (-576) (-227) (-874)) (-626 (-1123)) (-10 -8 (-15 -2029 ((-52) $)) (-15 -4076 ($ (-1123))) (-15 -4430 ($ $ (-656 $))) (-15 -3356 ($ $ (-656 (-1195)) (-1195))) (-15 -3599 ($ $ (-656 (-1195)))) (-15 -3083 ($ $ $)) (-15 * ($ $ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 0 ($) -1398) (-15 1 ($) -1398) (-15 -3430 ($ $)) (-15 -1571 ((-1177) $)) (-15 -1389 ($ (-1177))) (-15 -2408 ((-1195) (-656 $))) (-15 -4018 ((-1195) (-1195) (-656 $)))))) (T -548)) +((-2029 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-548)))) (-4430 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548)))) (-3356 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1195)) (-5 *1 (-548)))) (-3599 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-548)))) (-3083 (*1 *1 *1 *1) (-5 *1 (-548))) (* (*1 *1 *1 *1) (-5 *1 (-548))) (-3107 (*1 *1 *1 *1) (-5 *1 (-548))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) (-2800 (*1 *1) (-5 *1 (-548))) (-2810 (*1 *1) (-5 *1 (-548))) (-3430 (*1 *1 *1) (-5 *1 (-548))) (-1571 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-548)))) (-1389 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-548)))) (-2408 (*1 *2 *3) (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1195)) (-5 *1 (-548)))) (-4018 (*1 *2 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) +(-13 (-1122 (-1177) (-1195) (-576) (-227) (-874)) (-626 (-1123)) (-10 -8 (-15 -2029 ((-52) $)) (-15 -4076 ($ (-1123))) (-15 -4430 ($ $ (-656 $))) (-15 -3356 ($ $ (-656 (-1195)) (-1195))) (-15 -3599 ($ $ (-656 (-1195)))) (-15 -3083 ($ $ $)) (-15 * ($ $ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ (-576))) (-15 (-2800) ($) -1398) (-15 (-2810) ($) -1398) (-15 -3430 ($ $)) (-15 -1571 ((-1177) $)) (-15 -1389 ($ (-1177))) (-15 -2408 ((-1195) (-656 $))) (-15 -4018 ((-1195) (-1195) (-656 $))))) +((-3213 ((|#2| |#2|) 17)) (-2519 ((|#2| |#2|) 13)) (-1710 ((|#2| |#2| (-576) (-576)) 20)) (-4420 ((|#2| |#2|) 15))) +(((-549 |#1| |#2|) (-10 -7 (-15 -2519 (|#2| |#2|)) (-15 -4420 (|#2| |#2|)) (-15 -3213 (|#2| |#2|)) (-15 -1710 (|#2| |#2| (-576) (-576)))) (-13 (-568) (-148)) (-1277 |#1|)) (T -549)) +((-1710 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1277 *4)))) (-3213 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1277 *3)))) (-4420 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1277 *3)))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1277 *3))))) +(-10 -7 (-15 -2519 (|#2| |#2|)) (-15 -4420 (|#2| |#2|)) (-15 -3213 (|#2| |#2|)) (-15 -1710 (|#2| |#2| (-576) (-576)))) +((-2182 (((-656 (-304 (-969 |#2|))) (-656 |#2|) (-656 (-1195))) 32)) (-1774 (((-656 |#2|) (-969 |#1|) |#3|) 54) (((-656 |#2|) (-1191 |#1|) |#3|) 53)) (-3048 (((-656 (-656 |#2|)) (-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1195)) |#3|) 106))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -1774 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -1774 ((-656 |#2|) (-969 |#1|) |#3|)) (-15 -3048 ((-656 (-656 |#2|)) (-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1195)) |#3|)) (-15 -2182 ((-656 (-304 (-969 |#2|))) (-656 |#2|) (-656 (-1195))))) (-464) (-374) (-13 (-374) (-860))) (T -550)) +((-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1195))) (-4 *6 (-374)) (-5 *2 (-656 (-304 (-969 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860))))) (-3048 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) (-4 *5 (-13 (-374) (-860))))) (-1774 (*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) (-1774 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -1774 ((-656 |#2|) (-1191 |#1|) |#3|)) (-15 -1774 ((-656 |#2|) (-969 |#1|) |#3|)) (-15 -3048 ((-656 (-656 |#2|)) (-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1195)) |#3|)) (-15 -2182 ((-656 (-304 (-969 |#2|))) (-656 |#2|) (-656 (-1195))))) +((-2314 ((|#2| |#2| |#1|) 17)) (-3397 ((|#2| (-656 |#2|)) 31)) (-3557 ((|#2| (-656 |#2|)) 52))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3397 (|#2| (-656 |#2|))) (-15 -3557 (|#2| (-656 |#2|))) (-15 -2314 (|#2| |#2| |#1|))) (-317) (-1262 |#1|) |#1| (-1 |#1| |#1| (-783))) (T -551)) +((-2314 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1262 *3)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783))))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) +(-10 -7 (-15 -3397 (|#2| (-656 |#2|))) (-15 -3557 (|#2| (-656 |#2|))) (-15 -2314 (|#2| |#2| |#1|))) +((-1839 (((-430 (-1191 |#4|)) (-1191 |#4|) (-1 (-430 (-1191 |#3|)) (-1191 |#3|))) 89) (((-430 |#4|) |#4| (-1 (-430 (-1191 |#3|)) (-1191 |#3|))) 210))) +(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1839 ((-430 |#4|) |#4| (-1 (-430 (-1191 |#3|)) (-1191 |#3|)))) (-15 -1839 ((-430 (-1191 |#4|)) (-1191 |#4|) (-1 (-430 (-1191 |#3|)) (-1191 |#3|))))) (-862) (-805) (-13 (-317) (-148)) (-966 |#3| |#2| |#1|)) (T -552)) +((-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-966 *7 *6 *5)) (-5 *2 (-430 (-1191 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1191 *8)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-966 *7 *6 *5))))) +(-10 -7 (-15 -1839 ((-430 |#4|) |#4| (-1 (-430 (-1191 |#3|)) (-1191 |#3|)))) (-15 -1839 ((-430 (-1191 |#4|)) (-1191 |#4|) (-1 (-430 (-1191 |#3|)) (-1191 |#3|))))) +((-3213 ((|#4| |#4|) 74)) (-2519 ((|#4| |#4|) 70)) (-1710 ((|#4| |#4| (-576) (-576)) 76)) (-4420 ((|#4| |#4|) 72))) +(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2519 (|#4| |#4|)) (-15 -4420 (|#4| |#4|)) (-15 -3213 (|#4| |#4|)) (-15 -1710 (|#4| |#4| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1262 |#1|) (-736 |#1| |#2|) (-1277 |#3|)) (T -553)) +((-1710 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-4 *5 (-1262 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1277 *6)))) (-3213 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) (-4420 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5))))) +(-10 -7 (-15 -2519 (|#4| |#4|)) (-15 -4420 (|#4| |#4|)) (-15 -3213 (|#4| |#4|)) (-15 -1710 (|#4| |#4| (-576) (-576)))) +((-3213 ((|#2| |#2|) 27)) (-2519 ((|#2| |#2|) 23)) (-1710 ((|#2| |#2| (-576) (-576)) 29)) (-4420 ((|#2| |#2|) 25))) +(((-554 |#1| |#2|) (-10 -7 (-15 -2519 (|#2| |#2|)) (-15 -4420 (|#2| |#2|)) (-15 -3213 (|#2| |#2|)) (-15 -1710 (|#2| |#2| (-576) (-576)))) (-13 (-374) (-379) (-626 (-576))) (-1277 |#1|)) (T -554)) +((-1710 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1277 *4)))) (-3213 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1277 *3)))) (-4420 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1277 *3)))) (-2519 (*1 *2 *2) (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1277 *3))))) +(-10 -7 (-15 -2519 (|#2| |#2|)) (-15 -4420 (|#2| |#2|)) (-15 -3213 (|#2| |#2|)) (-15 -1710 (|#2| |#2| (-576) (-576)))) +((-2259 (((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)) 18) (((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|)) 14) (((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|)) 32))) +(((-555 |#1| |#2|) (-10 -7 (-15 -2259 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2259 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2259 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) (-1068) (-1262 |#1|)) (T -555)) +((-2259 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4)))) (-2259 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4)))) (-2259 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1068)) (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1262 *5))))) +(-10 -7 (-15 -2259 ((-3 (-576) "failed") |#2| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2259 ((-3 (-576) "failed") |#2| |#1| (-576) (-1 (-3 (-576) "failed") |#1|))) (-15 -2259 ((-3 (-576) "failed") |#2| |#1| (-1 (-3 (-576) "failed") |#1|)))) +((-4192 (($ $ $) 84)) (-2732 (((-430 $) $) 52)) (-1539 (((-3 (-576) "failed") $) 64)) (-4056 (((-576) $) 42)) (-3615 (((-3 (-419 (-576)) "failed") $) 79)) (-3235 (((-112) $) 26)) (-3113 (((-419 (-576)) $) 77)) (-1792 (((-112) $) 55)) (-2917 (($ $ $ $) 92)) (-1910 (((-112) $) 17)) (-1891 (($ $ $) 62)) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 74)) (-3930 (((-3 $ "failed") $) 69)) (-1591 (($ $) 24)) (-1368 (($ $ $) 90)) (-1538 (($) 65)) (-1473 (($ $) 58)) (-1839 (((-430 $) $) 50)) (-2489 (((-112) $) 15)) (-3112 (((-783) $) 32)) (-2735 (($ $) 11) (($ $ (-783)) NIL)) (-1954 (($ $) 18)) (-4076 (((-576) $) NIL) (((-548) $) 41) (((-905 (-576)) $) 45) (((-390) $) 35) (((-227) $) 38)) (-1858 (((-783)) 9)) (-2599 (((-112) $ $) 21)) (-4114 (($ $ $) 60))) +(((-556 |#1|) (-10 -8 (-15 -1368 (|#1| |#1| |#1|)) (-15 -2917 (|#1| |#1| |#1| |#1|)) (-15 -1591 (|#1| |#1|)) (-15 -1954 (|#1| |#1|)) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -2599 ((-112) |#1| |#1|)) (-15 -2489 ((-112) |#1|)) (-15 -1538 (|#1|)) (-15 -3930 ((-3 |#1| "failed") |#1|)) (-15 -4076 ((-227) |#1|)) (-15 -4076 ((-390) |#1|)) (-15 -1891 (|#1| |#1| |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -4114 (|#1| |#1| |#1|)) (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -4076 ((-576) |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -1910 ((-112) |#1|)) (-15 -3112 ((-783) |#1|)) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -1858 ((-783)))) (-557)) (T -556)) +((-1858 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) +(-10 -8 (-15 -1368 (|#1| |#1| |#1|)) (-15 -2917 (|#1| |#1| |#1| |#1|)) (-15 -1591 (|#1| |#1|)) (-15 -1954 (|#1| |#1|)) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -2599 ((-112) |#1| |#1|)) (-15 -2489 ((-112) |#1|)) (-15 -1538 (|#1|)) (-15 -3930 ((-3 |#1| "failed") |#1|)) (-15 -4076 ((-227) |#1|)) (-15 -4076 ((-390) |#1|)) (-15 -1891 (|#1| |#1| |#1|)) (-15 -1473 (|#1| |#1|)) (-15 -4114 (|#1| |#1| |#1|)) (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -4076 ((-576) |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -1910 ((-112) |#1|)) (-15 -3112 ((-783) |#1|)) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -1792 ((-112) |#1|)) (-15 -1858 ((-783)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-4192 (($ $ $) 92)) (-1367 (((-3 $ "failed") $ $) 20)) (-3938 (($ $ $ $) 81)) (-1760 (($ $) 57)) (-2732 (((-430 $) $) 58)) (-1727 (((-112) $ $) 135)) (-2184 (((-576) $) 124)) (-2745 (($ $ $) 95)) (-3767 (($) 18 T CONST)) (-1539 (((-3 (-576) "failed") $) 116)) (-4056 (((-576) $) 117)) (-3420 (($ $ $) 139)) (-3687 (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 114) (((-701 (-576)) (-701 $)) 113) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 112) (((-701 (-576)) (-1286 $)) 111)) (-1551 (((-3 $ "failed") $) 37)) (-3615 (((-3 (-419 (-576)) "failed") $) 89)) (-3235 (((-112) $) 91)) (-3113 (((-419 (-576)) $) 90)) (-1803 (($) 88) (($ $) 87)) (-3431 (($ $ $) 138)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 133)) (-1792 (((-112) $) 59)) (-2917 (($ $ $ $) 79)) (-1493 (($ $ $) 93)) (-1910 (((-112) $) 126)) (-1891 (($ $ $) 104)) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 107)) (-1414 (((-112) $) 35)) (-3828 (((-112) $) 99)) (-3930 (((-3 $ "failed") $) 101)) (-3566 (((-112) $) 125)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 142)) (-3020 (($ $ $ $) 80)) (-2442 (($ $ $) 127)) (-1893 (($ $ $) 128)) (-1591 (($ $) 83)) (-4261 (($ $) 96)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-1368 (($ $ $) 78)) (-1538 (($) 100 T CONST)) (-4393 (($ $) 85)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-1473 (($ $) 105)) (-1839 (((-430 $) $) 56)) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 141) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 140)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 134)) (-2489 (((-112) $) 98)) (-3112 (((-783) $) 136)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 137)) (-2735 (($ $) 122) (($ $ (-783)) 120)) (-1771 (($ $) 84)) (-1954 (($ $) 86)) (-4076 (((-576) $) 118) (((-548) $) 109) (((-905 (-576)) $) 108) (((-390) $) 103) (((-227) $) 102)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 115)) (-1858 (((-783)) 32 T CONST)) (-2599 (((-112) $ $) 94)) (-4114 (($ $ $) 106)) (-3985 (((-112) $ $) 9)) (-3402 (($) 97)) (-3040 (((-112) $ $) 45)) (-3002 (($ $ $ $) 82)) (-2264 (($ $) 123)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $) 121) (($ $ (-783)) 119)) (-3049 (((-112) $ $) 130)) (-3024 (((-112) $ $) 131)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 129)) (-3010 (((-112) $ $) 132)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-576) $) 110))) (((-557) (-141)) (T -557)) -((-3082 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2015 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1841 (*1 *1) (-4 *1 (-557))) (-1325 (*1 *1 *1) (-4 *1 (-557))) (-3298 (*1 *1 *1 *1) (-4 *1 (-557))) (-4276 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3166 (*1 *1 *1 *1) (-4 *1 (-557))) (-4253 (*1 *1 *1 *1) (-4 *1 (-557))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-4266 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-1653 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-2446 (*1 *1) (-4 *1 (-557))) (-2446 (*1 *1 *1) (-4 *1 (-557))) (-4268 (*1 *1 *1) (-4 *1 (-557))) (-3796 (*1 *1 *1) (-4 *1 (-557))) (-3273 (*1 *1 *1) (-4 *1 (-557))) (-2391 (*1 *1 *1) (-4 *1 (-557))) (-2967 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2908 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3077 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2217 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2268 (*1 *1 *1 *1) (-4 *1 (-557)))) -(-13 (-1241) (-317) (-832) (-238) (-626 (-576)) (-1057 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-905 (-576))) (-899 (-576)) (-144) (-1041) (-148) (-1171) (-10 -8 (-15 -3082 ((-112) $)) (-15 -2015 ((-112) $)) (-6 -4461) (-15 -1841 ($)) (-15 -1325 ($ $)) (-15 -3298 ($ $ $)) (-15 -4276 ((-112) $ $)) (-15 -3166 ($ $ $)) (-15 -4253 ($ $ $)) (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $)) (-15 -2446 ($)) (-15 -2446 ($ $)) (-15 -4268 ($ $)) (-15 -3796 ($ $)) (-15 -3273 ($ $)) (-15 -2391 ($ $)) (-15 -2967 ($ $ $ $)) (-15 -2908 ($ $ $ $)) (-15 -3077 ($ $ $ $)) (-15 -2217 ($ $ $ $)) (-15 -2268 ($ $ $)) (-6 -4460))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-905 (-576))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0=(-576)) . T) ((-660 $) . T) ((-652 $) . T) ((-651 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-832) . T) ((-860) . T) ((-862) . T) ((-899 (-576)) . T) ((-937) . T) ((-1041) . T) ((-1057 (-576)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) . T) ((-1237) . T) ((-1241) . T)) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-558) (-13 (-856) (-10 -8 (-15 -3656 ($) -2670)))) (T -558)) -((-3656 (*1 *1) (-5 *1 (-558)))) -(-13 (-856) (-10 -8 (-15 -3656 ($) -2670))) +((-3828 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-2489 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3402 (*1 *1) (-4 *1 (-557))) (-4261 (*1 *1 *1) (-4 *1 (-557))) (-2745 (*1 *1 *1 *1) (-4 *1 (-557))) (-2599 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-1493 (*1 *1 *1 *1) (-4 *1 (-557))) (-4192 (*1 *1 *1 *1) (-4 *1 (-557))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-3615 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) (-1803 (*1 *1) (-4 *1 (-557))) (-1803 (*1 *1 *1) (-4 *1 (-557))) (-1954 (*1 *1 *1) (-4 *1 (-557))) (-4393 (*1 *1 *1) (-4 *1 (-557))) (-1771 (*1 *1 *1) (-4 *1 (-557))) (-1591 (*1 *1 *1) (-4 *1 (-557))) (-3002 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3938 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-3020 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2917 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-1368 (*1 *1 *1 *1) (-4 *1 (-557)))) +(-13 (-1240) (-317) (-832) (-238) (-626 (-576)) (-1057 (-576)) (-651 (-576)) (-626 (-548)) (-626 (-905 (-576))) (-899 (-576)) (-144) (-1041) (-148) (-1171) (-10 -8 (-15 -3828 ((-112) $)) (-15 -2489 ((-112) $)) (-6 -4460) (-15 -3402 ($)) (-15 -4261 ($ $)) (-15 -2745 ($ $ $)) (-15 -2599 ((-112) $ $)) (-15 -1493 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $)) (-15 -1803 ($)) (-15 -1803 ($ $)) (-15 -1954 ($ $)) (-15 -4393 ($ $)) (-15 -1771 ($ $)) (-15 -1591 ($ $)) (-15 -3002 ($ $ $ $)) (-15 -3938 ($ $ $ $)) (-15 -3020 ($ $ $ $)) (-15 -2917 ($ $ $ $)) (-15 -1368 ($ $ $)) (-6 -4459))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-144) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-548)) . T) ((-626 (-576)) . T) ((-626 (-905 (-576))) . T) ((-234 $) . T) ((-238) . T) ((-237) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0=(-576)) . T) ((-660 $) . T) ((-652 $) . T) ((-651 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-832) . T) ((-860) . T) ((-862) . T) ((-899 (-576)) . T) ((-937) . T) ((-1041) . T) ((-1057 (-576)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) . T) ((-1236) . T) ((-1240) . T)) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-558) (-13 (-856) (-10 -8 (-15 -3767 ($) -1398)))) (T -558)) +((-3767 (*1 *1) (-5 *1 (-558)))) +(-13 (-856) (-10 -8 (-15 -3767 ($) -1398))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-559) (-13 (-856) (-10 -8 (-15 -3656 ($) -2670)))) (T -559)) -((-3656 (*1 *1) (-5 *1 (-559)))) -(-13 (-856) (-10 -8 (-15 -3656 ($) -2670))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-559) (-13 (-856) (-10 -8 (-15 -3767 ($) -1398)))) (T -559)) +((-3767 (*1 *1) (-5 *1 (-559)))) +(-13 (-856) (-10 -8 (-15 -3767 ($) -1398))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-560) (-13 (-856) (-10 -8 (-15 -3656 ($) -2670)))) (T -560)) -((-3656 (*1 *1) (-5 *1 (-560)))) -(-13 (-856) (-10 -8 (-15 -3656 ($) -2670))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-560) (-13 (-856) (-10 -8 (-15 -3767 ($) -1398)))) (T -560)) +((-3767 (*1 *1) (-5 *1 (-560)))) +(-13 (-856) (-10 -8 (-15 -3767 ($) -1398))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-561) (-13 (-856) (-10 -8 (-15 -3656 ($) -2670)))) (T -561)) -((-3656 (*1 *1) (-5 *1 (-561)))) -(-13 (-856) (-10 -8 (-15 -3656 ($) -2670))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-561) (-13 (-856) (-10 -8 (-15 -3767 ($) -1398)))) (T -561)) +((-3767 (*1 *1) (-5 *1 (-561)))) +(-13 (-856) (-10 -8 (-15 -3767 ($) -1398))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2449 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#2| $ |#1| |#2|) NIL)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 |#2| "failed") |#1| $) NIL)) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) NIL)) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) NIL)) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 ((|#1| $) NIL (|has| |#1| (-862)))) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4315 ((|#1| $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2364 (((-656 |#1|) $) NIL)) (-3700 (((-112) |#1| $) NIL)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-4428 (((-656 |#1|) $) NIL)) (-2013 (((-112) |#1| $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2701 ((|#2| $) NIL (|has| |#1| (-862)))) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-4092 (((-874) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-562 |#1| |#2| |#3|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) (-1119) (-1119) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462)))) (T -562)) -NIL -(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) -((-2192 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))) 50))) -(((-563 |#1| |#2|) (-10 -7 (-15 -2192 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) -((-2192 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1192 *3) (-1192 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) -(-10 -7 (-15 -2192 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))))) -((-2274 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-2036 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-2232 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) -(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2232 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2274 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2036 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1057 (-576))) (-13 (-27) (-442 |#1|)) (-1263 |#2|) (-1263 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) -((-2036 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *7 (-1263 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-2232 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(-10 -7 (-15 -2232 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2274 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2036 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-3645 (((-112) (-576) (-576)) 12)) (-3675 (((-576) (-576)) 7)) (-3974 (((-576) (-576) (-576)) 10))) -(((-565) (-10 -7 (-15 -3675 ((-576) (-576))) (-15 -3974 ((-576) (-576) (-576))) (-15 -3645 ((-112) (-576) (-576))))) (T -565)) -((-3645 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-3974 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-3675 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(-10 -7 (-15 -3675 ((-576) (-576))) (-15 -3974 ((-576) (-576) (-576))) (-15 -3645 ((-112) (-576) (-576)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1934 ((|#1| $) 67)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-2266 (($ $) 97)) (-2111 (($ $) 80)) (-2746 ((|#1| $) 68)) (-3788 (((-3 $ "failed") $ $) 20)) (-1403 (($ $) 79)) (-2236 (($ $) 96)) (-2084 (($ $) 81)) (-2294 (($ $) 95)) (-2138 (($ $) 82)) (-3656 (($) 18 T CONST)) (-2974 (((-3 (-576) "failed") $) 75)) (-2378 (((-576) $) 76)) (-3179 (((-3 $ "failed") $) 37)) (-4374 (($ |#1| |#1|) 72)) (-3567 (((-112) $) 66)) (-3926 (($) 107)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 78)) (-3713 (((-112) $) 65)) (-3492 (($ $ $) 113)) (-2726 (($ $ $) 112)) (-2703 (($ $) 104)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1383 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-419 (-576))) 70)) (-2632 ((|#1| $) 69)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-2022 (((-3 $ "failed") $ $) 48)) (-3353 (($ $) 105)) (-2307 (($ $) 94)) (-2149 (($ $) 83)) (-2281 (($ $) 93)) (-2123 (($ $) 84)) (-2253 (($ $) 92)) (-2099 (($ $) 85)) (-2181 (((-112) $ |#1|) 64)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 74)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2340 (($ $) 103)) (-2184 (($ $) 91)) (-2947 (((-112) $ $) 45)) (-2317 (($ $) 102)) (-2161 (($ $) 90)) (-2368 (($ $) 101)) (-2207 (($ $) 89)) (-3945 (($ $) 100)) (-2220 (($ $) 88)) (-2352 (($ $) 99)) (-2195 (($ $) 87)) (-2329 (($ $) 98)) (-2173 (($ $) 86)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3977 (((-112) $ $) 110)) (-3955 (((-112) $ $) 109)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 111)) (-3944 (((-112) $ $) 108)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ $) 106) (($ $ (-419 (-576))) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-566 |#1|) (-141) (-13 (-416) (-1222))) (T -566)) -((-1383 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-4374 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-1383 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))))) (-2632 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) (-2181 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112))))) -(-13 (-464) (-862) (-1222) (-1021) (-1057 (-576)) (-10 -8 (-6 -2728) (-15 -1383 ($ |t#1| |t#1|)) (-15 -4374 ($ |t#1| |t#1|)) (-15 -1383 ($ |t#1|)) (-15 -1383 ($ (-419 (-576)))) (-15 -2632 (|t#1| $)) (-15 -2746 (|t#1| $)) (-15 -1934 (|t#1| $)) (-15 -3567 ((-112) $)) (-15 -3713 ((-112) $)) (-15 -2181 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-862) . T) ((-1021) . T) ((-1057 (-576)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) . T) ((-1225) . T)) -((-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 9)) (-2573 (($ $) 11)) (-4306 (((-112) $) 20)) (-3179 (((-3 $ "failed") $) 16)) (-2947 (((-112) $ $) 22))) -(((-567 |#1|) (-10 -8 (-15 -4306 ((-112) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -3528 ((-2 (|:| -3500 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3179 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) -NIL -(-10 -8 (-15 -4306 ((-112) |#1|)) (-15 -2947 ((-112) |#1| |#1|)) (-15 -2573 (|#1| |#1|)) (-15 -3528 ((-2 (|:| -3500 |#1|) (|:| -4449 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3179 ((-3 |#1| "failed") |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2022 (((-3 $ "failed") $ $) 48)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2333 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#2| $ |#1| |#2|) NIL)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 |#2| "failed") |#1| $) NIL)) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) NIL)) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 ((|#1| $) NIL (|has| |#1| (-862)))) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-3814 ((|#1| $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3135 (((-656 |#1|) $) NIL)) (-2937 (((-112) |#1| $) NIL)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-3321 (((-656 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3504 ((|#2| $) NIL (|has| |#1| (-862)))) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-3563 (((-874) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-562 |#1| |#2| |#3|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1119) (-1119) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461)))) (T -562)) +NIL +(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) +((-2289 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))) 50))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2289 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))))) (-568) (-13 (-27) (-442 |#1|))) (T -563)) +((-2289 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1191 *3) (-1191 *3))) (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) (-5 *1 (-563 *6 *3))))) +(-10 -7 (-15 -2289 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))))) +((-3797 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 216)) (-3876 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212)) (-1657 (((-598 |#5|) |#5| (-1 |#3| |#3|)) 220))) +(((-564 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1657 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3797 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3876 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-568) (-1057 (-576))) (-13 (-27) (-442 |#1|)) (-1262 |#2|) (-1262 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -564)) +((-3876 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *7 (-1262 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) (-4 *2 (-353 *5 *6 *7)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8)))) (-1657 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(-10 -7 (-15 -1657 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3797 ((-598 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3876 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2069 (((-112) (-576) (-576)) 12)) (-1972 (((-576) (-576)) 7)) (-1385 (((-576) (-576) (-576)) 10))) +(((-565) (-10 -7 (-15 -1972 ((-576) (-576))) (-15 -1385 ((-576) (-576) (-576))) (-15 -2069 ((-112) (-576) (-576))))) (T -565)) +((-2069 (*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565)))) (-1385 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(-10 -7 (-15 -1972 ((-576) (-576))) (-15 -1385 ((-576) (-576) (-576))) (-15 -2069 ((-112) (-576) (-576)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3309 ((|#1| $) 67)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-3894 (($ $) 97)) (-3768 (($ $) 80)) (-4415 ((|#1| $) 68)) (-1367 (((-3 $ "failed") $ $) 20)) (-1853 (($ $) 79)) (-3872 (($ $) 96)) (-3747 (($ $) 81)) (-3916 (($ $) 95)) (-3788 (($ $) 82)) (-3767 (($) 18 T CONST)) (-1539 (((-3 (-576) "failed") $) 75)) (-4056 (((-576) $) 76)) (-1551 (((-3 $ "failed") $) 37)) (-3405 (($ |#1| |#1|) 72)) (-1910 (((-112) $) 66)) (-1570 (($) 107)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 78)) (-3566 (((-112) $) 65)) (-2442 (($ $ $) 113)) (-1893 (($ $ $) 112)) (-3710 (($ $) 104)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-1450 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-419 (-576))) 70)) (-3987 ((|#1| $) 69)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-3463 (((-3 $ "failed") $ $) 48)) (-3984 (($ $) 105)) (-3928 (($ $) 94)) (-3798 (($ $) 83)) (-3905 (($ $) 93)) (-3778 (($ $) 84)) (-3882 (($ $) 92)) (-3757 (($ $) 85)) (-3537 (((-112) $ |#1|) 64)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-576)) 74)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3958 (($ $) 103)) (-3831 (($ $) 91)) (-3040 (((-112) $ $) 45)) (-3939 (($ $) 102)) (-3808 (($ $) 90)) (-3981 (($ $) 101)) (-3852 (($ $) 89)) (-1830 (($ $) 100)) (-3863 (($ $) 88)) (-3969 (($ $) 99)) (-3841 (($ $) 87)) (-3948 (($ $) 98)) (-3820 (($ $) 86)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-3049 (((-112) $ $) 110)) (-3024 (((-112) $ $) 109)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 111)) (-3010 (((-112) $ $) 108)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ $) 106) (($ $ (-419 (-576))) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-566 |#1|) (-141) (-13 (-416) (-1221))) (T -566)) +((-1450 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-3405 (*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-1450 (*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-1450 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-4415 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) (-3537 (*1 *2 *1 *3) (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112))))) +(-13 (-464) (-862) (-1221) (-1021) (-1057 (-576)) (-10 -8 (-6 -4125) (-15 -1450 ($ |t#1| |t#1|)) (-15 -3405 ($ |t#1| |t#1|)) (-15 -1450 ($ |t#1|)) (-15 -1450 ($ (-419 (-576)))) (-15 -3987 (|t#1| $)) (-15 -4415 (|t#1| $)) (-15 -3309 (|t#1| $)) (-15 -1910 ((-112) $)) (-15 -3566 ((-112) $)) (-15 -3537 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-294) . T) ((-300) . T) ((-464) . T) ((-505) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-862) . T) ((-1021) . T) ((-1057 (-576)) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1221) . T) ((-1224) . T)) +((-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 9)) (-4412 (($ $) 11)) (-4176 (((-112) $) 20)) (-1551 (((-3 $ "failed") $) 16)) (-3040 (((-112) $ $) 22))) +(((-567 |#1|) (-10 -8 (-15 -4176 ((-112) |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -2362 ((-2 (|:| -3341 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|))) (-568)) (T -567)) +NIL +(-10 -8 (-15 -4176 ((-112) |#1|)) (-15 -3040 ((-112) |#1| |#1|)) (-15 -4412 (|#1| |#1|)) (-15 -2362 ((-2 (|:| -3341 |#1|) (|:| -4448 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3463 (((-3 $ "failed") $ $) 48)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-568) (-141)) (T -568)) -((-2022 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-3528 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3500 *1) (|:| -4449 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-2573 (*1 *1 *1) (-4 *1 (-568))) (-2947 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -2022 ((-3 $ "failed") $ $)) (-15 -3528 ((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $)) (-15 -2573 ($ $)) (-15 -2947 ((-112) $ $)) (-15 -4306 ((-112) $)))) +((-3463 (*1 *1 *1 *1) (|partial| -4 *1 (-568))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3341 *1) (|:| -4448 *1) (|:| |associate| *1))) (-4 *1 (-568)))) (-4412 (*1 *1 *1) (-4 *1 (-568))) (-3040 (*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112)))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(-13 (-174) (-38 $) (-300) (-10 -8 (-15 -3463 ((-3 $ "failed") $ $)) (-15 -2362 ((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $)) (-15 -4412 ($ $)) (-15 -3040 ((-112) $ $)) (-15 -4176 ((-112) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-1727 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1196) (-656 |#2|)) 38)) (-4113 (((-598 |#2|) |#2| (-1196)) 63)) (-2093 (((-3 |#2| "failed") |#2| (-1196)) 156)) (-2209 (((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-4357 (((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) |#2|) 41))) -(((-569 |#1| |#2|) (-10 -7 (-15 -4357 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) |#2|)) (-15 -1727 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1196) (-656 |#2|))) (-15 -2093 ((-3 |#2| "failed") |#2| (-1196))) (-15 -4113 ((-598 |#2|) |#2| (-1196))) (-15 -2209 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -569)) -((-2209 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1196)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-4113 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-2093 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-1727 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-4357 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(-10 -7 (-15 -4357 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) |#2|)) (-15 -1727 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1196) (-656 |#2|))) (-15 -2093 ((-3 |#2| "failed") |#2| (-1196))) (-15 -4113 ((-598 |#2|) |#2| (-1196))) (-15 -2209 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1196) (-624 |#2|) (-656 (-624 |#2|))))) -((-2100 (((-430 |#1|) |#1|) 19)) (-1392 (((-430 |#1|) |#1|) 34)) (-2549 (((-3 |#1| "failed") |#1|) 49)) (-2638 (((-430 |#1|) |#1|) 60))) -(((-570 |#1|) (-10 -7 (-15 -1392 ((-430 |#1|) |#1|)) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -2638 ((-430 |#1|) |#1|)) (-15 -2549 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) -((-2549 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-2638 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-2100 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -1392 ((-430 |#1|) |#1|)) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -2638 ((-430 |#1|) |#1|)) (-15 -2549 ((-3 |#1| "failed") |#1|))) -((-3000 (($) 9)) (-1749 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-2364 (((-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2361 (($ (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-2777 (($ (-656 (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-2900 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-3060 (((-656 (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3146 (((-1292)) 11))) -(((-571) (-10 -8 (-15 -3000 ($)) (-15 -3146 ((-1292))) (-15 -2364 ((-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2777 ($ (-656 (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2361 ($ (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1749 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3060 ((-656 (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2900 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) -((-2900 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-1749 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-2777 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-3146 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-571)))) (-3000 (*1 *1) (-5 *1 (-571)))) -(-10 -8 (-15 -3000 ($)) (-15 -3146 ((-1292))) (-15 -2364 ((-656 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -2777 ($ (-656 (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2361 ($ (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1749 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3060 ((-656 (-2 (|:| -2371 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2900 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2920 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-1364 (((-1192 (-419 (-1192 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1192 |#2|)) 35)) (-3110 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1192 |#2|)) 115)) (-3035 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|)) 55)) (-2465 (((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1192 |#2|))) 92) (((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1192 |#2|)) 114)) (-3599 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) |#2| (-1192 |#2|)) 116)) (-2165 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1999 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1999 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-1529 ((|#2| (-1192 (-419 (-1192 |#2|))) (-624 |#2|) |#2|) 53)) (-2344 (((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-624 |#2|)) 34))) -(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -3035 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -3035 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2465 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1192 |#2|))) (-15 -2465 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3110 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1192 |#2|))) (-15 -3110 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3599 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) |#2| (-1192 |#2|))) (-15 -3599 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -1364 ((-1192 (-419 (-1192 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1192 |#2|))) (-15 -1529 (|#2| (-1192 (-419 (-1192 |#2|))) (-624 |#2|) |#2|)) (-15 -2344 ((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -2165 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1999 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -2165 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1999 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))))) |%noBranch|)) (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1222)) (-1119)) (T -572)) -((-2165 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1192 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) (-2165 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1192 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1192 (-419 (-1192 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1192 *6)) (-4 *7 (-1119)))) (-1529 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1192 (-419 (-1192 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1119)))) (-1364 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1192 (-419 (-1192 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1192 *3)) (-4 *7 (-1119)))) (-3599 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-5 *5 (-419 (-1192 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119)))) (-3599 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-5 *5 (-1192 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119)))) (-3110 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119)))) (-3110 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1192 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119)))) (-2465 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) (-2465 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) (-3035 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) (-3035 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119))))) -(-10 -7 (-15 -3035 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -3035 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2465 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1192 |#2|))) (-15 -2465 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3110 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1192 |#2|))) (-15 -3110 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3599 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) |#2| (-1192 |#2|))) (-15 -3599 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)) (-624 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -1364 ((-1192 (-419 (-1192 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1192 |#2|))) (-15 -1529 (|#2| (-1192 (-419 (-1192 |#2|))) (-624 |#2|) |#2|)) (-15 -2344 ((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -2165 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1999 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1192 |#2|))) (-15 -2165 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1999 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1192 |#2|))))) |%noBranch|)) -((-3430 (((-576) (-576) (-783)) 85)) (-3359 (((-576) (-576)) 83)) (-1753 (((-576) (-576)) 81)) (-3784 (((-576) (-576)) 87)) (-3980 (((-576) (-576) (-576)) 65)) (-3689 (((-576) (-576) (-576)) 62)) (-1441 (((-419 (-576)) (-576)) 30)) (-1452 (((-576) (-576)) 34)) (-1680 (((-576) (-576)) 74)) (-1633 (((-576) (-576)) 46)) (-4343 (((-656 (-576)) (-576)) 80)) (-2011 (((-576) (-576) (-576) (-576) (-576)) 58)) (-2366 (((-419 (-576)) (-576)) 55))) -(((-573) (-10 -7 (-15 -2366 ((-419 (-576)) (-576))) (-15 -2011 ((-576) (-576) (-576) (-576) (-576))) (-15 -4343 ((-656 (-576)) (-576))) (-15 -1633 ((-576) (-576))) (-15 -1680 ((-576) (-576))) (-15 -1452 ((-576) (-576))) (-15 -1441 ((-419 (-576)) (-576))) (-15 -3689 ((-576) (-576) (-576))) (-15 -3980 ((-576) (-576) (-576))) (-15 -3784 ((-576) (-576))) (-15 -1753 ((-576) (-576))) (-15 -3359 ((-576) (-576))) (-15 -3430 ((-576) (-576) (-783))))) (T -573)) -((-3430 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-3359 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1753 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3784 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3980 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3689 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1441 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-1452 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1633 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4343 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-2011 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(-10 -7 (-15 -2366 ((-419 (-576)) (-576))) (-15 -2011 ((-576) (-576) (-576) (-576) (-576))) (-15 -4343 ((-656 (-576)) (-576))) (-15 -1633 ((-576) (-576))) (-15 -1680 ((-576) (-576))) (-15 -1452 ((-576) (-576))) (-15 -1441 ((-419 (-576)) (-576))) (-15 -3689 ((-576) (-576) (-576))) (-15 -3980 ((-576) (-576) (-576))) (-15 -3784 ((-576) (-576))) (-15 -1753 ((-576) (-576))) (-15 -3359 ((-576) (-576))) (-15 -3430 ((-576) (-576) (-783)))) -((-2431 (((-2 (|:| |answer| |#4|) (|:| -3346 |#4|)) |#4| (-1 |#2| |#2|)) 56))) -(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2431 ((-2 (|:| |answer| |#4|) (|:| -3346 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) -((-2431 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3346 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) -(-10 -7 (-15 -2431 ((-2 (|:| |answer| |#4|) (|:| -3346 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2431 (((-2 (|:| |answer| (-419 |#2|)) (|:| -3346 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) -(((-575 |#1| |#2|) (-10 -7 (-15 -2431 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3346 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1263 |#1|)) (T -575)) -((-2431 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -3346 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -2431 ((-2 (|:| |answer| (-419 |#2|)) (|:| -3346 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 30)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 96)) (-2573 (($ $) 97)) (-4306 (((-112) $) NIL)) (-4253 (($ $ $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2908 (($ $ $ $) 52)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL)) (-3298 (($ $ $) 91)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL)) (-2378 (((-576) $) NIL)) (-1975 (($ $ $) 53)) (-3687 (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 76) (((-701 (-576)) (-701 $)) 72) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) 93)) (-1653 (((-3 (-419 (-576)) "failed") $) NIL)) (-3863 (((-112) $) NIL)) (-4266 (((-419 (-576)) $) NIL)) (-2446 (($) 78) (($ $) 79)) (-1986 (($ $ $) 90)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-2217 (($ $ $ $) NIL)) (-3166 (($ $ $) 69)) (-3567 (((-112) $) NIL)) (-2135 (($ $ $) NIL)) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1810 (((-112) $) 34)) (-3082 (((-112) $) 85)) (-2083 (((-3 $ "failed") $) NIL)) (-3713 (((-112) $) 43)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3077 (($ $ $ $) 54)) (-3492 (($ $ $) 87)) (-2726 (($ $ $) 86)) (-2391 (($ $) NIL)) (-1325 (($ $) 49)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) 68)) (-2268 (($ $ $) NIL)) (-3503 (($) NIL T CONST)) (-3796 (($ $) 38)) (-3139 (((-1139) $) 42)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 128)) (-3149 (($ $ $) 94) (($ (-656 $)) NIL)) (-1765 (($ $) NIL)) (-1392 (((-430 $) $) 114)) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL)) (-2022 (((-3 $ "failed") $ $) 112)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2015 (((-112) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 89)) (-3614 (($ $) NIL) (($ $ (-783)) NIL)) (-3273 (($ $) 40)) (-4268 (($ $) 36)) (-1505 (((-576) $) 48) (((-548) $) 63) (((-905 (-576)) $) NIL) (((-390) $) 57) (((-227) $) 60) (((-1178) $) 65)) (-4092 (((-874) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-2471 (((-783)) NIL T CONST)) (-4276 (((-112) $ $) NIL)) (-1760 (($ $ $) NIL)) (-1531 (((-112) $ $) NIL)) (-1841 (($) 35)) (-2947 (((-112) $ $) NIL)) (-2967 (($ $ $ $) 51)) (-3423 (($ $) 77)) (-4300 (($) 6 T CONST)) (-4310 (($) 31 T CONST)) (-3774 (((-1178) $) 26) (((-1178) $ (-112)) 27) (((-1292) (-834) $) 28) (((-1292) (-834) $ (-112)) 29)) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-3977 (((-112) $ $) 50)) (-3955 (((-112) $ $) 80)) (-3919 (((-112) $ $) 33)) (-3966 (((-112) $ $) 81)) (-3944 (((-112) $ $) 10)) (-4018 (($ $) 16) (($ $ $) 39)) (-4007 (($ $ $) 37)) (** (($ $ (-938)) NIL) (($ $ (-783)) 84)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 82) (($ (-576) $) 83))) -(((-576) (-13 (-557) (-626 (-1178)) (-840) (-10 -7 (-6 -4449) (-6 -4454) (-6 -4450) (-6 -4444)))) (T -576)) -NIL -(-13 (-557) (-626 (-1178)) (-840) (-10 -7 (-6 -4449) (-6 -4454) (-6 -4450) (-6 -4444))) -((-2451 (((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781) (-1082)) 116) (((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781)) 118)) (-3597 (((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1196)) 195) (((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1178)) 194) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390) (-1082)) 199) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390)) 200) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390)) 201) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390))))) 202) (((-1054) (-326 (-390)) (-1113 (-855 (-390)))) 190) (((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390)) 189) (((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390)) 185) (((-1054) (-781)) 177) (((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390) (-1082)) 184))) -(((-577) (-10 -7 (-15 -3597 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390) (-1082))) (-15 -3597 ((-1054) (-781))) (-15 -3597 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390))) (-15 -3597 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390))) (-15 -3597 ((-1054) (-326 (-390)) (-1113 (-855 (-390))))) (-15 -3597 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))))) (-15 -3597 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390))) (-15 -3597 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390))) (-15 -3597 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390) (-1082))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781) (-1082))) (-15 -3597 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1178))) (-15 -3597 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1196))))) (T -577)) -((-3597 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) (-5 *5 (-1196)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3597 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) (-5 *5 (-1178)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) (-5 *1 (-577)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) (-5 *1 (-577)))) (-3597 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3597 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3597 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3597 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3597 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577))))) -(-10 -7 (-15 -3597 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390) (-1082))) (-15 -3597 ((-1054) (-781))) (-15 -3597 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390))) (-15 -3597 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390))) (-15 -3597 ((-1054) (-326 (-390)) (-1113 (-855 (-390))))) (-15 -3597 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))))) (-15 -3597 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390))) (-15 -3597 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390))) (-15 -3597 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390) (-1082))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054))) (-781) (-1082))) (-15 -3597 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1178))) (-15 -3597 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1196)))) -((-3050 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 195)) (-2050 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-4347 (((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-3672 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196))) 200)) (-3406 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1999 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1196)) 209 (|has| |#3| (-668 |#2|))))) -(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -2050 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -4347 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -3050 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -3672 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)))) (IF (|has| |#3| (-668 |#2|)) (-15 -3406 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1999 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1196))) |%noBranch|)) (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1222)) (-1119)) (T -578)) -((-3406 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1196)) (-4 *4 (-13 (-442 *7) (-27) (-1222))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) (-3672 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-4 *2 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1119)))) (-3050 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1119)))) (-4347 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119)))) (-2050 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1222))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119))))) -(-10 -7 (-15 -2050 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -4347 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -3050 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -3672 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1196)))) (IF (|has| |#3| (-668 |#2|)) (-15 -3406 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1999 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1196))) |%noBranch|)) -((-3923 (((-2 (|:| -1348 |#2|) (|:| |nconst| |#2|)) |#2| (-1196)) 64)) (-3537 (((-3 |#2| "failed") |#2| (-1196) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1158)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576)))))) (-1960 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576))))))) -(((-579 |#1| |#2|) (-10 -7 (-15 -3923 ((-2 (|:| -1348 |#2|) (|:| |nconst| |#2|)) |#2| (-1196))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -1960 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) (-15 -3537 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) (IF (|has| |#2| (-1158)) (-15 -3537 ((-3 |#2| "failed") |#2| (-1196) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1057 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -579)) -((-3537 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1196)) (-5 *4 (-855 *2)) (-4 *2 (-1158)) (-4 *2 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-3537 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-3923 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -1348 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(-10 -7 (-15 -3923 ((-2 (|:| -1348 |#2|) (|:| |nconst| |#2|)) |#2| (-1196))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -1960 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) (-15 -3537 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) (IF (|has| |#2| (-1158)) (-15 -3537 ((-3 |#2| "failed") |#2| (-1196) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1744 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-3597 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-2069 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-4070 (((-3 (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) -(((-580 |#1| |#2|) (-10 -7 (-15 -3597 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2069 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -4070 ((-3 (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -1744 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1057 (-576))) (-1263 |#1|)) (T -580)) -((-1744 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-4070 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -4015 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-2069 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148) (-1057 (-576)))) (-5 *1 (-580 *3 *4)))) (-3597 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -3597 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -2069 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -4070 ((-3 (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -1744 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) -((-1827 (((-3 (-576) "failed") |#1|) 14)) (-3738 (((-112) |#1|) 13)) (-2284 (((-576) |#1|) 9))) -(((-581 |#1|) (-10 -7 (-15 -2284 ((-576) |#1|)) (-15 -3738 ((-112) |#1|)) (-15 -1827 ((-3 (-576) "failed") |#1|))) (-1057 (-576))) (T -581)) -((-1827 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2)))) (-3738 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1057 (-576))))) (-2284 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2))))) -(-10 -7 (-15 -2284 ((-576) |#1|)) (-15 -3738 ((-112) |#1|)) (-15 -1827 ((-3 (-576) "failed") |#1|))) -((-3748 (((-3 (-2 (|:| |mainpart| (-419 (-969 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-969 |#1|))) (|:| |logand| (-419 (-969 |#1|))))))) "failed") (-419 (-969 |#1|)) (-1196) (-656 (-419 (-969 |#1|)))) 48)) (-2023 (((-598 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-1196)) 28)) (-2923 (((-3 (-419 (-969 |#1|)) "failed") (-419 (-969 |#1|)) (-1196)) 23)) (-4023 (((-3 (-2 (|:| -4015 (-419 (-969 |#1|))) (|:| |coeff| (-419 (-969 |#1|)))) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|))) 35))) -(((-582 |#1|) (-10 -7 (-15 -2023 ((-598 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -2923 ((-3 (-419 (-969 |#1|)) "failed") (-419 (-969 |#1|)) (-1196))) (-15 -3748 ((-3 (-2 (|:| |mainpart| (-419 (-969 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-969 |#1|))) (|:| |logand| (-419 (-969 |#1|))))))) "failed") (-419 (-969 |#1|)) (-1196) (-656 (-419 (-969 |#1|))))) (-15 -4023 ((-3 (-2 (|:| -4015 (-419 (-969 |#1|))) (|:| |coeff| (-419 (-969 |#1|)))) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|))))) (-13 (-568) (-1057 (-576)) (-148))) (T -582)) -((-4023 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 (-2 (|:| -4015 (-419 (-969 *5))) (|:| |coeff| (-419 (-969 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-969 *5))))) (-3748 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 (-419 (-969 *6)))) (-5 *3 (-419 (-969 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-2923 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)) (-148))) (-5 *1 (-582 *4)))) (-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 (-598 (-419 (-969 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-969 *5)))))) -(-10 -7 (-15 -2023 ((-598 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -2923 ((-3 (-419 (-969 |#1|)) "failed") (-419 (-969 |#1|)) (-1196))) (-15 -3748 ((-3 (-2 (|:| |mainpart| (-419 (-969 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-969 |#1|))) (|:| |logand| (-419 (-969 |#1|))))))) "failed") (-419 (-969 |#1|)) (-1196) (-656 (-419 (-969 |#1|))))) (-15 -4023 ((-3 (-2 (|:| -4015 (-419 (-969 |#1|))) (|:| |coeff| (-419 (-969 |#1|)))) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|))))) -((-2034 (((-112) $ $) 75)) (-1962 (((-112) $) 48)) (-1934 ((|#1| $) 39)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) 79)) (-2266 (($ $) 139)) (-2111 (($ $) 118)) (-2746 ((|#1| $) 37)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $) NIL)) (-2236 (($ $) 141)) (-2084 (($ $) 114)) (-2294 (($ $) 143)) (-2138 (($ $) 122)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) 93)) (-2378 (((-576) $) 95)) (-3179 (((-3 $ "failed") $) 78)) (-4374 (($ |#1| |#1|) 35)) (-3567 (((-112) $) 44)) (-3926 (($) 104)) (-1810 (((-112) $) 55)) (-3355 (($ $ (-576)) NIL)) (-3713 (((-112) $) 45)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-2703 (($ $) 106)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1383 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-2632 ((|#1| $) 36)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) 81) (($ (-656 $)) NIL)) (-2022 (((-3 $ "failed") $ $) 80)) (-3353 (($ $) 108)) (-2307 (($ $) 147)) (-2149 (($ $) 120)) (-2281 (($ $) 149)) (-2123 (($ $) 124)) (-2253 (($ $) 145)) (-2099 (($ $) 116)) (-2181 (((-112) $ |#1|) 42)) (-4092 (((-874) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-2471 (((-783)) 102 T CONST)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) 161)) (-2184 (($ $) 130)) (-2947 (((-112) $ $) NIL)) (-2317 (($ $) 159)) (-2161 (($ $) 126)) (-2368 (($ $) 157)) (-2207 (($ $) 137)) (-3945 (($ $) 155)) (-2220 (($ $) 135)) (-2352 (($ $) 153)) (-2195 (($ $) 132)) (-2329 (($ $) 151)) (-2173 (($ $) 128)) (-4300 (($) 30 T CONST)) (-4310 (($) 10 T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 49)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 47)) (-4018 (($ $) 53) (($ $ $) 54)) (-4007 (($ $ $) 52)) (** (($ $ (-938)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-938) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) -(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1222))) (T -583)) +((-3230 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1195) (-656 |#2|)) 38)) (-1630 (((-598 |#2|) |#2| (-1195)) 63)) (-3600 (((-3 |#2| "failed") |#2| (-1195)) 156)) (-3336 (((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) (-624 |#2|) (-656 (-624 |#2|))) 159)) (-2518 (((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) |#2|) 41))) +(((-569 |#1| |#2|) (-10 -7 (-15 -2518 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) |#2|)) (-15 -3230 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1195) (-656 |#2|))) (-15 -3600 ((-3 |#2| "failed") |#2| (-1195))) (-15 -1630 ((-598 |#2|) |#2| (-1195))) (-15 -3336 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) (-624 |#2|) (-656 (-624 |#2|))))) (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -569)) +((-3336 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1195)) (-5 *6 (-656 (-624 *3))) (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) (-5 *1 (-569 *7 *3)))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-3600 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-3230 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3)))) (-2518 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) +(-10 -7 (-15 -2518 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) |#2|)) (-15 -3230 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1195) (-656 |#2|))) (-15 -3600 ((-3 |#2| "failed") |#2| (-1195))) (-15 -1630 ((-598 |#2|) |#2| (-1195))) (-15 -3336 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1195) (-624 |#2|) (-656 (-624 |#2|))))) +((-2732 (((-430 |#1|) |#1|) 19)) (-1839 (((-430 |#1|) |#1|) 34)) (-2747 (((-3 |#1| "failed") |#1|) 49)) (-2441 (((-430 |#1|) |#1|) 60))) +(((-570 |#1|) (-10 -7 (-15 -1839 ((-430 |#1|) |#1|)) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -2441 ((-430 |#1|) |#1|)) (-15 -2747 ((-3 |#1| "failed") |#1|))) (-557)) (T -570)) +((-2747 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557)))) (-2441 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-2732 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -1839 ((-430 |#1|) |#1|)) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -2441 ((-430 |#1|) |#1|)) (-15 -2747 ((-3 |#1| "failed") |#1|))) +((-2083 (($) 9)) (-2680 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 34)) (-3135 (((-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 31)) (-2040 (($ (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28)) (-1511 (($ (-656 (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26)) (-4353 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 38)) (-1947 (((-656 (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36)) (-3813 (((-1291)) 11))) +(((-571) (-10 -8 (-15 -2083 ($)) (-15 -3813 ((-1291))) (-15 -3135 ((-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1511 ($ (-656 (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2040 ($ (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2680 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1947 ((-656 (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4353 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -571)) +((-4353 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-2680 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-571)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-571)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-571)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-571)))) (-3813 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-571)))) (-2083 (*1 *1) (-5 *1 (-571)))) +(-10 -8 (-15 -2083 ($)) (-15 -3813 ((-1291))) (-15 -3135 ((-656 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -1511 ($ (-656 (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2040 ($ (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2680 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -1947 ((-656 (-2 (|:| -4282 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -4353 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-3999 (((-1191 (-419 (-1191 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1191 |#2|)) 35)) (-2203 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1191 |#2|)) 115)) (-4220 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 85) (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|)) 55)) (-2572 (((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1191 |#2|))) 92) (((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1191 |#2|)) 114)) (-4055 (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) |#2| (-1191 |#2|)) 116)) (-2660 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3713 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))) 133 (|has| |#3| (-668 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3713 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|)) 132 (|has| |#3| (-668 |#2|)))) (-1980 ((|#2| (-1191 (-419 (-1191 |#2|))) (-624 |#2|) |#2|) 53)) (-2510 (((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-624 |#2|)) 34))) +(((-572 |#1| |#2| |#3|) (-10 -7 (-15 -4220 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -4220 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -2572 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1191 |#2|))) (-15 -2572 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -2203 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1191 |#2|))) (-15 -2203 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4055 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) |#2| (-1191 |#2|))) (-15 -4055 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -3999 ((-1191 (-419 (-1191 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1191 |#2|))) (-15 -1980 (|#2| (-1191 (-419 (-1191 |#2|))) (-624 |#2|) |#2|)) (-15 -2510 ((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -2660 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3713 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -2660 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3713 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))))) |%noBranch|)) (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1221)) (-1119)) (T -572)) +((-2660 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1191 *4))) (-4 *4 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) (-2660 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1191 *4)) (-4 *4 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1191 (-419 (-1191 *6)))) (-5 *1 (-572 *5 *6 *7)) (-5 *3 (-1191 *6)) (-4 *7 (-1119)))) (-1980 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1191 (-419 (-1191 *2)))) (-5 *4 (-624 *2)) (-4 *2 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1119)))) (-3999 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-1191 (-419 (-1191 *3)))) (-5 *1 (-572 *6 *3 *7)) (-5 *5 (-1191 *3)) (-4 *7 (-1119)))) (-4055 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-5 *5 (-419 (-1191 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119)))) (-4055 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-5 *5 (-1191 *2)) (-4 *2 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119)))) (-2203 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119)))) (-2203 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1191 *3)) (-4 *3 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119)))) (-2572 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) (-2572 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) (-4220 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) (-4220 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119))))) +(-10 -7 (-15 -4220 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -4220 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -2572 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| |#2| (-1191 |#2|))) (-15 -2572 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2| (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -2203 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) |#2| (-1191 |#2|))) (-15 -2203 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -4055 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) |#2| (-1191 |#2|))) (-15 -4055 ((-3 |#2| "failed") |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)) (-624 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -3999 ((-1191 (-419 (-1191 |#2|))) |#2| (-624 |#2|) (-624 |#2|) (-1191 |#2|))) (-15 -1980 (|#2| (-1191 (-419 (-1191 |#2|))) (-624 |#2|) |#2|)) (-15 -2510 ((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-624 |#2|))) (IF (|has| |#3| (-668 |#2|)) (PROGN (-15 -2660 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3713 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) |#2| (-1191 |#2|))) (-15 -2660 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3713 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-624 |#2|) |#2| (-419 (-1191 |#2|))))) |%noBranch|)) +((-1598 (((-576) (-576) (-783)) 85)) (-3163 (((-576) (-576)) 83)) (-1676 (((-576) (-576)) 81)) (-4080 (((-576) (-576)) 87)) (-3819 (((-576) (-576) (-576)) 65)) (-3900 (((-576) (-576) (-576)) 62)) (-4262 (((-419 (-576)) (-576)) 30)) (-4253 (((-576) (-576)) 34)) (-3480 (((-576) (-576)) 74)) (-2255 (((-576) (-576)) 46)) (-3659 (((-656 (-576)) (-576)) 80)) (-2285 (((-576) (-576) (-576) (-576) (-576)) 58)) (-4344 (((-419 (-576)) (-576)) 55))) +(((-573) (-10 -7 (-15 -4344 ((-419 (-576)) (-576))) (-15 -2285 ((-576) (-576) (-576) (-576) (-576))) (-15 -3659 ((-656 (-576)) (-576))) (-15 -2255 ((-576) (-576))) (-15 -3480 ((-576) (-576))) (-15 -4253 ((-576) (-576))) (-15 -4262 ((-419 (-576)) (-576))) (-15 -3900 ((-576) (-576) (-576))) (-15 -3819 ((-576) (-576) (-576))) (-15 -4080 ((-576) (-576))) (-15 -1676 ((-576) (-576))) (-15 -3163 ((-576) (-576))) (-15 -1598 ((-576) (-576) (-783))))) (T -573)) +((-1598 (*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-1676 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4080 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3819 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3900 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4262 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-4253 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-2255 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-3659 (*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) (-2285 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) (-4344 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(-10 -7 (-15 -4344 ((-419 (-576)) (-576))) (-15 -2285 ((-576) (-576) (-576) (-576) (-576))) (-15 -3659 ((-656 (-576)) (-576))) (-15 -2255 ((-576) (-576))) (-15 -3480 ((-576) (-576))) (-15 -4253 ((-576) (-576))) (-15 -4262 ((-419 (-576)) (-576))) (-15 -3900 ((-576) (-576) (-576))) (-15 -3819 ((-576) (-576) (-576))) (-15 -4080 ((-576) (-576))) (-15 -1676 ((-576) (-576))) (-15 -3163 ((-576) (-576))) (-15 -1598 ((-576) (-576) (-783)))) +((-1336 (((-2 (|:| |answer| |#4|) (|:| -4385 |#4|)) |#4| (-1 |#2| |#2|)) 56))) +(((-574 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1336 ((-2 (|:| |answer| |#4|) (|:| -4385 |#4|)) |#4| (-1 |#2| |#2|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -574)) +((-1336 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -4385 *3))) (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7))))) +(-10 -7 (-15 -1336 ((-2 (|:| |answer| |#4|) (|:| -4385 |#4|)) |#4| (-1 |#2| |#2|)))) +((-1336 (((-2 (|:| |answer| (-419 |#2|)) (|:| -4385 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18))) +(((-575 |#1| |#2|) (-10 -7 (-15 -1336 ((-2 (|:| |answer| (-419 |#2|)) (|:| -4385 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1262 |#1|)) (T -575)) +((-1336 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -4385 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -1336 ((-2 (|:| |answer| (-419 |#2|)) (|:| -4385 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 30)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 96)) (-4412 (($ $) 97)) (-4176 (((-112) $) NIL)) (-4192 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $ $ $) 52)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL)) (-2745 (($ $ $) 91)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL)) (-4056 (((-576) $) NIL)) (-3420 (($ $ $) 53)) (-3687 (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 76) (((-701 (-576)) (-701 $)) 72) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) 93)) (-3615 (((-3 (-419 (-576)) "failed") $) NIL)) (-3235 (((-112) $) NIL)) (-3113 (((-419 (-576)) $) NIL)) (-1803 (($) 78) (($ $) 79)) (-3431 (($ $ $) 90)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-2917 (($ $ $ $) NIL)) (-1493 (($ $ $) 69)) (-1910 (((-112) $) NIL)) (-1891 (($ $ $) NIL)) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1414 (((-112) $) 34)) (-3828 (((-112) $) 85)) (-3930 (((-3 $ "failed") $) NIL)) (-3566 (((-112) $) 43)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3020 (($ $ $ $) 54)) (-2442 (($ $ $) 87)) (-1893 (($ $ $) 86)) (-1591 (($ $) NIL)) (-4261 (($ $) 49)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) 68)) (-1368 (($ $ $) NIL)) (-1538 (($) NIL T CONST)) (-4393 (($ $) 38)) (-1445 (((-1139) $) 42)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 128)) (-3495 (($ $ $) 94) (($ (-656 $)) NIL)) (-1473 (($ $) NIL)) (-1839 (((-430 $) $) 114)) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL)) (-3463 (((-3 $ "failed") $ $) 112)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2489 (((-112) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 89)) (-2735 (($ $) NIL) (($ $ (-783)) NIL)) (-1771 (($ $) 40)) (-1954 (($ $) 36)) (-4076 (((-576) $) 48) (((-548) $) 63) (((-905 (-576)) $) NIL) (((-390) $) 57) (((-227) $) 60) (((-1177) $) 65)) (-3563 (((-874) $) 46) (($ (-576)) 47) (($ $) NIL) (($ (-576)) 47)) (-1858 (((-783)) NIL T CONST)) (-2599 (((-112) $ $) NIL)) (-4114 (($ $ $) NIL)) (-3985 (((-112) $ $) NIL)) (-3402 (($) 35)) (-3040 (((-112) $ $) NIL)) (-3002 (($ $ $ $) 51)) (-2264 (($ $) 77)) (-2800 (($) 6 T CONST)) (-2810 (($) 31 T CONST)) (-2584 (((-1177) $) 26) (((-1177) $ (-112)) 27) (((-1291) (-834) $) 28) (((-1291) (-834) $ (-112)) 29)) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-3049 (((-112) $ $) 50)) (-3024 (((-112) $ $) 80)) (-2988 (((-112) $ $) 33)) (-3037 (((-112) $ $) 81)) (-3010 (((-112) $ $) 10)) (-3095 (($ $) 16) (($ $ $) 39)) (-3083 (($ $ $) 37)) (** (($ $ (-938)) NIL) (($ $ (-783)) 84)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 83) (($ $ $) 82) (($ (-576) $) 83))) +(((-576) (-13 (-557) (-626 (-1177)) (-840) (-10 -7 (-6 -4448) (-6 -4453) (-6 -4449) (-6 -4443)))) (T -576)) +NIL +(-13 (-557) (-626 (-1177)) (-840) (-10 -7 (-6 -4448) (-6 -4453) (-6 -4449) (-6 -4443))) +((-2502 (((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054))) (-781) (-1082)) 116) (((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054))) (-781)) 118)) (-3848 (((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1195)) 195) (((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1177)) 194) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390) (-1082)) 199) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390)) 200) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390)) 201) (((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390))))) 202) (((-1054) (-326 (-390)) (-1113 (-855 (-390)))) 190) (((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390)) 189) (((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390)) 185) (((-1054) (-781)) 177) (((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390) (-1082)) 184))) +(((-577) (-10 -7 (-15 -3848 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390) (-1082))) (-15 -3848 ((-1054) (-781))) (-15 -3848 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390))) (-15 -3848 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390))) (-15 -3848 ((-1054) (-326 (-390)) (-1113 (-855 (-390))))) (-15 -3848 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))))) (-15 -3848 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390))) (-15 -3848 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390))) (-15 -3848 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390) (-1082))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054))) (-781))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054))) (-781) (-1082))) (-15 -3848 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1177))) (-15 -3848 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1195))))) (T -577)) +((-3848 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) (-5 *5 (-1195)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3848 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) (-5 *5 (-1177)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-781)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054)))) (-5 *1 (-577)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054)))) (-5 *1 (-577)))) (-3848 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3848 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3848 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3848 (*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1054)) (-5 *1 (-577)))) (-3848 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577))))) +(-10 -7 (-15 -3848 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390) (-1082))) (-15 -3848 ((-1054) (-781))) (-15 -3848 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390) (-390))) (-15 -3848 ((-1054) (-326 (-390)) (-1113 (-855 (-390))) (-390))) (-15 -3848 ((-1054) (-326 (-390)) (-1113 (-855 (-390))))) (-15 -3848 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))))) (-15 -3848 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390))) (-15 -3848 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390))) (-15 -3848 ((-1054) (-326 (-390)) (-656 (-1113 (-855 (-390)))) (-390) (-390) (-1082))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054))) (-781))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054))) (-781) (-1082))) (-15 -3848 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1177))) (-15 -3848 ((-3 (-1054) "failed") (-326 (-390)) (-1111 (-855 (-390))) (-1195)))) +((-2207 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|)) 195)) (-3898 (((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|)) 97)) (-2852 (((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|) 191)) (-1621 (((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195))) 200)) (-4383 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3713 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1195)) 209 (|has| |#3| (-668 |#2|))))) +(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -3898 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -2852 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -2207 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -1621 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)))) (IF (|has| |#3| (-668 |#2|)) (-15 -4383 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3713 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1195))) |%noBranch|)) (-13 (-464) (-1057 (-576)) (-148) (-651 (-576))) (-13 (-442 |#1|) (-27) (-1221)) (-1119)) (T -578)) +((-4383 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-624 *4)) (-5 *6 (-1195)) (-4 *4 (-13 (-442 *7) (-27) (-1221))) (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) (-1621 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-624 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-4 *2 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1119)))) (-2207 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1119)))) (-2852 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119)))) (-3898 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1221))) (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119))))) +(-10 -7 (-15 -3898 ((-598 |#2|) |#2| (-624 |#2|) (-624 |#2|))) (-15 -2852 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-624 |#2|) (-624 |#2|) |#2|)) (-15 -2207 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-624 |#2|) (-624 |#2|) (-656 |#2|))) (-15 -1621 ((-3 |#2| "failed") |#2| |#2| |#2| (-624 |#2|) (-624 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1195)))) (IF (|has| |#3| (-668 |#2|)) (-15 -4383 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3713 (-656 |#2|))) |#3| |#2| (-624 |#2|) (-624 |#2|) (-1195))) |%noBranch|)) +((-3666 (((-2 (|:| -3239 |#2|) (|:| |nconst| |#2|)) |#2| (-1195)) 64)) (-1963 (((-3 |#2| "failed") |#2| (-1195) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1158)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)) 154 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576)))))) (-4358 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)) 156 (-12 (|has| |#2| (-641)) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-899 (-576))))))) +(((-579 |#1| |#2|) (-10 -7 (-15 -3666 ((-2 (|:| -3239 |#2|) (|:| |nconst| |#2|)) |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -4358 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195))) (-15 -1963 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) (IF (|has| |#2| (-1158)) (-15 -1963 ((-3 |#2| "failed") |#2| (-1195) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1057 (-576)) (-464) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -579)) +((-1963 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1195)) (-5 *4 (-855 *2)) (-4 *2 (-1158)) (-4 *2 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *1 (-579 *5 *2)))) (-1963 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-4358 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-3666 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) (-5 *2 (-2 (|:| -3239 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) +(-10 -7 (-15 -3666 ((-2 (|:| -3239 |#2|) (|:| |nconst| |#2|)) |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (PROGN (IF (|has| |#2| (-641)) (PROGN (-15 -4358 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195))) (-15 -1963 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) (IF (|has| |#2| (-1158)) (-15 -1963 ((-3 |#2| "failed") |#2| (-1195) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2324 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))) 41)) (-3848 (((-598 (-419 |#2|)) (-419 |#2|)) 28)) (-1882 (((-3 (-419 |#2|) "failed") (-419 |#2|)) 17)) (-3761 (((-3 (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|)) 48))) +(((-580 |#1| |#2|) (-10 -7 (-15 -3848 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -1882 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3761 ((-3 (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2324 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1057 (-576))) (-1262 |#1|)) (T -580)) +((-2324 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-3761 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -3116 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-1882 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148) (-1057 (-576)))) (-5 *1 (-580 *3 *4)))) (-3848 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -3848 ((-598 (-419 |#2|)) (-419 |#2|))) (-15 -1882 ((-3 (-419 |#2|) "failed") (-419 |#2|))) (-15 -3761 ((-3 (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-419 |#2|))) (-15 -2324 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-656 (-419 |#2|))))) +((-3565 (((-3 (-576) "failed") |#1|) 14)) (-4185 (((-112) |#1|) 13)) (-4281 (((-576) |#1|) 9))) +(((-581 |#1|) (-10 -7 (-15 -4281 ((-576) |#1|)) (-15 -4185 ((-112) |#1|)) (-15 -3565 ((-3 (-576) "failed") |#1|))) (-1057 (-576))) (T -581)) +((-3565 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2)))) (-4185 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1057 (-576))))) (-4281 (*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2))))) +(-10 -7 (-15 -4281 ((-576) |#1|)) (-15 -4185 ((-112) |#1|)) (-15 -3565 ((-3 (-576) "failed") |#1|))) +((-2786 (((-3 (-2 (|:| |mainpart| (-419 (-969 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-969 |#1|))) (|:| |logand| (-419 (-969 |#1|))))))) "failed") (-419 (-969 |#1|)) (-1195) (-656 (-419 (-969 |#1|)))) 48)) (-1958 (((-598 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-1195)) 28)) (-1697 (((-3 (-419 (-969 |#1|)) "failed") (-419 (-969 |#1|)) (-1195)) 23)) (-1500 (((-3 (-2 (|:| -3116 (-419 (-969 |#1|))) (|:| |coeff| (-419 (-969 |#1|)))) "failed") (-419 (-969 |#1|)) (-1195) (-419 (-969 |#1|))) 35))) +(((-582 |#1|) (-10 -7 (-15 -1958 ((-598 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-1195))) (-15 -1697 ((-3 (-419 (-969 |#1|)) "failed") (-419 (-969 |#1|)) (-1195))) (-15 -2786 ((-3 (-2 (|:| |mainpart| (-419 (-969 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-969 |#1|))) (|:| |logand| (-419 (-969 |#1|))))))) "failed") (-419 (-969 |#1|)) (-1195) (-656 (-419 (-969 |#1|))))) (-15 -1500 ((-3 (-2 (|:| -3116 (-419 (-969 |#1|))) (|:| |coeff| (-419 (-969 |#1|)))) "failed") (-419 (-969 |#1|)) (-1195) (-419 (-969 |#1|))))) (-13 (-568) (-1057 (-576)) (-148))) (T -582)) +((-1500 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 (-2 (|:| -3116 (-419 (-969 *5))) (|:| |coeff| (-419 (-969 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-969 *5))))) (-2786 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 (-419 (-969 *6)))) (-5 *3 (-419 (-969 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-1697 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1057 (-576)) (-148))) (-5 *1 (-582 *4)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 (-598 (-419 (-969 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-969 *5)))))) +(-10 -7 (-15 -1958 ((-598 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-1195))) (-15 -1697 ((-3 (-419 (-969 |#1|)) "failed") (-419 (-969 |#1|)) (-1195))) (-15 -2786 ((-3 (-2 (|:| |mainpart| (-419 (-969 |#1|))) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 (-969 |#1|))) (|:| |logand| (-419 (-969 |#1|))))))) "failed") (-419 (-969 |#1|)) (-1195) (-656 (-419 (-969 |#1|))))) (-15 -1500 ((-3 (-2 (|:| -3116 (-419 (-969 |#1|))) (|:| |coeff| (-419 (-969 |#1|)))) "failed") (-419 (-969 |#1|)) (-1195) (-419 (-969 |#1|))))) +((-3474 (((-112) $ $) 75)) (-1454 (((-112) $) 48)) (-3309 ((|#1| $) 39)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) 79)) (-3894 (($ $) 139)) (-3768 (($ $) 118)) (-4415 ((|#1| $) 37)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1853 (($ $) NIL)) (-3872 (($ $) 141)) (-3747 (($ $) 114)) (-3916 (($ $) 143)) (-3788 (($ $) 122)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) 93)) (-4056 (((-576) $) 95)) (-1551 (((-3 $ "failed") $) 78)) (-3405 (($ |#1| |#1|) 35)) (-1910 (((-112) $) 44)) (-1570 (($) 104)) (-1414 (((-112) $) 55)) (-2826 (($ $ (-576)) NIL)) (-3566 (((-112) $) 45)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-3710 (($ $) 106)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-1450 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-419 (-576))) 92)) (-3987 ((|#1| $) 36)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) 81) (($ (-656 $)) NIL)) (-3463 (((-3 $ "failed") $ $) 80)) (-3984 (($ $) 108)) (-3928 (($ $) 147)) (-3798 (($ $) 120)) (-3905 (($ $) 149)) (-3778 (($ $) 124)) (-3882 (($ $) 145)) (-3757 (($ $) 116)) (-3537 (((-112) $ |#1|) 42)) (-3563 (((-874) $) 100) (($ (-576)) 83) (($ $) NIL) (($ (-576)) 83)) (-1858 (((-783)) 102 T CONST)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) 161)) (-3831 (($ $) 130)) (-3040 (((-112) $ $) NIL)) (-3939 (($ $) 159)) (-3808 (($ $) 126)) (-3981 (($ $) 157)) (-3852 (($ $) 137)) (-1830 (($ $) 155)) (-3863 (($ $) 135)) (-3969 (($ $) 153)) (-3841 (($ $) 132)) (-3948 (($ $) 151)) (-3820 (($ $) 128)) (-2800 (($) 30 T CONST)) (-2810 (($) 10 T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 49)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 47)) (-3095 (($ $) 53) (($ $ $) 54)) (-3083 (($ $ $) 52)) (** (($ $ (-938)) 71) (($ $ (-783)) NIL) (($ $ $) 110) (($ $ (-419 (-576))) 163)) (* (($ (-938) $) 66) (($ (-783) $) NIL) (($ (-576) $) 65) (($ $ $) 61))) +(((-583 |#1|) (-566 |#1|) (-13 (-416) (-1221))) (T -583)) NIL (-566 |#1|) -((-2074 (((-3 (-656 (-1192 (-576))) "failed") (-656 (-1192 (-576))) (-1192 (-576))) 27))) -(((-584) (-10 -7 (-15 -2074 ((-3 (-656 (-1192 (-576))) "failed") (-656 (-1192 (-576))) (-1192 (-576)))))) (T -584)) -((-2074 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 (-576)))) (-5 *3 (-1192 (-576))) (-5 *1 (-584))))) -(-10 -7 (-15 -2074 ((-3 (-656 (-1192 (-576))) "failed") (-656 (-1192 (-576))) (-1192 (-576))))) -((-4105 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1196)) 19)) (-2392 (((-656 (-624 |#2|)) (-656 |#2|) (-1196)) 23)) (-4006 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-2382 ((|#2| |#2| (-1196)) 59 (|has| |#1| (-568)))) (-3759 ((|#2| |#2| (-1196)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-1942 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1196)) 25)) (-1598 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-2775 (((-598 |#2|) |#2| (-1196) (-1 (-598 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1057 (-1196))) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-899 (-576))))))) -(((-585 |#1| |#2|) (-10 -7 (-15 -4105 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1196))) (-15 -1598 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -1942 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1196))) (-15 -4006 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2392 ((-656 (-624 |#2|)) (-656 |#2|) (-1196))) (IF (|has| |#1| (-568)) (-15 -2382 (|#2| |#2| (-1196))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3759 (|#2| |#2| (-1196))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1057 (-1196))) (-15 -2775 ((-598 |#2|) |#2| (-1196) (-1 (-598 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1119) (-442 |#1|)) (T -585)) -((-2775 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1196))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1196))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1057 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1196)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464)) (-4 *7 (-899 (-576))) (-4 *7 (-1119)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-3759 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-464)) (-4 *4 (-1119)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-2382 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-4 *4 (-1119)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1196)) (-4 *6 (-442 *5)) (-4 *5 (-1119)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-4006 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1119)) (-5 *1 (-585 *3 *4)))) (-1942 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1196)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1119)) (-5 *1 (-585 *5 *6)))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1119)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-4105 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1196)) (-4 *5 (-442 *4)) (-4 *4 (-1119)) (-5 *1 (-585 *4 *5))))) -(-10 -7 (-15 -4105 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1196))) (-15 -1598 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -1942 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1196))) (-15 -4006 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2392 ((-656 (-624 |#2|)) (-656 |#2|) (-1196))) (IF (|has| |#1| (-568)) (-15 -2382 (|#2| |#2| (-1196))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -3759 (|#2| |#2| (-1196))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1057 (-1196))) (-15 -2775 ((-598 |#2|) |#2| (-1196) (-1 (-598 |#2|) |#2| (-1196)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1196)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2799 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-3843 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-1672 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-4186 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2222 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-3999 (((-3 (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-2435 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-4072 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-3637 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2704 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-2287 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-3666 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-2272 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) -(((-586 |#1| |#2|) (-10 -7 (-15 -2222 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3666 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2799 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -2435 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2272 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3843 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2704 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3999 ((-3 (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -1672 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -4186 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2287 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -4072 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3637 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1263 |#1|)) (T -586)) -((-3637 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2287 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2128 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *1 (-586 *4 *5)))) (-4186 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4015 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1263 *4)))) (-1672 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1263 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-3999 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4015 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2704 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2128 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-3843 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4015 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2272 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2128 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4015 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2435 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4015 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -4015 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2799 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3666 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2128 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2222 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4015 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(-10 -7 (-15 -2222 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3666 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2799 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -2435 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -2272 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -3843 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2704 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -3999 ((-3 (-2 (|:| -4015 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -1672 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -4186 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2287 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2128 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -4072 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3637 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2444 (((-3 |#2| "failed") |#2| (-1196) (-1196)) 10))) -(((-587 |#1| |#2|) (-10 -7 (-15 -2444 ((-3 |#2| "failed") |#2| (-1196) (-1196)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-976) (-1158) (-29 |#1|))) (T -587)) -((-2444 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1222) (-976) (-1158) (-29 *4)))))) -(-10 -7 (-15 -2444 ((-3 |#2| "failed") |#2| (-1196) (-1196)))) -((-4411 (((-703 (-1245)) $ (-1245)) 26)) (-2950 (((-703 (-561)) $ (-561)) 25)) (-4219 (((-783) $ (-129)) 27)) (-2925 (((-703 (-130)) $ (-130)) 24)) (-1519 (((-703 (-1245)) $) 12)) (-2145 (((-703 (-1243)) $) 8)) (-3845 (((-703 (-1242)) $) 10)) (-3544 (((-703 (-561)) $) 13)) (-1995 (((-703 (-559)) $) 9)) (-3240 (((-703 (-558)) $) 11)) (-3859 (((-783) $ (-129)) 7)) (-3910 (((-703 (-130)) $) 14)) (-3603 (($ $) 6))) +((-4168 (((-3 (-656 (-1191 (-576))) "failed") (-656 (-1191 (-576))) (-1191 (-576))) 27))) +(((-584) (-10 -7 (-15 -4168 ((-3 (-656 (-1191 (-576))) "failed") (-656 (-1191 (-576))) (-1191 (-576)))))) (T -584)) +((-4168 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 (-576)))) (-5 *3 (-1191 (-576))) (-5 *1 (-584))))) +(-10 -7 (-15 -4168 ((-3 (-656 (-1191 (-576))) "failed") (-656 (-1191 (-576))) (-1191 (-576))))) +((-4038 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1195)) 19)) (-2666 (((-656 (-624 |#2|)) (-656 |#2|) (-1195)) 23)) (-1901 (((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|))) 11)) (-3147 ((|#2| |#2| (-1195)) 59 (|has| |#1| (-568)))) (-2375 ((|#2| |#2| (-1195)) 87 (-12 (|has| |#2| (-294)) (|has| |#1| (-464))))) (-2979 (((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1195)) 25)) (-2406 (((-624 |#2|) (-656 (-624 |#2|))) 24)) (-2543 (((-598 |#2|) |#2| (-1195) (-1 (-598 |#2|) |#2| (-1195)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195))) 115 (-12 (|has| |#2| (-294)) (|has| |#2| (-641)) (|has| |#2| (-1057 (-1195))) (|has| |#1| (-626 (-905 (-576)))) (|has| |#1| (-464)) (|has| |#1| (-899 (-576))))))) +(((-585 |#1| |#2|) (-10 -7 (-15 -4038 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1195))) (-15 -2406 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2979 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1195))) (-15 -1901 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2666 ((-656 (-624 |#2|)) (-656 |#2|) (-1195))) (IF (|has| |#1| (-568)) (-15 -3147 (|#2| |#2| (-1195))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2375 (|#2| |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1057 (-1195))) (-15 -2543 ((-598 |#2|) |#2| (-1195) (-1 (-598 |#2|) |#2| (-1195)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1119) (-442 |#1|)) (T -585)) +((-2543 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-598 *3) *3 (-1195))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1195))) (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1057 *4)) (-4 *3 (-442 *7)) (-5 *4 (-1195)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464)) (-4 *7 (-899 (-576))) (-4 *7 (-1119)) (-5 *2 (-598 *3)) (-5 *1 (-585 *7 *3)))) (-2375 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-464)) (-4 *4 (-1119)) (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4)))) (-3147 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-4 *4 (-1119)) (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-1195)) (-4 *6 (-442 *5)) (-4 *5 (-1119)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6)))) (-1901 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1119)) (-5 *1 (-585 *3 *4)))) (-2979 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1195)) (-5 *2 (-624 *6)) (-4 *6 (-442 *5)) (-4 *5 (-1119)) (-5 *1 (-585 *5 *6)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1119)) (-5 *2 (-624 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4)))) (-4038 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1195)) (-4 *5 (-442 *4)) (-4 *4 (-1119)) (-5 *1 (-585 *4 *5))))) +(-10 -7 (-15 -4038 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-1195))) (-15 -2406 ((-624 |#2|) (-656 (-624 |#2|)))) (-15 -2979 ((-624 |#2|) (-624 |#2|) (-656 (-624 |#2|)) (-1195))) (-15 -1901 ((-656 (-624 |#2|)) (-656 (-624 |#2|)) (-656 (-624 |#2|)))) (-15 -2666 ((-656 (-624 |#2|)) (-656 |#2|) (-1195))) (IF (|has| |#1| (-568)) (-15 -3147 (|#2| |#2| (-1195))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-294)) (PROGN (-15 -2375 (|#2| |#2| (-1195))) (IF (|has| |#1| (-626 (-905 (-576)))) (IF (|has| |#1| (-899 (-576))) (IF (|has| |#2| (-641)) (IF (|has| |#2| (-1057 (-1195))) (-15 -2543 ((-598 |#2|) |#2| (-1195) (-1 (-598 |#2|) |#2| (-1195)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1195)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3025 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|)) 199)) (-2033 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|))) 174)) (-4025 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|))) 171)) (-1498 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162)) (-2049 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185)) (-4109 (((-3 (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202)) (-3547 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|)) 205)) (-2755 (((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88)) (-3748 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100)) (-2192 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|))) 178)) (-2480 (((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 166)) (-2340 (((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|)) 189)) (-3588 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|)) 210))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2049 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2340 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3025 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3547 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -3588 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -2033 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2192 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -4109 ((-3 (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -4025 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -1498 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2480 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2755 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3748 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-374) (-1262 |#1|)) (T -586)) +((-3748 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2480 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-635 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4154 *4) (|:| |sol?| (-112))) (-576) *4)) (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *1 (-586 *4 *5)))) (-1498 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3116 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1262 *4)))) (-4025 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) (-4 *7 (-1262 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-4109 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -3116 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2192 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4154 *7) (|:| |sol?| (-112))) (-576) *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2033 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3116 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-3588 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4154 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -3116 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3547 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3116 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -3116 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-3025 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2340 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4154 *6) (|:| |sol?| (-112))) (-576) *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2049 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3116 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(-10 -7 (-15 -2049 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2340 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -3025 ((-2 (|:| |answer| (-598 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-656 |#1|) "failed") (-576) |#1| |#1|))) (-15 -3547 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-419 |#2|))) (-15 -3588 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-419 |#2|))) (-15 -2033 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-656 (-419 |#2|)))) (-15 -2192 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) "failed") (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|) (-656 (-419 |#2|)))) (-15 -4109 ((-3 (-2 (|:| -3116 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -4025 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) "failed") (-419 |#2|) (-1 |#2| |#2|) (-656 (-419 |#2|)))) (-15 -1498 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2480 ((-3 (-635 |#1| |#2|) "failed") (-635 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4154 |#1|) (|:| |sol?| (-112))) (-576) |#1|))) (-15 -2755 ((-2 (|:| |ir| (-598 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3748 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3228 (((-3 |#2| "failed") |#2| (-1195) (-1195)) 10))) +(((-587 |#1| |#2|) (-10 -7 (-15 -3228 ((-3 |#2| "failed") |#2| (-1195) (-1195)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1221) (-976) (-1158) (-29 |#1|))) (T -587)) +((-3228 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1221) (-976) (-1158) (-29 *4)))))) +(-10 -7 (-15 -3228 ((-3 |#2| "failed") |#2| (-1195) (-1195)))) +((-4103 (((-703 (-1244)) $ (-1244)) 26)) (-2139 (((-703 (-561)) $ (-561)) 25)) (-1890 (((-783) $ (-129)) 27)) (-1925 (((-703 (-130)) $ (-130)) 24)) (-2284 (((-703 (-1244)) $) 12)) (-3326 (((-703 (-1242)) $) 8)) (-4067 (((-703 (-1241)) $) 10)) (-1373 (((-703 (-561)) $) 13)) (-3438 (((-703 (-559)) $) 9)) (-2790 (((-703 (-558)) $) 11)) (-2812 (((-783) $ (-129)) 7)) (-1831 (((-703 (-130)) $) 14)) (-4382 (($ $) 6))) (((-588) (-141)) (T -588)) NIL (-13 (-539) (-872)) (((-175) . T) ((-539) . T) ((-872) . T)) -((-4411 (((-703 (-1245)) $ (-1245)) NIL)) (-2950 (((-703 (-561)) $ (-561)) NIL)) (-4219 (((-783) $ (-129)) NIL)) (-2925 (((-703 (-130)) $ (-130)) NIL)) (-1519 (((-703 (-1245)) $) NIL)) (-2145 (((-703 (-1243)) $) NIL)) (-3845 (((-703 (-1242)) $) NIL)) (-3544 (((-703 (-561)) $) NIL)) (-1995 (((-703 (-559)) $) NIL)) (-3240 (((-703 (-558)) $) NIL)) (-3859 (((-783) $ (-129)) NIL)) (-3910 (((-703 (-130)) $) NIL)) (-2669 (((-112) $) NIL)) (-3514 (($ (-400)) 14) (($ (-1178)) 16)) (-4092 (((-874) $) NIL)) (-3603 (($ $) NIL))) -(((-589) (-13 (-588) (-625 (-874)) (-10 -8 (-15 -3514 ($ (-400))) (-15 -3514 ($ (-1178))) (-15 -2669 ((-112) $))))) (T -589)) -((-3514 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-589)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) -(-13 (-588) (-625 (-874)) (-10 -8 (-15 -3514 ($ (-400))) (-15 -3514 ($ (-1178))) (-15 -2669 ((-112) $)))) -((-2034 (((-112) $ $) NIL)) (-3581 (($) 7 T CONST)) (-3288 (((-1178) $) NIL)) (-1710 (($) 6 T CONST)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 15)) (-1855 (($) 9 T CONST)) (-3821 (($) 8 T CONST)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 11))) -(((-590) (-13 (-1119) (-10 -8 (-15 -1710 ($) -2670) (-15 -3581 ($) -2670) (-15 -3821 ($) -2670) (-15 -1855 ($) -2670)))) (T -590)) -((-1710 (*1 *1) (-5 *1 (-590))) (-3581 (*1 *1) (-5 *1 (-590))) (-3821 (*1 *1) (-5 *1 (-590))) (-1855 (*1 *1) (-5 *1 (-590)))) -(-13 (-1119) (-10 -8 (-15 -1710 ($) -2670) (-15 -3581 ($) -2670) (-15 -3821 ($) -2670) (-15 -1855 ($) -2670))) -((-2034 (((-112) $ $) NIL)) (-3208 (((-703 $) (-503)) 21)) (-3288 (((-1178) $) NIL)) (-1473 (($ (-1178)) 14)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 33)) (-3086 (((-215 4 (-130)) $) 24)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 26))) -(((-591) (-13 (-1119) (-10 -8 (-15 -1473 ($ (-1178))) (-15 -3086 ((-215 4 (-130)) $)) (-15 -3208 ((-703 $) (-503)))))) (T -591)) -((-1473 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-591)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) -(-13 (-1119) (-10 -8 (-15 -1473 ($ (-1178))) (-15 -3086 ((-215 4 (-130)) $)) (-15 -3208 ((-703 $) (-503))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $ (-576)) 75)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-1776 (($ (-1192 (-576)) (-576)) 81)) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) 66)) (-3986 (($ $) 43)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1538 (((-783) $) 16)) (-1810 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1567 (((-576)) 37)) (-3568 (((-576) $) 41)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2843 (($ $ (-576)) 24)) (-2022 (((-3 $ "failed") $ $) 71)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) 17)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 72)) (-3963 (((-1176 (-576)) $) 19)) (-1417 (($ $) 26)) (-4092 (((-874) $) 102) (($ (-576)) 61) (($ $) NIL)) (-2471 (((-783)) 15 T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2728 (((-576) $ (-576)) 46)) (-4300 (($) 44 T CONST)) (-4310 (($) 21 T CONST)) (-3919 (((-112) $ $) 52)) (-4018 (($ $) 60) (($ $ $) 48)) (-4007 (($ $ $) 59)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) +((-4103 (((-703 (-1244)) $ (-1244)) NIL)) (-2139 (((-703 (-561)) $ (-561)) NIL)) (-1890 (((-783) $ (-129)) NIL)) (-1925 (((-703 (-130)) $ (-130)) NIL)) (-2284 (((-703 (-1244)) $) NIL)) (-3326 (((-703 (-1242)) $) NIL)) (-4067 (((-703 (-1241)) $) NIL)) (-1373 (((-703 (-561)) $) NIL)) (-3438 (((-703 (-559)) $) NIL)) (-2790 (((-703 (-558)) $) NIL)) (-2812 (((-783) $ (-129)) NIL)) (-1831 (((-703 (-130)) $) NIL)) (-2508 (((-112) $) NIL)) (-2322 (($ (-400)) 14) (($ (-1177)) 16)) (-3563 (((-874) $) NIL)) (-4382 (($ $) NIL))) +(((-589) (-13 (-588) (-625 (-874)) (-10 -8 (-15 -2322 ($ (-400))) (-15 -2322 ($ (-1177))) (-15 -2508 ((-112) $))))) (T -589)) +((-2322 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589)))) (-2322 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-589)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589))))) +(-13 (-588) (-625 (-874)) (-10 -8 (-15 -2322 ($ (-400))) (-15 -2322 ($ (-1177))) (-15 -2508 ((-112) $)))) +((-3474 (((-112) $ $) NIL)) (-2728 (($) 7 T CONST)) (-1927 (((-1177) $) NIL)) (-2128 (($) 6 T CONST)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 15)) (-4234 (($) 9 T CONST)) (-1447 (($) 8 T CONST)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 11))) +(((-590) (-13 (-1119) (-10 -8 (-15 -2128 ($) -1398) (-15 -2728 ($) -1398) (-15 -1447 ($) -1398) (-15 -4234 ($) -1398)))) (T -590)) +((-2128 (*1 *1) (-5 *1 (-590))) (-2728 (*1 *1) (-5 *1 (-590))) (-1447 (*1 *1) (-5 *1 (-590))) (-4234 (*1 *1) (-5 *1 (-590)))) +(-13 (-1119) (-10 -8 (-15 -2128 ($) -1398) (-15 -2728 ($) -1398) (-15 -1447 ($) -1398) (-15 -4234 ($) -1398))) +((-3474 (((-112) $ $) NIL)) (-2165 (((-703 $) (-503)) 21)) (-1927 (((-1177) $) NIL)) (-3779 (($ (-1177)) 14)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 33)) (-1975 (((-215 4 (-130)) $) 24)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 26))) +(((-591) (-13 (-1119) (-10 -8 (-15 -3779 ($ (-1177))) (-15 -1975 ((-215 4 (-130)) $)) (-15 -2165 ((-703 $) (-503)))))) (T -591)) +((-3779 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-591)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591)))) (-2165 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) +(-13 (-1119) (-10 -8 (-15 -3779 ($ (-1177))) (-15 -1975 ((-215 4 (-130)) $)) (-15 -2165 ((-703 $) (-503))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1853 (($ $ (-576)) 75)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-3332 (($ (-1191 (-576)) (-576)) 81)) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) 66)) (-3279 (($ $) 43)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-3333 (((-783) $) 16)) (-1414 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3325 (((-576)) 37)) (-2018 (((-576) $) 41)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1714 (($ $ (-576)) 24)) (-3463 (((-3 $ "failed") $ $) 71)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) 17)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 72)) (-2924 (((-1176 (-576)) $) 19)) (-2869 (($ $) 26)) (-3563 (((-874) $) 102) (($ (-576)) 61) (($ $) NIL)) (-1858 (((-783)) 15 T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-4125 (((-576) $ (-576)) 46)) (-2800 (($) 44 T CONST)) (-2810 (($) 21 T CONST)) (-2988 (((-112) $ $) 52)) (-3095 (($ $) 60) (($ $ $) 48)) (-3083 (($ $ $) 59)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 62) (($ $ $) 63))) (((-592 |#1| |#2|) (-881 |#1|) (-576) (-112)) (T -592)) NIL (-881 |#1|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 30)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-2178 (((-1209 (-938) (-783)) (-576)) 59)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 $ "failed") $) 95)) (-2378 (($ $) 94)) (-3006 (($ (-1287 $)) 93)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) 44)) (-2446 (($) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) 61)) (-3506 (((-112) $) NIL)) (-1329 (($ $) NIL) (($ $ (-783)) NIL)) (-2725 (((-112) $) NIL)) (-1538 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1810 (((-112) $) NIL)) (-3783 (($) 49 (|has| $ (-379)))) (-2172 (((-112) $) NIL (|has| $ (-379)))) (-4252 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-2083 (((-3 $ "failed") $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 $) $ (-938)) NIL (|has| $ (-379))) (((-1192 $) $) 104)) (-3225 (((-938) $) 67)) (-3392 (((-1192 $) $) NIL (|has| $ (-379)))) (-4212 (((-3 (-1192 $) "failed") $ $) NIL (|has| $ (-379))) (((-1192 $) $) NIL (|has| $ (-379)))) (-4216 (($ $ (-1192 $)) NIL (|has| $ (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL T CONST)) (-2550 (($ (-938)) 60)) (-3377 (((-112) $) 87)) (-3139 (((-1139) $) NIL)) (-2582 (($) 28 (|has| $ (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) 54)) (-1392 (((-430 $) $) NIL)) (-2588 (((-938)) 86) (((-845 (-938))) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-3667 (((-135)) NIL)) (-3614 (($ $) NIL) (($ $ (-783)) NIL)) (-2369 (((-938) $) 85) (((-845 (-938)) $) NIL)) (-2840 (((-1192 $)) 102)) (-3870 (($) 66)) (-2506 (($) 50 (|has| $ (-379)))) (-3287 (((-701 $) (-1287 $)) NIL) (((-1287 $) $) 91)) (-1505 (((-576) $) 40)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3612 (((-3 $ "failed") $) NIL) (($ $) 105)) (-2471 (((-783)) 51 T CONST)) (-1531 (((-112) $ $) 107)) (-1999 (((-1287 $) (-938)) 97) (((-1287 $)) 96)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) 31 T CONST)) (-4310 (($) 27 T CONST)) (-3847 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 30)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-1361 (((-1208 (-938) (-783)) (-576)) 59)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 $ "failed") $) 95)) (-4056 (($ $) 94)) (-2612 (($ (-1286 $)) 93)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) 44)) (-1803 (($) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) 61)) (-2664 (((-112) $) NIL)) (-3499 (($ $) NIL) (($ $ (-783)) NIL)) (-1792 (((-112) $) NIL)) (-3333 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1414 (((-112) $) NIL)) (-2136 (($) 49 (|has| $ (-379)))) (-3996 (((-112) $) NIL (|has| $ (-379)))) (-4072 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-3930 (((-3 $ "failed") $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 $) $ (-938)) NIL (|has| $ (-379))) (((-1191 $) $) 104)) (-1902 (((-938) $) 67)) (-1936 (((-1191 $) $) NIL (|has| $ (-379)))) (-3275 (((-3 (-1191 $) "failed") $ $) NIL (|has| $ (-379))) (((-1191 $) $) NIL (|has| $ (-379)))) (-1531 (($ $ (-1191 $)) NIL (|has| $ (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL T CONST)) (-3257 (($ (-938)) 60)) (-4206 (((-112) $) 87)) (-1445 (((-1139) $) NIL)) (-2202 (($) 28 (|has| $ (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) 54)) (-1839 (((-430 $) $) NIL)) (-3201 (((-938)) 86) (((-845 (-938))) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-2446 (((-135)) NIL)) (-2735 (($ $) NIL) (($ $ (-783)) NIL)) (-1433 (((-938) $) 85) (((-845 (-938)) $) NIL)) (-1372 (((-1191 $)) 102)) (-2594 (($) 66)) (-1795 (($) 50 (|has| $ (-379)))) (-1809 (((-701 $) (-1286 $)) NIL) (((-1286 $) $) 91)) (-4076 (((-576) $) 40)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) 42) (($ $) NIL) (($ (-419 (-576))) NIL)) (-2883 (((-3 $ "failed") $) NIL) (($ $) 105)) (-1858 (((-783)) 51 T CONST)) (-3985 (((-112) $ $) 107)) (-3713 (((-1286 $) (-938)) 97) (((-1286 $)) 96)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) 31 T CONST)) (-2810 (($) 27 T CONST)) (-4273 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 34)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 81) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) (((-593 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-938)) (T -593)) NIL (-13 (-360) (-339 $) (-626 (-576))) -((-2143 (((-1292) (-1178)) 10))) -(((-594) (-10 -7 (-15 -2143 ((-1292) (-1178))))) (T -594)) -((-2143 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-594))))) -(-10 -7 (-15 -2143 ((-1292) (-1178)))) -((-3930 (((-598 |#2|) (-598 |#2|)) 42)) (-2824 (((-656 |#2|) (-598 |#2|)) 44)) (-1728 ((|#2| (-598 |#2|)) 50))) -(((-595 |#1| |#2|) (-10 -7 (-15 -3930 ((-598 |#2|) (-598 |#2|))) (-15 -2824 ((-656 |#2|) (-598 |#2|))) (-15 -1728 (|#2| (-598 |#2|)))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1222))) (T -595)) -((-1728 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1222))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1222))) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1222))) (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4))))) -(-10 -7 (-15 -3930 ((-598 |#2|) (-598 |#2|))) (-15 -2824 ((-656 |#2|) (-598 |#2|))) (-15 -1728 (|#2| (-598 |#2|)))) -((-2477 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) -(((-596 |#1| |#2|) (-10 -7 (-15 -2477 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2477 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2477 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2477 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) -((-2477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-2477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-2477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4015 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -4015 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) -(-10 -7 (-15 -2477 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -2477 ((-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4015 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2477 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2477 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3897 (($ (-518) (-609)) 14)) (-3868 (($ (-518) (-609) $) 16)) (-2821 (($ (-518) (-609)) 15)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL) (($ (-1201)) 7) (((-1201) $) 6)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-597) (-13 (-1119) (-502 (-1201)) (-10 -8 (-15 -3897 ($ (-518) (-609))) (-15 -2821 ($ (-518) (-609))) (-15 -3868 ($ (-518) (-609) $))))) (T -597)) -((-3897 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-2821 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-3868 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(-13 (-1119) (-502 (-1201)) (-10 -8 (-15 -3897 ($ (-518) (-609))) (-15 -2821 ($ (-518) (-609))) (-15 -3868 ($ (-518) (-609) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) 76)) (-2378 ((|#1| $) NIL)) (-4015 ((|#1| $) 30)) (-3266 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2129 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3346 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $) 31)) (-3288 (((-1178) $) NIL)) (-1909 (($ |#1| |#1|) 38) (($ |#1| (-1196)) 49 (|has| |#1| (-1057 (-1196))))) (-3139 (((-1139) $) NIL)) (-2402 (((-112) $) 35)) (-3614 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1196)) 89 (|has| |#1| (-915 (-1196))))) (-4092 (((-874) $) 110) (($ |#1|) 29)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 18 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) 17) (($ $ $) NIL)) (-4007 (($ $ $) 85)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) -(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1057 |#1|) (-10 -8 (-15 -2129 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4015 (|#1| $)) (-15 -3346 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $)) (-15 -3266 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2402 ((-112) $)) (-15 -1909 ($ |#1| |#1|)) (-15 -3614 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-915 (-1196))) (-15 -3614 (|#1| $ (-1196))) |%noBranch|) (IF (|has| |#1| (-1057 (-1196))) (-15 -1909 ($ |#1| (-1196))) |%noBranch|))) (-374)) (T -598)) -((-2129 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *2)) (|:| |logand| (-1192 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-4015 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *3)) (|:| |logand| (-1192 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-1909 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3614 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-3614 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-915 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1196)))) (-1909 (*1 *1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *1 (-598 *2)) (-4 *2 (-1057 *3)) (-4 *2 (-374))))) -(-13 (-729 (-419 (-576))) (-1057 |#1|) (-10 -8 (-15 -2129 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4015 (|#1| $)) (-15 -3346 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $)) (-15 -3266 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2402 ((-112) $)) (-15 -1909 ($ |#1| |#1|)) (-15 -3614 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-915 (-1196))) (-15 -3614 (|#1| $ (-1196))) |%noBranch|) (IF (|has| |#1| (-1057 (-1196))) (-15 -1909 ($ |#1| (-1196))) |%noBranch|))) -((-3293 (((-112) |#1|) 16)) (-2153 (((-3 |#1| "failed") |#1|) 14)) (-1565 (((-2 (|:| -1841 |#1|) (|:| -3175 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-3148 (((-112) |#1| (-783)) 19)) (-2543 ((|#1| |#1|) 42)) (-3330 ((|#1| |#1| (-783)) 45))) -(((-599 |#1|) (-10 -7 (-15 -3148 ((-112) |#1| (-783))) (-15 -1565 ((-3 |#1| "failed") |#1| (-783))) (-15 -1565 ((-2 (|:| -1841 |#1|) (|:| -3175 (-783))) |#1|)) (-15 -3330 (|#1| |#1| (-783))) (-15 -3293 ((-112) |#1|)) (-15 -2153 ((-3 |#1| "failed") |#1|)) (-15 -2543 (|#1| |#1|))) (-557)) (T -599)) -((-2543 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2153 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3293 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3330 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-1565 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1841 *3) (|:| -3175 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-1565 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-3148 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -3148 ((-112) |#1| (-783))) (-15 -1565 ((-3 |#1| "failed") |#1| (-783))) (-15 -1565 ((-2 (|:| -1841 |#1|) (|:| -3175 (-783))) |#1|)) (-15 -3330 (|#1| |#1| (-783))) (-15 -3293 ((-112) |#1|)) (-15 -2153 ((-3 |#1| "failed") |#1|)) (-15 -2543 (|#1| |#1|))) -((-2325 (((-1192 |#1|) (-938)) 44))) -(((-600 |#1|) (-10 -7 (-15 -2325 ((-1192 |#1|) (-938)))) (-360)) (T -600)) -((-2325 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) -(-10 -7 (-15 -2325 ((-1192 |#1|) (-938)))) -((-3930 (((-598 (-419 (-969 |#1|))) (-598 (-419 (-969 |#1|)))) 27)) (-3597 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-969 |#1|)) (-1196)) 34 (|has| |#1| (-148)))) (-2824 (((-656 (-326 |#1|)) (-598 (-419 (-969 |#1|)))) 19)) (-1977 (((-326 |#1|) (-419 (-969 |#1|)) (-1196)) 32 (|has| |#1| (-148)))) (-1728 (((-326 |#1|) (-598 (-419 (-969 |#1|)))) 21))) -(((-601 |#1|) (-10 -7 (-15 -3930 ((-598 (-419 (-969 |#1|))) (-598 (-419 (-969 |#1|))))) (-15 -2824 ((-656 (-326 |#1|)) (-598 (-419 (-969 |#1|))))) (-15 -1728 ((-326 |#1|) (-598 (-419 (-969 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3597 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -1977 ((-326 |#1|) (-419 (-969 |#1|)) (-1196)))) |%noBranch|)) (-13 (-464) (-1057 (-576)) (-651 (-576)))) (T -601)) -((-1977 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-969 *4)))) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-2824 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-969 *4)))) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-969 *3)))) (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))) -(-10 -7 (-15 -3930 ((-598 (-419 (-969 |#1|))) (-598 (-419 (-969 |#1|))))) (-15 -2824 ((-656 (-326 |#1|)) (-598 (-419 (-969 |#1|))))) (-15 -1728 ((-326 |#1|) (-598 (-419 (-969 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3597 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -1977 ((-326 |#1|) (-419 (-969 |#1|)) (-1196)))) |%noBranch|)) -((-2585 (((-656 (-701 (-576))) (-656 (-938)) (-656 (-922 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-938))) 79) (((-701 (-576)) (-656 (-938)) (-922 (-576))) 72)) (-3277 (((-783) (-656 (-938))) 69))) -(((-602) (-10 -7 (-15 -3277 ((-783) (-656 (-938)))) (-15 -2585 ((-701 (-576)) (-656 (-938)) (-922 (-576)))) (-15 -2585 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -2585 ((-656 (-701 (-576))) (-656 (-938)) (-656 (-922 (-576))))))) (T -602)) -((-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-922 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2585 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2585 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-938))) (-5 *4 (-922 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-783)) (-5 *1 (-602))))) -(-10 -7 (-15 -3277 ((-783) (-656 (-938)))) (-15 -2585 ((-701 (-576)) (-656 (-938)) (-922 (-576)))) (-15 -2585 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -2585 ((-656 (-701 (-576))) (-656 (-938)) (-656 (-922 (-576)))))) -((-1572 (((-656 |#5|) |#5| (-112)) 100)) (-3232 (((-112) |#5| (-656 |#5|)) 34))) -(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1572 ((-656 |#5|) |#5| (-112))) (-15 -3232 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1128 |#1| |#2| |#3| |#4|)) (T -603)) -((-3232 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1128 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-1572 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1128 *5 *6 *7 *8))))) -(-10 -7 (-15 -1572 ((-656 |#5|) |#5| (-112))) (-15 -3232 ((-112) |#5| (-656 |#5|)))) -((-2034 (((-112) $ $) NIL)) (-1804 (((-1154) $) 11)) (-1790 (((-1154) $) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-604) (-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1154) $))))) (T -604)) -((-1790 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604))))) -(-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1154) $)))) -((-2034 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-3983 (($ $) 38)) (-3402 (($ $) NIL)) (-1396 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2277 (((-112) $ $) 67)) (-2249 (((-112) $ $ (-576)) 62)) (-3930 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-2761 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-3362 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-862))))) (-2398 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4463))) (((-145) $ (-1254 (-576)) (-145)) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-4425 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-3059 (($ $ (-1254 (-576)) $) 57)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-2892 (($ (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3888 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4463)))) (-3817 (((-145) $ (-576)) NIL)) (-2303 (((-112) $ $) 88)) (-3433 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1119))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-4260 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-1992 (($ (-783) (-145)) 9)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) 32 (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| (-145) (-862)))) (-3257 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-1750 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-4315 (((-576) $) 47 (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| (-145) (-862)))) (-4317 (((-112) $ $ (-145)) 89)) (-1404 (((-783) $ $ (-145)) 86)) (-3874 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-4262 (($ $) 41)) (-4130 (($ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-4436 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-3288 (((-1178) $) 43 (|has| (-145) (-1119)))) (-3371 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) 85 (|has| (-145) (-1119)))) (-2701 (((-145) $) NIL (|has| (-576) (-862)))) (-1863 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2918 (($ $ (-145)) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3060 (((-656 (-145)) $) NIL)) (-3372 (((-112) $) 15)) (-2643 (($) 10)) (-4367 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1254 (-576))) 25) (($ $ $) NIL)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3150 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3582 (($ $ $ (-576)) 81 (|has| $ (-6 -4463)))) (-4268 (($ $) 20)) (-1505 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-4103 (($ (-656 (-145))) NIL)) (-2851 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-4092 (($ (-145)) NIL) (((-874) $) 31 (|has| (-145) (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-2190 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3919 (((-112) $ $) 17 (|has| (-145) (-1119)))) (-3966 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3944 (((-112) $ $) 18 (|has| (-145) (-862)))) (-2048 (((-783) $) 16 (|has| $ (-6 -4462))))) +((-4339 (((-1291) (-1177)) 10))) +(((-594) (-10 -7 (-15 -4339 ((-1291) (-1177))))) (T -594)) +((-4339 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-594))))) +(-10 -7 (-15 -4339 ((-1291) (-1177)))) +((-2952 (((-598 |#2|) (-598 |#2|)) 42)) (-2465 (((-656 |#2|) (-598 |#2|)) 44)) (-3477 ((|#2| (-598 |#2|)) 50))) +(((-595 |#1| |#2|) (-10 -7 (-15 -2952 ((-598 |#2|) (-598 |#2|))) (-15 -2465 ((-656 |#2|) (-598 |#2|))) (-15 -3477 (|#2| (-598 |#2|)))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-29 |#1|) (-1221))) (T -595)) +((-3477 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1221))) (-5 *1 (-595 *4 *2)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1221))) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) (-5 *1 (-595 *4 *5)))) (-2952 (*1 *2 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1221))) (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4))))) +(-10 -7 (-15 -2952 ((-598 |#2|) (-598 |#2|))) (-15 -2465 ((-656 |#2|) (-598 |#2|))) (-15 -3477 (|#2| (-598 |#2|)))) +((-1632 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 30))) +(((-596 |#1| |#2|) (-10 -7 (-15 -1632 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -1632 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1632 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1632 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-374) (-374)) (T -596)) +((-1632 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-1632 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-374)) (-4 *2 (-374)) (-5 *1 (-596 *5 *2)))) (-1632 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3116 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-2 (|:| -3116 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-374)) (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))) +(-10 -7 (-15 -1632 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))) (-15 -1632 ((-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3116 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1632 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1632 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-3019 (($ (-518) (-609)) 14)) (-2420 (($ (-518) (-609) $) 16)) (-4401 (($ (-518) (-609)) 15)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL) (($ (-1200)) 7) (((-1200) $) 6)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-597) (-13 (-1119) (-502 (-1200)) (-10 -8 (-15 -3019 ($ (-518) (-609))) (-15 -4401 ($ (-518) (-609))) (-15 -2420 ($ (-518) (-609) $))))) (T -597)) +((-3019 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-4401 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597)))) (-2420 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(-13 (-1119) (-502 (-1200)) (-10 -8 (-15 -3019 ($ (-518) (-609))) (-15 -4401 ($ (-518) (-609))) (-15 -2420 ($ (-518) (-609) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) 76)) (-4056 ((|#1| $) NIL)) (-3116 ((|#1| $) 30)) (-3361 (((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2617 (($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-4385 (((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $) 31)) (-1927 (((-1177) $) NIL)) (-4019 (($ |#1| |#1|) 38) (($ |#1| (-1195)) 49 (|has| |#1| (-1057 (-1195))))) (-1445 (((-1139) $) NIL)) (-2344 (((-112) $) 35)) (-2735 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1195)) 89 (|has| |#1| (-915 (-1195))))) (-3563 (((-874) $) 110) (($ |#1|) 29)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 18 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) 17) (($ $ $) NIL)) (-3083 (($ $ $) 85)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 16) (($ (-419 (-576)) $) 41) (($ $ (-419 (-576))) NIL))) +(((-598 |#1|) (-13 (-729 (-419 (-576))) (-1057 |#1|) (-10 -8 (-15 -2617 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3116 (|#1| $)) (-15 -4385 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $)) (-15 -3361 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2344 ((-112) $)) (-15 -4019 ($ |#1| |#1|)) (-15 -2735 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-915 (-1195))) (-15 -2735 (|#1| $ (-1195))) |%noBranch|) (IF (|has| |#1| (-1057 (-1195))) (-15 -4019 ($ |#1| (-1195))) |%noBranch|))) (-374)) (T -598)) +((-2617 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *2)) (|:| |logand| (-1191 *2))))) (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-374)) (-5 *1 (-598 *2)))) (-3116 (*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *3)) (|:| |logand| (-1191 *3))))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374)))) (-4019 (*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2735 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) (-2735 (*1 *2 *1 *3) (-12 (-4 *2 (-374)) (-4 *2 (-915 *3)) (-5 *1 (-598 *2)) (-5 *3 (-1195)))) (-4019 (*1 *1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *1 (-598 *2)) (-4 *2 (-1057 *3)) (-4 *2 (-374))))) +(-13 (-729 (-419 (-576))) (-1057 |#1|) (-10 -8 (-15 -2617 ($ |#1| (-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3116 (|#1| $)) (-15 -4385 ((-656 (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $)) (-15 -3361 ((-656 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2344 ((-112) $)) (-15 -4019 ($ |#1| |#1|)) (-15 -2735 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-915 (-1195))) (-15 -2735 (|#1| $ (-1195))) |%noBranch|) (IF (|has| |#1| (-1057 (-1195))) (-15 -4019 ($ |#1| (-1195))) |%noBranch|))) +((-4315 (((-112) |#1|) 16)) (-2803 (((-3 |#1| "failed") |#1|) 14)) (-4305 (((-2 (|:| -3402 |#1|) (|:| -4274 (-783))) |#1|) 38) (((-3 |#1| "failed") |#1| (-783)) 18)) (-2797 (((-112) |#1| (-783)) 19)) (-3292 ((|#1| |#1|) 42)) (-3451 ((|#1| |#1| (-783)) 45))) +(((-599 |#1|) (-10 -7 (-15 -2797 ((-112) |#1| (-783))) (-15 -4305 ((-3 |#1| "failed") |#1| (-783))) (-15 -4305 ((-2 (|:| -3402 |#1|) (|:| -4274 (-783))) |#1|)) (-15 -3451 (|#1| |#1| (-783))) (-15 -4315 ((-112) |#1|)) (-15 -2803 ((-3 |#1| "failed") |#1|)) (-15 -3292 (|#1| |#1|))) (-557)) (T -599)) +((-3292 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2803 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-4315 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-3451 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-4305 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3402 *3) (|:| -4274 (-783)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-4305 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2797 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -2797 ((-112) |#1| (-783))) (-15 -4305 ((-3 |#1| "failed") |#1| (-783))) (-15 -4305 ((-2 (|:| -3402 |#1|) (|:| -4274 (-783))) |#1|)) (-15 -3451 (|#1| |#1| (-783))) (-15 -4315 ((-112) |#1|)) (-15 -2803 ((-3 |#1| "failed") |#1|)) (-15 -3292 (|#1| |#1|))) +((-4045 (((-1191 |#1|) (-938)) 44))) +(((-600 |#1|) (-10 -7 (-15 -4045 ((-1191 |#1|) (-938)))) (-360)) (T -600)) +((-4045 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) +(-10 -7 (-15 -4045 ((-1191 |#1|) (-938)))) +((-2952 (((-598 (-419 (-969 |#1|))) (-598 (-419 (-969 |#1|)))) 27)) (-3848 (((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-969 |#1|)) (-1195)) 34 (|has| |#1| (-148)))) (-2465 (((-656 (-326 |#1|)) (-598 (-419 (-969 |#1|)))) 19)) (-3817 (((-326 |#1|) (-419 (-969 |#1|)) (-1195)) 32 (|has| |#1| (-148)))) (-3477 (((-326 |#1|) (-598 (-419 (-969 |#1|)))) 21))) +(((-601 |#1|) (-10 -7 (-15 -2952 ((-598 (-419 (-969 |#1|))) (-598 (-419 (-969 |#1|))))) (-15 -2465 ((-656 (-326 |#1|)) (-598 (-419 (-969 |#1|))))) (-15 -3477 ((-326 |#1|) (-598 (-419 (-969 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3848 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-969 |#1|)) (-1195))) (-15 -3817 ((-326 |#1|) (-419 (-969 |#1|)) (-1195)))) |%noBranch|)) (-13 (-464) (-1057 (-576)) (-651 (-576)))) (T -601)) +((-3817 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-3848 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-969 *4)))) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-598 (-419 (-969 *4)))) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) (-2952 (*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-969 *3)))) (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-601 *3))))) +(-10 -7 (-15 -2952 ((-598 (-419 (-969 |#1|))) (-598 (-419 (-969 |#1|))))) (-15 -2465 ((-656 (-326 |#1|)) (-598 (-419 (-969 |#1|))))) (-15 -3477 ((-326 |#1|) (-598 (-419 (-969 |#1|))))) (IF (|has| |#1| (-148)) (PROGN (-15 -3848 ((-3 (-326 |#1|) (-656 (-326 |#1|))) (-419 (-969 |#1|)) (-1195))) (-15 -3817 ((-326 |#1|) (-419 (-969 |#1|)) (-1195)))) |%noBranch|)) +((-2982 (((-656 (-701 (-576))) (-656 (-938)) (-656 (-922 (-576)))) 78) (((-656 (-701 (-576))) (-656 (-938))) 79) (((-701 (-576)) (-656 (-938)) (-922 (-576))) 72)) (-2179 (((-783) (-656 (-938))) 69))) +(((-602) (-10 -7 (-15 -2179 ((-783) (-656 (-938)))) (-15 -2982 ((-701 (-576)) (-656 (-938)) (-922 (-576)))) (-15 -2982 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -2982 ((-656 (-701 (-576))) (-656 (-938)) (-656 (-922 (-576))))))) (T -602)) +((-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-922 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2982 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602)))) (-2982 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-938))) (-5 *4 (-922 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-602)))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-783)) (-5 *1 (-602))))) +(-10 -7 (-15 -2179 ((-783) (-656 (-938)))) (-15 -2982 ((-701 (-576)) (-656 (-938)) (-922 (-576)))) (-15 -2982 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -2982 ((-656 (-701 (-576))) (-656 (-938)) (-656 (-922 (-576)))))) +((-2679 (((-656 |#5|) |#5| (-112)) 100)) (-1321 (((-112) |#5| (-656 |#5|)) 34))) +(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2679 ((-656 |#5|) |#5| (-112))) (-15 -1321 ((-112) |#5| (-656 |#5|)))) (-13 (-317) (-148)) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1128 |#1| |#2| |#3| |#4|)) (T -603)) +((-1321 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1128 *5 *6 *7 *8)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-2679 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-656 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1128 *5 *6 *7 *8))))) +(-10 -7 (-15 -2679 ((-656 |#5|) |#5| (-112))) (-15 -1321 ((-112) |#5| (-656 |#5|)))) +((-3474 (((-112) $ $) NIL)) (-1649 (((-1154) $) 11)) (-1637 (((-1154) $) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-604) (-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1154) $))))) (T -604)) +((-1637 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604))))) +(-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1154) $)))) +((-3474 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-2968 (($ $) 38)) (-4146 (($ $) NIL)) (-4323 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1492 (((-112) $ $) 67)) (-1470 (((-112) $ $ (-576)) 62)) (-2952 (((-656 $) $ (-145)) 75) (((-656 $) $ (-142)) 76)) (-2373 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-2265 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-862))))) (-1758 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 (((-145) $ (-576) (-145)) 59 (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-2701 (($ $ (-145)) 79) (($ $ (-142)) 80)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-1842 (($ $ (-1253 (-576)) $) 57)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-3902 (($ (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4461)))) (-1776 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4462)))) (-1698 (((-145) $ (-576)) NIL)) (-1514 (((-112) $ $) 88)) (-3584 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) 64 (|has| (-145) (-1119))) (((-576) $ $ (-576)) 63) (((-576) (-142) $ (-576)) 66)) (-3825 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-4033 (($ (-783) (-145)) 9)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) 32 (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| (-145) (-862)))) (-1854 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-2591 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-3814 (((-576) $) 47 (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| (-145) (-862)))) (-2008 (((-112) $ $ (-145)) 89)) (-4413 (((-783) $ $ (-145)) 86)) (-1763 (($ (-1 (-145) (-145)) $) 37 (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2675 (($ $) 41)) (-2795 (($ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-2715 (($ $ (-145)) 77) (($ $ (-142)) 78)) (-1927 (((-1177) $) 43 (|has| (-145) (-1119)))) (-2277 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) 27)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) 85 (|has| (-145) (-1119)))) (-3504 (((-145) $) NIL (|has| (-576) (-862)))) (-2644 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2500 (($ $ (-145)) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-1947 (((-656 (-145)) $) NIL)) (-1911 (((-112) $) 15)) (-2597 (($) 10)) (-2871 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) 68) (($ $ (-1253 (-576))) 25) (($ $ $) NIL)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1456 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-3760 (($ $ $ (-576)) 81 (|has| $ (-6 -4462)))) (-1954 (($ $) 20)) (-4076 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3573 (($ (-656 (-145))) NIL)) (-1661 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) 19) (($ (-656 $)) 82)) (-3563 (($ (-145)) NIL) (((-874) $) 31 (|has| (-145) (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-2043 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2988 (((-112) $ $) 17 (|has| (-145) (-1119)))) (-3037 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3010 (((-112) $ $) 18 (|has| (-145) (-862)))) (-3485 (((-783) $) 16 (|has| $ (-6 -4461))))) (((-605 |#1|) (-1163) (-576)) (T -605)) NIL (-1163) -((-3255 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1113 |#4|)) 32))) -(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3255 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1113 |#4|))) (-15 -3255 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-805) (-862) (-568) (-966 |#3| |#1| |#2|)) (T -606)) -((-3255 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) (-3255 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1113 *3)) (-4 *3 (-966 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-862)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3))))) -(-10 -7 (-15 -3255 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1113 |#4|))) (-15 -3255 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 71)) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2255 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-1655 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-2476 (($ $) 109)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3510 (((-874) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1045 (-855 (-576))) (-1196) |#1| (-419 (-576))) 241)) (-3451 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-1538 (((-576) $) 63) (((-576) $ (-576)) 64)) (-1810 (((-112) $) NIL)) (-4209 (($ $ (-938)) 83)) (-3079 (($ (-1 |#1| (-576)) $) 80)) (-4331 (((-112) $) 26)) (-1518 (($ |#1| (-576)) 22) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-2477 (($ (-1 |#1| |#1|) $) 75)) (-2350 (($ (-1045 (-855 (-576))) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3597 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-2051 (((-3 $ "failed") $ $ (-112)) 108)) (-4307 (($ $ $) 116)) (-3139 (((-1139) $) NIL)) (-4414 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-2064 (((-1045 (-855 (-576))) $) 14)) (-2843 (($ $ (-576)) 47)) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2259 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-4367 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1131)))) (-3614 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2369 (((-576) $) NIL)) (-1417 (($ $) 48)) (-4092 (((-874) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-2430 ((|#1| $ (-576)) 61)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) 39 T CONST)) (-2553 ((|#1| $) NIL)) (-1697 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-4098 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-2887 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2673 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3093 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-3349 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3686 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-1866 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3988 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-4441 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3731 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-3249 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-2786 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-2791 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-1958 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2883 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-3113 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-2047 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-1815 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3121 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3049 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-4075 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3455 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-2993 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-2438 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-1797 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-2113 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3509 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2728 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-4300 (($) 30 T CONST)) (-4310 (($) 40 T CONST)) (-4286 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3919 (((-112) $ $) 73)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) 91) (($ $ $) 72)) (-4007 (($ $ $) 88)) (** (($ $ (-938)) NIL) (($ $ (-783)) 111)) (* (($ (-938) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-607 |#1|) (-13 (-1265 |#1| (-576)) (-10 -8 (-15 -2350 ($ (-1045 (-855 (-576))) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2064 ((-1045 (-855 (-576))) $)) (-15 -4414 ((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3451 ($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -4331 ((-112) $)) (-15 -3079 ($ (-1 |#1| (-576)) $)) (-15 -2051 ((-3 $ "failed") $ $ (-112))) (-15 -2476 ($ $)) (-15 -4307 ($ $ $)) (-15 -3510 ((-874) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1045 (-855 (-576))) (-1196) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $)) (-15 -1866 ($ $ |#1|)) (-15 -3686 ($ $ (-419 (-576)))) (-15 -4441 ($ $)) (-15 -3988 ($ $)) (-15 -2673 ($ $)) (-15 -2883 ($ $)) (-15 -4098 ($ $)) (-15 -2791 ($ $)) (-15 -3349 ($ $)) (-15 -3249 ($ $)) (-15 -3121 ($ $)) (-15 -3509 ($ $)) (-15 -2047 ($ $)) (-15 -1797 ($ $)) (-15 -4075 ($ $)) (-15 -2993 ($ $)) (-15 -2887 ($ $)) (-15 -1958 ($ $)) (-15 -1697 ($ $)) (-15 -2786 ($ $)) (-15 -3093 ($ $)) (-15 -3731 ($ $)) (-15 -1815 ($ $)) (-15 -2113 ($ $)) (-15 -3113 ($ $)) (-15 -2438 ($ $)) (-15 -3049 ($ $)) (-15 -3455 ($ $))) |%noBranch|))) (-1068)) (T -607)) -((-4331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-2350 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-855 (-576)))) (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1068)) (-5 *1 (-607 *4)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-1045 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-4414 (*1 *2 *1) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1068)) (-5 *1 (-607 *3)))) (-3079 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-607 *3)))) (-2051 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-2476 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068)))) (-4307 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068)))) (-3510 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1045 (-855 (-576)))) (-5 *5 (-1196)) (-5 *7 (-419 (-576))) (-4 *6 (-1068)) (-5 *2 (-874)) (-5 *1 (-607 *6)))) (-3597 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3686 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1068)))) (-4441 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3988 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2673 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2883 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-4098 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2791 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3349 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3249 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3509 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2047 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1797 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-4075 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2993 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2887 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1958 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1697 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2786 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3093 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1815 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2113 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3113 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2438 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3049 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3455 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(-13 (-1265 |#1| (-576)) (-10 -8 (-15 -2350 ($ (-1045 (-855 (-576))) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2064 ((-1045 (-855 (-576))) $)) (-15 -4414 ((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -3451 ($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -4331 ((-112) $)) (-15 -3079 ($ (-1 |#1| (-576)) $)) (-15 -2051 ((-3 $ "failed") $ $ (-112))) (-15 -2476 ($ $)) (-15 -4307 ($ $ $)) (-15 -3510 ((-874) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1045 (-855 (-576))) (-1196) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $)) (-15 -1866 ($ $ |#1|)) (-15 -3686 ($ $ (-419 (-576)))) (-15 -4441 ($ $)) (-15 -3988 ($ $)) (-15 -2673 ($ $)) (-15 -2883 ($ $)) (-15 -4098 ($ $)) (-15 -2791 ($ $)) (-15 -3349 ($ $)) (-15 -3249 ($ $)) (-15 -3121 ($ $)) (-15 -3509 ($ $)) (-15 -2047 ($ $)) (-15 -1797 ($ $)) (-15 -4075 ($ $)) (-15 -2993 ($ $)) (-15 -2887 ($ $)) (-15 -1958 ($ $)) (-15 -1697 ($ $)) (-15 -2786 ($ $)) (-15 -3093 ($ $)) (-15 -3731 ($ $)) (-15 -1815 ($ $)) (-15 -2113 ($ $)) (-15 -3113 ($ $)) (-15 -2438 ($ $)) (-15 -3049 ($ $)) (-15 -3455 ($ $))) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 63)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3451 (($ (-1176 |#1|)) 9)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) 44)) (-3840 (((-112) $) 56)) (-1538 (((-783) $) 61) (((-783) $ (-783)) 60)) (-1810 (((-112) $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2022 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-3076 (((-1176 |#1|) $) 25)) (-2471 (((-783)) 55 T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) 10 T CONST)) (-4310 (($) 14 T CONST)) (-3919 (((-112) $ $) 24)) (-4018 (($ $) 32) (($ $ $) 16)) (-4007 (($ $ $) 27)) (** (($ $ (-938)) NIL) (($ $ (-783)) 53)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) -(((-608 |#1|) (-13 (-1068) (-111 |#1| |#1|) (-10 -8 (-15 -3076 ((-1176 |#1|) $)) (-15 -3451 ($ (-1176 |#1|))) (-15 -3840 ((-112) $)) (-15 -1538 ((-783) $)) (-15 -1538 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1068)) (T -608)) -((-3076 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-608 *3)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (-1538 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1068))))) -(-13 (-1068) (-111 |#1| |#1|) (-10 -8 (-15 -3076 ((-1176 |#1|) $)) (-15 -3451 ($ (-1176 |#1|))) (-15 -3840 ((-112) $)) (-15 -1538 ((-783) $)) (-15 -1538 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-3211 (($) 8 T CONST)) (-1453 (($) 7 T CONST)) (-1793 (($ $ (-656 $)) 16)) (-3288 (((-1178) $) NIL)) (-2458 (($) 6 T CONST)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL) (($ (-1201)) 15) (((-1201) $) 10)) (-1378 (($) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-609) (-13 (-1119) (-502 (-1201)) (-10 -8 (-15 -2458 ($) -2670) (-15 -1453 ($) -2670) (-15 -3211 ($) -2670) (-15 -1378 ($) -2670) (-15 -1793 ($ $ (-656 $)))))) (T -609)) -((-2458 (*1 *1) (-5 *1 (-609))) (-1453 (*1 *1) (-5 *1 (-609))) (-3211 (*1 *1) (-5 *1 (-609))) (-1378 (*1 *1) (-5 *1 (-609))) (-1793 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(-13 (-1119) (-502 (-1201)) (-10 -8 (-15 -2458 ($) -2670) (-15 -1453 ($) -2670) (-15 -3211 ($) -2670) (-15 -1378 ($) -2670) (-15 -1793 ($ $ (-656 $))))) -((-2477 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) -(((-610 |#1| |#2|) (-10 -7 (-15 -2477 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1237) (-1237)) (T -610)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) -(-10 -7 (-15 -2477 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) -((-2477 (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)) 20) (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) -(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2477 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|))) (-15 -2477 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)))) (-1237) (-1237) (-1237)) (T -611)) -((-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1176 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) (-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) -(-10 -7 (-15 -2477 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -2477 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|))) (-15 -2477 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)))) -((-1748 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1196))) 57)) (-2873 (((-171 |#2|) |#3|) 122)) (-3097 ((|#3| (-171 |#2|)) 46)) (-2328 ((|#2| |#3|) 21)) (-1634 ((|#3| |#2|) 35))) -(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -3097 (|#3| (-171 |#2|))) (-15 -2328 (|#2| |#3|)) (-15 -1634 (|#3| |#2|)) (-15 -2873 ((-171 |#2|) |#3|)) (-15 -1748 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1196))))) (-568) (-13 (-442 |#1|) (-1021) (-1222)) (-13 (-442 (-171 |#1|)) (-1021) (-1222))) (T -612)) -((-1748 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1196))) (-4 *2 (-13 (-442 (-171 *5)) (-1021) (-1222))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1021) (-1222))))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1021) (-1222))) (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1222))))) (-1634 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1222))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1021) (-1222))))) (-2328 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1021) (-1222))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1222))))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1222))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1222))) (-5 *1 (-612 *4 *5 *2))))) -(-10 -7 (-15 -3097 (|#3| (-171 |#2|))) (-15 -2328 (|#2| |#3|)) (-15 -1634 (|#3| |#2|)) (-15 -2873 ((-171 |#2|) |#3|)) (-15 -1748 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1196))))) -((-3457 (($ (-1 (-112) |#1|) $) 17)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2790 (($ (-1 |#1| |#1|) |#1|) 9)) (-3435 (($ (-1 (-112) |#1|) $) 13)) (-3445 (($ (-1 (-112) |#1|) $) 15)) (-4103 (((-1176 |#1|) $) 18)) (-4092 (((-874) $) NIL))) -(((-613 |#1|) (-13 (-625 (-874)) (-10 -8 (-15 -2477 ($ (-1 |#1| |#1|) $)) (-15 -3435 ($ (-1 (-112) |#1|) $)) (-15 -3445 ($ (-1 (-112) |#1|) $)) (-15 -3457 ($ (-1 (-112) |#1|) $)) (-15 -2790 ($ (-1 |#1| |#1|) |#1|)) (-15 -4103 ((-1176 |#1|) $)))) (-1237)) (T -613)) -((-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3435 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3445 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1237))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2477 ($ (-1 |#1| |#1|) $)) (-15 -3435 ($ (-1 (-112) |#1|) $)) (-15 -3445 ($ (-1 (-112) |#1|) $)) (-15 -3457 ($ (-1 (-112) |#1|) $)) (-15 -2790 ($ (-1 |#1| |#1|) |#1|)) (-15 -4103 ((-1176 |#1|) $)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1705 (($ (-783)) NIL (|has| |#1| (-23)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3433 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1602 (((-701 |#1|) $ $) NIL (|has| |#1| (-1068)))) (-1992 (($ (-783) |#1|) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1899 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-3103 (((-112) $ (-783)) NIL)) (-1325 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2701 ((|#1| $) NIL (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-1660 ((|#1| $ $) NIL (|has| |#1| (-1068)))) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2916 (($ $ $) NIL (|has| |#1| (-1068)))) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) NIL)) (-2851 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4018 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4007 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-614 |#1| |#2|) (-1285 |#1|) (-1237) (-576)) (T -614)) -NIL -(-1285 |#1|) -((-2449 (((-1292) $ |#2| |#2|) 35)) (-2077 ((|#2| $) 23)) (-4315 ((|#2| $) 21)) (-3874 (($ (-1 |#3| |#3|) $) 32)) (-2477 (($ (-1 |#3| |#3|) $) 30)) (-2701 ((|#3| $) 26)) (-2918 (($ $ |#3|) 33)) (-4156 (((-112) |#3| $) 17)) (-3060 (((-656 |#3|) $) 15)) (-4367 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -2449 ((-1292) |#1| |#2| |#2|)) (-15 -2918 (|#1| |#1| |#3|)) (-15 -2701 (|#3| |#1|)) (-15 -2077 (|#2| |#1|)) (-15 -4315 (|#2| |#1|)) (-15 -4156 ((-112) |#3| |#1|)) (-15 -3060 ((-656 |#3|) |#1|)) (-15 -4367 (|#3| |#1| |#2|)) (-15 -4367 (|#3| |#1| |#2| |#3|)) (-15 -3874 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2477 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1119) (-1237)) (T -615)) -NIL -(-10 -8 (-15 -2449 ((-1292) |#1| |#2| |#2|)) (-15 -2918 (|#1| |#1| |#3|)) (-15 -2701 (|#3| |#1|)) (-15 -2077 (|#2| |#1|)) (-15 -4315 (|#2| |#1|)) (-15 -4156 ((-112) |#3| |#1|)) (-15 -3060 ((-656 |#3|) |#1|)) (-15 -4367 (|#3| |#1| |#2|)) (-15 -4367 (|#3| |#1| |#2| |#3|)) (-15 -3874 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2477 (|#1| (-1 |#3| |#3|) |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#2| (-1119)))) (-2449 (((-1292) $ |#1| |#1|) 41 (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) 8)) (-4248 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4463)))) (-3656 (($) 7 T CONST)) (-3888 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) 52)) (-4260 (((-656 |#2|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-2077 ((|#1| $) 44 (|has| |#1| (-862)))) (-1750 (((-656 |#2|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-4315 ((|#1| $) 45 (|has| |#1| (-862)))) (-3874 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#2| |#2|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#2| (-1119)))) (-4428 (((-656 |#1|) $) 47)) (-2013 (((-112) |#1| $) 48)) (-3139 (((-1139) $) 21 (|has| |#2| (-1119)))) (-2701 ((|#2| $) 43 (|has| |#1| (-862)))) (-2918 (($ $ |#2|) 42 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3150 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4462))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#2| (-1119)))) (-2190 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#2| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-616 |#1| |#2|) (-141) (-1119) (-1237)) (T -616)) -((-3060 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) (-5 *2 (-656 *4)))) (-2013 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) (-5 *2 (-112)))) (-4428 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) (-5 *2 (-656 *3)))) (-4156 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1119)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-4315 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1119)) (-4 *2 (-862)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1119)) (-4 *2 (-862)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) (-4 *3 (-862)) (-4 *2 (-1237)))) (-2918 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) (-2449 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) (-5 *2 (-1292))))) -(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -3060 ((-656 |t#2|) $)) (-15 -2013 ((-112) |t#1| $)) (-15 -4428 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1119)) (IF (|has| $ (-6 -4462)) (-15 -4156 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -4315 (|t#1| $)) (-15 -2077 (|t#1| $)) (-15 -2701 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4463)) (PROGN (-15 -2918 ($ $ |t#2|)) (-15 -2449 ((-1292) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1119)) ((-625 (-874)) -3765 (|has| |#2| (-1119)) (|has| |#2| (-625 (-874)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-1119) |has| |#2| (-1119)) ((-1237) . T)) -((-4092 (((-874) $) 19) (($ (-130)) 13) (((-130) $) 14))) +((-4387 (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1113 |#4|)) 32))) +(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1113 |#4|))) (-15 -4387 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) (-805) (-862) (-568) (-966 |#3| |#1| |#2|)) (T -606)) +((-4387 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) (-4387 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1113 *3)) (-4 *3 (-966 *7 *6 *4)) (-4 *6 (-805)) (-4 *4 (-862)) (-4 *7 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) (-5 *1 (-606 *6 *4 *7 *3))))) +(-10 -7 (-15 -4387 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2| (-1113 |#4|))) (-15 -4387 ((-2 (|:| |num| |#4|) (|:| |den| (-576))) |#4| |#2|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 71)) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1615 (($ $ (-576)) 58) (($ $ (-576) (-576)) 59)) (-3826 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 65)) (-4198 (($ $) 109)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3134 (((-874) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1045 (-855 (-576))) (-1195) |#1| (-419 (-576))) 241)) (-2398 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 36)) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1822 (((-112) $) NIL)) (-3333 (((-576) $) 63) (((-576) $ (-576)) 64)) (-1414 (((-112) $) NIL)) (-2973 (($ $ (-938)) 83)) (-1995 (($ (-1 |#1| (-576)) $) 80)) (-2606 (((-112) $) 26)) (-1970 (($ |#1| (-576)) 22) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-1632 (($ (-1 |#1| |#1|) $) 75)) (-2456 (($ (-1045 (-855 (-576))) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 13)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-3848 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-2809 (((-3 $ "failed") $ $ (-112)) 108)) (-4280 (($ $ $) 116)) (-1445 (((-1139) $) NIL)) (-4435 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 15)) (-2637 (((-1045 (-855 (-576))) $) 14)) (-1714 (($ $ (-576)) 47)) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3306 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-2871 ((|#1| $ (-576)) 62) (($ $ $) NIL (|has| (-576) (-1131)))) (-2735 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-1433 (((-576) $) NIL)) (-2869 (($ $) 48)) (-3563 (((-874) $) NIL) (($ (-576)) 29) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 28 (|has| |#1| (-174)))) (-4333 ((|#1| $ (-576)) 61)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) 39 T CONST)) (-2387 ((|#1| $) NIL)) (-2531 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-2708 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3822 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2587 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-4238 (($ $) 201 (|has| |#1| (-38 (-419 (-576)))))) (-3484 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3583 (($ $ (-419 (-576))) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3014 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2286 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2101 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1563 (($ $) 203 (|has| |#1| (-38 (-419 (-576)))))) (-2399 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-4259 (($ $) 199 (|has| |#1| (-38 (-419 (-576)))))) (-3428 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-4142 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3368 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-2478 (($ $) 209 (|has| |#1| (-38 (-419 (-576)))))) (-2364 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-1939 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-1969 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3295 (($ $) 213 (|has| |#1| (-38 (-419 (-576)))))) (-3067 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3158 (($ $) 215 (|has| |#1| (-38 (-419 (-576)))))) (-3698 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-2674 (($ $) 211 (|has| |#1| (-38 (-419 (-576)))))) (-3833 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-2608 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3004 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4125 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-2800 (($) 30 T CONST)) (-2810 (($) 40 T CONST)) (-2051 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2988 (((-112) $ $) 73)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) 91) (($ $ $) 72)) (-3083 (($ $ $) 88)) (** (($ $ (-938)) NIL) (($ $ (-783)) 111)) (* (($ (-938) $) 98) (($ (-783) $) 96) (($ (-576) $) 93) (($ $ $) 104) (($ $ |#1|) NIL) (($ |#1| $) 123) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-607 |#1|) (-13 (-1264 |#1| (-576)) (-10 -8 (-15 -2456 ($ (-1045 (-855 (-576))) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2637 ((-1045 (-855 (-576))) $)) (-15 -4435 ((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -2398 ($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2606 ((-112) $)) (-15 -1995 ($ (-1 |#1| (-576)) $)) (-15 -2809 ((-3 $ "failed") $ $ (-112))) (-15 -4198 ($ $)) (-15 -4280 ($ $ $)) (-15 -3134 ((-874) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1045 (-855 (-576))) (-1195) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $)) (-15 -3014 ($ $ |#1|)) (-15 -3583 ($ $ (-419 (-576)))) (-15 -2101 ($ $)) (-15 -2286 ($ $)) (-15 -2587 ($ $)) (-15 -3368 ($ $)) (-15 -2708 ($ $)) (-15 -3428 ($ $)) (-15 -3484 ($ $)) (-15 -2399 ($ $)) (-15 -1969 ($ $)) (-15 -3004 ($ $)) (-15 -2364 ($ $)) (-15 -3833 ($ $)) (-15 -3067 ($ $)) (-15 -3698 ($ $)) (-15 -3822 ($ $)) (-15 -4142 ($ $)) (-15 -2531 ($ $)) (-15 -4259 ($ $)) (-15 -4238 ($ $)) (-15 -1563 ($ $)) (-15 -1939 ($ $)) (-15 -2608 ($ $)) (-15 -2478 ($ $)) (-15 -2674 ($ $)) (-15 -3295 ($ $)) (-15 -3158 ($ $))) |%noBranch|))) (-1068)) (T -607)) +((-2606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-2456 (*1 *1 *2 *3) (-12 (-5 *2 (-1045 (-855 (-576)))) (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1068)) (-5 *1 (-607 *4)))) (-2637 (*1 *2 *1) (-12 (-5 *2 (-1045 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-4435 (*1 *2 *1) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1068)) (-5 *1 (-607 *3)))) (-1995 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-607 *3)))) (-2809 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) (-4198 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068)))) (-4280 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068)))) (-3134 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *6)))) (-5 *4 (-1045 (-855 (-576)))) (-5 *5 (-1195)) (-5 *7 (-419 (-576))) (-4 *6 (-1068)) (-5 *2 (-874)) (-5 *1 (-607 *6)))) (-3848 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3014 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1068)))) (-2101 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2587 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3368 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2708 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3428 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3484 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2399 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1969 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3004 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2364 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3067 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3698 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3822 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-4142 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2531 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-4259 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-4238 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1563 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-1939 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2608 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2478 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-2674 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3295 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) (-3158 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(-13 (-1264 |#1| (-576)) (-10 -8 (-15 -2456 ($ (-1045 (-855 (-576))) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2637 ((-1045 (-855 (-576))) $)) (-15 -4435 ((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $)) (-15 -2398 ($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))))) (-15 -2606 ((-112) $)) (-15 -1995 ($ (-1 |#1| (-576)) $)) (-15 -2809 ((-3 $ "failed") $ $ (-112))) (-15 -4198 ($ $)) (-15 -4280 ($ $ $)) (-15 -3134 ((-874) (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) (-1045 (-855 (-576))) (-1195) |#1| (-419 (-576)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $)) (-15 -3014 ($ $ |#1|)) (-15 -3583 ($ $ (-419 (-576)))) (-15 -2101 ($ $)) (-15 -2286 ($ $)) (-15 -2587 ($ $)) (-15 -3368 ($ $)) (-15 -2708 ($ $)) (-15 -3428 ($ $)) (-15 -3484 ($ $)) (-15 -2399 ($ $)) (-15 -1969 ($ $)) (-15 -3004 ($ $)) (-15 -2364 ($ $)) (-15 -3833 ($ $)) (-15 -3067 ($ $)) (-15 -3698 ($ $)) (-15 -3822 ($ $)) (-15 -4142 ($ $)) (-15 -2531 ($ $)) (-15 -4259 ($ $)) (-15 -4238 ($ $)) (-15 -1563 ($ $)) (-15 -1939 ($ $)) (-15 -2608 ($ $)) (-15 -2478 ($ $)) (-15 -2674 ($ $)) (-15 -3295 ($ $)) (-15 -3158 ($ $))) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 63)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-2398 (($ (-1176 |#1|)) 9)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) 44)) (-1822 (((-112) $) 56)) (-3333 (((-783) $) 61) (((-783) $ (-783)) 60)) (-1414 (((-112) $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3463 (((-3 $ "failed") $ $) 46 (|has| |#1| (-568)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568)))) (-2927 (((-1176 |#1|) $) 25)) (-1858 (((-783)) 55 T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) 10 T CONST)) (-2810 (($) 14 T CONST)) (-2988 (((-112) $ $) 24)) (-3095 (($ $) 32) (($ $ $) 16)) (-3083 (($ $ $) 27)) (** (($ $ (-938)) NIL) (($ $ (-783)) 53)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-576)) 38))) +(((-608 |#1|) (-13 (-1068) (-111 |#1| |#1|) (-10 -8 (-15 -2927 ((-1176 |#1|) $)) (-15 -2398 ($ (-1176 |#1|))) (-15 -1822 ((-112) $)) (-15 -3333 ((-783) $)) (-15 -3333 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) (-1068)) (T -608)) +((-2927 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-608 *3)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (-3333 (*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1068))))) +(-13 (-1068) (-111 |#1| |#1|) (-10 -8 (-15 -2927 ((-1176 |#1|) $)) (-15 -2398 ($ (-1176 |#1|))) (-15 -1822 ((-112) $)) (-15 -3333 ((-783) $)) (-15 -3333 ((-783) $ (-783))) (-15 * ($ $ (-576))) (IF (|has| |#1| (-568)) (-6 (-568)) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-1602 (($) 8 T CONST)) (-4365 (($) 7 T CONST)) (-2313 (($ $ (-656 $)) 16)) (-1927 (((-1177) $) NIL)) (-1742 (($) 6 T CONST)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL) (($ (-1200)) 15) (((-1200) $) 10)) (-2650 (($) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-609) (-13 (-1119) (-502 (-1200)) (-10 -8 (-15 -1742 ($) -1398) (-15 -4365 ($) -1398) (-15 -1602 ($) -1398) (-15 -2650 ($) -1398) (-15 -2313 ($ $ (-656 $)))))) (T -609)) +((-1742 (*1 *1) (-5 *1 (-609))) (-4365 (*1 *1) (-5 *1 (-609))) (-1602 (*1 *1) (-5 *1 (-609))) (-2650 (*1 *1) (-5 *1 (-609))) (-2313 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) +(-13 (-1119) (-502 (-1200)) (-10 -8 (-15 -1742 ($) -1398) (-15 -4365 ($) -1398) (-15 -1602 ($) -1398) (-15 -2650 ($) -1398) (-15 -2313 ($ $ (-656 $))))) +((-1632 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15))) +(((-610 |#1| |#2|) (-10 -7 (-15 -1632 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) (-1236) (-1236)) (T -610)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) +(-10 -7 (-15 -1632 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)))) +((-1632 (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)) 20) (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|)) 19) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18))) +(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -1632 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -1632 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|))) (-15 -1632 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)))) (-1236) (-1236) (-1236)) (T -611)) +((-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1176 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) +(-10 -7 (-15 -1632 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -1632 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|))) (-15 -1632 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)))) +((-2515 ((|#3| |#3| (-656 (-624 |#3|)) (-656 (-1195))) 57)) (-1669 (((-171 |#2|) |#3|) 122)) (-3365 ((|#3| (-171 |#2|)) 46)) (-4285 ((|#2| |#3|) 21)) (-2360 ((|#3| |#2|) 35))) +(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -3365 (|#3| (-171 |#2|))) (-15 -4285 (|#2| |#3|)) (-15 -2360 (|#3| |#2|)) (-15 -1669 ((-171 |#2|) |#3|)) (-15 -2515 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1195))))) (-568) (-13 (-442 |#1|) (-1021) (-1221)) (-13 (-442 (-171 |#1|)) (-1021) (-1221))) (T -612)) +((-2515 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1195))) (-4 *2 (-13 (-442 (-171 *5)) (-1021) (-1221))) (-4 *5 (-568)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1021) (-1221))))) (-1669 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-442 *4) (-1021) (-1221))) (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1221))))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1221))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1021) (-1221))))) (-4285 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1021) (-1221))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1221))))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1221))) (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1221))) (-5 *1 (-612 *4 *5 *2))))) +(-10 -7 (-15 -3365 (|#3| (-171 |#2|))) (-15 -4285 (|#2| |#3|)) (-15 -2360 (|#3| |#2|)) (-15 -1669 ((-171 |#2|) |#3|)) (-15 -2515 (|#3| |#3| (-656 (-624 |#3|)) (-656 (-1195))))) +((-2496 (($ (-1 (-112) |#1|) $) 17)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2429 (($ (-1 |#1| |#1|) |#1|) 9)) (-2476 (($ (-1 (-112) |#1|) $) 13)) (-2486 (($ (-1 (-112) |#1|) $) 15)) (-3573 (((-1176 |#1|) $) 18)) (-3563 (((-874) $) NIL))) +(((-613 |#1|) (-13 (-625 (-874)) (-10 -8 (-15 -1632 ($ (-1 |#1| |#1|) $)) (-15 -2476 ($ (-1 (-112) |#1|) $)) (-15 -2486 ($ (-1 (-112) |#1|) $)) (-15 -2496 ($ (-1 (-112) |#1|) $)) (-15 -2429 ($ (-1 |#1| |#1|) |#1|)) (-15 -3573 ((-1176 |#1|) $)))) (-1236)) (T -613)) +((-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2476 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2486 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-2429 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1236))))) +(-13 (-625 (-874)) (-10 -8 (-15 -1632 ($ (-1 |#1| |#1|) $)) (-15 -2476 ($ (-1 (-112) |#1|) $)) (-15 -2486 ($ (-1 (-112) |#1|) $)) (-15 -2496 ($ (-1 (-112) |#1|) $)) (-15 -2429 ($ (-1 |#1| |#1|) |#1|)) (-15 -3573 ((-1176 |#1|) $)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3497 (($ (-783)) NIL (|has| |#1| (-23)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3584 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2351 (((-701 |#1|) $ $) NIL (|has| |#1| (-1068)))) (-4033 (($ (-783) |#1|) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2306 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-2712 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3504 ((|#1| $) NIL (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2962 ((|#1| $ $) NIL (|has| |#1| (-1068)))) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2299 (($ $ $) NIL (|has| |#1| (-1068)))) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) NIL)) (-1661 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3095 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3083 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-614 |#1| |#2|) (-1284 |#1|) (-1236) (-576)) (T -614)) +NIL +(-1284 |#1|) +((-2333 (((-1291) $ |#2| |#2|) 35)) (-1386 ((|#2| $) 23)) (-3814 ((|#2| $) 21)) (-1763 (($ (-1 |#3| |#3|) $) 32)) (-1632 (($ (-1 |#3| |#3|) $) 30)) (-3504 ((|#3| $) 26)) (-2500 (($ $ |#3|) 33)) (-4407 (((-112) |#3| $) 17)) (-1947 (((-656 |#3|) $) 15)) (-2871 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-615 |#1| |#2| |#3|) (-10 -8 (-15 -2333 ((-1291) |#1| |#2| |#2|)) (-15 -2500 (|#1| |#1| |#3|)) (-15 -3504 (|#3| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -3814 (|#2| |#1|)) (-15 -4407 ((-112) |#3| |#1|)) (-15 -1947 ((-656 |#3|) |#1|)) (-15 -2871 (|#3| |#1| |#2|)) (-15 -2871 (|#3| |#1| |#2| |#3|)) (-15 -1763 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1632 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1119) (-1236)) (T -615)) +NIL +(-10 -8 (-15 -2333 ((-1291) |#1| |#2| |#2|)) (-15 -2500 (|#1| |#1| |#3|)) (-15 -3504 (|#3| |#1|)) (-15 -1386 (|#2| |#1|)) (-15 -3814 (|#2| |#1|)) (-15 -4407 ((-112) |#3| |#1|)) (-15 -1947 ((-656 |#3|) |#1|)) (-15 -2871 (|#3| |#1| |#2|)) (-15 -2871 (|#3| |#1| |#2| |#3|)) (-15 -1763 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1632 (|#1| (-1 |#3| |#3|) |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#2| (-1119)))) (-2333 (((-1291) $ |#1| |#1|) 41 (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) 8)) (-3731 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4462)))) (-3767 (($) 7 T CONST)) (-1776 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) 52)) (-3825 (((-656 |#2|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-1386 ((|#1| $) 44 (|has| |#1| (-862)))) (-2591 (((-656 |#2|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461))))) (-3814 ((|#1| $) 45 (|has| |#1| (-862)))) (-1763 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#2| |#2|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#2| (-1119)))) (-3321 (((-656 |#1|) $) 47)) (-2378 (((-112) |#1| $) 48)) (-1445 (((-1139) $) 21 (|has| |#2| (-1119)))) (-3504 ((|#2| $) 43 (|has| |#1| (-862)))) (-2500 (($ $ |#2|) 42 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#2|))) 27 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 26 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 24 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-1456 (((-783) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4461))) (((-783) |#2| $) 29 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#2| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#2| (-1119)))) (-2043 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#2| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-616 |#1| |#2|) (-141) (-1119) (-1236)) (T -616)) +((-1947 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1236)) (-5 *2 (-656 *4)))) (-2378 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1236)) (-5 *2 (-112)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1236)) (-5 *2 (-656 *3)))) (-4407 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1119)) (-4 *3 (-1236)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-3814 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1119)) (-4 *2 (-862)))) (-1386 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1119)) (-4 *2 (-862)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) (-4 *3 (-862)) (-4 *2 (-1236)))) (-2500 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1236)))) (-2333 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1236)) (-5 *2 (-1291))))) +(-13 (-501 |t#2|) (-298 |t#1| |t#2|) (-10 -8 (-15 -1947 ((-656 |t#2|) $)) (-15 -2378 ((-112) |t#1| $)) (-15 -3321 ((-656 |t#1|) $)) (IF (|has| |t#2| (-1119)) (IF (|has| $ (-6 -4461)) (-15 -4407 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862)) (PROGN (-15 -3814 (|t#1| $)) (-15 -1386 (|t#1| $)) (-15 -3504 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -2500 ($ $ |t#2|)) (-15 -2333 ((-1291) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1119)) ((-625 (-874)) -2835 (|has| |#2| (-1119)) (|has| |#2| (-625 (-874)))) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-1119) |has| |#2| (-1119)) ((-1236) . T)) +((-3563 (((-874) $) 19) (($ (-130)) 13) (((-130) $) 14))) (((-617) (-13 (-625 (-874)) (-502 (-130)))) (T -617)) NIL (-13 (-625 (-874)) (-502 (-130))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL) (($ (-1201)) NIL) (((-1201) $) NIL) (((-1236) $) 14) (($ (-656 (-1236))) 13)) (-3908 (((-656 (-1236)) $) 10)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-618) (-13 (-1102) (-625 (-1236)) (-10 -8 (-15 -4092 ($ (-656 (-1236)))) (-15 -3908 ((-656 (-1236)) $))))) (T -618)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618))))) -(-13 (-1102) (-625 (-1236)) (-10 -8 (-15 -4092 ($ (-656 (-1236)))) (-15 -3908 ((-656 (-1236)) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3500 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3925 (((-1287 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1287 (-701 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3286 (((-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3656 (($) NIL T CONST)) (-3063 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4163 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3016 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2379 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4114 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3046 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4238 (((-1192 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3952 (($ $ (-938)) NIL)) (-4045 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4378 (((-1192 |#1|) $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2548 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3145 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-4429 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3006 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1287 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3179 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4049 (((-938)) NIL (|has| |#2| (-378 |#1|)))) (-3751 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4370 (($ $ (-938)) NIL)) (-3440 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3903 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2866 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2416 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3335 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2472 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3653 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1424 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1714 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3517 (((-1192 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2596 (($ $ (-938)) NIL)) (-1891 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3691 (((-1192 |#1|) $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4167 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1684 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1371 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3288 (((-1178) $) NIL)) (-2614 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3810 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2989 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3139 (((-1139) $) NIL)) (-4207 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4367 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3287 (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $) (-1287 $)) NIL (|has| |#2| (-378 |#1|))) (((-1287 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1505 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2180 (((-656 (-969 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-969 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1361 (($ $ $) NIL)) (-2261 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4092 (((-874) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL (|has| |#2| (-429 |#1|)))) (-3558 (((-656 (-1287 |#1|))) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3911 (($ $ $ $) NIL)) (-2723 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2690 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3771 (($ $ $) NIL)) (-4393 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4340 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1450 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4300 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) 24)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4092 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619)) -((-4092 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4092 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-3183 (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) 39)) (-1980 (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL) (($) NIL)) (-2449 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-1178) |#1|) 49)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 |#1| "failed") (-1178) $) 52)) (-3656 (($) NIL T CONST)) (-3490 (($ $ (-1178)) 25)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119))))) (-4376 (((-3 |#1| "failed") (-1178) $) 53) (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462))) (($ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL (|has| $ (-6 -4462)))) (-2892 (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462))) (($ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119))))) (-2359 (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119))))) (-1422 (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) 38)) (-3888 ((|#1| $ (-1178) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-1178)) NIL)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462))) (((-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-4423 (($ $) 54)) (-3709 (($ (-400)) 23) (($ (-400) (-1178)) 22)) (-4124 (((-400) $) 40)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-1178) $) NIL (|has| (-1178) (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462))) (((-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (((-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119))))) (-4315 (((-1178) $) NIL (|has| (-1178) (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-2364 (((-656 (-1178)) $) 45)) (-3700 (((-112) (-1178) $) NIL)) (-1767 (((-1178) $) 41)) (-3576 (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL)) (-2361 (($ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL)) (-4428 (((-656 (-1178)) $) NIL)) (-2013 (((-112) (-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 ((|#1| $) NIL (|has| (-1178) (-862)))) (-1863 (((-3 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) "failed") (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (($ $ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (($ $ (-656 (-304 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) 43)) (-4367 ((|#1| $ (-1178) |#1|) NIL) ((|#1| $ (-1178)) 48)) (-1833 (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL) (($) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (((-783) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (((-783) (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL)) (-4092 (((-874) $) 21)) (-3603 (($ $) 26)) (-1531 (((-112) $ $) NIL)) (-3688 (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20)) (-2048 (((-783) $) 47 (|has| $ (-6 -4462))))) -(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) (-1213 (-1178) |#1|) (-10 -8 (-6 -4462) (-15 -4423 ($ $)))) (-1119)) (T -620)) -((-4423 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1119))))) -(-13 (-375 (-400) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) (-1213 (-1178) |#1|) (-10 -8 (-6 -4462) (-15 -4423 ($ $)))) -((-3990 (((-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) $) 16)) (-2364 (((-656 |#2|) $) 20)) (-3700 (((-112) |#2| $) 12))) -(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -2364 ((-656 |#2|) |#1|)) (-15 -3700 ((-112) |#2| |#1|)) (-15 -3990 ((-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|))) (-622 |#2| |#3|) (-1119) (-1119)) (T -621)) -NIL -(-10 -8 (-15 -2364 ((-656 |#2|) |#1|)) (-15 -3700 ((-112) |#2| |#1|)) (-15 -3990 ((-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|))) -((-2034 (((-112) $ $) 19 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 46 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 56 (|has| $ (-6 -4462)))) (-2131 (((-3 |#2| "failed") |#1| $) 62)) (-3656 (($) 7 T CONST)) (-1690 (($ $) 59 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 47 (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 63)) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 55 (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 57 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 54 (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 53 (|has| $ (-6 -4462)))) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-2364 (((-656 |#1|) $) 64)) (-3700 (((-112) |#1| $) 65)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 40)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 41)) (-3139 (((-1139) $) 21 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 52)) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 42)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) 27 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 26 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 25 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 24 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-1833 (($) 50) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 49)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 32 (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 60 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 51)) (-4092 (((-874) $) 18 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 43)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL) (($ (-1200)) NIL) (((-1200) $) NIL) (((-1235) $) 14) (($ (-656 (-1235))) 13)) (-2205 (((-656 (-1235)) $) 10)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-618) (-13 (-1102) (-625 (-1235)) (-10 -8 (-15 -3563 ($ (-656 (-1235)))) (-15 -2205 ((-656 (-1235)) $))))) (T -618)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618))))) +(-13 (-1102) (-625 (-1235)) (-10 -8 (-15 -3563 ($ (-656 (-1235)))) (-15 -2205 ((-656 (-1235)) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3341 (((-3 $ "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-2697 (((-1286 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1286 (-701 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1686 (((-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3767 (($) NIL T CONST)) (-4130 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4122 (((-3 $ "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4252 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2828 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1783 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2991 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2125 (((-1191 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4242 (($ $ (-938)) NIL)) (-3207 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3812 (((-1191 |#1|) $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2639 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2355 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3411 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2612 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1286 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1551 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3606 (((-938)) NIL (|has| |#2| (-378 |#1|)))) (-2995 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4300 (($ $ (-938)) NIL)) (-4334 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1364 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2272 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4230 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2694 (((-3 $ "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1950 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3544 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2269 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1410 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2571 (((-1191 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1428 (($ $ (-938)) NIL)) (-3804 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2904 (((-1191 |#1|) $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1394 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3764 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2692 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1927 (((-1177) $) NIL)) (-1610 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3077 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3276 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1445 (((-1139) $) NIL)) (-2775 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2871 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-1809 (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $) (-1286 $)) NIL (|has| |#2| (-378 |#1|))) (((-1286 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4076 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3434 (((-656 (-969 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-969 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4081 (($ $ $) NIL)) (-2012 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3563 (((-874) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL (|has| |#2| (-429 |#1|)))) (-2253 (((-656 (-1286 |#1|))) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1938 (($ $ $ $) NIL)) (-1524 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3491 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2303 (($ $ $) NIL)) (-2647 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2256 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4016 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2800 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) 24)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-619 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3563 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -619)) +((-3563 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3))))) +(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3563 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-3917 (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) 39)) (-4022 (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL) (($) NIL)) (-2333 (((-1291) $ (-1177) (-1177)) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-1177) |#1|) 49)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 |#1| "failed") (-1177) $) 52)) (-3767 (($) NIL T CONST)) (-1606 (($ $ (-1177)) 25)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119))))) (-3623 (((-3 |#1| "failed") (-1177) $) 53) (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461))) (($ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL (|has| $ (-6 -4461)))) (-3902 (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461))) (($ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119))))) (-2521 (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119))))) (-3280 (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) 38)) (-1776 ((|#1| $ (-1177) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-1177)) NIL)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-4071 (($ $) 54)) (-3223 (($ (-400)) 23) (($ (-400) (-1177)) 22)) (-2706 (((-400) $) 40)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461))) (((-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (((-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119))))) (-3814 (((-1177) $) NIL (|has| (-1177) (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-3135 (((-656 (-1177)) $) 45)) (-2937 (((-112) (-1177) $) NIL)) (-1746 (((-1177) $) 41)) (-1409 (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL)) (-2040 (($ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL)) (-3321 (((-656 (-1177)) $) NIL)) (-2378 (((-112) (-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 ((|#1| $) NIL (|has| (-1177) (-862)))) (-2644 (((-3 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) "failed") (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (($ $ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (($ $ (-656 (-304 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) 43)) (-2871 ((|#1| $ (-1177) |#1|) NIL) ((|#1| $ (-1177)) 48)) (-2837 (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL) (($) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (((-783) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (((-783) (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL)) (-3563 (((-874) $) 21)) (-4382 (($ $) 26)) (-3985 (((-112) $ $) NIL)) (-3773 (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20)) (-3485 (((-783) $) 47 (|has| $ (-6 -4461))))) +(((-620 |#1|) (-13 (-375 (-400) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) (-1212 (-1177) |#1|) (-10 -8 (-6 -4461) (-15 -4071 ($ $)))) (-1119)) (T -620)) +((-4071 (*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1119))))) +(-13 (-375 (-400) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) (-1212 (-1177) |#1|) (-10 -8 (-6 -4461) (-15 -4071 ($ $)))) +((-2511 (((-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) $) 16)) (-3135 (((-656 |#2|) $) 20)) (-2937 (((-112) |#2| $) 12))) +(((-621 |#1| |#2| |#3|) (-10 -8 (-15 -3135 ((-656 |#2|) |#1|)) (-15 -2937 ((-112) |#2| |#1|)) (-15 -2511 ((-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|))) (-622 |#2| |#3|) (-1119) (-1119)) (T -621)) +NIL +(-10 -8 (-15 -3135 ((-656 |#2|) |#1|)) (-15 -2937 ((-112) |#2| |#1|)) (-15 -2511 ((-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|))) +((-3474 (((-112) $ $) 19 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 46 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 56 (|has| $ (-6 -4461)))) (-2287 (((-3 |#2| "failed") |#1| $) 62)) (-3767 (($) 7 T CONST)) (-3172 (($ $) 59 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 47 (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 63)) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 55 (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 57 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 54 (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 53 (|has| $ (-6 -4461)))) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3135 (((-656 |#1|) $) 64)) (-2937 (((-112) |#1| $) 65)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 40)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 41)) (-1445 (((-1139) $) 21 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 52)) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 42)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) 27 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 26 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 25 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 24 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2837 (($) 50) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 49)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 32 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 60 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 51)) (-3563 (((-874) $) 18 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 43)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-622 |#1| |#2|) (-141) (-1119) (-1119)) (T -622)) -((-3700 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-112)))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-656 *3)))) (-4376 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-2131 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) -(-13 (-231 (-2 (|:| -2371 |t#1|) (|:| -2900 |t#2|))) (-10 -8 (-15 -3700 ((-112) |t#1| $)) (-15 -2364 ((-656 |t#1|) $)) (-15 -4376 ((-3 |t#2| "failed") |t#1| $)) (-15 -2131 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T) ((-102) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) ((-625 (-874)) -3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) ((-1119) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) ((-1237) . T)) -((-3635 (((-624 |#2|) |#1|) 17)) (-1872 (((-3 |#1| "failed") (-624 |#2|)) 21))) -(((-623 |#1| |#2|) (-10 -7 (-15 -3635 ((-624 |#2|) |#1|)) (-15 -1872 ((-3 |#1| "failed") (-624 |#2|)))) (-1119) (-1119)) (T -623)) -((-1872 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) (-5 *1 (-623 *2 *4)))) (-3635 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))))) -(-10 -7 (-15 -3635 ((-624 |#2|) |#1|)) (-15 -1872 ((-3 |#1| "failed") (-624 |#2|)))) -((-2034 (((-112) $ $) NIL)) (-2853 (((-3 (-1196) "failed") $) 46)) (-3776 (((-1292) $ (-783)) 22)) (-3433 (((-783) $) 20)) (-1344 (((-115) $) 9)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-1770 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1196)) 33)) (-1412 (((-112) $ (-115)) 15) (((-112) $ (-1196)) 13)) (-2927 (((-783) $) 17)) (-3139 (((-1139) $) NIL)) (-1505 (((-905 (-576)) $) 95 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 102 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-4092 (((-874) $) 72)) (-1531 (((-112) $ $) NIL)) (-2819 (((-656 |#1|) $) 19)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 51)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 53))) -(((-624 |#1|) (-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -1344 ((-115) $)) (-15 -2819 ((-656 |#1|) $)) (-15 -2927 ((-783) $)) (-15 -1770 ($ (-115) (-656 |#1|) (-783))) (-15 -1770 ($ (-1196))) (-15 -2853 ((-3 (-1196) "failed") $)) (-15 -1412 ((-112) $ (-115))) (-15 -1412 ((-112) $ (-1196))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1119)) (T -624)) -((-1344 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-1770 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1119)) (-5 *1 (-624 *5)))) (-1770 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-2853 (*1 *2 *1) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-1412 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1119)))) (-1412 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1119))))) -(-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -1344 ((-115) $)) (-15 -2819 ((-656 |#1|) $)) (-15 -2927 ((-783) $)) (-15 -1770 ($ (-115) (-656 |#1|) (-783))) (-15 -1770 ($ (-1196))) (-15 -2853 ((-3 (-1196) "failed") $)) (-15 -1412 ((-112) $ (-115))) (-15 -1412 ((-112) $ (-1196))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-4092 ((|#1| $) 6))) -(((-625 |#1|) (-141) (-1237)) (T -625)) -((-4092 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1237))))) -(-13 (-10 -8 (-15 -4092 (|t#1| $)))) -((-1505 ((|#1| $) 6))) -(((-626 |#1|) (-141) (-1237)) (T -626)) -((-1505 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1237))))) -(-13 (-10 -8 (-15 -1505 (|t#1| $)))) -((-2734 (((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) -(((-627 |#1| |#2|) (-10 -7 (-15 -2734 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2734 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -627)) -((-2734 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-1192 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-2734 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-1192 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) -(-10 -7 (-15 -2734 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2734 ((-3 (-1192 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) -((-4092 (($ |#1|) 6))) -(((-628 |#1|) (-141) (-1237)) (T -628)) -((-4092 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1237))))) -(-13 (-10 -8 (-15 -4092 ($ |t#1|)))) -((-2034 (((-112) $ $) NIL)) (-2046 (($) 14 T CONST)) (-4316 (($) 15 T CONST)) (-2457 (($ $ $) 29)) (-2433 (($ $) 27)) (-3288 (((-1178) $) NIL)) (-4108 (($ $ $) 30)) (-3139 (((-1139) $) NIL)) (-3159 (($) 11 T CONST)) (-2566 (($ $ $) 31)) (-4092 (((-874) $) 35)) (-4291 (((-112) $ (|[\|\|]| -3159)) 24) (((-112) $ (|[\|\|]| -2046)) 26) (((-112) $ (|[\|\|]| -4316)) 21)) (-1531 (((-112) $ $) NIL)) (-2445 (($ $ $) 28)) (-3919 (((-112) $ $) 18))) -(((-629) (-13 (-986) (-10 -8 (-15 -2046 ($) -2670) (-15 -4291 ((-112) $ (|[\|\|]| -3159))) (-15 -4291 ((-112) $ (|[\|\|]| -2046))) (-15 -4291 ((-112) $ (|[\|\|]| -4316)))))) (T -629)) -((-2046 (*1 *1) (-5 *1 (-629))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3159)) (-5 *2 (-112)) (-5 *1 (-629)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2046)) (-5 *2 (-112)) (-5 *1 (-629)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4316)) (-5 *2 (-112)) (-5 *1 (-629))))) -(-13 (-986) (-10 -8 (-15 -2046 ($) -2670) (-15 -4291 ((-112) $ (|[\|\|]| -3159))) (-15 -4291 ((-112) $ (|[\|\|]| -2046))) (-15 -4291 ((-112) $ (|[\|\|]| -4316))))) -((-1505 (($ |#1|) 6))) -(((-630 |#1|) (-141) (-1237)) (T -630)) -((-1505 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1237))))) -(-13 (-10 -8 (-15 -1505 ($ |t#1|)))) -((-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) -(((-631 |#1| |#2|) (-10 -8 (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) (-632 |#2|) (-1068)) (T -631)) -NIL -(-10 -8 (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) +((-2937 (*1 *2 *3 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-112)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-5 *2 (-656 *3)))) (-3623 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-2287 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) +(-13 (-231 (-2 (|:| -4282 |t#1|) (|:| -4353 |t#2|))) (-10 -8 (-15 -2937 ((-112) |t#1| $)) (-15 -3135 ((-656 |t#1|) $)) (-15 -3623 ((-3 |t#2| "failed") |t#1| $)) (-15 -2287 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T) ((-102) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) ((-625 (-874)) -2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) ((-501 #0#) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) ((-1119) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) ((-1236) . T)) +((-3510 (((-624 |#2|) |#1|) 17)) (-2435 (((-3 |#1| "failed") (-624 |#2|)) 21))) +(((-623 |#1| |#2|) (-10 -7 (-15 -3510 ((-624 |#2|) |#1|)) (-15 -2435 ((-3 |#1| "failed") (-624 |#2|)))) (-1119) (-1119)) (T -623)) +((-2435 (*1 *2 *3) (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) (-5 *1 (-623 *2 *4)))) (-3510 (*1 *2 *3) (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))))) +(-10 -7 (-15 -3510 ((-624 |#2|) |#1|)) (-15 -2435 ((-3 |#1| "failed") (-624 |#2|)))) +((-3474 (((-112) $ $) NIL)) (-3258 (((-3 (-1195) "failed") $) 46)) (-1515 (((-1291) $ (-783)) 22)) (-3584 (((-783) $) 20)) (-3974 (((-115) $) 9)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1616 (($ (-115) (-656 |#1|) (-783)) 32) (($ (-1195)) 33)) (-3718 (((-112) $ (-115)) 15) (((-112) $ (-1195)) 13)) (-2331 (((-783) $) 17)) (-1445 (((-1139) $) NIL)) (-4076 (((-905 (-576)) $) 95 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 102 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 88 (|has| |#1| (-626 (-548))))) (-3563 (((-874) $) 72)) (-3985 (((-112) $ $) NIL)) (-4225 (((-656 |#1|) $) 19)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 51)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 53))) +(((-624 |#1|) (-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -3974 ((-115) $)) (-15 -4225 ((-656 |#1|) $)) (-15 -2331 ((-783) $)) (-15 -1616 ($ (-115) (-656 |#1|) (-783))) (-15 -1616 ($ (-1195))) (-15 -3258 ((-3 (-1195) "failed") $)) (-15 -3718 ((-112) $ (-115))) (-15 -3718 ((-112) $ (-1195))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-1119)) (T -624)) +((-3974 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-1616 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1119)) (-5 *1 (-624 *5)))) (-1616 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-3258 (*1 *2 *1) (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1119)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1119))))) +(-13 (-133) (-862) (-897 |#1|) (-10 -8 (-15 -3974 ((-115) $)) (-15 -4225 ((-656 |#1|) $)) (-15 -2331 ((-783) $)) (-15 -1616 ($ (-115) (-656 |#1|) (-783))) (-15 -1616 ($ (-1195))) (-15 -3258 ((-3 (-1195) "failed") $)) (-15 -3718 ((-112) $ (-115))) (-15 -3718 ((-112) $ (-1195))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +((-3563 ((|#1| $) 6))) +(((-625 |#1|) (-141) (-1236)) (T -625)) +((-3563 (*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1236))))) +(-13 (-10 -8 (-15 -3563 (|t#1| $)))) +((-4076 ((|#1| $) 6))) +(((-626 |#1|) (-141) (-1236)) (T -626)) +((-4076 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1236))))) +(-13 (-10 -8 (-15 -4076 (|t#1| $)))) +((-4424 (((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)) 15) (((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16))) +(((-627 |#1| |#2|) (-10 -7 (-15 -4424 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -4424 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576)))) (-1262 |#1|)) (T -627)) +((-4424 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-1191 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6)))) (-4424 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-1191 (-419 *5))) (-5 *1 (-627 *4 *5)) (-5 *3 (-419 *5))))) +(-10 -7 (-15 -4424 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -4424 ((-3 (-1191 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-430 |#2|) |#2|)))) +((-3563 (($ |#1|) 6))) +(((-628 |#1|) (-141) (-1236)) (T -628)) +((-3563 (*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1236))))) +(-13 (-10 -8 (-15 -3563 ($ |t#1|)))) +((-3474 (((-112) $ $) NIL)) (-3766 (($) 14 T CONST)) (-2248 (($) 15 T CONST)) (-2768 (($ $ $) 29)) (-2746 (($ $) 27)) (-1927 (((-1177) $) NIL)) (-4363 (($ $ $) 30)) (-1445 (((-1139) $) NIL)) (-3506 (($) 11 T CONST)) (-1851 (($ $ $) 31)) (-3563 (((-874) $) 35)) (-2787 (((-112) $ (|[\|\|]| -3506)) 24) (((-112) $ (|[\|\|]| -3766)) 26) (((-112) $ (|[\|\|]| -2248)) 21)) (-3985 (((-112) $ $) NIL)) (-2758 (($ $ $) 28)) (-2988 (((-112) $ $) 18))) +(((-629) (-13 (-986) (-10 -8 (-15 -3766 ($) -1398) (-15 -2787 ((-112) $ (|[\|\|]| -3506))) (-15 -2787 ((-112) $ (|[\|\|]| -3766))) (-15 -2787 ((-112) $ (|[\|\|]| -2248)))))) (T -629)) +((-3766 (*1 *1) (-5 *1 (-629))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3506)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3766)) (-5 *2 (-112)) (-5 *1 (-629)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2248)) (-5 *2 (-112)) (-5 *1 (-629))))) +(-13 (-986) (-10 -8 (-15 -3766 ($) -1398) (-15 -2787 ((-112) $ (|[\|\|]| -3506))) (-15 -2787 ((-112) $ (|[\|\|]| -3766))) (-15 -2787 ((-112) $ (|[\|\|]| -2248))))) +((-4076 (($ |#1|) 6))) +(((-630 |#1|) (-141) (-1236)) (T -630)) +((-4076 (*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1236))))) +(-13 (-10 -8 (-15 -4076 ($ |t#1|)))) +((-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10))) +(((-631 |#1| |#2|) (-10 -8 (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) (-632 |#2|) (-1068)) (T -631)) +NIL +(-10 -8 (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 41)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#1| $) 42))) (((-632 |#1|) (-141) (-1068)) (T -632)) -((-4092 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1068))))) -(-13 (-1068) (-660 |t#1|) (-10 -8 (-15 -4092 ($ |t#1|)))) +((-3563 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1068))))) +(-13 (-1068) (-660 |t#1|) (-10 -8 (-15 -3563 ($ |t#1|)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-738) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3934 (((-576) $) NIL (|has| |#1| (-860)))) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-3567 (((-112) $) NIL (|has| |#1| (-860)))) (-1810 (((-112) $) NIL)) (-3894 ((|#1| $) 13)) (-3713 (((-112) $) NIL (|has| |#1| (-860)))) (-3492 (($ $ $) NIL (|has| |#1| (-860)))) (-2726 (($ $ $) NIL (|has| |#1| (-860)))) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3905 ((|#3| $) 15)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-2471 (((-783)) 20 T CONST)) (-1531 (((-112) $ $) NIL)) (-3423 (($ $) NIL (|has| |#1| (-860)))) (-4300 (($) NIL T CONST)) (-4310 (($) 12 T CONST)) (-3977 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-860)))) (-4028 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4028 ($ $ |#3|)) (-15 -4028 ($ |#1| |#3|)) (-15 -3894 (|#1| $)) (-15 -3905 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633)) -((-4028 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4028 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-3894 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-3905 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4028 ($ $ |#3|)) (-15 -4028 ($ |#1| |#3|)) (-15 -3894 (|#1| $)) (-15 -3905 (|#3| $)))) -((-3627 ((|#2| |#2| (-1196) (-1196)) 16))) -(((-634 |#1| |#2|) (-10 -7 (-15 -3627 (|#2| |#2| (-1196) (-1196)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-976) (-29 |#1|))) (T -634)) -((-3627 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1222) (-976) (-29 *4)))))) -(-10 -7 (-15 -3627 (|#2| |#2| (-1196) (-1196)))) -((-2034 (((-112) $ $) 64)) (-1962 (((-112) $) 58)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3363 ((|#1| $) 55)) (-3788 (((-3 $ "failed") $ $) NIL)) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3352 (((-2 (|:| -3587 $) (|:| -3915 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) 27)) (-3179 (((-3 $ "failed") $) 88)) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1538 (((-576) $) 22)) (-1810 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4331 (((-112) $) 40)) (-1518 (($ |#1| (-576)) 24)) (-1692 ((|#1| $) 57)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2022 (((-3 $ "failed") $ $) 93)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1787 (((-783) $) 115 (|has| |#1| (-374)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 114 (|has| |#1| (-374)))) (-3614 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-2369 (((-576) $) 38)) (-1505 (((-419 |#2|) $) 47)) (-4092 (((-874) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-2430 ((|#1| $ (-576)) 72)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-4300 (($) 9 T CONST)) (-4310 (($) 14 T CONST)) (-4286 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-3919 (((-112) $ $) 21)) (-4018 (($ $) 51) (($ $ $) NIL)) (-4007 (($ $ $) 90)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) -(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1057 |#2|) (-10 -8 (-15 -4331 ((-112) $)) (-15 -2369 ((-576) $)) (-15 -1538 ((-576) $)) (-15 -1717 ($ $)) (-15 -1692 (|#1| $)) (-15 -3363 (|#1| $)) (-15 -2430 (|#1| $ (-576))) (-15 -1518 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3352 ((-2 (|:| -3587 $) (|:| -3915 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1263 |#1|)) (T -635)) -((-4331 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1263 *3)))) (-2369 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1263 *3)))) (-1538 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1263 *3)))) (-1717 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) (-1692 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) (-3363 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) (-2430 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1263 *2)))) (-1518 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1263 *2)))) (-3352 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -3587 (-635 *4 *5)) (|:| -3915 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) -(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1057 |#2|) (-10 -8 (-15 -4331 ((-112) $)) (-15 -2369 ((-576) $)) (-15 -1538 ((-576) $)) (-15 -1717 ($ $)) (-15 -1692 (|#1| $)) (-15 -3363 (|#1| $)) (-15 -2430 (|#1| $ (-576))) (-15 -1518 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3352 ((-2 (|:| -3587 $) (|:| -3915 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) -((-2567 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-3274 ((|#6| |#6|) 48))) -(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3274 (|#6| |#6|)) (-15 -2567 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|) (-1128 |#1| |#2| |#3| |#4|)) (T -636)) -((-2567 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *10 (-1128 *5 *6 *7 *8)))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *2 (-1128 *3 *4 *5 *6))))) -(-10 -7 (-15 -3274 (|#6| |#6|)) (-15 -2567 ((-656 |#6|) (-656 |#4|) (-112)))) -((-3422 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-3119 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1192 |#3|)))) "failed") |#3| (-656 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3791 (-656 (-2 (|:| |irr| |#4|) (|:| -2136 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69))) -(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3422 ((-112) |#3| (-783) (-656 |#3|))) (-15 -3119 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1192 |#3|)))) "failed") |#3| (-656 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3791 (-656 (-2 (|:| |irr| |#4|) (|:| -2136 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-862) (-805) (-317) (-966 |#3| |#2| |#1|)) (T -637)) -((-3119 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3791 (-656 (-2 (|:| |irr| *10) (|:| -2136 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317)) (-4 *10 (-966 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1192 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1192 *3))))) (-3422 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-966 *3 *7 *6))))) -(-10 -7 (-15 -3422 ((-112) |#3| (-783) (-656 |#3|))) (-15 -3119 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1192 |#3|)))) "failed") |#3| (-656 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3791 (-656 (-2 (|:| |irr| |#4|) (|:| -2136 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) -((-2034 (((-112) $ $) NIL)) (-1804 (((-1154) $) 11)) (-1790 (((-1154) $) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-638) (-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1154) $))))) (T -638)) -((-1790 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638))))) -(-13 (-1102) (-10 -8 (-15 -1790 ((-1154) $)) (-15 -1804 ((-1154) $)))) -((-2034 (((-112) $ $) NIL)) (-2677 (((-656 |#1|) $) NIL)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-3313 (($ $) 77)) (-2703 (((-676 |#1| |#2|) $) 60)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 81)) (-3764 (((-656 (-304 |#2|)) $ $) 42)) (-3139 (((-1139) $) NIL)) (-3353 (($ (-676 |#1| |#2|)) 56)) (-3646 (($ $ $) NIL)) (-1361 (($ $ $) NIL)) (-4092 (((-874) $) 66) (((-1302 |#1| |#2|) $) NIL) (((-1307 |#1| |#2|) $) 74)) (-1531 (((-112) $ $) NIL)) (-4310 (($) 61 T CONST)) (-3798 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-2357 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-2994 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) 46)) (-3919 (((-112) $ $) 62)) (-4028 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) -(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -3353 ($ (-676 |#1| |#2|))) (-15 -2703 ((-676 |#1| |#2|) $)) (-15 -2994 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -4092 ((-1302 |#1| |#2|) $)) (-15 -4092 ((-1307 |#1| |#2|) $)) (-15 -3313 ($ $)) (-15 -2677 ((-656 |#1|) $)) (-15 -2357 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -3798 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3764 ((-656 (-304 |#2|)) $ $)))) (-862) (-13 (-174) (-729 (-419 (-576)))) (-938)) (T -639)) -((-3353 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-938)))) (-2703 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-3313 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-938)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-938)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-3764 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))) -(-13 (-485) (-10 -8 (-15 -3353 ($ (-676 |#1| |#2|))) (-15 -2703 ((-676 |#1| |#2|) $)) (-15 -2994 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -4092 ((-1302 |#1| |#2|) $)) (-15 -4092 ((-1307 |#1| |#2|) $)) (-15 -3313 ($ $)) (-15 -2677 ((-656 |#1|) $)) (-15 -2357 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -3798 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -3764 ((-656 (-304 |#2|)) $ $)))) -((-2567 (((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 103) (((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 77)) (-2027 (((-112) (-656 (-792 |#1| (-876 |#2|)))) 26)) (-2002 (((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 102)) (-2507 (((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 76)) (-2686 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) 30)) (-3398 (((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|)))) 29))) -(((-640 |#1| |#2|) (-10 -7 (-15 -2027 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -3398 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -2686 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -2507 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2002 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2567 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2567 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)))) (-464) (-656 (-1196))) (T -640)) -((-2567 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-2567 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2686 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4)))) (-3398 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1196))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(-10 -7 (-15 -2027 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -3398 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -2686 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -2507 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2002 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2567 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2567 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)))) -((-2266 (($ $) 38)) (-2111 (($ $) 21)) (-2236 (($ $) 37)) (-2084 (($ $) 22)) (-2294 (($ $) 36)) (-2138 (($ $) 23)) (-3926 (($) 48)) (-2703 (($ $) 45)) (-1821 (($ $) 17)) (-1909 (($ $ (-1111 $)) 7) (($ $ (-1196)) 6)) (-3353 (($ $) 46)) (-2037 (($ $) 15)) (-2070 (($ $) 16)) (-2307 (($ $) 35)) (-2149 (($ $) 24)) (-2281 (($ $) 34)) (-2123 (($ $) 25)) (-2253 (($ $) 33)) (-2099 (($ $) 26)) (-2340 (($ $) 44)) (-2184 (($ $) 32)) (-2317 (($ $) 43)) (-2161 (($ $) 31)) (-2368 (($ $) 42)) (-2207 (($ $) 30)) (-3945 (($ $) 41)) (-2220 (($ $) 29)) (-2352 (($ $) 40)) (-2195 (($ $) 28)) (-2329 (($ $) 39)) (-2173 (($ $) 27)) (-1902 (($ $) 19)) (-3848 (($ $) 20)) (-3415 (($ $) 18)) (** (($ $ $) 47))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2184 (((-576) $) NIL (|has| |#1| (-860)))) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-1910 (((-112) $) NIL (|has| |#1| (-860)))) (-1414 (((-112) $) NIL)) (-1536 ((|#1| $) 13)) (-3566 (((-112) $) NIL (|has| |#1| (-860)))) (-2442 (($ $ $) NIL (|has| |#1| (-860)))) (-1893 (($ $ $) NIL (|has| |#1| (-860)))) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-1549 ((|#3| $) 15)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL)) (-1858 (((-783)) 20 T CONST)) (-3985 (((-112) $ $) NIL)) (-2264 (($ $) NIL (|has| |#1| (-860)))) (-2800 (($) NIL T CONST)) (-2810 (($) 12 T CONST)) (-3049 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3107 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-633 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3107 ($ $ |#3|)) (-15 -3107 ($ |#1| |#3|)) (-15 -1536 (|#1| $)) (-15 -1549 (|#3| $)))) (-38 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -633)) +((-3107 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3107 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1536 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1549 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -3107 ($ $ |#3|)) (-15 -3107 ($ |#1| |#3|)) (-15 -1536 (|#1| $)) (-15 -1549 (|#3| $)))) +((-1933 ((|#2| |#2| (-1195) (-1195)) 16))) +(((-634 |#1| |#2|) (-10 -7 (-15 -1933 (|#2| |#2| (-1195) (-1195)))) (-13 (-317) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1221) (-976) (-29 |#1|))) (T -634)) +((-1933 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1221) (-976) (-29 *4)))))) +(-10 -7 (-15 -1933 (|#2| |#2| (-1195) (-1195)))) +((-3474 (((-112) $ $) 64)) (-1454 (((-112) $) 58)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2371 ((|#1| $) 55)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3807 (((-2 (|:| -2119 $) (|:| -4227 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-374)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) 27)) (-1551 (((-3 $ "failed") $) 88)) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-3333 (((-576) $) 22)) (-1414 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2606 (((-112) $) 40)) (-1970 (($ |#1| (-576)) 24)) (-2142 ((|#1| $) 57)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) 101 (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-3463 (((-3 $ "failed") $ $) 93)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3112 (((-783) $) 115 (|has| |#1| (-374)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 114 (|has| |#1| (-374)))) (-2735 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) 75) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195))))) (-1433 (((-576) $) 38)) (-4076 (((-419 |#2|) $) 47)) (-3563 (((-874) $) 69) (($ (-576)) 35) (($ $) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 34) (($ |#2|) 25)) (-4333 ((|#1| $ (-576)) 72)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2800 (($) 9 T CONST)) (-2810 (($) 14 T CONST)) (-2051 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195))))) (-2988 (((-112) $ $) 21)) (-3095 (($ $) 51) (($ $ $) NIL)) (-3083 (($ $ $) 90)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 29) (($ $ $) 49))) +(((-635 |#1| |#2|) (-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1057 |#2|) (-10 -8 (-15 -2606 ((-112) $)) (-15 -1433 ((-576) $)) (-15 -3333 ((-576) $)) (-15 -2166 ($ $)) (-15 -2142 (|#1| $)) (-15 -2371 (|#1| $)) (-15 -4333 (|#1| $ (-576))) (-15 -1970 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3807 ((-2 (|:| -2119 $) (|:| -4227 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-568) (-1262 |#1|)) (T -635)) +((-2606 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1262 *3)))) (-1433 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1262 *3)))) (-3333 (*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) (-4 *4 (-1262 *3)))) (-2166 (*1 *1 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) (-2142 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) (-2371 (*1 *2 *1) (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) (-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1262 *2)))) (-1970 (*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) (-4 *4 (-1262 *2)))) (-3807 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -2119 (-635 *4 *5)) (|:| -4227 (-419 *5)))) (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5))))) +(-13 (-232 |#2|) (-568) (-626 (-419 |#2|)) (-423 |#1|) (-1057 |#2|) (-10 -8 (-15 -2606 ((-112) $)) (-15 -1433 ((-576) $)) (-15 -3333 ((-576) $)) (-15 -2166 ($ $)) (-15 -2142 (|#1| $)) (-15 -2371 (|#1| $)) (-15 -4333 (|#1| $ (-576))) (-15 -1970 ($ |#1| (-576))) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-6 (-317)) (-15 -3807 ((-2 (|:| -2119 $) (|:| -4227 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) +((-1968 (((-656 |#6|) (-656 |#4|) (-112)) 54)) (-3054 ((|#6| |#6|) 48))) +(((-636 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3054 (|#6| |#6|)) (-15 -1968 ((-656 |#6|) (-656 |#4|) (-112)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|) (-1128 |#1| |#2| |#3| |#4|)) (T -636)) +((-1968 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10)) (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *10 (-1128 *5 *6 *7 *8)))) (-3054 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *2 (-1128 *3 *4 *5 *6))))) +(-10 -7 (-15 -3054 (|#6| |#6|)) (-15 -1968 ((-656 |#6|) (-656 |#4|) (-112)))) +((-2163 (((-112) |#3| (-783) (-656 |#3|)) 29)) (-1748 (((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1191 |#3|)))) "failed") |#3| (-656 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1707 (-656 (-2 (|:| |irr| |#4|) (|:| -2011 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)) 69))) +(((-637 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2163 ((-112) |#3| (-783) (-656 |#3|))) (-15 -1748 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1191 |#3|)))) "failed") |#3| (-656 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1707 (-656 (-2 (|:| |irr| |#4|) (|:| -2011 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) (-862) (-805) (-317) (-966 |#3| |#2| |#1|)) (T -637)) +((-1748 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1707 (-656 (-2 (|:| |irr| *10) (|:| -2011 (-576))))))) (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317)) (-4 *10 (-966 *3 *9 *8)) (-4 *9 (-805)) (-5 *2 (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) (|:| |corrfact| (-656 (-1191 *3))))) (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1191 *3))))) (-2163 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862)) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) (-4 *8 (-966 *3 *7 *6))))) +(-10 -7 (-15 -2163 ((-112) |#3| (-783) (-656 |#3|))) (-15 -1748 ((-3 (-2 (|:| |polfac| (-656 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-656 (-1191 |#3|)))) "failed") |#3| (-656 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1707 (-656 (-2 (|:| |irr| |#4|) (|:| -2011 (-576)))))) (-656 |#3|) (-656 |#1|) (-656 |#3|)))) +((-3474 (((-112) $ $) NIL)) (-1649 (((-1154) $) 11)) (-1637 (((-1154) $) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-638) (-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1154) $))))) (T -638)) +((-1637 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638))))) +(-13 (-1102) (-10 -8 (-15 -1637 ((-1154) $)) (-15 -1649 ((-1154) $)))) +((-3474 (((-112) $ $) NIL)) (-3388 (((-656 |#1|) $) NIL)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-2575 (($ $) 77)) (-3710 (((-676 |#1| |#2|) $) 60)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 81)) (-2721 (((-656 (-304 |#2|)) $ $) 42)) (-1445 (((-1139) $) NIL)) (-3984 (($ (-676 |#1| |#2|)) 56)) (-4026 (($ $ $) NIL)) (-4081 (($ $ $) NIL)) (-3563 (((-874) $) 66) (((-1301 |#1| |#2|) $) NIL) (((-1306 |#1| |#2|) $) 74)) (-3985 (((-112) $ $) NIL)) (-2810 (($) 61 T CONST)) (-4298 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) 41)) (-1709 (((-656 (-676 |#1| |#2|)) (-656 |#1|)) 73)) (-3816 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) 46)) (-2988 (((-112) $ $) 62)) (-3107 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 52))) +(((-639 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -3984 ($ (-676 |#1| |#2|))) (-15 -3710 ((-676 |#1| |#2|) $)) (-15 -3816 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -3563 ((-1301 |#1| |#2|) $)) (-15 -3563 ((-1306 |#1| |#2|) $)) (-15 -2575 ($ $)) (-15 -3388 ((-656 |#1|) $)) (-15 -1709 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -4298 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -2721 ((-656 (-304 |#2|)) $ $)))) (-862) (-13 (-174) (-729 (-419 (-576)))) (-938)) (T -639)) +((-3984 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) (-14 *5 (-938)))) (-3710 (*1 *2 *1) (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1306 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-2575 (*1 *1 *1) (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-938)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5))) (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) (-14 *6 (-938)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) (-2721 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))) +(-13 (-485) (-10 -8 (-15 -3984 ($ (-676 |#1| |#2|))) (-15 -3710 ((-676 |#1| |#2|) $)) (-15 -3816 ((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $)) (-15 -3563 ((-1301 |#1| |#2|) $)) (-15 -3563 ((-1306 |#1| |#2|) $)) (-15 -2575 ($ $)) (-15 -3388 ((-656 |#1|) $)) (-15 -1709 ((-656 (-676 |#1| |#2|)) (-656 |#1|))) (-15 -4298 ((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $)) (-15 -2721 ((-656 (-304 |#2|)) $ $)))) +((-1968 (((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 103) (((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 77)) (-4254 (((-112) (-656 (-792 |#1| (-876 |#2|)))) 26)) (-2813 (((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)) 102)) (-1897 (((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112)) 76)) (-4390 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) 30)) (-3343 (((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|)))) 29))) +(((-640 |#1| |#2|) (-10 -7 (-15 -4254 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -3343 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -4390 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -1897 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2813 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1968 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1968 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)))) (-464) (-656 (-1195))) (T -640)) +((-1968 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-1968 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-640 *5 *6)))) (-2813 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) (-5 *1 (-640 *5 *6)))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-640 *5 *6)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4)))) (-3343 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4)))) (-4254 (*1 *2 *3) (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464)) (-14 *5 (-656 (-1195))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) +(-10 -7 (-15 -4254 ((-112) (-656 (-792 |#1| (-876 |#2|))))) (-15 -3343 ((-3 (-656 (-792 |#1| (-876 |#2|))) "failed") (-656 (-792 |#1| (-876 |#2|))))) (-15 -4390 ((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))))) (-15 -1897 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -2813 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1968 ((-656 (-1065 |#1| |#2|)) (-656 (-792 |#1| (-876 |#2|))) (-112))) (-15 -1968 ((-656 (-1165 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|)))) (-656 (-792 |#1| (-876 |#2|))) (-112)))) +((-3894 (($ $) 38)) (-3768 (($ $) 21)) (-3872 (($ $) 37)) (-3747 (($ $) 22)) (-3916 (($ $) 36)) (-3788 (($ $) 23)) (-1570 (($) 48)) (-3710 (($ $) 45)) (-3724 (($ $) 17)) (-4019 (($ $ (-1111 $)) 7) (($ $ (-1195)) 6)) (-3984 (($ $) 46)) (-3702 (($ $) 15)) (-3737 (($ $) 16)) (-3928 (($ $) 35)) (-3798 (($ $) 24)) (-3905 (($ $) 34)) (-3778 (($ $) 25)) (-3882 (($ $) 33)) (-3757 (($ $) 26)) (-3958 (($ $) 44)) (-3831 (($ $) 32)) (-3939 (($ $) 43)) (-3808 (($ $) 31)) (-3981 (($ $) 42)) (-3852 (($ $) 30)) (-1830 (($ $) 41)) (-3863 (($ $) 29)) (-3969 (($ $) 40)) (-3841 (($ $) 28)) (-3948 (($ $) 39)) (-3820 (($ $) 27)) (-1377 (($ $) 19)) (-4360 (($ $) 20)) (-2771 (($ $) 18)) (** (($ $ $) 47))) (((-641) (-141)) (T -641)) -((-3848 (*1 *1 *1) (-4 *1 (-641))) (-1902 (*1 *1 *1) (-4 *1 (-641))) (-3415 (*1 *1 *1) (-4 *1 (-641))) (-1821 (*1 *1 *1) (-4 *1 (-641))) (-2070 (*1 *1 *1) (-4 *1 (-641))) (-2037 (*1 *1 *1) (-4 *1 (-641)))) -(-13 (-976) (-1222) (-10 -8 (-15 -3848 ($ $)) (-15 -1902 ($ $)) (-15 -3415 ($ $)) (-15 -1821 ($ $)) (-15 -2070 ($ $)) (-15 -2037 ($ $)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-976) . T) ((-1222) . T) ((-1225) . T)) -((-1344 (((-115) (-115)) 88)) (-1821 ((|#2| |#2|) 28)) (-1909 ((|#2| |#2| (-1111 |#2|)) 84) ((|#2| |#2| (-1196)) 50)) (-2037 ((|#2| |#2|) 27)) (-2070 ((|#2| |#2|) 29)) (-3201 (((-112) (-115)) 33)) (-1902 ((|#2| |#2|) 24)) (-3848 ((|#2| |#2|) 26)) (-3415 ((|#2| |#2|) 25))) -(((-642 |#1| |#2|) (-10 -7 (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -3848 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3415 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -2070 (|#2| |#2|)) (-15 -1909 (|#2| |#2| (-1196))) (-15 -1909 (|#2| |#2| (-1111 |#2|)))) (-568) (-13 (-442 |#1|) (-1021) (-1222))) (T -642)) -((-1909 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-1021) (-1222))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-1909 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1021) (-1222))))) (-2070 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-2037 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-1821 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-3415 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1222))))) (-1344 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1021) (-1222))))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1222)))))) -(-10 -7 (-15 -3201 ((-112) (-115))) (-15 -1344 ((-115) (-115))) (-15 -3848 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3415 (|#2| |#2|)) (-15 -1821 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -2070 (|#2| |#2|)) (-15 -1909 (|#2| |#2| (-1196))) (-15 -1909 (|#2| |#2| (-1111 |#2|)))) -((-4389 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-3019 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-3030 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 90)) (-1757 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-2417 (((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-4213 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-3853 (((-1287 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-2529 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-3173 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-2151 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112))) -(((-643 |#1| |#2|) (-10 -7 (-15 -1757 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -4213 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -3019 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3030 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -3030 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2529 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3853 ((-1287 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -2151 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2417 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3173 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4389 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1196)) (-464)) (T -643)) -((-4389 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-3173 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-2417 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-2151 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1196))) (-5 *1 (-643 *5 *6)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-1287 *6)) (-5 *1 (-643 *5 *6)))) (-2529 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1196))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-3030 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-3030 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-4213 (*1 *2 *3) (-12 (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5))))) -(-10 -7 (-15 -1757 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -4213 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -3019 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3030 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -3030 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2529 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3853 ((-1287 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -2151 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2417 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3173 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4389 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) NIL)) (-2449 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 (((-52) $ (-1178) (-52)) 16) (((-52) $ (-1196) (-52)) 17)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 (-52) "failed") (-1178) $) NIL)) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119))))) (-4376 (($ (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-3 (-52) "failed") (-1178) $) NIL)) (-2892 (($ (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $ (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119)))) (((-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $ (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-3888 (((-52) $ (-1178) (-52)) NIL (|has| $ (-6 -4463)))) (-3817 (((-52) $ (-1178)) NIL)) (-4260 (((-656 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-4423 (($ $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-1178) $) NIL (|has| (-1178) (-862)))) (-1750 (((-656 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-4315 (((-1178) $) NIL (|has| (-1178) (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1722 (($ (-400)) 9)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119))))) (-2364 (((-656 (-1178)) $) NIL)) (-3700 (((-112) (-1178) $) NIL)) (-3576 (((-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) $) NIL)) (-2361 (($ (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) $) NIL)) (-4428 (((-656 (-1178)) $) NIL)) (-2013 (((-112) (-1178) $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119))))) (-2701 (((-52) $) NIL (|has| (-1178) (-862)))) (-1863 (((-3 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) "failed") (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL)) (-2918 (($ $ (-52)) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119)))) (($ $ (-304 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119)))) (($ $ (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119)))) (($ $ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-3060 (((-656 (-52)) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 (((-52) $ (-1178)) 14) (((-52) $ (-1178) (-52)) NIL) (((-52) $ (-1196)) 15)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) NIL)) (-4092 (((-874) $) NIL (-3765 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-625 (-874)))))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 (-52))) (-1119))))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-644) (-13 (-1213 (-1178) (-52)) (-296 (-1196) (-52)) (-10 -8 (-15 -1722 ($ (-400))) (-15 -4423 ($ $)) (-15 -4248 ((-52) $ (-1196) (-52)))))) (T -644)) -((-1722 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-4423 (*1 *1 *1) (-5 *1 (-644))) (-4248 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1196)) (-5 *1 (-644))))) -(-13 (-1213 (-1178) (-52)) (-296 (-1196) (-52)) (-10 -8 (-15 -1722 ($ (-400))) (-15 -4423 ($ $)) (-15 -4248 ((-52) $ (-1196) (-52))))) -((-4028 (($ $ |#2|) 10))) -(((-645 |#1| |#2|) (-10 -8 (-15 -4028 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) -NIL -(-10 -8 (-15 -4028 (|#1| |#1| |#2|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4103 (($ $ $) 34)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-4360 (*1 *1 *1) (-4 *1 (-641))) (-1377 (*1 *1 *1) (-4 *1 (-641))) (-2771 (*1 *1 *1) (-4 *1 (-641))) (-3724 (*1 *1 *1) (-4 *1 (-641))) (-3737 (*1 *1 *1) (-4 *1 (-641))) (-3702 (*1 *1 *1) (-4 *1 (-641)))) +(-13 (-976) (-1221) (-10 -8 (-15 -4360 ($ $)) (-15 -1377 ($ $)) (-15 -2771 ($ $)) (-15 -3724 ($ $)) (-15 -3737 ($ $)) (-15 -3702 ($ $)))) +(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-976) . T) ((-1221) . T) ((-1224) . T)) +((-3974 (((-115) (-115)) 88)) (-3724 ((|#2| |#2|) 28)) (-4019 ((|#2| |#2| (-1111 |#2|)) 84) ((|#2| |#2| (-1195)) 50)) (-3702 ((|#2| |#2|) 27)) (-3737 ((|#2| |#2|) 29)) (-3263 (((-112) (-115)) 33)) (-1377 ((|#2| |#2|) 24)) (-4360 ((|#2| |#2|) 26)) (-2771 ((|#2| |#2|) 25))) +(((-642 |#1| |#2|) (-10 -7 (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -4360 (|#2| |#2|)) (-15 -1377 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -3724 (|#2| |#2|)) (-15 -3702 (|#2| |#2|)) (-15 -3737 (|#2| |#2|)) (-15 -4019 (|#2| |#2| (-1195))) (-15 -4019 (|#2| |#2| (-1111 |#2|)))) (-568) (-13 (-442 |#1|) (-1021) (-1221))) (T -642)) +((-4019 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-1021) (-1221))) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) (-4019 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) (-4 *2 (-13 (-442 *4) (-1021) (-1221))))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1221))))) (-3702 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1221))))) (-3724 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1221))))) (-2771 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1221))))) (-1377 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1221))))) (-4360 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021) (-1221))))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) (-4 *4 (-13 (-442 *3) (-1021) (-1221))))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1221)))))) +(-10 -7 (-15 -3263 ((-112) (-115))) (-15 -3974 ((-115) (-115))) (-15 -4360 (|#2| |#2|)) (-15 -1377 (|#2| |#2|)) (-15 -2771 (|#2| |#2|)) (-15 -3724 (|#2| |#2|)) (-15 -3702 (|#2| |#2|)) (-15 -3737 (|#2| |#2|)) (-15 -4019 (|#2| |#2| (-1195))) (-15 -4019 (|#2| |#2| (-1111 |#2|)))) +((-2395 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 63)) (-3394 (((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 89)) (-1860 (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 91) (((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|)) 90)) (-1930 (((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|))) 134)) (-4350 (((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 104)) (-2172 (((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|))) 145)) (-3531 (((-1286 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|))) 68)) (-2341 (((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|))) 47)) (-4060 (((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 60)) (-3795 (((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|))) 112))) +(((-643 |#1| |#2|) (-10 -7 (-15 -1930 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2172 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -3394 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -1860 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -1860 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2341 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3531 ((-1286 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -3795 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4350 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -4060 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2395 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) (-656 (-1195)) (-464)) (T -643)) +((-2395 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5)))) (-4060 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-4350 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5)))) (-3795 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1195))) (-5 *1 (-643 *5 *6)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-1286 *6)) (-5 *1 (-643 *5 *6)))) (-2341 (*1 *2 *2) (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1195))) (-4 *4 (-464)) (-5 *1 (-643 *3 *4)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-1860 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) (-4 *6 (-464)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5)))) (-2172 (*1 *2 *3) (-12 (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5))))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-656 (-253 *4 *5))) (|:| |gvlist| (-656 (-576))))) (-5 *1 (-643 *4 *5))))) +(-10 -7 (-15 -1930 ((-2 (|:| |gblist| (-656 (-253 |#1| |#2|))) (|:| |gvlist| (-656 (-576)))) (-656 (-493 |#1| |#2|)))) (-15 -2172 ((-2 (|:| |glbase| (-656 (-253 |#1| |#2|))) (|:| |glval| (-656 (-576)))) (-656 (-253 |#1| |#2|)))) (-15 -3394 ((-656 (-253 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -1860 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -1860 ((-493 |#1| |#2|) (-656 (-493 |#1| |#2|)) (-876 |#1|))) (-15 -2341 ((-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -3531 ((-1286 |#2|) (-493 |#1| |#2|) (-656 (-493 |#1| |#2|)))) (-15 -3795 ((-253 |#1| |#2|) (-656 |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -4350 ((-656 (-493 |#1| |#2|)) (-876 |#1|) (-656 (-493 |#1| |#2|)) (-656 (-493 |#1| |#2|)))) (-15 -4060 ((-253 |#1| |#2|) (-253 |#1| |#2|) (-656 (-253 |#1| |#2|)))) (-15 -2395 ((-493 |#1| |#2|) (-253 |#1| |#2|)))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) NIL)) (-2333 (((-1291) $ (-1177) (-1177)) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 (((-52) $ (-1177) (-52)) 16) (((-52) $ (-1195) (-52)) 17)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 (-52) "failed") (-1177) $) NIL)) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119))))) (-3623 (($ (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-3 (-52) "failed") (-1177) $) NIL)) (-3902 (($ (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $ (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119)))) (((-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $ (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-1776 (((-52) $ (-1177) (-52)) NIL (|has| $ (-6 -4462)))) (-1698 (((-52) $ (-1177)) NIL)) (-3825 (((-656 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-4071 (($ $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2591 (((-656 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1119))))) (-3814 (((-1177) $) NIL (|has| (-1177) (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2141 (($ (-400)) 9)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119))))) (-3135 (((-656 (-1177)) $) NIL)) (-2937 (((-112) (-1177) $) NIL)) (-1409 (((-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) $) NIL)) (-2040 (($ (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) $) NIL)) (-3321 (((-656 (-1177)) $) NIL)) (-2378 (((-112) (-1177) $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119))))) (-3504 (((-52) $) NIL (|has| (-1177) (-862)))) (-2644 (((-3 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) "failed") (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL)) (-2500 (($ $ (-52)) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119)))) (($ $ (-304 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119)))) (($ $ (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119)))) (($ $ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1119))))) (-1947 (((-656 (-52)) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 (((-52) $ (-1177)) 14) (((-52) $ (-1177) (-52)) NIL) (((-52) $ (-1195)) 15)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1119)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) NIL)) (-3563 (((-874) $) NIL (-2835 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-625 (-874)))))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 (-52))) (-1119))))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-644) (-13 (-1212 (-1177) (-52)) (-296 (-1195) (-52)) (-10 -8 (-15 -2141 ($ (-400))) (-15 -4071 ($ $)) (-15 -3731 ((-52) $ (-1195) (-52)))))) (T -644)) +((-2141 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644)))) (-4071 (*1 *1 *1) (-5 *1 (-644))) (-3731 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1195)) (-5 *1 (-644))))) +(-13 (-1212 (-1177) (-52)) (-296 (-1195) (-52)) (-10 -8 (-15 -2141 ($ (-400))) (-15 -4071 ($ $)) (-15 -3731 ((-52) $ (-1195) (-52))))) +((-3107 (($ $ |#2|) 10))) +(((-645 |#1| |#2|) (-10 -8 (-15 -3107 (|#1| |#1| |#2|))) (-646 |#2|) (-174)) (T -645)) +NIL +(-10 -8 (-15 -3107 (|#1| |#1| |#2|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3573 (($ $ $) 34)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 33 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-646 |#1|) (-141) (-174)) (T -646)) -((-4103 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4103 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -4028 ($ $ |t#1|)) |%noBranch|))) +((-3573 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) (-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(-13 (-729 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3573 ($ $ $)) (IF (|has| |t#1| (-374)) (-15 -3107 ($ $ |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3500 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3925 (((-1287 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1287 (-701 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3286 (((-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3656 (($) NIL T CONST)) (-3063 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4163 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3016 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-2379 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4114 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3046 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4238 (((-1192 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-3952 (($ $ (-938)) NIL)) (-4045 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-4378 (((-1192 |#1|) $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2548 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3145 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-4429 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3006 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1287 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3179 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4049 (((-938)) NIL (|has| |#2| (-378 |#1|)))) (-3751 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4370 (($ $ (-938)) NIL)) (-3440 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3903 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2866 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2416 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3335 (((-3 $ "failed")) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2472 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-3653 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1424 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1714 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3517 (((-1192 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-2596 (($ $ (-938)) NIL)) (-1891 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3691 (((-1192 |#1|) $) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4167 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1684 (((-1192 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-1371 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3288 (((-1178) $) NIL)) (-2614 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3810 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2989 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3139 (((-1139) $) NIL)) (-4207 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4367 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-3287 (((-701 |#1|) (-1287 $)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1287 $) (-1287 $)) NIL (|has| |#2| (-378 |#1|))) (((-1287 |#1|) $ (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1505 (($ (-1287 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1287 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2180 (((-656 (-969 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-969 |#1|)) (-1287 $)) NIL (|has| |#2| (-378 |#1|)))) (-1361 (($ $ $) NIL)) (-2261 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4092 (((-874) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL (|has| |#2| (-429 |#1|)))) (-3558 (((-656 (-1287 |#1|))) NIL (-3765 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3911 (($ $ $ $) NIL)) (-2723 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2690 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3771 (($ $ $) NIL)) (-4393 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4340 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1450 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) 20)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4092 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647)) -((-4092 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))) -(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -4092 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) -((-3703 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1178)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-2426 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136))) -(((-648 |#1| |#2|) (-10 -7 (-15 -3703 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2426 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -3703 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1178)))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -648)) -((-3703 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1178)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-2426 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) (-3703 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1222) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) -(-10 -7 (-15 -3703 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2426 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -3703 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1178)))) -((-3703 (((-3 (-855 (-419 (-969 |#1|))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))) (-1178)) 86) (((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|)))) 20) (((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-855 (-969 |#1|)))) 35)) (-2426 (((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|)))) 23) (((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-845 (-969 |#1|)))) 43))) -(((-649 |#1|) (-10 -7 (-15 -3703 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-855 (-969 |#1|))))) (-15 -3703 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -2426 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-845 (-969 |#1|))))) (-15 -2426 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -3703 ((-3 (-855 (-419 (-969 |#1|))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))) (-1178)))) (-464)) (T -649)) -((-3703 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-969 *6)))) (-5 *5 (-1178)) (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-2426 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-969 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-969 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-969 *5))))) (-3703 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-3703 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-969 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-969 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-969 *5)))))) -(-10 -7 (-15 -3703 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-855 (-969 |#1|))))) (-15 -3703 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -2426 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-845 (-969 |#1|))))) (-15 -2426 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -3703 ((-3 (-855 (-419 (-969 |#1|))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))) (-1178)))) -((-2484 (((-3 (-1287 (-419 |#1|)) "failed") (-1287 |#2|) |#2|) 64 (-2433 (|has| |#1| (-374)))) (((-3 (-1287 |#1|) "failed") (-1287 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-1445 (((-112) (-1287 |#2|)) 33)) (-1333 (((-3 (-1287 |#1|) "failed") (-1287 |#2|)) 40))) -(((-650 |#1| |#2|) (-10 -7 (-15 -1445 ((-112) (-1287 |#2|))) (-15 -1333 ((-3 (-1287 |#1|) "failed") (-1287 |#2|))) (IF (|has| |#1| (-374)) (-15 -2484 ((-3 (-1287 |#1|) "failed") (-1287 |#2|) |#2|)) (-15 -2484 ((-3 (-1287 (-419 |#1|)) "failed") (-1287 |#2|) |#2|)))) (-568) (-13 (-1068) (-651 |#1|))) (T -650)) -((-2484 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 *5))) (-2433 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1287 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-2484 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1287 *5)) (-5 *1 (-650 *5 *4)))) (-1333 (*1 *2 *3) (|partial| -12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1068) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1287 *4)) (-5 *1 (-650 *4 *5)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1068) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) -(-10 -7 (-15 -1445 ((-112) (-1287 |#2|))) (-15 -1333 ((-3 (-1287 |#1|) "failed") (-1287 |#2|))) (IF (|has| |#1| (-374)) (-15 -2484 ((-3 (-1287 |#1|) "failed") (-1287 |#2|) |#2|)) (-15 -2484 ((-3 (-1287 (-419 |#1|)) "failed") (-1287 |#2|) |#2|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3687 (((-701 |#1|) (-1287 $)) 32) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 29)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3341 (((-3 $ "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-2697 (((-1286 (-701 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-1286 (-701 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1686 (((-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3767 (($) NIL T CONST)) (-4130 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4122 (((-3 $ "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-4252 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2828 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-1783 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2991 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2125 (((-1191 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-4242 (($ $ (-938)) NIL)) (-3207 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-3812 (((-1191 |#1|) $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2639 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-2355 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-3411 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2612 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (($ (-1286 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1551 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-3606 (((-938)) NIL (|has| |#2| (-378 |#1|)))) (-2995 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4300 (($ $ (-938)) NIL)) (-4334 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1364 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2272 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4230 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2694 (((-3 $ "failed")) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1950 (((-701 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3544 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2269 (((-701 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-1410 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-2571 (((-1191 (-969 |#1|))) NIL (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-374))))) (-1428 (($ $ (-938)) NIL)) (-3804 ((|#1| $) NIL (|has| |#2| (-378 |#1|)))) (-2904 (((-1191 |#1|) $) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1394 ((|#1|) NIL (|has| |#2| (-429 |#1|))) ((|#1| (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-3764 (((-1191 |#1|) $) NIL (|has| |#2| (-378 |#1|)))) (-2692 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1927 (((-1177) $) NIL)) (-1610 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3077 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3276 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-1445 (((-1139) $) NIL)) (-2775 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2871 ((|#1| $ (-576)) NIL (|has| |#2| (-429 |#1|)))) (-1809 (((-701 |#1|) (-1286 $)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|))) (((-701 |#1|) (-1286 $) (-1286 $)) NIL (|has| |#2| (-378 |#1|))) (((-1286 |#1|) $ (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4076 (($ (-1286 |#1|)) NIL (|has| |#2| (-429 |#1|))) (((-1286 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-3434 (((-656 (-969 |#1|))) NIL (|has| |#2| (-429 |#1|))) (((-656 (-969 |#1|)) (-1286 $)) NIL (|has| |#2| (-378 |#1|)))) (-4081 (($ $ $) NIL)) (-2012 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3563 (((-874) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL (|has| |#2| (-429 |#1|)))) (-2253 (((-656 (-1286 |#1|))) NIL (-2835 (-12 (|has| |#2| (-378 |#1|)) (|has| |#1| (-568))) (-12 (|has| |#2| (-429 |#1|)) (|has| |#1| (-568)))))) (-1938 (($ $ $ $) NIL)) (-1524 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-3491 (($ (-701 |#1|) $) NIL (|has| |#2| (-429 |#1|)))) (-2303 (($ $ $) NIL)) (-2647 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2256 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-4016 (((-112)) NIL (|has| |#2| (-378 |#1|)))) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) 20)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-647 |#1| |#2|) (-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3563 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) (-174) (-756 |#1|)) (T -647)) +((-3563 (*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3))))) +(-13 (-756 |#1|) (-625 |#2|) (-10 -8 (-15 -3563 ($ |#2|)) (IF (|has| |#2| (-429 |#1|)) (-6 (-429 |#1|)) |%noBranch|) (IF (|has| |#2| (-378 |#1|)) (-6 (-378 |#1|)) |%noBranch|))) +((-2663 (((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1177)) 106) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|))) 131)) (-2015 (((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|))) 136))) +(((-648 |#1| |#2|) (-10 -7 (-15 -2663 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2015 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -2663 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1177)))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -648)) +((-2663 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1177)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) (-2015 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-304 (-845 *3))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) (-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-648 *5 *3))))) +(-10 -7 (-15 -2663 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) "failed"))) "failed") |#2| (-304 (-855 |#2|)))) (-15 -2015 ((-3 (-845 |#2|) "failed") |#2| (-304 (-845 |#2|)))) (-15 -2663 ((-3 (-855 |#2|) "failed") |#2| (-304 |#2|) (-1177)))) +((-2663 (((-3 (-855 (-419 (-969 |#1|))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))) (-1177)) 86) (((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|)))) 20) (((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-855 (-969 |#1|)))) 35)) (-2015 (((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|)))) 23) (((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-845 (-969 |#1|)))) 43))) +(((-649 |#1|) (-10 -7 (-15 -2663 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-855 (-969 |#1|))))) (-15 -2663 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -2015 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-845 (-969 |#1|))))) (-15 -2015 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -2663 ((-3 (-855 (-419 (-969 |#1|))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))) (-1177)))) (-464)) (T -649)) +((-2663 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-304 (-419 (-969 *6)))) (-5 *5 (-1177)) (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-845 (-969 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-969 *5)))) (-5 *1 (-649 *5)) (-5 *3 (-419 (-969 *5))))) (-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) "failed")) (|:| |rightHandLimit| (-3 (-855 *3) "failed"))) "failed")) (-5 *1 (-649 *5)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *4 (-304 (-855 (-969 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-969 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 *5))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 *5))) "failed"))) "failed")) (-5 *1 (-649 *5)) (-5 *3 (-419 (-969 *5)))))) +(-10 -7 (-15 -2663 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-855 (-969 |#1|))))) (-15 -2663 ((-3 (-855 (-419 (-969 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-969 |#1|))) "failed"))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -2015 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-845 (-969 |#1|))))) (-15 -2015 ((-845 (-419 (-969 |#1|))) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -2663 ((-3 (-855 (-419 (-969 |#1|))) "failed") (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))) (-1177)))) +((-3575 (((-3 (-1286 (-419 |#1|)) "failed") (-1286 |#2|) |#2|) 64 (-2746 (|has| |#1| (-374)))) (((-3 (-1286 |#1|) "failed") (-1286 |#2|) |#2|) 49 (|has| |#1| (-374)))) (-1517 (((-112) (-1286 |#2|)) 33)) (-2665 (((-3 (-1286 |#1|) "failed") (-1286 |#2|)) 40))) +(((-650 |#1| |#2|) (-10 -7 (-15 -1517 ((-112) (-1286 |#2|))) (-15 -2665 ((-3 (-1286 |#1|) "failed") (-1286 |#2|))) (IF (|has| |#1| (-374)) (-15 -3575 ((-3 (-1286 |#1|) "failed") (-1286 |#2|) |#2|)) (-15 -3575 ((-3 (-1286 (-419 |#1|)) "failed") (-1286 |#2|) |#2|)))) (-568) (-13 (-1068) (-651 |#1|))) (T -650)) +((-3575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 *5))) (-2746 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1286 (-419 *5))) (-5 *1 (-650 *5 *4)))) (-3575 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 *5))) (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1286 *5)) (-5 *1 (-650 *5 *4)))) (-2665 (*1 *2 *3) (|partial| -12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1068) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-1286 *4)) (-5 *1 (-650 *4 *5)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1068) (-651 *4))) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) +(-10 -7 (-15 -1517 ((-112) (-1286 |#2|))) (-15 -2665 ((-3 (-1286 |#1|) "failed") (-1286 |#2|))) (IF (|has| |#1| (-374)) (-15 -3575 ((-3 (-1286 |#1|) "failed") (-1286 |#2|) |#2|)) (-15 -3575 ((-3 (-1286 (-419 |#1|)) "failed") (-1286 |#2|) |#2|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-3687 (((-701 |#1|) (-1286 $)) 32) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 31) (((-701 |#1|) (-701 $)) 30) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 29)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) (((-651 |#1|) (-141) (-1068)) (T -651)) -((-3687 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) (-5 *2 (-701 *4)))) (-3687 (*1 *2 *3 *1) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| -2215 (-701 *4)) (|:| |vec| (-1287 *4)))))) (-3687 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) (-5 *2 (-701 *4)))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1287 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2215 (-701 *5)) (|:| |vec| (-1287 *5))))))) -(-13 (-660 |t#1|) (-10 -8 (-15 -3687 ((-701 |t#1|) (-1287 $))) (-15 -3687 ((-2 (|:| -2215 (-701 |t#1|)) (|:| |vec| (-1287 |t#1|))) (-1287 $) $)) (-15 -3687 ((-701 |t#1|) (-701 $))) (-15 -3687 ((-2 (|:| -2215 (-701 |t#1|)) (|:| |vec| (-1287 |t#1|))) (-701 $) (-1287 $))))) +((-3687 (*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) (-5 *2 (-701 *4)))) (-3687 (*1 *2 *3 *1) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| -2689 (-701 *4)) (|:| |vec| (-1286 *4)))))) (-3687 (*1 *2 *3) (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) (-5 *2 (-701 *4)))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *1)) (-5 *4 (-1286 *1)) (-4 *1 (-651 *5)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -2689 (-701 *5)) (|:| |vec| (-1286 *5))))))) +(-13 (-660 |t#1|) (-10 -8 (-15 -3687 ((-701 |t#1|) (-1286 $))) (-15 -3687 ((-2 (|:| -2689 (-701 |t#1|)) (|:| |vec| (-1286 |t#1|))) (-1286 $) $)) (-15 -3687 ((-701 |t#1|) (-701 $))) (-15 -3687 ((-2 (|:| -2689 (-701 |t#1|)) (|:| |vec| (-1286 |t#1|))) (-701 $) (-1286 $))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 17))) (((-652 |#1|) (-141) (-1131)) (T -652)) NIL (-13 (-658 |t#1|) (-1070 |t#1|)) (((-102) . T) ((-625 (-874)) . T) ((-658 |#1|) . T) ((-1070 |#1|) . T) ((-1119) . T)) -((-1404 ((|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|) 17) ((|#2| (-656 |#1|) (-656 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|)) 12))) -(((-653 |#1| |#2|) (-10 -7 (-15 -1404 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1404 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1404 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1404 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1404 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1404 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) (-1119) (-1237)) (T -653)) -((-1404 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1119)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) (-1404 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *1 (-653 *5 *6)))) (-1404 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1119)) (-4 *5 (-1237)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) (-1404 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6))))) -(-10 -7 (-15 -1404 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -1404 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -1404 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -1404 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -1404 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -1404 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) -((-1687 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-2359 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-2477 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13))) -(((-654 |#1| |#2|) (-10 -7 (-15 -1687 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2359 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2477 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1237) (-1237)) (T -654)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-2359 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-654 *5 *2)))) (-1687 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))) -(-10 -7 (-15 -1687 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2359 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2477 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) -((-2477 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21))) -(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1237) (-1237) (-1237)) (T -655)) -((-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8))))) -(-10 -7 (-15 -2477 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) NIL)) (-3367 ((|#1| $) NIL)) (-3053 (($ $) NIL)) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2633 (($ $ (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3362 (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2398 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-2597 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-3744 (($ $ $) NIL (|has| $ (-6 -4463)))) (-3476 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2466 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "rest" $) NIL (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3898 (($ $ $) 37 (|has| |#1| (-1119)))) (-2647 (($ $ $) 41 (|has| |#1| (-1119)))) (-2408 (($ $ $) 44 (|has| |#1| (-1119)))) (-3831 (($ (-1 (-112) |#1|) $) NIL)) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3357 ((|#1| $) NIL)) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-2712 (($ $) 23) (($ $ (-783)) NIL)) (-4329 (($ $) NIL (|has| |#1| (-1119)))) (-1690 (($ $) 36 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4376 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-2892 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3235 (((-112) $) NIL)) (-3433 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119))) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) NIL)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-2422 (((-112) $) 11)) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2700 (($) 9 T CONST)) (-1992 (($ (-783) |#1|) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-1897 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3257 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1783 (($ |#1|) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3699 (((-656 |#1|) $) NIL)) (-3781 (((-112) $) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2912 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2361 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3371 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2701 ((|#1| $) 20) (($ $ (-783)) NIL)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3020 (((-112) $) NIL)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) 39)) (-2643 (($) 38)) (-4367 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-3136 (((-576) $ $) NIL)) (-2531 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2470 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2492 (((-112) $) NIL)) (-1398 (($ $) NIL)) (-1556 (($ $) NIL (|has| $ (-6 -4463)))) (-2212 (((-783) $) NIL)) (-2251 (($ $) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) NIL)) (-4037 (($ |#1| $) 12)) (-2116 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2851 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3138 (($ $ $) 13)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3774 (((-1178) $) 31 (|has| |#1| (-840))) (((-1178) $ (-112)) 32 (|has| |#1| (-840))) (((-1292) (-834) $) 33 (|has| |#1| (-840))) (((-1292) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -2700 ($) -2670) (-15 -2422 ((-112) $)) (-15 -4037 ($ |#1| $)) (-15 -3138 ($ $ $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -3898 ($ $ $)) (-15 -2647 ($ $ $)) (-15 -2408 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1237)) (T -656)) -((-2700 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1237)))) (-4037 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) (-3138 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) (-3898 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)))) (-2647 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)))) (-2408 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237))))) -(-13 (-678 |#1|) (-10 -8 (-15 -2700 ($) -2670) (-15 -2422 ((-112) $)) (-15 -4037 ($ |#1| $)) (-15 -3138 ($ $ $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -3898 ($ $ $)) (-15 -2647 ($ $ $)) (-15 -2408 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 11) (($ (-1201)) NIL) (((-1201) $) NIL) ((|#1| $) 8)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +((-4413 ((|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|) 17) ((|#2| (-656 |#1|) (-656 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|)) 12))) +(((-653 |#1| |#2|) (-10 -7 (-15 -4413 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -4413 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -4413 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -4413 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -4413 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -4413 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) (-1119) (-1236)) (T -653)) +((-4413 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1119)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) (-4413 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1119)) (-4 *6 (-1236)) (-5 *1 (-653 *5 *6)))) (-4413 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1119)) (-4 *5 (-1236)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) (-4413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1119)) (-4 *6 (-1236)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6))))) +(-10 -7 (-15 -4413 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|))) (-15 -4413 (|#2| (-656 |#1|) (-656 |#2|) |#1|)) (-15 -4413 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) |#2|)) (-15 -4413 (|#2| (-656 |#1|) (-656 |#2|) |#1| |#2|)) (-15 -4413 ((-1 |#2| |#1|) (-656 |#1|) (-656 |#2|) (-1 |#2| |#1|))) (-15 -4413 (|#2| (-656 |#1|) (-656 |#2|) |#1| (-1 |#2| |#1|)))) +((-2874 (((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 16)) (-2521 ((|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|) 18)) (-1632 (((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)) 13))) +(((-654 |#1| |#2|) (-10 -7 (-15 -2874 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -1632 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) (-1236) (-1236)) (T -654)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-654 *5 *2)))) (-2874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5))))) +(-10 -7 (-15 -2874 ((-656 |#2|) (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-656 |#1|) |#2|)) (-15 -1632 ((-656 |#2|) (-1 |#2| |#1|) (-656 |#1|)))) +((-1632 (((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)) 21))) +(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -1632 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) (-1236) (-1236) (-1236)) (T -655)) +((-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8))))) +(-10 -7 (-15 -1632 ((-656 |#3|) (-1 |#3| |#1| |#2|) (-656 |#1|) (-656 |#2|)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) NIL)) (-2893 ((|#1| $) NIL)) (-2464 (($ $) NIL)) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2938 (($ $ (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) $) NIL (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2265 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1758 (($ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-3429 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3614 (($ $ $) NIL (|has| $ (-6 -4462)))) (-2611 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-1438 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "rest" $) NIL (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-3148 (($ $ $) 37 (|has| |#1| (-1119)))) (-4260 (($ $ $) 41 (|has| |#1| (-1119)))) (-2687 (($ $ $) 44 (|has| |#1| (-1119)))) (-4001 (($ (-1 (-112) |#1|) $) NIL)) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2882 ((|#1| $) NIL)) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3515 (($ $) 23) (($ $ (-783)) NIL)) (-3315 (($ $) NIL (|has| |#1| (-1119)))) (-3172 (($ $) 36 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3623 (($ |#1| $) NIL (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) NIL)) (-3902 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3518 (((-112) $) NIL)) (-3584 (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119))) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) NIL)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2733 (((-112) $) 11)) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4093 (($) 9 T CONST)) (-4033 (($ (-783) |#1|) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-2093 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1854 (($ $ $) NIL (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1628 (($ |#1|) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-2942 (((-656 |#1|) $) NIL)) (-1905 (((-112) $) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-3923 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2040 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-2277 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3504 ((|#1| $) 20) (($ $ (-783)) NIL)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-3524 (((-112) $) NIL)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) 39)) (-2597 (($) 38)) (-2871 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) 42) ((|#1| $ (-576) |#1|) NIL)) (-2972 (((-576) $ $) NIL)) (-2560 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3464 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3173 (((-112) $) NIL)) (-1442 (($ $) NIL)) (-1544 (($ $) NIL (|has| $ (-6 -4462)))) (-3564 (((-783) $) NIL)) (-2705 (($ $) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) 53 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) NIL)) (-2909 (($ |#1| $) 12)) (-1523 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1661 (($ $ $) 35) (($ |#1| $) 43) (($ (-656 $)) NIL) (($ $ |#1|) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3482 (($ $ $) 13)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2584 (((-1177) $) 31 (|has| |#1| (-840))) (((-1177) $ (-112)) 32 (|has| |#1| (-840))) (((-1291) (-834) $) 33 (|has| |#1| (-840))) (((-1291) (-834) $ (-112)) 34 (|has| |#1| (-840)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-656 |#1|) (-13 (-678 |#1|) (-10 -8 (-15 -4093 ($) -1398) (-15 -2733 ((-112) $)) (-15 -2909 ($ |#1| $)) (-15 -3482 ($ $ $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -3148 ($ $ $)) (-15 -4260 ($ $ $)) (-15 -2687 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) (-1236)) (T -656)) +((-4093 (*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) (-2733 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1236)))) (-2909 (*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) (-3482 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) (-3148 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1236)))) (-4260 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1236)))) (-2687 (*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1236))))) +(-13 (-678 |#1|) (-10 -8 (-15 -4093 ($) -1398) (-15 -2733 ((-112) $)) (-15 -2909 ($ |#1| $)) (-15 -3482 ($ $ $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -3148 ($ $ $)) (-15 -4260 ($ $ $)) (-15 -2687 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-840)) (-6 (-840)) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 11) (($ (-1200)) NIL) (((-1200) $) NIL) ((|#1| $) 8)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-657 |#1|) (-13 (-1102) (-625 |#1|)) (-1119)) (T -657)) NIL (-13 (-1102) (-625 |#1|)) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6)) (* (($ |#1| $) 14))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6)) (* (($ |#1| $) 14))) (((-658 |#1|) (-141) (-1131)) (T -658)) ((* (*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1131))))) (-13 (-1119) (-10 -8 (-15 * ($ |t#1| $)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2017 (($ |#1| |#1| $) 43)) (-2835 (((-112) $ (-783)) NIL)) (-3831 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-4329 (($ $) 45)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4376 (($ |#1| $) 56 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4462)))) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-4260 (((-656 |#1|) $) 9 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 37)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3576 ((|#1| $) 47)) (-2361 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1679 ((|#1| $) 50)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 23)) (-2643 (($) 28)) (-3595 (((-112) $) 54)) (-2983 (((-656 (-2 (|:| -2900 |#1|) (|:| -3150 (-783)))) $) 67)) (-1833 (($) 26) (($ (-656 |#1|)) 19)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) 20)) (-1505 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) NIL)) (-4092 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 24)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 69 (|has| |#1| (-1119)))) (-2048 (((-783) $) 17 (|has| $ (-6 -4462))))) -(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4462) (-15 -3595 ((-112) $)) (-15 -2017 ($ |#1| |#1| $)))) (-1119)) (T -659)) -((-3595 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1119)))) (-2017 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1119))))) -(-13 (-707 |#1|) (-10 -8 (-6 -4462) (-15 -3595 ((-112) $)) (-15 -2017 ($ |#1| |#1| $)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2669 (($ |#1| |#1| $) 43)) (-3131 (((-112) $ (-783)) NIL)) (-4001 (($ (-1 (-112) |#1|) $) 59 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3315 (($ $) 45)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3623 (($ |#1| $) 56 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 58 (|has| $ (-6 -4461)))) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-3825 (((-656 |#1|) $) 9 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 37)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1409 ((|#1| $) 47)) (-2040 (($ |#1| $) 29) (($ |#1| $ (-783)) 42)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3399 ((|#1| $) 50)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 23)) (-2597 (($) 28)) (-1766 (((-112) $) 54)) (-1961 (((-656 (-2 (|:| -4353 |#1|) (|:| -1456 (-783)))) $) 67)) (-2837 (($) 26) (($ (-656 |#1|)) 19)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) 63 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) 20)) (-4076 (((-548) $) 34 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) NIL)) (-3563 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 24)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 69 (|has| |#1| (-1119)))) (-3485 (((-783) $) 17 (|has| $ (-6 -4461))))) +(((-659 |#1|) (-13 (-707 |#1|) (-10 -8 (-6 -4461) (-15 -1766 ((-112) $)) (-15 -2669 ($ |#1| |#1| $)))) (-1119)) (T -659)) +((-1766 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1119)))) (-2669 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1119))))) +(-13 (-707 |#1|) (-10 -8 (-6 -4461) (-15 -1766 ((-112) $)) (-15 -2669 ($ |#1| |#1| $)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27))) (((-660 |#1|) (-141) (-1077)) (T -660)) NIL (-13 (-21) (-658 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783) $) 17)) (-2071 (($ $ |#1|) 69)) (-3129 (($ $) 39)) (-4112 (($ $) 37)) (-2974 (((-3 |#1| "failed") $) 61)) (-2378 ((|#1| $) NIL)) (-1503 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-1949 (((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576)) 56)) (-3158 ((|#1| $ (-576)) 35)) (-3670 ((|#2| $ (-576)) 34)) (-3230 (($ (-1 |#1| |#1|) $) 41)) (-1682 (($ (-1 |#2| |#2|) $) 47)) (-3054 (($) 11)) (-3339 (($ |#1| |#2|) 24)) (-1971 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -3353 |#2|)))) 25)) (-3643 (((-656 (-2 (|:| |gen| |#1|) (|:| -3353 |#2|))) $) 14)) (-4364 (($ |#1| $) 71)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1493 (((-112) $ $) 76)) (-4092 (((-874) $) 21) (($ |#1|) 18)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 27))) -(((-661 |#1| |#2| |#3|) (-13 (-1119) (-1057 |#1|) (-10 -8 (-15 -1949 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -3643 ((-656 (-2 (|:| |gen| |#1|) (|:| -3353 |#2|))) $)) (-15 -3339 ($ |#1| |#2|)) (-15 -1971 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -3353 |#2|))))) (-15 -3670 (|#2| $ (-576))) (-15 -3158 (|#1| $ (-576))) (-15 -4112 ($ $)) (-15 -3129 ($ $)) (-15 -2247 ((-783) $)) (-15 -3054 ($)) (-15 -2071 ($ $ |#1|)) (-15 -4364 ($ |#1| $)) (-15 -1503 ($ |#1| |#2| $)) (-15 -1503 ($ $ $)) (-15 -1493 ((-112) $ $)) (-15 -1682 ($ (-1 |#2| |#2|) $)) (-15 -3230 ($ (-1 |#1| |#1|) $)))) (-1119) (-23) |#2|) (T -661)) -((-1949 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1119)) (-4 *6 (-23)) (-14 *7 *6))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))) (-3339 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 *4)))) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-3670 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1119)) (-14 *5 *2))) (-3158 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1119)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4112 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3129 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))) (-3054 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-2071 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-4364 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-1503 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-1503 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-1493 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))) (-1682 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)))) (-3230 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1119) (-1057 |#1|) (-10 -8 (-15 -1949 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -3643 ((-656 (-2 (|:| |gen| |#1|) (|:| -3353 |#2|))) $)) (-15 -3339 ($ |#1| |#2|)) (-15 -1971 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -3353 |#2|))))) (-15 -3670 (|#2| $ (-576))) (-15 -3158 (|#1| $ (-576))) (-15 -4112 ($ $)) (-15 -3129 ($ $)) (-15 -2247 ((-783) $)) (-15 -3054 ($)) (-15 -2071 ($ $ |#1|)) (-15 -4364 ($ |#1| $)) (-15 -1503 ($ |#1| |#2| $)) (-15 -1503 ($ $ $)) (-15 -1493 ((-112) $ $)) (-15 -1682 ($ (-1 |#2| |#2|) $)) (-15 -3230 ($ (-1 |#1| |#1|) $)))) -((-4315 (((-576) $) 31)) (-3371 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) 12)) (-2013 (((-112) (-576) $) 18)) (-2851 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL))) -(((-662 |#1| |#2|) (-10 -8 (-15 -3371 (|#1| |#1| |#1| (-576))) (-15 -3371 (|#1| |#2| |#1| (-576))) (-15 -2851 (|#1| (-656 |#1|))) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#2|)) (-15 -4315 ((-576) |#1|)) (-15 -4428 ((-656 (-576)) |#1|)) (-15 -2013 ((-112) (-576) |#1|))) (-663 |#2|) (-1237)) (T -662)) -NIL -(-10 -8 (-15 -3371 (|#1| |#1| |#1| (-576))) (-15 -3371 (|#1| |#2| |#1| (-576))) (-15 -2851 (|#1| (-656 |#1|))) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#2|)) (-15 -4315 ((-576) |#1|)) (-15 -4428 ((-656 (-576)) |#1|)) (-15 -2013 ((-112) (-576) |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2449 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) 8)) (-4248 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-1690 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 52)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1992 (($ (-783) |#1|) 70)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 44 (|has| (-576) (-862)))) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 45 (|has| (-576) (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4428 (((-656 (-576)) $) 47)) (-2013 (((-112) (-576) $) 48)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2701 ((|#1| $) 43 (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2918 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-2470 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 72)) (-2851 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-663 |#1|) (-141) (-1237)) (T -663)) -((-1992 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2851 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-2851 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-2851 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-2851 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2477 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2470 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-2470 (*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-3371 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1237)))) (-3371 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) (-4248 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1254 (-576))) (|has| *1 (-6 -4463)) (-4 *1 (-663 *2)) (-4 *2 (-1237))))) -(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1254 (-576)) $) (-10 -8 (-15 -1992 ($ (-783) |t#1|)) (-15 -2851 ($ $ |t#1|)) (-15 -2851 ($ |t#1| $)) (-15 -2851 ($ $ $)) (-15 -2851 ($ (-656 $))) (-15 -2477 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2470 ($ $ (-576))) (-15 -2470 ($ $ (-1254 (-576)))) (-15 -3371 ($ |t#1| $ (-576))) (-15 -3371 ($ $ $ (-576))) (IF (|has| $ (-6 -4463)) (-15 -4248 (|t#1| $ (-1254 (-576)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-1843 (((-3 |#2| "failed") |#3| |#2| (-1196) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) "failed") |#3| |#2| (-1196)) 44))) -(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -1843 ((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) "failed") |#3| |#2| (-1196))) (-15 -1843 ((-3 |#2| "failed") |#3| |#2| (-1196) |#2| (-656 |#2|)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976)) (-668 |#2|)) (T -664)) -((-1843 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-1843 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1196)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1222) (-976))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1999 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -1843 ((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) "failed") |#3| |#2| (-1196))) (-15 -1843 ((-3 |#2| "failed") |#3| |#2| (-1196) |#2| (-656 |#2|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2059 (($ $) NIL (|has| |#1| (-374)))) (-3197 (($ $ $) NIL (|has| |#1| (-374)))) (-3100 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3520 (($ $ $) NIL (|has| |#1| (-374)))) (-1951 (($ $ $) NIL (|has| |#1| (-374)))) (-2600 (($ $ $) NIL (|has| |#1| (-374)))) (-2861 (($ $ $) NIL (|has| |#1| (-374)))) (-3625 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2970 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3289 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-464)))) (-1810 (((-112) $) NIL)) (-1518 (($ |#1| (-783)) NIL)) (-1390 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-568)))) (-3668 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-568)))) (-1915 (((-783) $) NIL)) (-4030 (($ $ $) NIL (|has| |#1| (-374)))) (-4056 (($ $ $) NIL (|has| |#1| (-374)))) (-4236 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $ $) NIL (|has| |#1| (-374)))) (-3407 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-4164 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2091 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4367 ((|#1| $ |#1|) NIL)) (-2038 (($ $ $) NIL (|has| |#1| (-374)))) (-2369 (((-783) $) NIL)) (-3714 ((|#1| $) NIL (|has| |#1| (-464)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-783)) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2690 ((|#1| $ |#1| |#1|) NIL)) (-3131 (($ $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($) NIL)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783) $) 17)) (-1999 (($ $ |#1|) 69)) (-3478 (($ $) 39)) (-3733 (($ $) 37)) (-1539 (((-3 |#1| "failed") $) 61)) (-4056 ((|#1| $) NIL)) (-3522 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2532 (((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576)) 56)) (-2281 ((|#1| $ (-576)) 35)) (-2633 ((|#2| $ (-576)) 34)) (-4239 (($ (-1 |#1| |#1|) $) 41)) (-3576 (($ (-1 |#2| |#2|) $) 47)) (-2522 (($) 11)) (-1823 (($ |#1| |#2|) 24)) (-3034 (($ (-656 (-2 (|:| |gen| |#1|) (|:| -3984 |#2|)))) 25)) (-3190 (((-656 (-2 (|:| |gen| |#1|) (|:| -3984 |#2|))) $) 14)) (-1898 (($ |#1| $) 71)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3937 (((-112) $ $) 76)) (-3563 (((-874) $) 21) (($ |#1|) 18)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 27))) +(((-661 |#1| |#2| |#3|) (-13 (-1119) (-1057 |#1|) (-10 -8 (-15 -2532 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -3190 ((-656 (-2 (|:| |gen| |#1|) (|:| -3984 |#2|))) $)) (-15 -1823 ($ |#1| |#2|)) (-15 -3034 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -3984 |#2|))))) (-15 -2633 (|#2| $ (-576))) (-15 -2281 (|#1| $ (-576))) (-15 -3733 ($ $)) (-15 -3478 ($ $)) (-15 -2148 ((-783) $)) (-15 -2522 ($)) (-15 -1999 ($ $ |#1|)) (-15 -1898 ($ |#1| $)) (-15 -3522 ($ |#1| |#2| $)) (-15 -3522 ($ $ $)) (-15 -3937 ((-112) $ $)) (-15 -3576 ($ (-1 |#2| |#2|) $)) (-15 -4239 ($ (-1 |#1| |#1|) $)))) (-1119) (-23) |#2|) (T -661)) +((-2532 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874)) (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1119)) (-4 *6 (-23)) (-14 *7 *6))) (-3190 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 *4)))) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))) (-1823 (*1 *1 *2 *3) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3034 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 *4)))) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)))) (-2633 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1119)) (-14 *5 *2))) (-2281 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-1119)) (-5 *1 (-661 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3733 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3478 (*1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))) (-2522 (*1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-1999 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-1898 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3522 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3522 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) (-14 *4 *3))) (-3937 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4))) (-3576 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)))) (-4239 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-661 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1119) (-1057 |#1|) (-10 -8 (-15 -2532 ((-874) $ (-1 (-874) (-874) (-874)) (-1 (-874) (-874) (-874)) (-576))) (-15 -3190 ((-656 (-2 (|:| |gen| |#1|) (|:| -3984 |#2|))) $)) (-15 -1823 ($ |#1| |#2|)) (-15 -3034 ($ (-656 (-2 (|:| |gen| |#1|) (|:| -3984 |#2|))))) (-15 -2633 (|#2| $ (-576))) (-15 -2281 (|#1| $ (-576))) (-15 -3733 ($ $)) (-15 -3478 ($ $)) (-15 -2148 ((-783) $)) (-15 -2522 ($)) (-15 -1999 ($ $ |#1|)) (-15 -1898 ($ |#1| $)) (-15 -3522 ($ |#1| |#2| $)) (-15 -3522 ($ $ $)) (-15 -3937 ((-112) $ $)) (-15 -3576 ($ (-1 |#2| |#2|) $)) (-15 -4239 ($ (-1 |#1| |#1|) $)))) +((-3814 (((-576) $) 31)) (-2277 (($ |#2| $ (-576)) 27) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) 12)) (-2378 (((-112) (-576) $) 18)) (-1661 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-656 $)) NIL))) +(((-662 |#1| |#2|) (-10 -8 (-15 -2277 (|#1| |#1| |#1| (-576))) (-15 -2277 (|#1| |#2| |#1| (-576))) (-15 -1661 (|#1| (-656 |#1|))) (-15 -1661 (|#1| |#1| |#1|)) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#2|)) (-15 -3814 ((-576) |#1|)) (-15 -3321 ((-656 (-576)) |#1|)) (-15 -2378 ((-112) (-576) |#1|))) (-663 |#2|) (-1236)) (T -662)) +NIL +(-10 -8 (-15 -2277 (|#1| |#1| |#1| (-576))) (-15 -2277 (|#1| |#2| |#1| (-576))) (-15 -1661 (|#1| (-656 |#1|))) (-15 -1661 (|#1| |#1| |#1|)) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#2|)) (-15 -3814 ((-576) |#1|)) (-15 -3321 ((-656 (-576)) |#1|)) (-15 -2378 ((-112) (-576) |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2333 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) 8)) (-3731 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3172 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 52)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-4033 (($ (-783) |#1|) 70)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 44 (|has| (-576) (-862)))) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 45 (|has| (-576) (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3321 (((-656 (-576)) $) 47)) (-2378 (((-112) (-576) $) 48)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3504 ((|#1| $) 43 (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2500 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-3464 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 72)) (-1661 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-663 |#1|) (-141) (-1236)) (T -663)) +((-4033 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-1661 (*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-1661 (*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-1661 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-1632 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-3464 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-3464 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-2277 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1236)))) (-2277 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) (-3731 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1253 (-576))) (|has| *1 (-6 -4462)) (-4 *1 (-663 *2)) (-4 *2 (-1236))))) +(-13 (-616 (-576) |t#1|) (-152 |t#1|) (-296 (-1253 (-576)) $) (-10 -8 (-15 -4033 ($ (-783) |t#1|)) (-15 -1661 ($ $ |t#1|)) (-15 -1661 ($ |t#1| $)) (-15 -1661 ($ $ $)) (-15 -1661 ($ (-656 $))) (-15 -1632 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3464 ($ $ (-576))) (-15 -3464 ($ $ (-1253 (-576)))) (-15 -2277 ($ |t#1| $ (-576))) (-15 -2277 ($ $ $ (-576))) (IF (|has| $ (-6 -4462)) (-15 -3731 (|t#1| $ (-1253 (-576)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-2445 (((-3 |#2| "failed") |#3| |#2| (-1195) |#2| (-656 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) "failed") |#3| |#2| (-1195)) 44))) +(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -2445 ((-3 (-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) "failed") |#3| |#2| (-1195))) (-15 -2445 ((-3 |#2| "failed") |#3| |#2| (-1195) |#2| (-656 |#2|)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-976)) (-668 |#2|)) (T -664)) +((-2445 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1221) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) (-2445 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1195)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1221) (-976))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3713 (-656 *4)))) (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4))))) +(-10 -7 (-15 -2445 ((-3 (-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) "failed") |#3| |#2| (-1195))) (-15 -2445 ((-3 |#2| "failed") |#3| |#2| (-1195) |#2| (-656 |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2292 (($ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ $) NIL (|has| |#1| (-374)))) (-3617 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1481 (($ $ $) NIL (|has| |#1| (-374)))) (-2714 (($ $ $) NIL (|has| |#1| (-374)))) (-3756 (($ $ $) NIL (|has| |#1| (-374)))) (-2939 (($ $ $) NIL (|has| |#1| (-374)))) (-1719 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1996 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3878 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-464)))) (-1414 (((-112) $) NIL)) (-1970 (($ |#1| (-783)) NIL)) (-1645 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-568)))) (-2550 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-568)))) (-3403 (((-783) $) NIL)) (-3075 (($ $ $) NIL (|has| |#1| (-374)))) (-1620 (($ $ $) NIL (|has| |#1| (-374)))) (-3127 (($ $ $) NIL (|has| |#1| (-374)))) (-4362 (($ $ $) NIL (|has| |#1| (-374)))) (-1366 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-4218 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3376 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2871 ((|#1| $ |#1|) NIL)) (-2766 (($ $ $) NIL (|has| |#1| (-374)))) (-1433 (((-783) $) NIL)) (-3648 ((|#1| $) NIL (|has| |#1| (-464)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-783)) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3491 ((|#1| $ |#1| |#1|) NIL)) (-3686 (($ $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($) NIL)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-665 |#1|) (-668 |#1|) (-238)) (T -665)) NIL (-668 |#1|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2059 (($ $) NIL (|has| |#1| (-374)))) (-3197 (($ $ $) NIL (|has| |#1| (-374)))) (-3100 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3520 (($ $ $) NIL (|has| |#1| (-374)))) (-1951 (($ $ $) NIL (|has| |#1| (-374)))) (-2600 (($ $ $) NIL (|has| |#1| (-374)))) (-2861 (($ $ $) NIL (|has| |#1| (-374)))) (-3625 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2970 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3289 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-464)))) (-1810 (((-112) $) NIL)) (-1518 (($ |#1| (-783)) NIL)) (-1390 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-568)))) (-3668 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-568)))) (-1915 (((-783) $) NIL)) (-4030 (($ $ $) NIL (|has| |#1| (-374)))) (-4056 (($ $ $) NIL (|has| |#1| (-374)))) (-4236 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $ $) NIL (|has| |#1| (-374)))) (-3407 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-4164 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2091 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4367 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2038 (($ $ $) NIL (|has| |#1| (-374)))) (-2369 (((-783) $) NIL)) (-3714 ((|#1| $) NIL (|has| |#1| (-464)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-783)) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2690 ((|#1| $ |#1| |#1|) NIL)) (-3131 (($ $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($) NIL)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-660 |#1|) (-10 -8 (-15 -3614 ($ $))))) (T -666)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2292 (($ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ $) NIL (|has| |#1| (-374)))) (-3617 (($ $ (-783)) NIL (|has| |#1| (-374)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1481 (($ $ $) NIL (|has| |#1| (-374)))) (-2714 (($ $ $) NIL (|has| |#1| (-374)))) (-3756 (($ $ $) NIL (|has| |#1| (-374)))) (-2939 (($ $ $) NIL (|has| |#1| (-374)))) (-1719 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1996 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3878 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-464)))) (-1414 (((-112) $) NIL)) (-1970 (($ |#1| (-783)) NIL)) (-1645 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-568)))) (-2550 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-568)))) (-3403 (((-783) $) NIL)) (-3075 (($ $ $) NIL (|has| |#1| (-374)))) (-1620 (($ $ $) NIL (|has| |#1| (-374)))) (-3127 (($ $ $) NIL (|has| |#1| (-374)))) (-4362 (($ $ $) NIL (|has| |#1| (-374)))) (-1366 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-4218 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3376 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2871 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2766 (($ $ $) NIL (|has| |#1| (-374)))) (-1433 (((-783) $) NIL)) (-3648 ((|#1| $) NIL (|has| |#1| (-464)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-783)) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3491 ((|#1| $ |#1| |#1|) NIL)) (-3686 (($ $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($) NIL)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-666 |#1| |#2|) (-13 (-668 |#1|) (-296 |#2| |#2|)) (-238) (-13 (-660 |#1|) (-10 -8 (-15 -2735 ($ $))))) (T -666)) NIL (-13 (-668 |#1|) (-296 |#2| |#2|)) -((-2059 (($ $) 29)) (-3131 (($ $) 27)) (-4286 (($) 13))) -(((-667 |#1| |#2|) (-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -4286 (|#1|))) (-668 |#2|) (-1068)) (T -667)) +((-2292 (($ $) 29)) (-3686 (($ $) 27)) (-2051 (($) 13))) +(((-667 |#1| |#2|) (-10 -8 (-15 -2292 (|#1| |#1|)) (-15 -3686 (|#1| |#1|)) (-15 -2051 (|#1|))) (-668 |#2|) (-1068)) (T -667)) NIL -(-10 -8 (-15 -2059 (|#1| |#1|)) (-15 -3131 (|#1| |#1|)) (-15 -4286 (|#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-2059 (($ $) 87 (|has| |#1| (-374)))) (-3197 (($ $ $) 89 (|has| |#1| (-374)))) (-3100 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3520 (($ $ $) 50 (|has| |#1| (-374)))) (-1951 (($ $ $) 51 (|has| |#1| (-374)))) (-2600 (($ $ $) 53 (|has| |#1| (-374)))) (-2861 (($ $ $) 48 (|has| |#1| (-374)))) (-3625 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 47 (|has| |#1| (-374)))) (-2970 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3289 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 52 (|has| |#1| (-374)))) (-2974 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2378 (((-576) $) 79 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 75)) (-1717 (($ $) 69)) (-3179 (((-3 $ "failed") $) 37)) (-1363 (($ $) 60 (|has| |#1| (-464)))) (-1810 (((-112) $) 35)) (-1518 (($ |#1| (-783)) 67)) (-1390 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 62 (|has| |#1| (-568)))) (-3668 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63 (|has| |#1| (-568)))) (-1915 (((-783) $) 71)) (-4030 (($ $ $) 57 (|has| |#1| (-374)))) (-4056 (($ $ $) 58 (|has| |#1| (-374)))) (-4236 (($ $ $) 46 (|has| |#1| (-374)))) (-4404 (($ $ $) 55 (|has| |#1| (-374)))) (-3407 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 54 (|has| |#1| (-374)))) (-4164 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2091 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 59 (|has| |#1| (-374)))) (-1692 ((|#1| $) 70)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2022 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-4367 ((|#1| $ |#1|) 92)) (-2038 (($ $ $) 86 (|has| |#1| (-374)))) (-2369 (((-783) $) 72)) (-3714 ((|#1| $) 61 (|has| |#1| (-464)))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 73)) (-3076 (((-656 |#1|) $) 66)) (-2430 ((|#1| $ (-783)) 68)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2690 ((|#1| $ |#1| |#1|) 65)) (-3131 (($ $) 90)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($) 91)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(-10 -8 (-15 -2292 (|#1| |#1|)) (-15 -3686 (|#1| |#1|)) (-15 -2051 (|#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2292 (($ $) 87 (|has| |#1| (-374)))) (-2815 (($ $ $) 89 (|has| |#1| (-374)))) (-3617 (($ $ (-783)) 88 (|has| |#1| (-374)))) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1481 (($ $ $) 50 (|has| |#1| (-374)))) (-2714 (($ $ $) 51 (|has| |#1| (-374)))) (-3756 (($ $ $) 53 (|has| |#1| (-374)))) (-2939 (($ $ $) 48 (|has| |#1| (-374)))) (-1719 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 47 (|has| |#1| (-374)))) (-1996 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3878 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 52 (|has| |#1| (-374)))) (-1539 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-4056 (((-576) $) 79 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 75)) (-2166 (($ $) 69)) (-1551 (((-3 $ "failed") $) 37)) (-2985 (($ $) 60 (|has| |#1| (-464)))) (-1414 (((-112) $) 35)) (-1970 (($ |#1| (-783)) 67)) (-1645 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 62 (|has| |#1| (-568)))) (-2550 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63 (|has| |#1| (-568)))) (-3403 (((-783) $) 71)) (-3075 (($ $ $) 57 (|has| |#1| (-374)))) (-1620 (($ $ $) 58 (|has| |#1| (-374)))) (-3127 (($ $ $) 46 (|has| |#1| (-374)))) (-4362 (($ $ $) 55 (|has| |#1| (-374)))) (-1366 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 54 (|has| |#1| (-374)))) (-4218 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-3376 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 59 (|has| |#1| (-374)))) (-2142 ((|#1| $) 70)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3463 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2871 ((|#1| $ |#1|) 92)) (-2766 (($ $ $) 86 (|has| |#1| (-374)))) (-1433 (((-783) $) 72)) (-3648 ((|#1| $) 61 (|has| |#1| (-464)))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 73)) (-2927 (((-656 |#1|) $) 66)) (-4333 ((|#1| $ (-783)) 68)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3491 ((|#1| $ |#1| |#1|) 65)) (-3686 (($ $) 90)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($) 91)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) (((-668 |#1|) (-141) (-1068)) (T -668)) -((-4286 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) (-3131 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) (-3197 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3100 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1068)) (-4 *3 (-374)))) (-2059 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-2038 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(-13 (-864 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -4286 ($)) (-15 -3131 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -3197 ($ $ $)) (-15 -3100 ($ $ (-783))) (-15 -2059 ($ $)) (-15 -2038 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-864 |#1|) . T)) -((-3420 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-1392 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19))) -(((-669 |#1| |#2|) (-10 -7 (-15 -1392 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1392 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -3420 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -669)) -((-3420 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))) -(-10 -7 (-15 -1392 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1392 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -3420 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2059 (($ $) NIL (|has| |#1| (-374)))) (-3197 (($ $ $) 28 (|has| |#1| (-374)))) (-3100 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3520 (($ $ $) NIL (|has| |#1| (-374)))) (-1951 (($ $ $) NIL (|has| |#1| (-374)))) (-2600 (($ $ $) NIL (|has| |#1| (-374)))) (-2861 (($ $ $) NIL (|has| |#1| (-374)))) (-3625 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2970 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3289 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-464)))) (-1810 (((-112) $) NIL)) (-1518 (($ |#1| (-783)) NIL)) (-1390 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-568)))) (-3668 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-568)))) (-1915 (((-783) $) NIL)) (-4030 (($ $ $) NIL (|has| |#1| (-374)))) (-4056 (($ $ $) NIL (|has| |#1| (-374)))) (-4236 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $ $) NIL (|has| |#1| (-374)))) (-3407 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-4164 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2091 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4367 ((|#1| $ |#1|) 24)) (-2038 (($ $ $) 33 (|has| |#1| (-374)))) (-2369 (((-783) $) NIL)) (-3714 ((|#1| $) NIL (|has| |#1| (-464)))) (-4092 (((-874) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-783)) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2690 ((|#1| $ |#1| |#1|) 23)) (-3131 (($ $) NIL)) (-4300 (($) 21 T CONST)) (-4310 (($) 8 T CONST)) (-4286 (($) NIL)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +((-2051 (*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) (-3686 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) (-2815 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3617 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1068)) (-4 *3 (-374)))) (-2292 (*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-2766 (*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(-13 (-864 |t#1|) (-296 |t#1| |t#1|) (-10 -8 (-15 -2051 ($)) (-15 -3686 ($ $)) (IF (|has| |t#1| (-374)) (PROGN (-15 -2815 ($ $ $)) (-15 -3617 ($ $ (-783))) (-15 -2292 ($ $)) (-15 -2766 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T) ((-864 |#1|) . T)) +((-3185 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 85 (|has| |#1| (-27)))) (-1839 (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))) 84 (|has| |#1| (-27))) (((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 19))) +(((-669 |#1| |#2|) (-10 -7 (-15 -1839 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1839 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -3185 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1262 |#1|)) (T -669)) +((-3185 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-665 (-419 *6)))) (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6)))))) +(-10 -7 (-15 -1839 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1839 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|)))) (-15 -3185 ((-656 (-665 (-419 |#2|))) (-665 (-419 |#2|))))) |%noBranch|)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2292 (($ $) NIL (|has| |#1| (-374)))) (-2815 (($ $ $) 28 (|has| |#1| (-374)))) (-3617 (($ $ (-783)) 31 (|has| |#1| (-374)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1481 (($ $ $) NIL (|has| |#1| (-374)))) (-2714 (($ $ $) NIL (|has| |#1| (-374)))) (-3756 (($ $ $) NIL (|has| |#1| (-374)))) (-2939 (($ $ $) NIL (|has| |#1| (-374)))) (-1719 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1996 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3878 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-464)))) (-1414 (((-112) $) NIL)) (-1970 (($ |#1| (-783)) NIL)) (-1645 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-568)))) (-2550 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-568)))) (-3403 (((-783) $) NIL)) (-3075 (($ $ $) NIL (|has| |#1| (-374)))) (-1620 (($ $ $) NIL (|has| |#1| (-374)))) (-3127 (($ $ $) NIL (|has| |#1| (-374)))) (-4362 (($ $ $) NIL (|has| |#1| (-374)))) (-1366 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-4218 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3376 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2871 ((|#1| $ |#1|) 24)) (-2766 (($ $ $) 33 (|has| |#1| (-374)))) (-1433 (((-783) $) NIL)) (-3648 ((|#1| $) NIL (|has| |#1| (-464)))) (-3563 (((-874) $) 20) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-783)) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3491 ((|#1| $ |#1| |#1|) 23)) (-3686 (($ $) NIL)) (-2800 (($) 21 T CONST)) (-2810 (($) 8 T CONST)) (-2051 (($) NIL)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) (((-670 |#1| |#2|) (-668 |#1|) (-1068) (-1 |#1| |#1|)) (T -670)) NIL (-668 |#1|) -((-3197 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-3100 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-2038 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) -(((-671 |#1| |#2|) (-10 -7 (-15 -3197 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3100 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2038 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671)) -((-2038 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-3100 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-3197 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4))))) -(-10 -7 (-15 -3197 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3100 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2038 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-2107 (($ $ $) 9))) -(((-672 |#1|) (-10 -8 (-15 -2107 (|#1| |#1| |#1|))) (-673)) (T -672)) -NIL -(-10 -8 (-15 -2107 (|#1| |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-2060 (($ $) 10)) (-2107 (($ $ $) 8)) (-3919 (((-112) $ $) 6)) (-2094 (($ $ $) 9))) +((-2815 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65)) (-3617 ((|#2| |#2| (-783) (-1 |#1| |#1|)) 45)) (-2766 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67))) +(((-671 |#1| |#2|) (-10 -7 (-15 -2815 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3617 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2766 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -671)) +((-2766 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4)))) (-3617 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5)))) (-2815 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) (-4 *2 (-668 *4))))) +(-10 -7 (-15 -2815 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3617 (|#2| |#2| (-783) (-1 |#1| |#1|))) (-15 -2766 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3546 (($ $ $) 9))) +(((-672 |#1|) (-10 -8 (-15 -3546 (|#1| |#1| |#1|))) (-673)) (T -672)) +NIL +(-10 -8 (-15 -3546 (|#1| |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-3498 (($ $) 10)) (-3546 (($ $ $) 8)) (-2988 (((-112) $ $) 6)) (-3534 (($ $ $) 9))) (((-673) (-141)) (T -673)) -((-2060 (*1 *1 *1) (-4 *1 (-673))) (-2094 (*1 *1 *1 *1) (-4 *1 (-673))) (-2107 (*1 *1 *1 *1) (-4 *1 (-673)))) -(-13 (-102) (-10 -8 (-15 -2060 ($ $)) (-15 -2094 ($ $ $)) (-15 -2107 ($ $ $)))) +((-3498 (*1 *1 *1) (-4 *1 (-673))) (-3534 (*1 *1 *1 *1) (-4 *1 (-673))) (-3546 (*1 *1 *1 *1) (-4 *1 (-673)))) +(-13 (-102) (-10 -8 (-15 -3498 ($ $)) (-15 -3534 ($ $ $)) (-15 -3546 ($ $ $)))) (((-102) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 15)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3894 ((|#1| $) 23)) (-3492 (($ $ $) NIL (|has| |#1| (-803)))) (-2726 (($ $ $) NIL (|has| |#1| (-803)))) (-3288 (((-1178) $) 48)) (-3139 (((-1139) $) NIL)) (-3905 ((|#3| $) 24)) (-4092 (((-874) $) 43)) (-1531 (((-112) $ $) 22)) (-4300 (($) 10 T CONST)) (-3977 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3919 (((-112) $ $) 20)) (-3966 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3944 (((-112) $ $) 26 (|has| |#1| (-803)))) (-4028 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-4018 (($ $) 17) (($ $ $) NIL)) (-4007 (($ $ $) 29)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) -(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4028 ($ $ |#3|)) (-15 -4028 ($ |#1| |#3|)) (-15 -3894 (|#1| $)) (-15 -3905 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674)) -((-4028 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-4028 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-3894 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-3905 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))) -(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -4028 ($ $ |#3|)) (-15 -4028 ($ |#1| |#3|)) (-15 -3894 (|#1| $)) (-15 -3905 (|#3| $)))) -((-3443 (((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|)) 33))) -(((-675 |#1|) (-10 -7 (-15 -3443 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|)))) (-926)) (T -675)) -((-3443 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *4))) (-5 *3 (-1192 *4)) (-4 *4 (-926)) (-5 *1 (-675 *4))))) -(-10 -7 (-15 -3443 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2677 (((-656 |#1|) $) 84)) (-1936 (($ $ (-783)) 94)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-4065 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 50)) (-2974 (((-3 (-684 |#1|) "failed") $) NIL)) (-2378 (((-684 |#1|) $) NIL)) (-1717 (($ $) 93)) (-1831 (((-783) $) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1585 (($ (-684 |#1|) |#2|) 70)) (-3313 (($ $) 89)) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-2267 (((-1311 |#1| |#2|) (-1311 |#1| |#2|) $) 49)) (-3010 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1681 (((-684 |#1|) $) NIL)) (-1692 ((|#2| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2259 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-2369 (((-783) $) 91)) (-4103 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-4092 (((-874) $) NIL) (($ |#1|) 76) (((-1302 |#1| |#2|) $) 60) (((-1311 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-3076 (((-656 |#2|) $) NIL)) (-2430 ((|#2| $ (-684 |#1|)) NIL)) (-1856 ((|#2| (-1311 |#1| |#2|) $) 45)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 23 T CONST)) (-2994 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3880 (((-3 $ "failed") (-1302 |#1| |#2|)) 62)) (-2542 (($ (-684 |#1|)) 14)) (-3919 (((-112) $ $) 46)) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $) 68) (($ $ $) NIL)) (-4007 (($ $ $) 31)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL))) -(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -3880 ((-3 $ "failed") (-1302 |#1| |#2|))) (-15 -4103 ($ (-684 |#1|) (-684 |#1|))) (-15 -4103 ($ (-684 |#1|) $)) (-15 -4103 ($ $ (-684 |#1|))))) (-862) (-174)) (T -676)) -((-3880 (*1 *1 *2) (|partial| -12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-4103 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-4103 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174))))) -(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -3880 ((-3 $ "failed") (-1302 |#1| |#2|))) (-15 -4103 ($ (-684 |#1|) (-684 |#1|))) (-15 -4103 ($ (-684 |#1|) $)) (-15 -4103 ($ $ (-684 |#1|))))) -((-2761 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-3362 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-3831 (($ (-1 (-112) |#2|) $) 29)) (-3129 (($ $) 65)) (-4329 (($ $) 74)) (-4376 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2359 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3433 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-1992 (($ (-783) |#2|) 63)) (-1897 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3257 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2477 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1783 (($ |#2|) 15)) (-2361 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-1863 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2531 (($ $ (-1254 (-576))) 51) (($ $ (-576)) 44)) (-3582 (($ $ $ (-576)) 70)) (-4268 (($ $) 68)) (-3944 (((-112) $ $) 76))) -(((-677 |#1| |#2|) (-10 -8 (-15 -1783 (|#1| |#2|)) (-15 -2531 (|#1| |#1| (-576))) (-15 -2531 (|#1| |#1| (-1254 (-576)))) (-15 -4376 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2361 (|#1| |#2| |#1| (-576))) (-15 -2361 (|#1| |#1| |#1| (-576))) (-15 -1897 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4376 (|#1| |#2| |#1|)) (-15 -4329 (|#1| |#1|)) (-15 -1897 (|#1| |#1| |#1|)) (-15 -3257 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2761 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3433 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3433 ((-576) |#2| |#1|)) (-15 -3433 ((-576) |#2| |#1| (-576))) (-15 -3257 (|#1| |#1| |#1|)) (-15 -2761 ((-112) |#1|)) (-15 -3582 (|#1| |#1| |#1| (-576))) (-15 -3129 (|#1| |#1|)) (-15 -3362 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3362 (|#1| |#1|)) (-15 -3944 ((-112) |#1| |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1863 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1992 (|#1| (-783) |#2|)) (-15 -2477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4268 (|#1| |#1|))) (-678 |#2|) (-1237)) (T -677)) -NIL -(-10 -8 (-15 -1783 (|#1| |#2|)) (-15 -2531 (|#1| |#1| (-576))) (-15 -2531 (|#1| |#1| (-1254 (-576)))) (-15 -4376 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2361 (|#1| |#2| |#1| (-576))) (-15 -2361 (|#1| |#1| |#1| (-576))) (-15 -1897 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3831 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4376 (|#1| |#2| |#1|)) (-15 -4329 (|#1| |#1|)) (-15 -1897 (|#1| |#1| |#1|)) (-15 -3257 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2761 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3433 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3433 ((-576) |#2| |#1|)) (-15 -3433 ((-576) |#2| |#1| (-576))) (-15 -3257 (|#1| |#1| |#1|)) (-15 -2761 ((-112) |#1|)) (-15 -3582 (|#1| |#1| |#1| (-576))) (-15 -3129 (|#1| |#1|)) (-15 -3362 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3362 (|#1| |#1|)) (-15 -3944 ((-112) |#1| |#1|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2359 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1863 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1992 (|#1| (-783) |#2|)) (-15 -2477 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4268 (|#1| |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1731 ((|#1| $) 49)) (-3367 ((|#1| $) 66)) (-3053 (($ $) 68)) (-2449 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4463)))) (-2633 (($ $ (-576)) 53 (|has| $ (-6 -4463)))) (-2761 (((-112) $) 144 (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-3362 (($ $) 148 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4463)))) (-2398 (($ $) 143 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-2835 (((-112) $ (-783)) 8)) (-2597 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-3744 (($ $ $) 57 (|has| $ (-6 -4463)))) (-3476 ((|#1| $ |#1|) 55 (|has| $ (-6 -4463)))) (-2466 ((|#1| $ |#1|) 59 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4463))) (($ $ "rest" $) 56 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 119 (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3831 (($ (-1 (-112) |#1|) $) 131)) (-3457 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4462)))) (-3357 ((|#1| $) 67)) (-3656 (($) 7 T CONST)) (-3129 (($ $) 146 (|has| $ (-6 -4463)))) (-4112 (($ $) 136)) (-2712 (($ $) 74) (($ $ (-783)) 72)) (-4329 (($ $) 133 (|has| |#1| (-1119)))) (-1690 (($ $) 101 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ |#1| $) 132 (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) 127)) (-2892 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4462))) (($ |#1| $) 102 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3888 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 89)) (-3235 (((-112) $) 85)) (-3433 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1119))) (((-576) |#1| $) 140 (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) 139)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 51)) (-2397 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-1992 (($ (-783) |#1|) 111)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 97 (|has| (-576) (-862)))) (-3492 (($ $ $) 149 (|has| |#1| (-862)))) (-1897 (($ $ $) 134 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-3257 (($ $ $) 142 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 96 (|has| (-576) (-862)))) (-2726 (($ $ $) 150 (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1783 (($ |#1|) 124)) (-3103 (((-112) $ (-783)) 10)) (-3699 (((-656 |#1|) $) 46)) (-3781 (((-112) $) 50)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2912 ((|#1| $) 71) (($ $ (-783)) 69)) (-2361 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-3371 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-4428 (((-656 (-576)) $) 94)) (-2013 (((-112) (-576) $) 93)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2701 ((|#1| $) 77) (($ $ (-783)) 75)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2918 (($ $ |#1|) 98 (|has| $ (-6 -4463)))) (-3020 (((-112) $) 86)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) 92)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1254 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3136 (((-576) $ $) 45)) (-2531 (($ $ (-1254 (-576))) 126) (($ $ (-576)) 125)) (-2470 (($ $ (-1254 (-576))) 116) (($ $ (-576)) 115)) (-2492 (((-112) $) 47)) (-1398 (($ $) 63)) (-1556 (($ $) 60 (|has| $ (-6 -4463)))) (-2212 (((-783) $) 64)) (-2251 (($ $) 65)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3582 (($ $ $ (-576)) 145 (|has| $ (-6 -4463)))) (-4268 (($ $) 13)) (-1505 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 109)) (-2116 (($ $ $) 62) (($ $ |#1|) 61)) (-2851 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) 52)) (-3682 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) 152 (|has| |#1| (-862)))) (-3955 (((-112) $ $) 153 (|has| |#1| (-862)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3966 (((-112) $ $) 151 (|has| |#1| (-862)))) (-3944 (((-112) $ $) 154 (|has| |#1| (-862)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-678 |#1|) (-141) (-1237)) (T -678)) -((-1783 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1237))))) -(-13 (-1168 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1783 ($ |t#1|)))) -(((-34) . T) ((-102) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1029 |#1|) . T) ((-1119) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1168 |#1|) . T) ((-1237) . T) ((-1275 |#1|) . T)) -((-1843 (((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|))))) (-656 (-656 |#1|)) (-656 (-1287 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|))))) (-701 |#1|) (-656 (-1287 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|)))) (-656 (-656 |#1|)) (-1287 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)) 14)) (-4049 (((-783) (-701 |#1|) (-1287 |#1|)) 30)) (-4381 (((-3 (-1287 |#1|) "failed") (-701 |#1|) (-1287 |#1|)) 24)) (-1774 (((-112) (-701 |#1|) (-1287 |#1|)) 27))) -(((-679 |#1|) (-10 -7 (-15 -1843 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|))) (-15 -1843 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|)))) (-656 (-656 |#1|)) (-1287 |#1|))) (-15 -1843 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|))))) (-701 |#1|) (-656 (-1287 |#1|)))) (-15 -1843 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|))))) (-656 (-656 |#1|)) (-656 (-1287 |#1|)))) (-15 -4381 ((-3 (-1287 |#1|) "failed") (-701 |#1|) (-1287 |#1|))) (-15 -1774 ((-112) (-701 |#1|) (-1287 |#1|))) (-15 -4049 ((-783) (-701 |#1|) (-1287 |#1|)))) (-374)) (T -679)) -((-4049 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-1774 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-4381 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1287 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -1999 (-656 (-1287 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -1999 (-656 (-1287 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -1999 (-656 (-1287 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1287 *5)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *5) "failed")) (|:| -1999 (-656 (-1287 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1287 *5))))) -(-10 -7 (-15 -1843 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|))) (-15 -1843 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|)))) (-656 (-656 |#1|)) (-1287 |#1|))) (-15 -1843 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|))))) (-701 |#1|) (-656 (-1287 |#1|)))) (-15 -1843 ((-656 (-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|))))) (-656 (-656 |#1|)) (-656 (-1287 |#1|)))) (-15 -4381 ((-3 (-1287 |#1|) "failed") (-701 |#1|) (-1287 |#1|))) (-15 -1774 ((-112) (-701 |#1|) (-1287 |#1|))) (-15 -4049 ((-783) (-701 |#1|) (-1287 |#1|)))) -((-1843 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-656 |#3|))) |#4| |#3|) 60)) (-4049 (((-783) |#4| |#3|) 18)) (-4381 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1774 (((-112) |#4| |#3|) 14))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1843 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-656 |#3|))) |#4| |#3|)) (-15 -1843 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -4381 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1774 ((-112) |#4| |#3|)) (-15 -4049 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4463))) (-13 (-384 |#1|) (-10 -7 (-6 -4463))) (-699 |#1| |#2| |#3|)) (T -680)) -((-4049 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-1774 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-4381 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4463)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-1843 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1999 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-1843 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(-10 -7 (-15 -1843 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-656 |#3|))) |#4| |#3|)) (-15 -1843 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -4381 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1774 ((-112) |#4| |#3|)) (-15 -4049 ((-783) |#4| |#3|))) -((-2829 (((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -1999 (-656 (-1287 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2829 ((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -1999 (-656 (-1287 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -681)) -((-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 (-419 *8)) "failed")) (|:| -1999 (-656 (-1287 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8))))) -(-10 -7 (-15 -2829 ((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -1999 (-656 (-1287 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3500 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-3803 ((|#2| $) NIL)) (-2454 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3925 (((-1287 (-701 |#2|))) NIL) (((-1287 (-701 |#2|)) (-1287 $)) NIL)) (-2478 (((-112) $) NIL)) (-3286 (((-1287 $)) 42)) (-2835 (((-112) $ (-783)) NIL)) (-3483 (($ |#2|) NIL)) (-3656 (($) NIL T CONST)) (-2664 (($ $) NIL (|has| |#2| (-317)))) (-4059 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3063 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-4163 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-3016 (((-701 |#2|)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-2379 ((|#2| $) NIL)) (-4114 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1287 $)) NIL)) (-3046 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-4238 (((-1192 (-969 |#2|))) NIL (|has| |#2| (-374)))) (-3952 (($ $ (-938)) NIL)) (-4045 ((|#2| $) NIL)) (-4378 (((-1192 |#2|) $) NIL (|has| |#2| (-568)))) (-2548 ((|#2|) NIL) ((|#2| (-1287 $)) NIL)) (-3145 (((-1192 |#2|) $) NIL)) (-4429 (((-112)) NIL)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) NIL)) (-3006 (($ (-1287 |#2|)) NIL) (($ (-1287 |#2|) (-1287 $)) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-4049 (((-783) $) NIL (|has| |#2| (-568))) (((-938)) 43)) (-3817 ((|#2| $ (-576) (-576)) NIL)) (-3751 (((-112)) NIL)) (-4370 (($ $ (-938)) NIL)) (-4260 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1810 (((-112) $) NIL)) (-1659 (((-783) $) NIL (|has| |#2| (-568)))) (-3865 (((-656 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-2126 (((-783) $) NIL)) (-3440 (((-112)) NIL)) (-2140 (((-783) $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-1497 ((|#2| $) NIL (|has| |#2| (-6 (-4464 "*"))))) (-4217 (((-576) $) NIL)) (-1961 (((-576) $) NIL)) (-1750 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-1439 (((-576) $) NIL)) (-2743 (((-576) $) NIL)) (-3297 (($ (-656 (-656 |#2|))) NIL)) (-3874 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2318 (((-656 (-656 |#2|)) $) NIL)) (-3903 (((-112)) NIL)) (-2866 (((-112)) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-2416 (((-3 (-2 (|:| |particular| $) (|:| -1999 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-3335 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2472 (((-701 |#2|)) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3653 ((|#2| $) NIL)) (-1424 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1287 $)) NIL)) (-1714 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-3517 (((-1192 (-969 |#2|))) NIL (|has| |#2| (-374)))) (-2596 (($ $ (-938)) NIL)) (-1891 ((|#2| $) NIL)) (-3691 (((-1192 |#2|) $) NIL (|has| |#2| (-568)))) (-4167 ((|#2|) NIL) ((|#2| (-1287 $)) NIL)) (-1684 (((-1192 |#2|) $) NIL)) (-1371 (((-112)) NIL)) (-3288 (((-1178) $) NIL)) (-2614 (((-112)) NIL)) (-3810 (((-112)) NIL)) (-2989 (((-112)) NIL)) (-2295 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-3139 (((-1139) $) NIL)) (-4207 (((-112)) NIL)) (-2022 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3292 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-3614 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-2888 ((|#2| $) NIL)) (-2779 (($ (-656 |#2|)) NIL)) (-2849 (((-112) $) NIL)) (-4387 (((-245 |#1| |#2|) $) NIL)) (-2058 ((|#2| $) NIL (|has| |#2| (-6 (-4464 "*"))))) (-3150 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4268 (($ $) NIL)) (-3287 (((-701 |#2|) (-1287 $)) NIL) (((-1287 |#2|) $) NIL) (((-701 |#2|) (-1287 $) (-1287 $)) NIL) (((-1287 |#2|) $ (-1287 $)) 31)) (-1505 (($ (-1287 |#2|)) NIL) (((-1287 |#2|) $) NIL)) (-2180 (((-656 (-969 |#2|))) NIL) (((-656 (-969 |#2|)) (-1287 $)) NIL)) (-1361 (($ $ $) NIL)) (-2261 (((-112)) NIL)) (-1762 (((-245 |#1| |#2|) $ (-576)) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) 41)) (-3558 (((-656 (-1287 |#2|))) NIL (|has| |#2| (-568)))) (-3911 (($ $ $ $) NIL)) (-2723 (((-112)) NIL)) (-2690 (($ (-701 |#2|) $) NIL)) (-2190 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-1485 (((-112) $) NIL)) (-3771 (($ $ $) NIL)) (-4393 (((-112)) NIL)) (-4340 (((-112)) NIL)) (-1450 (((-112)) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 15)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1536 ((|#1| $) 23)) (-2442 (($ $ $) NIL (|has| |#1| (-803)))) (-1893 (($ $ $) NIL (|has| |#1| (-803)))) (-1927 (((-1177) $) 48)) (-1445 (((-1139) $) NIL)) (-1549 ((|#3| $) 24)) (-3563 (((-874) $) 43)) (-3985 (((-112) $ $) 22)) (-2800 (($) 10 T CONST)) (-3049 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-803)))) (-2988 (((-112) $ $) 20)) (-3037 (((-112) $ $) NIL (|has| |#1| (-803)))) (-3010 (((-112) $ $) 26 (|has| |#1| (-803)))) (-3107 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3095 (($ $) 17) (($ $ $) NIL)) (-3083 (($ $ $) 29)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL))) +(((-674 |#1| |#2| |#3|) (-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3107 ($ $ |#3|)) (-15 -3107 ($ |#1| |#3|)) (-15 -1536 (|#1| $)) (-15 -1549 (|#3| $)))) (-729 |#2|) (-174) (|SubsetCategory| (-738) |#2|)) (T -674)) +((-3107 (*1 *1 *1 *2) (-12 (-4 *4 (-174)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)) (-4 *2 (|SubsetCategory| (-738) *4)))) (-3107 (*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-729 *4)) (-4 *3 (|SubsetCategory| (-738) *4)))) (-1536 (*1 *2 *1) (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-738) *3)))) (-1549 (*1 *2 *1) (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4))))) +(-13 (-729 |#2|) (-10 -8 (IF (|has| |#1| (-803)) (-6 (-803)) |%noBranch|) (-15 -3107 ($ $ |#3|)) (-15 -3107 ($ |#1| |#3|)) (-15 -1536 (|#1| $)) (-15 -1549 (|#3| $)))) +((-3435 (((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|)) 33))) +(((-675 |#1|) (-10 -7 (-15 -3435 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|)))) (-926)) (T -675)) +((-3435 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *4))) (-5 *3 (-1191 *4)) (-4 *4 (-926)) (-5 *1 (-675 *4))))) +(-10 -7 (-15 -3435 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3388 (((-656 |#1|) $) 84)) (-3639 (($ $ (-783)) 94)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1338 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 50)) (-1539 (((-3 (-684 |#1|) "failed") $) NIL)) (-4056 (((-684 |#1|) $) NIL)) (-2166 (($ $) 93)) (-3839 (((-783) $) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-3605 (($ (-684 |#1|) |#2|) 70)) (-2575 (($ $) 89)) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-4398 (((-1310 |#1| |#2|) (-1310 |#1| |#2|) $) 49)) (-1814 (((-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2129 (((-684 |#1|) $) NIL)) (-2142 ((|#2| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3306 (($ $ |#1| $) 32) (($ $ (-656 |#1|) (-656 $)) 34)) (-1433 (((-783) $) 91)) (-3573 (($ $ $) 20) (($ (-684 |#1|) (-684 |#1|)) 79) (($ (-684 |#1|) $) 77) (($ $ (-684 |#1|)) 78)) (-3563 (((-874) $) NIL) (($ |#1|) 76) (((-1301 |#1| |#2|) $) 60) (((-1310 |#1| |#2|) $) 43) (($ (-684 |#1|)) 27)) (-2927 (((-656 |#2|) $) NIL)) (-4333 ((|#2| $ (-684 |#1|)) NIL)) (-1706 ((|#2| (-1310 |#1| |#2|) $) 45)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 23 T CONST)) (-3816 (((-656 (-2 (|:| |k| (-684 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4129 (((-3 $ "failed") (-1301 |#1| |#2|)) 62)) (-4394 (($ (-684 |#1|)) 14)) (-2988 (((-112) $ $) 46)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $) 68) (($ $ $) NIL)) (-3083 (($ $ $) 31)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-684 |#1|)) NIL))) +(((-676 |#1| |#2|) (-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -4129 ((-3 $ "failed") (-1301 |#1| |#2|))) (-15 -3573 ($ (-684 |#1|) (-684 |#1|))) (-15 -3573 ($ (-684 |#1|) $)) (-15 -3573 ($ $ (-684 |#1|))))) (-862) (-174)) (T -676)) +((-4129 (*1 *1 *2) (|partial| -12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-676 *3 *4)))) (-3573 (*1 *1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-3573 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174)))) (-3573 (*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) (-4 *4 (-174))))) +(-13 (-385 |#1| |#2|) (-393 |#2| (-684 |#1|)) (-10 -8 (-15 -4129 ((-3 $ "failed") (-1301 |#1| |#2|))) (-15 -3573 ($ (-684 |#1|) (-684 |#1|))) (-15 -3573 ($ (-684 |#1|) $)) (-15 -3573 ($ $ (-684 |#1|))))) +((-2373 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 59)) (-2265 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-4001 (($ (-1 (-112) |#2|) $) 29)) (-3478 (($ $) 65)) (-3315 (($ $) 74)) (-3623 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2521 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62)) (-3584 (((-576) |#2| $ (-576)) 71) (((-576) |#2| $) NIL) (((-576) (-1 (-112) |#2|) $) 54)) (-4033 (($ (-783) |#2|) 63)) (-2093 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-1854 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-1632 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 64)) (-1628 (($ |#2|) 15)) (-2040 (($ $ $ (-576)) 42) (($ |#2| $ (-576)) 40)) (-2644 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2560 (($ $ (-1253 (-576))) 51) (($ $ (-576)) 44)) (-3760 (($ $ $ (-576)) 70)) (-1954 (($ $) 68)) (-3010 (((-112) $ $) 76))) +(((-677 |#1| |#2|) (-10 -8 (-15 -1628 (|#1| |#2|)) (-15 -2560 (|#1| |#1| (-576))) (-15 -2560 (|#1| |#1| (-1253 (-576)))) (-15 -3623 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2040 (|#1| |#2| |#1| (-576))) (-15 -2040 (|#1| |#1| |#1| (-576))) (-15 -2093 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4001 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3623 (|#1| |#2| |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -2093 (|#1| |#1| |#1|)) (-15 -1854 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2373 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3584 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3584 ((-576) |#2| |#1|)) (-15 -3584 ((-576) |#2| |#1| (-576))) (-15 -1854 (|#1| |#1| |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -3760 (|#1| |#1| |#1| (-576))) (-15 -3478 (|#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -3010 ((-112) |#1| |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2644 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4033 (|#1| (-783) |#2|)) (-15 -1632 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1954 (|#1| |#1|))) (-678 |#2|) (-1236)) (T -677)) +NIL +(-10 -8 (-15 -1628 (|#1| |#2|)) (-15 -2560 (|#1| |#1| (-576))) (-15 -2560 (|#1| |#1| (-1253 (-576)))) (-15 -3623 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2040 (|#1| |#2| |#1| (-576))) (-15 -2040 (|#1| |#1| |#1| (-576))) (-15 -2093 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4001 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3623 (|#1| |#2| |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -2093 (|#1| |#1| |#1|)) (-15 -1854 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2373 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3584 ((-576) (-1 (-112) |#2|) |#1|)) (-15 -3584 ((-576) |#2| |#1|)) (-15 -3584 ((-576) |#2| |#1| (-576))) (-15 -1854 (|#1| |#1| |#1|)) (-15 -2373 ((-112) |#1|)) (-15 -3760 (|#1| |#1| |#1| (-576))) (-15 -3478 (|#1| |#1|)) (-15 -2265 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2265 (|#1| |#1|)) (-15 -3010 ((-112) |#1| |#1|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2521 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2644 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4033 (|#1| (-783) |#2|)) (-15 -1632 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1954 (|#1| |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3142 ((|#1| $) 49)) (-2893 ((|#1| $) 66)) (-2464 (($ $) 68)) (-2333 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-2938 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-2373 (((-112) $) 144 (|has| |#1| (-862))) (((-112) (-1 (-112) |#1| |#1|) $) 138)) (-2265 (($ $) 148 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1| |#1|) $) 147 (|has| $ (-6 -4462)))) (-1758 (($ $) 143 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $) 137)) (-3131 (((-112) $ (-783)) 8)) (-3429 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3614 (($ $ $) 57 (|has| $ (-6 -4462)))) (-2611 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1438 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 119 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-4001 (($ (-1 (-112) |#1|) $) 131)) (-2496 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4461)))) (-2882 ((|#1| $) 67)) (-3767 (($) 7 T CONST)) (-3478 (($ $) 146 (|has| $ (-6 -4462)))) (-3733 (($ $) 136)) (-3515 (($ $) 74) (($ $ (-783)) 72)) (-3315 (($ $) 133 (|has| |#1| (-1119)))) (-3172 (($ $) 101 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ |#1| $) 132 (|has| |#1| (-1119))) (($ (-1 (-112) |#1|) $) 127)) (-3902 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4461))) (($ |#1| $) 102 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1776 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 89)) (-3518 (((-112) $) 85)) (-3584 (((-576) |#1| $ (-576)) 141 (|has| |#1| (-1119))) (((-576) |#1| $) 140 (|has| |#1| (-1119))) (((-576) (-1 (-112) |#1|) $) 139)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 51)) (-3180 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-4033 (($ (-783) |#1|) 111)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 97 (|has| (-576) (-862)))) (-2442 (($ $ $) 149 (|has| |#1| (-862)))) (-2093 (($ $ $) 134 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 130)) (-1854 (($ $ $) 142 (|has| |#1| (-862))) (($ (-1 (-112) |#1| |#1|) $ $) 135)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 96 (|has| (-576) (-862)))) (-1893 (($ $ $) 150 (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-1628 (($ |#1|) 124)) (-2712 (((-112) $ (-783)) 10)) (-2942 (((-656 |#1|) $) 46)) (-1905 (((-112) $) 50)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-3923 ((|#1| $) 71) (($ $ (-783)) 69)) (-2040 (($ $ $ (-576)) 129) (($ |#1| $ (-576)) 128)) (-2277 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3321 (((-656 (-576)) $) 94)) (-2378 (((-112) (-576) $) 93)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3504 ((|#1| $) 77) (($ $ (-783)) 75)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2500 (($ $ |#1|) 98 (|has| $ (-6 -4462)))) (-3524 (((-112) $) 86)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) 92)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1253 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-2972 (((-576) $ $) 45)) (-2560 (($ $ (-1253 (-576))) 126) (($ $ (-576)) 125)) (-3464 (($ $ (-1253 (-576))) 116) (($ $ (-576)) 115)) (-3173 (((-112) $) 47)) (-1442 (($ $) 63)) (-1544 (($ $) 60 (|has| $ (-6 -4462)))) (-3564 (((-783) $) 64)) (-2705 (($ $) 65)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3760 (($ $ $ (-576)) 145 (|has| $ (-6 -4462)))) (-1954 (($ $) 13)) (-4076 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 109)) (-1523 (($ $ $) 62) (($ $ |#1|) 61)) (-1661 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) 52)) (-4369 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) 152 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 153 (|has| |#1| (-862)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3037 (((-112) $ $) 151 (|has| |#1| (-862)))) (-3010 (((-112) $ $) 154 (|has| |#1| (-862)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-678 |#1|) (-141) (-1236)) (T -678)) +((-1628 (*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1236))))) +(-13 (-1168 |t#1|) (-384 |t#1|) (-292 |t#1|) (-10 -8 (-15 -1628 ($ |t#1|)))) +(((-34) . T) ((-102) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-292 |#1|) . T) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1029 |#1|) . T) ((-1119) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1168 |#1|) . T) ((-1236) . T) ((-1274 |#1|) . T)) +((-2445 (((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|))))) (-656 (-656 |#1|)) (-656 (-1286 |#1|))) 22) (((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|))))) (-701 |#1|) (-656 (-1286 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|)))) (-656 (-656 |#1|)) (-1286 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)) 14)) (-3606 (((-783) (-701 |#1|) (-1286 |#1|)) 30)) (-2915 (((-3 (-1286 |#1|) "failed") (-701 |#1|) (-1286 |#1|)) 24)) (-4320 (((-112) (-701 |#1|) (-1286 |#1|)) 27))) +(((-679 |#1|) (-10 -7 (-15 -2445 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|))) (-15 -2445 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|)))) (-656 (-656 |#1|)) (-1286 |#1|))) (-15 -2445 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|))))) (-701 |#1|) (-656 (-1286 |#1|)))) (-15 -2445 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|))))) (-656 (-656 |#1|)) (-656 (-1286 |#1|)))) (-15 -2915 ((-3 (-1286 |#1|) "failed") (-701 |#1|) (-1286 |#1|))) (-15 -4320 ((-112) (-701 |#1|) (-1286 |#1|))) (-15 -3606 ((-783) (-701 |#1|) (-1286 |#1|)))) (-374)) (T -679)) +((-3606 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-679 *5)))) (-4320 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-5 *2 (-112)) (-5 *1 (-679 *5)))) (-2915 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1286 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *1 (-679 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -3713 (-656 (-1286 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -3713 (-656 (-1286 *5)))))) (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -3713 (-656 (-1286 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1286 *5)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *5) "failed")) (|:| -3713 (-656 (-1286 *5))))) (-5 *1 (-679 *5)) (-5 *4 (-1286 *5))))) +(-10 -7 (-15 -2445 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|))) (-15 -2445 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|)))) (-656 (-656 |#1|)) (-1286 |#1|))) (-15 -2445 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|))))) (-701 |#1|) (-656 (-1286 |#1|)))) (-15 -2445 ((-656 (-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|))))) (-656 (-656 |#1|)) (-656 (-1286 |#1|)))) (-15 -2915 ((-3 (-1286 |#1|) "failed") (-701 |#1|) (-1286 |#1|))) (-15 -4320 ((-112) (-701 |#1|) (-1286 |#1|))) (-15 -3606 ((-783) (-701 |#1|) (-1286 |#1|)))) +((-2445 (((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3713 (-656 |#3|)))) |#4| (-656 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3713 (-656 |#3|))) |#4| |#3|) 60)) (-3606 (((-783) |#4| |#3|) 18)) (-2915 (((-3 |#3| "failed") |#4| |#3|) 21)) (-4320 (((-112) |#4| |#3|) 14))) +(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2445 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3713 (-656 |#3|))) |#4| |#3|)) (-15 -2445 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3713 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2915 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4320 ((-112) |#4| |#3|)) (-15 -3606 ((-783) |#4| |#3|))) (-374) (-13 (-384 |#1|) (-10 -7 (-6 -4462))) (-13 (-384 |#1|) (-10 -7 (-6 -4462))) (-699 |#1| |#2| |#3|)) (T -680)) +((-3606 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-783)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-4320 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-112)) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-2915 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-374)) (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4462)))) (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))) (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) (-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-656 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3713 (-656 *7))))) (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) (-4 *3 (-699 *5 *6 *7)))) (-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) +(-10 -7 (-15 -2445 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3713 (-656 |#3|))) |#4| |#3|)) (-15 -2445 ((-656 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3713 (-656 |#3|)))) |#4| (-656 |#3|))) (-15 -2915 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4320 ((-112) |#4| |#3|)) (-15 -3606 ((-783) |#4| |#3|))) +((-3741 (((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -3713 (-656 (-1286 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)) 51))) +(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3741 ((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -3713 (-656 (-1286 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) (-568) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -681)) +((-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 (-419 *8)) "failed")) (|:| -3713 (-656 (-1286 (-419 *8)))))) (-5 *1 (-681 *5 *6 *7 *8))))) +(-10 -7 (-15 -3741 ((-2 (|:| |particular| (-3 (-1286 (-419 |#4|)) "failed")) (|:| -3713 (-656 (-1286 (-419 |#4|))))) (-656 |#4|) (-656 |#3|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3341 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-2310 ((|#2| $) NIL)) (-1491 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2697 (((-1286 (-701 |#2|))) NIL) (((-1286 (-701 |#2|)) (-1286 $)) NIL)) (-4294 (((-112) $) NIL)) (-1686 (((-1286 $)) 42)) (-3131 (((-112) $ (-783)) NIL)) (-4027 (($ |#2|) NIL)) (-3767 (($) NIL T CONST)) (-3243 (($ $) NIL (|has| |#2| (-317)))) (-1946 (((-245 |#1| |#2|) $ (-576)) NIL)) (-4130 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-4122 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-4252 (((-701 |#2|)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-2828 ((|#2| $) NIL)) (-1783 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1286 $)) NIL)) (-2991 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-2125 (((-1191 (-969 |#2|))) NIL (|has| |#2| (-374)))) (-4242 (($ $ (-938)) NIL)) (-3207 ((|#2| $) NIL)) (-3812 (((-1191 |#2|) $) NIL (|has| |#2| (-568)))) (-2639 ((|#2|) NIL) ((|#2| (-1286 $)) NIL)) (-2355 (((-1191 |#2|) $) NIL)) (-3411 (((-112)) NIL)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) NIL)) (-2612 (($ (-1286 |#2|)) NIL) (($ (-1286 |#2|) (-1286 $)) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3606 (((-783) $) NIL (|has| |#2| (-568))) (((-938)) 43)) (-1698 ((|#2| $ (-576) (-576)) NIL)) (-2995 (((-112)) NIL)) (-4300 (($ $ (-938)) NIL)) (-3825 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-1414 (((-112) $) NIL)) (-2849 (((-783) $) NIL (|has| |#2| (-568)))) (-2115 (((-656 (-245 |#1| |#2|)) $) NIL (|has| |#2| (-568)))) (-1622 (((-783) $) NIL)) (-4334 (((-112)) NIL)) (-1636 (((-783) $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-4329 ((|#2| $) NIL (|has| |#2| (-6 (-4463 "*"))))) (-1650 (((-576) $) NIL)) (-1351 (((-576) $) NIL)) (-2591 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-4159 (((-576) $) NIL)) (-4062 (((-576) $) NIL)) (-2457 (($ (-656 (-656 |#2|))) NIL)) (-1763 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2156 (((-656 (-656 |#2|)) $) NIL)) (-1364 (((-112)) NIL)) (-2272 (((-112)) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-4230 (((-3 (-2 (|:| |particular| $) (|:| -3713 (-656 $))) "failed")) NIL (|has| |#2| (-568)))) (-2694 (((-3 $ "failed")) NIL (|has| |#2| (-568)))) (-1950 (((-701 |#2|)) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-3544 ((|#2| $) NIL)) (-2269 (((-701 |#2|) $) NIL) (((-701 |#2|) $ (-1286 $)) NIL)) (-1410 (((-3 $ "failed") $) NIL (|has| |#2| (-568)))) (-2571 (((-1191 (-969 |#2|))) NIL (|has| |#2| (-374)))) (-1428 (($ $ (-938)) NIL)) (-3804 ((|#2| $) NIL)) (-2904 (((-1191 |#2|) $) NIL (|has| |#2| (-568)))) (-1394 ((|#2|) NIL) ((|#2| (-1286 $)) NIL)) (-3764 (((-1191 |#2|) $) NIL)) (-2692 (((-112)) NIL)) (-1927 (((-1177) $) NIL)) (-1610 (((-112)) NIL)) (-3077 (((-112)) NIL)) (-3276 (((-112)) NIL)) (-2030 (((-3 $ "failed") $) NIL (|has| |#2| (-374)))) (-1445 (((-1139) $) NIL)) (-2775 (((-112)) NIL)) (-3463 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-4207 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) 28) ((|#2| $ (-576)) NIL)) (-2735 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195))))) (-2731 ((|#2| $) NIL)) (-1716 (($ (-656 |#2|)) NIL)) (-4237 (((-112) $) NIL)) (-2212 (((-245 |#1| |#2|) $) NIL)) (-2201 ((|#2| $) NIL (|has| |#2| (-6 (-4463 "*"))))) (-1456 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1954 (($ $) NIL)) (-1809 (((-701 |#2|) (-1286 $)) NIL) (((-1286 |#2|) $) NIL) (((-701 |#2|) (-1286 $) (-1286 $)) NIL) (((-1286 |#2|) $ (-1286 $)) 31)) (-4076 (($ (-1286 |#2|)) NIL) (((-1286 |#2|) $) NIL)) (-3434 (((-656 (-969 |#2|))) NIL) (((-656 (-969 |#2|)) (-1286 $)) NIL)) (-4081 (($ $ $) NIL)) (-2012 (((-112)) NIL)) (-4331 (((-245 |#1| |#2|) $ (-576)) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) 41)) (-2253 (((-656 (-1286 |#2|))) NIL (|has| |#2| (-568)))) (-1938 (($ $ $ $) NIL)) (-1524 (((-112)) NIL)) (-3491 (($ (-701 |#2|) $) NIL)) (-2043 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2609 (((-112) $) NIL)) (-2303 (($ $ $) NIL)) (-2647 (((-112)) NIL)) (-2256 (((-112)) NIL)) (-4016 (((-112)) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195))))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#2| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) NIL) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) (((-682 |#1| |#2|) (-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) (-938) (-174)) (T -682)) NIL (-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-429 |#2|)) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2952 (((-656 (-1154)) $) 10)) (-4092 (((-874) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-683) (-13 (-1102) (-10 -8 (-15 -2952 ((-656 (-1154)) $))))) (T -683)) -((-2952 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-683))))) -(-13 (-1102) (-10 -8 (-15 -2952 ((-656 (-1154)) $)))) -((-2034 (((-112) $ $) NIL)) (-2677 (((-656 |#1|) $) NIL)) (-2128 (($ $) 62)) (-2489 (((-112) $) NIL)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-2044 (((-3 $ "failed") (-831 |#1|)) 27)) (-4319 (((-112) (-831 |#1|)) 17)) (-4203 (($ (-831 |#1|)) 28)) (-2949 (((-112) $ $) 36)) (-1325 (((-938) $) 43)) (-2114 (($ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1392 (((-656 $) (-831 |#1|)) 19)) (-4092 (((-874) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-1531 (((-112) $ $) NIL)) (-4250 (((-59 (-656 $)) (-656 |#1|) (-938)) 67)) (-3228 (((-656 $) (-656 |#1|) (-938)) 70)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 63)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 46))) -(((-684 |#1|) (-13 (-862) (-1057 |#1|) (-10 -8 (-15 -2489 ((-112) $)) (-15 -2114 ($ $)) (-15 -2128 ($ $)) (-15 -1325 ((-938) $)) (-15 -2949 ((-112) $ $)) (-15 -4092 ((-831 |#1|) $)) (-15 -4092 ((-689 |#1|) $)) (-15 -1392 ((-656 $) (-831 |#1|))) (-15 -4319 ((-112) (-831 |#1|))) (-15 -4203 ($ (-831 |#1|))) (-15 -2044 ((-3 $ "failed") (-831 |#1|))) (-15 -2677 ((-656 |#1|) $)) (-15 -4250 ((-59 (-656 $)) (-656 |#1|) (-938))) (-15 -3228 ((-656 $) (-656 |#1|) (-938))))) (-862)) (T -684)) -((-2489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-2128 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-4203 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-2044 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-4250 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-3228 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) -(-13 (-862) (-1057 |#1|) (-10 -8 (-15 -2489 ((-112) $)) (-15 -2114 ($ $)) (-15 -2128 ($ $)) (-15 -1325 ((-938) $)) (-15 -2949 ((-112) $ $)) (-15 -4092 ((-831 |#1|) $)) (-15 -4092 ((-689 |#1|) $)) (-15 -1392 ((-656 $) (-831 |#1|))) (-15 -4319 ((-112) (-831 |#1|))) (-15 -4203 ($ (-831 |#1|))) (-15 -2044 ((-3 $ "failed") (-831 |#1|))) (-15 -2677 ((-656 |#1|) $)) (-15 -4250 ((-59 (-656 $)) (-656 |#1|) (-938))) (-15 -3228 ((-656 $) (-656 |#1|) (-938))))) -((-1731 ((|#2| $) 100)) (-3053 (($ $) 121)) (-2835 (((-112) $ (-783)) 35)) (-2712 (($ $) 109) (($ $ (-783)) 112)) (-3235 (((-112) $) 122)) (-4303 (((-656 $) $) 96)) (-2397 (((-112) $ $) 92)) (-1419 (((-112) $ (-783)) 33)) (-2077 (((-576) $) 66)) (-4315 (((-576) $) 65)) (-3103 (((-112) $ (-783)) 31)) (-3781 (((-112) $) 98)) (-2912 ((|#2| $) 113) (($ $ (-783)) 117)) (-3371 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-4428 (((-656 (-576)) $) 64)) (-2013 (((-112) (-576) $) 59)) (-2701 ((|#2| $) NIL) (($ $ (-783)) 108)) (-2843 (($ $ (-576)) 125)) (-3020 (((-112) $) 124)) (-3292 (((-112) (-1 (-112) |#2|) $) 42)) (-3060 (((-656 |#2|) $) 46)) (-4367 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1254 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-3136 (((-576) $ $) 91)) (-2470 (($ $ (-1254 (-576))) 78) (($ $ (-576)) 72)) (-2492 (((-112) $) 87)) (-1398 (($ $) 105)) (-2212 (((-783) $) 104)) (-2251 (($ $) 103)) (-4103 (($ (-656 |#2|)) 53)) (-1417 (($ $) 126)) (-2043 (((-656 $) $) 90)) (-3682 (((-112) $ $) 89)) (-2190 (((-112) (-1 (-112) |#2|) $) 41)) (-3919 (((-112) $ $) 20)) (-2048 (((-783) $) 39))) -(((-685 |#1| |#2|) (-10 -8 (-15 -1417 (|#1| |#1|)) (-15 -2843 (|#1| |#1| (-576))) (-15 -3235 ((-112) |#1|)) (-15 -3020 ((-112) |#1|)) (-15 -4367 (|#2| |#1| (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576))) (-15 -3060 ((-656 |#2|) |#1|)) (-15 -2013 ((-112) (-576) |#1|)) (-15 -4428 ((-656 (-576)) |#1|)) (-15 -4315 ((-576) |#1|)) (-15 -2077 ((-576) |#1|)) (-15 -4103 (|#1| (-656 |#2|))) (-15 -4367 (|#1| |#1| (-1254 (-576)))) (-15 -2470 (|#1| |#1| (-576))) (-15 -2470 (|#1| |#1| (-1254 (-576)))) (-15 -3371 (|#1| |#2| |#1| (-576))) (-15 -3371 (|#1| |#1| |#1| (-576))) (-15 -1398 (|#1| |#1|)) (-15 -2212 ((-783) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -2912 (|#1| |#1| (-783))) (-15 -4367 (|#2| |#1| "last")) (-15 -2912 (|#2| |#1|)) (-15 -2712 (|#1| |#1| (-783))) (-15 -4367 (|#1| |#1| "rest")) (-15 -2712 (|#1| |#1|)) (-15 -2701 (|#1| |#1| (-783))) (-15 -4367 (|#2| |#1| "first")) (-15 -2701 (|#2| |#1|)) (-15 -2397 ((-112) |#1| |#1|)) (-15 -3682 ((-112) |#1| |#1|)) (-15 -3136 ((-576) |#1| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -4367 (|#2| |#1| "value")) (-15 -1731 (|#2| |#1|)) (-15 -3781 ((-112) |#1|)) (-15 -4303 ((-656 |#1|) |#1|)) (-15 -2043 ((-656 |#1|) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2048 ((-783) |#1|)) (-15 -2835 ((-112) |#1| (-783))) (-15 -1419 ((-112) |#1| (-783))) (-15 -3103 ((-112) |#1| (-783)))) (-686 |#2|) (-1237)) (T -685)) -NIL -(-10 -8 (-15 -1417 (|#1| |#1|)) (-15 -2843 (|#1| |#1| (-576))) (-15 -3235 ((-112) |#1|)) (-15 -3020 ((-112) |#1|)) (-15 -4367 (|#2| |#1| (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576))) (-15 -3060 ((-656 |#2|) |#1|)) (-15 -2013 ((-112) (-576) |#1|)) (-15 -4428 ((-656 (-576)) |#1|)) (-15 -4315 ((-576) |#1|)) (-15 -2077 ((-576) |#1|)) (-15 -4103 (|#1| (-656 |#2|))) (-15 -4367 (|#1| |#1| (-1254 (-576)))) (-15 -2470 (|#1| |#1| (-576))) (-15 -2470 (|#1| |#1| (-1254 (-576)))) (-15 -3371 (|#1| |#2| |#1| (-576))) (-15 -3371 (|#1| |#1| |#1| (-576))) (-15 -1398 (|#1| |#1|)) (-15 -2212 ((-783) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -2912 (|#1| |#1| (-783))) (-15 -4367 (|#2| |#1| "last")) (-15 -2912 (|#2| |#1|)) (-15 -2712 (|#1| |#1| (-783))) (-15 -4367 (|#1| |#1| "rest")) (-15 -2712 (|#1| |#1|)) (-15 -2701 (|#1| |#1| (-783))) (-15 -4367 (|#2| |#1| "first")) (-15 -2701 (|#2| |#1|)) (-15 -2397 ((-112) |#1| |#1|)) (-15 -3682 ((-112) |#1| |#1|)) (-15 -3136 ((-576) |#1| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -4367 (|#2| |#1| "value")) (-15 -1731 (|#2| |#1|)) (-15 -3781 ((-112) |#1|)) (-15 -4303 ((-656 |#1|) |#1|)) (-15 -2043 ((-656 |#1|) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -3292 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2048 ((-783) |#1|)) (-15 -2835 ((-112) |#1| (-783))) (-15 -1419 ((-112) |#1| (-783))) (-15 -3103 ((-112) |#1| (-783)))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1731 ((|#1| $) 49)) (-3367 ((|#1| $) 66)) (-3053 (($ $) 68)) (-2449 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4463)))) (-2633 (($ $ (-576)) 53 (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) 8)) (-2597 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-3744 (($ $ $) 57 (|has| $ (-6 -4463)))) (-3476 ((|#1| $ |#1|) 55 (|has| $ (-6 -4463)))) (-2466 ((|#1| $ |#1|) 59 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4463))) (($ $ "rest" $) 56 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 119 (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) 104)) (-3357 ((|#1| $) 67)) (-3656 (($) 7 T CONST)) (-3732 (($ $) 126)) (-2712 (($ $) 74) (($ $ (-783)) 72)) (-1690 (($ $) 101 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#1| $) 102 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 105)) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3888 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 89)) (-3235 (((-112) $) 85)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-3648 (((-783) $) 125)) (-4303 (((-656 $) $) 51)) (-2397 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-1992 (($ (-783) |#1|) 111)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 97 (|has| (-576) (-862)))) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 96 (|has| (-576) (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3103 (((-112) $ (-783)) 10)) (-3699 (((-656 |#1|) $) 46)) (-3781 (((-112) $) 50)) (-2320 (($ $) 128)) (-2158 (((-112) $) 129)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2912 ((|#1| $) 71) (($ $ (-783)) 69)) (-3371 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-4428 (((-656 (-576)) $) 94)) (-2013 (((-112) (-576) $) 93)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4355 ((|#1| $) 127)) (-2701 ((|#1| $) 77) (($ $ (-783)) 75)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2918 (($ $ |#1|) 98 (|has| $ (-6 -4463)))) (-2843 (($ $ (-576)) 124)) (-3020 (((-112) $) 86)) (-2772 (((-112) $) 130)) (-2759 (((-112) $) 131)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) 92)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1254 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3136 (((-576) $ $) 45)) (-2470 (($ $ (-1254 (-576))) 116) (($ $ (-576)) 115)) (-2492 (((-112) $) 47)) (-1398 (($ $) 63)) (-1556 (($ $) 60 (|has| $ (-6 -4463)))) (-2212 (((-783) $) 64)) (-2251 (($ $) 65)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 109)) (-2116 (($ $ $) 62 (|has| $ (-6 -4463))) (($ $ |#1|) 61 (|has| $ (-6 -4463)))) (-2851 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-1417 (($ $) 123)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) 52)) (-3682 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-686 |#1|) (-141) (-1237)) (T -686)) -((-2892 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) (-2759 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-2158 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-2320 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) (-4355 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) (-3732 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) (-1417 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237))))) -(-13 (-1168 |t#1|) (-10 -8 (-15 -2892 ($ (-1 (-112) |t#1|) $)) (-15 -3457 ($ (-1 (-112) |t#1|) $)) (-15 -2759 ((-112) $)) (-15 -2772 ((-112) $)) (-15 -2158 ((-112) $)) (-15 -2320 ($ $)) (-15 -4355 (|t#1| $)) (-15 -3732 ($ $)) (-15 -3648 ((-783) $)) (-15 -2843 ($ $ (-576))) (-15 -1417 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1168 |#1|) . T) ((-1237) . T) ((-1275 |#1|) . T)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3650 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1068)))) (-2835 (((-112) $ (-783)) NIL)) (-2381 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-3656 (($) NIL T CONST)) (-1503 (($ $ $) 57 (|has| |#1| (-1068)))) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3101 (((-1287 (-783)) $) 12)) (-2884 (($ (-1196) $ $) 34)) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2375 (($ (-783)) 55 (|has| |#1| (-1068)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-783) (-783) (-783)) 44)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-4103 (($ (-656 (-656 (-656 |#1|)))) 67)) (-4092 (($ (-975 (-975 (-975 |#1|)))) 23) (((-975 (-975 (-975 |#1|))) $) 19) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1068)) (PROGN (-15 -3650 ($ (-783) (-783) (-783))) (-15 -2375 ($ (-783))) (-15 -1503 ($ $ $))) |%noBranch|) (-15 -4103 ($ (-656 (-656 (-656 |#1|))))) (-15 -4367 (|#1| $ (-783) (-783) (-783))) (-15 -2381 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -4092 ($ (-975 (-975 (-975 |#1|))))) (-15 -4092 ((-975 (-975 (-975 |#1|))) $)) (-15 -2884 ($ (-1196) $ $)) (-15 -3101 ((-1287 (-783)) $)))) (-1119)) (T -687)) -((-3650 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) (-4 *3 (-1119)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) (-4 *3 (-1119)))) (-1503 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1068)) (-4 *2 (-1119)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1119)) (-5 *1 (-687 *3)))) (-4367 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119)))) (-2381 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-4 *3 (-1119)) (-5 *1 (-687 *3)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1119)))) (-2884 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-687 *3)) (-4 *3 (-1119)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-1287 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1119))))) -(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1068)) (PROGN (-15 -3650 ($ (-783) (-783) (-783))) (-15 -2375 ($ (-783))) (-15 -1503 ($ $ $))) |%noBranch|) (-15 -4103 ($ (-656 (-656 (-656 |#1|))))) (-15 -4367 (|#1| $ (-783) (-783) (-783))) (-15 -2381 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -4092 ($ (-975 (-975 (-975 |#1|))))) (-15 -4092 ((-975 (-975 (-975 |#1|))) $)) (-15 -2884 ($ (-1196) $ $)) (-15 -3101 ((-1287 (-783)) $)))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3989 (((-495) $) 10)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 19) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-1154) $) 12)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-688) (-13 (-1102) (-10 -8 (-15 -3989 ((-495) $)) (-15 -4136 ((-1154) $))))) (T -688)) -((-3989 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-688))))) -(-13 (-1102) (-10 -8 (-15 -3989 ((-495) $)) (-15 -4136 ((-1154) $)))) -((-2034 (((-112) $ $) NIL)) (-2677 (((-656 |#1|) $) 15)) (-2128 (($ $) 19)) (-2489 (((-112) $) 20)) (-2974 (((-3 |#1| "failed") $) 23)) (-2378 ((|#1| $) 21)) (-2712 (($ $) 37)) (-3313 (($ $) 25)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-2949 (((-112) $ $) 47)) (-1325 (((-938) $) 40)) (-2114 (($ $) 18)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 ((|#1| $) 36)) (-4092 (((-874) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 13)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-689 |#1|) (-13 (-862) (-1057 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4092 ((-831 |#1|) $)) (-15 -2701 (|#1| $)) (-15 -2114 ($ $)) (-15 -1325 ((-938) $)) (-15 -2949 ((-112) $ $)) (-15 -3313 ($ $)) (-15 -2712 ($ $)) (-15 -2489 ((-112) $)) (-15 -2128 ($ $)) (-15 -2677 ((-656 |#1|) $)))) (-862)) (T -689)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2701 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2114 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-3313 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2128 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862))))) -(-13 (-862) (-1057 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4092 ((-831 |#1|) $)) (-15 -2701 (|#1| $)) (-15 -2114 ($ $)) (-15 -1325 ((-938) $)) (-15 -2949 ((-112) $ $)) (-15 -3313 ($ $)) (-15 -2712 ($ $)) (-15 -2489 ((-112) $)) (-15 -2128 ($ $)) (-15 -2677 ((-656 |#1|) $)))) -((-4008 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-3284 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9))) -(((-690 |#1|) (-10 -7 (-15 -3284 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -4008 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1119)) (T -690)) -((-4008 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1119)) (-5 *1 (-690 *2)))) (-3284 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1119)) (-5 *1 (-690 *2))))) -(-10 -7 (-15 -3284 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -4008 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) -((-1374 ((|#2| |#1| |#2|) 9)) (-1366 ((|#1| |#1| |#2|) 8))) -(((-691 |#1| |#2|) (-10 -7 (-15 -1366 (|#1| |#1| |#2|)) (-15 -1374 (|#2| |#1| |#2|))) (-1119) (-1119)) (T -691)) -((-1374 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-1366 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) -(-10 -7 (-15 -1366 (|#1| |#1| |#2|)) (-15 -1374 (|#2| |#1| |#2|))) -((-4013 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -4013 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1119) (-1119) (-1119)) (T -692)) -((-4013 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-692 *5 *6 *2))))) -(-10 -7 (-15 -4013 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2034 (((-112) $ $) NIL)) (-4148 (((-1236) $) 21)) (-4097 (((-656 (-1236)) $) 19)) (-2755 (($ (-656 (-1236)) (-1236)) 14)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 29) (($ (-1201)) NIL) (((-1201) $) NIL) (((-1236) $) 22) (($ (-1137)) 10)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-693) (-13 (-1102) (-625 (-1236)) (-10 -8 (-15 -4092 ($ (-1137))) (-15 -2755 ($ (-656 (-1236)) (-1236))) (-15 -4097 ((-656 (-1236)) $)) (-15 -4148 ((-1236) $))))) (T -693)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-693)))) (-2755 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1236))) (-5 *3 (-1236)) (-5 *1 (-693)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-693)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-693))))) -(-13 (-1102) (-625 (-1236)) (-10 -8 (-15 -4092 ($ (-1137))) (-15 -2755 ($ (-656 (-1236)) (-1236))) (-15 -4097 ((-656 (-1236)) $)) (-15 -4148 ((-1236) $)))) -((-4008 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-2554 (((-1 |#1|) |#1|) 8)) (-2954 ((|#1| |#1|) 19)) (-2142 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-4092 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23))) -(((-694 |#1|) (-10 -7 (-15 -2554 ((-1 |#1|) |#1|)) (-15 -4092 ((-1 |#1|) |#1|)) (-15 -2142 (|#1| (-1 |#1| |#1|))) (-15 -2142 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -2954 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -4008 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1119)) (T -694)) -((-4008 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1119)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1119)) (-5 *1 (-694 *4)))) (-2954 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1119)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1119)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1119)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119)))) (-2554 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119))))) -(-10 -7 (-15 -2554 ((-1 |#1|) |#1|)) (-15 -4092 ((-1 |#1|) |#1|)) (-15 -2142 (|#1| (-1 |#1| |#1|))) (-15 -2142 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -2954 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -4008 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) -((-3152 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-4210 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2670 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1348 (((-1 |#2| |#1|) |#2|) 11))) -(((-695 |#1| |#2|) (-10 -7 (-15 -1348 ((-1 |#2| |#1|) |#2|)) (-15 -4210 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2670 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3152 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1119) (-1119)) (T -695)) -((-3152 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1119)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-1348 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1119)) (-4 *3 (-1119))))) -(-10 -7 (-15 -1348 ((-1 |#2| |#1|) |#2|)) (-15 -4210 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2670 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3152 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-1911 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1432 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2242 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3893 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2396 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -1432 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2242 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3893 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2396 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1911 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1119) (-1119) (-1119)) (T -696)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-1911 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1119)))) (-3893 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1119)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-1432 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1119)) (-4 *4 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(-10 -7 (-15 -1432 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2242 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3893 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2396 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1911 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2359 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2477 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2477 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2477 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2359 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1068) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1068) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697)) -((-2359 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-2477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) -(-10 -7 (-15 -2477 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2477 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2359 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-1705 (($ (-783) (-783)) 42)) (-3207 (($ $ $) 71)) (-2645 (($ |#3|) 66) (($ $) 67)) (-2454 (((-112) $) 36)) (-1573 (($ $ (-576) (-576)) 82)) (-4230 (($ $ (-576) (-576)) 83)) (-4175 (($ $ (-576) (-576) (-576) (-576)) 88)) (-2144 (($ $) 69)) (-2478 (((-112) $) 15)) (-3482 (($ $ (-576) (-576) $) 89)) (-4248 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 87)) (-3483 (($ (-783) |#2|) 53)) (-3297 (($ (-656 (-656 |#2|))) 51)) (-2318 (((-656 (-656 |#2|)) $) 78)) (-2437 (($ $ $) 70)) (-2022 (((-3 $ "failed") $ |#2|) 120)) (-4367 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-2779 (($ (-656 |#2|)) 54) (($ (-656 $)) 56)) (-2849 (((-112) $) 28)) (-4092 (($ |#4|) 61) (((-874) $) NIL)) (-1485 (((-112) $) 38)) (-4028 (($ $ |#2|) 122)) (-4018 (($ $ $) 93) (($ $) 96)) (-4007 (($ $ $) 91)) (** (($ $ (-783)) 109) (($ $ (-576)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-576) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) -(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4092 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4028 (|#1| |#1| |#2|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -3482 (|#1| |#1| (-576) (-576) |#1|)) (-15 -4175 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -4230 (|#1| |#1| (-576) (-576))) (-15 -1573 (|#1| |#1| (-576) (-576))) (-15 -4248 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -4367 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -2318 ((-656 (-656 |#2|)) |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1|)) (-15 -2144 (|#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -2645 (|#1| |#3|)) (-15 -4092 (|#1| |#4|)) (-15 -2779 (|#1| (-656 |#1|))) (-15 -2779 (|#1| (-656 |#2|))) (-15 -3483 (|#1| (-783) |#2|)) (-15 -3297 (|#1| (-656 (-656 |#2|)))) (-15 -1705 (|#1| (-783) (-783))) (-15 -1485 ((-112) |#1|)) (-15 -2454 ((-112) |#1|)) (-15 -2849 ((-112) |#1|)) (-15 -2478 ((-112) |#1|)) (-15 -4248 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1068) (-384 |#2|) (-384 |#2|)) (T -698)) -NIL -(-10 -8 (-15 -4092 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -4028 (|#1| |#1| |#2|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -3482 (|#1| |#1| (-576) (-576) |#1|)) (-15 -4175 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -4230 (|#1| |#1| (-576) (-576))) (-15 -1573 (|#1| |#1| (-576) (-576))) (-15 -4248 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -4367 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -2318 ((-656 (-656 |#2|)) |#1|)) (-15 -3207 (|#1| |#1| |#1|)) (-15 -2437 (|#1| |#1| |#1|)) (-15 -2144 (|#1| |#1|)) (-15 -2645 (|#1| |#1|)) (-15 -2645 (|#1| |#3|)) (-15 -4092 (|#1| |#4|)) (-15 -2779 (|#1| (-656 |#1|))) (-15 -2779 (|#1| (-656 |#2|))) (-15 -3483 (|#1| (-783) |#2|)) (-15 -3297 (|#1| (-656 (-656 |#2|)))) (-15 -1705 (|#1| (-783) (-783))) (-15 -1485 ((-112) |#1|)) (-15 -2454 ((-112) |#1|)) (-15 -2849 ((-112) |#1|)) (-15 -2478 ((-112) |#1|)) (-15 -4248 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576) (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576) (-576)))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1705 (($ (-783) (-783)) 98)) (-3207 (($ $ $) 88)) (-2645 (($ |#2|) 92) (($ $) 91)) (-2454 (((-112) $) 100)) (-1573 (($ $ (-576) (-576)) 84)) (-4230 (($ $ (-576) (-576)) 83)) (-4175 (($ $ (-576) (-576) (-576) (-576)) 82)) (-2144 (($ $) 90)) (-2478 (((-112) $) 102)) (-2835 (((-112) $ (-783)) 8)) (-3482 (($ $ (-576) (-576) $) 81)) (-4248 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-3344 (($ $ (-576) |#2|) 43)) (-1806 (($ $ (-576) |#3|) 42)) (-3483 (($ (-783) |#1|) 96)) (-3656 (($) 7 T CONST)) (-2664 (($ $) 68 (|has| |#1| (-317)))) (-4059 ((|#2| $ (-576)) 47)) (-4049 (((-783) $) 67 (|has| |#1| (-568)))) (-3888 ((|#1| $ (-576) (-576) |#1|) 44)) (-3817 ((|#1| $ (-576) (-576)) 49)) (-4260 (((-656 |#1|) $) 31)) (-1659 (((-783) $) 66 (|has| |#1| (-568)))) (-3865 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-2126 (((-783) $) 52)) (-1992 (($ (-783) (-783) |#1|) 58)) (-2140 (((-783) $) 51)) (-1419 (((-112) $ (-783)) 9)) (-1497 ((|#1| $) 63 (|has| |#1| (-6 (-4464 "*"))))) (-4217 (((-576) $) 56)) (-1961 (((-576) $) 54)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-1439 (((-576) $) 55)) (-2743 (((-576) $) 53)) (-3297 (($ (-656 (-656 |#1|))) 97)) (-3874 (($ (-1 |#1| |#1|) $) 35)) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2318 (((-656 (-656 |#1|)) $) 87)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2295 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-2437 (($ $ $) 89)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2918 (($ $ |#1|) 57)) (-2022 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-2779 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-2849 (((-112) $) 101)) (-2058 ((|#1| $) 64 (|has| |#1| (-6 (-4464 "*"))))) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1762 ((|#3| $ (-576)) 46)) (-4092 (($ |#3|) 93) (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-1485 (((-112) $) 99)) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-4028 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-4018 (($ $ $) 79) (($ $) 78)) (-4007 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2634 (((-656 (-1154)) $) 10)) (-3563 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-683) (-13 (-1102) (-10 -8 (-15 -2634 ((-656 (-1154)) $))))) (T -683)) +((-2634 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-683))))) +(-13 (-1102) (-10 -8 (-15 -2634 ((-656 (-1154)) $)))) +((-3474 (((-112) $ $) NIL)) (-3388 (((-656 |#1|) $) NIL)) (-4154 (($ $) 62)) (-2853 (((-112) $) NIL)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-2173 (((-3 $ "failed") (-831 |#1|)) 27)) (-2831 (((-112) (-831 |#1|)) 17)) (-3613 (($ (-831 |#1|)) 28)) (-3578 (((-112) $ $) 36)) (-4261 (((-938) $) 43)) (-4143 (($ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-1839 (((-656 $) (-831 |#1|)) 19)) (-3563 (((-874) $) 51) (($ |#1|) 40) (((-831 |#1|) $) 47) (((-689 |#1|) $) 52)) (-3985 (((-112) $ $) NIL)) (-1978 (((-59 (-656 $)) (-656 |#1|) (-938)) 67)) (-4057 (((-656 $) (-656 |#1|) (-938)) 70)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 63)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 46))) +(((-684 |#1|) (-13 (-862) (-1057 |#1|) (-10 -8 (-15 -2853 ((-112) $)) (-15 -4143 ($ $)) (-15 -4154 ($ $)) (-15 -4261 ((-938) $)) (-15 -3578 ((-112) $ $)) (-15 -3563 ((-831 |#1|) $)) (-15 -3563 ((-689 |#1|) $)) (-15 -1839 ((-656 $) (-831 |#1|))) (-15 -2831 ((-112) (-831 |#1|))) (-15 -3613 ($ (-831 |#1|))) (-15 -2173 ((-3 $ "failed") (-831 |#1|))) (-15 -3388 ((-656 |#1|) $)) (-15 -1978 ((-59 (-656 $)) (-656 |#1|) (-938))) (-15 -4057 ((-656 $) (-656 |#1|) (-938))))) (-862)) (T -684)) +((-2853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-4143 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-4154 (*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-3578 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-689 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4))) (-5 *1 (-684 *4)))) (-2831 (*1 *2 *3) (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112)) (-5 *1 (-684 *4)))) (-3613 (*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-2173 (*1 *1 *2) (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5)))) (-4057 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) +(-13 (-862) (-1057 |#1|) (-10 -8 (-15 -2853 ((-112) $)) (-15 -4143 ($ $)) (-15 -4154 ($ $)) (-15 -4261 ((-938) $)) (-15 -3578 ((-112) $ $)) (-15 -3563 ((-831 |#1|) $)) (-15 -3563 ((-689 |#1|) $)) (-15 -1839 ((-656 $) (-831 |#1|))) (-15 -2831 ((-112) (-831 |#1|))) (-15 -3613 ($ (-831 |#1|))) (-15 -2173 ((-3 $ "failed") (-831 |#1|))) (-15 -3388 ((-656 |#1|) $)) (-15 -1978 ((-59 (-656 $)) (-656 |#1|) (-938))) (-15 -4057 ((-656 $) (-656 |#1|) (-938))))) +((-3142 ((|#2| $) 100)) (-2464 (($ $) 121)) (-3131 (((-112) $ (-783)) 35)) (-3515 (($ $) 109) (($ $ (-783)) 112)) (-3518 (((-112) $) 122)) (-1994 (((-656 $) $) 96)) (-3180 (((-112) $ $) 92)) (-3115 (((-112) $ (-783)) 33)) (-1386 (((-576) $) 66)) (-3814 (((-576) $) 65)) (-2712 (((-112) $ (-783)) 31)) (-1905 (((-112) $) 98)) (-3923 ((|#2| $) 113) (($ $ (-783)) 117)) (-2277 (($ $ $ (-576)) 83) (($ |#2| $ (-576)) 82)) (-3321 (((-656 (-576)) $) 64)) (-2378 (((-112) (-576) $) 59)) (-3504 ((|#2| $) NIL) (($ $ (-783)) 108)) (-1714 (($ $ (-576)) 125)) (-3524 (((-112) $) 124)) (-4207 (((-112) (-1 (-112) |#2|) $) 42)) (-1947 (((-656 |#2|) $) 46)) (-2871 ((|#2| $ "value") NIL) ((|#2| $ "first") 107) (($ $ "rest") 111) ((|#2| $ "last") 120) (($ $ (-1253 (-576))) 79) ((|#2| $ (-576)) 57) ((|#2| $ (-576) |#2|) 58)) (-2972 (((-576) $ $) 91)) (-3464 (($ $ (-1253 (-576))) 78) (($ $ (-576)) 72)) (-3173 (((-112) $) 87)) (-1442 (($ $) 105)) (-3564 (((-783) $) 104)) (-2705 (($ $) 103)) (-3573 (($ (-656 |#2|)) 53)) (-2869 (($ $) 126)) (-3281 (((-656 $) $) 90)) (-4369 (((-112) $ $) 89)) (-2043 (((-112) (-1 (-112) |#2|) $) 41)) (-2988 (((-112) $ $) 20)) (-3485 (((-783) $) 39))) +(((-685 |#1| |#2|) (-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -1714 (|#1| |#1| (-576))) (-15 -3518 ((-112) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -2871 (|#2| |#1| (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576))) (-15 -1947 ((-656 |#2|) |#1|)) (-15 -2378 ((-112) (-576) |#1|)) (-15 -3321 ((-656 (-576)) |#1|)) (-15 -3814 ((-576) |#1|)) (-15 -1386 ((-576) |#1|)) (-15 -3573 (|#1| (-656 |#2|))) (-15 -2871 (|#1| |#1| (-1253 (-576)))) (-15 -3464 (|#1| |#1| (-576))) (-15 -3464 (|#1| |#1| (-1253 (-576)))) (-15 -2277 (|#1| |#2| |#1| (-576))) (-15 -2277 (|#1| |#1| |#1| (-576))) (-15 -1442 (|#1| |#1|)) (-15 -3564 ((-783) |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -3923 (|#1| |#1| (-783))) (-15 -2871 (|#2| |#1| "last")) (-15 -3923 (|#2| |#1|)) (-15 -3515 (|#1| |#1| (-783))) (-15 -2871 (|#1| |#1| "rest")) (-15 -3515 (|#1| |#1|)) (-15 -3504 (|#1| |#1| (-783))) (-15 -2871 (|#2| |#1| "first")) (-15 -3504 (|#2| |#1|)) (-15 -3180 ((-112) |#1| |#1|)) (-15 -4369 ((-112) |#1| |#1|)) (-15 -2972 ((-576) |#1| |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -2871 (|#2| |#1| "value")) (-15 -3142 (|#2| |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -1994 ((-656 |#1|) |#1|)) (-15 -3281 ((-656 |#1|) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3485 ((-783) |#1|)) (-15 -3131 ((-112) |#1| (-783))) (-15 -3115 ((-112) |#1| (-783))) (-15 -2712 ((-112) |#1| (-783)))) (-686 |#2|) (-1236)) (T -685)) +NIL +(-10 -8 (-15 -2869 (|#1| |#1|)) (-15 -1714 (|#1| |#1| (-576))) (-15 -3518 ((-112) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -2871 (|#2| |#1| (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576))) (-15 -1947 ((-656 |#2|) |#1|)) (-15 -2378 ((-112) (-576) |#1|)) (-15 -3321 ((-656 (-576)) |#1|)) (-15 -3814 ((-576) |#1|)) (-15 -1386 ((-576) |#1|)) (-15 -3573 (|#1| (-656 |#2|))) (-15 -2871 (|#1| |#1| (-1253 (-576)))) (-15 -3464 (|#1| |#1| (-576))) (-15 -3464 (|#1| |#1| (-1253 (-576)))) (-15 -2277 (|#1| |#2| |#1| (-576))) (-15 -2277 (|#1| |#1| |#1| (-576))) (-15 -1442 (|#1| |#1|)) (-15 -3564 ((-783) |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -3923 (|#1| |#1| (-783))) (-15 -2871 (|#2| |#1| "last")) (-15 -3923 (|#2| |#1|)) (-15 -3515 (|#1| |#1| (-783))) (-15 -2871 (|#1| |#1| "rest")) (-15 -3515 (|#1| |#1|)) (-15 -3504 (|#1| |#1| (-783))) (-15 -2871 (|#2| |#1| "first")) (-15 -3504 (|#2| |#1|)) (-15 -3180 ((-112) |#1| |#1|)) (-15 -4369 ((-112) |#1| |#1|)) (-15 -2972 ((-576) |#1| |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -2871 (|#2| |#1| "value")) (-15 -3142 (|#2| |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -1994 ((-656 |#1|) |#1|)) (-15 -3281 ((-656 |#1|) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -4207 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3485 ((-783) |#1|)) (-15 -3131 ((-112) |#1| (-783))) (-15 -3115 ((-112) |#1| (-783))) (-15 -2712 ((-112) |#1| (-783)))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3142 ((|#1| $) 49)) (-2893 ((|#1| $) 66)) (-2464 (($ $) 68)) (-2333 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-2938 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) 8)) (-3429 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3614 (($ $ $) 57 (|has| $ (-6 -4462)))) (-2611 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1438 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 119 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) 104)) (-2882 ((|#1| $) 67)) (-3767 (($) 7 T CONST)) (-1658 (($ $) 126)) (-3515 (($ $) 74) (($ $ (-783)) 72)) (-3172 (($ $) 101 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#1| $) 102 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 105)) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1776 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 89)) (-3518 (((-112) $) 85)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-4231 (((-783) $) 125)) (-1994 (((-656 $) $) 51)) (-3180 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-4033 (($ (-783) |#1|) 111)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 97 (|has| (-576) (-862)))) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 96 (|has| (-576) (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2712 (((-112) $ (-783)) 10)) (-2942 (((-656 |#1|) $) 46)) (-1905 (((-112) $) 50)) (-3696 (($ $) 128)) (-3277 (((-112) $) 129)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-3923 ((|#1| $) 71) (($ $ (-783)) 69)) (-2277 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3321 (((-656 (-576)) $) 94)) (-2378 (((-112) (-576) $) 93)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2328 ((|#1| $) 127)) (-3504 ((|#1| $) 77) (($ $ (-783)) 75)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2500 (($ $ |#1|) 98 (|has| $ (-6 -4462)))) (-1714 (($ $ (-576)) 124)) (-3524 (((-112) $) 86)) (-3912 (((-112) $) 130)) (-2189 (((-112) $) 131)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) 92)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1253 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-2972 (((-576) $ $) 45)) (-3464 (($ $ (-1253 (-576))) 116) (($ $ (-576)) 115)) (-3173 (((-112) $) 47)) (-1442 (($ $) 63)) (-1544 (($ $) 60 (|has| $ (-6 -4462)))) (-3564 (((-783) $) 64)) (-2705 (($ $) 65)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 109)) (-1523 (($ $ $) 62 (|has| $ (-6 -4462))) (($ $ |#1|) 61 (|has| $ (-6 -4462)))) (-1661 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-2869 (($ $) 123)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) 52)) (-4369 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-686 |#1|) (-141) (-1236)) (T -686)) +((-3902 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) (-2496 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-3696 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) (-1658 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-1714 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) (-2869 (*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236))))) +(-13 (-1168 |t#1|) (-10 -8 (-15 -3902 ($ (-1 (-112) |t#1|) $)) (-15 -2496 ($ (-1 (-112) |t#1|) $)) (-15 -2189 ((-112) $)) (-15 -3912 ((-112) $)) (-15 -3277 ((-112) $)) (-15 -3696 ($ $)) (-15 -2328 (|t#1| $)) (-15 -1658 ($ $)) (-15 -4231 ((-783) $)) (-15 -1714 ($ $ (-576))) (-15 -2869 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1168 |#1|) . T) ((-1236) . T) ((-1274 |#1|) . T)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1334 (($ (-783) (-783) (-783)) 53 (|has| |#1| (-1068)))) (-3131 (((-112) $ (-783)) NIL)) (-3058 ((|#1| $ (-783) (-783) (-783) |#1|) 47)) (-3767 (($) NIL T CONST)) (-3522 (($ $ $) 57 (|has| |#1| (-1068)))) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3722 (((-1286 (-783)) $) 12)) (-3486 (($ (-1195) $ $) 34)) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-3834 (($ (-783)) 55 (|has| |#1| (-1068)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-783) (-783) (-783)) 44)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-3573 (($ (-656 (-656 (-656 |#1|)))) 67)) (-3563 (($ (-975 (-975 (-975 |#1|)))) 23) (((-975 (-975 (-975 |#1|))) $) 19) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-687 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1068)) (PROGN (-15 -1334 ($ (-783) (-783) (-783))) (-15 -3834 ($ (-783))) (-15 -3522 ($ $ $))) |%noBranch|) (-15 -3573 ($ (-656 (-656 (-656 |#1|))))) (-15 -2871 (|#1| $ (-783) (-783) (-783))) (-15 -3058 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -3563 ($ (-975 (-975 (-975 |#1|))))) (-15 -3563 ((-975 (-975 (-975 |#1|))) $)) (-15 -3486 ($ (-1195) $ $)) (-15 -3722 ((-1286 (-783)) $)))) (-1119)) (T -687)) +((-1334 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) (-4 *3 (-1119)))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) (-4 *3 (-1119)))) (-3522 (*1 *1 *1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-1068)) (-4 *2 (-1119)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-656 *3)))) (-4 *3 (-1119)) (-5 *1 (-687 *3)))) (-2871 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119)))) (-3058 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-4 *3 (-1119)) (-5 *1 (-687 *3)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-975 (-975 (-975 *3)))) (-5 *1 (-687 *3)) (-4 *3 (-1119)))) (-3486 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-687 *3)) (-4 *3 (-1119)))) (-3722 (*1 *2 *1) (-12 (-5 *2 (-1286 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1119))))) +(-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1068)) (PROGN (-15 -1334 ($ (-783) (-783) (-783))) (-15 -3834 ($ (-783))) (-15 -3522 ($ $ $))) |%noBranch|) (-15 -3573 ($ (-656 (-656 (-656 |#1|))))) (-15 -2871 (|#1| $ (-783) (-783) (-783))) (-15 -3058 (|#1| $ (-783) (-783) (-783) |#1|)) (-15 -3563 ($ (-975 (-975 (-975 |#1|))))) (-15 -3563 ((-975 (-975 (-975 |#1|))) $)) (-15 -3486 ($ (-1195) $ $)) (-15 -3722 ((-1286 (-783)) $)))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-2391 (((-495) $) 10)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 19) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-1154) $) 12)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-688) (-13 (-1102) (-10 -8 (-15 -2391 ((-495) $)) (-15 -2719 ((-1154) $))))) (T -688)) +((-2391 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-688))))) +(-13 (-1102) (-10 -8 (-15 -2391 ((-495) $)) (-15 -2719 ((-1154) $)))) +((-3474 (((-112) $ $) NIL)) (-3388 (((-656 |#1|) $) 15)) (-4154 (($ $) 19)) (-2853 (((-112) $) 20)) (-1539 (((-3 |#1| "failed") $) 23)) (-4056 ((|#1| $) 21)) (-3515 (($ $) 37)) (-2575 (($ $) 25)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-3578 (((-112) $ $) 47)) (-4261 (((-938) $) 40)) (-4143 (($ $) 18)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 ((|#1| $) 36)) (-3563 (((-874) $) 32) (($ |#1|) 24) (((-831 |#1|) $) 28)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 13)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-689 |#1|) (-13 (-862) (-1057 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3563 ((-831 |#1|) $)) (-15 -3504 (|#1| $)) (-15 -4143 ($ $)) (-15 -4261 ((-938) $)) (-15 -3578 ((-112) $ $)) (-15 -2575 ($ $)) (-15 -3515 ($ $)) (-15 -2853 ((-112) $)) (-15 -4154 ($ $)) (-15 -3388 ((-656 |#1|) $)))) (-862)) (T -689)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-3504 (*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-4143 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-3578 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-2575 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-3515 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) (-4154 (*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862))))) +(-13 (-862) (-1057 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3563 ((-831 |#1|) $)) (-15 -3504 (|#1| $)) (-15 -4143 ($ $)) (-15 -4261 ((-938) $)) (-15 -3578 ((-112) $ $)) (-15 -2575 ($ $)) (-15 -3515 ($ $)) (-15 -2853 ((-112) $)) (-15 -4154 ($ $)) (-15 -3388 ((-656 |#1|) $)))) +((-3655 ((|#1| (-1 |#1| (-783) |#1|) (-783) |#1|) 11)) (-3906 ((|#1| (-1 |#1| |#1|) (-783) |#1|) 9))) +(((-690 |#1|) (-10 -7 (-15 -3906 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -3655 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) (-1119)) (T -690)) +((-3655 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1119)) (-5 *1 (-690 *2)))) (-3906 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1119)) (-5 *1 (-690 *2))))) +(-10 -7 (-15 -3906 (|#1| (-1 |#1| |#1|) (-783) |#1|)) (-15 -3655 (|#1| (-1 |#1| (-783) |#1|) (-783) |#1|))) +((-4376 ((|#2| |#1| |#2|) 9)) (-4364 ((|#1| |#1| |#2|) 8))) +(((-691 |#1| |#2|) (-10 -7 (-15 -4364 (|#1| |#1| |#2|)) (-15 -4376 (|#2| |#1| |#2|))) (-1119) (-1119)) (T -691)) +((-4376 (*1 *2 *3 *2) (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-4364 (*1 *2 *2 *3) (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) +(-10 -7 (-15 -4364 (|#1| |#1| |#2|)) (-15 -4376 (|#2| |#1| |#2|))) +((-1848 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-692 |#1| |#2| |#3|) (-10 -7 (-15 -1848 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1119) (-1119) (-1119)) (T -692)) +((-1848 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-692 *5 *6 *2))))) +(-10 -7 (-15 -1848 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3474 (((-112) $ $) NIL)) (-3042 (((-1235) $) 21)) (-2980 (((-656 (-1235)) $) 19)) (-2958 (($ (-656 (-1235)) (-1235)) 14)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 29) (($ (-1200)) NIL) (((-1200) $) NIL) (((-1235) $) 22) (($ (-1137)) 10)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-693) (-13 (-1102) (-625 (-1235)) (-10 -8 (-15 -3563 ($ (-1137))) (-15 -2958 ($ (-656 (-1235)) (-1235))) (-15 -2980 ((-656 (-1235)) $)) (-15 -3042 ((-1235) $))))) (T -693)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1137)) (-5 *1 (-693)))) (-2958 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1235))) (-5 *3 (-1235)) (-5 *1 (-693)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-693)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-693))))) +(-13 (-1102) (-625 (-1235)) (-10 -8 (-15 -3563 ($ (-1137))) (-15 -2958 ($ (-656 (-1235)) (-1235))) (-15 -2980 ((-656 (-1235)) $)) (-15 -3042 ((-1235) $)))) +((-3655 (((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)) 26)) (-2998 (((-1 |#1|) |#1|) 8)) (-3081 ((|#1| |#1|) 19)) (-4248 (((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576)) 18) ((|#1| (-1 |#1| |#1|)) 11)) (-3563 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-783)) 23))) +(((-694 |#1|) (-10 -7 (-15 -2998 ((-1 |#1|) |#1|)) (-15 -3563 ((-1 |#1|) |#1|)) (-15 -4248 (|#1| (-1 |#1| |#1|))) (-15 -4248 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -3081 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -3655 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) (-1119)) (T -694)) +((-3655 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1119)) (-5 *1 (-694 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1119)) (-5 *1 (-694 *4)))) (-3081 (*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1119)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1119)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1119)))) (-3563 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119)))) (-2998 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119))))) +(-10 -7 (-15 -2998 ((-1 |#1|) |#1|)) (-15 -3563 ((-1 |#1|) |#1|)) (-15 -4248 (|#1| (-1 |#1| |#1|))) (-15 -4248 ((-656 |#1|) (-1 (-656 |#1|) (-656 |#1|)) (-576))) (-15 -3081 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-783))) (-15 -3655 ((-1 |#1| (-783) |#1|) (-1 |#1| (-783) |#1|)))) +((-2879 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3079 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1398 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3239 (((-1 |#2| |#1|) |#2|) 11))) +(((-695 |#1| |#2|) (-10 -7 (-15 -3239 ((-1 |#2| |#1|) |#2|)) (-15 -3079 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1398 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2879 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1119) (-1119)) (T -695)) +((-2879 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5)) (-4 *4 (-1119)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5)))) (-3239 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1119)) (-4 *3 (-1119))))) +(-10 -7 (-15 -3239 ((-1 |#2| |#1|) |#2|)) (-15 -3079 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1398 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2879 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-4264 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1605 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3359 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3919 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3068 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-696 |#1| |#2| |#3|) (-10 -7 (-15 -1605 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3359 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3919 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3068 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4264 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1119) (-1119) (-1119)) (T -696)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-1 *7 *5)) (-5 *1 (-696 *5 *6 *7)))) (-4264 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1119)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1119)))) (-3359 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6)))) (-1605 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1119)) (-4 *4 (-1119)) (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) +(-10 -7 (-15 -1605 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3359 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3919 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3068 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -4264 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-2521 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1632 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-697 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1632 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1632 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2521 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1068) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|) (-1068) (-384 |#5|) (-384 |#5|) (-699 |#5| |#6| |#7|)) (T -697)) +((-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) (-1632 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) (-5 *1 (-697 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8))))) +(-10 -7 (-15 -1632 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1632 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2521 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3497 (($ (-783) (-783)) 42)) (-2618 (($ $ $) 71)) (-2793 (($ |#3|) 66) (($ $) 67)) (-1491 (((-112) $) 36)) (-2789 (($ $ (-576) (-576)) 82)) (-3636 (($ $ (-576) (-576)) 83)) (-2873 (($ $ (-576) (-576) (-576) (-576)) 88)) (-1331 (($ $) 69)) (-4294 (((-112) $) 15)) (-2058 (($ $ (-576) (-576) $) 89)) (-3731 ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) 87)) (-4027 (($ (-783) |#2|) 53)) (-2457 (($ (-656 (-656 |#2|))) 51)) (-2156 (((-656 (-656 |#2|)) $) 78)) (-3758 (($ $ $) 70)) (-3463 (((-3 $ "failed") $ |#2|) 120)) (-2871 ((|#2| $ (-576) (-576)) NIL) ((|#2| $ (-576) (-576) |#2|) NIL) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-1716 (($ (-656 |#2|)) 54) (($ (-656 $)) 56)) (-4237 (((-112) $) 28)) (-3563 (($ |#4|) 61) (((-874) $) NIL)) (-2609 (((-112) $) 38)) (-3107 (($ $ |#2|) 122)) (-3095 (($ $ $) 93) (($ $) 96)) (-3083 (($ $ $) 91)) (** (($ $ (-783)) 109) (($ $ (-576)) 126)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-576) $) 101) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3563 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3107 (|#1| |#1| |#2|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -2058 (|#1| |#1| (-576) (-576) |#1|)) (-15 -2873 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -3636 (|#1| |#1| (-576) (-576))) (-15 -2789 (|#1| |#1| (-576) (-576))) (-15 -3731 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2871 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -2156 ((-656 (-656 |#2|)) |#1|)) (-15 -2618 (|#1| |#1| |#1|)) (-15 -3758 (|#1| |#1| |#1|)) (-15 -1331 (|#1| |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -2793 (|#1| |#3|)) (-15 -3563 (|#1| |#4|)) (-15 -1716 (|#1| (-656 |#1|))) (-15 -1716 (|#1| (-656 |#2|))) (-15 -4027 (|#1| (-783) |#2|)) (-15 -2457 (|#1| (-656 (-656 |#2|)))) (-15 -3497 (|#1| (-783) (-783))) (-15 -2609 ((-112) |#1|)) (-15 -1491 ((-112) |#1|)) (-15 -4237 ((-112) |#1|)) (-15 -4294 ((-112) |#1|)) (-15 -3731 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576) (-576)))) (-699 |#2| |#3| |#4|) (-1068) (-384 |#2|) (-384 |#2|)) (T -698)) +NIL +(-10 -8 (-15 -3563 ((-874) |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -3107 (|#1| |#1| |#2|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-783))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -2058 (|#1| |#1| (-576) (-576) |#1|)) (-15 -2873 (|#1| |#1| (-576) (-576) (-576) (-576))) (-15 -3636 (|#1| |#1| (-576) (-576))) (-15 -2789 (|#1| |#1| (-576) (-576))) (-15 -3731 (|#1| |#1| (-656 (-576)) (-656 (-576)) |#1|)) (-15 -2871 (|#1| |#1| (-656 (-576)) (-656 (-576)))) (-15 -2156 ((-656 (-656 |#2|)) |#1|)) (-15 -2618 (|#1| |#1| |#1|)) (-15 -3758 (|#1| |#1| |#1|)) (-15 -1331 (|#1| |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -2793 (|#1| |#3|)) (-15 -3563 (|#1| |#4|)) (-15 -1716 (|#1| (-656 |#1|))) (-15 -1716 (|#1| (-656 |#2|))) (-15 -4027 (|#1| (-783) |#2|)) (-15 -2457 (|#1| (-656 (-656 |#2|)))) (-15 -3497 (|#1| (-783) (-783))) (-15 -2609 ((-112) |#1|)) (-15 -1491 ((-112) |#1|)) (-15 -4237 ((-112) |#1|)) (-15 -4294 ((-112) |#1|)) (-15 -3731 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576) (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576) (-576)))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3497 (($ (-783) (-783)) 98)) (-2618 (($ $ $) 88)) (-2793 (($ |#2|) 92) (($ $) 91)) (-1491 (((-112) $) 100)) (-2789 (($ $ (-576) (-576)) 84)) (-3636 (($ $ (-576) (-576)) 83)) (-2873 (($ $ (-576) (-576) (-576) (-576)) 82)) (-1331 (($ $) 90)) (-4294 (((-112) $) 102)) (-3131 (((-112) $ (-783)) 8)) (-2058 (($ $ (-576) (-576) $) 81)) (-3731 ((|#1| $ (-576) (-576) |#1|) 45) (($ $ (-656 (-576)) (-656 (-576)) $) 85)) (-4158 (($ $ (-576) |#2|) 43)) (-2257 (($ $ (-576) |#3|) 42)) (-4027 (($ (-783) |#1|) 96)) (-3767 (($) 7 T CONST)) (-3243 (($ $) 68 (|has| |#1| (-317)))) (-1946 ((|#2| $ (-576)) 47)) (-3606 (((-783) $) 67 (|has| |#1| (-568)))) (-1776 ((|#1| $ (-576) (-576) |#1|) 44)) (-1698 ((|#1| $ (-576) (-576)) 49)) (-3825 (((-656 |#1|) $) 31)) (-2849 (((-783) $) 66 (|has| |#1| (-568)))) (-2115 (((-656 |#3|) $) 65 (|has| |#1| (-568)))) (-1622 (((-783) $) 52)) (-4033 (($ (-783) (-783) |#1|) 58)) (-1636 (((-783) $) 51)) (-3115 (((-112) $ (-783)) 9)) (-4329 ((|#1| $) 63 (|has| |#1| (-6 (-4463 "*"))))) (-1650 (((-576) $) 56)) (-1351 (((-576) $) 54)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-4159 (((-576) $) 55)) (-4062 (((-576) $) 53)) (-2457 (($ (-656 (-656 |#1|))) 97)) (-1763 (($ (-1 |#1| |#1|) $) 35)) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-2156 (((-656 (-656 |#1|)) $) 87)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-2030 (((-3 $ "failed") $) 62 (|has| |#1| (-374)))) (-3758 (($ $ $) 89)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2500 (($ $ |#1|) 57)) (-3463 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-568)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ (-576) (-576)) 50) ((|#1| $ (-576) (-576) |#1|) 48) (($ $ (-656 (-576)) (-656 (-576))) 86)) (-1716 (($ (-656 |#1|)) 95) (($ (-656 $)) 94)) (-4237 (((-112) $) 101)) (-2201 ((|#1| $) 64 (|has| |#1| (-6 (-4463 "*"))))) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4331 ((|#3| $ (-576)) 46)) (-3563 (($ |#3|) 93) (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2609 (((-112) $) 99)) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3107 (($ $ |#1|) 69 (|has| |#1| (-374)))) (-3095 (($ $ $) 79) (($ $) 78)) (-3083 (($ $ $) 80)) (** (($ $ (-783)) 71) (($ $ (-576)) 61 (|has| |#1| (-374)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-576) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-699 |#1| |#2| |#3|) (-141) (-1068) (-384 |t#1|) (-384 |t#1|)) (T -699)) -((-2478 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1705 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3297 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3483 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2779 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2779 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4092 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-2645 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-2645 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2144 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2437 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3207 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-4367 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4248 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1573 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4230 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4175 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3482 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4007 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-4018 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1068)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2022 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-2664 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) (-2295 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4463) (-6 -4462) (-15 -2478 ((-112) $)) (-15 -2849 ((-112) $)) (-15 -2454 ((-112) $)) (-15 -1485 ((-112) $)) (-15 -1705 ($ (-783) (-783))) (-15 -3297 ($ (-656 (-656 |t#1|)))) (-15 -3483 ($ (-783) |t#1|)) (-15 -2779 ($ (-656 |t#1|))) (-15 -2779 ($ (-656 $))) (-15 -4092 ($ |t#3|)) (-15 -2645 ($ |t#2|)) (-15 -2645 ($ $)) (-15 -2144 ($ $)) (-15 -2437 ($ $ $)) (-15 -3207 ($ $ $)) (-15 -2318 ((-656 (-656 |t#1|)) $)) (-15 -4367 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -4248 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -1573 ($ $ (-576) (-576))) (-15 -4230 ($ $ (-576) (-576))) (-15 -4175 ($ $ (-576) (-576) (-576) (-576))) (-15 -3482 ($ $ (-576) (-576) $)) (-15 -4007 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -4018 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -2022 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -4028 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -2664 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -4049 ((-783) $)) (-15 -1659 ((-783) $)) (-15 -3865 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4464 "*"))) (PROGN (-15 -2058 (|t#1| $)) (-15 -1497 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2295 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-57 |#1| |#2| |#3|) . T) ((-1237) . T)) -((-2664 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-4049 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-1659 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-3865 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-2252 (((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-1497 ((|#1| |#4|) 52)) (-3830 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-2295 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-3162 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-3296 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-2285 ((|#4| |#4| (-576) (-576)) 55)) (-1836 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-2058 ((|#1| |#4|) 98)) (-3131 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) -(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2058 (|#1| |#4|)) (-15 -1497 (|#1| |#4|)) (-15 -2285 (|#4| |#4| (-576) (-576))) (-15 -3296 (|#4| |#4| |#1| (-576) (-576))) (-15 -1836 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4049 ((-783) |#4|)) (-15 -1659 ((-783) |#4|)) (-15 -3865 ((-656 |#3|) |#4|)) (-15 -3162 (|#4| |#4|)) (-15 -3830 ((-3 |#4| "failed") |#4|)) (-15 -3131 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2664 (|#4| |#4|)) (-15 -2252 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2295 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700)) -((-2295 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2252 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-2664 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3131 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3830 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3162 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1659 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4049 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-1836 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-3296 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2285 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-1497 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-2058 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))) -(-10 -7 (-15 -2058 (|#1| |#4|)) (-15 -1497 (|#1| |#4|)) (-15 -2285 (|#4| |#4| (-576) (-576))) (-15 -3296 (|#4| |#4| |#1| (-576) (-576))) (-15 -1836 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -4049 ((-783) |#4|)) (-15 -1659 ((-783) |#4|)) (-15 -3865 ((-656 |#3|) |#4|)) (-15 -3162 (|#4| |#4|)) (-15 -3830 ((-3 |#4| "failed") |#4|)) (-15 -3131 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -2664 (|#4| |#4|)) (-15 -2252 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2295 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1705 (($ (-783) (-783)) 64)) (-3207 (($ $ $) NIL)) (-2645 (($ (-1287 |#1|)) NIL) (($ $) NIL)) (-2454 (((-112) $) NIL)) (-1573 (($ $ (-576) (-576)) 22)) (-4230 (($ $ (-576) (-576)) NIL)) (-4175 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-2144 (($ $) NIL)) (-2478 (((-112) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3482 (($ $ (-576) (-576) $) NIL)) (-4248 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-3344 (($ $ (-576) (-1287 |#1|)) NIL)) (-1806 (($ $ (-576) (-1287 |#1|)) NIL)) (-3483 (($ (-783) |#1|) 37)) (-3656 (($) NIL T CONST)) (-2664 (($ $) 46 (|has| |#1| (-317)))) (-4059 (((-1287 |#1|) $ (-576)) NIL)) (-4049 (((-783) $) 48 (|has| |#1| (-568)))) (-3888 ((|#1| $ (-576) (-576) |#1|) 69)) (-3817 ((|#1| $ (-576) (-576)) NIL)) (-4260 (((-656 |#1|) $) NIL)) (-1659 (((-783) $) 50 (|has| |#1| (-568)))) (-3865 (((-656 (-1287 |#1|)) $) 53 (|has| |#1| (-568)))) (-2126 (((-783) $) 32)) (-1992 (($ (-783) (-783) |#1|) 28)) (-2140 (((-783) $) 33)) (-1419 (((-112) $ (-783)) NIL)) (-1497 ((|#1| $) 44 (|has| |#1| (-6 (-4464 "*"))))) (-4217 (((-576) $) 10)) (-1961 (((-576) $) 11)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-1439 (((-576) $) 14)) (-2743 (((-576) $) 65)) (-3297 (($ (-656 (-656 |#1|))) NIL)) (-3874 (($ (-1 |#1| |#1|) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2318 (((-656 (-656 |#1|)) $) 76)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2295 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-2437 (($ $ $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2918 (($ $ |#1|) NIL)) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-2779 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1287 |#1|)) 70)) (-2849 (((-112) $) NIL)) (-2058 ((|#1| $) 42 (|has| |#1| (-6 (-4464 "*"))))) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-1505 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-1762 (((-1287 |#1|) $ (-576)) NIL)) (-4092 (($ (-1287 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-1485 (((-112) $) NIL)) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $ $) NIL) (($ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1287 |#1|) $ (-1287 |#1|)) NIL) (((-1287 |#1|) (-1287 |#1|) $) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-701 |#1|) (-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 -2779 ($ (-1287 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2295 ((-3 $ "failed") $)) |%noBranch|))) (-1068)) (T -701)) -((-2295 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1068)))) (-2779 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1068)) (-5 *1 (-701 *3))))) -(-13 (-699 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 -2779 ($ (-1287 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2295 ((-3 $ "failed") $)) |%noBranch|))) -((-2793 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-3039 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-1695 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-1978 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-2657 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-1335 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-1758 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46))) -(((-702 |#1|) (-10 -7 (-15 -1758 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1978 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2657 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2657 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1335 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -3039 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2793 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1695 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1068)) (T -702)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-702 *4)))) (-1695 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-702 *4)))) (-2793 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-3039 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-1335 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-2657 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-2657 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-1978 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-1758 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) -(-10 -7 (-15 -1758 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1978 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2657 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2657 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1335 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -3039 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -2793 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1695 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) -((-2974 (((-3 |#1| "failed") $) 18)) (-2378 ((|#1| $) NIL)) (-3609 (($) 7 T CONST)) (-2176 (($ |#1|) 8)) (-4092 (($ |#1|) 16) (((-874) $) 23)) (-4291 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3609)) 11)) (-4323 ((|#1| $) 15))) -(((-703 |#1|) (-13 (-1282) (-1057 |#1|) (-625 (-874)) (-10 -8 (-15 -2176 ($ |#1|)) (-15 -4291 ((-112) $ (|[\|\|]| |#1|))) (-15 -4291 ((-112) $ (|[\|\|]| -3609))) (-15 -4323 (|#1| $)) (-15 -3609 ($) -2670))) (-625 (-874))) (T -703)) -((-2176 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3609)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-874))))) (-4323 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-3609 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))) -(-13 (-1282) (-1057 |#1|) (-625 (-874)) (-10 -8 (-15 -2176 ($ |#1|)) (-15 -4291 ((-112) $ (|[\|\|]| |#1|))) (-15 -4291 ((-112) $ (|[\|\|]| -3609))) (-15 -4323 (|#1| $)) (-15 -3609 ($) -2670))) -((-3210 ((|#2| |#2| |#4|) 29)) (-2539 (((-701 |#2|) |#3| |#4|) 35)) (-4196 (((-701 |#2|) |#2| |#4|) 34)) (-2785 (((-1287 |#2|) |#2| |#4|) 16)) (-2826 ((|#2| |#3| |#4|) 28)) (-2362 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-3694 (((-701 |#2|) |#2| |#4| (-783)) 46))) -(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2785 ((-1287 |#2|) |#2| |#4|)) (-15 -2826 (|#2| |#3| |#4|)) (-15 -3210 (|#2| |#2| |#4|)) (-15 -4196 ((-701 |#2|) |#2| |#4|)) (-15 -3694 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2539 ((-701 |#2|) |#3| |#4|)) (-15 -2362 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1119) (-915 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4462)))) (T -704)) -((-2362 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *7 (-915 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4462)))))) (-2539 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *6 (-915 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))) (-3694 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *3 (-915 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4462)))))) (-4196 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))) (-3210 (*1 *2 *2 *3) (-12 (-4 *4 (-1119)) (-4 *2 (-915 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4462)))))) (-2826 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *2 (-915 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))))) (-2785 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-1287 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462))))))) -(-10 -7 (-15 -2785 ((-1287 |#2|) |#2| |#4|)) (-15 -2826 (|#2| |#3| |#4|)) (-15 -3210 (|#2| |#2| |#4|)) (-15 -4196 ((-701 |#2|) |#2| |#4|)) (-15 -3694 ((-701 |#2|) |#2| |#4| (-783))) (-15 -2539 ((-701 |#2|) |#3| |#4|)) (-15 -2362 ((-701 |#2|) |#3| |#4| (-783) (-783)))) -((-2324 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-3634 ((|#1| (-701 |#2|)) 9)) (-4077 (((-701 |#1|) (-701 |#2|)) 18))) -(((-705 |#1| |#2|) (-10 -7 (-15 -3634 (|#1| (-701 |#2|))) (-15 -4077 ((-701 |#1|) (-701 |#2|))) (-15 -2324 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1011 |#1|)) (T -705)) -((-2324 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-3634 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4))))) -(-10 -7 (-15 -3634 (|#1| (-701 |#2|))) (-15 -4077 ((-701 |#1|) (-701 |#2|))) (-15 -2324 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-1532 (((-701 (-711))) NIL) (((-701 (-711)) (-1287 $)) NIL)) (-3803 (((-711) $) NIL)) (-2266 (($ $) NIL (|has| (-711) (-1222)))) (-2111 (($ $) NIL (|has| (-711) (-1222)))) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-1587 (($ $) NIL (-3765 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-2100 (((-430 $) $) NIL (-3765 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-1403 (($ $) NIL (-12 (|has| (-711) (-1021)) (|has| (-711) (-1222))))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-4407 (((-112) $ $) NIL (|has| (-711) (-317)))) (-2247 (((-783)) NIL (|has| (-711) (-379)))) (-2236 (($ $) NIL (|has| (-711) (-1222)))) (-2084 (($ $) NIL (|has| (-711) (-1222)))) (-2294 (($ $) NIL (|has| (-711) (-1222)))) (-2138 (($ $) NIL (|has| (-711) (-1222)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1057 (-419 (-576)))))) (-2378 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1057 (-419 (-576)))))) (-3006 (($ (-1287 (-711))) NIL) (($ (-1287 (-711)) (-1287 $)) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-1975 (($ $ $) NIL (|has| (-711) (-317)))) (-3754 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1287 $)) NIL)) (-3687 (((-701 (-711)) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-711))) (|:| |vec| (-1287 (-711)))) (-1287 $) $) NIL) (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-711))) (|:| |vec| (-1287 (-711)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1287 $)) NIL (|has| (-711) (-651 (-576))))) (-2359 (((-3 $ "failed") (-419 (-1192 (-711)))) NIL (|has| (-711) (-374))) (($ (-1192 (-711))) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1415 (((-711) $) 29)) (-1653 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-3863 (((-112) $) NIL (|has| (-711) (-557)))) (-4266 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-4049 (((-938)) NIL)) (-2446 (($) NIL (|has| (-711) (-379)))) (-1986 (($ $ $) NIL (|has| (-711) (-317)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-1554 (($) NIL (|has| (-711) (-360)))) (-3506 (((-112) $) NIL (|has| (-711) (-360)))) (-1329 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-2725 (((-112) $) NIL (-3765 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-1673 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1079)) (|has| (-711) (-1222))))) (-3926 (($) NIL (|has| (-711) (-1222)))) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-711) (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-711) (-899 (-576))))) (-1538 (((-845 (-938)) $) NIL (|has| (-711) (-360))) (((-938) $) NIL (|has| (-711) (-360)))) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL (-12 (|has| (-711) (-1021)) (|has| (-711) (-1222))))) (-4252 (((-711) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-3164 (((-1192 (-711)) $) NIL (|has| (-711) (-374)))) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-2477 (($ (-1 (-711) (-711)) $) NIL)) (-3225 (((-938) $) NIL (|has| (-711) (-379)))) (-2703 (($ $) NIL (|has| (-711) (-1222)))) (-2344 (((-1192 (-711)) $) NIL)) (-3117 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| (-711) (-374)))) (-3503 (($) NIL (|has| (-711) (-360)) CONST)) (-2550 (($ (-938)) NIL (|has| (-711) (-379)))) (-2500 (($) NIL)) (-1428 (((-711) $) 31)) (-3139 (((-1139) $) NIL)) (-2582 (($) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-711) (-317)))) (-3149 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| (-711) (-360)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-1392 (((-430 $) $) NIL (-3765 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| (-711) (-317)))) (-2022 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-3353 (($ $) NIL (|has| (-711) (-1222)))) (-2259 (($ $ (-1196) (-711)) NIL (|has| (-711) (-526 (-1196) (-711)))) (($ $ (-656 (-1196)) (-656 (-711))) NIL (|has| (-711) (-526 (-1196) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-1787 (((-783) $) NIL (|has| (-711) (-317)))) (-4367 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| (-711) (-317)))) (-1955 (((-711)) NIL) (((-711) (-1287 $)) NIL)) (-2547 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-3614 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-3765 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-4003 (((-701 (-711)) (-1287 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-2840 (((-1192 (-711))) NIL)) (-2307 (($ $) NIL (|has| (-711) (-1222)))) (-2149 (($ $) NIL (|has| (-711) (-1222)))) (-3870 (($) NIL (|has| (-711) (-360)))) (-2281 (($ $) NIL (|has| (-711) (-1222)))) (-2123 (($ $) NIL (|has| (-711) (-1222)))) (-2253 (($ $) NIL (|has| (-711) (-1222)))) (-2099 (($ $) NIL (|has| (-711) (-1222)))) (-3287 (((-701 (-711)) (-1287 $)) NIL) (((-1287 (-711)) $) NIL) (((-701 (-711)) (-1287 $) (-1287 $)) NIL) (((-1287 (-711)) $ (-1287 $)) NIL)) (-1505 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1041))) (((-171 (-390)) $) NIL (|has| (-711) (-1041))) (((-905 (-390)) $) NIL (|has| (-711) (-626 (-905 (-390))))) (((-905 (-576)) $) NIL (|has| (-711) (-626 (-905 (-576))))) (($ (-1192 (-711))) NIL) (((-1192 (-711)) $) NIL) (($ (-1287 (-711))) NIL) (((-1287 (-711)) $) NIL)) (-3646 (($ $) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-3765 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-926))) (|has| (-711) (-360))))) (-2738 (($ (-711) (-711)) 12)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-3765 (|has| (-711) (-1057 (-419 (-576)))) (|has| (-711) (-374))))) (-3612 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-3765 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-926))) (|has| (-711) (-146))))) (-3794 (((-1192 (-711)) $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL)) (-2340 (($ $) NIL (|has| (-711) (-1222)))) (-2184 (($ $) NIL (|has| (-711) (-1222)))) (-2947 (((-112) $ $) NIL)) (-2317 (($ $) NIL (|has| (-711) (-1222)))) (-2161 (($ $) NIL (|has| (-711) (-1222)))) (-2368 (($ $) NIL (|has| (-711) (-1222)))) (-2207 (($ $) NIL (|has| (-711) (-1222)))) (-2819 (((-711) $) NIL (|has| (-711) (-1222)))) (-3945 (($ $) NIL (|has| (-711) (-1222)))) (-2220 (($ $) NIL (|has| (-711) (-1222)))) (-2352 (($ $) NIL (|has| (-711) (-1222)))) (-2195 (($ $) NIL (|has| (-711) (-1222)))) (-2329 (($ $) NIL (|has| (-711) (-1222)))) (-2173 (($ $) NIL (|has| (-711) (-1222)))) (-3423 (($ $) NIL (|has| (-711) (-1079)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1196)))) (|has| (-711) (-917 (-1196))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-3765 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL (|has| (-711) (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1222))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1021)) (|has| (-711) (-1222)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374))))) -(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -4092 ($ (-171 (-390)))) (-15 -4092 ($ (-171 (-576)))) (-15 -4092 ($ (-171 (-711)))) (-15 -4092 ($ (-171 (-713)))) (-15 -4092 ((-171 (-390)) $))))) (T -706)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))) -(-13 (-399) (-167 (-711)) (-10 -8 (-15 -4092 ($ (-171 (-390)))) (-15 -4092 ($ (-171 (-576)))) (-15 -4092 ($ (-171 (-711)))) (-15 -4092 ($ (-171 (-713)))) (-15 -4092 ((-171 (-390)) $)))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-3831 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-4329 (($ $) 63)) (-1690 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-2892 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-2983 (((-656 (-2 (|:| -2900 |#1|) (|:| -3150 (-783)))) $) 62)) (-1833 (($) 50) (($ (-656 |#1|)) 49)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 51)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 43)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-4294 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-112)))) (-3497 (*1 *1 *2 *2) (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-4027 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3563 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *2)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (-2793 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (-2793 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-1331 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3758 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2618 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) (-2871 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3731 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2789 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3636 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2873 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-2058 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3083 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3095 (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-699 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *2 (-384 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-699 *3 *2 *4)) (-4 *3 (-1068)) (-4 *2 (-384 *3)) (-4 *4 (-384 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) (-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (-3243 (*1 *1 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-317)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1068)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1068)))) (-2030 (*1 *1 *1) (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4462) (-6 -4461) (-15 -4294 ((-112) $)) (-15 -4237 ((-112) $)) (-15 -1491 ((-112) $)) (-15 -2609 ((-112) $)) (-15 -3497 ($ (-783) (-783))) (-15 -2457 ($ (-656 (-656 |t#1|)))) (-15 -4027 ($ (-783) |t#1|)) (-15 -1716 ($ (-656 |t#1|))) (-15 -1716 ($ (-656 $))) (-15 -3563 ($ |t#3|)) (-15 -2793 ($ |t#2|)) (-15 -2793 ($ $)) (-15 -1331 ($ $)) (-15 -3758 ($ $ $)) (-15 -2618 ($ $ $)) (-15 -2156 ((-656 (-656 |t#1|)) $)) (-15 -2871 ($ $ (-656 (-576)) (-656 (-576)))) (-15 -3731 ($ $ (-656 (-576)) (-656 (-576)) $)) (-15 -2789 ($ $ (-576) (-576))) (-15 -3636 ($ $ (-576) (-576))) (-15 -2873 ($ $ (-576) (-576) (-576) (-576))) (-15 -2058 ($ $ (-576) (-576) $)) (-15 -3083 ($ $ $)) (-15 -3095 ($ $ $)) (-15 -3095 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-576) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-783))) (IF (|has| |t#1| (-568)) (-15 -3463 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -3107 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-317)) (-15 -3243 ($ $)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3606 ((-783) $)) (-15 -2849 ((-783) $)) (-15 -2115 ((-656 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4463 "*"))) (PROGN (-15 -2201 (|t#1| $)) (-15 -4329 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2030 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-57 |#1| |#2| |#3|) . T) ((-1236) . T)) +((-3243 ((|#4| |#4|) 92 (|has| |#1| (-317)))) (-3606 (((-783) |#4|) 120 (|has| |#1| (-568)))) (-2849 (((-783) |#4|) 96 (|has| |#1| (-568)))) (-2115 (((-656 |#3|) |#4|) 103 (|has| |#1| (-568)))) (-2817 (((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|) 135 (|has| |#1| (-317)))) (-4329 ((|#1| |#4|) 52)) (-3924 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-568)))) (-2030 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-374)))) (-2474 ((|#4| |#4|) 88 (|has| |#1| (-568)))) (-3437 ((|#4| |#4| |#1| (-576) (-576)) 60)) (-2275 ((|#4| |#4| (-576) (-576)) 55)) (-3151 ((|#4| |#4| |#1| (-576) (-576)) 65)) (-2201 ((|#1| |#4|) 98)) (-3686 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-568))))) +(((-700 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2201 (|#1| |#4|)) (-15 -4329 (|#1| |#4|)) (-15 -2275 (|#4| |#4| (-576) (-576))) (-15 -3437 (|#4| |#4| |#1| (-576) (-576))) (-15 -3151 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3606 ((-783) |#4|)) (-15 -2849 ((-783) |#4|)) (-15 -2115 ((-656 |#3|) |#4|)) (-15 -2474 (|#4| |#4|)) (-15 -3924 ((-3 |#4| "failed") |#4|)) (-15 -3686 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -3243 (|#4| |#4|)) (-15 -2817 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2030 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-174) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -700)) +((-2030 (*1 *2 *2) (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2817 (*1 *2 *3 *3) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) (-3243 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3686 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3924 (*1 *2 *2) (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2474 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2849 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3606 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-3151 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-3437 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) (-4 *2 (-699 *3 *5 *6)))) (-2275 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) (-4 *2 (-699 *4 *5 *6)))) (-4329 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) (-2201 (*1 *2 *3) (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5))))) +(-10 -7 (-15 -2201 (|#1| |#4|)) (-15 -4329 (|#1| |#4|)) (-15 -2275 (|#4| |#4| (-576) (-576))) (-15 -3437 (|#4| |#4| |#1| (-576) (-576))) (-15 -3151 (|#4| |#4| |#1| (-576) (-576))) (IF (|has| |#1| (-568)) (PROGN (-15 -3606 ((-783) |#4|)) (-15 -2849 ((-783) |#4|)) (-15 -2115 ((-656 |#3|) |#4|)) (-15 -2474 (|#4| |#4|)) (-15 -3924 ((-3 |#4| "failed") |#4|)) (-15 -3686 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-317)) (PROGN (-15 -3243 (|#4| |#4|)) (-15 -2817 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2030 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3497 (($ (-783) (-783)) 64)) (-2618 (($ $ $) NIL)) (-2793 (($ (-1286 |#1|)) NIL) (($ $) NIL)) (-1491 (((-112) $) NIL)) (-2789 (($ $ (-576) (-576)) 22)) (-3636 (($ $ (-576) (-576)) NIL)) (-2873 (($ $ (-576) (-576) (-576) (-576)) NIL)) (-1331 (($ $) NIL)) (-4294 (((-112) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2058 (($ $ (-576) (-576) $) NIL)) (-3731 ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576)) $) NIL)) (-4158 (($ $ (-576) (-1286 |#1|)) NIL)) (-2257 (($ $ (-576) (-1286 |#1|)) NIL)) (-4027 (($ (-783) |#1|) 37)) (-3767 (($) NIL T CONST)) (-3243 (($ $) 46 (|has| |#1| (-317)))) (-1946 (((-1286 |#1|) $ (-576)) NIL)) (-3606 (((-783) $) 48 (|has| |#1| (-568)))) (-1776 ((|#1| $ (-576) (-576) |#1|) 69)) (-1698 ((|#1| $ (-576) (-576)) NIL)) (-3825 (((-656 |#1|) $) NIL)) (-2849 (((-783) $) 50 (|has| |#1| (-568)))) (-2115 (((-656 (-1286 |#1|)) $) 53 (|has| |#1| (-568)))) (-1622 (((-783) $) 32)) (-4033 (($ (-783) (-783) |#1|) 28)) (-1636 (((-783) $) 33)) (-3115 (((-112) $ (-783)) NIL)) (-4329 ((|#1| $) 44 (|has| |#1| (-6 (-4463 "*"))))) (-1650 (((-576) $) 10)) (-1351 (((-576) $) 11)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-4159 (((-576) $) 14)) (-4062 (((-576) $) 65)) (-2457 (($ (-656 (-656 |#1|))) NIL)) (-1763 (($ (-1 |#1| |#1|) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2156 (((-656 (-656 |#1|)) $) 76)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2030 (((-3 $ "failed") $) 60 (|has| |#1| (-374)))) (-3758 (($ $ $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2500 (($ $ |#1|) NIL)) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) (-576)) NIL) ((|#1| $ (-576) (-576) |#1|) NIL) (($ $ (-656 (-576)) (-656 (-576))) NIL)) (-1716 (($ (-656 |#1|)) NIL) (($ (-656 $)) NIL) (($ (-1286 |#1|)) 70)) (-4237 (((-112) $) NIL)) (-2201 ((|#1| $) 42 (|has| |#1| (-6 (-4463 "*"))))) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-4076 (((-548) $) 80 (|has| |#1| (-626 (-548))))) (-4331 (((-1286 |#1|) $ (-576)) NIL)) (-3563 (($ (-1286 |#1|)) NIL) (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2609 (((-112) $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $ $) NIL) (($ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-783)) 38) (($ $ (-576)) 62 (|has| |#1| (-374)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-576) $) NIL) (((-1286 |#1|) $ (-1286 |#1|)) NIL) (((-1286 |#1|) (-1286 |#1|) $) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-701 |#1|) (-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 -1716 ($ (-1286 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2030 ((-3 $ "failed") $)) |%noBranch|))) (-1068)) (T -701)) +((-2030 (*1 *1 *1) (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1068)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1068)) (-5 *1 (-701 *3))))) +(-13 (-699 |#1| (-1286 |#1|) (-1286 |#1|)) (-10 -8 (-15 -1716 ($ (-1286 |#1|))) (IF (|has| |#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -2030 ((-3 $ "failed") $)) |%noBranch|))) +((-3637 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 37)) (-3419 (((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|) 32)) (-2338 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783)) 43)) (-3703 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 25)) (-3838 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|)) 29) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 27)) (-2900 (((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|)) 31)) (-2046 (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 23)) (** (((-701 |#1|) (-701 |#1|) (-783)) 46))) +(((-702 |#1|) (-10 -7 (-15 -2046 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3703 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3838 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3838 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2900 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -3419 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -3637 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2338 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) (-1068)) (T -702)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-702 *4)))) (-2338 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-702 *4)))) (-3637 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-3419 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-2900 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-3838 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-3703 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) (-2046 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) +(-10 -7 (-15 -2046 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3703 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3838 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -3838 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2900 ((-701 |#1|) (-701 |#1|) |#1| (-701 |#1|))) (-15 -3419 ((-701 |#1|) (-701 |#1|) (-701 |#1|) |#1|)) (-15 -3637 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2338 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-701 |#1|) (-783))) (-15 ** ((-701 |#1|) (-701 |#1|) (-783)))) +((-1539 (((-3 |#1| "failed") $) 18)) (-4056 ((|#1| $) NIL)) (-1325 (($) 7 T CONST)) (-4279 (($ |#1|) 8)) (-3563 (($ |#1|) 16) (((-874) $) 23)) (-2787 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1325)) 11)) (-2014 ((|#1| $) 15))) +(((-703 |#1|) (-13 (-1281) (-1057 |#1|) (-625 (-874)) (-10 -8 (-15 -4279 ($ |#1|)) (-15 -2787 ((-112) $ (|[\|\|]| |#1|))) (-15 -2787 ((-112) $ (|[\|\|]| -1325))) (-15 -2014 (|#1| $)) (-15 -1325 ($) -1398))) (-625 (-874))) (T -703)) +((-4279 (*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112)) (-5 *1 (-703 *4)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1325)) (-5 *2 (-112)) (-5 *1 (-703 *4)) (-4 *4 (-625 (-874))))) (-2014 (*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) (-1325 (*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))) +(-13 (-1281) (-1057 |#1|) (-625 (-874)) (-10 -8 (-15 -4279 ($ |#1|)) (-15 -2787 ((-112) $ (|[\|\|]| |#1|))) (-15 -2787 ((-112) $ (|[\|\|]| -1325))) (-15 -2014 (|#1| $)) (-15 -1325 ($) -1398))) +((-1513 ((|#2| |#2| |#4|) 29)) (-4066 (((-701 |#2|) |#3| |#4|) 35)) (-4266 (((-701 |#2|) |#2| |#4|) 34)) (-4167 (((-1286 |#2|) |#2| |#4|) 16)) (-3571 ((|#2| |#3| |#4|) 28)) (-4020 (((-701 |#2|) |#3| |#4| (-783) (-783)) 47)) (-1983 (((-701 |#2|) |#2| |#4| (-783)) 46))) +(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4167 ((-1286 |#2|) |#2| |#4|)) (-15 -3571 (|#2| |#3| |#4|)) (-15 -1513 (|#2| |#2| |#4|)) (-15 -4266 ((-701 |#2|) |#2| |#4|)) (-15 -1983 ((-701 |#2|) |#2| |#4| (-783))) (-15 -4066 ((-701 |#2|) |#3| |#4|)) (-15 -4020 ((-701 |#2|) |#3| |#4| (-783) (-783)))) (-1119) (-915 |#1|) (-384 |#2|) (-13 (-384 |#1|) (-10 -7 (-6 -4461)))) (T -704)) +((-4020 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *7 (-915 *6)) (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461)))))) (-4066 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *6 (-915 *5)) (-5 *2 (-701 *6)) (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))) (-1983 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *3 (-915 *6)) (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461)))))) (-4266 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-701 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))) (-1513 (*1 *2 *2 *3) (-12 (-4 *4 (-1119)) (-4 *2 (-915 *4)) (-5 *1 (-704 *4 *2 *5 *3)) (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4461)))))) (-3571 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *2 (-915 *5)) (-5 *1 (-704 *5 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461)))))) (-4167 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-1286 *3)) (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) +(-10 -7 (-15 -4167 ((-1286 |#2|) |#2| |#4|)) (-15 -3571 (|#2| |#3| |#4|)) (-15 -1513 (|#2| |#2| |#4|)) (-15 -4266 ((-701 |#2|) |#2| |#4|)) (-15 -1983 ((-701 |#2|) |#2| |#4| (-783))) (-15 -4066 ((-701 |#2|) |#3| |#4|)) (-15 -4020 ((-701 |#2|) |#3| |#4| (-783) (-783)))) +((-3956 (((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)) 20)) (-3412 ((|#1| (-701 |#2|)) 9)) (-3266 (((-701 |#1|) (-701 |#2|)) 18))) +(((-705 |#1| |#2|) (-10 -7 (-15 -3412 (|#1| (-701 |#2|))) (-15 -3266 ((-701 |#1|) (-701 |#2|))) (-15 -3956 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) (-568) (-1011 |#1|)) (T -705)) +((-3956 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) (-5 *1 (-705 *4 *5)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-701 *4)) (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-705 *2 *4))))) +(-10 -7 (-15 -3412 (|#1| (-701 |#2|))) (-15 -3266 ((-701 |#1|) (-701 |#2|))) (-15 -3956 ((-2 (|:| |num| (-701 |#1|)) (|:| |den| |#1|)) (-701 |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-4084 (((-701 (-711))) NIL) (((-701 (-711)) (-1286 $)) NIL)) (-2310 (((-711) $) NIL)) (-3894 (($ $) NIL (|has| (-711) (-1221)))) (-3768 (($ $) NIL (|has| (-711) (-1221)))) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| (-711) (-360)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-1760 (($ $) NIL (-2835 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-2732 (((-430 $) $) NIL (-2835 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-1853 (($ $) NIL (-12 (|has| (-711) (-1021)) (|has| (-711) (-1221))))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-1727 (((-112) $ $) NIL (|has| (-711) (-317)))) (-2148 (((-783)) NIL (|has| (-711) (-379)))) (-3872 (($ $) NIL (|has| (-711) (-1221)))) (-3747 (($ $) NIL (|has| (-711) (-1221)))) (-3916 (($ $) NIL (|has| (-711) (-1221)))) (-3788 (($ $) NIL (|has| (-711) (-1221)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-711) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-1057 (-419 (-576)))))) (-4056 (((-576) $) NIL) (((-711) $) NIL) (((-419 (-576)) $) NIL (|has| (-711) (-1057 (-419 (-576)))))) (-2612 (($ (-1286 (-711))) NIL) (($ (-1286 (-711)) (-1286 $)) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-711) (-360)))) (-3420 (($ $ $) NIL (|has| (-711) (-317)))) (-3103 (((-701 (-711)) $) NIL) (((-701 (-711)) $ (-1286 $)) NIL)) (-3687 (((-701 (-711)) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-711))) (|:| |vec| (-1286 (-711)))) (-1286 $) $) NIL) (((-701 (-711)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-711))) (|:| |vec| (-1286 (-711)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-711) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-711) (-651 (-576)))) (((-701 (-576)) (-1286 $)) NIL (|has| (-711) (-651 (-576))))) (-2521 (((-3 $ "failed") (-419 (-1191 (-711)))) NIL (|has| (-711) (-374))) (($ (-1191 (-711))) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1864 (((-711) $) 29)) (-3615 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-711) (-557)))) (-3235 (((-112) $) NIL (|has| (-711) (-557)))) (-3113 (((-419 (-576)) $) NIL (|has| (-711) (-557)))) (-3606 (((-938)) NIL)) (-1803 (($) NIL (|has| (-711) (-379)))) (-3431 (($ $ $) NIL (|has| (-711) (-317)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| (-711) (-317)))) (-2580 (($) NIL (|has| (-711) (-360)))) (-2664 (((-112) $) NIL (|has| (-711) (-360)))) (-3499 (($ $) NIL (|has| (-711) (-360))) (($ $ (-783)) NIL (|has| (-711) (-360)))) (-1792 (((-112) $) NIL (-2835 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-4121 (((-2 (|:| |r| (-711)) (|:| |phi| (-711))) $) NIL (-12 (|has| (-711) (-1079)) (|has| (-711) (-1221))))) (-1570 (($) NIL (|has| (-711) (-1221)))) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-711) (-899 (-390)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-711) (-899 (-576))))) (-3333 (((-845 (-938)) $) NIL (|has| (-711) (-360))) (((-938) $) NIL (|has| (-711) (-360)))) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL (-12 (|has| (-711) (-1021)) (|has| (-711) (-1221))))) (-4072 (((-711) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| (-711) (-360)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-2554 (((-1191 (-711)) $) NIL (|has| (-711) (-374)))) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1632 (($ (-1 (-711) (-711)) $) NIL)) (-1902 (((-938) $) NIL (|has| (-711) (-379)))) (-3710 (($ $) NIL (|has| (-711) (-1221)))) (-2510 (((-1191 (-711)) $) NIL)) (-3459 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| (-711) (-374)))) (-1538 (($) NIL (|has| (-711) (-360)) CONST)) (-3257 (($ (-938)) NIL (|has| (-711) (-379)))) (-2539 (($) NIL)) (-1876 (((-711) $) 31)) (-1445 (((-1139) $) NIL)) (-2202 (($) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-711) (-317)))) (-3495 (($ (-656 $)) NIL (|has| (-711) (-317))) (($ $ $) NIL (|has| (-711) (-317)))) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| (-711) (-360)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-711) (-317)) (|has| (-711) (-926))))) (-1839 (((-430 $) $) NIL (-2835 (-12 (|has| (-711) (-317)) (|has| (-711) (-926))) (|has| (-711) (-374))))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-711) (-317))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| (-711) (-317)))) (-3463 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-711)) NIL (|has| (-711) (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-711) (-317)))) (-3984 (($ $) NIL (|has| (-711) (-1221)))) (-3306 (($ $ (-1195) (-711)) NIL (|has| (-711) (-526 (-1195) (-711)))) (($ $ (-656 (-1195)) (-656 (-711))) NIL (|has| (-711) (-526 (-1195) (-711)))) (($ $ (-656 (-304 (-711)))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-304 (-711))) NIL (|has| (-711) (-319 (-711)))) (($ $ (-711) (-711)) NIL (|has| (-711) (-319 (-711)))) (($ $ (-656 (-711)) (-656 (-711))) NIL (|has| (-711) (-319 (-711))))) (-3112 (((-783) $) NIL (|has| (-711) (-317)))) (-2871 (($ $ (-711)) NIL (|has| (-711) (-296 (-711) (-711))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| (-711) (-317)))) (-1960 (((-711)) NIL) (((-711) (-1286 $)) NIL)) (-3721 (((-3 (-783) "failed") $ $) NIL (|has| (-711) (-360))) (((-783) $) NIL (|has| (-711) (-360)))) (-2735 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1195)))) (|has| (-711) (-917 (-1195))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1195)))) (|has| (-711) (-917 (-1195))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1195)))) (|has| (-711) (-917 (-1195))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1195)))) (|has| (-711) (-917 (-1195))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-2835 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-1423 (((-701 (-711)) (-1286 $) (-1 (-711) (-711))) NIL (|has| (-711) (-374)))) (-1372 (((-1191 (-711))) NIL)) (-3928 (($ $) NIL (|has| (-711) (-1221)))) (-3798 (($ $) NIL (|has| (-711) (-1221)))) (-2594 (($) NIL (|has| (-711) (-360)))) (-3905 (($ $) NIL (|has| (-711) (-1221)))) (-3778 (($ $) NIL (|has| (-711) (-1221)))) (-3882 (($ $) NIL (|has| (-711) (-1221)))) (-3757 (($ $) NIL (|has| (-711) (-1221)))) (-1809 (((-701 (-711)) (-1286 $)) NIL) (((-1286 (-711)) $) NIL) (((-701 (-711)) (-1286 $) (-1286 $)) NIL) (((-1286 (-711)) $ (-1286 $)) NIL)) (-4076 (((-548) $) NIL (|has| (-711) (-626 (-548)))) (((-171 (-227)) $) NIL (|has| (-711) (-1041))) (((-171 (-390)) $) NIL (|has| (-711) (-1041))) (((-905 (-390)) $) NIL (|has| (-711) (-626 (-905 (-390))))) (((-905 (-576)) $) NIL (|has| (-711) (-626 (-905 (-576))))) (($ (-1191 (-711))) NIL) (((-1191 (-711)) $) NIL) (($ (-1286 (-711))) NIL) (((-1286 (-711)) $) NIL)) (-4026 (($ $) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-2835 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-926))) (|has| (-711) (-360))))) (-4136 (($ (-711) (-711)) 12)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-576)) NIL) (($ (-711)) NIL) (($ (-171 (-390))) 13) (($ (-171 (-576))) 19) (($ (-171 (-711))) 28) (($ (-171 (-713))) 25) (((-171 (-390)) $) 33) (($ (-419 (-576))) NIL (-2835 (|has| (-711) (-1057 (-419 (-576)))) (|has| (-711) (-374))))) (-2883 (($ $) NIL (|has| (-711) (-360))) (((-3 $ "failed") $) NIL (-2835 (-12 (|has| (-711) (-317)) (|has| $ (-146)) (|has| (-711) (-926))) (|has| (-711) (-146))))) (-3941 (((-1191 (-711)) $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL)) (-3958 (($ $) NIL (|has| (-711) (-1221)))) (-3831 (($ $) NIL (|has| (-711) (-1221)))) (-3040 (((-112) $ $) NIL)) (-3939 (($ $) NIL (|has| (-711) (-1221)))) (-3808 (($ $) NIL (|has| (-711) (-1221)))) (-3981 (($ $) NIL (|has| (-711) (-1221)))) (-3852 (($ $) NIL (|has| (-711) (-1221)))) (-4225 (((-711) $) NIL (|has| (-711) (-1221)))) (-1830 (($ $) NIL (|has| (-711) (-1221)))) (-3863 (($ $) NIL (|has| (-711) (-1221)))) (-3969 (($ $) NIL (|has| (-711) (-1221)))) (-3841 (($ $) NIL (|has| (-711) (-1221)))) (-3948 (($ $) NIL (|has| (-711) (-1221)))) (-3820 (($ $) NIL (|has| (-711) (-1221)))) (-2264 (($ $) NIL (|has| (-711) (-1079)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1 (-711) (-711)) (-783)) NIL) (($ $ (-1 (-711) (-711))) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1195)))) (|has| (-711) (-917 (-1195))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1195)))) (|has| (-711) (-917 (-1195))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1195)))) (|has| (-711) (-917 (-1195))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-711) (-374)) (|has| (-711) (-915 (-1195)))) (|has| (-711) (-917 (-1195))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237)))) (($ $) NIL (-2835 (-12 (|has| (-711) (-238)) (|has| (-711) (-374))) (|has| (-711) (-237))))) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL (|has| (-711) (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| (-711) (-1221))) (($ $ (-419 (-576))) NIL (-12 (|has| (-711) (-1021)) (|has| (-711) (-1221)))) (($ $ (-576)) NIL (|has| (-711) (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-711) $) NIL) (($ $ (-711)) NIL) (($ (-419 (-576)) $) NIL (|has| (-711) (-374))) (($ $ (-419 (-576))) NIL (|has| (-711) (-374))))) +(((-706) (-13 (-399) (-167 (-711)) (-10 -8 (-15 -3563 ($ (-171 (-390)))) (-15 -3563 ($ (-171 (-576)))) (-15 -3563 ($ (-171 (-711)))) (-15 -3563 ($ (-171 (-713)))) (-15 -3563 ((-171 (-390)) $))))) (T -706)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-171 (-576))) (-5 *1 (-706)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-171 (-711))) (-5 *1 (-706)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-171 (-713))) (-5 *1 (-706)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-706))))) +(-13 (-399) (-167 (-711)) (-10 -8 (-15 -3563 ($ (-171 (-390)))) (-15 -3563 ($ (-171 (-576)))) (-15 -3563 ($ (-171 (-711)))) (-15 -3563 ($ (-171 (-713)))) (-15 -3563 ((-171 (-390)) $)))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-4001 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3315 (($ $) 63)) (-3172 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3902 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1961 (((-656 (-2 (|:| -4353 |#1|) (|:| -1456 (-783)))) $) 62)) (-2837 (($) 50) (($ (-656 |#1|)) 49)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 51)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 43)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-707 |#1|) (-141) (-1119)) (T -707)) -((-2361 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1119)))) (-4329 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1119)))) (-2983 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-2 (|:| -2900 *3) (|:| -3150 (-783)))))))) -(-13 (-240 |t#1|) (-10 -8 (-15 -2361 ($ |t#1| $ (-783))) (-15 -4329 ($ $)) (-15 -2983 ((-656 (-2 (|:| -2900 |t#1|) (|:| -3150 (-783)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-1626 (((-656 |#1|) (-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))) (-576)) 65)) (-3690 ((|#1| |#1| (-576)) 62)) (-3149 ((|#1| |#1| |#1| (-576)) 46)) (-1392 (((-656 |#1|) |#1| (-576)) 49)) (-2992 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-1609 (((-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))) |#1| (-576)) 61))) -(((-708 |#1|) (-10 -7 (-15 -3149 (|#1| |#1| |#1| (-576))) (-15 -3690 (|#1| |#1| (-576))) (-15 -1392 ((-656 |#1|) |#1| (-576))) (-15 -1609 ((-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))) |#1| (-576))) (-15 -1626 ((-656 |#1|) (-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))) (-576))) (-15 -2992 (|#1| |#1| (-576) |#1| (-576)))) (-1263 (-576))) (T -708)) -((-2992 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -1392 *5) (|:| -2369 (-576))))) (-5 *4 (-576)) (-4 *5 (-1263 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-1609 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1392 *3) (|:| -2369 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1263 *4)))) (-1392 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1263 *4)))) (-3690 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))) (-3149 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3))))) -(-10 -7 (-15 -3149 (|#1| |#1| |#1| (-576))) (-15 -3690 (|#1| |#1| (-576))) (-15 -1392 ((-656 |#1|) |#1| (-576))) (-15 -1609 ((-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))) |#1| (-576))) (-15 -1626 ((-656 |#1|) (-656 (-2 (|:| -1392 |#1|) (|:| -2369 (-576)))) (-576))) (-15 -2992 (|#1| |#1| (-576) |#1| (-576)))) -((-2448 (((-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2754 (((-1152 (-227)) (-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 53) (((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 55) (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 57)) (-1467 (((-1152 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-656 (-270))) NIL)) (-2055 (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 58))) -(((-709) (-10 -7 (-15 -2754 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2754 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2754 ((-1152 (-227)) (-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2055 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1467 ((-1152 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2448 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709)) -((-2448 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-960 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-1467 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) (-2055 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) (-2754 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-2754 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) (-2754 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709))))) -(-10 -7 (-15 -2754 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2754 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2754 ((-1152 (-227)) (-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2055 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -1467 ((-1152 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2448 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) -((-1392 (((-430 (-1192 |#4|)) (-1192 |#4|)) 86) (((-430 |#4|) |#4|) 266))) -(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1392 ((-430 |#4|) |#4|)) (-15 -1392 ((-430 (-1192 |#4|)) (-1192 |#4|)))) (-862) (-805) (-360) (-966 |#3| |#2| |#1|)) (T -710)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4))))) -(-10 -7 (-15 -1392 ((-430 |#4|) |#4|)) (-15 -1392 ((-430 (-1192 |#4|)) (-1192 |#4|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 97)) (-3942 (((-576) $) 34)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-2255 (($ $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-1403 (($ $) NIL)) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL)) (-3656 (($) NIL T CONST)) (-4327 (($ $) NIL)) (-2974 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-2378 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-1975 (($ $ $) 109)) (-3179 (((-3 $ "failed") $) 100)) (-1986 (($ $ $) 108)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-2250 (((-938)) 89) (((-938) (-938)) 88)) (-3567 (((-112) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-1538 (((-576) $) NIL)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL)) (-4252 (($ $) NIL)) (-3713 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3575 (((-576) (-576)) 94) (((-576)) 95)) (-3492 (($ $ $) NIL) (($) NIL (-12 (-2433 (|has| $ (-6 -4445))) (-2433 (|has| $ (-6 -4453)))))) (-4169 (((-576) (-576)) 92) (((-576)) 93)) (-2726 (($ $ $) NIL) (($) NIL (-12 (-2433 (|has| $ (-6 -4445))) (-2433 (|has| $ (-6 -4453)))))) (-4415 (((-576) $) 17)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 104)) (-2226 (((-938) (-576)) NIL (|has| $ (-6 -4453)))) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL)) (-3892 (($ $) NIL)) (-2733 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-938)) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) 105)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3175 (((-576) $) 24)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 107)) (-3963 (((-938)) NIL) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-3262 (((-938) (-576)) NIL (|has| $ (-6 -4453)))) (-1505 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) NIL)) (-4092 (((-874) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-2471 (((-783)) 119 T CONST)) (-3154 (($ (-576) (-576) (-938)) 54)) (-4179 (($ $) NIL)) (-1939 (((-938)) NIL) (((-938) (-938)) NIL (|has| $ (-6 -4453)))) (-1531 (((-112) $ $) NIL)) (-1841 (((-938)) 91) (((-938) (-938)) 90)) (-2947 (((-112) $ $) NIL)) (-3423 (($ $) NIL)) (-4300 (($) 37 T CONST)) (-4310 (($) 18 T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 96)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 118)) (-4028 (($ $ $) 77)) (-4018 (($ $) 115) (($ $ $) 116)) (-4007 (($ $ $) 114)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-711) (-13 (-416) (-399) (-374) (-1057 (-390)) (-1057 (-419 (-576))) (-148) (-10 -8 (-15 -2250 ((-938) (-938))) (-15 -2250 ((-938))) (-15 -1841 ((-938) (-938))) (-15 -4169 ((-576) (-576))) (-15 -4169 ((-576))) (-15 -3575 ((-576) (-576))) (-15 -3575 ((-576))) (-15 -4092 ((-390) $)) (-15 -4092 ($ (-713))) (-15 -4415 ((-576) $)) (-15 -3175 ((-576) $)) (-15 -3154 ($ (-576) (-576) (-938)))))) (T -711)) -((-3175 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4415 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-2250 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) (-4169 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4169 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3575 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-3154 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-5 *1 (-711))))) -(-13 (-416) (-399) (-374) (-1057 (-390)) (-1057 (-419 (-576))) (-148) (-10 -8 (-15 -2250 ((-938) (-938))) (-15 -2250 ((-938))) (-15 -1841 ((-938) (-938))) (-15 -4169 ((-576) (-576))) (-15 -4169 ((-576))) (-15 -3575 ((-576) (-576))) (-15 -3575 ((-576))) (-15 -4092 ((-390) $)) (-15 -4092 ($ (-713))) (-15 -4415 ((-576) $)) (-15 -3175 ((-576) $)) (-15 -3154 ($ (-576) (-576) (-938))))) -((-3693 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-2664 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-2921 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-4265 (((-701 |#1|) (-701 |#1|)) 67)) (-2252 (((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|) 84))) -(((-712 |#1|) (-10 -7 (-15 -4265 ((-701 |#1|) (-701 |#1|))) (-15 -2664 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -2921 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3693 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2252 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|))) (-317)) (T -712)) -((-2252 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-3693 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2921 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2664 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-4265 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(-10 -7 (-15 -4265 ((-701 |#1|) (-701 |#1|))) (-15 -2664 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -2921 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3693 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2252 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4253 (($ $ $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2908 (($ $ $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL)) (-3298 (($ $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) 31)) (-2378 (((-576) $) 29)) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1653 (((-3 (-419 (-576)) "failed") $) NIL)) (-3863 (((-112) $) NIL)) (-4266 (((-419 (-576)) $) NIL)) (-2446 (($ $) NIL) (($) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-2217 (($ $ $ $) NIL)) (-3166 (($ $ $) NIL)) (-3567 (((-112) $) NIL)) (-2135 (($ $ $) NIL)) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1810 (((-112) $) NIL)) (-3082 (((-112) $) NIL)) (-2083 (((-3 $ "failed") $) NIL)) (-3713 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3077 (($ $ $ $) NIL)) (-3492 (($ $ $) NIL)) (-3523 (((-938) (-938)) 10) (((-938)) 9)) (-2726 (($ $ $) NIL)) (-2391 (($ $) NIL)) (-1325 (($ $) NIL)) (-3117 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-2268 (($ $ $) NIL)) (-3503 (($) NIL T CONST)) (-3796 (($ $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1765 (($ $) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2015 (((-112) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-783)) NIL) (($ $) NIL)) (-3273 (($ $) NIL)) (-4268 (($ $) NIL)) (-1505 (((-227) $) NIL) (((-390) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-2471 (((-783)) NIL T CONST)) (-4276 (((-112) $ $) NIL)) (-1760 (($ $ $) NIL)) (-1531 (((-112) $ $) NIL)) (-1841 (($) NIL)) (-2947 (((-112) $ $) NIL)) (-2967 (($ $ $ $) NIL)) (-3423 (($ $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-783)) NIL) (($ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) -(((-713) (-13 (-399) (-557) (-10 -8 (-15 -3523 ((-938) (-938))) (-15 -3523 ((-938))) (-15 -4092 ((-326 $) (-326 (-576))))))) (T -713)) -((-3523 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713)))) (-3523 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))) -(-13 (-399) (-557) (-10 -8 (-15 -3523 ((-938) (-938))) (-15 -3523 ((-938))) (-15 -4092 ((-326 $) (-326 (-576)))))) -((-1943 (((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)) 19)) (-2878 (((-1 |#4| |#2| |#3|) (-1196)) 12))) -(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2878 ((-1 |#4| |#2| |#3|) (-1196))) (-15 -1943 ((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)))) (-626 (-548)) (-1237) (-1237) (-1237)) (T -714)) -((-1943 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237)))) (-2878 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237))))) -(-10 -7 (-15 -2878 ((-1 |#4| |#2| |#3|) (-1196))) (-15 -1943 ((-1 |#4| |#2| |#3|) |#1| (-1196) (-1196)))) -((-3373 (((-1 (-227) (-227) (-227)) |#1| (-1196) (-1196)) 43) (((-1 (-227) (-227)) |#1| (-1196)) 48))) -(((-715 |#1|) (-10 -7 (-15 -3373 ((-1 (-227) (-227)) |#1| (-1196))) (-15 -3373 ((-1 (-227) (-227) (-227)) |#1| (-1196) (-1196)))) (-626 (-548))) (T -715)) -((-3373 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-3373 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3373 ((-1 (-227) (-227)) |#1| (-1196))) (-15 -3373 ((-1 (-227) (-227) (-227)) |#1| (-1196) (-1196)))) -((-3021 (((-1196) |#1| (-1196) (-656 (-1196))) 10) (((-1196) |#1| (-1196) (-1196) (-1196)) 13) (((-1196) |#1| (-1196) (-1196)) 12) (((-1196) |#1| (-1196)) 11))) -(((-716 |#1|) (-10 -7 (-15 -3021 ((-1196) |#1| (-1196))) (-15 -3021 ((-1196) |#1| (-1196) (-1196))) (-15 -3021 ((-1196) |#1| (-1196) (-1196) (-1196))) (-15 -3021 ((-1196) |#1| (-1196) (-656 (-1196))))) (-626 (-548))) (T -716)) -((-3021 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3021 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3021 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3021 (*1 *2 *3 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3021 ((-1196) |#1| (-1196))) (-15 -3021 ((-1196) |#1| (-1196) (-1196))) (-15 -3021 ((-1196) |#1| (-1196) (-1196) (-1196))) (-15 -3021 ((-1196) |#1| (-1196) (-656 (-1196))))) -((-3519 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-717 |#1| |#2|) (-10 -7 (-15 -3519 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1237) (-1237)) (T -717)) -((-3519 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1237)) (-4 *4 (-1237))))) -(-10 -7 (-15 -3519 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-1512 (((-1 |#3| |#2|) (-1196)) 11)) (-1943 (((-1 |#3| |#2|) |#1| (-1196)) 21))) -(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -1512 ((-1 |#3| |#2|) (-1196))) (-15 -1943 ((-1 |#3| |#2|) |#1| (-1196)))) (-626 (-548)) (-1237) (-1237)) (T -718)) -((-1943 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237))))) -(-10 -7 (-15 -1512 ((-1 |#3| |#2|) (-1196))) (-15 -1943 ((-1 |#3| |#2|) |#1| (-1196)))) -((-3491 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1287 (-656 (-1192 |#3|))) |#3|) 92)) (-2630 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-3497 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1192 |#4|)) (-1287 (-656 (-1192 |#3|))) |#3|) 47))) -(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3497 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1192 |#4|)) (-1287 (-656 (-1192 |#3|))) |#3|)) (-15 -2630 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -3491 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1287 (-656 (-1192 |#3|))) |#3|))) (-805) (-862) (-317) (-966 |#3| |#1| |#2|)) (T -719)) -((-3491 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1192 *13))) (-5 *3 (-1192 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1287 (-656 (-1192 *10)))) (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-966 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-2630 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1192 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-966 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1192 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1192 *12)))) (-3497 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1192 *11))) (-5 *3 (-1192 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1287 (-656 (-1192 *8)))) (-4 *10 (-862)) (-4 *8 (-317)) (-4 *11 (-966 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11))))) -(-10 -7 (-15 -3497 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1192 |#4|)) (-1287 (-656 (-1192 |#3|))) |#3|)) (-15 -2630 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -3491 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-656 |#2|) (-656 (-1192 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1287 (-656 (-1192 |#3|))) |#3|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-1717 (($ $) 48)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-1518 (($ |#1| (-783)) 46)) (-1915 (((-783) $) 50)) (-1692 ((|#1| $) 49)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2369 (((-783) $) 51)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-2430 ((|#1| $ (-783)) 47)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) +((-2040 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1119)))) (-3315 (*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1119)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-707 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-2 (|:| -4353 *3) (|:| -1456 (-783)))))))) +(-13 (-240 |t#1|) (-10 -8 (-15 -2040 ($ |t#1| $ (-783))) (-15 -3315 ($ $)) (-15 -1961 ((-656 (-2 (|:| -4353 |t#1|) (|:| -1456 (-783)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-2931 (((-656 |#1|) (-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))) (-576)) 65)) (-2821 ((|#1| |#1| (-576)) 62)) (-3495 ((|#1| |#1| |#1| (-576)) 46)) (-1839 (((-656 |#1|) |#1| (-576)) 49)) (-3595 ((|#1| |#1| (-576) |#1| (-576)) 40)) (-2000 (((-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))) |#1| (-576)) 61))) +(((-708 |#1|) (-10 -7 (-15 -3495 (|#1| |#1| |#1| (-576))) (-15 -2821 (|#1| |#1| (-576))) (-15 -1839 ((-656 |#1|) |#1| (-576))) (-15 -2000 ((-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))) |#1| (-576))) (-15 -2931 ((-656 |#1|) (-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))) (-576))) (-15 -3595 (|#1| |#1| (-576) |#1| (-576)))) (-1262 (-576))) (T -708)) +((-3595 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| -1839 *5) (|:| -1433 (-576))))) (-5 *4 (-576)) (-4 *5 (-1262 *4)) (-5 *2 (-656 *5)) (-5 *1 (-708 *5)))) (-2000 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1839 *3) (|:| -1433 *4)))) (-5 *1 (-708 *3)) (-4 *3 (-1262 *4)))) (-1839 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) (-4 *3 (-1262 *4)))) (-2821 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))) (-3495 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3))))) +(-10 -7 (-15 -3495 (|#1| |#1| |#1| (-576))) (-15 -2821 (|#1| |#1| (-576))) (-15 -1839 ((-656 |#1|) |#1| (-576))) (-15 -2000 ((-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))) |#1| (-576))) (-15 -2931 ((-656 |#1|) (-656 (-2 (|:| -1839 |#1|) (|:| -1433 (-576)))) (-576))) (-15 -3595 (|#1| |#1| (-576) |#1| (-576)))) +((-2227 (((-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))) 17)) (-2845 (((-1152 (-227)) (-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 53) (((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 55) (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 57)) (-2159 (((-1152 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-656 (-270))) NIL)) (-3091 (((-1152 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270))) 58))) +(((-709) (-10 -7 (-15 -2845 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2845 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2845 ((-1152 (-227)) (-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -3091 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2159 ((-1152 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2227 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227)))))) (T -709)) +((-2227 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1 (-227) (-227) (-227) (-227))) (-5 *2 (-1 (-960 (-227)) (-227) (-227))) (-5 *1 (-709)))) (-2159 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) (-3091 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) (-2845 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709)))) (-2845 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-227))) (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) (-2845 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709))))) +(-10 -7 (-15 -2845 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2845 ((-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2845 ((-1152 (-227)) (-1152 (-227)) (-1 (-960 (-227)) (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -3091 ((-1152 (-227)) (-1 (-227) (-227) (-227)) (-3 (-1 (-227) (-227) (-227) (-227)) "undefined") (-1113 (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2159 ((-1152 (-227)) (-326 (-576)) (-326 (-576)) (-326 (-576)) (-1 (-227) (-227)) (-1113 (-227)) (-656 (-270)))) (-15 -2227 ((-1 (-960 (-227)) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227)) (-1 (-227) (-227) (-227) (-227))))) +((-1839 (((-430 (-1191 |#4|)) (-1191 |#4|)) 86) (((-430 |#4|) |#4|) 266))) +(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1839 ((-430 |#4|) |#4|)) (-15 -1839 ((-430 (-1191 |#4|)) (-1191 |#4|)))) (-862) (-805) (-360) (-966 |#3| |#2| |#1|)) (T -710)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4))))) +(-10 -7 (-15 -1839 ((-430 |#4|) |#4|)) (-15 -1839 ((-430 (-1191 |#4|)) (-1191 |#4|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 97)) (-1560 (((-576) $) 34)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1615 (($ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1853 (($ $) NIL)) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL)) (-3767 (($) NIL T CONST)) (-2703 (($ $) NIL)) (-1539 (((-3 (-576) "failed") $) 85) (((-3 (-419 (-576)) "failed") $) 28) (((-3 (-390) "failed") $) 82)) (-4056 (((-576) $) 87) (((-419 (-576)) $) 79) (((-390) $) 80)) (-3420 (($ $ $) 109)) (-1551 (((-3 $ "failed") $) 100)) (-3431 (($ $ $) 108)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-3268 (((-938)) 89) (((-938) (-938)) 88)) (-1910 (((-112) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL)) (-3333 (((-576) $) NIL)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL)) (-4072 (($ $) NIL)) (-3566 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4439 (((-576) (-576)) 94) (((-576)) 95)) (-2442 (($ $ $) NIL) (($) NIL (-12 (-2746 (|has| $ (-6 -4444))) (-2746 (|has| $ (-6 -4452)))))) (-3483 (((-576) (-576)) 92) (((-576)) 93)) (-1893 (($ $ $) NIL) (($) NIL (-12 (-2746 (|has| $ (-6 -4444))) (-2746 (|has| $ (-6 -4452)))))) (-1431 (((-576) $) 17)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 104)) (-2357 (((-938) (-576)) NIL (|has| $ (-6 -4452)))) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL)) (-3835 (($ $) NIL)) (-3096 (($ (-576) (-576)) NIL) (($ (-576) (-576) (-938)) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) 105)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-4274 (((-576) $) 24)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 107)) (-2924 (((-938)) NIL) (((-938) (-938)) NIL (|has| $ (-6 -4452)))) (-4184 (((-938) (-576)) NIL (|has| $ (-6 -4452)))) (-4076 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) NIL)) (-3563 (((-874) $) 63) (($ (-576)) 75) (($ $) NIL) (($ (-419 (-576))) 78) (($ (-576)) 75) (($ (-419 (-576))) 78) (($ (-390)) 72) (((-390) $) 61) (($ (-713)) 66)) (-1858 (((-783)) 119 T CONST)) (-3125 (($ (-576) (-576) (-938)) 54)) (-3270 (($ $) NIL)) (-3840 (((-938)) NIL) (((-938) (-938)) NIL (|has| $ (-6 -4452)))) (-3985 (((-112) $ $) NIL)) (-3402 (((-938)) 91) (((-938) (-938)) 90)) (-3040 (((-112) $ $) NIL)) (-2264 (($ $) NIL)) (-2800 (($) 37 T CONST)) (-2810 (($) 18 T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 96)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 118)) (-3107 (($ $ $) 77)) (-3095 (($ $) 115) (($ $ $) 116)) (-3083 (($ $ $) 114)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 103)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 101) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-711) (-13 (-416) (-399) (-374) (-1057 (-390)) (-1057 (-419 (-576))) (-148) (-10 -8 (-15 -3268 ((-938) (-938))) (-15 -3268 ((-938))) (-15 -3402 ((-938) (-938))) (-15 -3483 ((-576) (-576))) (-15 -3483 ((-576))) (-15 -4439 ((-576) (-576))) (-15 -4439 ((-576))) (-15 -3563 ((-390) $)) (-15 -3563 ($ (-713))) (-15 -1431 ((-576) $)) (-15 -4274 ((-576) $)) (-15 -3125 ($ (-576) (-576) (-938)))))) (T -711)) +((-4274 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3268 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) (-3483 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3483 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4439 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-4439 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-711)))) (-3125 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-5 *1 (-711))))) +(-13 (-416) (-399) (-374) (-1057 (-390)) (-1057 (-419 (-576))) (-148) (-10 -8 (-15 -3268 ((-938) (-938))) (-15 -3268 ((-938))) (-15 -3402 ((-938) (-938))) (-15 -3483 ((-576) (-576))) (-15 -3483 ((-576))) (-15 -4439 ((-576) (-576))) (-15 -4439 ((-576))) (-15 -3563 ((-390) $)) (-15 -3563 ($ (-713))) (-15 -1431 ((-576) $)) (-15 -4274 ((-576) $)) (-15 -3125 ($ (-576) (-576) (-938))))) +((-3159 (((-701 |#1|) (-701 |#1|) |#1| |#1|) 85)) (-3243 (((-701 |#1|) (-701 |#1|) |#1|) 66)) (-1575 (((-701 |#1|) (-701 |#1|) |#1|) 86)) (-2994 (((-701 |#1|) (-701 |#1|)) 67)) (-2817 (((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|) 84))) +(((-712 |#1|) (-10 -7 (-15 -2994 ((-701 |#1|) (-701 |#1|))) (-15 -3243 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1575 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3159 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2817 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|))) (-317)) (T -712)) +((-2817 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-712 *3)) (-4 *3 (-317)))) (-3159 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-1575 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-3243 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) (-2994 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(-10 -7 (-15 -2994 ((-701 |#1|) (-701 |#1|))) (-15 -3243 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -1575 ((-701 |#1|) (-701 |#1|) |#1|)) (-15 -3159 ((-701 |#1|) (-701 |#1|) |#1| |#1|)) (-15 -2817 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-4192 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $ $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL)) (-2745 (($ $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) 31)) (-4056 (((-576) $) 29)) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3615 (((-3 (-419 (-576)) "failed") $) NIL)) (-3235 (((-112) $) NIL)) (-3113 (((-419 (-576)) $) NIL)) (-1803 (($ $) NIL) (($) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-2917 (($ $ $ $) NIL)) (-1493 (($ $ $) NIL)) (-1910 (((-112) $) NIL)) (-1891 (($ $ $) NIL)) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1414 (((-112) $) NIL)) (-3828 (((-112) $) NIL)) (-3930 (((-3 $ "failed") $) NIL)) (-3566 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3020 (($ $ $ $) NIL)) (-2442 (($ $ $) NIL)) (-1755 (((-938) (-938)) 10) (((-938)) 9)) (-1893 (($ $ $) NIL)) (-1591 (($ $) NIL)) (-4261 (($ $) NIL)) (-3459 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1368 (($ $ $) NIL)) (-1538 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1473 (($ $) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2489 (((-112) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-783)) NIL) (($ $) NIL)) (-1771 (($ $) NIL)) (-1954 (($ $) NIL)) (-4076 (((-227) $) NIL) (((-390) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (((-576) $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) 28) (($ $) NIL) (($ (-576)) 28) (((-326 $) (-326 (-576))) 18)) (-1858 (((-783)) NIL T CONST)) (-2599 (((-112) $ $) NIL)) (-4114 (($ $ $) NIL)) (-3985 (((-112) $ $) NIL)) (-3402 (($) NIL)) (-3040 (((-112) $ $) NIL)) (-3002 (($ $ $ $) NIL)) (-2264 (($ $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-783)) NIL) (($ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +(((-713) (-13 (-399) (-557) (-10 -8 (-15 -1755 ((-938) (-938))) (-15 -1755 ((-938))) (-15 -3563 ((-326 $) (-326 (-576))))))) (T -713)) +((-1755 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713)))) (-1755 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713))))) +(-13 (-399) (-557) (-10 -8 (-15 -1755 ((-938) (-938))) (-15 -1755 ((-938))) (-15 -3563 ((-326 $) (-326 (-576)))))) +((-3110 (((-1 |#4| |#2| |#3|) |#1| (-1195) (-1195)) 19)) (-3993 (((-1 |#4| |#2| |#3|) (-1195)) 12))) +(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3993 ((-1 |#4| |#2| |#3|) (-1195))) (-15 -3110 ((-1 |#4| |#2| |#3|) |#1| (-1195) (-1195)))) (-626 (-548)) (-1236) (-1236) (-1236)) (T -714)) +((-3110 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236)))) (-3993 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *7 (-1236))))) +(-10 -7 (-15 -3993 ((-1 |#4| |#2| |#3|) (-1195))) (-15 -3110 ((-1 |#4| |#2| |#3|) |#1| (-1195) (-1195)))) +((-2003 (((-1 (-227) (-227) (-227)) |#1| (-1195) (-1195)) 43) (((-1 (-227) (-227)) |#1| (-1195)) 48))) +(((-715 |#1|) (-10 -7 (-15 -2003 ((-1 (-227) (-227)) |#1| (-1195))) (-15 -2003 ((-1 (-227) (-227) (-227)) |#1| (-1195) (-1195)))) (-626 (-548))) (T -715)) +((-2003 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548))))) (-2003 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -2003 ((-1 (-227) (-227)) |#1| (-1195))) (-15 -2003 ((-1 (-227) (-227) (-227)) |#1| (-1195) (-1195)))) +((-3356 (((-1195) |#1| (-1195) (-656 (-1195))) 10) (((-1195) |#1| (-1195) (-1195) (-1195)) 13) (((-1195) |#1| (-1195) (-1195)) 12) (((-1195) |#1| (-1195)) 11))) +(((-716 |#1|) (-10 -7 (-15 -3356 ((-1195) |#1| (-1195))) (-15 -3356 ((-1195) |#1| (-1195) (-1195))) (-15 -3356 ((-1195) |#1| (-1195) (-1195) (-1195))) (-15 -3356 ((-1195) |#1| (-1195) (-656 (-1195))))) (-626 (-548))) (T -716)) +((-3356 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3356 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3356 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) (-3356 (*1 *2 *3 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -3356 ((-1195) |#1| (-1195))) (-15 -3356 ((-1195) |#1| (-1195) (-1195))) (-15 -3356 ((-1195) |#1| (-1195) (-1195) (-1195))) (-15 -3356 ((-1195) |#1| (-1195) (-656 (-1195))))) +((-2037 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-717 |#1| |#2|) (-10 -7 (-15 -2037 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1236) (-1236)) (T -717)) +((-2037 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-717 *3 *4)) (-4 *3 (-1236)) (-4 *4 (-1236))))) +(-10 -7 (-15 -2037 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3097 (((-1 |#3| |#2|) (-1195)) 11)) (-3110 (((-1 |#3| |#2|) |#1| (-1195)) 21))) +(((-718 |#1| |#2| |#3|) (-10 -7 (-15 -3097 ((-1 |#3| |#2|) (-1195))) (-15 -3110 ((-1 |#3| |#2|) |#1| (-1195)))) (-626 (-548)) (-1236) (-1236)) (T -718)) +((-3110 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236))))) +(-10 -7 (-15 -3097 ((-1 |#3| |#2|) (-1195))) (-15 -3110 ((-1 |#3| |#2|) |#1| (-1195)))) +((-1759 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1286 (-656 (-1191 |#3|))) |#3|) 92)) (-3803 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|) 110)) (-4213 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1191 |#4|)) (-1286 (-656 (-1191 |#3|))) |#3|) 47))) +(((-719 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4213 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1191 |#4|)) (-1286 (-656 (-1191 |#3|))) |#3|)) (-15 -3803 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -1759 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1286 (-656 (-1191 |#3|))) |#3|))) (-805) (-862) (-317) (-966 |#3| |#1| |#2|)) (T -719)) +((-1759 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-656 (-1191 *13))) (-5 *3 (-1191 *13)) (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) (-5 *7 (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| *13))))) (-5 *8 (-656 (-783))) (-5 *9 (-1286 (-656 (-1191 *10)))) (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-966 *10 *11 *12)) (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13)))) (-3803 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1191 *9))) (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-966 *9 *10 *11)) (-4 *10 (-805)) (-5 *2 (-656 (-1191 *12))) (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1191 *12)))) (-4213 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-656 (-1191 *11))) (-5 *3 (-1191 *11)) (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) (-5 *7 (-1286 (-656 (-1191 *8)))) (-4 *10 (-862)) (-4 *8 (-317)) (-4 *11 (-966 *8 *9 *10)) (-4 *9 (-805)) (-5 *1 (-719 *9 *10 *8 *11))))) +(-10 -7 (-15 -4213 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 |#3|) (-656 (-783)) (-656 (-1191 |#4|)) (-1286 (-656 (-1191 |#3|))) |#3|)) (-15 -3803 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#3|)) (-656 |#3|) (-656 |#4|) (-656 (-783)) |#3|)) (-15 -1759 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-656 |#2|) (-656 (-1191 |#4|)) (-656 |#3|) (-656 |#4|) (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| |#4|)))) (-656 (-783)) (-1286 (-656 (-1191 |#3|))) |#3|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-2166 (($ $) 48)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1970 (($ |#1| (-783)) 46)) (-3403 (((-783) $) 50)) (-2142 ((|#1| $) 49)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-1433 (((-783) $) 51)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45 (|has| |#1| (-174)))) (-4333 ((|#1| $ (-783)) 47)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52))) (((-720 |#1|) (-141) (-1068)) (T -720)) -((-2369 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) (-1717 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) (-2430 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068)))) (-1518 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068))))) -(-13 (-1068) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2369 ((-783) $)) (-15 -1915 ((-783) $)) (-15 -1692 (|t#1| $)) (-15 -1717 ($ $)) (-15 -2430 (|t#1| $ (-783))) (-15 -1518 ($ |t#1| (-783))))) +((-1433 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) (-2166 (*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) (-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068)))) (-1970 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068))))) +(-13 (-1068) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1433 ((-783) $)) (-15 -3403 ((-783) $)) (-15 -2142 (|t#1| $)) (-15 -2166 ($ $)) (-15 -4333 (|t#1| $ (-783))) (-15 -1970 ($ |t#1| (-783))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2477 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2477 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1263 |#1|) (-1263 (-419 |#2|)) (-568) (-1263 |#4|) (-1263 (-419 |#5|))) (T -721)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1263 *5)) (-4 *2 (-1263 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1263 (-419 *6))) (-4 *8 (-1263 *7))))) -(-10 -7 (-15 -2477 (|#6| (-1 |#4| |#1|) |#3|))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3192 (((-1178) (-874)) 38)) (-1650 (((-1292) (-1178)) 31)) (-3068 (((-1178) (-874)) 28)) (-4010 (((-1178) (-874)) 29)) (-4092 (((-874) $) NIL) (((-1178) (-874)) 27)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-722) (-13 (-1119) (-10 -7 (-15 -4092 ((-1178) (-874))) (-15 -3068 ((-1178) (-874))) (-15 -4010 ((-1178) (-874))) (-15 -3192 ((-1178) (-874))) (-15 -1650 ((-1292) (-1178)))))) (T -722)) -((-4092 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-3192 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-722))))) -(-13 (-1119) (-10 -7 (-15 -4092 ((-1178) (-874))) (-15 -3068 ((-1178) (-874))) (-15 -4010 ((-1178) (-874))) (-15 -3192 ((-1178) (-874))) (-15 -1650 ((-1292) (-1178))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-1975 (($ $ $) NIL)) (-2359 (($ |#1| |#2|) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-1810 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1567 ((|#2| $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2722 (((-3 $ "failed") $ $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -1567 (|#2| $)) (-15 -4092 (|#1| $)) (-15 -2359 ($ |#1| |#2|)) (-15 -2722 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723)) -((-1567 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4092 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2359 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2722 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-374) (-10 -8 (-15 -1567 (|#2| $)) (-15 -4092 (|#1| $)) (-15 -2359 ($ |#1| |#2|)) (-15 -2722 ((-3 $ "failed") $ $)))) -((-2034 (((-112) $ $) 87)) (-1962 (((-112) $) 36)) (-1916 (((-1287 |#1|) $ (-783)) NIL)) (-1541 (((-656 (-1101)) $) NIL)) (-1814 (($ (-1192 |#1|)) NIL)) (-1364 (((-1192 $) $ (-1101)) NIL) (((-1192 |#1|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2488 (($ $ $) NIL (|has| |#1| (-568)))) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1587 (($ $) NIL (|has| |#1| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2247 (((-783)) 54 (|has| |#1| (-379)))) (-3873 (($ $ (-783)) NIL)) (-2579 (($ $ (-783)) NIL)) (-1410 ((|#2| |#2|) 50)) (-3352 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL)) (-2378 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1101) $) NIL)) (-2996 (($ $ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) 40)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-2359 (($ |#2|) 48)) (-3179 (((-3 $ "failed") $) 97)) (-2446 (($) 58 (|has| |#1| (-379)))) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-2175 (($ $ $) NIL)) (-2351 (($ $ $) NIL (|has| |#1| (-568)))) (-4215 (((-2 (|:| -1856 |#1|) (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-568)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1363 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-926)))) (-2136 (((-975 $)) 89)) (-2291 (($ $ |#1| (-783) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1538 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-1529 (($ (-1192 |#1|) (-1101)) NIL) (($ (-1192 $) (-1101)) NIL)) (-4209 (($ $ (-783)) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-783)) 85) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-1101)) NIL) (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-1567 ((|#2|) 51)) (-1915 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-3968 (($ (-1 (-783) (-783)) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2189 (((-1192 |#1|) $) NIL)) (-3403 (((-3 (-1101) "failed") $) NIL)) (-3225 (((-938) $) NIL (|has| |#1| (-379)))) (-2344 ((|#2| $) 47)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) 34)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3288 (((-1178) $) NIL)) (-2168 (((-2 (|:| -1720 $) (|:| -4400 $)) $ (-783)) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-1101)) (|:| -3175 (-783))) "failed") $) NIL)) (-3597 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3503 (($) NIL (|has| |#1| (-1171)) CONST)) (-2550 (($ (-938)) NIL (|has| |#1| (-379)))) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#1| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3075 (($ $) 88 (|has| |#1| (-360)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-926)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#1|) NIL) (($ $ (-656 (-1101)) (-656 |#1|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4442 (((-3 $ "failed") $ (-783)) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 98 (|has| |#1| (-374)))) (-1955 (($ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3614 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-2369 (((-783) $) 38) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3714 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3746 (((-975 $)) 42)) (-4352 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-4092 (((-874) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1101)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-783)) 70) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) 25 T CONST)) (-3153 (((-1287 |#1|) $) 83)) (-2995 (($ (-1287 |#1|)) 57)) (-4310 (($) 8 T CONST)) (-4286 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-1652 (((-1287 |#1|) $) NIL)) (-3919 (((-112) $ $) 76)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) 79) (($ $ $) NIL)) (-4007 (($ $ $) 39)) (** (($ $ (-938)) NIL) (($ $ (-783)) 92)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) -(((-724 |#1| |#2|) (-13 (-1263 |#1|) (-628 |#2|) (-10 -8 (-15 -1410 (|#2| |#2|)) (-15 -1567 (|#2|)) (-15 -2359 ($ |#2|)) (-15 -2344 (|#2| $)) (-15 -3153 ((-1287 |#1|) $)) (-15 -2995 ($ (-1287 |#1|))) (-15 -1652 ((-1287 |#1|) $)) (-15 -2136 ((-975 $))) (-15 -3746 ((-975 $))) (IF (|has| |#1| (-360)) (-15 -3075 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1068) (-1263 |#1|)) (T -724)) -((-1410 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3)))) (-1567 (*1 *2) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) (-2359 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3)))) (-2344 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) (-3153 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-2995 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1068)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-1652 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-2136 (*1 *2) (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-3746 (*1 *2) (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1263 *3)))) (-3075 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1068)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1263 *2))))) -(-13 (-1263 |#1|) (-628 |#2|) (-10 -8 (-15 -1410 (|#2| |#2|)) (-15 -1567 (|#2|)) (-15 -2359 ($ |#2|)) (-15 -2344 (|#2| $)) (-15 -3153 ((-1287 |#1|) $)) (-15 -2995 ($ (-1287 |#1|))) (-15 -1652 ((-1287 |#1|) $)) (-15 -2136 ((-975 $))) (-15 -3746 ((-975 $))) (IF (|has| |#1| (-360)) (-15 -3075 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 ((|#1| $) 13)) (-3139 (((-1139) $) NIL)) (-3175 ((|#2| $) 12)) (-4103 (($ |#1| |#2|) 16)) (-4092 (((-874) $) NIL) (($ (-2 (|:| -2550 |#1|) (|:| -3175 |#2|))) 15) (((-2 (|:| -2550 |#1|) (|:| -3175 |#2|)) $) 14)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 11))) -(((-725 |#1| |#2| |#3|) (-13 (-862) (-502 (-2 (|:| -2550 |#1|) (|:| -3175 |#2|))) (-10 -8 (-15 -3175 (|#2| $)) (-15 -2550 (|#1| $)) (-15 -4103 ($ |#1| |#2|)))) (-862) (-1119) (-1 (-112) (-2 (|:| -2550 |#1|) (|:| -3175 |#2|)) (-2 (|:| -2550 |#1|) (|:| -3175 |#2|)))) (T -725)) -((-3175 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862)) (-14 *4 (-1 (-112) (-2 (|:| -2550 *3) (|:| -3175 *2)) (-2 (|:| -2550 *3) (|:| -3175 *2)))))) (-2550 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-1 (-112) (-2 (|:| -2550 *2) (|:| -3175 *3)) (-2 (|:| -2550 *2) (|:| -3175 *3)))))) (-4103 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1119)) (-14 *4 (-1 (-112) (-2 (|:| -2550 *2) (|:| -3175 *3)) (-2 (|:| -2550 *2) (|:| -3175 *3))))))) -(-13 (-862) (-502 (-2 (|:| -2550 |#1|) (|:| -3175 |#2|))) (-10 -8 (-15 -3175 (|#2| $)) (-15 -2550 (|#1| $)) (-15 -4103 ($ |#1| |#2|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 66)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-2378 ((|#1| $) NIL) (((-115) $) 39)) (-3179 (((-3 $ "failed") $) 103)) (-2557 ((|#2| (-115) |#2|) 93)) (-1810 (((-112) $) NIL)) (-3319 (($ |#1| (-372 (-115))) 14)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2606 (($ $ (-1 |#2| |#2|)) 65)) (-1487 (($ $ (-1 |#2| |#2|)) 44)) (-4367 ((|#2| $ |#2|) 33)) (-4085 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-4092 (((-874) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) 37 T CONST)) (-1531 (((-112) $ $) NIL)) (-3131 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-4300 (($) 21 T CONST)) (-4310 (($) 9 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) 48) (($ $ $) NIL)) (-4007 (($ $ $) 83)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) -(((-726 |#1| |#2|) (-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3131 ($ $)) (-15 -3131 ($ $ $)) (-15 -4085 (|#1| |#1|))) |%noBranch|) (-15 -1487 ($ $ (-1 |#2| |#2|))) (-15 -2606 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2557 (|#2| (-115) |#2|)) (-15 -3319 ($ |#1| (-372 (-115)))))) (-1068) (-660 |#1|)) (T -726)) -((-3131 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3131 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-4085 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-1487 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)))) (-2606 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-2557 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1068)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-3319 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1068)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2))))) -(-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3131 ($ $)) (-15 -3131 ($ $ $)) (-15 -4085 (|#1| |#1|))) |%noBranch|) (-15 -1487 ($ $ (-1 |#2| |#2|))) (-15 -2606 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2557 (|#2| (-115) |#2|)) (-15 -3319 ($ |#1| (-372 (-115)))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 33)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2359 (($ |#1| |#2|) 25)) (-3179 (((-3 $ "failed") $) 51)) (-1810 (((-112) $) 35)) (-1567 ((|#2| $) 12)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 52)) (-3139 (((-1139) $) NIL)) (-2722 (((-3 $ "failed") $ $) 50)) (-4092 (((-874) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-2471 (((-783)) 28 T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 16 T CONST)) (-4310 (($) 30 T CONST)) (-3919 (((-112) $ $) 41)) (-4018 (($ $) 46) (($ $ $) 40)) (-4007 (($ $ $) 43)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) -(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1068) (-10 -8 (-15 -1567 (|#2| $)) (-15 -4092 (|#1| $)) (-15 -2359 ($ |#1| |#2|)) (-15 -2722 ((-3 $ "failed") $ $)) (-15 -3179 ((-3 $ "failed") $)) (-15 -1644 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) -((-3179 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1567 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4092 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2359 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2722 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1644 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1068) (-10 -8 (-15 -1567 (|#2| $)) (-15 -4092 (|#1| $)) (-15 -2359 ($ |#1| |#2|)) (-15 -2722 ((-3 $ "failed") $ $)) (-15 -3179 ((-3 $ "failed") $)) (-15 -1644 ($ $)))) +((-1632 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-721 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1632 (|#6| (-1 |#4| |#1|) |#3|))) (-568) (-1262 |#1|) (-1262 (-419 |#2|)) (-568) (-1262 |#4|) (-1262 (-419 |#5|))) (T -721)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) (-4 *6 (-1262 *5)) (-4 *2 (-1262 (-419 *8))) (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1262 (-419 *6))) (-4 *8 (-1262 *7))))) +(-10 -7 (-15 -1632 (|#6| (-1 |#4| |#1|) |#3|))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3692 (((-1177) (-874)) 38)) (-2076 (((-1291) (-1177)) 31)) (-1443 (((-1177) (-874)) 28)) (-3866 (((-1177) (-874)) 29)) (-3563 (((-874) $) NIL) (((-1177) (-874)) 27)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-722) (-13 (-1119) (-10 -7 (-15 -3563 ((-1177) (-874))) (-15 -1443 ((-1177) (-874))) (-15 -3866 ((-1177) (-874))) (-15 -3692 ((-1177) (-874))) (-15 -2076 ((-1291) (-1177)))))) (T -722)) +((-3563 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-722))))) +(-13 (-1119) (-10 -7 (-15 -3563 ((-1177) (-874))) (-15 -1443 ((-1177) (-874))) (-15 -3866 ((-1177) (-874))) (-15 -3692 ((-1177) (-874))) (-15 -2076 ((-1291) (-1177))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-3420 (($ $ $) NIL)) (-2521 (($ |#1| |#2|) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1414 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3325 ((|#2| $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2655 (((-3 $ "failed") $ $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) ((|#1| $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-723 |#1| |#2| |#3| |#4| |#5|) (-13 (-374) (-10 -8 (-15 -3325 (|#2| $)) (-15 -3563 (|#1| $)) (-15 -2521 ($ |#1| |#2|)) (-15 -2655 ((-3 $ "failed") $ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -723)) +((-3325 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3563 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2521 (*1 *1 *2 *3) (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2655 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-374) (-10 -8 (-15 -3325 (|#2| $)) (-15 -3563 (|#1| $)) (-15 -2521 ($ |#1| |#2|)) (-15 -2655 ((-3 $ "failed") $ $)))) +((-3474 (((-112) $ $) 87)) (-1454 (((-112) $) 36)) (-3536 (((-1286 |#1|) $ (-783)) NIL)) (-1991 (((-656 (-1101)) $) NIL)) (-1834 (($ (-1191 |#1|)) NIL)) (-3999 (((-1191 $) $ (-1101)) NIL) (((-1191 |#1|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2749 (($ $ $) NIL (|has| |#1| (-568)))) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1760 (($ $) NIL (|has| |#1| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2148 (((-783)) 54 (|has| |#1| (-379)))) (-1659 (($ $ (-783)) NIL)) (-3759 (($ $ (-783)) NIL)) (-3525 ((|#2| |#2|) 50)) (-3807 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL)) (-4056 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1101) $) NIL)) (-2861 (($ $ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $ $) NIL (|has| |#1| (-174)))) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) 40)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2521 (($ |#2|) 48)) (-1551 (((-3 $ "failed") $) 97)) (-1803 (($) 58 (|has| |#1| (-379)))) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4215 (($ $ $) NIL)) (-2549 (($ $ $) NIL (|has| |#1| (-568)))) (-1424 (((-2 (|:| -1706 |#1|) (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-568)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2985 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#1| (-926)))) (-2011 (((-975 $)) 89)) (-1660 (($ $ |#1| (-783) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3333 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-1980 (($ (-1191 |#1|) (-1101)) NIL) (($ (-1191 $) (-1101)) NIL)) (-2973 (($ $ (-783)) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-783)) 85) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-1101)) NIL) (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3325 ((|#2|) 51)) (-3403 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-2133 (($ (-1 (-783) (-783)) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3176 (((-1191 |#1|) $) NIL)) (-4209 (((-3 (-1101) "failed") $) NIL)) (-1902 (((-938) $) NIL (|has| |#1| (-379)))) (-2510 ((|#2| $) 47)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) 34)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1927 (((-1177) $) NIL)) (-1749 (((-2 (|:| -3824 $) (|:| -2091 $)) $ (-783)) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-1101)) (|:| -4274 (-783))) "failed") $) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (($) NIL (|has| |#1| (-1171)) CONST)) (-3257 (($ (-938)) NIL (|has| |#1| (-379)))) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#1| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3998 (($ $) 88 (|has| |#1| (-360)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#1|) NIL) (($ $ (-656 (-1101)) (-656 |#1|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2210 (((-3 $ "failed") $ (-783)) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 98 (|has| |#1| (-374)))) (-1960 (($ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2735 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-1433 (((-783) $) 38) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3648 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3791 (((-975 $)) 42)) (-3251 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3563 (((-874) $) 68) (($ (-576)) NIL) (($ |#1|) 65) (($ (-1101)) NIL) (($ |#2|) 75) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-783)) 70) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) 25 T CONST)) (-2959 (((-1286 |#1|) $) 83)) (-2723 (($ (-1286 |#1|)) 57)) (-2810 (($) 8 T CONST)) (-2051 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-3503 (((-1286 |#1|) $) NIL)) (-2988 (((-112) $ $) 76)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) 79) (($ $ $) NIL)) (-3083 (($ $ $) 39)) (** (($ $ (-938)) NIL) (($ $ (-783)) 92)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 64) (($ $ $) 82) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 62) (($ $ |#1|) NIL))) +(((-724 |#1| |#2|) (-13 (-1262 |#1|) (-628 |#2|) (-10 -8 (-15 -3525 (|#2| |#2|)) (-15 -3325 (|#2|)) (-15 -2521 ($ |#2|)) (-15 -2510 (|#2| $)) (-15 -2959 ((-1286 |#1|) $)) (-15 -2723 ($ (-1286 |#1|))) (-15 -3503 ((-1286 |#1|) $)) (-15 -2011 ((-975 $))) (-15 -3791 ((-975 $))) (IF (|has| |#1| (-360)) (-15 -3998 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) (-1068) (-1262 |#1|)) (T -724)) +((-3525 (*1 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3)))) (-3325 (*1 *2) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) (-2521 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) (-2959 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-2723 (*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1068)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-3503 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-2011 (*1 *2) (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-3791 (*1 *2) (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) (-4 *4 (-1262 *3)))) (-3998 (*1 *1 *1) (-12 (-4 *2 (-360)) (-4 *2 (-1068)) (-5 *1 (-724 *2 *3)) (-4 *3 (-1262 *2))))) +(-13 (-1262 |#1|) (-628 |#2|) (-10 -8 (-15 -3525 (|#2| |#2|)) (-15 -3325 (|#2|)) (-15 -2521 ($ |#2|)) (-15 -2510 (|#2| $)) (-15 -2959 ((-1286 |#1|) $)) (-15 -2723 ($ (-1286 |#1|))) (-15 -3503 ((-1286 |#1|) $)) (-15 -2011 ((-975 $))) (-15 -3791 ((-975 $))) (IF (|has| |#1| (-360)) (-15 -3998 ($ $)) |%noBranch|) (IF (|has| |#1| (-379)) (-6 (-379)) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 ((|#1| $) 13)) (-1445 (((-1139) $) NIL)) (-4274 ((|#2| $) 12)) (-3573 (($ |#1| |#2|) 16)) (-3563 (((-874) $) NIL) (($ (-2 (|:| -3257 |#1|) (|:| -4274 |#2|))) 15) (((-2 (|:| -3257 |#1|) (|:| -4274 |#2|)) $) 14)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 11))) +(((-725 |#1| |#2| |#3|) (-13 (-862) (-502 (-2 (|:| -3257 |#1|) (|:| -4274 |#2|))) (-10 -8 (-15 -4274 (|#2| $)) (-15 -3257 (|#1| $)) (-15 -3573 ($ |#1| |#2|)))) (-862) (-1119) (-1 (-112) (-2 (|:| -3257 |#1|) (|:| -4274 |#2|)) (-2 (|:| -3257 |#1|) (|:| -4274 |#2|)))) (T -725)) +((-4274 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862)) (-14 *4 (-1 (-112) (-2 (|:| -3257 *3) (|:| -4274 *2)) (-2 (|:| -3257 *3) (|:| -4274 *2)))))) (-3257 (*1 *2 *1) (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1119)) (-14 *4 (-1 (-112) (-2 (|:| -3257 *2) (|:| -4274 *3)) (-2 (|:| -3257 *2) (|:| -4274 *3)))))) (-3573 (*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1119)) (-14 *4 (-1 (-112) (-2 (|:| -3257 *2) (|:| -4274 *3)) (-2 (|:| -3257 *2) (|:| -4274 *3))))))) +(-13 (-862) (-502 (-2 (|:| -3257 |#1|) (|:| -4274 |#2|))) (-10 -8 (-15 -4274 (|#2| $)) (-15 -3257 (|#1| $)) (-15 -3573 ($ |#1| |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 66)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) 102) (((-3 (-115) "failed") $) 108)) (-4056 ((|#1| $) NIL) (((-115) $) 39)) (-1551 (((-3 $ "failed") $) 103)) (-2113 ((|#2| (-115) |#2|) 93)) (-1414 (((-112) $) NIL)) (-1772 (($ |#1| (-372 (-115))) 14)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3236 (($ $ (-1 |#2| |#2|)) 65)) (-1557 (($ $ (-1 |#2| |#2|)) 44)) (-2871 ((|#2| $ |#2|) 33)) (-2688 ((|#1| |#1|) 118 (|has| |#1| (-174)))) (-3563 (((-874) $) 73) (($ (-576)) 18) (($ |#1|) 17) (($ (-115)) 23)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) 37 T CONST)) (-3985 (((-112) $ $) NIL)) (-3686 (($ $) 112 (|has| |#1| (-174))) (($ $ $) 116 (|has| |#1| (-174)))) (-2800 (($) 21 T CONST)) (-2810 (($) 9 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) 48) (($ $ $) NIL)) (-3083 (($ $ $) 83)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) 64)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 111) (($ $ $) 53) (($ |#1| $) 109 (|has| |#1| (-174))) (($ $ |#1|) 110 (|has| |#1| (-174))))) +(((-726 |#1| |#2|) (-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3686 ($ $)) (-15 -3686 ($ $ $)) (-15 -2688 (|#1| |#1|))) |%noBranch|) (-15 -1557 ($ $ (-1 |#2| |#2|))) (-15 -3236 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2113 (|#2| (-115) |#2|)) (-15 -1772 ($ |#1| (-372 (-115)))))) (-1068) (-660 |#1|)) (T -726)) +((-3686 (*1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-3686 (*1 *1 *1 *1) (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-2688 (*1 *2 *2) (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) (-4 *3 (-660 *2)))) (-1557 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)))) (-3236 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)) (-4 *4 (-660 *3)))) (-2113 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1068)) (-5 *1 (-726 *4 *2)) (-4 *2 (-660 *4)))) (-1772 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1068)) (-5 *1 (-726 *2 *4)) (-4 *4 (-660 *2))))) +(-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3686 ($ $)) (-15 -3686 ($ $ $)) (-15 -2688 (|#1| |#1|))) |%noBranch|) (-15 -1557 ($ $ (-1 |#2| |#2|))) (-15 -3236 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2113 (|#2| (-115) |#2|)) (-15 -1772 ($ |#1| (-372 (-115)))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 33)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2521 (($ |#1| |#2|) 25)) (-1551 (((-3 $ "failed") $) 51)) (-1414 (((-112) $) 35)) (-3325 ((|#2| $) 12)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 52)) (-1445 (((-1139) $) NIL)) (-2655 (((-3 $ "failed") $ $) 50)) (-3563 (((-874) $) 24) (($ (-576)) 19) ((|#1| $) 13)) (-1858 (((-783)) 28 T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 16 T CONST)) (-2810 (($) 30 T CONST)) (-2988 (((-112) $ $) 41)) (-3095 (($ $) 46) (($ $ $) 40)) (-3083 (($ $ $) 43)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 21) (($ $ $) 20))) +(((-727 |#1| |#2| |#3| |#4| |#5|) (-13 (-1068) (-10 -8 (-15 -3325 (|#2| $)) (-15 -3563 (|#1| $)) (-15 -2521 ($ |#1| |#2|)) (-15 -2655 ((-3 $ "failed") $ $)) (-15 -1551 ((-3 $ "failed") $)) (-15 -2095 ($ $)))) (-174) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -727)) +((-1551 (*1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3325 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3563 (*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2521 (*1 *1 *2 *3) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2655 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2095 (*1 *1 *1) (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1068) (-10 -8 (-15 -3325 (|#2| $)) (-15 -3563 (|#1| $)) (-15 -2521 ($ |#1| |#2|)) (-15 -2655 ((-3 $ "failed") $ $)) (-15 -1551 ((-3 $ "failed") $)) (-15 -2095 ($ $)))) ((* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) (((-728 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-729 |#2|) (-174)) (T -728)) NIL (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-729 |#1|) (-141) (-174)) (T -729)) NIL (-13 (-111 |t#1| |t#1|) (-652 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-3298 (($ |#1|) 17) (($ $ |#1|) 20)) (-1372 (($ |#1|) 18) (($ $ |#1|) 21)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1810 (((-112) $) NIL)) (-2608 (($ |#1| |#1| |#1| |#1|) 8)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 16)) (-3139 (((-1139) $) NIL)) (-2259 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-3646 (($ $ $) NIL)) (-1361 (($ $ $) NIL)) (-4092 (((-874) $) 39)) (-1531 (((-112) $ $) NIL)) (-4310 (($) 9 T CONST)) (-3919 (((-112) $ $) 48)) (-4028 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) -(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -2608 ($ |#1| |#1| |#1| |#1|)) (-15 -3298 ($ |#1|)) (-15 -1372 ($ |#1|)) (-15 -3179 ($)) (-15 -3298 ($ $ |#1|)) (-15 -1372 ($ $ |#1|)) (-15 -3179 ($ $)) (-15 -2259 (|#1| $ |#1|)) (-15 -2259 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730)) -((-2608 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3298 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1372 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3179 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3298 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1372 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3179 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2259 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2259 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))) -(-13 (-485) (-10 -8 (-15 -2608 ($ |#1| |#1| |#1| |#1|)) (-15 -3298 ($ |#1|)) (-15 -1372 ($ |#1|)) (-15 -3179 ($)) (-15 -3298 ($ $ |#1|)) (-15 -1372 ($ $ |#1|)) (-15 -3179 ($ $)) (-15 -2259 (|#1| $ |#1|)) (-15 -2259 ((-845 |#1|) $ (-845 |#1|))))) -((-3952 (($ $ (-938)) 19)) (-2596 (($ $ (-938)) 20)) (** (($ $ (-938)) 10))) -(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-938))) (-15 -2596 (|#1| |#1| (-938))) (-15 -3952 (|#1| |#1| (-938)))) (-732)) (T -731)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-938))) (-15 -2596 (|#1| |#1| (-938))) (-15 -3952 (|#1| |#1| (-938)))) -((-2034 (((-112) $ $) 7)) (-3952 (($ $ (-938)) 16)) (-2596 (($ $ (-938)) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6)) (** (($ $ (-938)) 14)) (* (($ $ $) 17))) +((-3474 (((-112) $ $) NIL)) (-2745 (($ |#1|) 17) (($ $ |#1|) 20)) (-2816 (($ |#1|) 18) (($ $ |#1|) 21)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1414 (((-112) $) NIL)) (-2234 (($ |#1| |#1| |#1| |#1|) 8)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 16)) (-1445 (((-1139) $) NIL)) (-3306 ((|#1| $ |#1|) 24) (((-845 |#1|) $ (-845 |#1|)) 32)) (-4026 (($ $ $) NIL)) (-4081 (($ $ $) NIL)) (-3563 (((-874) $) 39)) (-3985 (((-112) $ $) NIL)) (-2810 (($) 9 T CONST)) (-2988 (((-112) $ $) 48)) (-3107 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 14))) +(((-730 |#1|) (-13 (-485) (-10 -8 (-15 -2234 ($ |#1| |#1| |#1| |#1|)) (-15 -2745 ($ |#1|)) (-15 -2816 ($ |#1|)) (-15 -1551 ($)) (-15 -2745 ($ $ |#1|)) (-15 -2816 ($ $ |#1|)) (-15 -1551 ($ $)) (-15 -3306 (|#1| $ |#1|)) (-15 -3306 ((-845 |#1|) $ (-845 |#1|))))) (-374)) (T -730)) +((-2234 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2745 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2816 (*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1551 (*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2745 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-2816 (*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-1551 (*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3306 (*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) (-3306 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3))))) +(-13 (-485) (-10 -8 (-15 -2234 ($ |#1| |#1| |#1| |#1|)) (-15 -2745 ($ |#1|)) (-15 -2816 ($ |#1|)) (-15 -1551 ($)) (-15 -2745 ($ $ |#1|)) (-15 -2816 ($ $ |#1|)) (-15 -1551 ($ $)) (-15 -3306 (|#1| $ |#1|)) (-15 -3306 ((-845 |#1|) $ (-845 |#1|))))) +((-4242 (($ $ (-938)) 19)) (-1428 (($ $ (-938)) 20)) (** (($ $ (-938)) 10))) +(((-731 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-938))) (-15 -1428 (|#1| |#1| (-938))) (-15 -4242 (|#1| |#1| (-938)))) (-732)) (T -731)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-938))) (-15 -1428 (|#1| |#1| (-938))) (-15 -4242 (|#1| |#1| (-938)))) +((-3474 (((-112) $ $) 7)) (-4242 (($ $ (-938)) 16)) (-1428 (($ $ (-938)) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6)) (** (($ $ (-938)) 14)) (* (($ $ $) 17))) (((-732) (-141)) (T -732)) -((* (*1 *1 *1 *1) (-4 *1 (-732))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) (-2596 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938))))) -(-13 (-1119) (-10 -8 (-15 * ($ $ $)) (-15 -3952 ($ $ (-938))) (-15 -2596 ($ $ (-938))) (-15 ** ($ $ (-938))))) +((* (*1 *1 *1 *1) (-4 *1 (-732))) (-4242 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) (-1428 (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938))))) +(-13 (-1119) (-10 -8 (-15 * ($ $ $)) (-15 -4242 ($ $ (-938))) (-15 -1428 ($ $ (-938))) (-15 ** ($ $ (-938))))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-3952 (($ $ (-938)) NIL) (($ $ (-783)) 18)) (-1810 (((-112) $) 10)) (-2596 (($ $ (-938)) NIL) (($ $ (-783)) 19)) (** (($ $ (-938)) NIL) (($ $ (-783)) 16))) -(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -2596 (|#1| |#1| (-783))) (-15 -3952 (|#1| |#1| (-783))) (-15 -1810 ((-112) |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -2596 (|#1| |#1| (-938))) (-15 -3952 (|#1| |#1| (-938)))) (-734)) (T -733)) +((-4242 (($ $ (-938)) NIL) (($ $ (-783)) 18)) (-1414 (((-112) $) 10)) (-1428 (($ $ (-938)) NIL) (($ $ (-783)) 19)) (** (($ $ (-938)) NIL) (($ $ (-783)) 16))) +(((-733 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1428 (|#1| |#1| (-783))) (-15 -4242 (|#1| |#1| (-783))) (-15 -1414 ((-112) |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -1428 (|#1| |#1| (-938))) (-15 -4242 (|#1| |#1| (-938)))) (-734)) (T -733)) NIL -(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -2596 (|#1| |#1| (-783))) (-15 -3952 (|#1| |#1| (-783))) (-15 -1810 ((-112) |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -2596 (|#1| |#1| (-938))) (-15 -3952 (|#1| |#1| (-938)))) -((-2034 (((-112) $ $) 7)) (-3046 (((-3 $ "failed") $) 18)) (-3952 (($ $ (-938)) 16) (($ $ (-783)) 23)) (-3179 (((-3 $ "failed") $) 20)) (-1810 (((-112) $) 24)) (-1714 (((-3 $ "failed") $) 19)) (-2596 (($ $ (-938)) 15) (($ $ (-783)) 22)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4310 (($) 25 T CONST)) (-3919 (((-112) $ $) 6)) (** (($ $ (-938)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17))) +(-10 -8 (-15 ** (|#1| |#1| (-783))) (-15 -1428 (|#1| |#1| (-783))) (-15 -4242 (|#1| |#1| (-783))) (-15 -1414 ((-112) |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -1428 (|#1| |#1| (-938))) (-15 -4242 (|#1| |#1| (-938)))) +((-3474 (((-112) $ $) 7)) (-2991 (((-3 $ "failed") $) 18)) (-4242 (($ $ (-938)) 16) (($ $ (-783)) 23)) (-1551 (((-3 $ "failed") $) 20)) (-1414 (((-112) $) 24)) (-1410 (((-3 $ "failed") $) 19)) (-1428 (($ $ (-938)) 15) (($ $ (-783)) 22)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2810 (($) 25 T CONST)) (-2988 (((-112) $ $) 6)) (** (($ $ (-938)) 14) (($ $ (-783)) 21)) (* (($ $ $) 17))) (((-734) (-141)) (T -734)) -((-4310 (*1 *1) (-4 *1 (-734))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-3952 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-2596 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-3179 (*1 *1 *1) (|partial| -4 *1 (-734))) (-1714 (*1 *1 *1) (|partial| -4 *1 (-734))) (-3046 (*1 *1 *1) (|partial| -4 *1 (-734)))) -(-13 (-732) (-10 -8 (-15 (-4310) ($) -2670) (-15 -1810 ((-112) $)) (-15 -3952 ($ $ (-783))) (-15 -2596 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -3179 ((-3 $ "failed") $)) (-15 -1714 ((-3 $ "failed") $)) (-15 -3046 ((-3 $ "failed") $)))) +((-2810 (*1 *1) (-4 *1 (-734))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) (-4242 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-1428 (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) (-1551 (*1 *1 *1) (|partial| -4 *1 (-734))) (-1410 (*1 *1 *1) (|partial| -4 *1 (-734))) (-2991 (*1 *1 *1) (|partial| -4 *1 (-734)))) +(-13 (-732) (-10 -8 (-15 (-2810) ($) -1398) (-15 -1414 ((-112) $)) (-15 -4242 ($ $ (-783))) (-15 -1428 ($ $ (-783))) (-15 ** ($ $ (-783))) (-15 -1551 ((-3 $ "failed") $)) (-15 -1410 ((-3 $ "failed") $)) (-15 -2991 ((-3 $ "failed") $)))) (((-102) . T) ((-625 (-874)) . T) ((-732) . T) ((-1119) . T)) -((-2247 (((-783)) 39)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2378 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-2359 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-3179 (((-3 $ "failed") $) 69)) (-2446 (($) 43)) (-4252 ((|#2| $) 21)) (-2582 (($) 18)) (-3614 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-4003 (((-701 |#2|) (-1287 $) (-1 |#2| |#2|)) 64)) (-1505 (((-1287 |#2|) $) NIL) (($ (-1287 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3794 ((|#3| $) 36)) (-1999 (((-1287 $)) 33))) -(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2446 (|#1|)) (-15 -2247 ((-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4003 ((-701 |#2|) (-1287 |#1|) (-1 |#2| |#2|))) (-15 -2359 ((-3 |#1| "failed") (-419 |#3|))) (-15 -1505 (|#1| |#3|)) (-15 -2359 (|#1| |#3|)) (-15 -2582 (|#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -1505 (|#3| |#1|)) (-15 -1505 (|#1| (-1287 |#2|))) (-15 -1505 ((-1287 |#2|) |#1|)) (-15 -1999 ((-1287 |#1|))) (-15 -3794 (|#3| |#1|)) (-15 -4252 (|#2| |#1|)) (-15 -3179 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1263 |#2|)) (T -735)) -((-2247 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-783)) (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5))))) -(-10 -8 (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -2446 (|#1|)) (-15 -2247 ((-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4003 ((-701 |#2|) (-1287 |#1|) (-1 |#2| |#2|))) (-15 -2359 ((-3 |#1| "failed") (-419 |#3|))) (-15 -1505 (|#1| |#3|)) (-15 -2359 (|#1| |#3|)) (-15 -2582 (|#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -1505 (|#3| |#1|)) (-15 -1505 (|#1| (-1287 |#2|))) (-15 -1505 ((-1287 |#2|) |#1|)) (-15 -1999 ((-1287 |#1|))) (-15 -3794 (|#3| |#1|)) (-15 -4252 (|#2| |#1|)) (-15 -3179 ((-3 |#1| "failed") |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-2573 (($ $) 106 (|has| |#1| (-374)))) (-4306 (((-112) $) 108 (|has| |#1| (-374)))) (-1532 (((-701 |#1|) (-1287 $)) 53) (((-701 |#1|)) 68)) (-3803 ((|#1| $) 59)) (-2178 (((-1209 (-938) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 125 (|has| |#1| (-374)))) (-2100 (((-430 $) $) 126 (|has| |#1| (-374)))) (-4407 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2247 (((-783)) 99 (|has| |#1| (-379)))) (-3656 (($) 18 T CONST)) (-2974 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-2378 (((-576) $) 184 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 181)) (-3006 (($ (-1287 |#1|) (-1287 $)) 55) (($ (-1287 |#1|)) 71)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-1975 (($ $ $) 120 (|has| |#1| (-374)))) (-3754 (((-701 |#1|) $ (-1287 $)) 60) (((-701 |#1|) $) 66)) (-3687 (((-701 (-576)) (-1287 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 178 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 175) (((-701 |#1|) (-701 $)) 174) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 173) (((-701 |#1|) (-1287 $)) 172)) (-2359 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-3179 (((-3 $ "failed") $) 37)) (-4049 (((-938)) 61)) (-2446 (($) 102 (|has| |#1| (-379)))) (-1986 (($ $ $) 119 (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 114 (|has| |#1| (-374)))) (-1554 (($) 160 (|has| |#1| (-360)))) (-3506 (((-112) $) 161 (|has| |#1| (-360)))) (-1329 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-2725 (((-112) $) 127 (|has| |#1| (-374)))) (-1538 (((-938) $) 163 (|has| |#1| (-360))) (((-845 (-938)) $) 149 (|has| |#1| (-360)))) (-1810 (((-112) $) 35)) (-4252 ((|#1| $) 58)) (-2083 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-374)))) (-3164 ((|#2| $) 51 (|has| |#1| (-374)))) (-3225 (((-938) $) 101 (|has| |#1| (-379)))) (-2344 ((|#2| $) 167)) (-3117 (($ (-656 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-3288 (((-1178) $) 10)) (-1644 (($ $) 128 (|has| |#1| (-374)))) (-3503 (($) 154 (|has| |#1| (-360)) CONST)) (-2550 (($ (-938)) 100 (|has| |#1| (-379)))) (-3139 (((-1139) $) 11)) (-2582 (($) 171)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 113 (|has| |#1| (-374)))) (-3149 (($ (-656 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) 157 (|has| |#1| (-360)))) (-1392 (((-430 $) $) 124 (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 121 (|has| |#1| (-374)))) (-2022 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-374)))) (-1787 (((-783) $) 117 (|has| |#1| (-374)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 118 (|has| |#1| (-374)))) (-1955 ((|#1| (-1287 $)) 54) ((|#1|) 67)) (-2547 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-3614 (($ $ (-783)) 147 (-3765 (-2445 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-3765 (-2445 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) 141 (-2445 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196) (-783)) 140 (-2445 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-656 (-1196))) 139 (-2445 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196)) 137 (-2445 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374)))) (-4003 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-2840 ((|#2|) 170)) (-3870 (($) 159 (|has| |#1| (-360)))) (-3287 (((-1287 |#1|) $ (-1287 $)) 57) (((-701 |#1|) (-1287 $) (-1287 $)) 56) (((-1287 |#1|) $) 73) (((-701 |#1|) (-1287 $)) 72)) (-1505 (((-1287 |#1|) $) 70) (($ (-1287 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 156 (|has| |#1| (-360)))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-3765 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-3612 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3794 ((|#2| $) 52)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-1999 (((-1287 $)) 74)) (-2947 (((-112) $ $) 107 (|has| |#1| (-374)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-783)) 148 (-3765 (-2445 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-3765 (-2445 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) 144 (-2445 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196) (-783)) 143 (-2445 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-656 (-1196))) 142 (-2445 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1196)) 138 (-2445 (|has| |#1| (-917 (-1196))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374)))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 132 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) -(((-736 |#1| |#2|) (-141) (-174) (-1263 |t#1|)) (T -736)) -((-2582 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1263 *2)))) (-2840 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) (-2359 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) (-1505 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) (-2344 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) (-2359 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-4003 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1263 *5)) (-5 *2 (-701 *5))))) -(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2582 ($)) (-15 -2840 (|t#2|)) (-15 -2359 ($ |t#2|)) (-15 -1505 ($ |t#2|)) (-15 -2344 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -2359 ((-3 $ "failed") (-419 |t#2|))) (-15 -4003 ((-701 |t#1|) (-1287 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -3765 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -3765 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -3765 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -3765 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1196)) -3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))))) ((-915 (-1196)) -12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -3765 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1196))))) ((-937) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-360)) ((-1237) -3765 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1241) -3765 (|has| |#1| (-360)) (|has| |#1| (-374)))) -((-3656 (($) 11)) (-3179 (((-3 $ "failed") $) 14)) (-1810 (((-112) $) 10)) (** (($ $ (-938)) NIL) (($ $ (-783)) 20))) -(((-737 |#1|) (-10 -8 (-15 -3179 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1810 ((-112) |#1|)) (-15 -3656 (|#1|)) (-15 ** (|#1| |#1| (-938)))) (-738)) (T -737)) -NIL -(-10 -8 (-15 -3179 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1810 ((-112) |#1|)) (-15 -3656 (|#1|)) (-15 ** (|#1| |#1| (-938)))) -((-2034 (((-112) $ $) 7)) (-3656 (($) 19 T CONST)) (-3179 (((-3 $ "failed") $) 16)) (-1810 (((-112) $) 18)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4310 (($) 20 T CONST)) (-3919 (((-112) $ $) 6)) (** (($ $ (-938)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15))) +((-2148 (((-783)) 39)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-4056 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 23)) (-2521 (($ |#3|) NIL) (((-3 $ "failed") (-419 |#3|)) 49)) (-1551 (((-3 $ "failed") $) 69)) (-1803 (($) 43)) (-4072 ((|#2| $) 21)) (-2202 (($) 18)) (-2735 (($ $ (-1 |#2| |#2|)) 57) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL) (($ $ (-783)) NIL) (($ $) NIL)) (-1423 (((-701 |#2|) (-1286 $) (-1 |#2| |#2|)) 64)) (-4076 (((-1286 |#2|) $) NIL) (($ (-1286 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3941 ((|#3| $) 36)) (-3713 (((-1286 $)) 33))) +(((-735 |#1| |#2| |#3|) (-10 -8 (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -1803 (|#1|)) (-15 -2148 ((-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1423 ((-701 |#2|) (-1286 |#1|) (-1 |#2| |#2|))) (-15 -2521 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4076 (|#1| |#3|)) (-15 -2521 (|#1| |#3|)) (-15 -2202 (|#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4076 (|#3| |#1|)) (-15 -4076 (|#1| (-1286 |#2|))) (-15 -4076 ((-1286 |#2|) |#1|)) (-15 -3713 ((-1286 |#1|))) (-15 -3941 (|#3| |#1|)) (-15 -4072 (|#2| |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|))) (-736 |#2| |#3|) (-174) (-1262 |#2|)) (T -735)) +((-2148 (*1 *2) (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-783)) (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5))))) +(-10 -8 (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -1803 (|#1|)) (-15 -2148 ((-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1423 ((-701 |#2|) (-1286 |#1|) (-1 |#2| |#2|))) (-15 -2521 ((-3 |#1| "failed") (-419 |#3|))) (-15 -4076 (|#1| |#3|)) (-15 -2521 (|#1| |#3|)) (-15 -2202 (|#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4076 (|#3| |#1|)) (-15 -4076 (|#1| (-1286 |#2|))) (-15 -4076 ((-1286 |#2|) |#1|)) (-15 -3713 ((-1286 |#1|))) (-15 -3941 (|#3| |#1|)) (-15 -4072 (|#2| |#1|)) (-15 -1551 ((-3 |#1| "failed") |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 105 (|has| |#1| (-374)))) (-4412 (($ $) 106 (|has| |#1| (-374)))) (-4176 (((-112) $) 108 (|has| |#1| (-374)))) (-4084 (((-701 |#1|) (-1286 $)) 53) (((-701 |#1|)) 68)) (-2310 ((|#1| $) 59)) (-1361 (((-1208 (-938) (-783)) (-576)) 158 (|has| |#1| (-360)))) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 125 (|has| |#1| (-374)))) (-2732 (((-430 $) $) 126 (|has| |#1| (-374)))) (-1727 (((-112) $ $) 116 (|has| |#1| (-374)))) (-2148 (((-783)) 99 (|has| |#1| (-379)))) (-3767 (($) 18 T CONST)) (-1539 (((-3 (-576) "failed") $) 185 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 183 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 180)) (-4056 (((-576) $) 184 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 182 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 181)) (-2612 (($ (-1286 |#1|) (-1286 $)) 55) (($ (-1286 |#1|)) 71)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-360)))) (-3420 (($ $ $) 120 (|has| |#1| (-374)))) (-3103 (((-701 |#1|) $ (-1286 $)) 60) (((-701 |#1|) $) 66)) (-3687 (((-701 (-576)) (-1286 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 178 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 175) (((-701 |#1|) (-701 $)) 174) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 173) (((-701 |#1|) (-1286 $)) 172)) (-2521 (($ |#2|) 169) (((-3 $ "failed") (-419 |#2|)) 166 (|has| |#1| (-374)))) (-1551 (((-3 $ "failed") $) 37)) (-3606 (((-938)) 61)) (-1803 (($) 102 (|has| |#1| (-379)))) (-3431 (($ $ $) 119 (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 114 (|has| |#1| (-374)))) (-2580 (($) 160 (|has| |#1| (-360)))) (-2664 (((-112) $) 161 (|has| |#1| (-360)))) (-3499 (($ $ (-783)) 152 (|has| |#1| (-360))) (($ $) 151 (|has| |#1| (-360)))) (-1792 (((-112) $) 127 (|has| |#1| (-374)))) (-3333 (((-938) $) 163 (|has| |#1| (-360))) (((-845 (-938)) $) 149 (|has| |#1| (-360)))) (-1414 (((-112) $) 35)) (-4072 ((|#1| $) 58)) (-3930 (((-3 $ "failed") $) 153 (|has| |#1| (-360)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 123 (|has| |#1| (-374)))) (-2554 ((|#2| $) 51 (|has| |#1| (-374)))) (-1902 (((-938) $) 101 (|has| |#1| (-379)))) (-2510 ((|#2| $) 167)) (-3459 (($ (-656 $)) 112 (|has| |#1| (-374))) (($ $ $) 111 (|has| |#1| (-374)))) (-1927 (((-1177) $) 10)) (-2095 (($ $) 128 (|has| |#1| (-374)))) (-1538 (($) 154 (|has| |#1| (-360)) CONST)) (-3257 (($ (-938)) 100 (|has| |#1| (-379)))) (-1445 (((-1139) $) 11)) (-2202 (($) 171)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 113 (|has| |#1| (-374)))) (-3495 (($ (-656 $)) 110 (|has| |#1| (-374))) (($ $ $) 109 (|has| |#1| (-374)))) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) 157 (|has| |#1| (-360)))) (-1839 (((-430 $) $) 124 (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 121 (|has| |#1| (-374)))) (-3463 (((-3 $ "failed") $ $) 104 (|has| |#1| (-374)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 115 (|has| |#1| (-374)))) (-3112 (((-783) $) 117 (|has| |#1| (-374)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 118 (|has| |#1| (-374)))) (-1960 ((|#1| (-1286 $)) 54) ((|#1|) 67)) (-3721 (((-783) $) 162 (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) 150 (|has| |#1| (-360)))) (-2735 (($ $ (-783)) 147 (-2835 (-2758 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 145 (-2835 (-2758 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) 141 (-2758 (|has| |#1| (-917 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195) (-783)) 140 (-2758 (|has| |#1| (-917 (-1195))) (|has| |#1| (-374)))) (($ $ (-656 (-1195))) 139 (-2758 (|has| |#1| (-917 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195)) 137 (-2758 (|has| |#1| (-917 (-1195))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 135 (|has| |#1| (-374)))) (-1423 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-374)))) (-1372 ((|#2|) 170)) (-2594 (($) 159 (|has| |#1| (-360)))) (-1809 (((-1286 |#1|) $ (-1286 $)) 57) (((-701 |#1|) (-1286 $) (-1286 $)) 56) (((-1286 |#1|) $) 73) (((-701 |#1|) (-1286 $)) 72)) (-4076 (((-1286 |#1|) $) 70) (($ (-1286 |#1|)) 69) ((|#2| $) 186) (($ |#2|) 168)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 156 (|has| |#1| (-360)))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ $) 103 (|has| |#1| (-374))) (($ (-419 (-576))) 98 (-2835 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-2883 (($ $) 155 (|has| |#1| (-360))) (((-3 $ "failed") $) 50 (|has| |#1| (-146)))) (-3941 ((|#2| $) 52)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3713 (((-1286 $)) 74)) (-3040 (((-112) $ $) 107 (|has| |#1| (-374)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-783)) 148 (-2835 (-2758 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) 146 (-2835 (-2758 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) 144 (-2758 (|has| |#1| (-917 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195) (-783)) 143 (-2758 (|has| |#1| (-917 (-1195))) (|has| |#1| (-374)))) (($ $ (-656 (-1195))) 142 (-2758 (|has| |#1| (-917 (-1195))) (|has| |#1| (-374)))) (($ $ (-1195)) 138 (-2758 (|has| |#1| (-917 (-1195))) (|has| |#1| (-374)))) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) 133 (|has| |#1| (-374)))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 132 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 129 (|has| |#1| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-419 (-576)) $) 131 (|has| |#1| (-374))) (($ $ (-419 (-576))) 130 (|has| |#1| (-374))))) +(((-736 |#1| |#2|) (-141) (-174) (-1262 |t#1|)) (T -736)) +((-2202 (*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1262 *2)))) (-1372 (*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) (-2521 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) (-4076 (*1 *1 *2) (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) (-2521 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-374)) (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) (-1423 (*1 *2 *3 *4) (-12 (-5 *3 (-1286 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1262 *5)) (-5 *2 (-701 *5))))) +(-13 (-421 |t#1| |t#2|) (-174) (-626 |t#2|) (-423 |t#1|) (-388 |t#1|) (-10 -8 (-15 -2202 ($)) (-15 -1372 (|t#2|)) (-15 -2521 ($ |t#2|)) (-15 -4076 ($ |t#2|)) (-15 -2510 (|t#2| $)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-374)) (-6 (-232 |t#1|)) (-15 -2521 ((-3 $ "failed") (-419 |t#2|))) (-15 -1423 ((-701 |t#1|) (-1286 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-360)) (-6 (-360)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-38 |#1|) . T) ((-38 $) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-102) . T) ((-111 #0# #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2835 (|has| |#1| (-360)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) -2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-360)) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) . T) ((-626 |#2|) . T) ((-234 $) -2835 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-232 |#1|) |has| |#1| (-374)) ((-238) -2835 (|has| |#1| (-360)) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-237) -2835 (|has| |#1| (-360)) (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (-12 (|has| |#1| (-238)) (|has| |#1| (-374)))) ((-272 |#1|) |has| |#1| (-374)) ((-248) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-300) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-317) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-374) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-414) |has| |#1| (-360)) ((-379) -2835 (|has| |#1| (-379)) (|has| |#1| (-360))) ((-360) |has| |#1| (-360)) ((-381 |#1| |#2|) . T) ((-421 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-568) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-652 |#1|) . T) ((-652 $) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-729 |#1|) . T) ((-729 $) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195))))) ((-915 (-1195)) -12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195)))) ((-917 #2#) -2835 (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#1| (-915 (-1195))))) ((-937) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-360)) ((-1236) -2835 (|has| |#1| (-360)) (|has| |#1| (-374))) ((-1240) -2835 (|has| |#1| (-360)) (|has| |#1| (-374)))) +((-3767 (($) 11)) (-1551 (((-3 $ "failed") $) 14)) (-1414 (((-112) $) 10)) (** (($ $ (-938)) NIL) (($ $ (-783)) 20))) +(((-737 |#1|) (-10 -8 (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1414 ((-112) |#1|)) (-15 -3767 (|#1|)) (-15 ** (|#1| |#1| (-938)))) (-738)) (T -737)) +NIL +(-10 -8 (-15 -1551 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-783))) (-15 -1414 ((-112) |#1|)) (-15 -3767 (|#1|)) (-15 ** (|#1| |#1| (-938)))) +((-3474 (((-112) $ $) 7)) (-3767 (($) 19 T CONST)) (-1551 (((-3 $ "failed") $) 16)) (-1414 (((-112) $) 18)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2810 (($) 20 T CONST)) (-2988 (((-112) $ $) 6)) (** (($ $ (-938)) 14) (($ $ (-783)) 17)) (* (($ $ $) 15))) (((-738) (-141)) (T -738)) -((-4310 (*1 *1) (-4 *1 (-738))) (-3656 (*1 *1) (-4 *1 (-738))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-3179 (*1 *1 *1) (|partial| -4 *1 (-738)))) -(-13 (-1131) (-10 -8 (-15 (-4310) ($) -2670) (-15 -3656 ($) -2670) (-15 -1810 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -3179 ((-3 $ "failed") $)))) +((-2810 (*1 *1) (-4 *1 (-738))) (-3767 (*1 *1) (-4 *1 (-738))) (-1414 (*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) (-1551 (*1 *1 *1) (|partial| -4 *1 (-738)))) +(-13 (-1131) (-10 -8 (-15 (-2810) ($) -1398) (-15 -3767 ($) -1398) (-15 -1414 ((-112) $)) (-15 ** ($ $ (-783))) (-15 -1551 ((-3 $ "failed") $)))) (((-102) . T) ((-625 (-874)) . T) ((-1131) . T) ((-1119) . T)) -((-1878 (((-2 (|:| -2296 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3930 (((-2 (|:| -2296 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2545 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-3205 (((-2 (|:| |poly| |#2|) (|:| -2296 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) -(((-739 |#1| |#2|) (-10 -7 (-15 -3930 ((-2 (|:| -2296 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1878 ((-2 (|:| -2296 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2545 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3205 ((-2 (|:| |poly| |#2|) (|:| -2296 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1263 |#1|)) (T -739)) -((-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2296 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-2545 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-1878 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2296 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2296 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))) -(-10 -7 (-15 -3930 ((-2 (|:| -2296 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1878 ((-2 (|:| -2296 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2545 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3205 ((-2 (|:| |poly| |#2|) (|:| -2296 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) -((-3332 ((|#7| (-656 |#5|) |#6|) NIL)) (-2477 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2477 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3332 (|#7| (-656 |#5|) |#6|))) (-862) (-805) (-805) (-1068) (-1068) (-966 |#4| |#2| |#1|) (-966 |#5| |#3| |#1|)) (T -740)) -((-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-1068)) (-4 *2 (-966 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-966 *8 *6 *5)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1068)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *2 (-966 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-966 *8 *6 *5))))) -(-10 -7 (-15 -2477 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3332 (|#7| (-656 |#5|) |#6|))) -((-2477 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2477 (|#7| (-1 |#2| |#1|) |#6|))) (-862) (-862) (-805) (-805) (-1068) (-966 |#5| |#3| |#1|) (-966 |#5| |#4| |#2|)) (T -741)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-805)) (-4 *9 (-1068)) (-4 *2 (-966 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-966 *9 *7 *5))))) -(-10 -7 (-15 -2477 (|#7| (-1 |#2| |#1|) |#6|))) -((-1392 (((-430 |#4|) |#4|) 42))) -(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1392 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196))))) (-317) (-966 (-969 |#3|) |#1| |#2|)) (T -742)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-966 (-969 *6) *4 *5))))) -(-10 -7 (-15 -1392 ((-430 |#4|) |#4|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-876 |#1|)) $) NIL)) (-1364 (((-1192 $) $ (-876 |#1|)) NIL) (((-1192 |#2|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2573 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1587 (($ $) NIL (|has| |#2| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#2| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-2378 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2996 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-1717 (($ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-926)))) (-2291 (($ $ |#2| (-543 (-876 |#1|)) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-1529 (($ (-1192 |#2|) (-876 |#1|)) NIL) (($ (-1192 $) (-876 |#1|)) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#2| (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-876 |#1|)) NIL)) (-1915 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-3968 (($ (-1 (-543 (-876 |#1|)) (-543 (-876 |#1|))) $) NIL)) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-3403 (((-3 (-876 |#1|) "failed") $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#2| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3288 (((-1178) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -3175 (-783))) "failed") $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#2| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#2| (-926)))) (-2022 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-1955 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-3614 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2369 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3714 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))))) (-3076 (((-656 |#2|) $) NIL)) (-2430 ((|#2| $ (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-743 |#1| |#2|) (-966 |#2| (-543 (-876 |#1|)) (-876 |#1|)) (-656 (-1196)) (-1068)) (T -743)) +((-1728 (((-2 (|:| -2960 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2952 (((-2 (|:| -2960 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3505 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13)) (-2450 (((-2 (|:| |poly| |#2|) (|:| -2960 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48))) +(((-739 |#1| |#2|) (-10 -7 (-15 -2952 ((-2 (|:| -2960 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1728 ((-2 (|:| -2960 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3505 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -2450 ((-2 (|:| |poly| |#2|) (|:| -2960 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-374) (-1262 |#1|)) (T -739)) +((-2450 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2960 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-739 *5 *2)) (-4 *5 (-374)))) (-1728 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2960 (-430 *3)) (|:| |special| (-430 *3)))) (-5 *1 (-739 *5 *3)))) (-2952 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2960 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3))))) +(-10 -7 (-15 -2952 ((-2 (|:| -2960 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1728 ((-2 (|:| -2960 (-430 |#2|)) (|:| |special| (-430 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3505 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -2450 ((-2 (|:| |poly| |#2|) (|:| -2960 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) +((-3468 ((|#7| (-656 |#5|) |#6|) NIL)) (-1632 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-740 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1632 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3468 (|#7| (-656 |#5|) |#6|))) (-862) (-805) (-805) (-1068) (-1068) (-966 |#4| |#2| |#1|) (-966 |#5| |#3| |#1|)) (T -740)) +((-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *9)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *8 (-1068)) (-4 *2 (-966 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-966 *8 *6 *5)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1068)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *2 (-966 *9 *7 *5)) (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) (-4 *4 (-966 *8 *6 *5))))) +(-10 -7 (-15 -1632 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3468 (|#7| (-656 |#5|) |#6|))) +((-1632 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-741 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1632 (|#7| (-1 |#2| |#1|) |#6|))) (-862) (-862) (-805) (-805) (-1068) (-966 |#5| |#3| |#1|) (-966 |#5| |#4| |#2|)) (T -741)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-862)) (-4 *6 (-862)) (-4 *7 (-805)) (-4 *9 (-1068)) (-4 *2 (-966 *9 *8 *6)) (-5 *1 (-741 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-805)) (-4 *4 (-966 *9 *7 *5))))) +(-10 -7 (-15 -1632 (|#7| (-1 |#2| |#1|) |#6|))) +((-1839 (((-430 |#4|) |#4|) 42))) +(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1839 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195))))) (-317) (-966 (-969 |#3|) |#1| |#2|)) (T -742)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195)))))) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-966 (-969 *6) *4 *5))))) +(-10 -7 (-15 -1839 ((-430 |#4|) |#4|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-876 |#1|)) $) NIL)) (-3999 (((-1191 $) $ (-876 |#1|)) NIL) (((-1191 |#2|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4412 (($ $) NIL (|has| |#2| (-568)))) (-4176 (((-112) $) NIL (|has| |#2| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-876 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1760 (($ $) NIL (|has| |#2| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-876 |#1|) "failed") $) NIL)) (-4056 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-876 |#1|) $) NIL)) (-2861 (($ $ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2166 (($ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#2| (-926)))) (-1660 (($ $ |#2| (-543 (-876 |#1|)) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-876 |#1|) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1980 (($ (-1191 |#2|) (-876 |#1|)) NIL) (($ (-1191 $) (-876 |#1|)) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#2| (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-876 |#1|)) NIL)) (-3403 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-2133 (($ (-1 (-543 (-876 |#1|)) (-543 (-876 |#1|))) $) NIL)) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-4209 (((-3 (-876 |#1|) "failed") $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#2| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1927 (((-1177) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-876 |#1|)) (|:| -4274 (-783))) "failed") $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#2| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#2| (-926)))) (-3463 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-876 |#1|) |#2|) NIL) (($ $ (-656 (-876 |#1|)) (-656 |#2|)) NIL) (($ $ (-876 |#1|) $) NIL) (($ $ (-656 (-876 |#1|)) (-656 $)) NIL)) (-1960 (($ $ (-876 |#1|)) NIL (|has| |#2| (-174)))) (-2735 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-1433 (((-543 (-876 |#1|)) $) NIL) (((-783) $ (-876 |#1|)) NIL) (((-656 (-783)) $ (-656 (-876 |#1|))) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-876 |#1|) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-876 |#1|) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3648 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-876 |#1|)) NIL (|has| |#2| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-876 |#1|)) NIL) (($ $) NIL (|has| |#2| (-568))) (($ (-419 (-576))) NIL (-2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576))))))) (-2927 (((-656 |#2|) $) NIL)) (-4333 ((|#2| $ (-543 (-876 |#1|))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-656 (-876 |#1|)) (-656 (-783))) NIL) (($ $ (-876 |#1|) (-783)) NIL) (($ $ (-656 (-876 |#1|))) NIL) (($ $ (-876 |#1|)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-743 |#1| |#2|) (-966 |#2| (-543 (-876 |#1|)) (-876 |#1|)) (-656 (-1195)) (-1068)) (T -743)) NIL (-966 |#2| (-543 (-876 |#1|)) (-876 |#1|)) -((-1413 (((-2 (|:| -2746 (-969 |#3|)) (|:| -2632 (-969 |#3|))) |#4|) 14)) (-1847 ((|#4| |#4| |#2|) 33)) (-3995 ((|#4| (-419 (-969 |#3|)) |#2|) 64)) (-2286 ((|#4| (-1192 (-969 |#3|)) |#2|) 77)) (-2747 ((|#4| (-1192 |#4|) |#2|) 51)) (-2882 ((|#4| |#4| |#2|) 54)) (-1392 (((-430 |#4|) |#4|) 40))) -(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1413 ((-2 (|:| -2746 (-969 |#3|)) (|:| -2632 (-969 |#3|))) |#4|)) (-15 -2882 (|#4| |#4| |#2|)) (-15 -2747 (|#4| (-1192 |#4|) |#2|)) (-15 -1847 (|#4| |#4| |#2|)) (-15 -2286 (|#4| (-1192 (-969 |#3|)) |#2|)) (-15 -3995 (|#4| (-419 (-969 |#3|)) |#2|)) (-15 -1392 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)))) (-568) (-966 (-419 (-969 |#3|)) |#1| |#2|)) (T -744)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-966 (-419 (-969 *6)) *4 *5)))) (-3995 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-966 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-969 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))))) (-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 (-969 *6))) (-4 *6 (-568)) (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))))) (-1847 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *2)) (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) (-4 *6 (-568)))) (-2882 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3)))) (-1413 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -2746 (-969 *6)) (|:| -2632 (-969 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-966 (-419 (-969 *6)) *4 *5))))) -(-10 -7 (-15 -1413 ((-2 (|:| -2746 (-969 |#3|)) (|:| -2632 (-969 |#3|))) |#4|)) (-15 -2882 (|#4| |#4| |#2|)) (-15 -2747 (|#4| (-1192 |#4|) |#2|)) (-15 -1847 (|#4| |#4| |#2|)) (-15 -2286 (|#4| (-1192 (-969 |#3|)) |#2|)) (-15 -3995 (|#4| (-419 (-969 |#3|)) |#2|)) (-15 -1392 ((-430 |#4|) |#4|))) -((-1392 (((-430 |#4|) |#4|) 54))) -(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1392 ((-430 |#4|) |#4|))) (-805) (-862) (-13 (-317) (-148)) (-966 (-419 |#3|) |#1| |#2|)) (T -745)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-966 (-419 *6) *4 *5))))) -(-10 -7 (-15 -1392 ((-430 |#4|) |#4|))) -((-2477 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18))) -(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1068) (-1068) (-738)) (T -746)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7))))) -(-10 -7 (-15 -2477 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 36)) (-1655 (((-656 (-2 (|:| -1856 |#1|) (|:| -1585 |#2|))) $) 37)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2247 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-2378 ((|#2| $) NIL) ((|#1| $) NIL)) (-1717 (($ $) 102 (|has| |#2| (-862)))) (-3179 (((-3 $ "failed") $) 85)) (-2446 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) 70)) (-2503 (((-656 $) $) 52)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| |#2|) 17)) (-2477 (($ (-1 |#1| |#1|) $) 68)) (-3225 (((-938) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1681 ((|#2| $) 101 (|has| |#2| (-862)))) (-1692 ((|#1| $) 100 (|has| |#2| (-862)))) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -1856 |#1|) (|:| -1585 |#2|)))) 11)) (-3076 (((-656 |#1|) $) 54)) (-2430 ((|#1| $ |#2|) 115)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 12 T CONST)) (-4310 (($) 44 T CONST)) (-3919 (((-112) $ $) 105)) (-4018 (($ $) 61) (($ $ $) NIL)) (-4007 (($ $ $) 33)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-747 |#1| |#2|) (-13 (-1068) (-1057 |#2|) (-1057 |#1|) (-10 -8 (-15 -1518 ($ |#1| |#2|)) (-15 -2430 (|#1| $ |#2|)) (-15 -4092 ($ (-656 (-2 (|:| -1856 |#1|) (|:| -1585 |#2|))))) (-15 -1655 ((-656 (-2 (|:| -1856 |#1|) (|:| -1585 |#2|))) $)) (-15 -2477 ($ (-1 |#1| |#1|) $)) (-15 -4331 ((-112) $)) (-15 -3076 ((-656 |#1|) $)) (-15 -2503 ((-656 $) $)) (-15 -1831 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -1681 (|#2| $)) (-15 -1692 (|#1| $)) (-15 -1717 ($ $))) |%noBranch|))) (-1068) (-738)) (T -747)) -((-1518 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-738)))) (-2430 (*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1856 *3) (|:| -1585 *4)))) (-4 *3 (-1068)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1856 *3) (|:| -1585 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-4331 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-2503 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-1831 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-1681 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1068)))) (-1692 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *3 (-738)))) (-1717 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1068)) (-4 *3 (-738))))) -(-13 (-1068) (-1057 |#2|) (-1057 |#1|) (-10 -8 (-15 -1518 ($ |#1| |#2|)) (-15 -2430 (|#1| $ |#2|)) (-15 -4092 ($ (-656 (-2 (|:| -1856 |#1|) (|:| -1585 |#2|))))) (-15 -1655 ((-656 (-2 (|:| -1856 |#1|) (|:| -1585 |#2|))) $)) (-15 -2477 ($ (-1 |#1| |#1|) $)) (-15 -4331 ((-112) $)) (-15 -3076 ((-656 |#1|) $)) (-15 -2503 ((-656 $) $)) (-15 -1831 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -1681 (|#2| $)) (-15 -1692 (|#1| $)) (-15 -1717 ($ $))) |%noBranch|))) -((-2034 (((-112) $ $) 19)) (-4006 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4369 (($ $ $) 73)) (-3004 (((-112) $ $) 74)) (-2835 (((-112) $ (-783)) 8)) (-3662 (($ (-656 |#1|)) 69) (($) 68)) (-3831 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-4329 (($ $) 63)) (-1690 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-2892 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1583 (((-112) $ $) 65)) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22)) (-3586 (($ $ $) 70)) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3139 (((-1139) $) 21)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-2983 (((-656 (-2 (|:| -2900 |#1|) (|:| -3150 (-783)))) $) 62)) (-3182 (($ $ |#1|) 72) (($ $ $) 71)) (-1833 (($) 50) (($ (-656 |#1|)) 49)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 51)) (-4092 (((-874) $) 18)) (-1460 (($ (-656 |#1|)) 67) (($) 66)) (-1531 (((-112) $ $) 23)) (-3688 (($ (-656 |#1|)) 43)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20)) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-3792 (((-2 (|:| -4415 (-969 |#3|)) (|:| -3987 (-969 |#3|))) |#4|) 14)) (-1574 ((|#4| |#4| |#2|) 33)) (-1808 ((|#4| (-419 (-969 |#3|)) |#2|) 64)) (-2380 ((|#4| (-1191 (-969 |#3|)) |#2|) 77)) (-3312 ((|#4| (-1191 |#4|) |#2|) 51)) (-1360 ((|#4| |#4| |#2|) 54)) (-1839 (((-430 |#4|) |#4|) 40))) +(((-744 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3792 ((-2 (|:| -4415 (-969 |#3|)) (|:| -3987 (-969 |#3|))) |#4|)) (-15 -1360 (|#4| |#4| |#2|)) (-15 -3312 (|#4| (-1191 |#4|) |#2|)) (-15 -1574 (|#4| |#4| |#2|)) (-15 -2380 (|#4| (-1191 (-969 |#3|)) |#2|)) (-15 -1808 (|#4| (-419 (-969 |#3|)) |#2|)) (-15 -1839 ((-430 |#4|) |#4|))) (-805) (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)))) (-568) (-966 (-419 (-969 |#3|)) |#1| |#2|)) (T -744)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) (-4 *6 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-966 (-419 (-969 *6)) *4 *5)))) (-1808 (*1 *2 *3 *4) (-12 (-4 *6 (-568)) (-4 *2 (-966 *3 *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-969 *6))) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))))) (-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 (-969 *6))) (-4 *6 (-568)) (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))))) (-1574 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *2)) (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) (-4 *4 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) (-4 *6 (-568)))) (-1360 (*1 *2 *2 *3) (-12 (-4 *4 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3)))) (-3792 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) (-4 *6 (-568)) (-5 *2 (-2 (|:| -4415 (-969 *6)) (|:| -3987 (-969 *6)))) (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-966 (-419 (-969 *6)) *4 *5))))) +(-10 -7 (-15 -3792 ((-2 (|:| -4415 (-969 |#3|)) (|:| -3987 (-969 |#3|))) |#4|)) (-15 -1360 (|#4| |#4| |#2|)) (-15 -3312 (|#4| (-1191 |#4|) |#2|)) (-15 -1574 (|#4| |#4| |#2|)) (-15 -2380 (|#4| (-1191 (-969 |#3|)) |#2|)) (-15 -1808 (|#4| (-419 (-969 |#3|)) |#2|)) (-15 -1839 ((-430 |#4|) |#4|))) +((-1839 (((-430 |#4|) |#4|) 54))) +(((-745 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1839 ((-430 |#4|) |#4|))) (-805) (-862) (-13 (-317) (-148)) (-966 (-419 |#3|) |#1| |#2|)) (T -745)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) (-4 *3 (-966 (-419 *6) *4 *5))))) +(-10 -7 (-15 -1839 ((-430 |#4|) |#4|))) +((-1632 (((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)) 18))) +(((-746 |#1| |#2| |#3|) (-10 -7 (-15 -1632 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) (-1068) (-1068) (-738)) (T -746)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-747 *5 *7)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *7 (-738)) (-5 *2 (-747 *6 *7)) (-5 *1 (-746 *5 *6 *7))))) +(-10 -7 (-15 -1632 ((-747 |#2| |#3|) (-1 |#2| |#1|) (-747 |#1| |#3|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 36)) (-3826 (((-656 (-2 (|:| -1706 |#1|) (|:| -3605 |#2|))) $) 37)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2148 (((-783)) 22 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) 76) (((-3 |#1| "failed") $) 79)) (-4056 ((|#2| $) NIL) ((|#1| $) NIL)) (-2166 (($ $) 102 (|has| |#2| (-862)))) (-1551 (((-3 $ "failed") $) 85)) (-1803 (($) 48 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) 70)) (-1475 (((-656 $) $) 52)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| |#2|) 17)) (-1632 (($ (-1 |#1| |#1|) $) 68)) (-1902 (((-938) $) 43 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-2129 ((|#2| $) 101 (|has| |#2| (-862)))) (-2142 ((|#1| $) 100 (|has| |#2| (-862)))) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) 35 (-12 (|has| |#2| (-379)) (|has| |#1| (-379))))) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 99) (($ (-576)) 59) (($ |#2|) 55) (($ |#1|) 56) (($ (-656 (-2 (|:| -1706 |#1|) (|:| -3605 |#2|)))) 11)) (-2927 (((-656 |#1|) $) 54)) (-4333 ((|#1| $ |#2|) 115)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 12 T CONST)) (-2810 (($) 44 T CONST)) (-2988 (((-112) $ $) 105)) (-3095 (($ $) 61) (($ $ $) NIL)) (-3083 (($ $ $) 33)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 66) (($ $ $) 118) (($ |#1| $) 63 (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-747 |#1| |#2|) (-13 (-1068) (-1057 |#2|) (-1057 |#1|) (-10 -8 (-15 -1970 ($ |#1| |#2|)) (-15 -4333 (|#1| $ |#2|)) (-15 -3563 ($ (-656 (-2 (|:| -1706 |#1|) (|:| -3605 |#2|))))) (-15 -3826 ((-656 (-2 (|:| -1706 |#1|) (|:| -3605 |#2|))) $)) (-15 -1632 ($ (-1 |#1| |#1|) $)) (-15 -2606 ((-112) $)) (-15 -2927 ((-656 |#1|) $)) (-15 -1475 ((-656 $) $)) (-15 -3839 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -2129 (|#2| $)) (-15 -2142 (|#1| $)) (-15 -2166 ($ $))) |%noBranch|))) (-1068) (-738)) (T -747)) +((-1970 (*1 *1 *2 *3) (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-738)))) (-4333 (*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -1706 *3) (|:| -3605 *4)))) (-4 *3 (-1068)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) (-3826 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -1706 *3) (|:| -3605 *4)))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-747 *3 *4)) (-4 *4 (-738)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-1475 (*1 *2 *1) (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) (-2129 (*1 *2 *1) (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2)) (-4 *3 (-1068)))) (-2142 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *3 (-738)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1068)) (-4 *3 (-738))))) +(-13 (-1068) (-1057 |#2|) (-1057 |#1|) (-10 -8 (-15 -1970 ($ |#1| |#2|)) (-15 -4333 (|#1| $ |#2|)) (-15 -3563 ($ (-656 (-2 (|:| -1706 |#1|) (|:| -3605 |#2|))))) (-15 -3826 ((-656 (-2 (|:| -1706 |#1|) (|:| -3605 |#2|))) $)) (-15 -1632 ($ (-1 |#1| |#1|) $)) (-15 -2606 ((-112) $)) (-15 -2927 ((-656 |#1|) $)) (-15 -1475 ((-656 $) $)) (-15 -3839 ((-783) $)) (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-862)) (PROGN (-15 -2129 (|#2| $)) (-15 -2142 (|#1| $)) (-15 -2166 ($ $))) |%noBranch|))) +((-3474 (((-112) $ $) 19)) (-1901 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4195 (($ $ $) 73)) (-2529 (((-112) $ $) 74)) (-3131 (((-112) $ (-783)) 8)) (-2187 (($ (-656 |#1|)) 69) (($) 68)) (-4001 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3315 (($ $) 63)) (-3172 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3902 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1408 (((-112) $ $) 65)) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22)) (-2021 (($ $ $) 70)) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1445 (((-1139) $) 21)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1961 (((-656 (-2 (|:| -4353 |#1|) (|:| -1456 (-783)))) $) 62)) (-1956 (($ $ |#1|) 72) (($ $ $) 71)) (-2837 (($) 50) (($ (-656 |#1|)) 49)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 51)) (-3563 (((-874) $) 18)) (-1909 (($ (-656 |#1|)) 67) (($) 66)) (-3985 (((-112) $ $) 23)) (-3773 (($ (-656 |#1|)) 43)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20)) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-748 |#1|) (-141) (-1119)) (T -748)) NIL (-13 (-707 |t#1|) (-1117 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-707 |#1|) . T) ((-1117 |#1|) . T) ((-1119) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-4006 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-4369 (($ $ $) 96)) (-3004 (((-112) $ $) 104)) (-2835 (((-112) $ (-783)) NIL)) (-3662 (($ (-656 |#1|)) 26) (($) 17)) (-3831 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-4329 (($ $) 85)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4376 (($ |#1| $) 70 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-4260 (((-656 |#1|) $) 32 (|has| $ (-6 -4462)))) (-1583 (((-112) $ $) 103)) (-1357 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) 38)) (-3990 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 89)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-3586 (($ $ $) 94)) (-3576 ((|#1| $) 62)) (-2361 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-3139 (((-1139) $) NIL)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1679 ((|#1| $) 61)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 56)) (-2643 (($) 14)) (-2983 (((-656 (-2 (|:| -2900 |#1|) (|:| -3150 (-783)))) $) 55)) (-3182 (($ $ |#1|) NIL) (($ $ $) 95)) (-1833 (($) 16) (($ (-656 |#1|)) 25)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) 79)) (-1505 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 22)) (-4092 (((-874) $) 49)) (-1460 (($ (-656 |#1|)) 27) (($) 18)) (-1531 (((-112) $ $) NIL)) (-3688 (($ (-656 |#1|)) 24)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 100)) (-2048 (((-783) $) 67 (|has| $ (-6 -4462))))) -(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -1357 ($)) (-15 -1357 ($ |#1|)) (-15 -1357 ($ (-656 |#1|))) (-15 -1750 ((-656 |#1|) $)) (-15 -2892 ($ |#1| $ (-576))) (-15 -2892 ($ (-1 (-112) |#1|) $ (-576))) (-15 -4376 ($ |#1| $ (-576))) (-15 -4376 ($ (-1 (-112) |#1|) $ (-576))))) (-1119)) (T -749)) -((-1357 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-1357 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-1357 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-749 *3)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1119)))) (-2892 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-2892 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) (-5 *1 (-749 *4)))) (-4376 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-4376 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) (-5 *1 (-749 *4))))) -(-13 (-748 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -1357 ($)) (-15 -1357 ($ |#1|)) (-15 -1357 ($ (-656 |#1|))) (-15 -1750 ((-656 |#1|) $)) (-15 -2892 ($ |#1| $ (-576))) (-15 -2892 ($ (-1 (-112) |#1|) $ (-576))) (-15 -4376 ($ |#1| $ (-576))) (-15 -4376 ($ (-1 (-112) |#1|) $ (-576))))) -((-2254 (((-1292) (-1178)) 8))) -(((-750) (-10 -7 (-15 -2254 ((-1292) (-1178))))) (T -750)) -((-2254 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-750))))) -(-10 -7 (-15 -2254 ((-1292) (-1178)))) -((-2968 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15))) -(((-751 |#1|) (-10 -7 (-15 -2968 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-862)) (T -751)) -((-2968 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3))))) -(-10 -7 (-15 -2968 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1541 (((-656 |#2|) $) 149)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-2573 (($ $) 141 (|has| |#1| (-568)))) (-4306 (((-112) $) 139 (|has| |#1| (-568)))) (-2266 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) 20)) (-1403 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-2236 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-2294 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) 18 T CONST)) (-1717 (($ $) 133)) (-3179 (((-3 $ "failed") $) 37)) (-3928 (((-969 |#1|) $ (-783)) 111) (((-969 |#1|) $ (-783) (-783)) 110)) (-3840 (((-112) $) 150)) (-3926 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-4331 (((-112) $) 131)) (-1518 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-2477 (($ (-1 |#1| |#1|) $) 130)) (-2703 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) 128)) (-1692 ((|#1| $) 127)) (-3288 (((-1178) $) 10)) (-3597 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-3139 (((-1139) $) 11)) (-2843 (($ $ (-783)) 116)) (-2022 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-3353 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-3614 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-2369 (((-543 |#2|) $) 129)) (-2307 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) 151)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2430 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-3612 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2340 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) 140 (|has| |#1| (-568)))) (-2317 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-707 |#1|) . T) ((-1117 |#1|) . T) ((-1119) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1901 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 92)) (-4195 (($ $ $) 96)) (-2529 (((-112) $ $) 104)) (-3131 (((-112) $ (-783)) NIL)) (-2187 (($ (-656 |#1|)) 26) (($) 17)) (-4001 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3315 (($ $) 85)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3623 (($ |#1| $) 70 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461))) (($ |#1| $ (-576)) 75) (($ (-1 (-112) |#1|) $ (-576)) 78)) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (($ |#1| $ (-576)) 80) (($ (-1 (-112) |#1|) $ (-576)) 81)) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-3825 (((-656 |#1|) $) 32 (|has| $ (-6 -4461)))) (-1408 (((-112) $ $) 103)) (-4116 (($) 15) (($ |#1|) 28) (($ (-656 |#1|)) 23)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) 38)) (-2511 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 89)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-2021 (($ $ $) 94)) (-1409 ((|#1| $) 62)) (-2040 (($ |#1| $) 63) (($ |#1| $ (-783)) 86)) (-1445 (((-1139) $) NIL)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3399 ((|#1| $) 61)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 56)) (-2597 (($) 14)) (-1961 (((-656 (-2 (|:| -4353 |#1|) (|:| -1456 (-783)))) $) 55)) (-1956 (($ $ |#1|) NIL) (($ $ $) 95)) (-2837 (($) 16) (($ (-656 |#1|)) 25)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) 68 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) 79)) (-4076 (((-548) $) 36 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 22)) (-3563 (((-874) $) 49)) (-1909 (($ (-656 |#1|)) 27) (($) 18)) (-3985 (((-112) $ $) NIL)) (-3773 (($ (-656 |#1|)) 24)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 100)) (-3485 (((-783) $) 67 (|has| $ (-6 -4461))))) +(((-749 |#1|) (-13 (-748 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -4116 ($)) (-15 -4116 ($ |#1|)) (-15 -4116 ($ (-656 |#1|))) (-15 -2591 ((-656 |#1|) $)) (-15 -3902 ($ |#1| $ (-576))) (-15 -3902 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3623 ($ |#1| $ (-576))) (-15 -3623 ($ (-1 (-112) |#1|) $ (-576))))) (-1119)) (T -749)) +((-4116 (*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-4116 (*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-4116 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-749 *3)))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1119)))) (-3902 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-3902 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) (-5 *1 (-749 *4)))) (-3623 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) (-3623 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) (-5 *1 (-749 *4))))) +(-13 (-748 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -4116 ($)) (-15 -4116 ($ |#1|)) (-15 -4116 ($ (-656 |#1|))) (-15 -2591 ((-656 |#1|) $)) (-15 -3902 ($ |#1| $ (-576))) (-15 -3902 ($ (-1 (-112) |#1|) $ (-576))) (-15 -3623 ($ |#1| $ (-576))) (-15 -3623 ($ (-1 (-112) |#1|) $ (-576))))) +((-2922 (((-1291) (-1177)) 8))) +(((-750) (-10 -7 (-15 -2922 ((-1291) (-1177))))) (T -750)) +((-2922 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-750))))) +(-10 -7 (-15 -2922 ((-1291) (-1177)))) +((-3100 (((-656 |#1|) (-656 |#1|) (-656 |#1|)) 15))) +(((-751 |#1|) (-10 -7 (-15 -3100 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) (-862)) (T -751)) +((-3100 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3))))) +(-10 -7 (-15 -3100 ((-656 |#1|) (-656 |#1|) (-656 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1991 (((-656 |#2|) $) 149)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 142 (|has| |#1| (-568)))) (-4412 (($ $) 141 (|has| |#1| (-568)))) (-4176 (((-112) $) 139 (|has| |#1| (-568)))) (-3894 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) 20)) (-1853 (($ $) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3872 (($ $) 97 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3916 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 83 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) 18 T CONST)) (-2166 (($ $) 133)) (-1551 (((-3 $ "failed") $) 37)) (-1731 (((-969 |#1|) $ (-783)) 111) (((-969 |#1|) $ (-783) (-783)) 110)) (-1822 (((-112) $) 150)) (-1570 (($) 108 (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-783) $ |#2|) 113) (((-783) $ |#2| (-783)) 112)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 79 (|has| |#1| (-38 (-419 (-576)))))) (-2606 (((-112) $) 131)) (-1970 (($ $ (-656 |#2|) (-656 (-543 |#2|))) 148) (($ $ |#2| (-543 |#2|)) 147) (($ |#1| (-543 |#2|)) 132) (($ $ |#2| (-783)) 115) (($ $ (-656 |#2|) (-656 (-783))) 114)) (-1632 (($ (-1 |#1| |#1|) $) 130)) (-3710 (($ $) 105 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 128)) (-2142 ((|#1| $) 127)) (-1927 (((-1177) $) 10)) (-3848 (($ $ |#2|) 109 (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-1139) $) 11)) (-1714 (($ $ (-783)) 116)) (-3463 (((-3 $ "failed") $ $) 143 (|has| |#1| (-568)))) (-3984 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($ $ |#2| $) 124) (($ $ (-656 |#2|) (-656 $)) 123) (($ $ (-656 (-304 $))) 122) (($ $ (-304 $)) 121) (($ $ $ $) 120) (($ $ (-656 $) (-656 $)) 119)) (-2735 (($ $ (-656 |#2|) (-656 (-783))) 44) (($ $ |#2| (-783)) 43) (($ $ (-656 |#2|)) 42) (($ $ |#2|) 40)) (-1433 (((-543 |#2|) $) 129)) (-3928 (($ $) 95 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 84 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 85 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 93 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 86 (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) 151)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 146 (|has| |#1| (-174))) (($ $) 144 (|has| |#1| (-568))) (($ (-419 (-576))) 136 (|has| |#1| (-38 (-419 (-576)))))) (-4333 ((|#1| $ (-543 |#2|)) 134) (($ $ |#2| (-783)) 118) (($ $ (-656 |#2|) (-656 (-783))) 117)) (-2883 (((-3 $ "failed") $) 145 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3958 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) 140 (|has| |#1| (-568)))) (-3939 (($ $) 103 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 91 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-1830 (($ $) 101 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 89 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 99 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 87 (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-656 |#2|) (-656 (-783))) 47) (($ $ |#2| (-783)) 46) (($ $ (-656 |#2|)) 45) (($ $ |#2|) 41)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 135 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ $) 107 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 78 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 138 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 137 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 126) (($ $ |#1|) 125))) (((-752 |#1| |#2|) (-141) (-1068) (-862)) (T -752)) -((-2430 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-862)))) (-2430 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-862)))) (-1518 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-862)))) (-1518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)))) (-1538 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-862)) (-5 *2 (-783)))) (-1538 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-862)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)) (-5 *2 (-969 *4)))) (-3928 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)) (-5 *2 (-969 *4)))) (-3597 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-862)) (-4 *3 (-38 (-419 (-576))))))) -(-13 (-915 |t#2|) (-992 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -2430 ($ $ |t#2| (-783))) (-15 -2430 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -2843 ($ $ (-783))) (-15 -1518 ($ $ |t#2| (-783))) (-15 -1518 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -1538 ((-783) $ |t#2|)) (-15 -1538 ((-783) $ |t#2| (-783))) (-15 -3928 ((-969 |t#1|) $ (-783))) (-15 -3928 ((-969 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $ |t#2|)) (-6 (-1021)) (-6 (-1222))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ |#2|) . T) ((-915 |#2|) . T) ((-917 |#2|) . T) ((-992 |#1| #0# |#2|) . T) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T)) -((-1392 (((-430 (-1192 |#4|)) (-1192 |#4|)) 30) (((-430 |#4|) |#4|) 26))) -(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1392 ((-430 |#4|) |#4|)) (-15 -1392 ((-430 (-1192 |#4|)) (-1192 |#4|)))) (-862) (-805) (-13 (-317) (-148)) (-966 |#3| |#2| |#1|)) (T -753)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4))))) -(-10 -7 (-15 -1392 ((-430 |#4|) |#4|)) (-15 -1392 ((-430 (-1192 |#4|)) (-1192 |#4|)))) -((-4099 (((-430 |#4|) |#4| |#2|) 140)) (-1411 (((-430 |#4|) |#4|) NIL)) (-2100 (((-430 (-1192 |#4|)) (-1192 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-3072 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1392 (-1192 |#4|)) (|:| -3175 (-576)))))) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-1887 (((-1192 |#3|) (-1192 |#3|) (-576)) 166)) (-1754 (((-656 (-783)) (-1192 |#4|) (-656 |#2|) (-783)) 75)) (-2344 (((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-3186 (((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-3181 (((-2 (|:| -2248 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-576)) 72)) (-2931 (((-576) (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576))))) 162)) (-3762 ((|#4| (-576) (-430 |#4|)) 73)) (-3334 (((-112) (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576)))) (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576))))) NIL))) -(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2100 ((-430 |#4|) |#4|)) (-15 -2100 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -1411 ((-430 |#4|) |#4|)) (-15 -2931 ((-576) (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576)))))) (-15 -4099 ((-430 |#4|) |#4| |#2|)) (-15 -3181 ((-2 (|:| -2248 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-576))) (-15 -3072 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1392 (-1192 |#4|)) (|:| -3175 (-576)))))) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3186 ((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3762 (|#4| (-576) (-430 |#4|))) (-15 -3334 ((-112) (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576)))) (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576)))))) (-15 -2344 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -1754 ((-656 (-783)) (-1192 |#4|) (-656 |#2|) (-783))) (-15 -1887 ((-1192 |#3|) (-1192 |#3|) (-576)))) (-805) (-862) (-317) (-966 |#3| |#1| |#2|)) (T -754)) -((-1887 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-1754 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-2344 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1192 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-966 *11 *9 *10)) (-5 *2 (-656 (-1192 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1192 *5)))) (-3334 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -1392 (-1192 *6)) (|:| -3175 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-966 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-317)))) (-3186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1192 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -1392 (-1192 *8)) (|:| -3175 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-3072 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-966 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -1392 (-1192 *9)) (|:| -3175 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)))) (-3181 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-966 *8 *6 *7)) (-5 *2 (-2 (|:| -2248 (-1192 *9)) (|:| |polval| (-1192 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)) (-5 *4 (-1192 *8)))) (-4099 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1392 (-1192 *6)) (|:| -3175 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-1411 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5)))) (-2100 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-2100 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5))))) -(-10 -7 (-15 -2100 ((-430 |#4|) |#4|)) (-15 -2100 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -1411 ((-430 |#4|) |#4|)) (-15 -2931 ((-576) (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576)))))) (-15 -4099 ((-430 |#4|) |#4| |#2|)) (-15 -3181 ((-2 (|:| -2248 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-576))) (-15 -3072 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1392 (-1192 |#4|)) (|:| -3175 (-576)))))) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3186 ((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -3762 (|#4| (-576) (-430 |#4|))) (-15 -3334 ((-112) (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576)))) (-656 (-2 (|:| -1392 (-1192 |#3|)) (|:| -3175 (-576)))))) (-15 -2344 ((-3 (-656 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -1754 ((-656 (-783)) (-1192 |#4|) (-656 |#2|) (-783))) (-15 -1887 ((-1192 |#3|) (-1192 |#3|) (-576)))) -((-4370 (($ $ (-938)) 17))) -(((-755 |#1| |#2|) (-10 -8 (-15 -4370 (|#1| |#1| (-938)))) (-756 |#2|) (-174)) (T -755)) -NIL -(-10 -8 (-15 -4370 (|#1| |#1| (-938)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3952 (($ $ (-938)) 31)) (-4370 (($ $ (-938)) 38)) (-2596 (($ $ (-938)) 32)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-1361 (($ $ $) 28)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3911 (($ $ $ $) 29)) (-3771 (($ $ $) 27)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-4333 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-862)))) (-4333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)))) (-1714 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-862)))) (-1970 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) (-4 *2 (-862)))) (-1970 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)))) (-3333 (*1 *2 *1 *3) (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-862)) (-5 *2 (-783)))) (-3333 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-862)))) (-1731 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)) (-5 *2 (-969 *4)))) (-1731 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) (-4 *5 (-862)) (-5 *2 (-969 *4)))) (-3848 (*1 *1 *1 *2) (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-862)) (-4 *3 (-38 (-419 (-576))))))) +(-13 (-915 |t#2|) (-992 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-319 $) (-10 -8 (-15 -4333 ($ $ |t#2| (-783))) (-15 -4333 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -1714 ($ $ (-783))) (-15 -1970 ($ $ |t#2| (-783))) (-15 -1970 ($ $ (-656 |t#2|) (-656 (-783)))) (-15 -3333 ((-783) $ |t#2|)) (-15 -3333 ((-783) $ |t#2| (-783))) (-15 -1731 ((-969 |t#1|) $ (-783))) (-15 -1731 ((-969 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $ |t#2|)) (-6 (-1021)) (-6 (-1221))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-543 |#2|)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-300) |has| |#1| (-568)) ((-319 $) . T) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ |#2|) . T) ((-915 |#2|) . T) ((-917 |#2|) . T) ((-992 |#1| #0# |#2|) . T) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T)) +((-1839 (((-430 (-1191 |#4|)) (-1191 |#4|)) 30) (((-430 |#4|) |#4|) 26))) +(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1839 ((-430 |#4|) |#4|)) (-15 -1839 ((-430 (-1191 |#4|)) (-1191 |#4|)))) (-862) (-805) (-13 (-317) (-148)) (-966 |#3| |#2| |#1|)) (T -753)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4))))) +(-10 -7 (-15 -1839 ((-430 |#4|) |#4|)) (-15 -1839 ((-430 (-1191 |#4|)) (-1191 |#4|)))) +((-1581 (((-430 |#4|) |#4| |#2|) 140)) (-3622 (((-430 |#4|) |#4|) NIL)) (-2732 (((-430 (-1191 |#4|)) (-1191 |#4|)) 127) (((-430 |#4|) |#4|) 52)) (-3793 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1839 (-1191 |#4|)) (|:| -4274 (-576)))))) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 81)) (-3380 (((-1191 |#3|) (-1191 |#3|) (-576)) 166)) (-1812 (((-656 (-783)) (-1191 |#4|) (-656 |#2|) (-783)) 75)) (-2510 (((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|)) 79)) (-4265 (((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|))) 27)) (-1826 (((-2 (|:| -3789 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-576)) 72)) (-4216 (((-576) (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576))))) 162)) (-2555 ((|#4| (-576) (-430 |#4|)) 73)) (-3800 (((-112) (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576)))) (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576))))) NIL))) +(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2732 ((-430 |#4|) |#4|)) (-15 -2732 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -3622 ((-430 |#4|) |#4|)) (-15 -4216 ((-576) (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576)))))) (-15 -1581 ((-430 |#4|) |#4| |#2|)) (-15 -1826 ((-2 (|:| -3789 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-576))) (-15 -3793 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1839 (-1191 |#4|)) (|:| -4274 (-576)))))) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -4265 ((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2555 (|#4| (-576) (-430 |#4|))) (-15 -3800 ((-112) (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576)))) (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576)))))) (-15 -2510 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -1812 ((-656 (-783)) (-1191 |#4|) (-656 |#2|) (-783))) (-15 -3380 ((-1191 |#3|) (-1191 |#3|) (-576)))) (-805) (-862) (-317) (-966 |#3| |#1| |#2|)) (T -754)) +((-3380 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-1812 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783)))) (-2510 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1191 *11)) (-5 *6 (-656 *10)) (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862)) (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-966 *11 *9 *10)) (-5 *2 (-656 (-1191 *5))) (-5 *1 (-754 *9 *10 *11 *5)) (-5 *3 (-1191 *5)))) (-3800 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-2 (|:| -1839 (-1191 *6)) (|:| -4274 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-2555 (*1 *2 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-966 *7 *5 *6)) (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-317)))) (-4265 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-5 *2 (-2 (|:| |upol| (-1191 *8)) (|:| |Lval| (-656 *8)) (|:| |Lfact| (-656 (-2 (|:| -1839 (-1191 *8)) (|:| -4274 (-576))))) (|:| |ctpol| *8))) (-5 *1 (-754 *6 *7 *8 *9)))) (-3793 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-966 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-656 (-2 (|:| -1839 (-1191 *9)) (|:| -4274 (-576))))))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)))) (-1826 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-966 *8 *6 *7)) (-5 *2 (-2 (|:| -3789 (-1191 *9)) (|:| |polval| (-1191 *8)))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)) (-5 *4 (-1191 *8)))) (-1581 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1839 (-1191 *6)) (|:| -4274 (-576))))) (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-3622 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5)))) (-2732 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-2732 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5))))) +(-10 -7 (-15 -2732 ((-430 |#4|) |#4|)) (-15 -2732 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -3622 ((-430 |#4|) |#4|)) (-15 -4216 ((-576) (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576)))))) (-15 -1581 ((-430 |#4|) |#4| |#2|)) (-15 -1826 ((-2 (|:| -3789 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-576))) (-15 -3793 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-656 (-2 (|:| -1839 (-1191 |#4|)) (|:| -4274 (-576)))))) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -4265 ((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-656 |#3|)) (|:| |Lfact| (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-656 |#2|) (-656 (-656 |#3|)))) (-15 -2555 (|#4| (-576) (-430 |#4|))) (-15 -3800 ((-112) (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576)))) (-656 (-2 (|:| -1839 (-1191 |#3|)) (|:| -4274 (-576)))))) (-15 -2510 ((-3 (-656 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-656 |#2|) (-656 (-783)) (-656 |#3|))) (-15 -1812 ((-656 (-783)) (-1191 |#4|) (-656 |#2|) (-783))) (-15 -3380 ((-1191 |#3|) (-1191 |#3|) (-576)))) +((-4300 (($ $ (-938)) 17))) +(((-755 |#1| |#2|) (-10 -8 (-15 -4300 (|#1| |#1| (-938)))) (-756 |#2|) (-174)) (T -755)) +NIL +(-10 -8 (-15 -4300 (|#1| |#1| (-938)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-4242 (($ $ (-938)) 31)) (-4300 (($ $ (-938)) 38)) (-1428 (($ $ (-938)) 32)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-4081 (($ $ $) 28)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-1938 (($ $ $ $) 29)) (-2303 (($ $ $) 27)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-756 |#1|) (-141) (-174)) (T -756)) -((-4370 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) -(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -4370 ($ $ (-938))))) +((-4300 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) +(-13 (-773) (-729 |t#1|) (-10 -8 (-15 -4300 ($ $ (-938))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-732) . T) ((-773) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T)) -((-1402 (((-1054) (-701 (-227)) (-576) (-112) (-576)) 25)) (-1913 (((-1054) (-701 (-227)) (-576) (-112) (-576)) 24))) -(((-757) (-10 -7 (-15 -1913 ((-1054) (-701 (-227)) (-576) (-112) (-576))) (-15 -1402 ((-1054) (-701 (-227)) (-576) (-112) (-576))))) (T -757)) -((-1402 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-757)))) (-1913 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-757))))) -(-10 -7 (-15 -1913 ((-1054) (-701 (-227)) (-576) (-112) (-576))) (-15 -1402 ((-1054) (-701 (-227)) (-576) (-112) (-576)))) -((-1825 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-2984 (((-1054) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-3697 (((-1054) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) 32))) -(((-758) (-10 -7 (-15 -3697 ((-1054) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -2984 ((-1054) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1825 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758)) -((-1825 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1054)) (-5 *1 (-758)))) (-2984 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1054)) (-5 *1 (-758)))) (-3697 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) (-5 *2 (-1054)) (-5 *1 (-758))))) -(-10 -7 (-15 -3697 ((-1054) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -2984 ((-1054) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -1825 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) -((-3766 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 34)) (-3866 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 33)) (-1917 (((-1054) (-576) (-701 (-227)) (-576)) 32)) (-3559 (((-1054) (-576) (-701 (-227)) (-576)) 31)) (-3786 (((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-3300 (((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-1691 (((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3629 (((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-3434 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-2559 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-2257 (((-1054) (-576) (-701 (-227)) (-576)) 22)) (-3933 (((-1054) (-576) (-701 (-227)) (-576)) 21))) -(((-759) (-10 -7 (-15 -3933 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -2257 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -2559 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3434 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3629 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1691 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3300 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3786 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3559 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -1917 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -3866 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -3766 ((-1054) (-576) (-576) (-701 (-227)) (-576))))) (T -759)) -((-3766 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3866 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-1917 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3559 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3786 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3300 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-1691 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3629 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3434 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-2559 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-2257 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3933 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759))))) -(-10 -7 (-15 -3933 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -2257 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -2559 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3434 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3629 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1691 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3300 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3786 ((-1054) (-576) (-576) (-1178) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3559 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -1917 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -3866 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -3766 ((-1054) (-576) (-576) (-701 (-227)) (-576)))) -((-4438 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2556 (((-1054) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-1956 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2346 (((-1054) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-3396 (((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-2072 (((-1054) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-1508 (((-1054) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-3540 (((-1054) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-2160 (((-1054) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) 38)) (-2019 (((-1054) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) 37)) (-1693 (((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) 33)) (-3408 (((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) 32))) -(((-760) (-10 -7 (-15 -3408 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -1693 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -2019 ((-1054) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -2160 ((-1054) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -3540 ((-1054) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1508 ((-1054) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2072 ((-1054) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3396 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2346 ((-1054) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -1956 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -2556 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -4438 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760)) -((-4438 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2556 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-760)))) (-1956 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2346 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3396 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2072 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-1508 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3540 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2160 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2019 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-760)))) (-1693 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3408 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) (-5 *2 (-1054)) (-5 *1 (-760))))) -(-10 -7 (-15 -3408 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -1693 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -2019 ((-1054) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -2160 ((-1054) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221))))) (-15 -3540 ((-1054) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -1508 ((-1054) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2072 ((-1054) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3396 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2346 ((-1054) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -1956 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -2556 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -4438 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) -((-4402 (((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2148 (((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3651 (((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-2523 (((-1054) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-2962 (((-1054) (-227) (-576) (-576) (-1178) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2394 (((-1054) (-227) (-576) (-576) (-227) (-1178) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2978 (((-1054) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-1801 (((-1054) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-761) (-10 -7 (-15 -1801 ((-1054) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2978 ((-1054) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2394 ((-1054) (-227) (-576) (-576) (-227) (-1178) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2962 ((-1054) (-227) (-576) (-576) (-1178) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2523 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3651 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -2148 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -2148 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -4402 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761)) -((-4402 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-2148 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-2148 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3651 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-2523 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1054)) (-5 *1 (-761)))) (-2962 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-2394 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-2978 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-1801 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) -(-10 -7 (-15 -1801 ((-1054) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2978 ((-1054) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2394 ((-1054) (-227) (-576) (-576) (-227) (-1178) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2962 ((-1054) (-227) (-576) (-576) (-1178) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2523 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -3651 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -2148 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -2148 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -4402 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-1465 (((-1054) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-2847 (((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1178) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-1924 (((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23))) -(((-762) (-10 -7 (-15 -1924 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2847 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1178) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -1465 ((-1054) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762)) -((-1465 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-762)))) (-2847 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1054)) (-5 *1 (-762)))) (-1924 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-762))))) -(-10 -7 (-15 -1924 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2847 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1178) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -1465 ((-1054) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)))) -((-2496 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-3839 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-3916 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-2021 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-2869 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-2411 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-3617 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-1771 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-4142 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-3187 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21))) -(((-763) (-10 -7 (-15 -3187 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4142 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1771 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3617 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2411 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2869 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2021 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3916 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3839 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -2496 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763)) -((-2496 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-3839 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-3916 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2021 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2869 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2411 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-3617 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-1771 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-4142 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-3187 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763))))) -(-10 -7 (-15 -3187 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4142 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1771 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3617 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2411 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2869 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2021 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3916 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -3839 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -2496 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)))) -((-1612 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-4053 (((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-4046 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-2515 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-2762 (((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-2641 (((-1054) (-1178) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-3801 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-1425 (((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-3929 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-3168 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-3495 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-1944 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-1976 (((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-1628 (((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-3464 (((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-3792 (((-1054) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-2182 (((-1054) (-576) (-701 (-227)) (-227) (-576)) 24)) (-3512 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21))) -(((-764) (-10 -7 (-15 -3512 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2182 ((-1054) (-576) (-701 (-227)) (-227) (-576))) (-15 -3792 ((-1054) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -3464 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1628 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -1976 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -1944 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3495 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3168 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3929 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1425 ((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -3801 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -2641 ((-1054) (-1178) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2762 ((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2515 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4046 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4053 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1612 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764)) -((-1612 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-4053 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-4046 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2515 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2762 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2641 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3801 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-1425 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3929 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3168 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3495 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-1944 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-1976 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-1628 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3464 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3792 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2182 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3512 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764))))) -(-10 -7 (-15 -3512 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2182 ((-1054) (-576) (-701 (-227)) (-227) (-576))) (-15 -3792 ((-1054) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -3464 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -1628 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -1976 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -1944 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3495 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -3168 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -3929 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1425 ((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -3801 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -2641 ((-1054) (-1178) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2762 ((-1054) (-1178) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2515 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4046 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -4053 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1612 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)))) -((-2095 (((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-3857 (((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2468 (((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-3856 (((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-3976 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2383 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-1842 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4226 (((-1054) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-765) (-10 -7 (-15 -4226 ((-1054) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -1842 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -2383 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -3976 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3856 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -2468 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3857 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2095 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765)) -((-2095 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-3857 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2468 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-3856 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-3976 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2383 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-1842 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-4226 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765))))) -(-10 -7 (-15 -4226 ((-1054) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -1842 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -2383 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -3976 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3856 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -2468 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3857 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2095 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)))) -((-1662 (((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-2336 (((-1054) (-1178) (-1178) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-2963 (((-1054) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-2025 (((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-2858 (((-1054) (-1178) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-1803 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-2078 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-1740 (((-1054) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-2749 (((-1054) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-2836 (((-1054) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32))) -(((-766) (-10 -7 (-15 -2836 ((-1054) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -2749 ((-1054) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -1740 ((-1054) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -2078 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -1803 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2858 ((-1054) (-1178) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -2025 ((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2963 ((-1054) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2336 ((-1054) (-1178) (-1178) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1662 ((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766)) -((-1662 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2336 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2963 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2025 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2858 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-1803 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2078 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-1740 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2749 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2836 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-766))))) -(-10 -7 (-15 -2836 ((-1054) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -2749 ((-1054) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -1740 ((-1054) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -2078 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -1803 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -2858 ((-1054) (-1178) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -2025 ((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2963 ((-1054) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2336 ((-1054) (-1178) (-1178) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -1662 ((-1054) (-1178) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-4047 (((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-1903 (((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-2933 (((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-3478 (((-1054) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-3605 (((-1054) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3386 (((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-4296 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3301 (((-1054) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-3767 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2001 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-1553 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 25)) (-4009 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-3459 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-4078 (((-1054) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-2648 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 21))) -(((-767) (-10 -7 (-15 -2648 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -4078 ((-1054) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -3459 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4009 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1553 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -2001 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3767 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3301 ((-1054) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4296 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3386 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3605 ((-1054) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -3478 ((-1054) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2933 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2933 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -1903 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4047 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767)) -((-4047 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-1903 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2933 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2933 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3478 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3605 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3386 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-4296 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3301 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3767 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2001 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-1553 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-4009 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3459 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-4078 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2648 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767))))) -(-10 -7 (-15 -2648 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -4078 ((-1054) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -3459 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4009 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1553 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -2001 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3767 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3301 ((-1054) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4296 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3386 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3605 ((-1054) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -3478 ((-1054) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2933 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -2933 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -1903 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4047 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) -((-1795 (((-1054) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-2941 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-4350 (((-1054) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3312 (((-1054) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-4412 (((-1054) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-2784 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-2787 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-2288 (((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-4386 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-3105 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-3217 (((-1054) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22))) -(((-768) (-10 -7 (-15 -3217 ((-1054) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3105 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4386 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2288 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -2787 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -2784 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4412 ((-1054) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3312 ((-1054) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -4350 ((-1054) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -2941 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1795 ((-1054) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768)) -((-1795 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2941 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-4350 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3312 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-4412 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2784 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2787 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2288 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-4386 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3105 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3217 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-768))))) -(-10 -7 (-15 -3217 ((-1054) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3105 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -4386 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2288 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -2787 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -2784 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4412 ((-1054) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3312 ((-1054) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -4350 ((-1054) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -2941 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -1795 ((-1054) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) -((-1513 (((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-3323 (((-1054) (-1178) (-576) (-576) (-701 (-227))) 28)) (-4421 (((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-1578 (((-1054) (-576) (-576) (-576) (-701 (-227))) 21))) -(((-769) (-10 -7 (-15 -1578 ((-1054) (-576) (-576) (-576) (-701 (-227)))) (-15 -4421 ((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -3323 ((-1054) (-1178) (-576) (-576) (-701 (-227)))) (-15 -1513 ((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769)) -((-1513 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-3323 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-4421 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-769)))) (-1578 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-769))))) -(-10 -7 (-15 -1578 ((-1054) (-576) (-576) (-576) (-701 (-227)))) (-15 -4421 ((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -3323 ((-1054) (-1178) (-576) (-576) (-701 (-227)))) (-15 -1513 ((-1054) (-1178) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))))) -((-3511 (((-1054) (-227) (-227) (-227) (-227) (-576)) 62)) (-3733 (((-1054) (-227) (-227) (-227) (-576)) 61)) (-3914 (((-1054) (-227) (-227) (-227) (-576)) 60)) (-2781 (((-1054) (-227) (-227) (-576)) 59)) (-1545 (((-1054) (-227) (-576)) 58)) (-1886 (((-1054) (-227) (-576)) 57)) (-3026 (((-1054) (-227) (-576)) 56)) (-3427 (((-1054) (-227) (-576)) 55)) (-3720 (((-1054) (-227) (-576)) 54)) (-2386 (((-1054) (-227) (-576)) 53)) (-1907 (((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576)) 52)) (-4372 (((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576)) 51)) (-3615 (((-1054) (-227) (-576)) 50)) (-2376 (((-1054) (-227) (-576)) 49)) (-1509 (((-1054) (-227) (-576)) 48)) (-2730 (((-1054) (-227) (-576)) 47)) (-2122 (((-1054) (-576) (-227) (-171 (-227)) (-576) (-1178) (-576)) 46)) (-2086 (((-1054) (-1178) (-171 (-227)) (-1178) (-576)) 45)) (-3606 (((-1054) (-1178) (-171 (-227)) (-1178) (-576)) 44)) (-1665 (((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576)) 43)) (-3882 (((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576)) 42)) (-2612 (((-1054) (-227) (-576)) 39)) (-4181 (((-1054) (-227) (-576)) 38)) (-1932 (((-1054) (-227) (-576)) 37)) (-2372 (((-1054) (-227) (-576)) 36)) (-3921 (((-1054) (-227) (-576)) 35)) (-2552 (((-1054) (-227) (-576)) 34)) (-3127 (((-1054) (-227) (-576)) 33)) (-2695 (((-1054) (-227) (-576)) 32)) (-2323 (((-1054) (-227) (-576)) 31)) (-2942 (((-1054) (-227) (-576)) 30)) (-1640 (((-1054) (-227) (-227) (-227) (-576)) 29)) (-2615 (((-1054) (-227) (-576)) 28)) (-4096 (((-1054) (-227) (-576)) 27)) (-3904 (((-1054) (-227) (-576)) 26)) (-1957 (((-1054) (-227) (-576)) 25)) (-1530 (((-1054) (-227) (-576)) 24)) (-3411 (((-1054) (-171 (-227)) (-576)) 21))) -(((-770) (-10 -7 (-15 -3411 ((-1054) (-171 (-227)) (-576))) (-15 -1530 ((-1054) (-227) (-576))) (-15 -1957 ((-1054) (-227) (-576))) (-15 -3904 ((-1054) (-227) (-576))) (-15 -4096 ((-1054) (-227) (-576))) (-15 -2615 ((-1054) (-227) (-576))) (-15 -1640 ((-1054) (-227) (-227) (-227) (-576))) (-15 -2942 ((-1054) (-227) (-576))) (-15 -2323 ((-1054) (-227) (-576))) (-15 -2695 ((-1054) (-227) (-576))) (-15 -3127 ((-1054) (-227) (-576))) (-15 -2552 ((-1054) (-227) (-576))) (-15 -3921 ((-1054) (-227) (-576))) (-15 -2372 ((-1054) (-227) (-576))) (-15 -1932 ((-1054) (-227) (-576))) (-15 -4181 ((-1054) (-227) (-576))) (-15 -2612 ((-1054) (-227) (-576))) (-15 -3882 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -1665 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3606 ((-1054) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -2086 ((-1054) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -2122 ((-1054) (-576) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -2730 ((-1054) (-227) (-576))) (-15 -1509 ((-1054) (-227) (-576))) (-15 -2376 ((-1054) (-227) (-576))) (-15 -3615 ((-1054) (-227) (-576))) (-15 -4372 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -1907 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -2386 ((-1054) (-227) (-576))) (-15 -3720 ((-1054) (-227) (-576))) (-15 -3427 ((-1054) (-227) (-576))) (-15 -3026 ((-1054) (-227) (-576))) (-15 -1886 ((-1054) (-227) (-576))) (-15 -1545 ((-1054) (-227) (-576))) (-15 -2781 ((-1054) (-227) (-227) (-576))) (-15 -3914 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3733 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3511 ((-1054) (-227) (-227) (-227) (-227) (-576))))) (T -770)) -((-3511 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3733 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3914 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2781 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3026 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3427 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1907 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4372 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3615 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2122 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1178)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2086 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3606 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1665 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3882 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1932 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2372 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3127 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2323 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1640 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(-10 -7 (-15 -3411 ((-1054) (-171 (-227)) (-576))) (-15 -1530 ((-1054) (-227) (-576))) (-15 -1957 ((-1054) (-227) (-576))) (-15 -3904 ((-1054) (-227) (-576))) (-15 -4096 ((-1054) (-227) (-576))) (-15 -2615 ((-1054) (-227) (-576))) (-15 -1640 ((-1054) (-227) (-227) (-227) (-576))) (-15 -2942 ((-1054) (-227) (-576))) (-15 -2323 ((-1054) (-227) (-576))) (-15 -2695 ((-1054) (-227) (-576))) (-15 -3127 ((-1054) (-227) (-576))) (-15 -2552 ((-1054) (-227) (-576))) (-15 -3921 ((-1054) (-227) (-576))) (-15 -2372 ((-1054) (-227) (-576))) (-15 -1932 ((-1054) (-227) (-576))) (-15 -4181 ((-1054) (-227) (-576))) (-15 -2612 ((-1054) (-227) (-576))) (-15 -3882 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -1665 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -3606 ((-1054) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -2086 ((-1054) (-1178) (-171 (-227)) (-1178) (-576))) (-15 -2122 ((-1054) (-576) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -2730 ((-1054) (-227) (-576))) (-15 -1509 ((-1054) (-227) (-576))) (-15 -2376 ((-1054) (-227) (-576))) (-15 -3615 ((-1054) (-227) (-576))) (-15 -4372 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -1907 ((-1054) (-227) (-171 (-227)) (-576) (-1178) (-576))) (-15 -2386 ((-1054) (-227) (-576))) (-15 -3720 ((-1054) (-227) (-576))) (-15 -3427 ((-1054) (-227) (-576))) (-15 -3026 ((-1054) (-227) (-576))) (-15 -1886 ((-1054) (-227) (-576))) (-15 -1545 ((-1054) (-227) (-576))) (-15 -2781 ((-1054) (-227) (-227) (-576))) (-15 -3914 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3733 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3511 ((-1054) (-227) (-227) (-227) (-227) (-576)))) -((-3707 (((-1292)) 20)) (-4405 (((-1178)) 31)) (-1694 (((-1178)) 30)) (-2308 (((-1123) (-1196) (-701 (-576))) 45) (((-1123) (-1196) (-701 (-227))) 41)) (-2244 (((-112)) 19)) (-3858 (((-1178) (-1178)) 34))) -(((-771) (-10 -7 (-15 -1694 ((-1178))) (-15 -4405 ((-1178))) (-15 -3858 ((-1178) (-1178))) (-15 -2308 ((-1123) (-1196) (-701 (-227)))) (-15 -2308 ((-1123) (-1196) (-701 (-576)))) (-15 -2244 ((-112))) (-15 -3707 ((-1292))))) (T -771)) -((-3707 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-771)))) (-2244 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-576))) (-5 *2 (-1123)) (-5 *1 (-771)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-227))) (-5 *2 (-1123)) (-5 *1 (-771)))) (-3858 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))) (-4405 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771)))) (-1694 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771))))) -(-10 -7 (-15 -1694 ((-1178))) (-15 -4405 ((-1178))) (-15 -3858 ((-1178) (-1178))) (-15 -2308 ((-1123) (-1196) (-701 (-227)))) (-15 -2308 ((-1123) (-1196) (-701 (-576)))) (-15 -2244 ((-112))) (-15 -3707 ((-1292)))) -((-1361 (($ $ $) 10)) (-3911 (($ $ $ $) 9)) (-3771 (($ $ $) 12))) -(((-772 |#1|) (-10 -8 (-15 -3771 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1| |#1|))) (-773)) (T -772)) -NIL -(-10 -8 (-15 -3771 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1|)) (-15 -3911 (|#1| |#1| |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3952 (($ $ (-938)) 31)) (-2596 (($ $ (-938)) 32)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-1361 (($ $ $) 28)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3911 (($ $ $ $) 29)) (-3771 (($ $ $) 27)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) +((-1967 (((-1054) (-701 (-227)) (-576) (-112) (-576)) 25)) (-4388 (((-1054) (-701 (-227)) (-576) (-112) (-576)) 24))) +(((-757) (-10 -7 (-15 -4388 ((-1054) (-701 (-227)) (-576) (-112) (-576))) (-15 -1967 ((-1054) (-701 (-227)) (-576) (-112) (-576))))) (T -757)) +((-1967 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-757)))) (-4388 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-757))))) +(-10 -7 (-15 -4388 ((-1054) (-701 (-227)) (-576) (-112) (-576))) (-15 -1967 ((-1054) (-701 (-227)) (-576) (-112) (-576)))) +((-3366 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) 43)) (-3922 (((-1054) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) 39)) (-3979 (((-1054) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) 32))) +(((-758) (-10 -7 (-15 -3979 ((-1054) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -3922 ((-1054) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -3366 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN))))))) (T -758)) +((-3366 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1054)) (-5 *1 (-758)))) (-3922 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1054)) (-5 *1 (-758)))) (-3979 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) (-5 *2 (-1054)) (-5 *1 (-758))))) +(-10 -7 (-15 -3979 ((-1054) (-227) (-227) (-227) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -3922 ((-1054) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN))))) (-15 -3366 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))))) +((-1568 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 34)) (-2223 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3620 (((-1054) (-576) (-701 (-227)) (-576)) 32)) (-2339 (((-1054) (-576) (-701 (-227)) (-576)) 31)) (-4297 (((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 30)) (-3678 (((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3269 (((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-4039 (((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-1920 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-2327 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-1835 (((-1054) (-576) (-701 (-227)) (-576)) 22)) (-2062 (((-1054) (-576) (-701 (-227)) (-576)) 21))) +(((-759) (-10 -7 (-15 -2062 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -1835 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -2327 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1920 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4039 ((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3269 ((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3678 ((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4297 ((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2339 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -3620 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -2223 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -1568 ((-1054) (-576) (-576) (-701 (-227)) (-576))))) (T -759)) +((-1568 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-2223 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3620 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-2339 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-4297 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3678 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-3269 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-4039 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-1920 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-2327 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-1835 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759)))) (-2062 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-759))))) +(-10 -7 (-15 -2062 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -1835 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -2327 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1920 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4039 ((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3269 ((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3678 ((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4297 ((-1054) (-576) (-576) (-1177) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2339 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -3620 ((-1054) (-576) (-701 (-227)) (-576))) (-15 -2223 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -1568 ((-1054) (-576) (-576) (-701 (-227)) (-576)))) +((-2983 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 52)) (-3214 (((-1054) (-701 (-227)) (-701 (-227)) (-576) (-576)) 51)) (-2066 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) 50)) (-3278 (((-1054) (-227) (-227) (-576) (-576) (-576) (-576)) 46)) (-3709 (((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 45)) (-2112 (((-1054) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 44)) (-3879 (((-1054) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 43)) (-4111 (((-1054) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) 42)) (-2307 (((-1054) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) 38)) (-1631 (((-1054) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) 37)) (-2152 (((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) 33)) (-3346 (((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) 32))) +(((-760) (-10 -7 (-15 -3346 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -2152 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -1631 ((-1054) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -2307 ((-1054) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -4111 ((-1054) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3879 ((-1054) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2112 ((-1054) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3709 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3278 ((-1054) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -2066 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3214 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -2983 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))))) (T -760)) +((-2983 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3214 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2066 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3278 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3709 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2112 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3879 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-4111 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2307 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-1631 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-760)))) (-2152 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) (-5 *2 (-1054)) (-5 *1 (-760)))) (-3346 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) (-5 *2 (-1054)) (-5 *1 (-760))))) +(-10 -7 (-15 -3346 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -2152 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -1631 ((-1054) (-227) (-227) (-576) (-701 (-227)) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -2307 ((-1054) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060))))) (-15 -4111 ((-1054) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3879 ((-1054) (-227) (-227) (-227) (-227) (-576) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -2112 ((-1054) (-227) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3709 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G))))) (-15 -3278 ((-1054) (-227) (-227) (-576) (-576) (-576) (-576))) (-15 -2066 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN))))) (-15 -3214 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-576))) (-15 -2983 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-227) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))))) +((-4135 (((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3608 (((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400)) 69) (((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1439 (((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) 57)) (-2756 (((-1054) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 50)) (-3647 (((-1054) (-227) (-576) (-576) (-1177) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2936 (((-1054) (-227) (-576) (-576) (-227) (-1177) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 45)) (-1382 (((-1054) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) 42)) (-3065 (((-1054) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-761) (-10 -7 (-15 -3065 ((-1054) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -1382 ((-1054) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2936 ((-1054) (-227) (-576) (-576) (-227) (-1177) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3647 ((-1054) (-227) (-576) (-576) (-1177) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2756 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1439 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3608 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3608 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -4135 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -761)) +((-4135 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3608 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-400)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3608 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1054)) (-5 *1 (-761)))) (-1439 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-2756 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3647 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-2936 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-1382 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761)))) (-3065 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) +(-10 -7 (-15 -3065 ((-1054) (-227) (-576) (-576) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -1382 ((-1054) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -2936 ((-1054) (-227) (-576) (-576) (-227) (-1177) (-227) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -3647 ((-1054) (-227) (-576) (-576) (-1177) (-576) (-227) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT))))) (-15 -2756 ((-1054) (-701 (-227)) (-701 (-227)) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN))))) (-15 -1439 ((-1054) (-227) (-227) (-576) (-227) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG))))) (-15 -3608 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))))) (-15 -3608 ((-1054) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL))) (-400) (-400))) (-15 -4135 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-3155 (((-1054) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)) 45)) (-4011 (((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1177) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) 41)) (-1872 (((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 23))) +(((-762) (-10 -7 (-15 -1872 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4011 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1177) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -3155 ((-1054) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576))))) (T -762)) +((-3155 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-762)))) (-4011 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1054)) (-5 *1 (-762)))) (-1872 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-762))))) +(-10 -7 (-15 -1872 ((-1054) (-576) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4011 ((-1054) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-1177) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY))))) (-15 -3155 ((-1054) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-687 (-227)) (-576)))) +((-2164 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)) 35)) (-1700 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576)) 34)) (-4337 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576)) 33)) (-1849 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-2585 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-1824 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576)) 27)) (-2104 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 24)) (-3970 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576)) 23)) (-1415 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576)) 22)) (-4378 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 21))) +(((-763) (-10 -7 (-15 -4378 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -1415 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3970 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2104 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1824 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2585 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1849 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4337 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -1700 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -2164 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576))))) (T -763)) +((-2164 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-1700 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-4337 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-1849 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2585 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-1824 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-763)))) (-2104 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-3970 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-1415 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763)))) (-4378 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763))))) +(-10 -7 (-15 -4378 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -1415 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3970 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2104 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -1824 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-227) (-576))) (-15 -2585 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1849 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4337 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-701 (-227)) (-227) (-227) (-576))) (-15 -1700 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-227) (-227) (-576))) (-15 -2164 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-701 (-227)) (-227) (-227) (-576)))) +((-4148 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 45)) (-2557 (((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576)) 44)) (-3284 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)) 43)) (-1326 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 42)) (-2473 (((-1054) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576)) 41)) (-2949 (((-1054) (-1177) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 40)) (-3395 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576)) 39)) (-2356 (((-1054) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576))) 38)) (-2823 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576)) 35)) (-1756 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576)) 34)) (-3980 (((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576)) 33)) (-3208 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 32)) (-2073 (((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576)) 31)) (-3041 (((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576)) 30)) (-2676 (((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 29)) (-1837 (((-1054) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576)) 28)) (-3631 (((-1054) (-576) (-701 (-227)) (-227) (-576)) 24)) (-2134 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 21))) +(((-764) (-10 -7 (-15 -2134 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3631 ((-1054) (-576) (-701 (-227)) (-227) (-576))) (-15 -1837 ((-1054) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -2676 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3041 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2073 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3208 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3980 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -1756 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -2823 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2356 ((-1054) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -3395 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -2949 ((-1054) (-1177) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2473 ((-1054) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1326 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3284 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -2557 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4148 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))))) (T -764)) +((-4148 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2557 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3284 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-1326 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2473 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2949 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3395 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2356 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2823 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-1756 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3980 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3208 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2073 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3041 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2676 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-1837 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-3631 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) (-5 *2 (-1054)) (-5 *1 (-764)))) (-2134 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-764))))) +(-10 -7 (-15 -2134 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3631 ((-1054) (-576) (-701 (-227)) (-227) (-576))) (-15 -1837 ((-1054) (-576) (-576) (-576) (-227) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-576)) (-576) (-576) (-576))) (-15 -2676 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3041 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576) (-576) (-576))) (-15 -2073 ((-1054) (-576) (-227) (-227) (-701 (-227)) (-576) (-576) (-227) (-576))) (-15 -3208 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3980 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576))) (-15 -1756 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576))) (-15 -2823 ((-1054) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2356 ((-1054) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)))) (-15 -3395 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576) (-576) (-576) (-227) (-701 (-227)) (-576))) (-15 -2949 ((-1054) (-1177) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -2473 ((-1054) (-1177) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1326 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3284 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576))) (-15 -2557 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4148 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576) (-701 (-227)) (-701 (-227)) (-576) (-576) (-576)))) +((-3704 (((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)) 63)) (-3818 (((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1624 (((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) 58)) (-3723 (((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576)) 51)) (-3509 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3249 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2348 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4406 (((-1054) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-765) (-10 -7 (-15 -4406 ((-1054) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2348 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3249 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -3509 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3723 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -1624 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3818 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3704 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576))))) (T -765)) +((-3704 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-3818 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-1624 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-3723 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-765)))) (-3509 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-3249 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-2348 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1054)) (-5 *1 (-765)))) (-4406 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765))))) +(-10 -7 (-15 -4406 ((-1054) (-576) (-227) (-227) (-576) (-227) (-112) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -2348 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1))))) (-15 -3249 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2))))) (-15 -3509 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1))))) (-15 -3723 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-576) (-576) (-701 (-227)) (-576))) (-15 -1624 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-227) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-112) (-112) (-112) (-576) (-576) (-701 (-227)) (-701 (-576)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS))))) (-15 -3818 ((-1054) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-576) (-112) (-227) (-576) (-227) (-227) (-112) (-227) (-227) (-227) (-227) (-112) (-576) (-576) (-576) (-576) (-576) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-576) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN))))) (-15 -3704 ((-1054) (-576) (-576) (-576) (-227) (-701 (-227)) (-576) (-701 (-227)) (-576)))) +((-3193 (((-1054) (-1177) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 47)) (-3680 (((-1054) (-1177) (-1177) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576)) 46)) (-1757 (((-1054) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 45)) (-4041 (((-1054) (-1177) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 40)) (-3784 (((-1054) (-1177) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576)) 39)) (-3272 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-576)) 36)) (-1407 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576)) 35)) (-3240 (((-1054) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576)) 34)) (-3500 (((-1054) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576)) 33)) (-2300 (((-1054) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576)) 32))) +(((-766) (-10 -7 (-15 -2300 ((-1054) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -3500 ((-1054) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -3240 ((-1054) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -1407 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -3272 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3784 ((-1054) (-1177) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -4041 ((-1054) (-1177) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1757 ((-1054) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3680 ((-1054) (-1177) (-1177) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3193 ((-1054) (-1177) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -766)) +((-3193 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-3680 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-1757 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-4041 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-3784 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-3272 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-766)))) (-1407 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-3240 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-3500 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-766)))) (-2300 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) (-5 *2 (-1054)) (-5 *1 (-766))))) +(-10 -7 (-15 -2300 ((-1054) (-576) (-576) (-576) (-576) (-227) (-112) (-112) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-576))) (-15 -3500 ((-1054) (-576) (-576) (-576) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-701 (-576)) (-112) (-227) (-112) (-701 (-576)) (-701 (-227)) (-576))) (-15 -3240 ((-1054) (-576) (-576) (-576) (-576) (-656 (-112)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-227) (-227) (-576))) (-15 -1407 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576))) (-15 -3272 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -3784 ((-1054) (-1177) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)) (-576))) (-15 -4041 ((-1054) (-1177) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1757 ((-1054) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3680 ((-1054) (-1177) (-1177) (-576) (-576) (-701 (-171 (-227))) (-576) (-701 (-171 (-227))) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -3193 ((-1054) (-1177) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) +((-2185 (((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)) 79)) (-1474 (((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 68)) (-1330 (((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400)) 56) (((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) 55)) (-1559 (((-1054) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576)) 37)) (-3398 (((-1054) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576)) 33)) (-3847 (((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576)) 30)) (-2559 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 29)) (-3774 (((-1054) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 28)) (-1666 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 27)) (-2699 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576)) 26)) (-2501 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 25)) (-3752 (((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 24)) (-2239 (((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576)) 23)) (-2160 (((-1054) (-701 (-227)) (-576) (-576) (-576) (-576)) 22)) (-4348 (((-1054) (-576) (-576) (-701 (-227)) (-576)) 21))) +(((-767) (-10 -7 (-15 -4348 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -2160 ((-1054) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2239 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3752 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2501 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -2699 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -1666 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3774 ((-1054) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2559 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3847 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3398 ((-1054) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -1559 ((-1054) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1330 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -1330 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -1474 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2185 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576))))) (T -767)) +((-2185 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-1474 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-1330 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-1330 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-1559 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3398 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3847 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2559 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3774 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-1666 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2699 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2501 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-3752 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2239 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767)))) (-2160 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-767)))) (-4348 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-767))))) +(-10 -7 (-15 -4348 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -2160 ((-1054) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2239 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3752 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2501 ((-1054) (-576) (-576) (-701 (-227)) (-576))) (-15 -2699 ((-1054) (-576) (-576) (-576) (-576) (-701 (-227)) (-576))) (-15 -1666 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3774 ((-1054) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2559 ((-1054) (-576) (-576) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -3847 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576) (-576))) (-15 -3398 ((-1054) (-576) (-576) (-227) (-227) (-576) (-576) (-701 (-227)) (-576))) (-15 -1559 ((-1054) (-576) (-576) (-576) (-227) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -1330 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))))) (-15 -1330 ((-1054) (-576) (-576) (-227) (-576) (-576) (-576) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE))) (-400))) (-15 -1474 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2185 ((-1054) (-576) (-576) (-576) (-576) (-576) (-112) (-576) (-112) (-576) (-701 (-171 (-227))) (-701 (-171 (-227))) (-576)))) +((-2482 (((-1054) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) 64)) (-2881 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576)) 60)) (-3162 (((-1054) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) 59)) (-2477 (((-1054) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576)) 37)) (-4211 (((-1054) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576)) 36)) (-4078 (((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576)) 33)) (-4372 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227))) 32)) (-2578 (((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576)) 28)) (-3307 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 27)) (-2906 (((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576)) 26)) (-2323 (((-1054) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576)) 22))) +(((-768) (-10 -7 (-15 -2323 ((-1054) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2906 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3307 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2578 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -4372 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -4078 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4211 ((-1054) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2477 ((-1054) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3162 ((-1054) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -2881 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2482 ((-1054) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD))))))) (T -768)) +((-2482 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2881 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3162 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2477 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-4211 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-4078 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-4372 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2578 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-768)))) (-3307 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2906 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-768)))) (-2323 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) (-5 *1 (-768))))) +(-10 -7 (-15 -2323 ((-1054) (-576) (-701 (-171 (-227))) (-576) (-576) (-576) (-576) (-701 (-171 (-227))) (-576))) (-15 -2906 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -3307 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-576))) (-15 -2578 ((-1054) (-701 (-227)) (-576) (-701 (-227)) (-576) (-576) (-576))) (-15 -4372 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-576)) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)))) (-15 -4078 ((-1054) (-576) (-576) (-701 (-227)) (-701 (-227)) (-701 (-227)) (-576))) (-15 -4211 ((-1054) (-576) (-576) (-576) (-227) (-576) (-701 (-227)) (-701 (-227)) (-576))) (-15 -2477 ((-1054) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-576)) (-701 (-227)) (-701 (-576)) (-701 (-576)) (-701 (-227)) (-701 (-227)) (-701 (-576)) (-576))) (-15 -3162 ((-1054) (-576) (-701 (-227)) (-112) (-227) (-576) (-576) (-576) (-576) (-227) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE))))) (-15 -2881 ((-1054) (-576) (-701 (-227)) (-576) (-701 (-227)) (-701 (-576)) (-576) (-701 (-227)) (-576) (-576) (-576) (-576))) (-15 -2482 ((-1054) (-576) (-576) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-701 (-227)) (-576) (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))))) +((-3196 (((-1054) (-1177) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))) 29)) (-4094 (((-1054) (-1177) (-576) (-576) (-701 (-227))) 28)) (-1989 (((-1054) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227))) 27)) (-2138 (((-1054) (-576) (-576) (-576) (-701 (-227))) 21))) +(((-769) (-10 -7 (-15 -2138 ((-1054) (-576) (-576) (-576) (-701 (-227)))) (-15 -1989 ((-1054) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -4094 ((-1054) (-1177) (-576) (-576) (-701 (-227)))) (-15 -3196 ((-1054) (-1177) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227)))))) (T -769)) +((-3196 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-4094 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-769)))) (-1989 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-769)))) (-2138 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-769))))) +(-10 -7 (-15 -2138 ((-1054) (-576) (-576) (-576) (-701 (-227)))) (-15 -1989 ((-1054) (-1177) (-576) (-576) (-701 (-227)) (-576) (-701 (-576)) (-576) (-701 (-227)))) (-15 -4094 ((-1054) (-1177) (-576) (-576) (-701 (-227)))) (-15 -3196 ((-1054) (-1177) (-576) (-576) (-701 (-227)) (-576) (-576) (-701 (-227))))) +((-3238 (((-1054) (-227) (-227) (-227) (-227) (-576)) 62)) (-1785 (((-1054) (-227) (-227) (-227) (-576)) 61)) (-4120 (((-1054) (-227) (-227) (-227) (-576)) 60)) (-1915 (((-1054) (-227) (-227) (-576)) 59)) (-2944 (((-1054) (-227) (-576)) 58)) (-3283 (((-1054) (-227) (-576)) 57)) (-1534 (((-1054) (-227) (-576)) 56)) (-2540 (((-1054) (-227) (-576)) 55)) (-2929 (((-1054) (-227) (-576)) 54)) (-2325 (((-1054) (-227) (-576)) 53)) (-1943 (((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576)) 52)) (-1401 (((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576)) 51)) (-3106 (((-1054) (-227) (-576)) 50)) (-2743 (((-1054) (-227) (-576)) 49)) (-2779 (((-1054) (-227) (-576)) 48)) (-4090 (((-1054) (-227) (-576)) 47)) (-2228 (((-1054) (-576) (-227) (-171 (-227)) (-576) (-1177) (-576)) 46)) (-4149 (((-1054) (-1177) (-171 (-227)) (-1177) (-576)) 45)) (-3516 (((-1054) (-1177) (-171 (-227)) (-1177) (-576)) 44)) (-1652 (((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576)) 43)) (-4301 (((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576)) 42)) (-2643 (((-1054) (-227) (-576)) 39)) (-2273 (((-1054) (-227) (-576)) 38)) (-1416 (((-1054) (-227) (-576)) 37)) (-3549 (((-1054) (-227) (-576)) 36)) (-3574 (((-1054) (-227) (-576)) 35)) (-2872 (((-1054) (-227) (-576)) 34)) (-1362 (((-1054) (-227) (-576)) 33)) (-2798 (((-1054) (-227) (-576)) 32)) (-1688 (((-1054) (-227) (-576)) 31)) (-3008 (((-1054) (-227) (-576)) 30)) (-1777 (((-1054) (-227) (-227) (-227) (-576)) 29)) (-1737 (((-1054) (-227) (-576)) 28)) (-2620 (((-1054) (-227) (-576)) 27)) (-1467 (((-1054) (-227) (-576)) 26)) (-2177 (((-1054) (-227) (-576)) 25)) (-2038 (((-1054) (-227) (-576)) 24)) (-3586 (((-1054) (-171 (-227)) (-576)) 21))) +(((-770) (-10 -7 (-15 -3586 ((-1054) (-171 (-227)) (-576))) (-15 -2038 ((-1054) (-227) (-576))) (-15 -2177 ((-1054) (-227) (-576))) (-15 -1467 ((-1054) (-227) (-576))) (-15 -2620 ((-1054) (-227) (-576))) (-15 -1737 ((-1054) (-227) (-576))) (-15 -1777 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3008 ((-1054) (-227) (-576))) (-15 -1688 ((-1054) (-227) (-576))) (-15 -2798 ((-1054) (-227) (-576))) (-15 -1362 ((-1054) (-227) (-576))) (-15 -2872 ((-1054) (-227) (-576))) (-15 -3574 ((-1054) (-227) (-576))) (-15 -3549 ((-1054) (-227) (-576))) (-15 -1416 ((-1054) (-227) (-576))) (-15 -2273 ((-1054) (-227) (-576))) (-15 -2643 ((-1054) (-227) (-576))) (-15 -4301 ((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1652 ((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -3516 ((-1054) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -4149 ((-1054) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -2228 ((-1054) (-576) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -4090 ((-1054) (-227) (-576))) (-15 -2779 ((-1054) (-227) (-576))) (-15 -2743 ((-1054) (-227) (-576))) (-15 -3106 ((-1054) (-227) (-576))) (-15 -1401 ((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1943 ((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2325 ((-1054) (-227) (-576))) (-15 -2929 ((-1054) (-227) (-576))) (-15 -2540 ((-1054) (-227) (-576))) (-15 -1534 ((-1054) (-227) (-576))) (-15 -3283 ((-1054) (-227) (-576))) (-15 -2944 ((-1054) (-227) (-576))) (-15 -1915 ((-1054) (-227) (-227) (-576))) (-15 -4120 ((-1054) (-227) (-227) (-227) (-576))) (-15 -1785 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3238 ((-1054) (-227) (-227) (-227) (-227) (-576))))) (T -770)) +((-3238 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1785 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4120 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1915 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2944 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3283 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1943 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1401 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2743 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4090 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2228 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1177)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4149 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3516 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1652 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-4301 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1416 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2872 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1362 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2798 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3008 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1777 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2620 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2177 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770)))) (-3586 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(-10 -7 (-15 -3586 ((-1054) (-171 (-227)) (-576))) (-15 -2038 ((-1054) (-227) (-576))) (-15 -2177 ((-1054) (-227) (-576))) (-15 -1467 ((-1054) (-227) (-576))) (-15 -2620 ((-1054) (-227) (-576))) (-15 -1737 ((-1054) (-227) (-576))) (-15 -1777 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3008 ((-1054) (-227) (-576))) (-15 -1688 ((-1054) (-227) (-576))) (-15 -2798 ((-1054) (-227) (-576))) (-15 -1362 ((-1054) (-227) (-576))) (-15 -2872 ((-1054) (-227) (-576))) (-15 -3574 ((-1054) (-227) (-576))) (-15 -3549 ((-1054) (-227) (-576))) (-15 -1416 ((-1054) (-227) (-576))) (-15 -2273 ((-1054) (-227) (-576))) (-15 -2643 ((-1054) (-227) (-576))) (-15 -4301 ((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1652 ((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -3516 ((-1054) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -4149 ((-1054) (-1177) (-171 (-227)) (-1177) (-576))) (-15 -2228 ((-1054) (-576) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -4090 ((-1054) (-227) (-576))) (-15 -2779 ((-1054) (-227) (-576))) (-15 -2743 ((-1054) (-227) (-576))) (-15 -3106 ((-1054) (-227) (-576))) (-15 -1401 ((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -1943 ((-1054) (-227) (-171 (-227)) (-576) (-1177) (-576))) (-15 -2325 ((-1054) (-227) (-576))) (-15 -2929 ((-1054) (-227) (-576))) (-15 -2540 ((-1054) (-227) (-576))) (-15 -1534 ((-1054) (-227) (-576))) (-15 -3283 ((-1054) (-227) (-576))) (-15 -2944 ((-1054) (-227) (-576))) (-15 -1915 ((-1054) (-227) (-227) (-576))) (-15 -4120 ((-1054) (-227) (-227) (-227) (-576))) (-15 -1785 ((-1054) (-227) (-227) (-227) (-576))) (-15 -3238 ((-1054) (-227) (-227) (-227) (-227) (-576)))) +((-4361 (((-1291)) 20)) (-1535 (((-1177)) 34)) (-2242 (((-1177)) 33)) (-3634 (((-1123) (-1195) (-701 (-576))) 47) (((-1123) (-1195) (-701 (-227))) 43)) (-3329 (((-112)) 19)) (-2711 (((-1177) (-1177)) 37))) +(((-771) (-10 -7 (-15 -2242 ((-1177))) (-15 -1535 ((-1177))) (-15 -2711 ((-1177) (-1177))) (-15 -3634 ((-1123) (-1195) (-701 (-227)))) (-15 -3634 ((-1123) (-1195) (-701 (-576)))) (-15 -3329 ((-112))) (-15 -4361 ((-1291))))) (T -771)) +((-4361 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-771)))) (-3329 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771)))) (-3634 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-576))) (-5 *2 (-1123)) (-5 *1 (-771)))) (-3634 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-227))) (-5 *2 (-1123)) (-5 *1 (-771)))) (-2711 (*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))) (-1535 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771)))) (-2242 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771))))) +(-10 -7 (-15 -2242 ((-1177))) (-15 -1535 ((-1177))) (-15 -2711 ((-1177) (-1177))) (-15 -3634 ((-1123) (-1195) (-701 (-227)))) (-15 -3634 ((-1123) (-1195) (-701 (-576)))) (-15 -3329 ((-112))) (-15 -4361 ((-1291)))) +((-4081 (($ $ $) 10)) (-1938 (($ $ $ $) 9)) (-2303 (($ $ $) 12))) +(((-772 |#1|) (-10 -8 (-15 -2303 (|#1| |#1| |#1|)) (-15 -4081 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#1| |#1| |#1|))) (-773)) (T -772)) +NIL +(-10 -8 (-15 -2303 (|#1| |#1| |#1|)) (-15 -4081 (|#1| |#1| |#1|)) (-15 -1938 (|#1| |#1| |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-4242 (($ $ (-938)) 31)) (-1428 (($ $ (-938)) 32)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-4081 (($ $ $) 28)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-1938 (($ $ $ $) 29)) (-2303 (($ $ $) 27)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 33)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) (((-773) (-141)) (T -773)) -((-3911 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-1361 (*1 *1 *1 *1) (-4 *1 (-773))) (-3771 (*1 *1 *1 *1) (-4 *1 (-773)))) -(-13 (-21) (-732) (-10 -8 (-15 -3911 ($ $ $ $)) (-15 -1361 ($ $ $)) (-15 -3771 ($ $ $)))) +((-1938 (*1 *1 *1 *1 *1) (-4 *1 (-773))) (-4081 (*1 *1 *1 *1) (-4 *1 (-773))) (-2303 (*1 *1 *1 *1) (-4 *1 (-773)))) +(-13 (-21) (-732) (-10 -8 (-15 -1938 ($ $ $ $)) (-15 -4081 ($ $ $)) (-15 -2303 ($ $ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-732) . T) ((-1119) . T)) -((-4092 (((-874) $) NIL) (($ (-576)) 10))) -(((-774 |#1|) (-10 -8 (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) (-775)) (T -774)) +((-3563 (((-874) $) NIL) (($ (-576)) 10))) +(((-774 |#1|) (-10 -8 (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) (-775)) (T -774)) NIL -(-10 -8 (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3046 (((-3 $ "failed") $) 43)) (-3952 (($ $ (-938)) 31) (($ $ (-783)) 38)) (-3179 (((-3 $ "failed") $) 41)) (-1810 (((-112) $) 37)) (-1714 (((-3 $ "failed") $) 42)) (-2596 (($ $ (-938)) 32) (($ $ (-783)) 39)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-1361 (($ $ $) 28)) (-4092 (((-874) $) 12) (($ (-576)) 34)) (-2471 (((-783)) 35 T CONST)) (-1531 (((-112) $ $) 9)) (-3911 (($ $ $ $) 29)) (-3771 (($ $ $) 27)) (-4300 (($) 19 T CONST)) (-4310 (($) 36 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 33) (($ $ (-783)) 40)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) +(-10 -8 (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-2991 (((-3 $ "failed") $) 43)) (-4242 (($ $ (-938)) 31) (($ $ (-783)) 38)) (-1551 (((-3 $ "failed") $) 41)) (-1414 (((-112) $) 37)) (-1410 (((-3 $ "failed") $) 42)) (-1428 (($ $ (-938)) 32) (($ $ (-783)) 39)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-4081 (($ $ $) 28)) (-3563 (((-874) $) 12) (($ (-576)) 34)) (-1858 (((-783)) 35 T CONST)) (-3985 (((-112) $ $) 9)) (-1938 (($ $ $ $) 29)) (-2303 (($ $ $) 27)) (-2800 (($) 19 T CONST)) (-2810 (($) 36 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 33) (($ $ (-783)) 40)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 30))) (((-775) (-141)) (T -775)) -((-2471 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))) -(-13 (-773) (-734) (-10 -8 (-15 -2471 ((-783)) -2670) (-15 -4092 ($ (-576))))) +((-1858 (*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775))))) +(-13 (-773) (-734) (-10 -8 (-15 -1858 ((-783)) -1398) (-15 -3563 ($ (-576))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-732) . T) ((-734) . T) ((-773) . T) ((-1119) . T)) -((-3620 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-3939 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-3794 (((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1196)) 20) (((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19))) -(((-776 |#1|) (-10 -7 (-15 -3794 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -3794 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1196))) (-15 -3939 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -3620 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776)) -((-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-3939 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1196)) (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3794 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -3794 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1196))) (-15 -3939 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -3620 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) -((-1555 (((-176 (-576)) |#1|) 27))) -(((-777 |#1|) (-10 -7 (-15 -1555 ((-176 (-576)) |#1|))) (-416)) (T -777)) -((-1555 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))) -(-10 -7 (-15 -1555 ((-176 (-576)) |#1|))) -((-4030 ((|#1| |#1| |#1|) 28)) (-4056 ((|#1| |#1| |#1|) 27)) (-4236 ((|#1| |#1| |#1|) 38)) (-4404 ((|#1| |#1| |#1|) 34)) (-4164 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2091 (((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|) 26))) -(((-778 |#1| |#2|) (-10 -7 (-15 -2091 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -4056 (|#1| |#1| |#1|)) (-15 -4030 (|#1| |#1| |#1|)) (-15 -4164 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -4236 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778)) -((-4236 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4404 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4164 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4030 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4056 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-2091 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))) -(-10 -7 (-15 -2091 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -4056 (|#1| |#1| |#1|)) (-15 -4030 (|#1| |#1| |#1|)) (-15 -4164 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -4236 (|#1| |#1| |#1|))) -((-4411 (((-703 (-1245)) $ (-1245)) 26)) (-2950 (((-703 (-561)) $ (-561)) 25)) (-4219 (((-783) $ (-129)) 27)) (-2925 (((-703 (-130)) $ (-130)) 24)) (-1519 (((-703 (-1245)) $) 12)) (-2145 (((-703 (-1243)) $) 8)) (-3845 (((-703 (-1242)) $) 10)) (-3544 (((-703 (-561)) $) 13)) (-1995 (((-703 (-559)) $) 9)) (-3240 (((-703 (-558)) $) 11)) (-3859 (((-783) $ (-129)) 7)) (-3910 (((-703 (-130)) $) 14)) (-3254 (((-112) $) 31)) (-3611 (((-703 $) |#1| (-971)) 32)) (-3603 (($ $) 6))) +((-2418 (((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|) 33)) (-2593 (((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|) 23)) (-3941 (((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1195)) 20) (((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576))))) 19))) +(((-776 |#1|) (-10 -7 (-15 -3941 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -3941 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1195))) (-15 -2593 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2418 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) (-13 (-374) (-860))) (T -776)) +((-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 *4))))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-2593 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860))))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1195)) (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-374) (-860))))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -3941 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))))) (-15 -3941 ((-969 (-171 (-419 (-576)))) (-701 (-171 (-419 (-576)))) (-1195))) (-15 -2593 ((-656 (-171 |#1|)) (-701 (-171 (-419 (-576)))) |#1|)) (-15 -2418 ((-656 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 (-171 |#1|)))))) (-701 (-171 (-419 (-576)))) |#1|))) +((-1436 (((-176 (-576)) |#1|) 27))) +(((-777 |#1|) (-10 -7 (-15 -1436 ((-176 (-576)) |#1|))) (-416)) (T -777)) +((-1436 (*1 *2 *3) (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416))))) +(-10 -7 (-15 -1436 ((-176 (-576)) |#1|))) +((-3075 ((|#1| |#1| |#1|) 28)) (-1620 ((|#1| |#1| |#1|) 27)) (-3127 ((|#1| |#1| |#1|) 38)) (-4362 ((|#1| |#1| |#1|) 34)) (-4218 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3376 (((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|) 26))) +(((-778 |#1| |#2|) (-10 -7 (-15 -3376 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -1620 (|#1| |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -4218 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#1|))) (-720 |#2|) (-374)) (T -778)) +((-3127 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4362 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-4218 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3075 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-1620 (*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) (-3376 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4))))) +(-10 -7 (-15 -3376 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -1620 (|#1| |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -4218 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1|)) (-15 -3127 (|#1| |#1| |#1|))) +((-4103 (((-703 (-1244)) $ (-1244)) 26)) (-2139 (((-703 (-561)) $ (-561)) 25)) (-1890 (((-783) $ (-129)) 27)) (-1925 (((-703 (-130)) $ (-130)) 24)) (-2284 (((-703 (-1244)) $) 12)) (-3326 (((-703 (-1242)) $) 8)) (-4067 (((-703 (-1241)) $) 10)) (-1373 (((-703 (-561)) $) 13)) (-3438 (((-703 (-559)) $) 9)) (-2790 (((-703 (-558)) $) 11)) (-2812 (((-783) $ (-129)) 7)) (-1831 (((-703 (-130)) $) 14)) (-1619 (((-112) $) 31)) (-2759 (((-703 $) |#1| (-971)) 32)) (-4382 (($ $) 6))) (((-779 |#1|) (-141) (-1119)) (T -779)) -((-3611 (*1 *2 *3 *4) (-12 (-5 *4 (-971)) (-4 *3 (-1119)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) -(-13 (-588) (-10 -8 (-15 -3611 ((-703 $) |t#1| (-971))) (-15 -3254 ((-112) $)))) +((-2759 (*1 *2 *3 *4) (-12 (-5 *4 (-971)) (-4 *3 (-1119)) (-5 *2 (-703 *1)) (-4 *1 (-779 *3)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) +(-13 (-588) (-10 -8 (-15 -2759 ((-703 $) |t#1| (-971))) (-15 -1619 ((-112) $)))) (((-175) . T) ((-539) . T) ((-588) . T) ((-872) . T)) -((-1483 (((-2 (|:| -1999 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-2186 (((-2 (|:| -1999 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-1955 (((-576)) 85))) -(((-780 |#1| |#2|) (-10 -7 (-15 -1955 ((-576))) (-15 -2186 ((-2 (|:| -1999 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -1483 ((-2 (|:| -1999 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1263 (-576)) (-421 (-576) |#1|)) (T -780)) -((-1483 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2186 (*1 *2) (-12 (-4 *3 (-1263 (-576))) (-5 *2 (-2 (|:| -1999 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-1955 (*1 *2) (-12 (-4 *3 (-1263 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3))))) -(-10 -7 (-15 -1955 ((-576))) (-15 -2186 ((-2 (|:| -1999 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -1483 ((-2 (|:| -1999 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) -((-2034 (((-112) $ $) NIL)) (-2378 (((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 20) (($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-781) (-13 (-1119) (-10 -8 (-15 -4092 ($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4092 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4092 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2378 ((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781))))) -(-13 (-1119) (-10 -8 (-15 -4092 ($ (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4092 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4092 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -2378 ((-3 (|:| |nia| (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) -((-1601 (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))) 18) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196))) 17)) (-1843 (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))) 20) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196))) 19))) -(((-782 |#1|) (-10 -7 (-15 -1601 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -1601 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))))) (-568)) (T -782)) -((-1843 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5))))) -(-10 -7 (-15 -1601 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -1601 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2746 (($ $ $) 10)) (-3788 (((-3 $ "failed") $ $) 15)) (-3298 (($ $ (-576)) 11)) (-3656 (($) NIL T CONST)) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($ $) NIL)) (-1986 (($ $ $) NIL)) (-1810 (((-112) $) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3149 (($ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 6 T CONST)) (-4310 (($) NIL T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL))) -(((-783) (-13 (-805) (-738) (-10 -8 (-15 -1986 ($ $ $)) (-15 -1975 ($ $ $)) (-15 -3149 ($ $ $)) (-15 -2233 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -2022 ((-3 $ "failed") $ $)) (-15 -3298 ($ $ (-576))) (-15 -2446 ($ $)) (-6 (-4464 "*"))))) (T -783)) -((-1986 (*1 *1 *1 *1) (-5 *1 (-783))) (-1975 (*1 *1 *1 *1) (-5 *1 (-783))) (-3149 (*1 *1 *1 *1) (-5 *1 (-783))) (-2233 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1720 (-783)) (|:| -4400 (-783)))) (-5 *1 (-783)))) (-2022 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-3298 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-2446 (*1 *1 *1) (-5 *1 (-783)))) -(-13 (-805) (-738) (-10 -8 (-15 -1986 ($ $ $)) (-15 -1975 ($ $ $)) (-15 -3149 ($ $ $)) (-15 -2233 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -2022 ((-3 $ "failed") $ $)) (-15 -3298 ($ $ (-576))) (-15 -2446 ($ $)) (-6 (-4464 "*")))) +((-2426 (((-2 (|:| -3713 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)) 71)) (-2969 (((-2 (|:| -3713 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) 69)) (-1960 (((-576)) 85))) +(((-780 |#1| |#2|) (-10 -7 (-15 -1960 ((-576))) (-15 -2969 ((-2 (|:| -3713 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2426 ((-2 (|:| -3713 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) (-1262 (-576)) (-421 (-576) |#1|)) (T -780)) +((-2426 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1262 *3)) (-5 *2 (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) (-2969 (*1 *2) (-12 (-4 *3 (-1262 (-576))) (-5 *2 (-2 (|:| -3713 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576))))) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) (-1960 (*1 *2) (-12 (-4 *3 (-1262 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) (-4 *4 (-421 *2 *3))))) +(-10 -7 (-15 -1960 ((-576))) (-15 -2969 ((-2 (|:| -3713 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))))) (-15 -2426 ((-2 (|:| -3713 (-701 (-576))) (|:| |basisDen| (-576)) (|:| |basisInv| (-701 (-576)))) (-576)))) +((-3474 (((-112) $ $) NIL)) (-4056 (((-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $) 21)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 20) (($ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 13) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) 18)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-781) (-13 (-1119) (-10 -8 (-15 -3563 ($ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3563 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3563 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4056 ((-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $))))) (T -781)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781))))) +(-13 (-1119) (-10 -8 (-15 -3563 ($ (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3563 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -3563 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (-15 -4056 ((-3 (|:| |nia| (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) $)))) +((-2656 (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))) 18) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1195))) 17)) (-2445 (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))) 20) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1195))) 19))) +(((-782 |#1|) (-10 -7 (-15 -2656 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1195)))) (-15 -2656 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1195)))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))))) (-568)) (T -782)) +((-2445 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5)))) (-2656 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5))))) +(-10 -7 (-15 -2656 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1195)))) (-15 -2656 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|)) (-656 (-1195)))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-969 |#1|))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-4415 (($ $ $) 10)) (-1367 (((-3 $ "failed") $ $) 15)) (-2745 (($ $ (-576)) 11)) (-3767 (($) NIL T CONST)) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($ $) NIL)) (-3431 (($ $ $) NIL)) (-1414 (((-112) $) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3495 (($ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 6 T CONST)) (-2810 (($) NIL T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ $ $) NIL))) +(((-783) (-13 (-805) (-738) (-10 -8 (-15 -3431 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -1784 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -3463 ((-3 $ "failed") $ $)) (-15 -2745 ($ $ (-576))) (-15 -1803 ($ $)) (-6 (-4463 "*"))))) (T -783)) +((-3431 (*1 *1 *1 *1) (-5 *1 (-783))) (-3420 (*1 *1 *1 *1) (-5 *1 (-783))) (-3495 (*1 *1 *1 *1) (-5 *1 (-783))) (-1784 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3824 (-783)) (|:| -2091 (-783)))) (-5 *1 (-783)))) (-3463 (*1 *1 *1 *1) (|partial| -5 *1 (-783))) (-2745 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783)))) (-1803 (*1 *1 *1) (-5 *1 (-783)))) +(-13 (-805) (-738) (-10 -8 (-15 -3431 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -1784 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -3463 ((-3 $ "failed") $ $)) (-15 -2745 ($ $ (-576))) (-15 -1803 ($ $)) (-6 (-4463 "*")))) ((|Integer|) (|%ige| |#1| 0)) -((-1843 (((-3 |#2| "failed") |#2| |#2| (-115) (-1196)) 37))) -(((-784 |#1| |#2|) (-10 -7 (-15 -1843 ((-3 |#2| "failed") |#2| |#2| (-115) (-1196)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976))) (T -784)) -((-1843 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1222) (-976)))))) -(-10 -7 (-15 -1843 ((-3 |#2| "failed") |#2| |#2| (-115) (-1196)))) -((-4092 (((-786) |#1|) 8))) -(((-785 |#1|) (-10 -7 (-15 -4092 ((-786) |#1|))) (-1237)) (T -785)) -((-4092 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1237))))) -(-10 -7 (-15 -4092 ((-786) |#1|))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 7)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 9))) +((-2445 (((-3 |#2| "failed") |#2| |#2| (-115) (-1195)) 37))) +(((-784 |#1| |#2|) (-10 -7 (-15 -2445 ((-3 |#2| "failed") |#2| |#2| (-115) (-1195)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-976))) (T -784)) +((-2445 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1221) (-976)))))) +(-10 -7 (-15 -2445 ((-3 |#2| "failed") |#2| |#2| (-115) (-1195)))) +((-3563 (((-786) |#1|) 8))) +(((-785 |#1|) (-10 -7 (-15 -3563 ((-786) |#1|))) (-1236)) (T -785)) +((-3563 (*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1236))))) +(-10 -7 (-15 -3563 ((-786) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 7)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 9))) (((-786) (-1119)) (T -786)) NIL (-1119) -((-4252 ((|#2| |#4|) 35))) -(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4252 (|#2| |#4|))) (-464) (-1263 |#1|) (-736 |#1| |#2|) (-1263 |#3|)) (T -787)) -((-4252 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -4252 (|#2| |#4|))) -((-3179 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2087 (((-1292) (-1178) (-1178) |#4| |#5|) 33)) (-3674 ((|#4| |#4| |#5|) 74)) (-1845 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#5|) 79)) (-3808 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|) 16))) -(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3179 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3674 (|#4| |#4| |#5|)) (-15 -1845 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -2087 ((-1292) (-1178) (-1178) |#4| |#5|)) (-15 -3808 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -788)) -((-3808 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2087 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1178)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *4 (-1084 *6 *7 *8)) (-5 *2 (-1292)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1090 *6 *7 *8 *4)))) (-1845 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3674 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *2 (-1084 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1090 *4 *5 *6 *2)))) (-3179 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(-10 -7 (-15 -3179 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3674 (|#4| |#4| |#5|)) (-15 -1845 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -2087 ((-1292) (-1178) (-1178) |#4| |#5|)) (-15 -3808 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|))) -((-2974 (((-3 (-1192 (-1192 |#1|)) "failed") |#4|) 51)) (-3128 (((-656 |#4|) |#4|) 22)) (-3847 ((|#4| |#4|) 17))) -(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3128 ((-656 |#4|) |#4|)) (-15 -2974 ((-3 (-1192 (-1192 |#1|)) "failed") |#4|)) (-15 -3847 (|#4| |#4|))) (-360) (-339 |#1|) (-1263 |#2|) (-1263 |#3|) (-938)) (T -789)) -((-3847 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1263 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1263 *5)) (-14 *6 (-938)))) (-2974 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) (-5 *2 (-1192 (-1192 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) (-14 *7 (-938)))) (-3128 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) (-14 *7 (-938))))) -(-10 -7 (-15 -3128 ((-656 |#4|) |#4|)) (-15 -2974 ((-3 (-1192 (-1192 |#1|)) "failed") |#4|)) (-15 -3847 (|#4| |#4|))) -((-1624 (((-2 (|:| |deter| (-656 (-1192 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1192 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-1454 (((-656 (-783)) |#1|) 20))) -(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1624 ((-2 (|:| |deter| (-656 (-1192 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1192 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -1454 ((-656 (-783)) |#1|))) (-1263 |#4|) (-805) (-862) (-317) (-966 |#4| |#2| |#3|)) (T -790)) -((-1454 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *6)) (-4 *7 (-966 *6 *4 *5)))) (-1624 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1263 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317)) (-4 *10 (-966 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1192 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1192 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10))))) -(-10 -7 (-15 -1624 ((-2 (|:| |deter| (-656 (-1192 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1192 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -1454 ((-656 (-783)) |#1|))) -((-2097 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-1581 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-3794 (((-969 (-419 (-576))) (-701 (-419 (-576))) (-1196)) 18) (((-969 (-419 (-576))) (-701 (-419 (-576)))) 17))) -(((-791 |#1|) (-10 -7 (-15 -3794 ((-969 (-419 (-576))) (-701 (-419 (-576))))) (-15 -3794 ((-969 (-419 (-576))) (-701 (-419 (-576))) (-1196))) (-15 -1581 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -2097 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791)) -((-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-1581 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1196)) (-5 *2 (-969 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-969 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) -(-10 -7 (-15 -3794 ((-969 (-419 (-576))) (-701 (-419 (-576))))) (-15 -3794 ((-969 (-419 (-576))) (-701 (-419 (-576))) (-1196))) (-15 -1581 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -2097 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 36)) (-1541 (((-656 |#2|) $) NIL)) (-1364 (((-1192 $) $ |#2|) NIL) (((-1192 |#1|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-3053 (($ $) 30)) (-3034 (((-112) $ $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2488 (($ $ $) 110 (|has| |#1| (-568)))) (-3370 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1587 (($ $) NIL (|has| |#1| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-969 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))))) (((-3 $ "failed") (-969 (-576))) NIL (-3765 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2433 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196)))))) (((-3 $ "failed") (-969 |#1|)) NIL (-3765 (-12 (|has| |#2| (-626 (-1196))) (-2433 (|has| |#1| (-38 (-419 (-576))))) (-2433 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2433 (|has| |#1| (-38 (-419 (-576))))) (-2433 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))) (-2433 (|has| |#1| (-1011 (-576))))))) (((-3 (-1144 |#1| |#2|) "failed") $) 21)) (-2378 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) ((|#2| $) NIL) (($ (-969 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))))) (($ (-969 (-576))) NIL (-3765 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2433 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196)))))) (($ (-969 |#1|)) NIL (-3765 (-12 (|has| |#2| (-626 (-1196))) (-2433 (|has| |#1| (-38 (-419 (-576))))) (-2433 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2433 (|has| |#1| (-38 (-419 (-576))))) (-2433 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))) (-2433 (|has| |#1| (-1011 (-576))))))) (((-1144 |#1| |#2|) $) NIL)) (-2996 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-1717 (($ $) NIL) (($ $ |#2|) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3532 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-3530 (((-112) $) NIL)) (-4215 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 81)) (-3598 (($ $) 136 (|has| |#1| (-464)))) (-1363 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-926)))) (-3954 (($ $) NIL (|has| |#1| (-568)))) (-1663 (($ $) NIL (|has| |#1| (-568)))) (-4417 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-2504 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2291 (($ $ |#1| (-543 |#2|) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1810 (((-112) $) 57)) (-1831 (((-783) $) NIL)) (-3871 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1675 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-2565 ((|#2| $) 22)) (-1529 (($ (-1192 |#1|) |#2|) NIL) (($ (-1192 $) |#2|) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2039 (($ $ $) 63)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ |#2|) NIL)) (-2863 (((-112) $) NIL)) (-1915 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-3718 (((-783) $) 23)) (-3968 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3403 (((-3 |#2| "failed") $) NIL)) (-4194 (($ $) NIL (|has| |#1| (-464)))) (-4120 (($ $) NIL (|has| |#1| (-464)))) (-2731 (((-656 $) $) NIL)) (-3303 (($ $) 39)) (-2234 (($ $) NIL (|has| |#1| (-464)))) (-3394 (((-656 $) $) 43)) (-2848 (($ $) 41)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1421 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1522 (-783))) $ $) 96)) (-1894 (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $) 78) (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $ |#2|) NIL)) (-2650 (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -4400 $)) $ $) NIL) (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -4400 $)) $ $ |#2|) NIL)) (-2708 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3628 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-3288 (((-1178) $) NIL)) (-3918 (($ $ $) 125 (|has| |#1| (-568)))) (-4368 (((-656 $) $) 32)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| |#2|) (|:| -3175 (-783))) "failed") $) NIL)) (-3593 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-4395 (($ $ $) NIL)) (-3503 (($ $) 24)) (-3711 (((-112) $ $) NIL)) (-1875 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-3987 (($ $ $) NIL)) (-3989 (($ $) 26)) (-3139 (((-1139) $) NIL)) (-2953 (((-2 (|:| -3149 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-2676 (((-2 (|:| -3149 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-1657 (((-112) $) 56)) (-1670 ((|#1| $) 58)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3149 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2795 (((-2 (|:| -3149 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-3229 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-4278 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-1955 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3614 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2369 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-2327 (($ $) NIL)) (-2235 (($ $) 35)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-969 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196))))) (($ (-969 (-576))) NIL (-3765 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1196))) (-2433 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1196)))))) (($ (-969 |#1|)) NIL (|has| |#2| (-626 (-1196)))) (((-1178) $) NIL (-12 (|has| |#1| (-1057 (-576))) (|has| |#2| (-626 (-1196))))) (((-969 |#1|) $) NIL (|has| |#2| (-626 (-1196))))) (-3714 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-969 |#1|) $) NIL (|has| |#2| (-626 (-1196)))) (((-1144 |#1| |#2|) $) 18) (($ (-1144 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) 13 T CONST)) (-1491 (((-3 (-112) "failed") $ $) NIL)) (-4310 (($) 37 T CONST)) (-1877 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-2104 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-4286 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) 75)) (-4007 (($ $ $) 85)) (** (($ $ (-938)) NIL) (($ $ (-783)) 70)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) +((-4072 ((|#2| |#4|) 35))) +(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4072 (|#2| |#4|))) (-464) (-1262 |#1|) (-736 |#1| |#2|) (-1262 |#3|)) (T -787)) +((-4072 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1262 *5))))) +(-10 -7 (-15 -4072 (|#2| |#4|))) +((-1551 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-4276 (((-1291) (-1177) (-1177) |#4| |#5|) 33)) (-1855 ((|#4| |#4| |#5|) 74)) (-2614 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#5|) 79)) (-2857 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|) 16))) +(((-788 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1551 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1855 (|#4| |#4| |#5|)) (-15 -2614 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -4276 ((-1291) (-1177) (-1177) |#4| |#5|)) (-15 -2857 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -788)) +((-2857 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-4276 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1177)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *4 (-1084 *6 *7 *8)) (-5 *2 (-1291)) (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1090 *6 *7 *8 *4)))) (-2614 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1855 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *2 (-1084 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) (-4 *3 (-1090 *4 *5 *6 *2)))) (-1551 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(-10 -7 (-15 -1551 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1855 (|#4| |#4| |#5|)) (-15 -2614 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -4276 ((-1291) (-1177) (-1177) |#4| |#5|)) (-15 -2857 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|))) +((-1539 (((-3 (-1191 (-1191 |#1|)) "failed") |#4|) 51)) (-3362 (((-656 |#4|) |#4|) 22)) (-4273 ((|#4| |#4|) 17))) +(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3362 ((-656 |#4|) |#4|)) (-15 -1539 ((-3 (-1191 (-1191 |#1|)) "failed") |#4|)) (-15 -4273 (|#4| |#4|))) (-360) (-339 |#1|) (-1262 |#2|) (-1262 |#3|) (-938)) (T -789)) +((-4273 (*1 *2 *2) (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1262 *4)) (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1262 *5)) (-14 *6 (-938)))) (-1539 (*1 *2 *3) (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) (-5 *2 (-1191 (-1191 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) (-14 *7 (-938)))) (-3362 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) (-14 *7 (-938))))) +(-10 -7 (-15 -3362 ((-656 |#4|) |#4|)) (-15 -1539 ((-3 (-1191 (-1191 |#1|)) "failed") |#4|)) (-15 -4273 (|#4| |#4|))) +((-3892 (((-2 (|:| |deter| (-656 (-1191 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1191 |#5|) (-656 |#1|) (-656 |#5|)) 72)) (-1359 (((-656 (-783)) |#1|) 20))) +(((-790 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3892 ((-2 (|:| |deter| (-656 (-1191 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1191 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -1359 ((-656 (-783)) |#1|))) (-1262 |#4|) (-805) (-862) (-317) (-966 |#4| |#2| |#3|)) (T -790)) +((-1359 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) (-4 *3 (-1262 *6)) (-4 *7 (-966 *6 *4 *5)))) (-3892 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1262 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317)) (-4 *10 (-966 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-656 (-1191 *10))) (|:| |dterm| (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| *10))))) (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1191 *10)) (-5 *4 (-656 *6)) (-5 *5 (-656 *10))))) +(-10 -7 (-15 -3892 ((-2 (|:| |deter| (-656 (-1191 |#5|))) (|:| |dterm| (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-656 |#1|)) (|:| |nlead| (-656 |#5|))) (-1191 |#5|) (-656 |#1|) (-656 |#5|))) (-15 -1359 ((-656 (-783)) |#1|))) +((-3799 (((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|) 31)) (-2455 (((-656 |#1|) (-701 (-419 (-576))) |#1|) 21)) (-3941 (((-969 (-419 (-576))) (-701 (-419 (-576))) (-1195)) 18) (((-969 (-419 (-576))) (-701 (-419 (-576)))) 17))) +(((-791 |#1|) (-10 -7 (-15 -3941 ((-969 (-419 (-576))) (-701 (-419 (-576))))) (-15 -3941 ((-969 (-419 (-576))) (-701 (-419 (-576))) (-1195))) (-15 -2455 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3799 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) (-13 (-374) (-860))) (T -791)) +((-3799 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 (-2 (|:| |outval| *4) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 *4)))))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-2455 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) (-3941 (*1 *2 *3 *4) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1195)) (-5 *2 (-969 (-419 (-576)))) (-5 *1 (-791 *5)) (-4 *5 (-13 (-374) (-860))))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-969 (-419 (-576)))) (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) +(-10 -7 (-15 -3941 ((-969 (-419 (-576))) (-701 (-419 (-576))))) (-15 -3941 ((-969 (-419 (-576))) (-701 (-419 (-576))) (-1195))) (-15 -2455 ((-656 |#1|) (-701 (-419 (-576))) |#1|)) (-15 -3799 ((-656 (-2 (|:| |outval| |#1|) (|:| |outmult| (-576)) (|:| |outvect| (-656 (-701 |#1|))))) (-701 (-419 (-576))) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 36)) (-1991 (((-656 |#2|) $) NIL)) (-3999 (((-1191 $) $ |#2|) NIL) (((-1191 |#1|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 |#2|)) NIL)) (-2464 (($ $) 30)) (-4104 (((-112) $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2749 (($ $ $) 110 (|has| |#1| (-568)))) (-1797 (((-656 $) $ $) 123 (|has| |#1| (-568)))) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1760 (($ $) NIL (|has| |#1| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-969 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))))) (((-3 $ "failed") (-969 (-576))) NIL (-2835 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2746 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195)))))) (((-3 $ "failed") (-969 |#1|)) NIL (-2835 (-12 (|has| |#2| (-626 (-1195))) (-2746 (|has| |#1| (-38 (-419 (-576))))) (-2746 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2746 (|has| |#1| (-38 (-419 (-576))))) (-2746 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))) (-2746 (|has| |#1| (-1011 (-576))))))) (((-3 (-1144 |#1| |#2|) "failed") $) 21)) (-4056 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) ((|#2| $) NIL) (($ (-969 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))))) (($ (-969 (-576))) NIL (-2835 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2746 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195)))))) (($ (-969 |#1|)) NIL (-2835 (-12 (|has| |#2| (-626 (-1195))) (-2746 (|has| |#1| (-38 (-419 (-576))))) (-2746 (|has| |#1| (-38 (-576))))) (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2746 (|has| |#1| (-38 (-419 (-576))))) (-2746 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))) (-2746 (|has| |#1| (-1011 (-576))))))) (((-1144 |#1| |#2|) $) NIL)) (-2861 (($ $ $ |#2|) NIL (|has| |#1| (-174))) (($ $ $) 121 (|has| |#1| (-568)))) (-2166 (($ $) NIL) (($ $ |#2|) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1426 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2581 (((-112) $) NIL)) (-1424 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 81)) (-3954 (($ $) 136 (|has| |#1| (-464)))) (-2985 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#1| (-926)))) (-3289 (($ $) NIL (|has| |#1| (-568)))) (-1469 (($ $) NIL (|has| |#1| (-568)))) (-1463 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1586 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-1660 (($ $ |#1| (-543 |#2|) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1414 (((-112) $) 57)) (-3839 (((-783) $) NIL)) (-1453 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-4295 (($ $ $ $ $) 107 (|has| |#1| (-568)))) (-1734 ((|#2| $) 22)) (-1980 (($ (-1191 |#1|) |#2|) NIL) (($ (-1191 $) |#2|) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2880 (($ $ $) 63)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ |#2|) NIL)) (-3182 (((-112) $) NIL)) (-3403 (((-543 |#2|) $) NIL) (((-783) $ |#2|) NIL) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-2737 (((-783) $) 23)) (-2133 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-4209 (((-3 |#2| "failed") $) NIL)) (-4074 (($ $) NIL (|has| |#1| (-464)))) (-4243 (($ $) NIL (|has| |#1| (-464)))) (-4201 (((-656 $) $) NIL)) (-2811 (($ $) 39)) (-1896 (($ $) NIL (|has| |#1| (-464)))) (-2144 (((-656 $) $) 43)) (-4131 (($ $) 41)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3212 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2568 (-783))) $ $) 96)) (-2976 (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $) 78) (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $ |#2|) NIL)) (-3318 (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -2091 $)) $ $) NIL) (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -2091 $)) $ $ |#2|) NIL)) (-2463 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-3929 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1927 (((-1177) $) NIL)) (-3355 (($ $ $) 125 (|has| |#1| (-568)))) (-4085 (((-656 $) $) 32)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| |#2|) (|:| -4274 (-783))) "failed") $) NIL)) (-1521 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-1582 (($ $ $) NIL)) (-1538 (($ $) 24)) (-3391 (((-112) $ $) NIL)) (-1393 (((-112) $ $) NIL) (((-112) $ (-656 $)) NIL)) (-2196 (($ $ $) NIL)) (-2391 (($ $) 26)) (-1445 (((-1139) $) NIL)) (-2752 (((-2 (|:| -3495 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-568)))) (-1671 (((-2 (|:| -3495 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-568)))) (-2105 (((-112) $) 56)) (-2116 ((|#1| $) 58)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3495 ((|#1| |#1| $) 133 (|has| |#1| (-464))) (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3829 (((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-568)))) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-568)))) (-4157 (($ $ |#1|) 129 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-1449 (($ $ |#1|) 128 (|has| |#1| (-568))) (($ $ $) NIL (|has| |#1| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-656 |#2|) (-656 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-656 |#2|) (-656 $)) NIL)) (-1960 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2735 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-1433 (((-543 |#2|) $) NIL) (((-783) $ |#2|) 45) (((-656 (-783)) $ (-656 |#2|)) NIL)) (-4219 (($ $) NIL)) (-2004 (($ $) 35)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548))))) (($ (-969 (-419 (-576)))) NIL (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195))))) (($ (-969 (-576))) NIL (-2835 (-12 (|has| |#1| (-38 (-576))) (|has| |#2| (-626 (-1195))) (-2746 (|has| |#1| (-38 (-419 (-576)))))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#2| (-626 (-1195)))))) (($ (-969 |#1|)) NIL (|has| |#2| (-626 (-1195)))) (((-1177) $) NIL (-12 (|has| |#1| (-1057 (-576))) (|has| |#2| (-626 (-1195))))) (((-969 |#1|) $) NIL (|has| |#2| (-626 (-1195))))) (-3648 ((|#1| $) 132 (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-969 |#1|) $) NIL (|has| |#2| (-626 (-1195)))) (((-1144 |#1| |#2|) $) 18) (($ (-1144 |#1| |#2|)) 19) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) 47) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) 13 T CONST)) (-1986 (((-3 (-112) "failed") $ $) NIL)) (-2810 (($) 37 T CONST)) (-1611 (($ $ $ $ (-783)) 105 (|has| |#1| (-568)))) (-3166 (($ $ $ (-783)) 104 (|has| |#1| (-568)))) (-2051 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) 75)) (-3083 (($ $ $) 85)) (** (($ $ (-938)) NIL) (($ $ (-783)) 70)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 62) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 61) (($ $ |#1|) NIL))) (((-792 |#1| |#2|) (-13 (-1084 |#1| (-543 |#2|) |#2|) (-625 (-1144 |#1| |#2|)) (-1057 (-1144 |#1| |#2|))) (-1068) (-862)) (T -792)) NIL (-13 (-1084 |#1| (-543 |#2|) |#2|) (-625 (-1144 |#1| |#2|)) (-1057 (-1144 |#1| |#2|))) -((-2477 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13))) -(((-793 |#1| |#2|) (-10 -7 (-15 -2477 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1068) (-1068)) (T -793)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) -(-10 -7 (-15 -2477 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 12)) (-1916 (((-1287 |#1|) $ (-783)) NIL)) (-1541 (((-656 (-1101)) $) NIL)) (-1814 (($ (-1192 |#1|)) NIL)) (-1364 (((-1192 $) $ (-1101)) NIL) (((-1192 |#1|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3975 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-2488 (($ $ $) 50 (|has| |#1| (-568)))) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1587 (($ $) NIL (|has| |#1| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3873 (($ $ (-783)) NIL)) (-2579 (($ $ (-783)) NIL)) (-3352 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL) (((-3 (-1192 |#1|) "failed") $) 10)) (-2378 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1101) $) NIL) (((-1192 |#1|) $) NIL)) (-2996 (($ $ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-2175 (($ $ $) NIL)) (-2351 (($ $ $) 87 (|has| |#1| (-568)))) (-4215 (((-2 (|:| -1856 |#1|) (|:| -1720 $) (|:| -4400 $)) $ $) 86 (|has| |#1| (-568)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1363 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-926)))) (-2291 (($ $ |#1| (-783) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1538 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-1529 (($ (-1192 |#1|) (-1101)) NIL) (($ (-1192 $) (-1101)) NIL)) (-4209 (($ $ (-783)) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2039 (($ $ $) 27)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-1101)) NIL) (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-1915 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-3968 (($ (-1 (-783) (-783)) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2189 (((-1192 |#1|) $) NIL)) (-3403 (((-3 (-1101) "failed") $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1421 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1522 (-783))) $ $) 37)) (-4191 (($ $ $) 41)) (-2223 (($ $ $) 47)) (-1894 (((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $) 46)) (-3288 (((-1178) $) NIL)) (-3918 (($ $ $) 56 (|has| |#1| (-568)))) (-2168 (((-2 (|:| -1720 $) (|:| -4400 $)) $ (-783)) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-1101)) (|:| -3175 (-783))) "failed") $) NIL)) (-3597 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3503 (($) NIL (|has| |#1| (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-2953 (((-2 (|:| -3149 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-2676 (((-2 (|:| -3149 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-3836 (((-2 (|:| -2996 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-3554 (((-2 (|:| -2996 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-1657 (((-112) $) 13)) (-1670 ((|#1| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3498 (($ $ (-783) |#1| $) 26)) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2795 (((-2 (|:| -3149 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-4147 (((-2 (|:| -2996 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#1|) NIL) (($ $ (-656 (-1101)) (-656 |#1|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4442 (((-3 $ "failed") $ (-783)) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-1955 (($ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-3614 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-2369 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3714 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-4352 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1101)) NIL) (((-1192 |#1|) $) 7) (($ (-1192 |#1|)) 8) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) 28 T CONST)) (-4310 (($) 32 T CONST)) (-4286 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) 40) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-794 |#1|) (-13 (-1263 |#1|) (-625 (-1192 |#1|)) (-1057 (-1192 |#1|)) (-10 -8 (-15 -3498 ($ $ (-783) |#1| $)) (-15 -2039 ($ $ $)) (-15 -1421 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1522 (-783))) $ $)) (-15 -4191 ($ $ $)) (-15 -1894 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -2223 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -3975 ((-656 $) $ $)) (-15 -3918 ($ $ $)) (-15 -2795 ((-2 (|:| -3149 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2676 ((-2 (|:| -3149 $) (|:| |coef1| $)) $ $)) (-15 -2953 ((-2 (|:| -3149 $) (|:| |coef2| $)) $ $)) (-15 -4147 ((-2 (|:| -2996 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3554 ((-2 (|:| -2996 |#1|) (|:| |coef1| $)) $ $)) (-15 -3836 ((-2 (|:| -2996 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1068)) (T -794)) -((-3498 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) (-2039 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) (-1421 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -1522 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) (-4191 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1856 *3) (|:| |gap| (-783)) (|:| -1720 (-794 *3)) (|:| -4400 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) (-2223 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) (-3975 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-3918 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1068)))) (-2795 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3149 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-2676 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3149 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-2953 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3149 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-4147 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2996 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-3554 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2996 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-3836 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2996 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) -(-13 (-1263 |#1|) (-625 (-1192 |#1|)) (-1057 (-1192 |#1|)) (-10 -8 (-15 -3498 ($ $ (-783) |#1| $)) (-15 -2039 ($ $ $)) (-15 -1421 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1522 (-783))) $ $)) (-15 -4191 ($ $ $)) (-15 -1894 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -2223 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -3975 ((-656 $) $ $)) (-15 -3918 ($ $ $)) (-15 -2795 ((-2 (|:| -3149 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2676 ((-2 (|:| -3149 $) (|:| |coef1| $)) $ $)) (-15 -2953 ((-2 (|:| -3149 $) (|:| |coef2| $)) $ $)) (-15 -4147 ((-2 (|:| -2996 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3554 ((-2 (|:| -2996 |#1|) (|:| |coef1| $)) $ $)) (-15 -3836 ((-2 (|:| -2996 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-2833 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-4434 ((|#1| (-783) |#1|) 23)) (-4422 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) -(((-795 |#1|) (-10 -7 (-15 -4434 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4422 (|#1| (-783) |#1|)) (-15 -2833 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795)) -((-2833 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-4422 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-4434 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -4434 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -4422 (|#1| (-783) |#1|)) (-15 -2833 (|#1| (-783) |#1|))) |%noBranch|)) -((-2034 (((-112) $ $) 7)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |#4|)))) (-656 |#4|)) 86)) (-2567 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1541 (((-656 |#3|) $) 34)) (-3522 (((-112) $) 27)) (-2932 (((-112) $) 18 (|has| |#1| (-568)))) (-1701 (((-112) |#4| $) 102) (((-112) $) 98)) (-2919 ((|#4| |#4| $) 93)) (-1587 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| $) 127)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) 28)) (-2835 (((-112) $ (-783)) 45)) (-3457 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-3656 (($) 46 T CONST)) (-3425 (((-112) $) 23 (|has| |#1| (-568)))) (-2623 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1582 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3347 (((-112) $) 26 (|has| |#1| (-568)))) (-1574 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4135 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) 37)) (-2378 (($ (-656 |#4|)) 36)) (-2712 (((-3 $ "failed") $) 83)) (-3996 ((|#4| |#4| $) 90)) (-1690 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3532 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2948 ((|#4| |#4| $) 88)) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2740 (((-2 (|:| -1627 (-656 |#4|)) (|:| -3709 (-656 |#4|))) $) 106)) (-3638 (((-112) |#4| $) 137)) (-1752 (((-112) |#4| $) 134)) (-2040 (((-112) |#4| $) 138) (((-112) $) 135)) (-4260 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-3871 (((-112) |#4| $) 105) (((-112) $) 104)) (-2565 ((|#3| $) 35)) (-1419 (((-112) $ (-783)) 44)) (-1750 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 48)) (-2964 (((-656 |#3|) $) 33)) (-2459 (((-112) |#3| $) 32)) (-3103 (((-112) $ (-783)) 43)) (-3288 (((-1178) $) 10)) (-4204 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3918 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| |#4| $) 128)) (-2912 (((-3 |#4| "failed") $) 84)) (-3860 (((-656 $) |#4| $) 130)) (-2711 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1851 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3586 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-3869 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2106 (((-656 |#4|) $) 108)) (-3593 (((-112) |#4| $) 100) (((-112) $) 96)) (-4395 ((|#4| |#4| $) 91)) (-3711 (((-112) $ $) 111)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1875 (((-112) |#4| $) 101) (((-112) $) 97)) (-3987 ((|#4| |#4| $) 92)) (-3139 (((-1139) $) 11)) (-2701 (((-3 |#4| "failed") $) 85)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1479 (((-3 $ "failed") $ |#4|) 79)) (-2843 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3292 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) 39)) (-3372 (((-112) $) 42)) (-2643 (($) 41)) (-2369 (((-783) $) 107)) (-3150 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-4268 (($ $) 40)) (-1505 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) 61)) (-1606 (($ $ |#3|) 29)) (-2333 (($ $ |#3|) 31)) (-2792 (($ $) 89)) (-2875 (($ $ |#3|) 30)) (-4092 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2727 (((-783) $) 77 (|has| |#3| (-379)))) (-1531 (((-112) $ $) 9)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2196 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-4088 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2190 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1895 (((-656 |#3|) $) 82)) (-2813 (((-112) |#4| $) 136)) (-4101 (((-112) |#3| $) 81)) (-3919 (((-112) $ $) 6)) (-2048 (((-783) $) 47 (|has| $ (-6 -4462))))) +((-1632 (((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)) 13))) +(((-793 |#1| |#2|) (-10 -7 (-15 -1632 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) (-1068) (-1068)) (T -793)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-794 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-794 *6)) (-5 *1 (-793 *5 *6))))) +(-10 -7 (-15 -1632 ((-794 |#2|) (-1 |#2| |#1|) (-794 |#1|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 12)) (-3536 (((-1286 |#1|) $ (-783)) NIL)) (-1991 (((-656 (-1101)) $) NIL)) (-1834 (($ (-1191 |#1|)) NIL)) (-3999 (((-1191 $) $ (-1101)) NIL) (((-1191 |#1|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3401 (((-656 $) $ $) 54 (|has| |#1| (-568)))) (-2749 (($ $ $) 50 (|has| |#1| (-568)))) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1760 (($ $) NIL (|has| |#1| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1659 (($ $ (-783)) NIL)) (-3759 (($ $ (-783)) NIL)) (-3807 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL) (((-3 (-1191 |#1|) "failed") $) 10)) (-4056 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1101) $) NIL) (((-1191 |#1|) $) NIL)) (-2861 (($ $ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $ $) 58 (|has| |#1| (-174)))) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4215 (($ $ $) NIL)) (-2549 (($ $ $) 87 (|has| |#1| (-568)))) (-1424 (((-2 (|:| -1706 |#1|) (|:| -3824 $) (|:| -2091 $)) $ $) 86 (|has| |#1| (-568)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2985 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#1| (-926)))) (-1660 (($ $ |#1| (-783) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3333 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-1980 (($ (-1191 |#1|) (-1101)) NIL) (($ (-1191 $) (-1101)) NIL)) (-2973 (($ $ (-783)) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2880 (($ $ $) 27)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-1101)) NIL) (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3403 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-2133 (($ (-1 (-783) (-783)) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3176 (((-1191 |#1|) $) NIL)) (-4209 (((-3 (-1101) "failed") $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3212 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2568 (-783))) $ $) 37)) (-1922 (($ $ $) 41)) (-2162 (($ $ $) 47)) (-2976 (((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $) 46)) (-1927 (((-1177) $) NIL)) (-3355 (($ $ $) 56 (|has| |#1| (-568)))) (-1749 (((-2 (|:| -3824 $) (|:| -2091 $)) $ (-783)) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-1101)) (|:| -4274 (-783))) "failed") $) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (($) NIL (|has| |#1| (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2752 (((-2 (|:| -3495 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-568)))) (-1671 (((-2 (|:| -3495 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-568)))) (-1592 (((-2 (|:| -2861 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-568)))) (-3062 (((-2 (|:| -2861 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-568)))) (-2105 (((-112) $) 13)) (-2116 ((|#1| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4343 (($ $ (-783) |#1| $) 26)) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3829 (((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-568)))) (-1857 (((-2 (|:| -2861 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-568)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#1|) NIL) (($ $ (-656 (-1101)) (-656 |#1|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2210 (((-3 $ "failed") $ (-783)) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-1960 (($ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $) NIL (|has| |#1| (-174)))) (-2735 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-1433 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3648 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3251 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1101)) NIL) (((-1191 |#1|) $) 7) (($ (-1191 |#1|)) 8) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) 28 T CONST)) (-2810 (($) 32 T CONST)) (-2051 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) 40) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-794 |#1|) (-13 (-1262 |#1|) (-625 (-1191 |#1|)) (-1057 (-1191 |#1|)) (-10 -8 (-15 -4343 ($ $ (-783) |#1| $)) (-15 -2880 ($ $ $)) (-15 -3212 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2568 (-783))) $ $)) (-15 -1922 ($ $ $)) (-15 -2976 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -2162 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -3401 ((-656 $) $ $)) (-15 -3355 ($ $ $)) (-15 -3829 ((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1671 ((-2 (|:| -3495 $) (|:| |coef1| $)) $ $)) (-15 -2752 ((-2 (|:| -3495 $) (|:| |coef2| $)) $ $)) (-15 -1857 ((-2 (|:| -2861 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3062 ((-2 (|:| -2861 |#1|) (|:| |coef1| $)) $ $)) (-15 -1592 ((-2 (|:| -2861 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1068)) (T -794)) +((-4343 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) (-2880 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) (-3212 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -2568 (-783)))) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) (-1922 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) (-2976 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1706 *3) (|:| |gap| (-783)) (|:| -3824 (-794 *3)) (|:| -2091 (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) (-2162 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) (-3401 (*1 *2 *1 *1) (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-3355 (*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1068)))) (-3829 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3495 (-794 *3)) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-1671 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3495 (-794 *3)) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-2752 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3495 (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-1857 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2861 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-3062 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2861 *3) (|:| |coef1| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) (-1592 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2861 *3) (|:| |coef2| (-794 *3)))) (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) +(-13 (-1262 |#1|) (-625 (-1191 |#1|)) (-1057 (-1191 |#1|)) (-10 -8 (-15 -4343 ($ $ (-783) |#1| $)) (-15 -2880 ($ $ $)) (-15 -3212 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2568 (-783))) $ $)) (-15 -1922 ($ $ $)) (-15 -2976 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -2162 ($ $ $)) (IF (|has| |#1| (-568)) (PROGN (-15 -3401 ((-656 $) $ $)) (-15 -3355 ($ $ $)) (-15 -3829 ((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1671 ((-2 (|:| -3495 $) (|:| |coef1| $)) $ $)) (-15 -2752 ((-2 (|:| -3495 $) (|:| |coef2| $)) $ $)) (-15 -1857 ((-2 (|:| -2861 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3062 ((-2 (|:| -2861 |#1|) (|:| |coef1| $)) $ $)) (-15 -1592 ((-2 (|:| -2861 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-2902 ((|#1| (-783) |#1|) 33 (|has| |#1| (-38 (-419 (-576)))))) (-3843 ((|#1| (-783) |#1|) 23)) (-3959 ((|#1| (-783) |#1|) 35 (|has| |#1| (-38 (-419 (-576))))))) +(((-795 |#1|) (-10 -7 (-15 -3843 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3959 (|#1| (-783) |#1|)) (-15 -2902 (|#1| (-783) |#1|))) |%noBranch|)) (-174)) (T -795)) +((-2902 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-3959 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-3843 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -3843 (|#1| (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3959 (|#1| (-783) |#1|)) (-15 -2902 (|#1| (-783) |#1|))) |%noBranch|)) +((-3474 (((-112) $ $) 7)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |#4|)))) (-656 |#4|)) 86)) (-1968 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1991 (((-656 |#3|) $) 34)) (-1665 (((-112) $) 27)) (-4324 (((-112) $) 18 (|has| |#1| (-568)))) (-1587 (((-112) |#4| $) 102) (((-112) $) 98)) (-2596 ((|#4| |#4| $) 93)) (-1760 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| $) 127)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) 28)) (-3131 (((-112) $ (-783)) 45)) (-2496 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-3767 (($) 46 T CONST)) (-2359 (((-112) $) 23 (|has| |#1| (-568)))) (-4268 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2556 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1376 (((-112) $) 26 (|has| |#1| (-568)))) (-2905 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2147 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) 37)) (-4056 (($ (-656 |#4|)) 36)) (-3515 (((-3 $ "failed") $) 83)) (-1937 ((|#4| |#4| $) 90)) (-3172 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1426 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1679 ((|#4| |#4| $) 88)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1852 (((-2 (|:| -2055 (-656 |#4|)) (|:| -3223 (-656 |#4|))) $) 106)) (-3844 (((-112) |#4| $) 137)) (-1548 (((-112) |#4| $) 134)) (-2984 (((-112) |#4| $) 138) (((-112) $) 135)) (-3825 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-1453 (((-112) |#4| $) 105) (((-112) $) 104)) (-1734 ((|#3| $) 35)) (-3115 (((-112) $ (-783)) 44)) (-2591 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 48)) (-2653 (((-656 |#3|) $) 33)) (-1845 (((-112) |#3| $) 32)) (-2712 (((-112) $ (-783)) 43)) (-1927 (((-1177) $) 10)) (-3707 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3355 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| |#4| $) 128)) (-3923 (((-3 |#4| "failed") $) 84)) (-2918 (((-656 $) |#4| $) 130)) (-1494 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1992 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2021 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2509 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2181 (((-656 |#4|) $) 108)) (-1521 (((-112) |#4| $) 100) (((-112) $) 96)) (-1582 ((|#4| |#4| $) 91)) (-3391 (((-112) $ $) 111)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1393 (((-112) |#4| $) 101) (((-112) $) 97)) (-2196 ((|#4| |#4| $) 92)) (-1445 (((-1139) $) 11)) (-3504 (((-3 |#4| "failed") $) 85)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3229 (((-3 $ "failed") $ |#4|) 79)) (-1714 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-4207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) 39)) (-1911 (((-112) $) 42)) (-2597 (($) 41)) (-1433 (((-783) $) 107)) (-1456 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-1954 (($ $) 40)) (-4076 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) 61)) (-1813 (($ $ |#3|) 29)) (-3418 (($ $ |#3|) 31)) (-3543 (($ $) 89)) (-1794 (($ $ |#3|) 30)) (-3563 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2025 (((-783) $) 77 (|has| |#3| (-379)))) (-3985 (((-112) $ $) 9)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1352 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1744 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2043 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3094 (((-656 |#3|) $) 82)) (-1877 (((-112) |#4| $) 136)) (-1847 (((-112) |#3| $) 81)) (-2988 (((-112) $ $) 6)) (-3485 (((-783) $) 47 (|has| $ (-6 -4461))))) (((-796 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -796)) NIL (-13 (-1090 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) -((-1534 (((-3 (-390) "failed") (-326 |#1|) (-938)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-419 (-969 |#1|)) (-938)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-969 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-969 |#1|) (-938)) 31 (|has| |#1| (-1068))) (((-3 (-390) "failed") (-969 |#1|)) 30 (|has| |#1| (-1068)))) (-2393 (((-390) (-326 |#1|) (-938)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-419 (-969 |#1|)) (-938)) 91 (|has| |#1| (-568))) (((-390) (-419 (-969 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-969 |#1|) (-938)) 86 (|has| |#1| (-1068))) (((-390) (-969 |#1|)) 85 (|has| |#1| (-1068))) (((-390) |#1| (-938)) 76) (((-390) |#1|) 22)) (-3345 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-938)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-938)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))) (-938)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)) (-938)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-969 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-969 |#1|) (-938)) 28 (|has| |#1| (-1068))) (((-3 (-171 (-390)) "failed") (-969 |#1|)) 26 (|has| |#1| (-1068))) (((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)) (-938)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-969 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-4432 (((-171 (-390)) (-326 (-171 |#1|)) (-938)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|) (-938)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-419 (-969 (-171 |#1|))) (-938)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-969 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-969 |#1|)) (-938)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-969 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-969 |#1|) (-938)) 84 (|has| |#1| (-1068))) (((-171 (-390)) (-969 |#1|)) 83 (|has| |#1| (-1068))) (((-171 (-390)) (-969 (-171 |#1|)) (-938)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-969 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-938)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-938)) 27) (((-171 (-390)) |#1|) 25))) -(((-797 |#1|) (-10 -7 (-15 -2393 ((-390) |#1|)) (-15 -2393 ((-390) |#1| (-938))) (-15 -4432 ((-171 (-390)) |#1|)) (-15 -4432 ((-171 (-390)) |#1| (-938))) (IF (|has| |#1| (-174)) (PROGN (-15 -4432 ((-171 (-390)) (-171 |#1|))) (-15 -4432 ((-171 (-390)) (-171 |#1|) (-938))) (-15 -4432 ((-171 (-390)) (-969 (-171 |#1|)))) (-15 -4432 ((-171 (-390)) (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2393 ((-390) (-969 |#1|))) (-15 -2393 ((-390) (-969 |#1|) (-938))) (-15 -4432 ((-171 (-390)) (-969 |#1|))) (-15 -4432 ((-171 (-390)) (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2393 ((-390) (-419 (-969 |#1|)))) (-15 -2393 ((-390) (-419 (-969 |#1|)) (-938))) (-15 -4432 ((-171 (-390)) (-419 (-969 |#1|)))) (-15 -4432 ((-171 (-390)) (-419 (-969 |#1|)) (-938))) (-15 -4432 ((-171 (-390)) (-419 (-969 (-171 |#1|))))) (-15 -4432 ((-171 (-390)) (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -2393 ((-390) (-326 |#1|))) (-15 -2393 ((-390) (-326 |#1|) (-938))) (-15 -4432 ((-171 (-390)) (-326 |#1|))) (-15 -4432 ((-171 (-390)) (-326 |#1|) (-938))) (-15 -4432 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4432 ((-171 (-390)) (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3345 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -1534 ((-3 (-390) "failed") (-969 |#1|))) (-15 -1534 ((-3 (-390) "failed") (-969 |#1|) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-969 |#1|))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1534 ((-3 (-390) "failed") (-419 (-969 |#1|)))) (-15 -1534 ((-3 (-390) "failed") (-419 (-969 |#1|)) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -1534 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1534 ((-3 (-390) "failed") (-326 |#1|) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797)) -((-3345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3345 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3345 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1534 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1534 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3345 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3345 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1534 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1534 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3345 (*1 *2 *3) (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1534 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1534 (*1 *2 *3) (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3345 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3345 (*1 *2 *3) (|partial| -12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4432 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4432 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4432 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4432 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4432 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4432 (*1 *2 *3) (-12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-938)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4432 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4432 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-4432 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-2393 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-2393 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))) -(-10 -7 (-15 -2393 ((-390) |#1|)) (-15 -2393 ((-390) |#1| (-938))) (-15 -4432 ((-171 (-390)) |#1|)) (-15 -4432 ((-171 (-390)) |#1| (-938))) (IF (|has| |#1| (-174)) (PROGN (-15 -4432 ((-171 (-390)) (-171 |#1|))) (-15 -4432 ((-171 (-390)) (-171 |#1|) (-938))) (-15 -4432 ((-171 (-390)) (-969 (-171 |#1|)))) (-15 -4432 ((-171 (-390)) (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2393 ((-390) (-969 |#1|))) (-15 -2393 ((-390) (-969 |#1|) (-938))) (-15 -4432 ((-171 (-390)) (-969 |#1|))) (-15 -4432 ((-171 (-390)) (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2393 ((-390) (-419 (-969 |#1|)))) (-15 -2393 ((-390) (-419 (-969 |#1|)) (-938))) (-15 -4432 ((-171 (-390)) (-419 (-969 |#1|)))) (-15 -4432 ((-171 (-390)) (-419 (-969 |#1|)) (-938))) (-15 -4432 ((-171 (-390)) (-419 (-969 (-171 |#1|))))) (-15 -4432 ((-171 (-390)) (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -2393 ((-390) (-326 |#1|))) (-15 -2393 ((-390) (-326 |#1|) (-938))) (-15 -4432 ((-171 (-390)) (-326 |#1|))) (-15 -4432 ((-171 (-390)) (-326 |#1|) (-938))) (-15 -4432 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -4432 ((-171 (-390)) (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -3345 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -1534 ((-3 (-390) "failed") (-969 |#1|))) (-15 -1534 ((-3 (-390) "failed") (-969 |#1|) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-969 |#1|))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1534 ((-3 (-390) "failed") (-419 (-969 |#1|)))) (-15 -1534 ((-3 (-390) "failed") (-419 (-969 |#1|)) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -1534 ((-3 (-390) "failed") (-326 |#1|))) (-15 -1534 ((-3 (-390) "failed") (-326 |#1|) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-938))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -3345 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|)) -((-3311 (((-938) (-1178)) 89)) (-3324 (((-3 (-390) "failed") (-1178)) 36)) (-1725 (((-390) (-1178)) 34)) (-3805 (((-938) (-1178)) 63)) (-3475 (((-1178) (-938)) 73)) (-3633 (((-1178) (-938)) 62))) -(((-798) (-10 -7 (-15 -3633 ((-1178) (-938))) (-15 -3805 ((-938) (-1178))) (-15 -3475 ((-1178) (-938))) (-15 -3311 ((-938) (-1178))) (-15 -1725 ((-390) (-1178))) (-15 -3324 ((-3 (-390) "failed") (-1178))))) (T -798)) -((-3324 (*1 *2 *3) (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798)))) (-1725 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-938)) (-5 *1 (-798)))) (-3475 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1178)) (-5 *1 (-798)))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-938)) (-5 *1 (-798)))) (-3633 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1178)) (-5 *1 (-798))))) -(-10 -7 (-15 -3633 ((-1178) (-938))) (-15 -3805 ((-938) (-1178))) (-15 -3475 ((-1178) (-938))) (-15 -3311 ((-938) (-1178))) (-15 -1725 ((-390) (-1178))) (-15 -3324 ((-3 (-390) "failed") (-1178)))) -((-2034 (((-112) $ $) 7)) (-2837 (((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 16) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 14)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) +((-2130 (((-3 (-390) "failed") (-326 |#1|) (-938)) 62 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-390) "failed") (-419 (-969 |#1|)) (-938)) 41 (|has| |#1| (-568))) (((-3 (-390) "failed") (-419 (-969 |#1|))) 40 (|has| |#1| (-568))) (((-3 (-390) "failed") (-969 |#1|) (-938)) 31 (|has| |#1| (-1068))) (((-3 (-390) "failed") (-969 |#1|)) 30 (|has| |#1| (-1068)))) (-1916 (((-390) (-326 |#1|) (-938)) 99 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-326 |#1|)) 94 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-390) (-419 (-969 |#1|)) (-938)) 91 (|has| |#1| (-568))) (((-390) (-419 (-969 |#1|))) 90 (|has| |#1| (-568))) (((-390) (-969 |#1|) (-938)) 86 (|has| |#1| (-1068))) (((-390) (-969 |#1|)) 85 (|has| |#1| (-1068))) (((-390) |#1| (-938)) 76) (((-390) |#1|) 22)) (-4275 (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-938)) 71 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|) (-938)) 63 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))) (-938)) 46 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|)))) 45 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)) (-938)) 39 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-419 (-969 |#1|))) 38 (|has| |#1| (-568))) (((-3 (-171 (-390)) "failed") (-969 |#1|) (-938)) 28 (|has| |#1| (-1068))) (((-3 (-171 (-390)) "failed") (-969 |#1|)) 26 (|has| |#1| (-1068))) (((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)) (-938)) 18 (|has| |#1| (-174))) (((-3 (-171 (-390)) "failed") (-969 (-171 |#1|))) 15 (|has| |#1| (-174)))) (-3943 (((-171 (-390)) (-326 (-171 |#1|)) (-938)) 102 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|) (-938)) 100 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-326 |#1|)) 98 (-12 (|has| |#1| (-568)) (|has| |#1| (-862)))) (((-171 (-390)) (-419 (-969 (-171 |#1|))) (-938)) 93 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-969 (-171 |#1|)))) 92 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-969 |#1|)) (-938)) 89 (|has| |#1| (-568))) (((-171 (-390)) (-419 (-969 |#1|))) 88 (|has| |#1| (-568))) (((-171 (-390)) (-969 |#1|) (-938)) 84 (|has| |#1| (-1068))) (((-171 (-390)) (-969 |#1|)) 83 (|has| |#1| (-1068))) (((-171 (-390)) (-969 (-171 |#1|)) (-938)) 78 (|has| |#1| (-174))) (((-171 (-390)) (-969 (-171 |#1|))) 77 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|) (-938)) 80 (|has| |#1| (-174))) (((-171 (-390)) (-171 |#1|)) 79 (|has| |#1| (-174))) (((-171 (-390)) |#1| (-938)) 27) (((-171 (-390)) |#1|) 25))) +(((-797 |#1|) (-10 -7 (-15 -1916 ((-390) |#1|)) (-15 -1916 ((-390) |#1| (-938))) (-15 -3943 ((-171 (-390)) |#1|)) (-15 -3943 ((-171 (-390)) |#1| (-938))) (IF (|has| |#1| (-174)) (PROGN (-15 -3943 ((-171 (-390)) (-171 |#1|))) (-15 -3943 ((-171 (-390)) (-171 |#1|) (-938))) (-15 -3943 ((-171 (-390)) (-969 (-171 |#1|)))) (-15 -3943 ((-171 (-390)) (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -1916 ((-390) (-969 |#1|))) (-15 -1916 ((-390) (-969 |#1|) (-938))) (-15 -3943 ((-171 (-390)) (-969 |#1|))) (-15 -3943 ((-171 (-390)) (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1916 ((-390) (-419 (-969 |#1|)))) (-15 -1916 ((-390) (-419 (-969 |#1|)) (-938))) (-15 -3943 ((-171 (-390)) (-419 (-969 |#1|)))) (-15 -3943 ((-171 (-390)) (-419 (-969 |#1|)) (-938))) (-15 -3943 ((-171 (-390)) (-419 (-969 (-171 |#1|))))) (-15 -3943 ((-171 (-390)) (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -1916 ((-390) (-326 |#1|))) (-15 -1916 ((-390) (-326 |#1|) (-938))) (-15 -3943 ((-171 (-390)) (-326 |#1|))) (-15 -3943 ((-171 (-390)) (-326 |#1|) (-938))) (-15 -3943 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -3943 ((-171 (-390)) (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4275 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2130 ((-3 (-390) "failed") (-969 |#1|))) (-15 -2130 ((-3 (-390) "failed") (-969 |#1|) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-969 |#1|))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2130 ((-3 (-390) "failed") (-419 (-969 |#1|)))) (-15 -2130 ((-3 (-390) "failed") (-419 (-969 |#1|)) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -2130 ((-3 (-390) "failed") (-326 |#1|))) (-15 -2130 ((-3 (-390) "failed") (-326 |#1|) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|)) (-626 (-390))) (T -797)) +((-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4275 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4275 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2130 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4275 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4275 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2130 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4275 (*1 *2 *3) (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-2130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-2130 (*1 *2 *3) (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-4275 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-4275 (*1 *2 *3) (|partial| -12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-938)) (-4 *5 (-174)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-3943 (*1 *2 *3) (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) (-1916 (*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2))))) +(-10 -7 (-15 -1916 ((-390) |#1|)) (-15 -1916 ((-390) |#1| (-938))) (-15 -3943 ((-171 (-390)) |#1|)) (-15 -3943 ((-171 (-390)) |#1| (-938))) (IF (|has| |#1| (-174)) (PROGN (-15 -3943 ((-171 (-390)) (-171 |#1|))) (-15 -3943 ((-171 (-390)) (-171 |#1|) (-938))) (-15 -3943 ((-171 (-390)) (-969 (-171 |#1|)))) (-15 -3943 ((-171 (-390)) (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -1916 ((-390) (-969 |#1|))) (-15 -1916 ((-390) (-969 |#1|) (-938))) (-15 -3943 ((-171 (-390)) (-969 |#1|))) (-15 -3943 ((-171 (-390)) (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -1916 ((-390) (-419 (-969 |#1|)))) (-15 -1916 ((-390) (-419 (-969 |#1|)) (-938))) (-15 -3943 ((-171 (-390)) (-419 (-969 |#1|)))) (-15 -3943 ((-171 (-390)) (-419 (-969 |#1|)) (-938))) (-15 -3943 ((-171 (-390)) (-419 (-969 (-171 |#1|))))) (-15 -3943 ((-171 (-390)) (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -1916 ((-390) (-326 |#1|))) (-15 -1916 ((-390) (-326 |#1|) (-938))) (-15 -3943 ((-171 (-390)) (-326 |#1|))) (-15 -3943 ((-171 (-390)) (-326 |#1|) (-938))) (-15 -3943 ((-171 (-390)) (-326 (-171 |#1|)))) (-15 -3943 ((-171 (-390)) (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-15 -4275 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-969 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1068)) (PROGN (-15 -2130 ((-3 (-390) "failed") (-969 |#1|))) (-15 -2130 ((-3 (-390) "failed") (-969 |#1|) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-969 |#1|))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-969 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-568)) (PROGN (-15 -2130 ((-3 (-390) "failed") (-419 (-969 |#1|)))) (-15 -2130 ((-3 (-390) "failed") (-419 (-969 |#1|)) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-419 (-969 |#1|)) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-419 (-969 (-171 |#1|))) (-938))) (IF (|has| |#1| (-862)) (PROGN (-15 -2130 ((-3 (-390) "failed") (-326 |#1|))) (-15 -2130 ((-3 (-390) "failed") (-326 |#1|) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-326 |#1|))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-326 |#1|) (-938))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)))) (-15 -4275 ((-3 (-171 (-390)) "failed") (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|)) +((-2367 (((-938) (-1177)) 89)) (-4222 (((-3 (-390) "failed") (-1177)) 36)) (-3032 (((-390) (-1177)) 34)) (-3716 (((-938) (-1177)) 63)) (-2528 (((-1177) (-938)) 73)) (-3305 (((-1177) (-938)) 62))) +(((-798) (-10 -7 (-15 -3305 ((-1177) (-938))) (-15 -3716 ((-938) (-1177))) (-15 -2528 ((-1177) (-938))) (-15 -2367 ((-938) (-1177))) (-15 -3032 ((-390) (-1177))) (-15 -4222 ((-3 (-390) "failed") (-1177))))) (T -798)) +((-4222 (*1 *2 *3) (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798)))) (-3032 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-938)) (-5 *1 (-798)))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1177)) (-5 *1 (-798)))) (-3716 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-938)) (-5 *1 (-798)))) (-3305 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1177)) (-5 *1 (-798))))) +(-10 -7 (-15 -3305 ((-1177) (-938))) (-15 -3716 ((-938) (-1177))) (-15 -2528 ((-1177) (-938))) (-15 -2367 ((-938) (-1177))) (-15 -3032 ((-390) (-1177))) (-15 -4222 ((-3 (-390) "failed") (-1177)))) +((-3474 (((-112) $ $) 7)) (-2413 (((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 16) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054)) 14)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 17) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-799) (-141)) (T -799)) -((-2451 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054)))))) (-2837 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1054)) (-5 *3 (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-2451 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054)))))) (-2837 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1054)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) -(-13 (-1119) (-10 -7 (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2837 ((-1054) (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2837 ((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054))))) +((-2502 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054)))))) (-2413 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1054)) (-5 *3 (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-2502 (*1 *2 *3 *4) (-12 (-4 *1 (-799)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054)))))) (-2413 (*1 *2 *3 *2) (-12 (-4 *1 (-799)) (-5 *2 (-1054)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +(-13 (-1119) (-10 -7 (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2413 ((-1054) (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) (|:| |extra| (-1054))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2413 ((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) (-1054))))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-3409 (((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390))) 55) (((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 52)) (-1683 (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 61)) (-2913 (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 50)) (-4440 (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390))) 63) (((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))) 62))) -(((-800) (-10 -7 (-15 -4440 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -4440 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -2913 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -3409 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -3409 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -1683 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))))) (T -800)) -((-1683 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-3409 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390)))) (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-3409 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390)))) (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-2913 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-4440 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800)))) (-4440 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) (-5 *1 (-800))))) -(-10 -7 (-15 -4440 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -4440 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -2913 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -3409 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)))) (-15 -3409 ((-1292) (-1287 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390))) (-390) (-1287 (-390)) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)) (-1287 (-390)))) (-15 -1683 ((-1292) (-1287 (-390)) (-576) (-390) (-390) (-576) (-1 (-1292) (-1287 (-390)) (-1287 (-390)) (-390))))) -((-4158 (((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-2852 (((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-3051 (((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-2973 (((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-3956 (((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-3380 (((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-3106 (((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-3545 (((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-1399 (((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) -(((-801) (-10 -7 (-15 -1399 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3545 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3106 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3380 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2973 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2852 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3956 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3051 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4158 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801)) -((-4158 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3051 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3956 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2852 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2973 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3380 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3106 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3545 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1399 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) -(-10 -7 (-15 -1399 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3545 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3106 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3380 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2973 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2852 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3956 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3051 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4158 ((-2 (|:| -1731 (-390)) (|:| -2297 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) -((-3028 (((-1232 |#1|) |#1| (-227) (-576)) 69))) -(((-802 |#1|) (-10 -7 (-15 -3028 ((-1232 |#1|) |#1| (-227) (-576)))) (-993)) (T -802)) -((-3028 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1232 *3)) (-5 *1 (-802 *3)) (-4 *3 (-993))))) -(-10 -7 (-15 -3028 ((-1232 |#1|) |#1| (-227) (-576)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 25)) (-3788 (((-3 $ "failed") $ $) 27)) (-3656 (($) 24 T CONST)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 23 T CONST)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19)) (-4018 (($ $ $) 31) (($ $) 30)) (-4007 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26) (($ (-576) $) 29))) +((-3409 (((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390))) 55) (((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 52)) (-3668 (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 61)) (-3186 (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 50)) (-3210 (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390))) 63) (((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))) 62))) +(((-800) (-10 -7 (-15 -3210 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3210 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -3186 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3409 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3409 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -3668 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))))) (T -800)) +((-3668 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-3409 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390)))) (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-3409 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-576)) (-5 *6 (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390)))) (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-3186 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-3210 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800)))) (-3210 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) (-5 *1 (-800))))) +(-10 -7 (-15 -3210 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3210 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -3186 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3409 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)))) (-15 -3409 ((-1291) (-1286 (-390)) (-576) (-390) (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390))) (-390) (-1286 (-390)) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)) (-1286 (-390)))) (-15 -3668 ((-1291) (-1286 (-390)) (-576) (-390) (-390) (-576) (-1 (-1291) (-1286 (-390)) (-1286 (-390)) (-390))))) +((-1767 (((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 64)) (-4347 (((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 40)) (-2309 (((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 63)) (-2197 (((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 38)) (-3375 (((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 62)) (-1392 (((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)) 24)) (-3026 (((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 41)) (-3373 (((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 39)) (-1527 (((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576)) 37))) +(((-801) (-10 -7 (-15 -1527 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3373 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3026 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1392 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2197 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4347 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3375 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2309 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1767 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))))) (T -801)) +((-1767 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2309 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3375 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-4347 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-2197 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1392 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3026 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-3373 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576)))) (-1527 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) +(-10 -7 (-15 -1527 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3373 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -3026 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576) (-576))) (-15 -1392 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2197 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -4347 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -3375 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -2309 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576))) (-15 -1767 ((-2 (|:| -3142 (-390)) (|:| -3331 (-390)) (|:| |totalpts| (-576)) (|:| |success| (-112))) (-1 (-390) (-390)) (-390) (-390) (-390) (-390) (-576) (-576)))) +((-1655 (((-1231 |#1|) |#1| (-227) (-576)) 69))) +(((-802 |#1|) (-10 -7 (-15 -1655 ((-1231 |#1|) |#1| (-227) (-576)))) (-993)) (T -802)) +((-1655 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1231 *3)) (-5 *1 (-802 *3)) (-4 *3 (-993))))) +(-10 -7 (-15 -1655 ((-1231 |#1|) |#1| (-227) (-576)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 25)) (-1367 (((-3 $ "failed") $ $) 27)) (-3767 (($) 24 T CONST)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 23 T CONST)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19)) (-3095 (($ $ $) 31) (($ $) 30)) (-3083 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26) (($ (-576) $) 29))) (((-803) (-141)) (T -803)) NIL (-13 (-807) (-21)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 25)) (-3656 (($) 24 T CONST)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 23 T CONST)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19)) (-4007 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 25)) (-3767 (($) 24 T CONST)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 23 T CONST)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19)) (-3083 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26))) (((-804) (-141)) (T -804)) NIL (-13 (-806) (-23)) (((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-806) . T) ((-862) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 25)) (-2746 (($ $ $) 28)) (-3788 (((-3 $ "failed") $ $) 27)) (-3656 (($) 24 T CONST)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 23 T CONST)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19)) (-4007 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 25)) (-4415 (($ $ $) 28)) (-1367 (((-3 $ "failed") $ $) 27)) (-3767 (($) 24 T CONST)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 23 T CONST)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19)) (-3083 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26))) (((-805) (-141)) (T -805)) -((-2746 (*1 *1 *1 *1) (-4 *1 (-805)))) -(-13 (-807) (-10 -8 (-15 -2746 ($ $ $)))) +((-4415 (*1 *1 *1 *1) (-4 *1 (-805)))) +(-13 (-807) (-10 -8 (-15 -4415 ($ $ $)))) (((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 7)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19)) (-4007 (($ $ $) 21)) (* (($ (-938) $) 22))) +((-3474 (((-112) $ $) 7)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19)) (-3083 (($ $ $) 21)) (* (($ (-938) $) 22))) (((-806) (-141)) (T -806)) NIL (-13 (-862) (-25)) (((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-862) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 25)) (-3788 (((-3 $ "failed") $ $) 27)) (-3656 (($) 24 T CONST)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 23 T CONST)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19)) (-4007 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 25)) (-1367 (((-3 $ "failed") $ $) 27)) (-3767 (($) 24 T CONST)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 23 T CONST)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19)) (-3083 (($ $ $) 21)) (* (($ (-938) $) 22) (($ (-783) $) 26))) (((-807) (-141)) (T -807)) NIL (-13 (-804) (-132)) (((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-804) . T) ((-806) . T) ((-862) . T) ((-1119) . T)) -((-1962 (((-112) $) 42)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2378 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-1653 (((-3 (-419 (-576)) "failed") $) 78)) (-3863 (((-112) $) 72)) (-4266 (((-419 (-576)) $) 76)) (-4252 ((|#2| $) 26)) (-2477 (($ (-1 |#2| |#2|) $) 23)) (-1644 (($ $) 58)) (-1505 (((-548) $) 67)) (-3646 (($ $) 21)) (-4092 (((-874) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-2471 (((-783)) 10)) (-3423 ((|#2| $) 71)) (-3919 (((-112) $ $) 30)) (-3944 (((-112) $ $) 69)) (-4018 (($ $) 32) (($ $ $) NIL)) (-4007 (($ $ $) 31)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-808 |#1| |#2|) (-10 -8 (-15 -3944 ((-112) |#1| |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -3423 (|#2| |#1|)) (-15 -4252 (|#2| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1962 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808)) -((-2471 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4))))) -(-10 -8 (-15 -3944 ((-112) |#1| |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -1644 (|#1| |#1|)) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -3423 (|#2| |#1|)) (-15 -4252 (|#2| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1962 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-2247 (((-783)) 58 (|has| |#1| (-379)))) (-3656 (($) 18 T CONST)) (-2974 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 94)) (-2378 (((-576) $) 99 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 96 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 95)) (-3179 (((-3 $ "failed") $) 37)) (-1415 ((|#1| $) 84)) (-1653 (((-3 (-419 (-576)) "failed") $) 71 (|has| |#1| (-557)))) (-3863 (((-112) $) 73 (|has| |#1| (-557)))) (-4266 (((-419 (-576)) $) 72 (|has| |#1| (-557)))) (-2446 (($) 61 (|has| |#1| (-379)))) (-1810 (((-112) $) 35)) (-1984 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-4252 ((|#1| $) 76)) (-3492 (($ $ $) 67 (|has| |#1| (-862)))) (-2726 (($ $ $) 66 (|has| |#1| (-862)))) (-2477 (($ (-1 |#1| |#1|) $) 86)) (-3225 (((-938) $) 60 (|has| |#1| (-379)))) (-3288 (((-1178) $) 10)) (-1644 (($ $) 70 (|has| |#1| (-374)))) (-2550 (($ (-938)) 59 (|has| |#1| (-379)))) (-3884 ((|#1| $) 81)) (-2857 ((|#1| $) 82)) (-3525 ((|#1| $) 83)) (-1322 ((|#1| $) 77)) (-2343 ((|#1| $) 78)) (-3307 ((|#1| $) 79)) (-2521 ((|#1| $) 80)) (-3139 (((-1139) $) 11)) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) 92 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 89 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 88 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 87 (|has| |#1| (-526 (-1196) |#1|)))) (-4367 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|)))) (-1505 (((-548) $) 68 (|has| |#1| (-626 (-548))))) (-3646 (($ $) 85)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (|has| |#1| (-1057 (-419 (-576)))))) (-3612 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-3423 ((|#1| $) 74 (|has| |#1| (-1079)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3977 (((-112) $ $) 64 (|has| |#1| (-862)))) (-3955 (((-112) $ $) 63 (|has| |#1| (-862)))) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 65 (|has| |#1| (-862)))) (-3944 (((-112) $ $) 62 (|has| |#1| (-862)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) +((-1454 (((-112) $) 42)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-4056 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 43)) (-3615 (((-3 (-419 (-576)) "failed") $) 78)) (-3235 (((-112) $) 72)) (-3113 (((-419 (-576)) $) 76)) (-4072 ((|#2| $) 26)) (-1632 (($ (-1 |#2| |#2|) $) 23)) (-2095 (($ $) 58)) (-4076 (((-548) $) 67)) (-4026 (($ $) 21)) (-3563 (((-874) $) 53) (($ (-576)) 40) (($ |#2|) 38) (($ (-419 (-576))) NIL)) (-1858 (((-783)) 10)) (-2264 ((|#2| $) 71)) (-2988 (((-112) $ $) 30)) (-3010 (((-112) $ $) 69)) (-3095 (($ $) 32) (($ $ $) NIL)) (-3083 (($ $ $) 31)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-808 |#1| |#2|) (-10 -8 (-15 -3010 ((-112) |#1| |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -2095 (|#1| |#1|)) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -4072 (|#2| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1454 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) (-809 |#2|) (-174)) (T -808)) +((-1858 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) (-4 *3 (-809 *4))))) +(-10 -8 (-15 -3010 ((-112) |#1| |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -2095 (|#1| |#1|)) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -4072 (|#2| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1454 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-2148 (((-783)) 58 (|has| |#1| (-379)))) (-3767 (($) 18 T CONST)) (-1539 (((-3 (-576) "failed") $) 100 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 94)) (-4056 (((-576) $) 99 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 96 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 95)) (-1551 (((-3 $ "failed") $) 37)) (-1864 ((|#1| $) 84)) (-3615 (((-3 (-419 (-576)) "failed") $) 71 (|has| |#1| (-557)))) (-3235 (((-112) $) 73 (|has| |#1| (-557)))) (-3113 (((-419 (-576)) $) 72 (|has| |#1| (-557)))) (-1803 (($) 61 (|has| |#1| (-379)))) (-1414 (((-112) $) 35)) (-2044 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-4072 ((|#1| $) 76)) (-2442 (($ $ $) 67 (|has| |#1| (-862)))) (-1893 (($ $ $) 66 (|has| |#1| (-862)))) (-1632 (($ (-1 |#1| |#1|) $) 86)) (-1902 (((-938) $) 60 (|has| |#1| (-379)))) (-1927 (((-1177) $) 10)) (-2095 (($ $) 70 (|has| |#1| (-374)))) (-3257 (($ (-938)) 59 (|has| |#1| (-379)))) (-4414 ((|#1| $) 81)) (-3688 ((|#1| $) 82)) (-1940 ((|#1| $) 83)) (-4061 ((|#1| $) 77)) (-3098 ((|#1| $) 78)) (-3150 ((|#1| $) 79)) (-3772 ((|#1| $) 80)) (-1445 (((-1139) $) 11)) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) 92 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 90 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 89 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 88 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 87 (|has| |#1| (-526 (-1195) |#1|)))) (-2871 (($ $ |#1|) 93 (|has| |#1| (-296 |#1| |#1|)))) (-4076 (((-548) $) 68 (|has| |#1| (-626 (-548))))) (-4026 (($ $) 85)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 98 (|has| |#1| (-1057 (-419 (-576)))))) (-2883 (((-3 $ "failed") $) 69 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2264 ((|#1| $) 74 (|has| |#1| (-1079)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-3049 (((-112) $ $) 64 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 63 (|has| |#1| (-862)))) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 65 (|has| |#1| (-862)))) (-3010 (((-112) $ $) 62 (|has| |#1| (-862)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45))) (((-809 |#1|) (-141) (-174)) (T -809)) -((-3646 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2857 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1984 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-4266 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1653 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1644 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -3646 ($ $)) (-15 -1415 (|t#1| $)) (-15 -3525 (|t#1| $)) (-15 -2857 (|t#1| $)) (-15 -3884 (|t#1| $)) (-15 -2521 (|t#1| $)) (-15 -3307 (|t#1| $)) (-15 -2343 (|t#1| $)) (-15 -1322 (|t#1| $)) (-15 -4252 (|t#1| $)) (-15 -1984 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3423 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -1644 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) |has| |#1| (-296 |#1| |#1|))) -((-2477 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))) -(-10 -7 (-15 -2477 (|#3| (-1 |#4| |#2|) |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2247 (((-783)) NIL (|has| |#1| (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL) (((-3 (-1018 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-3765 (|has| (-1018 |#1|) (-1057 (-576))) (|has| |#1| (-1057 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-3765 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2378 ((|#1| $) NIL) (((-1018 |#1|) $) 33) (((-576) $) NIL (-3765 (|has| (-1018 |#1|) (-1057 (-576))) (|has| |#1| (-1057 (-576))))) (((-419 (-576)) $) NIL (-3765 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-3179 (((-3 $ "failed") $) NIL)) (-1415 ((|#1| $) 16)) (-1653 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3863 (((-112) $) NIL (|has| |#1| (-557)))) (-4266 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-2446 (($) NIL (|has| |#1| (-379)))) (-1810 (((-112) $) NIL)) (-1984 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1018 |#1|) (-1018 |#1|)) 29)) (-4252 ((|#1| $) NIL)) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3225 (((-938) $) NIL (|has| |#1| (-379)))) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-2550 (($ (-938)) NIL (|has| |#1| (-379)))) (-3884 ((|#1| $) 22)) (-2857 ((|#1| $) 20)) (-3525 ((|#1| $) 18)) (-1322 ((|#1| $) 26)) (-2343 ((|#1| $) 25)) (-3307 ((|#1| $) 24)) (-2521 ((|#1| $) 23)) (-3139 (((-1139) $) NIL)) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-4367 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3646 (($ $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1018 |#1|)) 30) (($ (-419 (-576))) NIL (-3765 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-3423 ((|#1| $) NIL (|has| |#1| (-1079)))) (-4300 (($) 8 T CONST)) (-4310 (($) 12 T CONST)) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1018 |#1|)) (-10 -8 (-15 -1984 ($ (-1018 |#1|) (-1018 |#1|))))) (-174)) (T -811)) -((-1984 (*1 *1 *2 *2) (-12 (-5 *2 (-1018 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) -(-13 (-809 |#1|) (-423 (-1018 |#1|)) (-10 -8 (-15 -1984 ($ (-1018 |#1|) (-1018 |#1|))))) -((-2034 (((-112) $ $) 7)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-2526 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-3919 (((-112) $ $) 6))) +((-4026 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3772 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2044 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3615 (*1 *2 *1) (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-2095 (*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(-13 (-38 |t#1|) (-423 |t#1|) (-349 |t#1|) (-10 -8 (-15 -4026 ($ $)) (-15 -1864 (|t#1| $)) (-15 -1940 (|t#1| $)) (-15 -3688 (|t#1| $)) (-15 -4414 (|t#1| $)) (-15 -3772 (|t#1| $)) (-15 -3150 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -4061 (|t#1| $)) (-15 -4072 (|t#1| $)) (-15 -2044 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-379)) (-6 (-379)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -2264 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-374)) (-15 -2095 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-379) |has| |#1| (-379)) ((-349 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) |has| |#1| (-296 |#1| |#1|))) +((-1632 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#3| (-1 |#4| |#2|) |#1|))) (-809 |#2|) (-174) (-809 |#4|) (-174)) (T -810)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-809 *6)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *4 (-809 *5))))) +(-10 -7 (-15 -1632 (|#3| (-1 |#4| |#2|) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2148 (((-783)) NIL (|has| |#1| (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL) (((-3 (-1018 |#1|) "failed") $) 35) (((-3 (-576) "failed") $) NIL (-2835 (|has| (-1018 |#1|) (-1057 (-576))) (|has| |#1| (-1057 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL (-2835 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-4056 ((|#1| $) NIL) (((-1018 |#1|) $) 33) (((-576) $) NIL (-2835 (|has| (-1018 |#1|) (-1057 (-576))) (|has| |#1| (-1057 (-576))))) (((-419 (-576)) $) NIL (-2835 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-1551 (((-3 $ "failed") $) NIL)) (-1864 ((|#1| $) 16)) (-3615 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3235 (((-112) $) NIL (|has| |#1| (-557)))) (-3113 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1803 (($) NIL (|has| |#1| (-379)))) (-1414 (((-112) $) NIL)) (-2044 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1018 |#1|) (-1018 |#1|)) 29)) (-4072 ((|#1| $) NIL)) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1902 (((-938) $) NIL (|has| |#1| (-379)))) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-3257 (($ (-938)) NIL (|has| |#1| (-379)))) (-4414 ((|#1| $) 22)) (-3688 ((|#1| $) 20)) (-1940 ((|#1| $) 18)) (-4061 ((|#1| $) 26)) (-3098 ((|#1| $) 25)) (-3150 ((|#1| $) 24)) (-3772 ((|#1| $) 23)) (-1445 (((-1139) $) NIL)) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-2871 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4026 (($ $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1018 |#1|)) 30) (($ (-419 (-576))) NIL (-2835 (|has| (-1018 |#1|) (-1057 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2264 ((|#1| $) NIL (|has| |#1| (-1079)))) (-2800 (($) 8 T CONST)) (-2810 (($) 12 T CONST)) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-811 |#1|) (-13 (-809 |#1|) (-423 (-1018 |#1|)) (-10 -8 (-15 -2044 ($ (-1018 |#1|) (-1018 |#1|))))) (-174)) (T -811)) +((-2044 (*1 *1 *2 *2) (-12 (-5 *2 (-1018 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) +(-13 (-809 |#1|) (-423 (-1018 |#1|)) (-10 -8 (-15 -2044 ($ (-1018 |#1|) (-1018 |#1|))))) +((-3474 (((-112) $ $) 7)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2009 (((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 14)) (-2988 (((-112) $ $) 6))) (((-812) (-141)) (T -812)) -((-2451 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)))))) (-2526 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1054))))) -(-13 (-1119) (-10 -7 (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2526 ((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) +((-2502 (*1 *2 *3 *4) (-12 (-4 *1 (-812)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)))))) (-2009 (*1 *2 *3) (-12 (-4 *1 (-812)) (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-1054))))) +(-13 (-1119) (-10 -7 (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2009 ((-1054) (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-4232 (((-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) |#3| |#2| (-1196)) 19))) -(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -4232 ((-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) |#3| |#2| (-1196)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976)) (-668 |#2|)) (T -813)) -((-4232 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1196)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1222) (-976))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1999 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -4232 ((-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) |#3| |#2| (-1196)))) -((-1843 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1196)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1196)) 18) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -1999 (-656 (-1287 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1196)) 24) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -1999 (-656 (-1287 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1196)) 26) (((-3 (-656 (-1287 |#2|)) "failed") (-701 |#2|) (-1196)) 37) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -1999 (-656 (-1287 |#2|)))) "failed") (-701 |#2|) (-1287 |#2|) (-1196)) 35))) -(((-814 |#1| |#2|) (-10 -7 (-15 -1843 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -1999 (-656 (-1287 |#2|)))) "failed") (-701 |#2|) (-1287 |#2|) (-1196))) (-15 -1843 ((-3 (-656 (-1287 |#2|)) "failed") (-701 |#2|) (-1196))) (-15 -1843 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -1999 (-656 (-1287 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1196))) (-15 -1843 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -1999 (-656 (-1287 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1196))) (-15 -1843 ((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1196))) (-15 -1843 ((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1196))) (-15 -1843 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -1843 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976))) (T -814)) -((-1843 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-1843 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1222) (-976))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))))) (-1843 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1196)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1999 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1222) (-976))))) (-1843 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1999 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-1843 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -1999 (-656 (-1287 *7))))) (-5 *1 (-814 *6 *7)))) (-1843 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -1999 (-656 (-1287 *7))))) (-5 *1 (-814 *6 *7)))) (-1843 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1196)) (-4 *6 (-13 (-29 *5) (-1222) (-976))) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1287 *6))) (-5 *1 (-814 *5 *6)))) (-1843 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -1999 (-656 (-1287 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1287 *7))))) -(-10 -7 (-15 -1843 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -1999 (-656 (-1287 |#2|)))) "failed") (-701 |#2|) (-1287 |#2|) (-1196))) (-15 -1843 ((-3 (-656 (-1287 |#2|)) "failed") (-701 |#2|) (-1196))) (-15 -1843 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -1999 (-656 (-1287 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1196))) (-15 -1843 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -1999 (-656 (-1287 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1196))) (-15 -1843 ((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1196))) (-15 -1843 ((-3 (-2 (|:| |particular| |#2|) (|:| -1999 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1196))) (-15 -1843 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -1843 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) -((-2230 (($) 9)) (-2756 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-2364 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2361 (($ (-2 (|:| -2371 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-3267 (($ (-656 (-2 (|:| -2371 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-3516 (((-1292)) 11))) -(((-815) (-10 -8 (-15 -2230 ($)) (-15 -3516 ((-1292))) (-15 -2364 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3267 ($ (-656 (-2 (|:| -2371 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2361 ($ (-2 (|:| -2371 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2756 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815)) -((-2756 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-2361 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2371 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2371 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-3516 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-815)))) (-2230 (*1 *1) (-5 *1 (-815)))) -(-10 -8 (-15 -2230 ($)) (-15 -3516 ((-1292))) (-15 -2364 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3267 ($ (-656 (-2 (|:| -2371 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2361 ($ (-2 (|:| -2371 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -2900 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -2756 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) -((-2576 ((|#2| |#2| (-1196)) 17)) (-1521 ((|#2| |#2| (-1196)) 56)) (-4102 (((-1 |#2| |#2|) (-1196)) 11))) -(((-816 |#1| |#2|) (-10 -7 (-15 -2576 (|#2| |#2| (-1196))) (-15 -1521 (|#2| |#2| (-1196))) (-15 -4102 ((-1 |#2| |#2|) (-1196)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1222) (-976))) (T -816)) -((-4102 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1222) (-976))))) (-1521 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-976))))) (-2576 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-976)))))) -(-10 -7 (-15 -2576 (|#2| |#2| (-1196))) (-15 -1521 (|#2| |#2| (-1196))) (-15 -4102 ((-1 |#2| |#2|) (-1196)))) -((-1843 (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1054) (-820) (-1082)) 120) (((-1054) (-820)) 121)) (-2451 (((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820) (-1082)) 80) (((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820)) 82))) -(((-817) (-10 -7 (-15 -1843 ((-1054) (-820))) (-15 -1843 ((-1054) (-820) (-1082))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820) (-1082))))) (T -817)) -((-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-817)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-817)))) (-1843 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-1843 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-1843 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-1843 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-1843 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-1843 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1054)) (-5 *1 (-817))))) -(-10 -7 (-15 -1843 ((-1054) (-820))) (-15 -1843 ((-1054) (-820) (-1082))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -1843 ((-1054) (-1287 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-820) (-1082)))) -((-1414 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1999 (-656 |#4|))) (-665 |#4|) |#4|) 33))) -(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1414 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1999 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818)) -((-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4))))) -(-10 -7 (-15 -1414 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1999 (-656 |#4|))) (-665 |#4|) |#4|))) -((-2324 (((-2 (|:| -3278 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-2653 (((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#4|) 61) (((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#3|) 21)) (-1969 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-1798 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) -(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1798 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -1798 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -2653 ((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#3|)) (-15 -2653 ((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#3| |#2|)) (-15 -1969 (|#2| |#3| |#1|)) (-15 -2653 ((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#4|)) (-15 -2653 ((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#4| |#2|)) (-15 -1969 (|#2| |#4| |#1|)) (-15 -2324 ((-2 (|:| -3278 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1057 (-419 (-576)))) (-1263 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819)) -((-2324 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-2 (|:| -3278 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-1969 (*1 *2 *3 *4) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-2653 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -2553 *4) (|:| -2510 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -2553 *5) (|:| -2510 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-1969 (*1 *2 *3 *4) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-2653 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -2553 *4) (|:| -2510 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -2553 *5) (|:| -2510 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-1798 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1263 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-1798 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))) -(-10 -7 (-15 -1798 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -1798 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -2653 ((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#3|)) (-15 -2653 ((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#3| |#2|)) (-15 -1969 (|#2| |#3| |#1|)) (-15 -2653 ((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#4|)) (-15 -2653 ((-656 (-2 (|:| -2553 |#2|) (|:| -2510 |#2|))) |#4| |#2|)) (-15 -1969 (|#2| |#4| |#1|)) (-15 -2324 ((-2 (|:| -3278 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) -((-2034 (((-112) $ $) NIL)) (-2378 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-820) (-13 (-1119) (-10 -8 (-15 -4092 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2378 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820))))) -(-13 (-1119) (-10 -8 (-15 -4092 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -2378 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) -((-2432 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3278 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1192 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-1463 (((-656 (-2 (|:| |poly| |#2|) (|:| -3278 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-2560 (((-656 (-2 (|:| |deg| (-783)) (|:| -3278 |#2|))) |#3|) 122)) (-2965 ((|#2| |#3|) 42)) (-2977 (((-656 (-2 (|:| -2670 |#1|) (|:| -3278 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-3140 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) -(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2965 (|#2| |#3|)) (-15 -2560 ((-656 (-2 (|:| |deg| (-783)) (|:| -3278 |#2|))) |#3|)) (-15 -2977 ((-656 (-2 (|:| -2670 |#1|) (|:| -3278 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1463 ((-656 (-2 (|:| |poly| |#2|) (|:| -3278 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2432 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3278 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1192 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3140 (|#3| |#3| |#2|)) (-15 -3140 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1057 (-419 (-576)))) (-1263 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821)) -((-3140 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-3140 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-1263 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-2432 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1192 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -3278 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-1463 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3278 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2977 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -2670 *5) (|:| -3278 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2560 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3278 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-2965 (*1 *2 *3) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2)))))) -(-10 -7 (-15 -2965 (|#2| |#3|)) (-15 -2560 ((-656 (-2 (|:| |deg| (-783)) (|:| -3278 |#2|))) |#3|)) (-15 -2977 ((-656 (-2 (|:| -2670 |#1|) (|:| -3278 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -1463 ((-656 (-2 (|:| |poly| |#2|) (|:| -3278 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2432 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3278 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1192 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3140 (|#3| |#3| |#2|)) (-15 -3140 (|#3| |#3| (-419 |#2|)))) -((-2101 (((-2 (|:| -1999 (-656 (-419 |#2|))) (|:| -2215 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 147) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1999 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 146) (((-2 (|:| -1999 (-656 (-419 |#2|))) (|:| -2215 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 141) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1999 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 139)) (-1816 ((|#2| (-666 |#2| (-419 |#2|))) 88) ((|#2| (-665 (-419 |#2|))) 91))) -(((-822 |#1| |#2|) (-10 -7 (-15 -2101 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1999 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2101 ((-2 (|:| -1999 (-656 (-419 |#2|))) (|:| -2215 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2101 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1999 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2101 ((-2 (|:| -1999 (-656 (-419 |#2|))) (|:| -2215 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1816 (|#2| (-665 (-419 |#2|)))) (-15 -1816 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -822)) -((-1816 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))))) (-1816 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| -1999 (-656 (-419 *6))) (|:| -2215 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| -1999 (-656 (-419 *6))) (|:| -2215 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) (-5 *1 (-822 *5 *6))))) -(-10 -7 (-15 -2101 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1999 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2101 ((-2 (|:| -1999 (-656 (-419 |#2|))) (|:| -2215 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2101 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -1999 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2101 ((-2 (|:| -1999 (-656 (-419 |#2|))) (|:| -2215 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -1816 (|#2| (-665 (-419 |#2|)))) (-15 -1816 (|#2| (-666 |#2| (-419 |#2|))))) -((-4384 (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|) 49))) -(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4384 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1263 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823)) -((-4384 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1263 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -2215 (-701 *6)) (|:| |vec| (-1287 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) -(-10 -7 (-15 -4384 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|))) -((-2432 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3278 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-3965 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-1463 (((-656 (-2 (|:| |poly| |#2|) (|:| -3278 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96))) -(((-824 |#1| |#2|) (-10 -7 (-15 -3965 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3965 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3965 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3965 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2432 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3278 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1463 ((-656 (-2 (|:| |poly| |#2|) (|:| -3278 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3965 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3965 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3965 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3965 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1263 |#1|)) (T -824)) -((-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-1463 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3278 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-2432 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -3278 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-3965 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3965 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3965 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) -(-10 -7 (-15 -3965 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3965 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3965 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3965 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -2432 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3278 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -1463 ((-656 (-2 (|:| |poly| |#2|) (|:| -3278 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3965 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3965 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3965 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3965 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) -((-3763 (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) (-701 |#2|) (-1287 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -3278 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1287 |#1|)) 15)) (-1601 (((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|)))) (-701 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1999 (-656 |#1|))) |#2| |#1|)) 116)) (-1843 (((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -1999 (-701 |#1|))) "failed") (-701 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-656 |#1|))) "failed") |#2| |#1|)) 54))) -(((-825 |#1| |#2|) (-10 -7 (-15 -3763 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -3278 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1287 |#1|))) (-15 -3763 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) (-701 |#2|) (-1287 |#1|))) (-15 -1843 ((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -1999 (-701 |#1|))) "failed") (-701 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -1601 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|)))) (-701 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1999 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825)) -((-1601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1999 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *6) "failed")) (|:| -1999 (-656 (-1287 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1287 *6)))) (-1843 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1999 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1287 *6)) (|:| -1999 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *6)))) (-3763 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -2215 (-701 *6)) (|:| |vec| (-1287 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *5)))) (-3763 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5)) (|:| -3278 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *6 (-668 *5))))) -(-10 -7 (-15 -3763 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -3278 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1287 |#1|))) (-15 -3763 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#1|))) (-701 |#2|) (-1287 |#1|))) (-15 -1843 ((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -1999 (-701 |#1|))) "failed") (-701 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1999 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -1601 ((-2 (|:| |particular| (-3 (-1287 |#1|) "failed")) (|:| -1999 (-656 (-1287 |#1|)))) (-701 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1999 (-656 |#1|))) |#2| |#1|)))) -((-3623 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-2717 (((-3 (-1287 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-4381 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46))) -(((-826 |#1| |#2|) (-10 -7 (-15 -3623 ((-701 |#1|) (-656 |#1|))) (-15 -3623 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2717 ((-3 (-1287 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -4381 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826)) -((-4381 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-2717 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1287 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-3623 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))) -(-10 -7 (-15 -3623 ((-701 |#1|) (-656 |#1|))) (-15 -3623 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2717 ((-3 (-1287 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -4381 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) -((-2034 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-1962 (((-112) $) NIL (|has| |#2| (-23)))) (-3001 (($ (-938)) NIL (|has| |#2| (-1068)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2746 (($ $ $) NIL (|has| |#2| (-805)))) (-3788 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-2835 (((-112) $ (-783)) NIL)) (-2247 (((-783)) NIL (|has| |#2| (-379)))) (-4248 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1119)))) (-2378 (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) NIL (|has| |#2| (-1119)))) (-3687 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1068))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-1287 $)) NIL (|has| |#2| (-1068)))) (-3179 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-2446 (($) NIL (|has| |#2| (-379)))) (-3888 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ (-576)) NIL)) (-4260 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1810 (((-112) $) NIL (|has| |#2| (-1068)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#2| (-862)))) (-1750 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#2| (-862)))) (-3874 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-3225 (((-938) $) NIL (|has| |#2| (-379)))) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#2| (-1119)))) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-2550 (($ (-938)) NIL (|has| |#2| (-379)))) (-3139 (((-1139) $) NIL (|has| |#2| (-1119)))) (-2701 ((|#2| $) NIL (|has| (-576) (-862)))) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-1660 ((|#2| $ $) NIL (|has| |#2| (-1068)))) (-1440 (($ (-1287 |#2|)) NIL)) (-3667 (((-135)) NIL (|has| |#2| (-374)))) (-3614 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3150 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-1287 |#2|) $) NIL) (($ (-576)) NIL (-3765 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) NIL (|has| |#2| (-1119))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-2471 (((-783)) NIL (|has| |#2| (-1068)) CONST)) (-1531 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-2190 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-4300 (($) NIL (|has| |#2| (-23)) CONST)) (-4310 (($) NIL (|has| |#2| (-1068)) CONST)) (-4286 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#2| (-917 (-1196))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3977 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3944 (((-112) $ $) 11 (|has| |#2| (-862)))) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-4007 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1068))) (($ $ (-938)) NIL (|has| |#2| (-1068)))) (* (($ $ $) NIL (|has| |#2| (-1068))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-938) $) NIL (|has| |#2| (-25)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-827 |#1| |#2| |#3|) (-243 |#1| |#2|) (-783) (-805) (-1 (-112) (-1287 |#2|) (-1287 |#2|))) (T -827)) +((-2649 (((-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) |#3| |#2| (-1195)) 19))) +(((-813 |#1| |#2| |#3|) (-10 -7 (-15 -2649 ((-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) |#3| |#2| (-1195)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-976)) (-668 |#2|)) (T -813)) +((-2649 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1195)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-4 *4 (-13 (-29 *6) (-1221) (-976))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3713 (-656 *4)))) (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) +(-10 -7 (-15 -2649 ((-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) |#3| |#2| (-1195)))) +((-2445 (((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)) 28) (((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1195)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1195)) 18) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -3713 (-656 (-1286 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1195)) 24) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -3713 (-656 (-1286 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1195)) 26) (((-3 (-656 (-1286 |#2|)) "failed") (-701 |#2|) (-1195)) 37) (((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -3713 (-656 (-1286 |#2|)))) "failed") (-701 |#2|) (-1286 |#2|) (-1195)) 35))) +(((-814 |#1| |#2|) (-10 -7 (-15 -2445 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -3713 (-656 (-1286 |#2|)))) "failed") (-701 |#2|) (-1286 |#2|) (-1195))) (-15 -2445 ((-3 (-656 (-1286 |#2|)) "failed") (-701 |#2|) (-1195))) (-15 -2445 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -3713 (-656 (-1286 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1195))) (-15 -2445 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -3713 (-656 (-1286 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1195))) (-15 -2445 ((-3 (-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1195))) (-15 -2445 ((-3 (-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1195))) (-15 -2445 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2445 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-976))) (T -814)) +((-2445 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1221) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-814 *6 *2)))) (-2445 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) (-4 *2 (-13 (-29 *6) (-1221) (-976))) (-5 *1 (-814 *6 *2)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))))) (-2445 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1195)) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3713 (-656 *3))) *3 "failed")) (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1221) (-976))))) (-2445 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3713 (-656 *7))) *7 "failed")) (-5 *1 (-814 *6 *7)))) (-2445 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -3713 (-656 (-1286 *7))))) (-5 *1 (-814 *6 *7)))) (-2445 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -3713 (-656 (-1286 *7))))) (-5 *1 (-814 *6 *7)))) (-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1195)) (-4 *6 (-13 (-29 *5) (-1221) (-976))) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-1286 *6))) (-5 *1 (-814 *5 *6)))) (-2445 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-976))) (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-2 (|:| |particular| (-1286 *7)) (|:| -3713 (-656 (-1286 *7))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1286 *7))))) +(-10 -7 (-15 -2445 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -3713 (-656 (-1286 |#2|)))) "failed") (-701 |#2|) (-1286 |#2|) (-1195))) (-15 -2445 ((-3 (-656 (-1286 |#2|)) "failed") (-701 |#2|) (-1195))) (-15 -2445 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -3713 (-656 (-1286 |#2|)))) "failed") (-656 (-304 |#2|)) (-656 (-115)) (-1195))) (-15 -2445 ((-3 (-2 (|:| |particular| (-1286 |#2|)) (|:| -3713 (-656 (-1286 |#2|)))) "failed") (-656 |#2|) (-656 (-115)) (-1195))) (-15 -2445 ((-3 (-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) |#2| "failed") (-304 |#2|) (-115) (-1195))) (-15 -2445 ((-3 (-2 (|:| |particular| |#2|) (|:| -3713 (-656 |#2|))) |#2| "failed") |#2| (-115) (-1195))) (-15 -2445 ((-3 |#2| "failed") (-304 |#2|) (-115) (-304 |#2|) (-656 |#2|))) (-15 -2445 ((-3 |#2| "failed") |#2| (-115) (-304 |#2|) (-656 |#2|)))) +((-1429 (($) 9)) (-3088 (((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 30)) (-3135 (((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $) 27)) (-2040 (($ (-2 (|:| -4282 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) 24)) (-3443 (($ (-656 (-2 (|:| -4282 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) 22)) (-2492 (((-1291)) 11))) +(((-815) (-10 -8 (-15 -1429 ($)) (-15 -2492 ((-1291))) (-15 -3135 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3443 ($ (-656 (-2 (|:| -4282 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2040 ($ (-2 (|:| -4282 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -3088 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))))) (T -815)) +((-3088 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *1 (-815)))) (-2040 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4282 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))) (-5 *1 (-815)))) (-3443 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4282 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-5 *1 (-815)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-5 *1 (-815)))) (-2492 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-815)))) (-1429 (*1 *1) (-5 *1 (-815)))) +(-10 -8 (-15 -1429 ($)) (-15 -2492 ((-1291))) (-15 -3135 ((-656 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) $)) (-15 -3443 ($ (-656 (-2 (|:| -4282 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))))))) (-15 -2040 ($ (-2 (|:| -4282 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| -4353 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))))))) (-15 -3088 ((-3 (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390))) "failed") (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) +((-2690 ((|#2| |#2| (-1195)) 17)) (-2479 ((|#2| |#2| (-1195)) 56)) (-1965 (((-1 |#2| |#2|) (-1195)) 11))) +(((-816 |#1| |#2|) (-10 -7 (-15 -2690 (|#2| |#2| (-1195))) (-15 -2479 (|#2| |#2| (-1195))) (-15 -1965 ((-1 |#2| |#2|) (-1195)))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148)) (-13 (-29 |#1|) (-1221) (-976))) (T -816)) +((-1965 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) (-4 *5 (-13 (-29 *4) (-1221) (-976))))) (-2479 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-976))))) (-2690 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-976)))))) +(-10 -7 (-15 -2690 (|#2| |#2| (-1195))) (-15 -2479 (|#2| |#2| (-1195))) (-15 -1965 ((-1 |#2| |#2|) (-1195)))) +((-2445 (((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390)) 128) (((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390)) 129) (((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390)) 131) (((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390)) 133) (((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390)) 134) (((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390))) 136) (((-1054) (-820) (-1082)) 120) (((-1054) (-820)) 121)) (-2502 (((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820) (-1082)) 80) (((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820)) 82))) +(((-817) (-10 -7 (-15 -2445 ((-1054) (-820))) (-15 -2445 ((-1054) (-820) (-1082))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820) (-1082))))) (T -817)) +((-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-817)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-817)))) (-2445 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2445 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2445 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2445 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2445 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2445 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-817)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1054)) (-5 *1 (-817))))) +(-10 -7 (-15 -2445 ((-1054) (-820))) (-15 -2445 ((-1054) (-820) (-1082))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-390))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-390))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-656 (-390)) (-390))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390))) (-15 -2445 ((-1054) (-1286 (-326 (-390))) (-390) (-390) (-656 (-390)) (-326 (-390)) (-656 (-390)) (-390) (-390))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-820) (-1082)))) +((-3886 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3713 (-656 |#4|))) (-665 |#4|) |#4|) 33))) +(((-818 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3886 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3713 (-656 |#4|))) (-665 |#4|) |#4|))) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|)) (T -818)) +((-3886 (*1 *2 *3 *4) (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) (-5 *1 (-818 *5 *6 *7 *4))))) +(-10 -7 (-15 -3886 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3713 (-656 |#4|))) (-665 |#4|) |#4|))) +((-3956 (((-2 (|:| -3896 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))) 53)) (-3460 (((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#4| |#2|) 62) (((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#4|) 61) (((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#3| |#2|) 20) (((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#3|) 21)) (-4010 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2753 ((|#2| |#3| (-656 (-419 |#2|))) 109) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105))) +(((-819 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2753 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -2753 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -3460 ((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#3|)) (-15 -3460 ((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#3| |#2|)) (-15 -4010 (|#2| |#3| |#1|)) (-15 -3460 ((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#4|)) (-15 -3460 ((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#4| |#2|)) (-15 -4010 (|#2| |#4| |#1|)) (-15 -3956 ((-2 (|:| -3896 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) (-13 (-374) (-148) (-1057 (-419 (-576)))) (-1262 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -819)) +((-3956 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-2 (|:| -3896 *7) (|:| |rh| (-656 (-419 *6))))) (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) (-4010 (*1 *2 *3 *4) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *5 *3)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-668 *2)) (-4 *3 (-668 (-419 *2))))) (-3460 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -2387 *4) (|:| -2366 *4)))) (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) (-4 *3 (-668 (-419 *4))))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -2387 *5) (|:| -2366 *5)))) (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 (-419 *5))))) (-4010 (*1 *2 *3 *4) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2))))) (-3460 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -2387 *4) (|:| -2366 *4)))) (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) (-4 *6 (-668 (-419 *4))))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -2387 *5) (|:| -2366 *5)))) (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-2753 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1262 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 (-419 *2))))) (-2753 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1262 *5)) (-5 *1 (-819 *5 *2 *3 *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *6 (-668 *4))))) +(-10 -7 (-15 -2753 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -2753 (|#2| |#3| (-656 (-419 |#2|)))) (-15 -3460 ((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#3|)) (-15 -3460 ((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#3| |#2|)) (-15 -4010 (|#2| |#3| |#1|)) (-15 -3460 ((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#4|)) (-15 -3460 ((-656 (-2 (|:| -2387 |#2|) (|:| -2366 |#2|))) |#4| |#2|)) (-15 -4010 (|#2| |#4| |#1|)) (-15 -3956 ((-2 (|:| -3896 |#3|) (|:| |rh| (-656 (-419 |#2|)))) |#4| (-656 (-419 |#2|))))) +((-3474 (((-112) $ $) NIL)) (-4056 (((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $) 13)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 15) (($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) 12)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-820) (-13 (-1119) (-10 -8 (-15 -3563 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4056 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $))))) (T -820)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820))))) +(-13 (-1119) (-10 -8 (-15 -3563 ($ (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))))) (-15 -4056 ((-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227))) $)))) +((-3351 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3896 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1191 |#2|)) (-1 (-430 |#2|) |#2|)) 154)) (-2923 (((-656 (-2 (|:| |poly| |#2|) (|:| -3896 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 52)) (-2431 (((-656 (-2 (|:| |deg| (-783)) (|:| -3896 |#2|))) |#3|) 122)) (-2772 ((|#2| |#3|) 42)) (-2542 (((-656 (-2 (|:| -1398 |#1|) (|:| -3896 |#3|))) |#3| (-1 (-656 |#1|) |#2|)) 99)) (-3179 ((|#3| |#3| (-419 |#2|)) 72) ((|#3| |#3| |#2|) 96))) +(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2772 (|#2| |#3|)) (-15 -2431 ((-656 (-2 (|:| |deg| (-783)) (|:| -3896 |#2|))) |#3|)) (-15 -2542 ((-656 (-2 (|:| -1398 |#1|) (|:| -3896 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2923 ((-656 (-2 (|:| |poly| |#2|) (|:| -3896 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3351 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3896 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1191 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3179 (|#3| |#3| |#2|)) (-15 -3179 (|#3| |#3| (-419 |#2|)))) (-13 (-374) (-148) (-1057 (-419 (-576)))) (-1262 |#1|) (-668 |#2|) (-668 (-419 |#2|))) (T -821)) +((-3179 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3)))) (-3179 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-1262 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) (-4 *5 (-668 (-419 *3))))) (-3351 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-656 *7) *7 (-1191 *7))) (-5 *5 (-1 (-430 *7) *7)) (-4 *7 (-1262 *6)) (-4 *6 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -3896 *3)))) (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) (-4 *8 (-668 (-419 *7))))) (-2923 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3896 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -1398 *5) (|:| -3896 *3)))) (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) (-4 *7 (-668 (-419 *6))))) (-2431 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3896 *5)))) (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-668 (-419 *5))))) (-2772 (*1 *2 *3) (-12 (-4 *2 (-1262 *4)) (-5 *1 (-821 *4 *2 *3 *5)) (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) (-4 *5 (-668 (-419 *2)))))) +(-10 -7 (-15 -2772 (|#2| |#3|)) (-15 -2431 ((-656 (-2 (|:| |deg| (-783)) (|:| -3896 |#2|))) |#3|)) (-15 -2542 ((-656 (-2 (|:| -1398 |#1|) (|:| -3896 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -2923 ((-656 (-2 (|:| |poly| |#2|) (|:| -3896 |#3|))) |#3| (-1 (-656 |#1|) |#2|))) (-15 -3351 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3896 |#3|))) |#3| (-1 (-656 |#2|) |#2| (-1191 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3179 (|#3| |#3| |#2|)) (-15 -3179 (|#3| |#3| (-419 |#2|)))) +((-2829 (((-2 (|:| -3713 (-656 (-419 |#2|))) (|:| -2689 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|))) 147) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3713 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|)) 146) (((-2 (|:| -3713 (-656 (-419 |#2|))) (|:| -2689 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|))) 141) (((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3713 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|)) 139)) (-2045 ((|#2| (-666 |#2| (-419 |#2|))) 88) ((|#2| (-665 (-419 |#2|))) 91))) +(((-822 |#1| |#2|) (-10 -7 (-15 -2829 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3713 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2829 ((-2 (|:| -3713 (-656 (-419 |#2|))) (|:| -2689 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2829 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3713 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2829 ((-2 (|:| -3713 (-656 (-419 |#2|))) (|:| -2689 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2045 (|#2| (-665 (-419 |#2|)))) (-15 -2045 (|#2| (-666 |#2| (-419 |#2|))))) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1262 |#1|)) (T -822)) +((-2045 (*1 *2 *3) (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-822 *4 *2)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| -3713 (-656 (-419 *6))) (|:| -2689 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) (-5 *1 (-822 *5 *6)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| -3713 (-656 (-419 *6))) (|:| -2689 (-701 *5)))) (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) (-5 *1 (-822 *5 *6))))) +(-10 -7 (-15 -2829 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3713 (-656 (-419 |#2|)))) (-665 (-419 |#2|)) (-419 |#2|))) (-15 -2829 ((-2 (|:| -3713 (-656 (-419 |#2|))) (|:| -2689 (-701 |#1|))) (-665 (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2829 ((-2 (|:| |particular| (-3 (-419 |#2|) "failed")) (|:| -3713 (-656 (-419 |#2|)))) (-666 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2829 ((-2 (|:| -3713 (-656 (-419 |#2|))) (|:| -2689 (-701 |#1|))) (-666 |#2| (-419 |#2|)) (-656 (-419 |#2|)))) (-15 -2045 (|#2| (-665 (-419 |#2|)))) (-15 -2045 (|#2| (-666 |#2| (-419 |#2|))))) +((-3222 (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|) 49))) +(((-823 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3222 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|))) (-374) (-668 |#1|) (-1262 |#1|) (-736 |#1| |#3|) (-668 |#4|)) (T -823)) +((-3222 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *7 (-1262 *5)) (-4 *4 (-736 *5 *7)) (-5 *2 (-2 (|:| -2689 (-701 *6)) (|:| |vec| (-1286 *5)))) (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) +(-10 -7 (-15 -3222 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) |#5| |#4|))) +((-3351 (((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3896 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 47)) (-3156 (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 167 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|))) 164 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|)) 168 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-665 (-419 |#2|))) 166 (|has| |#1| (-27))) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 38) (((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 39) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|)) 36) (((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 37)) (-2923 (((-656 (-2 (|:| |poly| |#2|) (|:| -3896 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|)) 96))) +(((-824 |#1| |#2|) (-10 -7 (-15 -3156 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3156 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3156 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3156 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3351 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3896 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2923 ((-656 (-2 (|:| |poly| |#2|) (|:| -3896 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3156 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3156 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3156 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3156 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))) (-1262 |#1|)) (T -824)) +((-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) (-2923 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3896 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-3351 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-5 *2 (-656 (-2 (|:| |frac| (-419 *6)) (|:| -3896 (-666 *6 (-419 *6)))))) (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6))))) (-3156 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) (-3156 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) (-5 *5 (-1 (-430 *7) *7)) (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) (-3156 (*1 *2 *3 *4) (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) +(-10 -7 (-15 -3156 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3156 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3156 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (-15 -3156 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|) (-1 (-430 |#2|) |#2|))) (-15 -3351 ((-656 (-2 (|:| |frac| (-419 |#2|)) (|:| -3896 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -2923 ((-656 (-2 (|:| |poly| |#2|) (|:| -3896 (-666 |#2| (-419 |#2|))))) (-666 |#2| (-419 |#2|)) (-1 (-656 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3156 ((-656 (-419 |#2|)) (-665 (-419 |#2|)))) (-15 -3156 ((-656 (-419 |#2|)) (-665 (-419 |#2|)) (-1 (-430 |#2|) |#2|))) (-15 -3156 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)))) (-15 -3156 ((-656 (-419 |#2|)) (-666 |#2| (-419 |#2|)) (-1 (-430 |#2|) |#2|)))) |%noBranch|)) +((-2638 (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) (-701 |#2|) (-1286 |#1|)) 110) (((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -3896 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1286 |#1|)) 15)) (-2656 (((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|)))) (-701 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3713 (-656 |#1|))) |#2| |#1|)) 116)) (-2445 (((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -3713 (-701 |#1|))) "failed") (-701 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3713 (-656 |#1|))) "failed") |#2| |#1|)) 54))) +(((-825 |#1| |#2|) (-10 -7 (-15 -2638 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -3896 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1286 |#1|))) (-15 -2638 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) (-701 |#2|) (-1286 |#1|))) (-15 -2445 ((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -3713 (-701 |#1|))) "failed") (-701 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3713 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -2656 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|)))) (-701 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3713 (-656 |#1|))) |#2| |#1|)))) (-374) (-668 |#1|)) (T -825)) +((-2656 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3713 (-656 *6))) *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1286 *6) "failed")) (|:| -3713 (-656 (-1286 *6))))) (-5 *1 (-825 *6 *7)) (-5 *4 (-1286 *6)))) (-2445 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3713 (-656 *6))) "failed") *7 *6)) (-4 *6 (-374)) (-4 *7 (-668 *6)) (-5 *2 (-2 (|:| |particular| (-1286 *6)) (|:| -3713 (-701 *6)))) (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *6)))) (-2638 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) (-5 *2 (-2 (|:| -2689 (-701 *6)) (|:| |vec| (-1286 *5)))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *5)))) (-2638 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| A (-701 *5)) (|:| |eqs| (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5)) (|:| -3896 *6) (|:| |rh| *5)))))) (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *6 (-668 *5))))) +(-10 -7 (-15 -2638 ((-2 (|:| A (-701 |#1|)) (|:| |eqs| (-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)) (|:| -3896 |#2|) (|:| |rh| |#1|))))) (-701 |#1|) (-1286 |#1|))) (-15 -2638 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#1|))) (-701 |#2|) (-1286 |#1|))) (-15 -2445 ((-3 (-2 (|:| |particular| (-1286 |#1|)) (|:| -3713 (-701 |#1|))) "failed") (-701 |#1|) (-1286 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3713 (-656 |#1|))) "failed") |#2| |#1|))) (-15 -2656 ((-2 (|:| |particular| (-3 (-1286 |#1|) "failed")) (|:| -3713 (-656 (-1286 |#1|)))) (-701 |#2|) (-1286 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3713 (-656 |#1|))) |#2| |#1|)))) +((-1483 (((-701 |#1|) (-656 |#1|) (-783)) 14) (((-701 |#1|) (-656 |#1|)) 15)) (-2220 (((-3 (-1286 |#1|) "failed") |#2| |#1| (-656 |#1|)) 39)) (-2915 (((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)) 46))) +(((-826 |#1| |#2|) (-10 -7 (-15 -1483 ((-701 |#1|) (-656 |#1|))) (-15 -1483 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2220 ((-3 (-1286 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2915 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) (-374) (-668 |#1|)) (T -826)) +((-2915 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) (-2220 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1286 *4)) (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4))))) +(-10 -7 (-15 -1483 ((-701 |#1|) (-656 |#1|))) (-15 -1483 ((-701 |#1|) (-656 |#1|) (-783))) (-15 -2220 ((-3 (-1286 |#1|) "failed") |#2| |#1| (-656 |#1|))) (-15 -2915 ((-3 |#1| "failed") |#2| |#1| (-656 |#1|) (-1 |#1| |#1|)))) +((-3474 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-1454 (((-112) $) NIL (|has| |#2| (-23)))) (-2204 (($ (-938)) NIL (|has| |#2| (-1068)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-4415 (($ $ $) NIL (|has| |#2| (-805)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#2| (-132)))) (-3131 (((-112) $ (-783)) NIL)) (-2148 (((-783)) NIL (|has| |#2| (-379)))) (-3731 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1119)))) (-4056 (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) ((|#2| $) NIL (|has| |#2| (-1119)))) (-3687 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#2| (-1068)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-701 $)) NIL (|has| |#2| (-1068))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL (|has| |#2| (-1068))) (((-701 |#2|) (-1286 $)) NIL (|has| |#2| (-1068)))) (-1551 (((-3 $ "failed") $) NIL (|has| |#2| (-1068)))) (-1803 (($) NIL (|has| |#2| (-379)))) (-1776 ((|#2| $ (-576) |#2|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ (-576)) NIL)) (-3825 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-1414 (((-112) $) NIL (|has| |#2| (-1068)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#2| (-862)))) (-2591 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#2| (-862)))) (-1763 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-1902 (((-938) $) NIL (|has| |#2| (-379)))) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#2| (-1119)))) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-3257 (($ (-938)) NIL (|has| |#2| (-379)))) (-1445 (((-1139) $) NIL (|has| |#2| (-1119)))) (-3504 ((|#2| $) NIL (|has| (-576) (-862)))) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ (-576) |#2|) NIL) ((|#2| $ (-576)) NIL)) (-2962 ((|#2| $ $) NIL (|has| |#2| (-1068)))) (-1887 (($ (-1286 |#2|)) NIL)) (-2446 (((-135)) NIL (|has| |#2| (-374)))) (-2735 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-1456 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-1286 |#2|) $) NIL) (($ (-576)) NIL (-2835 (-12 (|has| |#2| (-1057 (-576))) (|has| |#2| (-1119))) (|has| |#2| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#2| (-1057 (-419 (-576)))) (|has| |#2| (-1119)))) (($ |#2|) NIL (|has| |#2| (-1119))) (((-874) $) NIL (|has| |#2| (-625 (-874))))) (-1858 (((-783)) NIL (|has| |#2| (-1068)) CONST)) (-3985 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-2043 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2800 (($) NIL (|has| |#2| (-23)) CONST)) (-2810 (($) NIL (|has| |#2| (-1068)) CONST)) (-2051 (($ $ (-783)) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $) NIL (-12 (|has| |#2| (-237)) (|has| |#2| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1195)) NIL (-12 (|has| |#2| (-917 (-1195))) (|has| |#2| (-1068)))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1068))) (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#2| (-1068)))) (-3049 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#2| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3010 (((-112) $ $) 11 (|has| |#2| (-862)))) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $ $) NIL (|has| |#2| (-21))) (($ $) NIL (|has| |#2| (-21)))) (-3083 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-783)) NIL (|has| |#2| (-1068))) (($ $ (-938)) NIL (|has| |#2| (-1068)))) (* (($ $ $) NIL (|has| |#2| (-1068))) (($ $ |#2|) NIL (|has| |#2| (-738))) (($ |#2| $) NIL (|has| |#2| (-738))) (($ (-576) $) NIL (|has| |#2| (-21))) (($ (-783) $) NIL (|has| |#2| (-23))) (($ (-938) $) NIL (|has| |#2| (-25)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-827 |#1| |#2| |#3|) (-243 |#1| |#2|) (-783) (-805) (-1 (-112) (-1286 |#2|) (-1286 |#2|))) (T -827)) NIL (-243 |#1| |#2|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-4406 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1196)) NIL)) (-2483 (((-783) $) NIL) (((-783) $ (-1196)) NIL)) (-1541 (((-656 (-830 (-1196))) $) NIL)) (-1364 (((-1192 $) $ (-830 (-1196))) NIL) (((-1192 |#1|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1196)))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1587 (($ $) NIL (|has| |#1| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2289 (($ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-830 (-1196)) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL) (((-3 (-1144 |#1| (-1196)) "failed") $) NIL)) (-2378 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-830 (-1196)) $) NIL) (((-1196) $) NIL) (((-1144 |#1| (-1196)) $) NIL)) (-2996 (($ $ $ (-830 (-1196))) NIL (|has| |#1| (-174)))) (-1717 (($ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1196))) NIL (|has| |#1| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-926)))) (-2291 (($ $ |#1| (-543 (-830 (-1196))) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-830 (-1196)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-830 (-1196)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1538 (((-783) $ (-1196)) NIL) (((-783) $) NIL)) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-1529 (($ (-1192 |#1|) (-830 (-1196))) NIL) (($ (-1192 $) (-830 (-1196))) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-543 (-830 (-1196)))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-830 (-1196))) NIL)) (-1915 (((-543 (-830 (-1196))) $) NIL) (((-783) $ (-830 (-1196))) NIL) (((-656 (-783)) $ (-656 (-830 (-1196)))) NIL)) (-3968 (($ (-1 (-543 (-830 (-1196))) (-543 (-830 (-1196)))) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3789 (((-1 $ (-783)) (-1196)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-3403 (((-3 (-830 (-1196)) "failed") $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3446 (((-830 (-1196)) $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3288 (((-1178) $) NIL)) (-1614 (((-112) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-830 (-1196))) (|:| -3175 (-783))) "failed") $) NIL)) (-3473 (($ $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#1| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1196)) |#1|) NIL) (($ $ (-656 (-830 (-1196))) (-656 |#1|)) NIL) (($ $ (-830 (-1196)) $) NIL) (($ $ (-656 (-830 (-1196))) (-656 $)) NIL) (($ $ (-1196) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1955 (($ $ (-830 (-1196))) NIL (|has| |#1| (-174)))) (-3614 (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196)))) NIL) (($ $ (-830 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-4332 (((-656 (-1196)) $) NIL)) (-2369 (((-543 (-830 (-1196))) $) NIL) (((-783) $ (-830 (-1196))) NIL) (((-656 (-783)) $ (-656 (-830 (-1196)))) NIL) (((-783) $ (-1196)) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-830 (-1196)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-830 (-1196)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1196)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3714 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1196))) NIL (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1196))) NIL) (($ (-1196)) NIL) (($ (-1144 |#1| (-1196))) NIL) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-543 (-830 (-1196)))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-656 (-830 (-1196))) (-656 (-783))) NIL) (($ $ (-830 (-1196)) (-783)) NIL) (($ $ (-656 (-830 (-1196)))) NIL) (($ $ (-830 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-828 |#1|) (-13 (-260 |#1| (-1196) (-830 (-1196)) (-543 (-830 (-1196)))) (-1057 (-1144 |#1| (-1196)))) (-1068)) (T -828)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1641 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1195)) NIL)) (-3457 (((-783) $) NIL) (((-783) $ (-1195)) NIL)) (-1991 (((-656 (-830 (-1195))) $) NIL)) (-3999 (((-1191 $) $ (-830 (-1195))) NIL) (((-1191 |#1|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-830 (-1195)))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1760 (($ $) NIL (|has| |#1| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-2671 (($ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-830 (-1195)) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL) (((-3 (-1144 |#1| (-1195)) "failed") $) NIL)) (-4056 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-830 (-1195)) $) NIL) (((-1195) $) NIL) (((-1144 |#1| (-1195)) $) NIL)) (-2861 (($ $ $ (-830 (-1195))) NIL (|has| |#1| (-174)))) (-2166 (($ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1195))) NIL (|has| |#1| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#1| (-926)))) (-1660 (($ $ |#1| (-543 (-830 (-1195))) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-830 (-1195)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-830 (-1195)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3333 (((-783) $ (-1195)) NIL) (((-783) $) NIL)) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1980 (($ (-1191 |#1|) (-830 (-1195))) NIL) (($ (-1191 $) (-830 (-1195))) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-543 (-830 (-1195)))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-830 (-1195))) NIL)) (-3403 (((-543 (-830 (-1195))) $) NIL) (((-783) $ (-830 (-1195))) NIL) (((-656 (-783)) $ (-656 (-830 (-1195)))) NIL)) (-2133 (($ (-1 (-543 (-830 (-1195))) (-543 (-830 (-1195)))) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1388 (((-1 $ (-783)) (-1195)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-4209 (((-3 (-830 (-1195)) "failed") $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3897 (((-830 (-1195)) $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1927 (((-1177) $) NIL)) (-4374 (((-112) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-830 (-1195))) (|:| -4274 (-783))) "failed") $) NIL)) (-4175 (($ $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#1| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-830 (-1195)) |#1|) NIL) (($ $ (-656 (-830 (-1195))) (-656 |#1|)) NIL) (($ $ (-830 (-1195)) $) NIL) (($ $ (-656 (-830 (-1195))) (-656 $)) NIL) (($ $ (-1195) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1195)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1960 (($ $ (-830 (-1195))) NIL (|has| |#1| (-174)))) (-2735 (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195)))) NIL) (($ $ (-830 (-1195))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2684 (((-656 (-1195)) $) NIL)) (-1433 (((-543 (-830 (-1195))) $) NIL) (((-783) $ (-830 (-1195))) NIL) (((-656 (-783)) $ (-656 (-830 (-1195)))) NIL) (((-783) $ (-1195)) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-830 (-1195)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-830 (-1195)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-830 (-1195)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3648 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-830 (-1195))) NIL (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-830 (-1195))) NIL) (($ (-1195)) NIL) (($ (-1144 |#1| (-1195))) NIL) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-543 (-830 (-1195)))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-656 (-830 (-1195))) (-656 (-783))) NIL) (($ $ (-830 (-1195)) (-783)) NIL) (($ $ (-656 (-830 (-1195)))) NIL) (($ $ (-830 (-1195))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-828 |#1|) (-13 (-260 |#1| (-1195) (-830 (-1195)) (-543 (-830 (-1195)))) (-1057 (-1144 |#1| (-1195)))) (-1068)) (T -828)) NIL -(-13 (-260 |#1| (-1196) (-830 (-1196)) (-543 (-830 (-1196)))) (-1057 (-1144 |#1| (-1196)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-2573 (($ $) NIL (|has| |#2| (-374)))) (-4306 (((-112) $) NIL (|has| |#2| (-374)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| |#2| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#2| (-374)))) (-4407 (((-112) $ $) NIL (|has| |#2| (-374)))) (-3656 (($) NIL T CONST)) (-1975 (($ $ $) NIL (|has| |#2| (-374)))) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL (|has| |#2| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-2725 (((-112) $) NIL (|has| |#2| (-374)))) (-1810 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3117 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 20 (|has| |#2| (-374)))) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1392 (((-430 $) $) NIL (|has| |#2| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#2| (-374)))) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-1787 (((-783) $) NIL (|has| |#2| (-374)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#2| (-374)))) (-3614 (($ $) 13) (($ $ (-783)) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#2| (-374)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) 15 (|has| |#2| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) +(-13 (-260 |#1| (-1195) (-830 (-1195)) (-543 (-830 (-1195)))) (-1057 (-1144 |#1| (-1195)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-374)))) (-4412 (($ $) NIL (|has| |#2| (-374)))) (-4176 (((-112) $) NIL (|has| |#2| (-374)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| |#2| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#2| (-374)))) (-1727 (((-112) $ $) NIL (|has| |#2| (-374)))) (-3767 (($) NIL T CONST)) (-3420 (($ $ $) NIL (|has| |#2| (-374)))) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL (|has| |#2| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-1792 (((-112) $) NIL (|has| |#2| (-374)))) (-1414 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3459 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 20 (|has| |#2| (-374)))) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#2| (-374))) (($ $ $) NIL (|has| |#2| (-374)))) (-1839 (((-430 $) $) NIL (|has| |#2| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#2| (-374)))) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3112 (((-783) $) NIL (|has| |#2| (-374)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#2| (-374)))) (-2735 (($ $) 13) (($ $ (-783)) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-419 (-576))) NIL (|has| |#2| (-374))) (($ $) NIL (|has| |#2| (-374)))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#2| (-374)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) 15 (|has| |#2| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL) (($ $ (-576)) 18 (|has| |#2| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-419 (-576)) $) NIL (|has| |#2| (-374))) (($ $ (-419 (-576))) NIL (|has| |#2| (-374))))) (((-829 |#1| |#2| |#3|) (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) (-1119) (-915 |#1|) |#1|) (T -829)) NIL (-13 (-111 $ $) (-238) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-374)) (-6 (-374)) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-2483 (((-783) $) NIL)) (-1615 ((|#1| $) 10)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-1538 (((-783) $) 11)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3789 (($ |#1| (-783)) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3614 (($ $ (-783)) NIL) (($ $) NIL)) (-4092 (((-874) $) NIL) (($ |#1|) NIL)) (-1531 (((-112) $ $) NIL)) (-4286 (($ $ (-783)) NIL) (($ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-3457 (((-783) $) NIL)) (-3022 ((|#1| $) 10)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-3333 (((-783) $) 11)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1388 (($ |#1| (-783)) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2735 (($ $ (-783)) NIL) (($ $) NIL)) (-3563 (((-874) $) NIL) (($ |#1|) NIL)) (-3985 (((-112) $ $) NIL)) (-2051 (($ $ (-783)) NIL) (($ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) (((-830 |#1|) (-275 |#1|) (-862)) (T -830)) NIL (-275 |#1|) -((-2034 (((-112) $ $) NIL)) (-2677 (((-656 |#1|) $) 38)) (-2247 (((-783) $) NIL)) (-3656 (($) NIL T CONST)) (-4065 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-2712 (($ $) 42)) (-3179 (((-3 $ "failed") $) NIL)) (-2904 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1810 (((-112) $) NIL)) (-3158 ((|#1| $ (-576)) NIL)) (-3670 (((-783) $ (-576)) NIL)) (-3313 (($ $) 54)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3230 (($ (-1 |#1| |#1|) $) NIL)) (-1682 (($ (-1 (-783) (-783)) $) NIL)) (-2267 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2949 (((-112) $ $) 51)) (-1325 (((-783) $) 34)) (-3288 (((-1178) $) NIL)) (-4403 (($ $ $) NIL)) (-4222 (($ $ $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 ((|#1| $) 41)) (-3791 (((-656 (-2 (|:| |gen| |#1|) (|:| -3353 (-783)))) $) NIL)) (-2233 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2012 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4092 (((-874) $) NIL) (($ |#1|) NIL)) (-1531 (((-112) $ $) NIL)) (-4310 (($) 20 T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 53)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -2701 (|#1| $)) (-15 -2712 ($ $)) (-15 -3313 ($ $)) (-15 -2949 ((-112) $ $)) (-15 -2267 ((-3 $ "failed") $ |#1|)) (-15 -4065 ((-3 $ "failed") $ |#1|)) (-15 -2012 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1325 ((-783) $)) (-15 -2677 ((-656 |#1|) $)))) (-862)) (T -831)) -((-2701 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-3313 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2949 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-2267 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-4065 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2012 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862))))) -(-13 (-397 |#1|) (-858) (-10 -8 (-15 -2701 (|#1| $)) (-15 -2712 ($ $)) (-15 -3313 ($ $)) (-15 -2949 ((-112) $ $)) (-15 -2267 ((-3 $ "failed") $ |#1|)) (-15 -4065 ((-3 $ "failed") $ |#1|)) (-15 -2012 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1325 ((-783) $)) (-15 -2677 ((-656 |#1|) $)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-3934 (((-576) $) 59)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-3567 (((-112) $) 57)) (-1810 (((-112) $) 35)) (-3713 (((-112) $) 58)) (-3492 (($ $ $) 56)) (-2726 (($ $ $) 55)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2022 (((-3 $ "failed") $ $) 48)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-3423 (($ $) 60)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3977 (((-112) $ $) 53)) (-3955 (((-112) $ $) 52)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 54)) (-3944 (((-112) $ $) 51)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3474 (((-112) $ $) NIL)) (-3388 (((-656 |#1|) $) 38)) (-2148 (((-783) $) NIL)) (-3767 (($) NIL T CONST)) (-1338 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-3515 (($ $) 42)) (-1551 (((-3 $ "failed") $) NIL)) (-3496 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1414 (((-112) $) NIL)) (-2281 ((|#1| $ (-576)) NIL)) (-2633 (((-783) $ (-576)) NIL)) (-2575 (($ $) 54)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-4239 (($ (-1 |#1| |#1|) $) NIL)) (-3576 (($ (-1 (-783) (-783)) $) NIL)) (-4398 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-3578 (((-112) $ $) 51)) (-4261 (((-783) $) 34)) (-1927 (((-1177) $) NIL)) (-4250 (($ $ $) NIL)) (-3965 (($ $ $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 ((|#1| $) 41)) (-1707 (((-656 (-2 (|:| |gen| |#1|) (|:| -3984 (-783)))) $) NIL)) (-1784 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3450 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3563 (((-874) $) NIL) (($ |#1|) NIL)) (-3985 (((-112) $ $) NIL)) (-2810 (($) 20 T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 53)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ |#1| (-783)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-831 |#1|) (-13 (-397 |#1|) (-858) (-10 -8 (-15 -3504 (|#1| $)) (-15 -3515 ($ $)) (-15 -2575 ($ $)) (-15 -3578 ((-112) $ $)) (-15 -4398 ((-3 $ "failed") $ |#1|)) (-15 -1338 ((-3 $ "failed") $ |#1|)) (-15 -3450 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4261 ((-783) $)) (-15 -3388 ((-656 |#1|) $)))) (-862)) (T -831)) +((-3504 (*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-3515 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-2575 (*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-3578 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-4398 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-1338 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) (-3450 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862))))) +(-13 (-397 |#1|) (-858) (-10 -8 (-15 -3504 (|#1| $)) (-15 -3515 ($ $)) (-15 -2575 ($ $)) (-15 -3578 ((-112) $ $)) (-15 -4398 ((-3 $ "failed") $ |#1|)) (-15 -1338 ((-3 $ "failed") $ |#1|)) (-15 -3450 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4261 ((-783) $)) (-15 -3388 ((-656 |#1|) $)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-2184 (((-576) $) 59)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1910 (((-112) $) 57)) (-1414 (((-112) $) 35)) (-3566 (((-112) $) 58)) (-2442 (($ $ $) 56)) (-1893 (($ $ $) 55)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3463 (((-3 $ "failed") $ $) 48)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2264 (($ $) 60)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-3049 (((-112) $ $) 53)) (-3024 (((-112) $ $) 52)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 54)) (-3010 (((-112) $ $) 51)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-832) (-141)) (T -832)) NIL (-13 (-568) (-860)) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-1921 (($ (-1139)) 7)) (-3548 (((-112) $ (-1178) (-1139)) 15)) (-4159 (((-834) $) 12)) (-3022 (((-834) $) 11)) (-2697 (((-1292) $) 9)) (-3340 (((-112) $ (-1139)) 16))) -(((-833) (-10 -8 (-15 -1921 ($ (-1139))) (-15 -2697 ((-1292) $)) (-15 -3022 ((-834) $)) (-15 -4159 ((-834) $)) (-15 -3548 ((-112) $ (-1178) (-1139))) (-15 -3340 ((-112) $ (-1139))))) (T -833)) -((-3340 (*1 *2 *1 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3548 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-1139)) (-5 *2 (-112)) (-5 *1 (-833)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-833)))) (-1921 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-833))))) -(-10 -8 (-15 -1921 ($ (-1139))) (-15 -2697 ((-1292) $)) (-15 -3022 ((-834) $)) (-15 -4159 ((-834) $)) (-15 -3548 ((-112) $ (-1178) (-1139))) (-15 -3340 ((-112) $ (-1139)))) -((-3804 (((-1292) $ (-835)) 12)) (-3979 (((-1292) $ (-1196)) 32)) (-1569 (((-1292) $ (-1178) (-1178)) 34)) (-3125 (((-1292) $ (-1178)) 33)) (-3729 (((-1292) $) 19)) (-2532 (((-1292) $ (-576)) 28)) (-4019 (((-1292) $ (-227)) 30)) (-2533 (((-1292) $) 18)) (-1603 (((-1292) $) 26)) (-4297 (((-1292) $) 25)) (-4069 (((-1292) $) 23)) (-2801 (((-1292) $) 24)) (-2635 (((-1292) $) 22)) (-2778 (((-1292) $) 21)) (-1880 (((-1292) $) 20)) (-1476 (((-1292) $) 16)) (-2895 (((-1292) $) 17)) (-2610 (((-1292) $) 15)) (-2864 (((-1292) $) 14)) (-1726 (((-1292) $) 13)) (-3947 (($ (-1178) (-835)) 9)) (-2298 (($ (-1178) (-1178) (-835)) 8)) (-2622 (((-1196) $) 51)) (-3740 (((-1196) $) 55)) (-2061 (((-2 (|:| |cd| (-1178)) (|:| -4124 (-1178))) $) 54)) (-2420 (((-1178) $) 52)) (-3521 (((-1292) $) 41)) (-2943 (((-576) $) 49)) (-1718 (((-227) $) 50)) (-2312 (((-1292) $) 40)) (-1746 (((-1292) $) 48)) (-3124 (((-1292) $) 47)) (-2155 (((-1292) $) 45)) (-2201 (((-1292) $) 46)) (-1775 (((-1292) $) 44)) (-2736 (((-1292) $) 43)) (-1397 (((-1292) $) 42)) (-1890 (((-1292) $) 38)) (-2130 (((-1292) $) 39)) (-2032 (((-1292) $) 37)) (-1946 (((-1292) $) 36)) (-2617 (((-1292) $) 35)) (-2330 (((-1292) $) 11))) -(((-834) (-10 -8 (-15 -2298 ($ (-1178) (-1178) (-835))) (-15 -3947 ($ (-1178) (-835))) (-15 -2330 ((-1292) $)) (-15 -3804 ((-1292) $ (-835))) (-15 -1726 ((-1292) $)) (-15 -2864 ((-1292) $)) (-15 -2610 ((-1292) $)) (-15 -1476 ((-1292) $)) (-15 -2895 ((-1292) $)) (-15 -2533 ((-1292) $)) (-15 -3729 ((-1292) $)) (-15 -1880 ((-1292) $)) (-15 -2778 ((-1292) $)) (-15 -2635 ((-1292) $)) (-15 -4069 ((-1292) $)) (-15 -2801 ((-1292) $)) (-15 -4297 ((-1292) $)) (-15 -1603 ((-1292) $)) (-15 -2532 ((-1292) $ (-576))) (-15 -4019 ((-1292) $ (-227))) (-15 -3979 ((-1292) $ (-1196))) (-15 -3125 ((-1292) $ (-1178))) (-15 -1569 ((-1292) $ (-1178) (-1178))) (-15 -2617 ((-1292) $)) (-15 -1946 ((-1292) $)) (-15 -2032 ((-1292) $)) (-15 -1890 ((-1292) $)) (-15 -2130 ((-1292) $)) (-15 -2312 ((-1292) $)) (-15 -3521 ((-1292) $)) (-15 -1397 ((-1292) $)) (-15 -2736 ((-1292) $)) (-15 -1775 ((-1292) $)) (-15 -2155 ((-1292) $)) (-15 -2201 ((-1292) $)) (-15 -3124 ((-1292) $)) (-15 -1746 ((-1292) $)) (-15 -2943 ((-576) $)) (-15 -1718 ((-227) $)) (-15 -2622 ((-1196) $)) (-15 -2420 ((-1178) $)) (-15 -2061 ((-2 (|:| |cd| (-1178)) (|:| -4124 (-1178))) $)) (-15 -3740 ((-1196) $)))) (T -834)) -((-3740 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834)))) (-2061 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1178)) (|:| -4124 (-1178)))) (-5 *1 (-834)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-834)))) (-2622 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834)))) (-1718 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3124 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1775 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1397 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3521 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1569 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-3125 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-3979 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-4019 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-2532 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3804 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1292)) (-5 *1 (-834)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834)))) (-3947 (*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834)))) (-2298 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834))))) -(-10 -8 (-15 -2298 ($ (-1178) (-1178) (-835))) (-15 -3947 ($ (-1178) (-835))) (-15 -2330 ((-1292) $)) (-15 -3804 ((-1292) $ (-835))) (-15 -1726 ((-1292) $)) (-15 -2864 ((-1292) $)) (-15 -2610 ((-1292) $)) (-15 -1476 ((-1292) $)) (-15 -2895 ((-1292) $)) (-15 -2533 ((-1292) $)) (-15 -3729 ((-1292) $)) (-15 -1880 ((-1292) $)) (-15 -2778 ((-1292) $)) (-15 -2635 ((-1292) $)) (-15 -4069 ((-1292) $)) (-15 -2801 ((-1292) $)) (-15 -4297 ((-1292) $)) (-15 -1603 ((-1292) $)) (-15 -2532 ((-1292) $ (-576))) (-15 -4019 ((-1292) $ (-227))) (-15 -3979 ((-1292) $ (-1196))) (-15 -3125 ((-1292) $ (-1178))) (-15 -1569 ((-1292) $ (-1178) (-1178))) (-15 -2617 ((-1292) $)) (-15 -1946 ((-1292) $)) (-15 -2032 ((-1292) $)) (-15 -1890 ((-1292) $)) (-15 -2130 ((-1292) $)) (-15 -2312 ((-1292) $)) (-15 -3521 ((-1292) $)) (-15 -1397 ((-1292) $)) (-15 -2736 ((-1292) $)) (-15 -1775 ((-1292) $)) (-15 -2155 ((-1292) $)) (-15 -2201 ((-1292) $)) (-15 -3124 ((-1292) $)) (-15 -1746 ((-1292) $)) (-15 -2943 ((-576) $)) (-15 -1718 ((-227) $)) (-15 -2622 ((-1196) $)) (-15 -2420 ((-1178) $)) (-15 -2061 ((-2 (|:| |cd| (-1178)) (|:| -4124 (-1178))) $)) (-15 -3740 ((-1196) $))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 13)) (-1531 (((-112) $ $) NIL)) (-1967 (($) 16)) (-4234 (($) 14)) (-2860 (($) 17)) (-3231 (($) 15)) (-3919 (((-112) $ $) 9))) -(((-835) (-13 (-1119) (-10 -8 (-15 -4234 ($)) (-15 -1967 ($)) (-15 -2860 ($)) (-15 -3231 ($))))) (T -835)) -((-4234 (*1 *1) (-5 *1 (-835))) (-1967 (*1 *1) (-5 *1 (-835))) (-2860 (*1 *1) (-5 *1 (-835))) (-3231 (*1 *1) (-5 *1 (-835)))) -(-13 (-1119) (-10 -8 (-15 -4234 ($)) (-15 -1967 ($)) (-15 -2860 ($)) (-15 -3231 ($)))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 23) (($ (-1196)) 19)) (-1531 (((-112) $ $) NIL)) (-2007 (((-112) $) 10)) (-4161 (((-112) $) 9)) (-2109 (((-112) $) 11)) (-1436 (((-112) $) 8)) (-3919 (((-112) $ $) 21))) -(((-836) (-13 (-1119) (-10 -8 (-15 -4092 ($ (-1196))) (-15 -1436 ((-112) $)) (-15 -4161 ((-112) $)) (-15 -2007 ((-112) $)) (-15 -2109 ((-112) $))))) (T -836)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-836)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(-13 (-1119) (-10 -8 (-15 -4092 ($ (-1196))) (-15 -1436 ((-112) $)) (-15 -4161 ((-112) $)) (-15 -2007 ((-112) $)) (-15 -2109 ((-112) $)))) -((-2034 (((-112) $ $) NIL)) (-2569 (($ (-836) (-656 (-1196))) 32)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3664 (((-836) $) 33)) (-2854 (((-656 (-1196)) $) 34)) (-4092 (((-874) $) 31)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-837) (-13 (-1119) (-10 -8 (-15 -3664 ((-836) $)) (-15 -2854 ((-656 (-1196)) $)) (-15 -2569 ($ (-836) (-656 (-1196))))))) (T -837)) -((-3664 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-837)))) (-2569 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1196))) (-5 *1 (-837))))) -(-13 (-1119) (-10 -8 (-15 -3664 ((-836) $)) (-15 -2854 ((-656 (-1196)) $)) (-15 -2569 ($ (-836) (-656 (-1196)))))) -((-3774 (((-1292) (-834) (-326 |#1|) (-112)) 23) (((-1292) (-834) (-326 |#1|)) 89) (((-1178) (-326 |#1|) (-112)) 88) (((-1178) (-326 |#1|)) 87))) -(((-838 |#1|) (-10 -7 (-15 -3774 ((-1178) (-326 |#1|))) (-15 -3774 ((-1178) (-326 |#1|) (-112))) (-15 -3774 ((-1292) (-834) (-326 |#1|))) (-15 -3774 ((-1292) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1068))) (T -838)) -((-3774 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1068))) (-5 *2 (-1292)) (-5 *1 (-838 *6)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1068))) (-5 *2 (-1292)) (-5 *1 (-838 *5)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1068))) (-5 *2 (-1178)) (-5 *1 (-838 *5)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1068))) (-5 *2 (-1178)) (-5 *1 (-838 *4))))) -(-10 -7 (-15 -3774 ((-1178) (-326 |#1|))) (-15 -3774 ((-1178) (-326 |#1|) (-112))) (-15 -3774 ((-1292) (-834) (-326 |#1|))) (-15 -3774 ((-1292) (-834) (-326 |#1|) (-112)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1368 ((|#1| $) 10)) (-3940 (($ |#1|) 9)) (-1810 (((-112) $) NIL)) (-1518 (($ |#2| (-783)) NIL)) (-1915 (((-783) $) NIL)) (-1692 ((|#2| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3614 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-2369 (((-783) $) NIL)) (-4092 (((-874) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-2430 ((|#2| $ (-783)) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -3940 ($ |#1|)) (-15 -1368 (|#1| $)))) (-720 |#2|) (-1068)) (T -839)) -((-3940 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-1368 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1068))))) -(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -3940 ($ |#1|)) (-15 -1368 (|#1| $)))) -((-3774 (((-1292) (-834) $ (-112)) 9) (((-1292) (-834) $) 8) (((-1178) $ (-112)) 7) (((-1178) $) 6))) +((-1547 (($ (-1139)) 7)) (-3669 (((-112) $ (-1177) (-1139)) 15)) (-1869 (((-834) $) 12)) (-3629 (((-834) $) 11)) (-3006 (((-1291) $) 9)) (-1904 (((-112) $ (-1139)) 16))) +(((-833) (-10 -8 (-15 -1547 ($ (-1139))) (-15 -3006 ((-1291) $)) (-15 -3629 ((-834) $)) (-15 -1869 ((-834) $)) (-15 -3669 ((-112) $ (-1177) (-1139))) (-15 -1904 ((-112) $ (-1139))))) (T -833)) +((-1904 (*1 *2 *1 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-112)) (-5 *1 (-833)))) (-3669 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-1139)) (-5 *2 (-112)) (-5 *1 (-833)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-833)))) (-1547 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-833))))) +(-10 -8 (-15 -1547 ($ (-1139))) (-15 -3006 ((-1291) $)) (-15 -3629 ((-834) $)) (-15 -1869 ((-834) $)) (-15 -3669 ((-112) $ (-1177) (-1139))) (-15 -1904 ((-112) $ (-1139)))) +((-3621 (((-1291) $ (-835)) 12)) (-3714 (((-1291) $ (-1195)) 32)) (-3541 (((-1291) $ (-1177) (-1177)) 34)) (-4267 (((-1291) $ (-1177)) 33)) (-2595 (((-1291) $) 19)) (-1413 (((-1291) $ (-576)) 28)) (-2167 (((-1291) $ (-227)) 30)) (-1512 (((-1291) $) 18)) (-1516 (((-1291) $) 26)) (-2652 (((-1291) $) 25)) (-3663 (((-1291) $) 23)) (-3225 (((-1291) $) 24)) (-3170 (((-1291) $) 22)) (-1603 (((-1291) $) 21)) (-1973 (((-1291) $) 20)) (-2913 (((-1291) $) 16)) (-2146 (((-1291) $) 17)) (-2434 (((-1291) $) 15)) (-2071 (((-1291) $) 14)) (-3136 (((-1291) $) 13)) (-1921 (($ (-1177) (-835)) 9)) (-2143 (($ (-1177) (-1177) (-835)) 8)) (-4153 (((-1195) $) 51)) (-4403 (((-1195) $) 55)) (-2365 (((-2 (|:| |cd| (-1177)) (|:| -2706 (-1177))) $) 54)) (-1495 (((-1177) $) 52)) (-1578 (((-1291) $) 41)) (-3126 (((-576) $) 49)) (-3632 (((-227) $) 50)) (-2870 (((-1291) $) 40)) (-2407 (((-1291) $) 48)) (-4151 (((-1291) $) 47)) (-3000 (((-1291) $) 45)) (-1914 (((-1291) $) 46)) (-4436 (((-1291) $) 44)) (-1430 (((-1291) $) 43)) (-1417 (((-1291) $) 42)) (-3711 (((-1291) $) 38)) (-1480 (((-1291) $) 39)) (-3593 (((-1291) $) 37)) (-2216 (((-1291) $) 36)) (-1866 (((-1291) $) 35)) (-4396 (((-1291) $) 11))) +(((-834) (-10 -8 (-15 -2143 ($ (-1177) (-1177) (-835))) (-15 -1921 ($ (-1177) (-835))) (-15 -4396 ((-1291) $)) (-15 -3621 ((-1291) $ (-835))) (-15 -3136 ((-1291) $)) (-15 -2071 ((-1291) $)) (-15 -2434 ((-1291) $)) (-15 -2913 ((-1291) $)) (-15 -2146 ((-1291) $)) (-15 -1512 ((-1291) $)) (-15 -2595 ((-1291) $)) (-15 -1973 ((-1291) $)) (-15 -1603 ((-1291) $)) (-15 -3170 ((-1291) $)) (-15 -3663 ((-1291) $)) (-15 -3225 ((-1291) $)) (-15 -2652 ((-1291) $)) (-15 -1516 ((-1291) $)) (-15 -1413 ((-1291) $ (-576))) (-15 -2167 ((-1291) $ (-227))) (-15 -3714 ((-1291) $ (-1195))) (-15 -4267 ((-1291) $ (-1177))) (-15 -3541 ((-1291) $ (-1177) (-1177))) (-15 -1866 ((-1291) $)) (-15 -2216 ((-1291) $)) (-15 -3593 ((-1291) $)) (-15 -3711 ((-1291) $)) (-15 -1480 ((-1291) $)) (-15 -2870 ((-1291) $)) (-15 -1578 ((-1291) $)) (-15 -1417 ((-1291) $)) (-15 -1430 ((-1291) $)) (-15 -4436 ((-1291) $)) (-15 -3000 ((-1291) $)) (-15 -1914 ((-1291) $)) (-15 -4151 ((-1291) $)) (-15 -2407 ((-1291) $)) (-15 -3126 ((-576) $)) (-15 -3632 ((-227) $)) (-15 -4153 ((-1195) $)) (-15 -1495 ((-1177) $)) (-15 -2365 ((-2 (|:| |cd| (-1177)) (|:| -2706 (-1177))) $)) (-15 -4403 ((-1195) $)))) (T -834)) +((-4403 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834)))) (-2365 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1177)) (|:| -2706 (-1177)))) (-5 *1 (-834)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-834)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834)))) (-3632 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834)))) (-3126 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834)))) (-2407 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-4151 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-4436 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2216 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1866 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3541 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-4267 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-3714 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-2167 (*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-1413 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2595 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2146 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3136 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-3621 (*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1291)) (-5 *1 (-834)))) (-4396 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834)))) (-1921 (*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834)))) (-2143 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834))))) +(-10 -8 (-15 -2143 ($ (-1177) (-1177) (-835))) (-15 -1921 ($ (-1177) (-835))) (-15 -4396 ((-1291) $)) (-15 -3621 ((-1291) $ (-835))) (-15 -3136 ((-1291) $)) (-15 -2071 ((-1291) $)) (-15 -2434 ((-1291) $)) (-15 -2913 ((-1291) $)) (-15 -2146 ((-1291) $)) (-15 -1512 ((-1291) $)) (-15 -2595 ((-1291) $)) (-15 -1973 ((-1291) $)) (-15 -1603 ((-1291) $)) (-15 -3170 ((-1291) $)) (-15 -3663 ((-1291) $)) (-15 -3225 ((-1291) $)) (-15 -2652 ((-1291) $)) (-15 -1516 ((-1291) $)) (-15 -1413 ((-1291) $ (-576))) (-15 -2167 ((-1291) $ (-227))) (-15 -3714 ((-1291) $ (-1195))) (-15 -4267 ((-1291) $ (-1177))) (-15 -3541 ((-1291) $ (-1177) (-1177))) (-15 -1866 ((-1291) $)) (-15 -2216 ((-1291) $)) (-15 -3593 ((-1291) $)) (-15 -3711 ((-1291) $)) (-15 -1480 ((-1291) $)) (-15 -2870 ((-1291) $)) (-15 -1578 ((-1291) $)) (-15 -1417 ((-1291) $)) (-15 -1430 ((-1291) $)) (-15 -4436 ((-1291) $)) (-15 -3000 ((-1291) $)) (-15 -1914 ((-1291) $)) (-15 -4151 ((-1291) $)) (-15 -2407 ((-1291) $)) (-15 -3126 ((-576) $)) (-15 -3632 ((-227) $)) (-15 -4153 ((-1195) $)) (-15 -1495 ((-1177) $)) (-15 -2365 ((-2 (|:| |cd| (-1177)) (|:| -2706 (-1177))) $)) (-15 -4403 ((-1195) $))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 13)) (-3985 (((-112) $ $) NIL)) (-3877 (($) 16)) (-2895 (($) 14)) (-2836 (($) 17)) (-4349 (($) 15)) (-2988 (((-112) $ $) 9))) +(((-835) (-13 (-1119) (-10 -8 (-15 -2895 ($)) (-15 -3877 ($)) (-15 -2836 ($)) (-15 -4349 ($))))) (T -835)) +((-2895 (*1 *1) (-5 *1 (-835))) (-3877 (*1 *1) (-5 *1 (-835))) (-2836 (*1 *1) (-5 *1 (-835))) (-4349 (*1 *1) (-5 *1 (-835)))) +(-13 (-1119) (-10 -8 (-15 -2895 ($)) (-15 -3877 ($)) (-15 -2836 ($)) (-15 -4349 ($)))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 23) (($ (-1195)) 19)) (-3985 (((-112) $ $) NIL)) (-3118 (((-112) $) 10)) (-3925 (((-112) $) 9)) (-2354 (((-112) $) 11)) (-1976 (((-112) $) 8)) (-2988 (((-112) $ $) 21))) +(((-836) (-13 (-1119) (-10 -8 (-15 -3563 ($ (-1195))) (-15 -1976 ((-112) $)) (-15 -3925 ((-112) $)) (-15 -3118 ((-112) $)) (-15 -2354 ((-112) $))))) (T -836)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-836)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836)))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(-13 (-1119) (-10 -8 (-15 -3563 ($ (-1195))) (-15 -1976 ((-112) $)) (-15 -3925 ((-112) $)) (-15 -3118 ((-112) $)) (-15 -2354 ((-112) $)))) +((-3474 (((-112) $ $) NIL)) (-4051 (($ (-836) (-656 (-1195))) 32)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3320 (((-836) $) 33)) (-3344 (((-656 (-1195)) $) 34)) (-3563 (((-874) $) 31)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-837) (-13 (-1119) (-10 -8 (-15 -3320 ((-836) $)) (-15 -3344 ((-656 (-1195)) $)) (-15 -4051 ($ (-836) (-656 (-1195))))))) (T -837)) +((-3320 (*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-837)))) (-4051 (*1 *1 *2 *3) (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1195))) (-5 *1 (-837))))) +(-13 (-1119) (-10 -8 (-15 -3320 ((-836) $)) (-15 -3344 ((-656 (-1195)) $)) (-15 -4051 ($ (-836) (-656 (-1195)))))) +((-2584 (((-1291) (-834) (-326 |#1|) (-112)) 23) (((-1291) (-834) (-326 |#1|)) 89) (((-1177) (-326 |#1|) (-112)) 88) (((-1177) (-326 |#1|)) 87))) +(((-838 |#1|) (-10 -7 (-15 -2584 ((-1177) (-326 |#1|))) (-15 -2584 ((-1177) (-326 |#1|) (-112))) (-15 -2584 ((-1291) (-834) (-326 |#1|))) (-15 -2584 ((-1291) (-834) (-326 |#1|) (-112)))) (-13 (-840) (-1068))) (T -838)) +((-2584 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-840) (-1068))) (-5 *2 (-1291)) (-5 *1 (-838 *6)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1068))) (-5 *2 (-1291)) (-5 *1 (-838 *5)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1068))) (-5 *2 (-1177)) (-5 *1 (-838 *5)))) (-2584 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1068))) (-5 *2 (-1177)) (-5 *1 (-838 *4))))) +(-10 -7 (-15 -2584 ((-1177) (-326 |#1|))) (-15 -2584 ((-1177) (-326 |#1|) (-112))) (-15 -2584 ((-1291) (-834) (-326 |#1|))) (-15 -2584 ((-1291) (-834) (-326 |#1|) (-112)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3414 ((|#1| $) 10)) (-1832 (($ |#1|) 9)) (-1414 (((-112) $) NIL)) (-1970 (($ |#2| (-783)) NIL)) (-3403 (((-783) $) NIL)) (-2142 ((|#2| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2735 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-1433 (((-783) $) NIL)) (-3563 (((-874) $) 17) (($ (-576)) NIL) (($ |#2|) NIL (|has| |#2| (-174)))) (-4333 ((|#2| $ (-783)) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $) NIL (|has| |#1| (-238))) (($ $ (-783)) NIL (|has| |#1| (-238)))) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-839 |#1| |#2|) (-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1832 ($ |#1|)) (-15 -3414 (|#1| $)))) (-720 |#2|) (-1068)) (T -839)) +((-1832 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3)))) (-3414 (*1 *2 *1) (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1068))))) +(-13 (-720 |#2|) (-10 -8 (IF (|has| |#1| (-238)) (-6 (-238)) |%noBranch|) (-15 -1832 ($ |#1|)) (-15 -3414 (|#1| $)))) +((-2584 (((-1291) (-834) $ (-112)) 9) (((-1291) (-834) $) 8) (((-1177) $ (-112)) 7) (((-1177) $) 6))) (((-840) (-141)) (T -840)) -((-3774 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1292)))) (-3774 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1292)))) (-3774 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1178)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1178))))) -(-13 (-10 -8 (-15 -3774 ((-1178) $)) (-15 -3774 ((-1178) $ (-112))) (-15 -3774 ((-1292) (-834) $)) (-15 -3774 ((-1292) (-834) $ (-112))))) -((-2879 (((-322) (-1178) (-1178)) 12)) (-2331 (((-112) (-1178) (-1178)) 34)) (-1839 (((-112) (-1178)) 33)) (-2718 (((-52) (-1178)) 25)) (-4223 (((-52) (-1178)) 23)) (-2680 (((-52) (-834)) 17)) (-3649 (((-656 (-1178)) (-1178)) 28)) (-3048 (((-656 (-1178))) 27))) -(((-841) (-10 -7 (-15 -2680 ((-52) (-834))) (-15 -4223 ((-52) (-1178))) (-15 -2718 ((-52) (-1178))) (-15 -3048 ((-656 (-1178)))) (-15 -3649 ((-656 (-1178)) (-1178))) (-15 -1839 ((-112) (-1178))) (-15 -2331 ((-112) (-1178) (-1178))) (-15 -2879 ((-322) (-1178) (-1178))))) (T -841)) -((-2879 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-841)))) (-2331 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841)))) (-3649 (*1 *2 *3) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)) (-5 *3 (-1178)))) (-3048 (*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841)))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(-10 -7 (-15 -2680 ((-52) (-834))) (-15 -4223 ((-52) (-1178))) (-15 -2718 ((-52) (-1178))) (-15 -3048 ((-656 (-1178)))) (-15 -3649 ((-656 (-1178)) (-1178))) (-15 -1839 ((-112) (-1178))) (-15 -2331 ((-112) (-1178) (-1178))) (-15 -2879 ((-322) (-1178) (-1178)))) -((-2034 (((-112) $ $) 19)) (-4006 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4369 (($ $ $) 73)) (-3004 (((-112) $ $) 74)) (-2835 (((-112) $ (-783)) 8)) (-3662 (($ (-656 |#1|)) 69) (($) 68)) (-3831 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-4329 (($ $) 63)) (-1690 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ |#1| $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4462)))) (-2892 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4462)))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1583 (((-112) $ $) 65)) (-1419 (((-112) $ (-783)) 9)) (-3492 ((|#1| $) 79)) (-1897 (($ $ $) 82)) (-3257 (($ $ $) 81)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2726 ((|#1| $) 80)) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22)) (-3586 (($ $ $) 70)) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-3139 (((-1139) $) 21)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-2983 (((-656 (-2 (|:| -2900 |#1|) (|:| -3150 (-783)))) $) 62)) (-3182 (($ $ |#1|) 72) (($ $ $) 71)) (-1833 (($) 50) (($ (-656 |#1|)) 49)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 51)) (-4092 (((-874) $) 18)) (-1460 (($ (-656 |#1|)) 67) (($) 66)) (-1531 (((-112) $ $) 23)) (-3688 (($ (-656 |#1|)) 43)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20)) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-2584 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1291)))) (-2584 (*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1291)))) (-2584 (*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1177)))) (-2584 (*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1177))))) +(-13 (-10 -8 (-15 -2584 ((-1177) $)) (-15 -2584 ((-1177) $ (-112))) (-15 -2584 ((-1291) (-834) $)) (-15 -2584 ((-1291) (-834) $ (-112))))) +((-4126 (((-322) (-1177) (-1177)) 12)) (-1353 (((-112) (-1177) (-1177)) 34)) (-2232 (((-112) (-1177)) 33)) (-2315 (((-52) (-1177)) 25)) (-4077 (((-52) (-1177)) 23)) (-1981 (((-52) (-834)) 17)) (-4341 (((-656 (-1177)) (-1177)) 28)) (-3218 (((-656 (-1177))) 27))) +(((-841) (-10 -7 (-15 -1981 ((-52) (-834))) (-15 -4077 ((-52) (-1177))) (-15 -2315 ((-52) (-1177))) (-15 -3218 ((-656 (-1177)))) (-15 -4341 ((-656 (-1177)) (-1177))) (-15 -2232 ((-112) (-1177))) (-15 -1353 ((-112) (-1177) (-1177))) (-15 -4126 ((-322) (-1177) (-1177))))) (T -841)) +((-4126 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-841)))) (-1353 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841)))) (-2232 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841)))) (-4341 (*1 *2 *3) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)) (-5 *3 (-1177)))) (-3218 (*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) +(-10 -7 (-15 -1981 ((-52) (-834))) (-15 -4077 ((-52) (-1177))) (-15 -2315 ((-52) (-1177))) (-15 -3218 ((-656 (-1177)))) (-15 -4341 ((-656 (-1177)) (-1177))) (-15 -2232 ((-112) (-1177))) (-15 -1353 ((-112) (-1177) (-1177))) (-15 -4126 ((-322) (-1177) (-1177)))) +((-3474 (((-112) $ $) 19)) (-1901 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-4195 (($ $ $) 73)) (-2529 (((-112) $ $) 74)) (-3131 (((-112) $ (-783)) 8)) (-2187 (($ (-656 |#1|)) 69) (($) 68)) (-4001 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3315 (($ $) 63)) (-3172 (($ $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ |#1| $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4461)))) (-3902 (($ |#1| $) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4461)))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1408 (((-112) $ $) 65)) (-3115 (((-112) $ (-783)) 9)) (-2442 ((|#1| $) 79)) (-2093 (($ $ $) 82)) (-1854 (($ $ $) 81)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1893 ((|#1| $) 80)) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22)) (-2021 (($ $ $) 70)) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41) (($ |#1| $ (-783)) 64)) (-1445 (((-1139) $) 21)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1961 (((-656 (-2 (|:| -4353 |#1|) (|:| -1456 (-783)))) $) 62)) (-1956 (($ $ |#1|) 72) (($ $ $) 71)) (-2837 (($) 50) (($ (-656 |#1|)) 49)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 60 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 51)) (-3563 (((-874) $) 18)) (-1909 (($ (-656 |#1|)) 67) (($) 66)) (-3985 (((-112) $ $) 23)) (-3773 (($ (-656 |#1|)) 43)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20)) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-842 |#1|) (-141) (-862)) (T -842)) -((-3492 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-862))))) -(-13 (-748 |t#1|) (-987 |t#1|) (-10 -8 (-15 -3492 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-707 |#1|) . T) ((-748 |#1|) . T) ((-987 |#1|) . T) ((-1117 |#1|) . T) ((-1119) . T) ((-1237) . T)) -((-1326 (((-1292) (-1139) (-1139)) 48)) (-1641 (((-1292) (-833) (-52)) 45)) (-4245 (((-52) (-833)) 16))) -(((-843) (-10 -7 (-15 -4245 ((-52) (-833))) (-15 -1641 ((-1292) (-833) (-52))) (-15 -1326 ((-1292) (-1139) (-1139))))) (T -843)) -((-1326 (*1 *2 *3 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-1292)) (-5 *1 (-843)))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1292)) (-5 *1 (-843)))) (-4245 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) -(-10 -7 (-15 -4245 ((-52) (-833))) (-15 -1641 ((-1292) (-833) (-52))) (-15 -1326 ((-1292) (-1139) (-1139)))) -((-2477 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13))) -(((-844 |#1| |#2|) (-10 -7 (-15 -2477 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2477 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1119) (-1119)) (T -844)) -((-2477 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *1 (-844 *5 *6)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) -(-10 -7 (-15 -2477 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -2477 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL (|has| |#1| (-21)))) (-3788 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3934 (((-576) $) NIL (|has| |#1| (-860)))) (-3656 (($) NIL (|has| |#1| (-21)) CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 9)) (-3179 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-1653 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-3863 (((-112) $) 46 (|has| |#1| (-557)))) (-4266 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-3567 (((-112) $) NIL (|has| |#1| (-860)))) (-1810 (((-112) $) NIL (|has| |#1| (-860)))) (-3713 (((-112) $) NIL (|has| |#1| (-860)))) (-3492 (($ $ $) NIL (|has| |#1| (-860)))) (-2726 (($ $ $) NIL (|has| |#1| (-860)))) (-3288 (((-1178) $) NIL)) (-3937 (($) 13)) (-2867 (((-112) $) 12)) (-3139 (((-1139) $) NIL)) (-4035 (((-112) $) 11)) (-4092 (((-874) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3765 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))))) (-2471 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-1531 (((-112) $ $) 54)) (-3423 (($ $) NIL (|has| |#1| (-860)))) (-4300 (($) 23 (|has| |#1| (-21)) CONST)) (-4310 (($) 33 (|has| |#1| (-860)) CONST)) (-3977 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3919 (((-112) $ $) 21)) (-3966 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3944 (((-112) $ $) 45 (|has| |#1| (-860)))) (-4018 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-4007 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-938)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-938) $) NIL (|has| |#1| (-21))))) -(((-845 |#1|) (-13 (-1119) (-423 |#1|) (-10 -8 (-15 -3937 ($)) (-15 -4035 ((-112) $)) (-15 -2867 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1119)) (T -845)) -((-3937 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1119)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) (-2867 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-1653 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119))))) -(-13 (-1119) (-423 |#1|) (-10 -8 (-15 -3937 ($)) (-15 -4035 ((-112) $)) (-15 -2867 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-1412 (((-112) $ |#2|) 14)) (-4092 (((-874) $) 11))) -(((-846 |#1| |#2|) (-10 -8 (-15 -1412 ((-112) |#1| |#2|)) (-15 -4092 ((-874) |#1|))) (-847 |#2|) (-1119)) (T -846)) -NIL -(-10 -8 (-15 -1412 ((-112) |#1| |#2|)) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-4124 ((|#1| $) 16)) (-3288 (((-1178) $) 10)) (-1412 (((-112) $ |#1|) 14)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-1666 (((-55) $) 15)) (-3919 (((-112) $ $) 6))) +((-2442 (*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-862))))) +(-13 (-748 |t#1|) (-987 |t#1|) (-10 -8 (-15 -2442 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-240 |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-707 |#1|) . T) ((-748 |#1|) . T) ((-987 |#1|) . T) ((-1117 |#1|) . T) ((-1119) . T) ((-1236) . T)) +((-4437 (((-1291) (-1139) (-1139)) 48)) (-1889 (((-1291) (-833) (-52)) 45)) (-1507 (((-52) (-833)) 16))) +(((-843) (-10 -7 (-15 -1507 ((-52) (-833))) (-15 -1889 ((-1291) (-833) (-52))) (-15 -4437 ((-1291) (-1139) (-1139))))) (T -843)) +((-4437 (*1 *2 *3 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-1291)) (-5 *1 (-843)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1291)) (-5 *1 (-843)))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) +(-10 -7 (-15 -1507 ((-52) (-833))) (-15 -1889 ((-1291) (-833) (-52))) (-15 -4437 ((-1291) (-1139) (-1139)))) +((-1632 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13))) +(((-844 |#1| |#2|) (-10 -7 (-15 -1632 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -1632 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1119) (-1119)) (T -844)) +((-1632 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *1 (-844 *5 *6)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-845 *6)) (-5 *1 (-844 *5 *6))))) +(-10 -7 (-15 -1632 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -1632 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL (|has| |#1| (-21)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2184 (((-576) $) NIL (|has| |#1| (-860)))) (-3767 (($) NIL (|has| |#1| (-21)) CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 15)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 9)) (-1551 (((-3 $ "failed") $) 42 (|has| |#1| (-860)))) (-3615 (((-3 (-419 (-576)) "failed") $) 52 (|has| |#1| (-557)))) (-3235 (((-112) $) 46 (|has| |#1| (-557)))) (-3113 (((-419 (-576)) $) 49 (|has| |#1| (-557)))) (-1910 (((-112) $) NIL (|has| |#1| (-860)))) (-1414 (((-112) $) NIL (|has| |#1| (-860)))) (-3566 (((-112) $) NIL (|has| |#1| (-860)))) (-2442 (($ $ $) NIL (|has| |#1| (-860)))) (-1893 (($ $ $) NIL (|has| |#1| (-860)))) (-1927 (((-1177) $) NIL)) (-1583 (($) 13)) (-2377 (((-112) $) 12)) (-1445 (((-1139) $) NIL)) (-3517 (((-112) $) 11)) (-3563 (((-874) $) 18) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2835 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))))) (-1858 (((-783)) 36 (|has| |#1| (-860)) CONST)) (-3985 (((-112) $ $) 54)) (-2264 (($ $) NIL (|has| |#1| (-860)))) (-2800 (($) 23 (|has| |#1| (-21)) CONST)) (-2810 (($) 33 (|has| |#1| (-860)) CONST)) (-3049 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2988 (((-112) $ $) 21)) (-3037 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3010 (((-112) $ $) 45 (|has| |#1| (-860)))) (-3095 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3083 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-938)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 39 (|has| |#1| (-860))) (($ (-576) $) 27 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-938) $) NIL (|has| |#1| (-21))))) +(((-845 |#1|) (-13 (-1119) (-423 |#1|) (-10 -8 (-15 -1583 ($)) (-15 -3517 ((-112) $)) (-15 -2377 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1119)) (T -845)) +((-1583 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1119)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-3615 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119))))) +(-13 (-1119) (-423 |#1|) (-10 -8 (-15 -1583 ($)) (-15 -3517 ((-112) $)) (-15 -2377 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +((-3718 (((-112) $ |#2|) 14)) (-3563 (((-874) $) 11))) +(((-846 |#1| |#2|) (-10 -8 (-15 -3718 ((-112) |#1| |#2|)) (-15 -3563 ((-874) |#1|))) (-847 |#2|) (-1119)) (T -846)) +NIL +(-10 -8 (-15 -3718 ((-112) |#1| |#2|)) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-2706 ((|#1| $) 16)) (-1927 (((-1177) $) 10)) (-3718 (((-112) $ |#1|) 14)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-1730 (((-55) $) 15)) (-2988 (((-112) $ $) 6))) (((-847 |#1|) (-141) (-1119)) (T -847)) -((-4124 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1119)))) (-1666 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-55)))) (-1412 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) -(-13 (-1119) (-10 -8 (-15 -4124 (|t#1| $)) (-15 -1666 ((-55) $)) (-15 -1412 ((-112) $ |t#1|)))) +((-2706 (*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1119)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-55)))) (-3718 (*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) +(-13 (-1119) (-10 -8 (-15 -2706 (|t#1| $)) (-15 -1730 ((-55) $)) (-15 -3718 ((-112) $ |t#1|)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-2378 ((|#1| $) NIL) (((-115) $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2557 ((|#1| (-115) |#1|) NIL)) (-1810 (((-112) $) NIL)) (-3319 (($ |#1| (-372 (-115))) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2606 (($ $ (-1 |#1| |#1|)) NIL)) (-1487 (($ $ (-1 |#1| |#1|)) NIL)) (-4367 ((|#1| $ |#1|) NIL)) (-4085 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-3131 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-848 |#1|) (-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3131 ($ $)) (-15 -3131 ($ $ $)) (-15 -4085 (|#1| |#1|))) |%noBranch|) (-15 -1487 ($ $ (-1 |#1| |#1|))) (-15 -2606 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2557 (|#1| (-115) |#1|)) (-15 -3319 ($ |#1| (-372 (-115)))))) (-1068)) (T -848)) -((-3131 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) (-3131 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) (-4085 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) (-1487 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3)))) (-2606 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1068)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1068)))) (-2557 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1068)))) (-3319 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1068))))) -(-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3131 ($ $)) (-15 -3131 ($ $ $)) (-15 -4085 (|#1| |#1|))) |%noBranch|) (-15 -1487 ($ $ (-1 |#1| |#1|))) (-15 -2606 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2557 (|#1| (-115) |#1|)) (-15 -3319 ($ |#1| (-372 (-115)))))) -((-3757 (((-216 (-514)) (-1178)) 9))) -(((-849) (-10 -7 (-15 -3757 ((-216 (-514)) (-1178))))) (T -849)) -((-3757 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) -(-10 -7 (-15 -3757 ((-216 (-514)) (-1178)))) -((-2034 (((-112) $ $) NIL)) (-3404 (((-1137) $) 10)) (-4124 (((-518) $) 9)) (-3288 (((-1178) $) NIL)) (-1412 (((-112) $ (-518)) NIL)) (-3139 (((-1139) $) NIL)) (-4103 (($ (-518) (-1137)) 8)) (-4092 (((-874) $) 25)) (-1531 (((-112) $ $) NIL)) (-1666 (((-55) $) 20)) (-3919 (((-112) $ $) 12))) -(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -3404 ((-1137) $)) (-15 -4103 ($ (-518) (-1137)))))) (T -850)) -((-3404 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-850)))) (-4103 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-850))))) -(-13 (-847 (-518)) (-10 -8 (-15 -3404 ((-1137) $)) (-15 -4103 ($ (-518) (-1137))))) -((-2034 (((-112) $ $) 7)) (-2305 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) 15) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) 16)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL) (((-3 (-115) "failed") $) NIL)) (-4056 ((|#1| $) NIL) (((-115) $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2113 ((|#1| (-115) |#1|) NIL)) (-1414 (((-112) $) NIL)) (-1772 (($ |#1| (-372 (-115))) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3236 (($ $ (-1 |#1| |#1|)) NIL)) (-1557 (($ $ (-1 |#1| |#1|)) NIL)) (-2871 ((|#1| $ |#1|) NIL)) (-2688 ((|#1| |#1|) NIL (|has| |#1| (-174)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-115)) NIL)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3686 (($ $) NIL (|has| |#1| (-174))) (($ $ $) NIL (|has| |#1| (-174)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ (-115) (-576)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-848 |#1|) (-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3686 ($ $)) (-15 -3686 ($ $ $)) (-15 -2688 (|#1| |#1|))) |%noBranch|) (-15 -1557 ($ $ (-1 |#1| |#1|))) (-15 -3236 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2113 (|#1| (-115) |#1|)) (-15 -1772 ($ |#1| (-372 (-115)))))) (-1068)) (T -848)) +((-3686 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) (-3686 (*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) (-2688 (*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) (-1557 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3)))) (-3236 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1068)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1068)))) (-2113 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1068)))) (-1772 (*1 *1 *2 *3) (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1068))))) +(-13 (-1068) (-1057 |#1|) (-1057 (-115)) (-296 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |#1| (-174)) (PROGN (-6 (-38 |#1|)) (-15 -3686 ($ $)) (-15 -3686 ($ $ $)) (-15 -2688 (|#1| |#1|))) |%noBranch|) (-15 -1557 ($ $ (-1 |#1| |#1|))) (-15 -3236 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-576))) (-15 ** ($ $ (-576))) (-15 -2113 (|#1| (-115) |#1|)) (-15 -1772 ($ |#1| (-372 (-115)))))) +((-2200 (((-216 (-514)) (-1177)) 9))) +(((-849) (-10 -7 (-15 -2200 ((-216 (-514)) (-1177))))) (T -849)) +((-2200 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) +(-10 -7 (-15 -2200 ((-216 (-514)) (-1177)))) +((-3474 (((-112) $ $) NIL)) (-2707 (((-1137) $) 10)) (-2706 (((-518) $) 9)) (-1927 (((-1177) $) NIL)) (-3718 (((-112) $ (-518)) NIL)) (-1445 (((-1139) $) NIL)) (-3573 (($ (-518) (-1137)) 8)) (-3563 (((-874) $) 25)) (-3985 (((-112) $ $) NIL)) (-1730 (((-55) $) 20)) (-2988 (((-112) $ $) 12))) +(((-850) (-13 (-847 (-518)) (-10 -8 (-15 -2707 ((-1137) $)) (-15 -3573 ($ (-518) (-1137)))))) (T -850)) +((-2707 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-850)))) (-3573 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-850))))) +(-13 (-847 (-518)) (-10 -8 (-15 -2707 ((-1137) $)) (-15 -3573 ($ (-518) (-1137))))) +((-3474 (((-112) $ $) 7)) (-1510 (((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) 15) (((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 17) (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) 16)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-851) (-141)) (T -851)) -((-2451 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)))))) (-2451 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)))))) (-2305 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) (-5 *2 (-1054)))) (-2305 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1054))))) -(-13 (-1119) (-10 -7 (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) (-15 -2305 ((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) (-15 -2305 ((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))))) +((-2502 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)))))) (-2502 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)))))) (-1510 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) (-5 *2 (-1054)))) (-1510 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1054))))) +(-13 (-1119) (-10 -7 (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) (-15 -1510 ((-1054) (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) (-15 -1510 ((-1054) (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-1747 (((-1054) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1054) (-326 (-390)) (-656 (-390))) 164) (((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1054) (-853)) 125) (((-1054) (-853) (-1082)) 124)) (-2451 (((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853) (-1082)) 85) (((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853)) 87)) (-3572 (((-1054) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1054) (-853)) 150))) -(((-852) (-10 -7 (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853) (-1082))) (-15 -1747 ((-1054) (-853) (-1082))) (-15 -1747 ((-1054) (-853))) (-15 -3572 ((-1054) (-853))) (-15 -1747 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -1747 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -1747 ((-1054) (-326 (-390)) (-656 (-390)))) (-15 -1747 ((-1054) (-656 (-326 (-390))) (-656 (-390)))) (-15 -3572 ((-1054) (-656 (-326 (-390))) (-656 (-390)))))) (T -852)) -((-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-1747 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-1747 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-852)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-852)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-852))))) -(-10 -7 (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-853) (-1082))) (-15 -1747 ((-1054) (-853) (-1082))) (-15 -1747 ((-1054) (-853))) (-15 -3572 ((-1054) (-853))) (-15 -1747 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -1747 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -1747 ((-1054) (-326 (-390)) (-656 (-390)))) (-15 -1747 ((-1054) (-656 (-326 (-390))) (-656 (-390)))) (-15 -3572 ((-1054) (-656 (-326 (-390))) (-656 (-390))))) -((-2034 (((-112) $ $) NIL)) (-2378 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) $) 21)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))))) 18)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-853) (-13 (-1119) (-10 -8 (-15 -4092 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -4092 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) (-15 -4092 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))))) (-15 -2378 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) $))))) (T -853)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) (-5 *1 (-853)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))))) (-5 *1 (-853)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))))) (-5 *1 (-853))))) -(-13 (-1119) (-10 -8 (-15 -4092 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -4092 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) (-15 -4092 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))))) (-15 -2378 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227)))))) $)))) -((-2477 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) -(((-854 |#1| |#2|) (-10 -7 (-15 -2477 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2477 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1119) (-1119)) (T -854)) -((-2477 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *1 (-854 *5 *6)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) -(-10 -7 (-15 -2477 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -2477 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL (|has| |#1| (-21)))) (-2654 (((-1139) $) 31)) (-3788 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3934 (((-576) $) NIL (|has| |#1| (-860)))) (-3656 (($) NIL (|has| |#1| (-21)) CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 9)) (-3179 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-1653 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-3863 (((-112) $) 60 (|has| |#1| (-557)))) (-4266 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-3567 (((-112) $) NIL (|has| |#1| (-860)))) (-4338 (($) 14)) (-1810 (((-112) $) NIL (|has| |#1| (-860)))) (-3713 (((-112) $) NIL (|has| |#1| (-860)))) (-4351 (($) 16)) (-3492 (($ $ $) NIL (|has| |#1| (-860)))) (-2726 (($ $ $) NIL (|has| |#1| (-860)))) (-3288 (((-1178) $) NIL)) (-2867 (((-112) $) 12)) (-3139 (((-1139) $) NIL)) (-4035 (((-112) $) 11)) (-4092 (((-874) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-3765 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))))) (-2471 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-1531 (((-112) $ $) NIL)) (-3423 (($ $) NIL (|has| |#1| (-860)))) (-4300 (($) 37 (|has| |#1| (-21)) CONST)) (-4310 (($) 48 (|has| |#1| (-860)) CONST)) (-3977 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3919 (((-112) $ $) 35)) (-3966 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3944 (((-112) $ $) 59 (|has| |#1| (-860)))) (-4018 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-4007 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-938)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-938) $) NIL (|has| |#1| (-21))))) -(((-855 |#1|) (-13 (-1119) (-423 |#1|) (-10 -8 (-15 -4338 ($)) (-15 -4351 ($)) (-15 -4035 ((-112) $)) (-15 -2867 ((-112) $)) (-15 -2654 ((-1139) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1119)) (T -855)) -((-4338 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119)))) (-4351 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119)))) (-4035 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))) (-2867 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-4266 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-1653 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119))))) -(-13 (-1119) (-423 |#1|) (-10 -8 (-15 -4338 ($)) (-15 -4351 ($)) (-15 -4035 ((-112) $)) (-15 -2867 ((-112) $)) (-15 -2654 ((-1139) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -((-2034 (((-112) $ $) 7)) (-2247 (((-783)) 23)) (-2446 (($) 26)) (-3492 (($ $ $) 14) (($) 22 T CONST)) (-2726 (($ $ $) 15) (($) 21 T CONST)) (-3225 (((-938) $) 25)) (-3288 (((-1178) $) 10)) (-2550 (($ (-938)) 24)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19))) +((-3348 (((-1054) (-656 (-326 (-390))) (-656 (-390))) 166) (((-1054) (-326 (-390)) (-656 (-390))) 164) (((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390)))) 162) (((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390)))) 160) (((-1054) (-853)) 125) (((-1054) (-853) (-1082)) 124)) (-2502 (((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853) (-1082)) 85) (((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853)) 87)) (-4152 (((-1054) (-656 (-326 (-390))) (-656 (-390))) 167) (((-1054) (-853)) 150))) +(((-852) (-10 -7 (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853) (-1082))) (-15 -3348 ((-1054) (-853) (-1082))) (-15 -3348 ((-1054) (-853))) (-15 -4152 ((-1054) (-853))) (-15 -3348 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -3348 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -3348 ((-1054) (-326 (-390)) (-656 (-390)))) (-15 -3348 ((-1054) (-656 (-326 (-390))) (-656 (-390)))) (-15 -4152 ((-1054) (-656 (-326 (-390))) (-656 (-390)))))) (T -852)) +((-4152 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-3348 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-3348 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1054)) (-5 *1 (-852)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-852)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-852)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-852))))) +(-10 -7 (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-853) (-1082))) (-15 -3348 ((-1054) (-853) (-1082))) (-15 -3348 ((-1054) (-853))) (-15 -4152 ((-1054) (-853))) (-15 -3348 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-326 (-390))) (-656 (-855 (-390))))) (-15 -3348 ((-1054) (-326 (-390)) (-656 (-390)) (-656 (-855 (-390))) (-656 (-855 (-390))))) (-15 -3348 ((-1054) (-326 (-390)) (-656 (-390)))) (-15 -3348 ((-1054) (-656 (-326 (-390))) (-656 (-390)))) (-15 -4152 ((-1054) (-656 (-326 (-390))) (-656 (-390))))) +((-3474 (((-112) $ $) NIL)) (-4056 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) $) 21)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 20) (($ (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) 14) (($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))))) 18)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-853) (-13 (-1119) (-10 -8 (-15 -3563 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3563 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) (-15 -3563 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))))) (-15 -4056 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) $))))) (T -853)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) (-5 *1 (-853)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))))) (-5 *1 (-853)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))))) (-5 *1 (-853))))) +(-13 (-1119) (-10 -8 (-15 -3563 ($ (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227))))))) (-15 -3563 ($ (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) (-15 -3563 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))))) (-15 -4056 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227)))))) $)))) +((-1632 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) +(((-854 |#1| |#2|) (-10 -7 (-15 -1632 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -1632 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1119) (-1119)) (T -854)) +((-1632 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *1 (-854 *5 *6)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) +(-10 -7 (-15 -1632 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -1632 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL (|has| |#1| (-21)))) (-3555 (((-1139) $) 31)) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2184 (((-576) $) NIL (|has| |#1| (-860)))) (-3767 (($) NIL (|has| |#1| (-21)) CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 18)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 9)) (-1551 (((-3 $ "failed") $) 58 (|has| |#1| (-860)))) (-3615 (((-3 (-419 (-576)) "failed") $) 65 (|has| |#1| (-557)))) (-3235 (((-112) $) 60 (|has| |#1| (-557)))) (-3113 (((-419 (-576)) $) 63 (|has| |#1| (-557)))) (-1910 (((-112) $) NIL (|has| |#1| (-860)))) (-3003 (($) 14)) (-1414 (((-112) $) NIL (|has| |#1| (-860)))) (-3566 (((-112) $) NIL (|has| |#1| (-860)))) (-3015 (($) 16)) (-2442 (($ $ $) NIL (|has| |#1| (-860)))) (-1893 (($ $ $) NIL (|has| |#1| (-860)))) (-1927 (((-1177) $) NIL)) (-2377 (((-112) $) 12)) (-1445 (((-1139) $) NIL)) (-3517 (((-112) $) 11)) (-3563 (((-874) $) 24) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 8) (($ (-576)) NIL (-2835 (|has| |#1| (-860)) (|has| |#1| (-1057 (-576)))))) (-1858 (((-783)) 51 (|has| |#1| (-860)) CONST)) (-3985 (((-112) $ $) NIL)) (-2264 (($ $) NIL (|has| |#1| (-860)))) (-2800 (($) 37 (|has| |#1| (-21)) CONST)) (-2810 (($) 48 (|has| |#1| (-860)) CONST)) (-3049 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-860)))) (-2988 (((-112) $ $) 35)) (-3037 (((-112) $ $) NIL (|has| |#1| (-860)))) (-3010 (((-112) $ $) 59 (|has| |#1| (-860)))) (-3095 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3083 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-938)) NIL (|has| |#1| (-860))) (($ $ (-783)) NIL (|has| |#1| (-860)))) (* (($ $ $) 55 (|has| |#1| (-860))) (($ (-576) $) 42 (|has| |#1| (-21))) (($ (-783) $) NIL (|has| |#1| (-21))) (($ (-938) $) NIL (|has| |#1| (-21))))) +(((-855 |#1|) (-13 (-1119) (-423 |#1|) (-10 -8 (-15 -3003 ($)) (-15 -3015 ($)) (-15 -3517 ((-112) $)) (-15 -2377 ((-112) $)) (-15 -3555 ((-1139) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) (-1119)) (T -855)) +((-3003 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119)))) (-3015 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-855 *3)) (-4 *3 (-1119)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) (-3615 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119))))) +(-13 (-1119) (-423 |#1|) (-10 -8 (-15 -3003 ($)) (-15 -3015 ($)) (-15 -3517 ((-112) $)) (-15 -2377 ((-112) $)) (-15 -3555 ((-1139) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +((-3474 (((-112) $ $) 7)) (-2148 (((-783)) 23)) (-1803 (($) 26)) (-2442 (($ $ $) 14) (($) 22 T CONST)) (-1893 (($ $ $) 15) (($) 21 T CONST)) (-1902 (((-938) $) 25)) (-1927 (((-1177) $) 10)) (-3257 (($ (-938)) 24)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19))) (((-856) (-141)) (T -856)) -((-3492 (*1 *1) (-4 *1 (-856))) (-2726 (*1 *1) (-4 *1 (-856)))) -(-13 (-862) (-379) (-10 -8 (-15 -3492 ($) -2670) (-15 -2726 ($) -2670))) +((-2442 (*1 *1) (-4 *1 (-856))) (-1893 (*1 *1) (-4 *1 (-856)))) +(-13 (-862) (-379) (-10 -8 (-15 -2442 ($) -1398) (-15 -1893 ($) -1398))) (((-102) . T) ((-625 (-874)) . T) ((-379) . T) ((-862) . T) ((-1119) . T)) -((-2450 (((-112) (-1287 |#2|) (-1287 |#2|)) 19)) (-3057 (((-112) (-1287 |#2|) (-1287 |#2|)) 20)) (-1945 (((-112) (-1287 |#2|) (-1287 |#2|)) 16))) -(((-857 |#1| |#2|) (-10 -7 (-15 -1945 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -2450 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -3057 ((-112) (-1287 |#2|) (-1287 |#2|)))) (-783) (-804)) (T -857)) -((-3057 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2450 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-1945 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(-10 -7 (-15 -1945 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -2450 ((-112) (-1287 |#2|) (-1287 |#2|))) (-15 -3057 ((-112) (-1287 |#2|) (-1287 |#2|)))) -((-2034 (((-112) $ $) 7)) (-3656 (($) 24 T CONST)) (-3179 (((-3 $ "failed") $) 27)) (-1810 (((-112) $) 25)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4310 (($) 23 T CONST)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19)) (** (($ $ (-938)) 22) (($ $ (-783)) 26)) (* (($ $ $) 21))) +((-2414 (((-112) (-1286 |#2|) (-1286 |#2|)) 19)) (-1600 (((-112) (-1286 |#2|) (-1286 |#2|)) 20)) (-3303 (((-112) (-1286 |#2|) (-1286 |#2|)) 16))) +(((-857 |#1| |#2|) (-10 -7 (-15 -3303 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -2414 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -1600 ((-112) (-1286 |#2|) (-1286 |#2|)))) (-783) (-804)) (T -857)) +((-1600 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-2414 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783)))) (-3303 (*1 *2 *3 *3) (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(-10 -7 (-15 -3303 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -2414 ((-112) (-1286 |#2|) (-1286 |#2|))) (-15 -1600 ((-112) (-1286 |#2|) (-1286 |#2|)))) +((-3474 (((-112) $ $) 7)) (-3767 (($) 24 T CONST)) (-1551 (((-3 $ "failed") $) 27)) (-1414 (((-112) $) 25)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2810 (($) 23 T CONST)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19)) (** (($ $ (-938)) 22) (($ $ (-783)) 26)) (* (($ $ $) 21))) (((-858) (-141)) (T -858)) NIL (-13 (-869) (-738)) (((-102) . T) ((-625 (-874)) . T) ((-738) . T) ((-869) . T) ((-862) . T) ((-1131) . T) ((-1119) . T)) -((-3934 (((-576) $) 21)) (-3567 (((-112) $) 10)) (-3713 (((-112) $) 12)) (-3423 (($ $) 23))) -(((-859 |#1|) (-10 -8 (-15 -3423 (|#1| |#1|)) (-15 -3934 ((-576) |#1|)) (-15 -3713 ((-112) |#1|)) (-15 -3567 ((-112) |#1|))) (-860)) (T -859)) +((-2184 (((-576) $) 21)) (-1910 (((-112) $) 10)) (-3566 (((-112) $) 12)) (-2264 (($ $) 23))) +(((-859 |#1|) (-10 -8 (-15 -2264 (|#1| |#1|)) (-15 -2184 ((-576) |#1|)) (-15 -3566 ((-112) |#1|)) (-15 -1910 ((-112) |#1|))) (-860)) (T -859)) NIL -(-10 -8 (-15 -3423 (|#1| |#1|)) (-15 -3934 ((-576) |#1|)) (-15 -3713 ((-112) |#1|)) (-15 -3567 ((-112) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 25)) (-3788 (((-3 $ "failed") $ $) 27)) (-3934 (((-576) $) 37)) (-3656 (($) 24 T CONST)) (-3179 (((-3 $ "failed") $) 42)) (-3567 (((-112) $) 39)) (-1810 (((-112) $) 44)) (-3713 (((-112) $) 38)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 46)) (-2471 (((-783)) 47 T CONST)) (-1531 (((-112) $ $) 9)) (-3423 (($ $) 36)) (-4300 (($) 23 T CONST)) (-4310 (($) 45 T CONST)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19)) (-4018 (($ $ $) 31) (($ $) 30)) (-4007 (($ $ $) 21)) (** (($ $ (-783)) 43) (($ $ (-938)) 40)) (* (($ (-938) $) 22) (($ (-783) $) 26) (($ (-576) $) 29) (($ $ $) 41))) +(-10 -8 (-15 -2264 (|#1| |#1|)) (-15 -2184 ((-576) |#1|)) (-15 -3566 ((-112) |#1|)) (-15 -1910 ((-112) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 25)) (-1367 (((-3 $ "failed") $ $) 27)) (-2184 (((-576) $) 37)) (-3767 (($) 24 T CONST)) (-1551 (((-3 $ "failed") $) 42)) (-1910 (((-112) $) 39)) (-1414 (((-112) $) 44)) (-3566 (((-112) $) 38)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 46)) (-1858 (((-783)) 47 T CONST)) (-3985 (((-112) $ $) 9)) (-2264 (($ $) 36)) (-2800 (($) 23 T CONST)) (-2810 (($) 45 T CONST)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19)) (-3095 (($ $ $) 31) (($ $) 30)) (-3083 (($ $ $) 21)) (** (($ $ (-783)) 43) (($ $ (-938)) 40)) (* (($ (-938) $) 22) (($ (-783) $) 26) (($ (-576) $) 29) (($ $ $) 41))) (((-860) (-141)) (T -860)) -((-3567 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-3423 (*1 *1 *1) (-4 *1 (-860)))) -(-13 (-803) (-1068) (-738) (-10 -8 (-15 -3567 ((-112) $)) (-15 -3713 ((-112) $)) (-15 -3934 ((-576) $)) (-15 -3423 ($ $)))) +((-1910 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-3566 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) (-2184 (*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) (-2264 (*1 *1 *1) (-4 *1 (-860)))) +(-13 (-803) (-1068) (-738) (-10 -8 (-15 -1910 ((-112) $)) (-15 -3566 ((-112) $)) (-15 -2184 ((-576) $)) (-15 -2264 ($ $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-862) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-3492 (($ $ $) 12)) (-2726 (($ $ $) 11)) (-1531 (((-112) $ $) 9)) (-3977 (((-112) $ $) 15)) (-3955 (((-112) $ $) 13)) (-3966 (((-112) $ $) 16))) -(((-861 |#1|) (-10 -8 (-15 -3492 (|#1| |#1| |#1|)) (-15 -2726 (|#1| |#1| |#1|)) (-15 -3966 ((-112) |#1| |#1|)) (-15 -3977 ((-112) |#1| |#1|)) (-15 -3955 ((-112) |#1| |#1|)) (-15 -1531 ((-112) |#1| |#1|))) (-862)) (T -861)) +((-2442 (($ $ $) 12)) (-1893 (($ $ $) 11)) (-3985 (((-112) $ $) 9)) (-3049 (((-112) $ $) 15)) (-3024 (((-112) $ $) 13)) (-3037 (((-112) $ $) 16))) +(((-861 |#1|) (-10 -8 (-15 -2442 (|#1| |#1| |#1|)) (-15 -1893 (|#1| |#1| |#1|)) (-15 -3037 ((-112) |#1| |#1|)) (-15 -3049 ((-112) |#1| |#1|)) (-15 -3024 ((-112) |#1| |#1|)) (-15 -3985 ((-112) |#1| |#1|))) (-862)) (T -861)) NIL -(-10 -8 (-15 -3492 (|#1| |#1| |#1|)) (-15 -2726 (|#1| |#1| |#1|)) (-15 -3966 ((-112) |#1| |#1|)) (-15 -3977 ((-112) |#1| |#1|)) (-15 -3955 ((-112) |#1| |#1|)) (-15 -1531 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19))) +(-10 -8 (-15 -2442 (|#1| |#1| |#1|)) (-15 -1893 (|#1| |#1| |#1|)) (-15 -3037 ((-112) |#1| |#1|)) (-15 -3049 ((-112) |#1| |#1|)) (-15 -3024 ((-112) |#1| |#1|)) (-15 -3985 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19))) (((-862) (-141)) (T -862)) -((-3944 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3955 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3977 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3966 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-2726 (*1 *1 *1 *1) (-4 *1 (-862))) (-3492 (*1 *1 *1 *1) (-4 *1 (-862)))) -(-13 (-1119) (-10 -8 (-15 -3944 ((-112) $ $)) (-15 -3955 ((-112) $ $)) (-15 -3977 ((-112) $ $)) (-15 -3966 ((-112) $ $)) (-15 -2726 ($ $ $)) (-15 -3492 ($ $ $)))) +((-3010 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3024 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3049 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-3037 (*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) (-1893 (*1 *1 *1 *1) (-4 *1 (-862))) (-2442 (*1 *1 *1 *1) (-4 *1 (-862)))) +(-13 (-1119) (-10 -8 (-15 -3010 ((-112) $ $)) (-15 -3024 ((-112) $ $)) (-15 -3049 ((-112) $ $)) (-15 -3037 ((-112) $ $)) (-15 -1893 ($ $ $)) (-15 -2442 ($ $ $)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-3520 (($ $ $) 49)) (-1951 (($ $ $) 48)) (-2600 (($ $ $) 46)) (-2861 (($ $ $) 55)) (-3625 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 50)) (-2970 (((-3 $ "failed") $ $) 53)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1363 (($ $) 39)) (-4030 (($ $ $) 43)) (-4056 (($ $ $) 42)) (-4236 (($ $ $) 51)) (-4404 (($ $ $) 57)) (-3407 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 45)) (-4164 (((-3 $ "failed") $ $) 52)) (-2022 (((-3 $ "failed") $ |#2|) 32)) (-3714 ((|#2| $) 36)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-3076 (((-656 |#2|) $) 21)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-863 |#1| |#2|) (-10 -8 (-15 -4236 (|#1| |#1| |#1|)) (-15 -3625 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2582 |#1|)) |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2970 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3520 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -2600 (|#1| |#1| |#1|)) (-15 -3407 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2582 |#1|)) |#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -4164 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4030 (|#1| |#1| |#1|)) (-15 -4056 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3076 ((-656 |#2|) |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4092 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4092 ((-874) |#1|))) (-864 |#2|) (-1068)) (T -863)) +((-1481 (($ $ $) 49)) (-2714 (($ $ $) 48)) (-3756 (($ $ $) 46)) (-2939 (($ $ $) 55)) (-1719 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 50)) (-1996 (((-3 $ "failed") $ $) 53)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2985 (($ $) 39)) (-3075 (($ $ $) 43)) (-1620 (($ $ $) 42)) (-3127 (($ $ $) 51)) (-4362 (($ $ $) 57)) (-1366 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 45)) (-4218 (((-3 $ "failed") $ $) 52)) (-3463 (((-3 $ "failed") $ |#2|) 32)) (-3648 ((|#2| $) 36)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#2|) 13)) (-2927 (((-656 |#2|) $) 21)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-863 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1| |#1|)) (-15 -1719 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2202 |#1|)) |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -1996 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1481 (|#1| |#1| |#1|)) (-15 -2714 (|#1| |#1| |#1|)) (-15 -3756 (|#1| |#1| |#1|)) (-15 -1366 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2202 |#1|)) |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1|)) (-15 -4218 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -1620 (|#1| |#1| |#1|)) (-15 -2985 (|#1| |#1|)) (-15 -3648 (|#2| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2927 ((-656 |#2|) |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3563 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3563 ((-874) |#1|))) (-864 |#2|) (-1068)) (T -863)) NIL -(-10 -8 (-15 -4236 (|#1| |#1| |#1|)) (-15 -3625 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2582 |#1|)) |#1| |#1|)) (-15 -2861 (|#1| |#1| |#1|)) (-15 -2970 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3520 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -2600 (|#1| |#1| |#1|)) (-15 -3407 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2582 |#1|)) |#1| |#1|)) (-15 -4404 (|#1| |#1| |#1|)) (-15 -4164 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4030 (|#1| |#1| |#1|)) (-15 -4056 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -2022 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3076 ((-656 |#2|) |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4092 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3520 (($ $ $) 50 (|has| |#1| (-374)))) (-1951 (($ $ $) 51 (|has| |#1| (-374)))) (-2600 (($ $ $) 53 (|has| |#1| (-374)))) (-2861 (($ $ $) 48 (|has| |#1| (-374)))) (-3625 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 47 (|has| |#1| (-374)))) (-2970 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3289 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 52 (|has| |#1| (-374)))) (-2974 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-2378 (((-576) $) 79 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 75)) (-1717 (($ $) 69)) (-3179 (((-3 $ "failed") $) 37)) (-1363 (($ $) 60 (|has| |#1| (-464)))) (-1810 (((-112) $) 35)) (-1518 (($ |#1| (-783)) 67)) (-1390 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 62 (|has| |#1| (-568)))) (-3668 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63 (|has| |#1| (-568)))) (-1915 (((-783) $) 71)) (-4030 (($ $ $) 57 (|has| |#1| (-374)))) (-4056 (($ $ $) 58 (|has| |#1| (-374)))) (-4236 (($ $ $) 46 (|has| |#1| (-374)))) (-4404 (($ $ $) 55 (|has| |#1| (-374)))) (-3407 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 54 (|has| |#1| (-374)))) (-4164 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-2091 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 59 (|has| |#1| (-374)))) (-1692 ((|#1| $) 70)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2022 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-2369 (((-783) $) 72)) (-3714 ((|#1| $) 61 (|has| |#1| (-464)))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 73)) (-3076 (((-656 |#1|) $) 66)) (-2430 ((|#1| $ (-783)) 68)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2690 ((|#1| $ |#1| |#1|) 65)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) +(-10 -8 (-15 -3127 (|#1| |#1| |#1|)) (-15 -1719 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2202 |#1|)) |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -1996 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1481 (|#1| |#1| |#1|)) (-15 -2714 (|#1| |#1| |#1|)) (-15 -3756 (|#1| |#1| |#1|)) (-15 -1366 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2202 |#1|)) |#1| |#1|)) (-15 -4362 (|#1| |#1| |#1|)) (-15 -4218 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3075 (|#1| |#1| |#1|)) (-15 -1620 (|#1| |#1| |#1|)) (-15 -2985 (|#1| |#1|)) (-15 -3648 (|#2| |#1|)) (-15 -3463 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2927 ((-656 |#2|) |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3563 (|#1| (-576))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1481 (($ $ $) 50 (|has| |#1| (-374)))) (-2714 (($ $ $) 51 (|has| |#1| (-374)))) (-3756 (($ $ $) 53 (|has| |#1| (-374)))) (-2939 (($ $ $) 48 (|has| |#1| (-374)))) (-1719 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 47 (|has| |#1| (-374)))) (-1996 (((-3 $ "failed") $ $) 49 (|has| |#1| (-374)))) (-3878 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 52 (|has| |#1| (-374)))) (-1539 (((-3 (-576) "failed") $) 80 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 77 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 74)) (-4056 (((-576) $) 79 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 76 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 75)) (-2166 (($ $) 69)) (-1551 (((-3 $ "failed") $) 37)) (-2985 (($ $) 60 (|has| |#1| (-464)))) (-1414 (((-112) $) 35)) (-1970 (($ |#1| (-783)) 67)) (-1645 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 62 (|has| |#1| (-568)))) (-2550 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63 (|has| |#1| (-568)))) (-3403 (((-783) $) 71)) (-3075 (($ $ $) 57 (|has| |#1| (-374)))) (-1620 (($ $ $) 58 (|has| |#1| (-374)))) (-3127 (($ $ $) 46 (|has| |#1| (-374)))) (-4362 (($ $ $) 55 (|has| |#1| (-374)))) (-1366 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 54 (|has| |#1| (-374)))) (-4218 (((-3 $ "failed") $ $) 56 (|has| |#1| (-374)))) (-3376 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 59 (|has| |#1| (-374)))) (-2142 ((|#1| $) 70)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3463 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-568)))) (-1433 (((-783) $) 72)) (-3648 ((|#1| $) 61 (|has| |#1| (-464)))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 78 (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) 73)) (-2927 (((-656 |#1|) $) 66)) (-4333 ((|#1| $ (-783)) 68)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3491 ((|#1| $ |#1| |#1|) 65)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81))) (((-864 |#1|) (-141) (-1068)) (T -864)) -((-2369 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-1692 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-1717 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-2430 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-1518 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-656 *3)))) (-2690 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-2022 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-3668 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-864 *3)))) (-1390 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-864 *3)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-1363 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-2091 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-864 *3)))) (-4056 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-4030 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-4164 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-4404 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3407 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2582 *1))) (-4 *1 (-864 *3)))) (-2600 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3289 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-864 *3)))) (-1951 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3520 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-2970 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-2861 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3625 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2582 *1))) (-4 *1 (-864 *3)))) (-4236 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(-13 (-1068) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -2369 ((-783) $)) (-15 -1915 ((-783) $)) (-15 -1692 (|t#1| $)) (-15 -1717 ($ $)) (-15 -2430 (|t#1| $ (-783))) (-15 -1518 ($ |t#1| (-783))) (-15 -3076 ((-656 |t#1|) $)) (-15 -2690 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -2022 ((-3 $ "failed") $ |t#1|)) (-15 -3668 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -1390 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3714 (|t#1| $)) (-15 -1363 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -2091 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -4056 ($ $ $)) (-15 -4030 ($ $ $)) (-15 -4164 ((-3 $ "failed") $ $)) (-15 -4404 ($ $ $)) (-15 -3407 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $)) (-15 -2600 ($ $ $)) (-15 -3289 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -1951 ($ $ $)) (-15 -3520 ($ $ $)) (-15 -2970 ((-3 $ "failed") $ $)) (-15 -2861 ($ $ $)) (-15 -3625 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $)) (-15 -4236 ($ $ $))) |%noBranch|))) +((-1433 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-2142 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-2166 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-1970 (*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-656 *3)))) (-3491 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-2550 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-864 *3)))) (-1645 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-864 *3)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-2985 (*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) (-3376 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-864 *3)))) (-1620 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3075 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-4218 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-4362 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-1366 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2202 *1))) (-4 *1 (-864 *3)))) (-3756 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3878 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-864 *3)))) (-2714 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-1481 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-1996 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-2939 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-1719 (*1 *2 *1 *1) (-12 (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2202 *1))) (-4 *1 (-864 *3)))) (-3127 (*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(-13 (-1068) (-111 |t#1| |t#1|) (-423 |t#1|) (-10 -8 (-15 -1433 ((-783) $)) (-15 -3403 ((-783) $)) (-15 -2142 (|t#1| $)) (-15 -2166 ($ $)) (-15 -4333 (|t#1| $ (-783))) (-15 -1970 ($ |t#1| (-783))) (-15 -2927 ((-656 |t#1|) $)) (-15 -3491 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -3463 ((-3 $ "failed") $ |t#1|)) (-15 -2550 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -1645 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3648 (|t#1| $)) (-15 -2985 ($ $))) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-15 -3376 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -1620 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -4218 ((-3 $ "failed") $ $)) (-15 -4362 ($ $ $)) (-15 -1366 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $)) (-15 -3756 ($ $ $)) (-15 -3878 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -2714 ($ $ $)) (-15 -1481 ($ $ $)) (-15 -1996 ((-3 $ "failed") $ $)) (-15 -2939 ($ $ $)) (-15 -1719 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $)) (-15 -3127 ($ $ $))) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-423 |#1|) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1057 #0#) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-1539 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3289 (((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-1390 (((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-3668 (((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-2091 (((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-2690 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) -(((-865 |#1| |#2|) (-10 -7 (-15 -1539 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2690 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3668 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1390 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2091 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3289 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1068) (-864 |#1|)) (T -865)) -((-3289 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2091 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-1390 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-3668 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2690 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1068)) (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2)))) (-1539 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1068)) (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5))))) -(-10 -7 (-15 -1539 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2690 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -3668 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1390 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2091 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3289 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3520 (($ $ $) NIL (|has| |#1| (-374)))) (-1951 (($ $ $) NIL (|has| |#1| (-374)))) (-2600 (($ $ $) NIL (|has| |#1| (-374)))) (-2861 (($ $ $) NIL (|has| |#1| (-374)))) (-3625 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2970 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3289 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 34 (|has| |#1| (-374)))) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-464)))) (-1949 (((-874) $ (-874)) NIL)) (-1810 (((-112) $) NIL)) (-1518 (($ |#1| (-783)) NIL)) (-1390 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 30 (|has| |#1| (-568)))) (-3668 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 28 (|has| |#1| (-568)))) (-1915 (((-783) $) NIL)) (-4030 (($ $ $) NIL (|has| |#1| (-374)))) (-4056 (($ $ $) NIL (|has| |#1| (-374)))) (-4236 (($ $ $) NIL (|has| |#1| (-374)))) (-4404 (($ $ $) NIL (|has| |#1| (-374)))) (-3407 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-4164 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-2091 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 32 (|has| |#1| (-374)))) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2369 (((-783) $) NIL)) (-3714 ((|#1| $) NIL (|has| |#1| (-464)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-783)) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2690 ((|#1| $ |#1| |#1|) 15)) (-4300 (($) NIL T CONST)) (-4310 (($) 23 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) 19) (($ $ (-783)) 24)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-866 |#1| |#2| |#3|) (-13 (-864 |#1|) (-10 -8 (-15 -1949 ((-874) $ (-874))))) (-1068) (-99 |#1|) (-1 |#1| |#1|)) (T -866)) -((-1949 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-864 |#1|) (-10 -8 (-15 -1949 ((-874) $ (-874))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3520 (($ $ $) NIL (|has| |#2| (-374)))) (-1951 (($ $ $) NIL (|has| |#2| (-374)))) (-2600 (($ $ $) NIL (|has| |#2| (-374)))) (-2861 (($ $ $) NIL (|has| |#2| (-374)))) (-3625 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#2| (-374)))) (-2970 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3289 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#2| (-374)))) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) NIL)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#2| (-464)))) (-1810 (((-112) $) NIL)) (-1518 (($ |#2| (-783)) 17)) (-1390 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#2| (-568)))) (-3668 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#2| (-568)))) (-1915 (((-783) $) NIL)) (-4030 (($ $ $) NIL (|has| |#2| (-374)))) (-4056 (($ $ $) NIL (|has| |#2| (-374)))) (-4236 (($ $ $) NIL (|has| |#2| (-374)))) (-4404 (($ $ $) NIL (|has| |#2| (-374)))) (-3407 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#2| (-374)))) (-4164 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-2091 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#2| (-374)))) (-1692 ((|#2| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2022 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-2369 (((-783) $) NIL)) (-3714 ((|#2| $) NIL (|has| |#2| (-464)))) (-4092 (((-874) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) NIL) (($ (-1283 |#1|)) 19)) (-3076 (((-656 |#2|) $) NIL)) (-2430 ((|#2| $ (-783)) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2690 ((|#2| $ |#2| |#2|) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) 13 T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-867 |#1| |#2| |#3| |#4|) (-13 (-864 |#2|) (-628 (-1283 |#1|))) (-1196) (-1068) (-99 |#2|) (-1 |#2| |#2|)) (T -867)) -NIL -(-13 (-864 |#2|) (-628 (-1283 |#1|))) -((-4430 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-1525 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-2237 ((|#1| (-783) |#1|) 40)) (-1648 ((|#1| (-783) |#1|) 38)) (-1550 ((|#1| (-783) |#1|) 37))) -(((-868 |#1|) (-10 -7 (-15 -1550 (|#1| (-783) |#1|)) (-15 -1648 (|#1| (-783) |#1|)) (-15 -2237 (|#1| (-783) |#1|)) (-15 -1525 (|#1| (-783) |#1|)) (-15 -1525 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4430 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -868)) -((-4430 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1525 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-1525 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-2237 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-1648 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-1550 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))) -(-10 -7 (-15 -1550 (|#1| (-783) |#1|)) (-15 -1648 (|#1| (-783) |#1|)) (-15 -2237 (|#1| (-783) |#1|)) (-15 -1525 (|#1| (-783) |#1|)) (-15 -1525 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -4430 (|#1| (-783) |#1|)) |%noBranch|)) -((-2034 (((-112) $ $) 7)) (-3492 (($ $ $) 14)) (-2726 (($ $ $) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3977 (((-112) $ $) 17)) (-3955 (((-112) $ $) 18)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 16)) (-3944 (((-112) $ $) 19)) (** (($ $ (-938)) 22)) (* (($ $ $) 21))) +((-3562 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3878 (((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-374)))) (-1645 (((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-568)))) (-2550 (((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-568)))) (-3376 (((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-374)))) (-3491 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33))) +(((-865 |#1| |#2|) (-10 -7 (-15 -3562 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3491 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -2550 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1645 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3376 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3878 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1068) (-864 |#1|)) (T -865)) +((-3878 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-3376 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-1645 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-2550 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-865 *5 *3)) (-4 *3 (-864 *5)))) (-3491 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1068)) (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2)))) (-3562 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1068)) (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5))))) +(-10 -7 (-15 -3562 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3491 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-568)) (PROGN (-15 -2550 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1645 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3376 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3878 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1481 (($ $ $) NIL (|has| |#1| (-374)))) (-2714 (($ $ $) NIL (|has| |#1| (-374)))) (-3756 (($ $ $) NIL (|has| |#1| (-374)))) (-2939 (($ $ $) NIL (|has| |#1| (-374)))) (-1719 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1996 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3878 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 34 (|has| |#1| (-374)))) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-464)))) (-2532 (((-874) $ (-874)) NIL)) (-1414 (((-112) $) NIL)) (-1970 (($ |#1| (-783)) NIL)) (-1645 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 30 (|has| |#1| (-568)))) (-2550 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 28 (|has| |#1| (-568)))) (-3403 (((-783) $) NIL)) (-3075 (($ $ $) NIL (|has| |#1| (-374)))) (-1620 (($ $ $) NIL (|has| |#1| (-374)))) (-3127 (($ $ $) NIL (|has| |#1| (-374)))) (-4362 (($ $ $) NIL (|has| |#1| (-374)))) (-1366 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-4218 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3376 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 32 (|has| |#1| (-374)))) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1433 (((-783) $) NIL)) (-3648 ((|#1| $) NIL (|has| |#1| (-464)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-1057 (-419 (-576))))) (($ |#1|) NIL)) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-783)) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3491 ((|#1| $ |#1| |#1|) 15)) (-2800 (($) NIL T CONST)) (-2810 (($) 23 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) 19) (($ $ (-783)) 24)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-866 |#1| |#2| |#3|) (-13 (-864 |#1|) (-10 -8 (-15 -2532 ((-874) $ (-874))))) (-1068) (-99 |#1|) (-1 |#1| |#1|)) (T -866)) +((-2532 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-864 |#1|) (-10 -8 (-15 -2532 ((-874) $ (-874))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1481 (($ $ $) NIL (|has| |#2| (-374)))) (-2714 (($ $ $) NIL (|has| |#2| (-374)))) (-3756 (($ $ $) NIL (|has| |#2| (-374)))) (-2939 (($ $ $) NIL (|has| |#2| (-374)))) (-1719 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#2| (-374)))) (-1996 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3878 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#2| (-374)))) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) NIL)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#2| (-464)))) (-1414 (((-112) $) NIL)) (-1970 (($ |#2| (-783)) 17)) (-1645 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#2| (-568)))) (-2550 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#2| (-568)))) (-3403 (((-783) $) NIL)) (-3075 (($ $ $) NIL (|has| |#2| (-374)))) (-1620 (($ $ $) NIL (|has| |#2| (-374)))) (-3127 (($ $ $) NIL (|has| |#2| (-374)))) (-4362 (($ $ $) NIL (|has| |#2| (-374)))) (-1366 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#2| (-374)))) (-4218 (((-3 $ "failed") $ $) NIL (|has| |#2| (-374)))) (-3376 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#2| (-374)))) (-2142 ((|#2| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3463 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-1433 (((-783) $) NIL)) (-3648 ((|#2| $) NIL (|has| |#2| (-464)))) (-3563 (((-874) $) 24) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) NIL) (($ (-1282 |#1|)) 19)) (-2927 (((-656 |#2|) $) NIL)) (-4333 ((|#2| $ (-783)) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3491 ((|#2| $ |#2| |#2|) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) 13 T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-867 |#1| |#2| |#3| |#4|) (-13 (-864 |#2|) (-628 (-1282 |#1|))) (-1195) (-1068) (-99 |#2|) (-1 |#2| |#2|)) (T -867)) +NIL +(-13 (-864 |#2|) (-628 (-1282 |#1|))) +((-3523 ((|#1| (-783) |#1|) 45 (|has| |#1| (-38 (-419 (-576)))))) (-1608 ((|#1| (-783) (-783) |#1|) 36) ((|#1| (-783) |#1|) 24)) (-3971 ((|#1| (-783) |#1|) 40)) (-4405 ((|#1| (-783) |#1|) 38)) (-2266 ((|#1| (-783) |#1|) 37))) +(((-868 |#1|) (-10 -7 (-15 -2266 (|#1| (-783) |#1|)) (-15 -4405 (|#1| (-783) |#1|)) (-15 -3971 (|#1| (-783) |#1|)) (-15 -1608 (|#1| (-783) |#1|)) (-15 -1608 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3523 (|#1| (-783) |#1|)) |%noBranch|)) (-174)) (T -868)) +((-3523 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-174)))) (-1608 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-1608 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-3971 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-4405 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) (-2266 (*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))) +(-10 -7 (-15 -2266 (|#1| (-783) |#1|)) (-15 -4405 (|#1| (-783) |#1|)) (-15 -3971 (|#1| (-783) |#1|)) (-15 -1608 (|#1| (-783) |#1|)) (-15 -1608 (|#1| (-783) (-783) |#1|)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3523 (|#1| (-783) |#1|)) |%noBranch|)) +((-3474 (((-112) $ $) 7)) (-2442 (($ $ $) 14)) (-1893 (($ $ $) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-3049 (((-112) $ $) 17)) (-3024 (((-112) $ $) 18)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 16)) (-3010 (((-112) $ $) 19)) (** (($ $ (-938)) 22)) (* (($ $ $) 21))) (((-869) (-141)) (T -869)) NIL (-13 (-862) (-1131)) (((-102) . T) ((-625 (-874)) . T) ((-862) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1731 (((-576) $) 14)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 20) (($ (-576)) 13)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 9)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 11))) -(((-870) (-13 (-862) (-10 -8 (-15 -4092 ($ (-576))) (-15 -1731 ((-576) $))))) (T -870)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-870)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870))))) -(-13 (-862) (-10 -8 (-15 -4092 ($ (-576))) (-15 -1731 ((-576) $)))) -((-4411 (((-703 (-1245)) $ (-1245)) 15)) (-2950 (((-703 (-561)) $ (-561)) 12)) (-4219 (((-783) $ (-129)) 30))) -(((-871 |#1|) (-10 -8 (-15 -4219 ((-783) |#1| (-129))) (-15 -4411 ((-703 (-1245)) |#1| (-1245))) (-15 -2950 ((-703 (-561)) |#1| (-561)))) (-872)) (T -871)) -NIL -(-10 -8 (-15 -4219 ((-783) |#1| (-129))) (-15 -4411 ((-703 (-1245)) |#1| (-1245))) (-15 -2950 ((-703 (-561)) |#1| (-561)))) -((-4411 (((-703 (-1245)) $ (-1245)) 8)) (-2950 (((-703 (-561)) $ (-561)) 9)) (-4219 (((-783) $ (-129)) 7)) (-2925 (((-703 (-130)) $ (-130)) 10)) (-3603 (($ $) 6))) +((-3474 (((-112) $ $) NIL)) (-3142 (((-576) $) 14)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 20) (($ (-576)) 13)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 9)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 11))) +(((-870) (-13 (-862) (-10 -8 (-15 -3563 ($ (-576))) (-15 -3142 ((-576) $))))) (T -870)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-870)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870))))) +(-13 (-862) (-10 -8 (-15 -3563 ($ (-576))) (-15 -3142 ((-576) $)))) +((-4103 (((-703 (-1244)) $ (-1244)) 15)) (-2139 (((-703 (-561)) $ (-561)) 12)) (-1890 (((-783) $ (-129)) 30))) +(((-871 |#1|) (-10 -8 (-15 -1890 ((-783) |#1| (-129))) (-15 -4103 ((-703 (-1244)) |#1| (-1244))) (-15 -2139 ((-703 (-561)) |#1| (-561)))) (-872)) (T -871)) +NIL +(-10 -8 (-15 -1890 ((-783) |#1| (-129))) (-15 -4103 ((-703 (-1244)) |#1| (-1244))) (-15 -2139 ((-703 (-561)) |#1| (-561)))) +((-4103 (((-703 (-1244)) $ (-1244)) 8)) (-2139 (((-703 (-561)) $ (-561)) 9)) (-1890 (((-783) $ (-129)) 7)) (-1925 (((-703 (-130)) $ (-130)) 10)) (-4382 (($ $) 6))) (((-872) (-141)) (T -872)) -((-2925 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-2950 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-4411 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1245))) (-5 *3 (-1245)))) (-4219 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783))))) -(-13 (-175) (-10 -8 (-15 -2925 ((-703 (-130)) $ (-130))) (-15 -2950 ((-703 (-561)) $ (-561))) (-15 -4411 ((-703 (-1245)) $ (-1245))) (-15 -4219 ((-783) $ (-129))))) +((-1925 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130)))) (-2139 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561)))) (-4103 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1244))) (-5 *3 (-1244)))) (-1890 (*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783))))) +(-13 (-175) (-10 -8 (-15 -1925 ((-703 (-130)) $ (-130))) (-15 -2139 ((-703 (-561)) $ (-561))) (-15 -4103 ((-703 (-1244)) $ (-1244))) (-15 -1890 ((-783) $ (-129))))) (((-175) . T)) -((-4411 (((-703 (-1245)) $ (-1245)) NIL)) (-2950 (((-703 (-561)) $ (-561)) NIL)) (-4219 (((-783) $ (-129)) NIL)) (-2925 (((-703 (-130)) $ (-130)) 22)) (-1649 (($ (-400)) 12) (($ (-1178)) 14)) (-2669 (((-112) $) 19)) (-4092 (((-874) $) 26)) (-3603 (($ $) 23))) -(((-873) (-13 (-872) (-625 (-874)) (-10 -8 (-15 -1649 ($ (-400))) (-15 -1649 ($ (-1178))) (-15 -2669 ((-112) $))))) (T -873)) -((-1649 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873)))) (-1649 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-873)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873))))) -(-13 (-872) (-625 (-874)) (-10 -8 (-15 -1649 ($ (-400))) (-15 -1649 ($ (-1178))) (-15 -2669 ((-112) $)))) -((-2034 (((-112) $ $) NIL) (($ $ $) 85)) (-3428 (($ $ $) 125)) (-1934 (((-576) $) 31) (((-576)) 36)) (-2810 (($ (-576)) 53)) (-3508 (($ $ $) 54) (($ (-656 $)) 84)) (-3325 (($ $ (-656 $)) 82)) (-4039 (((-576) $) 34)) (-3087 (($ $ $) 73)) (-3255 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3243 (((-576) $) 33)) (-3134 (($ $ $) 72)) (-1552 (($ $) 114)) (-2018 (($ $ $) 129)) (-2794 (($ (-656 $)) 61)) (-1336 (($ $ (-656 $)) 79)) (-1623 (($ (-576) (-576)) 55)) (-1776 (($ $) 126) (($ $ $) 127)) (-2128 (($ $ (-576)) 43) (($ $) 46)) (-1975 (($ $ $) 97)) (-1466 (($ $ $) 132)) (-3219 (($ $) 115)) (-1986 (($ $ $) 98)) (-2373 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-3196 (((-1292) $) 10)) (-4165 (($ $) 118) (($ $ (-783)) 122)) (-4392 (($ $ $) 75)) (-3941 (($ $ $) 74)) (-1973 (($ $ (-656 $)) 110)) (-4394 (($ $ $) 113)) (-3832 (($ (-656 $)) 59)) (-2191 (($ $) 70) (($ (-656 $)) 71)) (-3626 (($ $ $) 123)) (-1341 (($ $) 116)) (-2776 (($ $ $) 128)) (-1949 (($ (-576)) 21) (($ (-1196)) 23) (($ (-1178)) 30) (($ (-227)) 25)) (-2457 (($ $ $) 101)) (-2433 (($ $) 102)) (-1859 (((-1292) (-1178)) 15)) (-2098 (($ (-1178)) 14)) (-3297 (($ (-656 (-656 $))) 58)) (-2114 (($ $ (-576)) 42) (($ $) 45)) (-3288 (((-1178) $) NIL)) (-3073 (($ $ $) 131)) (-2576 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2377 (((-112) $) 108)) (-1987 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-2246 (($ (-576)) 39)) (-2927 (((-576) $) 32) (((-576)) 35)) (-2066 (($ $ $) 40) (($ (-656 $)) 83)) (-3139 (((-1139) $) NIL)) (-2022 (($ $ $) 99)) (-2643 (($) 13)) (-4367 (($ $ (-656 $)) 109)) (-4205 (((-1178) (-1178)) 8)) (-1660 (($ $) 117) (($ $ (-783)) 121)) (-2012 (($ $ $) 96)) (-3614 (($ $ (-783)) 139)) (-2063 (($ (-656 $)) 60)) (-4092 (((-874) $) 19)) (-2553 (($ $ (-576)) 41) (($ $) 44)) (-2073 (($ $) 68) (($ (-656 $)) 69)) (-1460 (($ $) 66) (($ (-656 $)) 67)) (-3163 (($ $) 124)) (-1981 (($ (-656 $)) 65)) (-1760 (($ $ $) 105)) (-1531 (((-112) $ $) NIL)) (-3624 (($ $ $) 130)) (-2445 (($ $ $) 100)) (-2619 (($ $ $) 103) (($ $) 104)) (-3977 (($ $ $) 89)) (-3955 (($ $ $) 87)) (-3919 (((-112) $ $) 16) (($ $ $) 17)) (-3966 (($ $ $) 88)) (-3944 (($ $ $) 86)) (-4028 (($ $ $) 94)) (-4018 (($ $ $) 91) (($ $) 92)) (-4007 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) -(((-874) (-13 (-1119) (-10 -8 (-15 -3196 ((-1292) $)) (-15 -2098 ($ (-1178))) (-15 -1859 ((-1292) (-1178))) (-15 -1949 ($ (-576))) (-15 -1949 ($ (-1196))) (-15 -1949 ($ (-1178))) (-15 -1949 ($ (-227))) (-15 -2643 ($)) (-15 -4205 ((-1178) (-1178))) (-15 -1934 ((-576) $)) (-15 -2927 ((-576) $)) (-15 -1934 ((-576))) (-15 -2927 ((-576))) (-15 -3243 ((-576) $)) (-15 -4039 ((-576) $)) (-15 -2246 ($ (-576))) (-15 -2810 ($ (-576))) (-15 -1623 ($ (-576) (-576))) (-15 -2114 ($ $ (-576))) (-15 -2128 ($ $ (-576))) (-15 -2553 ($ $ (-576))) (-15 -2114 ($ $)) (-15 -2128 ($ $)) (-15 -2553 ($ $)) (-15 -2066 ($ $ $)) (-15 -3508 ($ $ $)) (-15 -2066 ($ (-656 $))) (-15 -3508 ($ (-656 $))) (-15 -1973 ($ $ (-656 $))) (-15 -1987 ($ $ (-656 $))) (-15 -1987 ($ $ $ $)) (-15 -4394 ($ $ $)) (-15 -2377 ((-112) $)) (-15 -4367 ($ $ (-656 $))) (-15 -1552 ($ $)) (-15 -3073 ($ $ $)) (-15 -3163 ($ $)) (-15 -3297 ($ (-656 (-656 $)))) (-15 -3428 ($ $ $)) (-15 -1776 ($ $)) (-15 -1776 ($ $ $)) (-15 -2776 ($ $ $)) (-15 -2018 ($ $ $)) (-15 -3624 ($ $ $)) (-15 -1466 ($ $ $)) (-15 -3614 ($ $ (-783))) (-15 -1760 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -3087 ($ $ $)) (-15 -3941 ($ $ $)) (-15 -4392 ($ $ $)) (-15 -1336 ($ $ (-656 $))) (-15 -3325 ($ $ (-656 $))) (-15 -3219 ($ $)) (-15 -1660 ($ $)) (-15 -1660 ($ $ (-783))) (-15 -4165 ($ $)) (-15 -4165 ($ $ (-783))) (-15 -1341 ($ $)) (-15 -3626 ($ $ $)) (-15 -3255 ($ $)) (-15 -3255 ($ $ $)) (-15 -3255 ($ $ $ $)) (-15 -2373 ($ $)) (-15 -2373 ($ $ $)) (-15 -2373 ($ $ $ $)) (-15 -2576 ($ $)) (-15 -2576 ($ $ $)) (-15 -2576 ($ $ $ $)) (-15 -1460 ($ $)) (-15 -1460 ($ (-656 $))) (-15 -2073 ($ $)) (-15 -2073 ($ (-656 $))) (-15 -2191 ($ $)) (-15 -2191 ($ (-656 $))) (-15 -3832 ($ (-656 $))) (-15 -2063 ($ (-656 $))) (-15 -2794 ($ (-656 $))) (-15 -1981 ($ (-656 $))) (-15 -3919 ($ $ $)) (-15 -2034 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -3955 ($ $ $)) (-15 -3966 ($ $ $)) (-15 -3977 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -4018 ($ $)) (-15 * ($ $ $)) (-15 -4028 ($ $ $)) (-15 ** ($ $ $)) (-15 -2012 ($ $ $)) (-15 -1975 ($ $ $)) (-15 -1986 ($ $ $)) (-15 -2022 ($ $ $)) (-15 -2445 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -2433 ($ $)) (-15 -2619 ($ $ $)) (-15 -2619 ($ $))))) (T -874)) -((-3196 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-874)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-874)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-874)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874)))) (-2643 (*1 *1) (-5 *1 (-874))) (-4205 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1934 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2927 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2246 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2810 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1623 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2114 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2128 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2553 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2114 (*1 *1 *1) (-5 *1 (-874))) (-2128 (*1 *1 *1) (-5 *1 (-874))) (-2553 (*1 *1 *1) (-5 *1 (-874))) (-2066 (*1 *1 *1 *1) (-5 *1 (-874))) (-3508 (*1 *1 *1 *1) (-5 *1 (-874))) (-2066 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1973 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1987 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1987 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-4394 (*1 *1 *1 *1) (-5 *1 (-874))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1552 (*1 *1 *1) (-5 *1 (-874))) (-3073 (*1 *1 *1 *1) (-5 *1 (-874))) (-3163 (*1 *1 *1) (-5 *1 (-874))) (-3297 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874)))) (-3428 (*1 *1 *1 *1) (-5 *1 (-874))) (-1776 (*1 *1 *1) (-5 *1 (-874))) (-1776 (*1 *1 *1 *1) (-5 *1 (-874))) (-2776 (*1 *1 *1 *1) (-5 *1 (-874))) (-2018 (*1 *1 *1 *1) (-5 *1 (-874))) (-3624 (*1 *1 *1 *1) (-5 *1 (-874))) (-1466 (*1 *1 *1 *1) (-5 *1 (-874))) (-3614 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-1760 (*1 *1 *1 *1) (-5 *1 (-874))) (-3134 (*1 *1 *1 *1) (-5 *1 (-874))) (-3087 (*1 *1 *1 *1) (-5 *1 (-874))) (-3941 (*1 *1 *1 *1) (-5 *1 (-874))) (-4392 (*1 *1 *1 *1) (-5 *1 (-874))) (-1336 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3325 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3219 (*1 *1 *1) (-5 *1 (-874))) (-1660 (*1 *1 *1) (-5 *1 (-874))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-4165 (*1 *1 *1) (-5 *1 (-874))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-1341 (*1 *1 *1) (-5 *1 (-874))) (-3626 (*1 *1 *1 *1) (-5 *1 (-874))) (-3255 (*1 *1 *1) (-5 *1 (-874))) (-3255 (*1 *1 *1 *1) (-5 *1 (-874))) (-3255 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-2373 (*1 *1 *1) (-5 *1 (-874))) (-2373 (*1 *1 *1 *1) (-5 *1 (-874))) (-2373 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-2576 (*1 *1 *1) (-5 *1 (-874))) (-2576 (*1 *1 *1 *1) (-5 *1 (-874))) (-2576 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-1460 (*1 *1 *1) (-5 *1 (-874))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2073 (*1 *1 *1) (-5 *1 (-874))) (-2073 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2191 (*1 *1 *1) (-5 *1 (-874))) (-2191 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2063 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2794 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1981 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3919 (*1 *1 *1 *1) (-5 *1 (-874))) (-2034 (*1 *1 *1 *1) (-5 *1 (-874))) (-3944 (*1 *1 *1 *1) (-5 *1 (-874))) (-3955 (*1 *1 *1 *1) (-5 *1 (-874))) (-3966 (*1 *1 *1 *1) (-5 *1 (-874))) (-3977 (*1 *1 *1 *1) (-5 *1 (-874))) (-4007 (*1 *1 *1 *1) (-5 *1 (-874))) (-4018 (*1 *1 *1 *1) (-5 *1 (-874))) (-4018 (*1 *1 *1) (-5 *1 (-874))) (* (*1 *1 *1 *1) (-5 *1 (-874))) (-4028 (*1 *1 *1 *1) (-5 *1 (-874))) (** (*1 *1 *1 *1) (-5 *1 (-874))) (-2012 (*1 *1 *1 *1) (-5 *1 (-874))) (-1975 (*1 *1 *1 *1) (-5 *1 (-874))) (-1986 (*1 *1 *1 *1) (-5 *1 (-874))) (-2022 (*1 *1 *1 *1) (-5 *1 (-874))) (-2445 (*1 *1 *1 *1) (-5 *1 (-874))) (-2457 (*1 *1 *1 *1) (-5 *1 (-874))) (-2433 (*1 *1 *1) (-5 *1 (-874))) (-2619 (*1 *1 *1 *1) (-5 *1 (-874))) (-2619 (*1 *1 *1) (-5 *1 (-874)))) -(-13 (-1119) (-10 -8 (-15 -3196 ((-1292) $)) (-15 -2098 ($ (-1178))) (-15 -1859 ((-1292) (-1178))) (-15 -1949 ($ (-576))) (-15 -1949 ($ (-1196))) (-15 -1949 ($ (-1178))) (-15 -1949 ($ (-227))) (-15 -2643 ($)) (-15 -4205 ((-1178) (-1178))) (-15 -1934 ((-576) $)) (-15 -2927 ((-576) $)) (-15 -1934 ((-576))) (-15 -2927 ((-576))) (-15 -3243 ((-576) $)) (-15 -4039 ((-576) $)) (-15 -2246 ($ (-576))) (-15 -2810 ($ (-576))) (-15 -1623 ($ (-576) (-576))) (-15 -2114 ($ $ (-576))) (-15 -2128 ($ $ (-576))) (-15 -2553 ($ $ (-576))) (-15 -2114 ($ $)) (-15 -2128 ($ $)) (-15 -2553 ($ $)) (-15 -2066 ($ $ $)) (-15 -3508 ($ $ $)) (-15 -2066 ($ (-656 $))) (-15 -3508 ($ (-656 $))) (-15 -1973 ($ $ (-656 $))) (-15 -1987 ($ $ (-656 $))) (-15 -1987 ($ $ $ $)) (-15 -4394 ($ $ $)) (-15 -2377 ((-112) $)) (-15 -4367 ($ $ (-656 $))) (-15 -1552 ($ $)) (-15 -3073 ($ $ $)) (-15 -3163 ($ $)) (-15 -3297 ($ (-656 (-656 $)))) (-15 -3428 ($ $ $)) (-15 -1776 ($ $)) (-15 -1776 ($ $ $)) (-15 -2776 ($ $ $)) (-15 -2018 ($ $ $)) (-15 -3624 ($ $ $)) (-15 -1466 ($ $ $)) (-15 -3614 ($ $ (-783))) (-15 -1760 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -3087 ($ $ $)) (-15 -3941 ($ $ $)) (-15 -4392 ($ $ $)) (-15 -1336 ($ $ (-656 $))) (-15 -3325 ($ $ (-656 $))) (-15 -3219 ($ $)) (-15 -1660 ($ $)) (-15 -1660 ($ $ (-783))) (-15 -4165 ($ $)) (-15 -4165 ($ $ (-783))) (-15 -1341 ($ $)) (-15 -3626 ($ $ $)) (-15 -3255 ($ $)) (-15 -3255 ($ $ $)) (-15 -3255 ($ $ $ $)) (-15 -2373 ($ $)) (-15 -2373 ($ $ $)) (-15 -2373 ($ $ $ $)) (-15 -2576 ($ $)) (-15 -2576 ($ $ $)) (-15 -2576 ($ $ $ $)) (-15 -1460 ($ $)) (-15 -1460 ($ (-656 $))) (-15 -2073 ($ $)) (-15 -2073 ($ (-656 $))) (-15 -2191 ($ $)) (-15 -2191 ($ (-656 $))) (-15 -3832 ($ (-656 $))) (-15 -2063 ($ (-656 $))) (-15 -2794 ($ (-656 $))) (-15 -1981 ($ (-656 $))) (-15 -3919 ($ $ $)) (-15 -2034 ($ $ $)) (-15 -3944 ($ $ $)) (-15 -3955 ($ $ $)) (-15 -3966 ($ $ $)) (-15 -3977 ($ $ $)) (-15 -4007 ($ $ $)) (-15 -4018 ($ $ $)) (-15 -4018 ($ $)) (-15 * ($ $ $)) (-15 -4028 ($ $ $)) (-15 ** ($ $ $)) (-15 -2012 ($ $ $)) (-15 -1975 ($ $ $)) (-15 -1986 ($ $ $)) (-15 -2022 ($ $ $)) (-15 -2445 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -2433 ($ $)) (-15 -2619 ($ $ $)) (-15 -2619 ($ $)))) -((-1562 (((-1292) (-656 (-52))) 23)) (-3581 (((-1292) (-1178) (-874)) 13) (((-1292) (-874)) 8) (((-1292) (-1178)) 10))) -(((-875) (-10 -7 (-15 -3581 ((-1292) (-1178))) (-15 -3581 ((-1292) (-874))) (-15 -3581 ((-1292) (-1178) (-874))) (-15 -1562 ((-1292) (-656 (-52)))))) (T -875)) -((-1562 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1292)) (-5 *1 (-875)))) (-3581 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-874)) (-5 *2 (-1292)) (-5 *1 (-875)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-875)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-875))))) -(-10 -7 (-15 -3581 ((-1292) (-1178))) (-15 -3581 ((-1292) (-874))) (-15 -3581 ((-1292) (-1178) (-874))) (-15 -1562 ((-1292) (-656 (-52))))) -((-2034 (((-112) $ $) NIL)) (-1615 (((-3 $ "failed") (-1196)) 36)) (-2247 (((-783)) 32)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) 29)) (-3288 (((-1178) $) 43)) (-2550 (($ (-938)) 28)) (-3139 (((-1139) $) NIL)) (-1505 (((-1196) $) 13) (((-548) $) 19) (((-905 (-390)) $) 26) (((-905 (-576)) $) 22)) (-4092 (((-874) $) 16)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 40)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 38))) -(((-876 |#1|) (-13 (-856) (-626 (-1196)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -1615 ((-3 $ "failed") (-1196))))) (-656 (-1196))) (T -876)) -((-1615 (*1 *1 *2) (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2))))) -(-13 (-856) (-626 (-1196)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -1615 ((-3 $ "failed") (-1196))))) -((-2034 (((-112) $ $) NIL)) (-4124 (((-518) $) 9)) (-1750 (((-656 (-451)) $) 13)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 21)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 16))) -(((-877) (-13 (-1119) (-10 -8 (-15 -4124 ((-518) $)) (-15 -1750 ((-656 (-451)) $))))) (T -877)) -((-4124 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877))))) -(-13 (-1119) (-10 -8 (-15 -4124 ((-518) $)) (-15 -1750 ((-656 (-451)) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-969 |#1|)) NIL) (((-969 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-2471 (((-783)) NIL T CONST)) (-2177 (((-1292) (-783)) NIL)) (-1531 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4028 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-878 |#1| |#2| |#3| |#4|) (-13 (-1068) (-502 (-969 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4028 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2177 ((-1292) (-783))))) (-1068) (-656 (-1196)) (-656 (-783)) (-783)) (T -878)) -((-4028 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-2177 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-878 *4 *5 *6 *7)) (-4 *4 (-1068)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 *3)) (-14 *7 *3)))) -(-13 (-1068) (-502 (-969 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4028 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2177 ((-1292) (-783))))) -((-1438 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-1616 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29))) -(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -1616 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -1438 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1278 |#1|) (-1263 |#1|)) (T -879)) -((-1438 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5)))) (-1616 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5))))) -(-10 -7 (-15 -1616 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -1438 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) -((-1616 (((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) 28))) -(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -1616 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (-15 -1616 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|)))) (-374) (-1196) |#1|) (T -880)) -((-1616 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) (-5 *1 (-880 *5 *6 *7)))) (-1616 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) (-5 *1 (-880 *5 *6 *7))))) -(-10 -7 (-15 -1616 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (-15 -1616 ((-3 (-419 (-1260 |#2| |#1|)) "failed") (-783) (-783) (-1279 |#1| |#2| |#3|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-1403 (($ $ (-576)) 68)) (-4407 (((-112) $ $) 65)) (-3656 (($) 18 T CONST)) (-1776 (($ (-1192 (-576)) (-576)) 67)) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-3986 (($ $) 70)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-1538 (((-783) $) 75)) (-1810 (((-112) $) 35)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-1567 (((-576)) 72)) (-3568 (((-576) $) 71)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2843 (($ $ (-576)) 74)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-3963 (((-1176 (-576)) $) 76)) (-1417 (($ $) 73)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-2728 (((-576) $ (-576)) 69)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-4103 (((-703 (-1244)) $ (-1244)) NIL)) (-2139 (((-703 (-561)) $ (-561)) NIL)) (-1890 (((-783) $ (-129)) NIL)) (-1925 (((-703 (-130)) $ (-130)) 22)) (-1403 (($ (-400)) 12) (($ (-1177)) 14)) (-2508 (((-112) $) 19)) (-3563 (((-874) $) 26)) (-4382 (($ $) 23))) +(((-873) (-13 (-872) (-625 (-874)) (-10 -8 (-15 -1403 ($ (-400))) (-15 -1403 ($ (-1177))) (-15 -2508 ((-112) $))))) (T -873)) +((-1403 (*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-873)))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873))))) +(-13 (-872) (-625 (-874)) (-10 -8 (-15 -1403 ($ (-400))) (-15 -1403 ($ (-1177))) (-15 -2508 ((-112) $)))) +((-3474 (((-112) $ $) NIL) (($ $ $) 85)) (-2623 (($ $ $) 125)) (-3309 (((-576) $) 31) (((-576)) 36)) (-1646 (($ (-576)) 53)) (-2890 (($ $ $) 54) (($ (-656 $)) 84)) (-4342 (($ $ (-656 $)) 82)) (-3796 (((-576) $) 34)) (-4304 (($ $ $) 73)) (-4387 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-3109 (((-576) $) 33)) (-2776 (($ $ $) 72)) (-1328 (($ $) 114)) (-1541 (($ $ $) 129)) (-3735 (($ (-656 $)) 61)) (-4270 (($ $ (-656 $)) 79)) (-3787 (($ (-576) (-576)) 55)) (-3332 (($ $) 126) (($ $ $) 127)) (-4154 (($ $ (-576)) 43) (($ $) 46)) (-3420 (($ $ $) 97)) (-3253 (($ $ $) 132)) (-2535 (($ $) 115)) (-3431 (($ $ $) 98)) (-3653 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2154 (((-1291) $) 10)) (-4317 (($ $) 118) (($ $ (-783)) 122)) (-2564 (($ $ $) 75)) (-1451 (($ $ $) 74)) (-3870 (($ $ (-656 $)) 110)) (-1504 (($ $ $) 113)) (-4112 (($ (-656 $)) 59)) (-2188 (($ $) 70) (($ (-656 $)) 71)) (-1838 (($ $ $) 123)) (-2190 (($ $) 116)) (-2636 (($ $ $) 128)) (-2532 (($ (-576)) 21) (($ (-1195)) 23) (($ (-1177)) 30) (($ (-227)) 25)) (-2768 (($ $ $) 101)) (-2746 (($ $) 102)) (-1402 (((-1291) (-1177)) 15)) (-2847 (($ (-1177)) 14)) (-2457 (($ (-656 (-656 $))) 58)) (-4143 (($ $ (-576)) 42) (($ $) 45)) (-1927 (((-1177) $) NIL)) (-2583 (($ $ $) 131)) (-2690 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-1579 (((-112) $) 108)) (-4068 (($ $ (-656 $)) 111) (($ $ $ $) 112)) (-3693 (($ (-576)) 39)) (-2331 (((-576) $) 32) (((-576)) 35)) (-1627 (($ $ $) 40) (($ (-656 $)) 83)) (-1445 (((-1139) $) NIL)) (-3463 (($ $ $) 99)) (-2597 (($) 13)) (-2871 (($ $ (-656 $)) 109)) (-3781 (((-1177) (-1177)) 8)) (-2962 (($ $) 117) (($ $ (-783)) 121)) (-3450 (($ $ $) 96)) (-2735 (($ $ (-783)) 139)) (-2563 (($ (-656 $)) 60)) (-3563 (((-874) $) 19)) (-2387 (($ $ (-576)) 41) (($ $) 44)) (-4069 (($ $) 68) (($ (-656 $)) 69)) (-1909 (($ $) 66) (($ (-656 $)) 67)) (-4102 (($ $) 124)) (-1870 (($ (-656 $)) 65)) (-4114 (($ $ $) 105)) (-3985 (((-112) $ $) NIL)) (-1607 (($ $ $) 130)) (-2758 (($ $ $) 100)) (-1850 (($ $ $) 103) (($ $) 104)) (-3049 (($ $ $) 89)) (-3024 (($ $ $) 87)) (-2988 (((-112) $ $) 16) (($ $ $) 17)) (-3037 (($ $ $) 88)) (-3010 (($ $ $) 86)) (-3107 (($ $ $) 94)) (-3095 (($ $ $) 91) (($ $) 92)) (-3083 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93))) +(((-874) (-13 (-1119) (-10 -8 (-15 -2154 ((-1291) $)) (-15 -2847 ($ (-1177))) (-15 -1402 ((-1291) (-1177))) (-15 -2532 ($ (-576))) (-15 -2532 ($ (-1195))) (-15 -2532 ($ (-1177))) (-15 -2532 ($ (-227))) (-15 -2597 ($)) (-15 -3781 ((-1177) (-1177))) (-15 -3309 ((-576) $)) (-15 -2331 ((-576) $)) (-15 -3309 ((-576))) (-15 -2331 ((-576))) (-15 -3109 ((-576) $)) (-15 -3796 ((-576) $)) (-15 -3693 ($ (-576))) (-15 -1646 ($ (-576))) (-15 -3787 ($ (-576) (-576))) (-15 -4143 ($ $ (-576))) (-15 -4154 ($ $ (-576))) (-15 -2387 ($ $ (-576))) (-15 -4143 ($ $)) (-15 -4154 ($ $)) (-15 -2387 ($ $)) (-15 -1627 ($ $ $)) (-15 -2890 ($ $ $)) (-15 -1627 ($ (-656 $))) (-15 -2890 ($ (-656 $))) (-15 -3870 ($ $ (-656 $))) (-15 -4068 ($ $ (-656 $))) (-15 -4068 ($ $ $ $)) (-15 -1504 ($ $ $)) (-15 -1579 ((-112) $)) (-15 -2871 ($ $ (-656 $))) (-15 -1328 ($ $)) (-15 -2583 ($ $ $)) (-15 -4102 ($ $)) (-15 -2457 ($ (-656 (-656 $)))) (-15 -2623 ($ $ $)) (-15 -3332 ($ $)) (-15 -3332 ($ $ $)) (-15 -2636 ($ $ $)) (-15 -1541 ($ $ $)) (-15 -1607 ($ $ $)) (-15 -3253 ($ $ $)) (-15 -2735 ($ $ (-783))) (-15 -4114 ($ $ $)) (-15 -2776 ($ $ $)) (-15 -4304 ($ $ $)) (-15 -1451 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -4270 ($ $ (-656 $))) (-15 -4342 ($ $ (-656 $))) (-15 -2535 ($ $)) (-15 -2962 ($ $)) (-15 -2962 ($ $ (-783))) (-15 -4317 ($ $)) (-15 -4317 ($ $ (-783))) (-15 -2190 ($ $)) (-15 -1838 ($ $ $)) (-15 -4387 ($ $)) (-15 -4387 ($ $ $)) (-15 -4387 ($ $ $ $)) (-15 -3653 ($ $)) (-15 -3653 ($ $ $)) (-15 -3653 ($ $ $ $)) (-15 -2690 ($ $)) (-15 -2690 ($ $ $)) (-15 -2690 ($ $ $ $)) (-15 -1909 ($ $)) (-15 -1909 ($ (-656 $))) (-15 -4069 ($ $)) (-15 -4069 ($ (-656 $))) (-15 -2188 ($ $)) (-15 -2188 ($ (-656 $))) (-15 -4112 ($ (-656 $))) (-15 -2563 ($ (-656 $))) (-15 -3735 ($ (-656 $))) (-15 -1870 ($ (-656 $))) (-15 -2988 ($ $ $)) (-15 -3474 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3037 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3095 ($ $ $)) (-15 -3095 ($ $)) (-15 * ($ $ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ $)) (-15 -3450 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -3431 ($ $ $)) (-15 -3463 ($ $ $)) (-15 -2758 ($ $ $)) (-15 -2768 ($ $ $)) (-15 -2746 ($ $)) (-15 -1850 ($ $ $)) (-15 -1850 ($ $))))) (T -874)) +((-2154 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-874)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) (-1402 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-874)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-874)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874)))) (-2597 (*1 *1) (-5 *1 (-874))) (-3781 (*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3309 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2331 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3693 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-1646 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-3787 (*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-4143 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-2387 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) (-4143 (*1 *1 *1) (-5 *1 (-874))) (-4154 (*1 *1 *1) (-5 *1 (-874))) (-2387 (*1 *1 *1) (-5 *1 (-874))) (-1627 (*1 *1 *1 *1) (-5 *1 (-874))) (-2890 (*1 *1 *1 *1) (-5 *1 (-874))) (-1627 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2890 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4068 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4068 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-1504 (*1 *1 *1 *1) (-5 *1 (-874))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874)))) (-2871 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1328 (*1 *1 *1) (-5 *1 (-874))) (-2583 (*1 *1 *1 *1) (-5 *1 (-874))) (-4102 (*1 *1 *1) (-5 *1 (-874))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874)))) (-2623 (*1 *1 *1 *1) (-5 *1 (-874))) (-3332 (*1 *1 *1) (-5 *1 (-874))) (-3332 (*1 *1 *1 *1) (-5 *1 (-874))) (-2636 (*1 *1 *1 *1) (-5 *1 (-874))) (-1541 (*1 *1 *1 *1) (-5 *1 (-874))) (-1607 (*1 *1 *1 *1) (-5 *1 (-874))) (-3253 (*1 *1 *1 *1) (-5 *1 (-874))) (-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-4114 (*1 *1 *1 *1) (-5 *1 (-874))) (-2776 (*1 *1 *1 *1) (-5 *1 (-874))) (-4304 (*1 *1 *1 *1) (-5 *1 (-874))) (-1451 (*1 *1 *1 *1) (-5 *1 (-874))) (-2564 (*1 *1 *1 *1) (-5 *1 (-874))) (-4270 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4342 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2535 (*1 *1 *1) (-5 *1 (-874))) (-2962 (*1 *1 *1) (-5 *1 (-874))) (-2962 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-4317 (*1 *1 *1) (-5 *1 (-874))) (-4317 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) (-2190 (*1 *1 *1) (-5 *1 (-874))) (-1838 (*1 *1 *1 *1) (-5 *1 (-874))) (-4387 (*1 *1 *1) (-5 *1 (-874))) (-4387 (*1 *1 *1 *1) (-5 *1 (-874))) (-4387 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-3653 (*1 *1 *1) (-5 *1 (-874))) (-3653 (*1 *1 *1 *1) (-5 *1 (-874))) (-3653 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-2690 (*1 *1 *1) (-5 *1 (-874))) (-2690 (*1 *1 *1 *1) (-5 *1 (-874))) (-2690 (*1 *1 *1 *1 *1) (-5 *1 (-874))) (-1909 (*1 *1 *1) (-5 *1 (-874))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4069 (*1 *1 *1) (-5 *1 (-874))) (-4069 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2188 (*1 *1 *1) (-5 *1 (-874))) (-2188 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-4112 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-3735 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-1870 (*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) (-2988 (*1 *1 *1 *1) (-5 *1 (-874))) (-3474 (*1 *1 *1 *1) (-5 *1 (-874))) (-3010 (*1 *1 *1 *1) (-5 *1 (-874))) (-3024 (*1 *1 *1 *1) (-5 *1 (-874))) (-3037 (*1 *1 *1 *1) (-5 *1 (-874))) (-3049 (*1 *1 *1 *1) (-5 *1 (-874))) (-3083 (*1 *1 *1 *1) (-5 *1 (-874))) (-3095 (*1 *1 *1 *1) (-5 *1 (-874))) (-3095 (*1 *1 *1) (-5 *1 (-874))) (* (*1 *1 *1 *1) (-5 *1 (-874))) (-3107 (*1 *1 *1 *1) (-5 *1 (-874))) (** (*1 *1 *1 *1) (-5 *1 (-874))) (-3450 (*1 *1 *1 *1) (-5 *1 (-874))) (-3420 (*1 *1 *1 *1) (-5 *1 (-874))) (-3431 (*1 *1 *1 *1) (-5 *1 (-874))) (-3463 (*1 *1 *1 *1) (-5 *1 (-874))) (-2758 (*1 *1 *1 *1) (-5 *1 (-874))) (-2768 (*1 *1 *1 *1) (-5 *1 (-874))) (-2746 (*1 *1 *1) (-5 *1 (-874))) (-1850 (*1 *1 *1 *1) (-5 *1 (-874))) (-1850 (*1 *1 *1) (-5 *1 (-874)))) +(-13 (-1119) (-10 -8 (-15 -2154 ((-1291) $)) (-15 -2847 ($ (-1177))) (-15 -1402 ((-1291) (-1177))) (-15 -2532 ($ (-576))) (-15 -2532 ($ (-1195))) (-15 -2532 ($ (-1177))) (-15 -2532 ($ (-227))) (-15 -2597 ($)) (-15 -3781 ((-1177) (-1177))) (-15 -3309 ((-576) $)) (-15 -2331 ((-576) $)) (-15 -3309 ((-576))) (-15 -2331 ((-576))) (-15 -3109 ((-576) $)) (-15 -3796 ((-576) $)) (-15 -3693 ($ (-576))) (-15 -1646 ($ (-576))) (-15 -3787 ($ (-576) (-576))) (-15 -4143 ($ $ (-576))) (-15 -4154 ($ $ (-576))) (-15 -2387 ($ $ (-576))) (-15 -4143 ($ $)) (-15 -4154 ($ $)) (-15 -2387 ($ $)) (-15 -1627 ($ $ $)) (-15 -2890 ($ $ $)) (-15 -1627 ($ (-656 $))) (-15 -2890 ($ (-656 $))) (-15 -3870 ($ $ (-656 $))) (-15 -4068 ($ $ (-656 $))) (-15 -4068 ($ $ $ $)) (-15 -1504 ($ $ $)) (-15 -1579 ((-112) $)) (-15 -2871 ($ $ (-656 $))) (-15 -1328 ($ $)) (-15 -2583 ($ $ $)) (-15 -4102 ($ $)) (-15 -2457 ($ (-656 (-656 $)))) (-15 -2623 ($ $ $)) (-15 -3332 ($ $)) (-15 -3332 ($ $ $)) (-15 -2636 ($ $ $)) (-15 -1541 ($ $ $)) (-15 -1607 ($ $ $)) (-15 -3253 ($ $ $)) (-15 -2735 ($ $ (-783))) (-15 -4114 ($ $ $)) (-15 -2776 ($ $ $)) (-15 -4304 ($ $ $)) (-15 -1451 ($ $ $)) (-15 -2564 ($ $ $)) (-15 -4270 ($ $ (-656 $))) (-15 -4342 ($ $ (-656 $))) (-15 -2535 ($ $)) (-15 -2962 ($ $)) (-15 -2962 ($ $ (-783))) (-15 -4317 ($ $)) (-15 -4317 ($ $ (-783))) (-15 -2190 ($ $)) (-15 -1838 ($ $ $)) (-15 -4387 ($ $)) (-15 -4387 ($ $ $)) (-15 -4387 ($ $ $ $)) (-15 -3653 ($ $)) (-15 -3653 ($ $ $)) (-15 -3653 ($ $ $ $)) (-15 -2690 ($ $)) (-15 -2690 ($ $ $)) (-15 -2690 ($ $ $ $)) (-15 -1909 ($ $)) (-15 -1909 ($ (-656 $))) (-15 -4069 ($ $)) (-15 -4069 ($ (-656 $))) (-15 -2188 ($ $)) (-15 -2188 ($ (-656 $))) (-15 -4112 ($ (-656 $))) (-15 -2563 ($ (-656 $))) (-15 -3735 ($ (-656 $))) (-15 -1870 ($ (-656 $))) (-15 -2988 ($ $ $)) (-15 -3474 ($ $ $)) (-15 -3010 ($ $ $)) (-15 -3024 ($ $ $)) (-15 -3037 ($ $ $)) (-15 -3049 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3095 ($ $ $)) (-15 -3095 ($ $)) (-15 * ($ $ $)) (-15 -3107 ($ $ $)) (-15 ** ($ $ $)) (-15 -3450 ($ $ $)) (-15 -3420 ($ $ $)) (-15 -3431 ($ $ $)) (-15 -3463 ($ $ $)) (-15 -2758 ($ $ $)) (-15 -2768 ($ $ $)) (-15 -2746 ($ $)) (-15 -1850 ($ $ $)) (-15 -1850 ($ $)))) +((-2661 (((-1291) (-656 (-52))) 23)) (-2728 (((-1291) (-1177) (-874)) 13) (((-1291) (-874)) 8) (((-1291) (-1177)) 10))) +(((-875) (-10 -7 (-15 -2728 ((-1291) (-1177))) (-15 -2728 ((-1291) (-874))) (-15 -2728 ((-1291) (-1177) (-874))) (-15 -2661 ((-1291) (-656 (-52)))))) (T -875)) +((-2661 (*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1291)) (-5 *1 (-875)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-875))))) +(-10 -7 (-15 -2728 ((-1291) (-1177))) (-15 -2728 ((-1291) (-874))) (-15 -2728 ((-1291) (-1177) (-874))) (-15 -2661 ((-1291) (-656 (-52))))) +((-3474 (((-112) $ $) NIL)) (-3022 (((-3 $ "failed") (-1195)) 36)) (-2148 (((-783)) 32)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) 29)) (-1927 (((-1177) $) 43)) (-3257 (($ (-938)) 28)) (-1445 (((-1139) $) NIL)) (-4076 (((-1195) $) 13) (((-548) $) 19) (((-905 (-390)) $) 26) (((-905 (-576)) $) 22)) (-3563 (((-874) $) 16)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 40)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 38))) +(((-876 |#1|) (-13 (-856) (-626 (-1195)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -3022 ((-3 $ "failed") (-1195))))) (-656 (-1195))) (T -876)) +((-3022 (*1 *1 *2) (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2))))) +(-13 (-856) (-626 (-1195)) (-626 (-548)) (-626 (-905 (-390))) (-626 (-905 (-576))) (-10 -8 (-15 -3022 ((-3 $ "failed") (-1195))))) +((-3474 (((-112) $ $) NIL)) (-2706 (((-518) $) 9)) (-2591 (((-656 (-451)) $) 13)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 21)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 16))) +(((-877) (-13 (-1119) (-10 -8 (-15 -2706 ((-518) $)) (-15 -2591 ((-656 (-451)) $))))) (T -877)) +((-2706 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877))))) +(-13 (-1119) (-10 -8 (-15 -2706 ((-518) $)) (-15 -2591 ((-656 (-451)) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-969 |#1|)) NIL) (((-969 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-174)))) (-1858 (((-783)) NIL T CONST)) (-4391 (((-1291) (-783)) NIL)) (-3985 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3107 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-878 |#1| |#2| |#3| |#4|) (-13 (-1068) (-502 (-969 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3107 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4391 ((-1291) (-783))))) (-1068) (-656 (-1195)) (-656 (-783)) (-783)) (T -878)) +((-3107 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *2 (-1068)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-878 *4 *5 *6 *7)) (-4 *4 (-1068)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 *3)) (-14 *7 *3)))) +(-13 (-1068) (-502 (-969 |#1|)) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3107 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4391 ((-1291) (-783))))) +((-4048 (((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|) 38)) (-1356 (((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|) 29))) +(((-879 |#1| |#2| |#3|) (-10 -7 (-15 -1356 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -4048 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) (-374) (-1277 |#1|) (-1262 |#1|)) (T -879)) +((-4048 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5)))) (-1356 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5))))) +(-10 -7 (-15 -1356 ((-3 (-419 |#3|) "failed") (-783) (-783) |#2| |#2|)) (-15 -4048 ((-3 (-176 |#3|) "failed") (-783) (-783) |#2| |#2|))) +((-1356 (((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|)) 30) (((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) 28))) +(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -1356 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (-15 -1356 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|)))) (-374) (-1195) |#1|) (T -880)) +((-1356 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) (-5 *1 (-880 *5 *6 *7)))) (-1356 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) (-5 *1 (-880 *5 *6 *7))))) +(-10 -7 (-15 -1356 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (-15 -1356 ((-3 (-419 (-1259 |#2| |#1|)) "failed") (-783) (-783) (-1278 |#1| |#2| |#3|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-1853 (($ $ (-576)) 68)) (-1727 (((-112) $ $) 65)) (-3767 (($) 18 T CONST)) (-3332 (($ (-1191 (-576)) (-576)) 67)) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-3279 (($ $) 70)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-3333 (((-783) $) 75)) (-1414 (((-112) $) 35)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3325 (((-576)) 72)) (-2018 (((-576) $) 71)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-1714 (($ $ (-576)) 74)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-2924 (((-1176 (-576)) $) 76)) (-2869 (($ $) 73)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-4125 (((-576) $ (-576)) 69)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-881 |#1|) (-141) (-576)) (T -881)) -((-3963 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1176 (-576))))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783)))) (-2843 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1417 (*1 *1 *1) (-4 *1 (-881 *2))) (-1567 (*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-3986 (*1 *1 *1) (-4 *1 (-881 *2))) (-2728 (*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1403 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1776 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4))))) -(-13 (-317) (-148) (-10 -8 (-15 -3963 ((-1176 (-576)) $)) (-15 -1538 ((-783) $)) (-15 -2843 ($ $ (-576))) (-15 -1417 ($ $)) (-15 -1567 ((-576))) (-15 -3568 ((-576) $)) (-15 -3986 ($ $)) (-15 -2728 ((-576) $ (-576))) (-15 -1403 ($ $ (-576))) (-15 -1776 ($ (-1192 (-576)) (-576))))) +((-2924 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1176 (-576))))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783)))) (-1714 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-2869 (*1 *1 *1) (-4 *1 (-881 *2))) (-3325 (*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-3279 (*1 *1 *1) (-4 *1 (-881 *2))) (-4125 (*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-1853 (*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) (-3332 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4))))) +(-13 (-317) (-148) (-10 -8 (-15 -2924 ((-1176 (-576)) $)) (-15 -3333 ((-783) $)) (-15 -1714 ($ $ (-576))) (-15 -2869 ($ $)) (-15 -3325 ((-576))) (-15 -2018 ((-576) $)) (-15 -3279 ($ $)) (-15 -4125 ((-576) $ (-576))) (-15 -1853 ($ $ (-576))) (-15 -3332 ($ (-1191 (-576)) (-576))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-317) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $ (-576)) NIL)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-1776 (($ (-1192 (-576)) (-576)) NIL)) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-3986 (($ $) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1538 (((-783) $) NIL)) (-1810 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1567 (((-576)) NIL)) (-3568 (((-576) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2843 (($ $ (-576)) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3963 (((-1176 (-576)) $) NIL)) (-1417 (($ $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2728 (((-576) $ (-576)) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1853 (($ $ (-576)) NIL)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-3332 (($ (-1191 (-576)) (-576)) NIL)) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3279 (($ $) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-3333 (((-783) $) NIL)) (-1414 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3325 (((-576)) NIL)) (-2018 (((-576) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1714 (($ $ (-576)) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2924 (((-1176 (-576)) $) NIL)) (-2869 (($ $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-4125 (((-576) $ (-576)) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL))) (((-882 |#1|) (-881 |#1|) (-576)) (T -882)) NIL (-881 |#1|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-882 |#1|) (-926)))) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-882 |#1|) (-926)))) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL (|has| (-882 |#1|) (-832)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-882 |#1|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| (-882 |#1|) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-882 |#1|) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-882 |#1|) (-1057 (-576))))) (-2378 (((-882 |#1|) $) NIL) (((-1196) $) NIL (|has| (-882 |#1|) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-882 |#1|) (-1057 (-576)))) (((-576) $) NIL (|has| (-882 |#1|) (-1057 (-576))))) (-1437 (($ $) NIL) (($ (-576) $) NIL)) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-882 |#1|))) (|:| |vec| (-1287 (-882 |#1|)))) (-701 $) (-1287 $)) NIL) (((-701 (-882 |#1|)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-882 |#1|))) (|:| |vec| (-1287 (-882 |#1|)))) (-1287 $) $) NIL) (((-701 (-882 |#1|)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-882 |#1|) (-557)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-882 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-882 |#1|) (-899 (-390))))) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-3894 (((-882 |#1|) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-1171)))) (-3713 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-2726 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-2477 (($ (-1 (-882 |#1|) (-882 |#1|)) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-882 |#1|) (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL (|has| (-882 |#1|) (-317)))) (-3892 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-882 |#1|) (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-882 |#1|) (-926)))) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2259 (($ $ (-656 (-882 |#1|)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-882 |#1|) (-882 |#1|)) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-304 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-304 (-882 |#1|)))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-1196)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-526 (-1196) (-882 |#1|)))) (($ $ (-1196) (-882 |#1|)) NIL (|has| (-882 |#1|) (-526 (-1196) (-882 |#1|))))) (-1787 (((-783) $) NIL)) (-4367 (($ $ (-882 |#1|)) NIL (|has| (-882 |#1|) (-296 (-882 |#1|) (-882 |#1|))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $) NIL (|has| (-882 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-882 |#1|) (-237)))) (-1490 (($ $) NIL)) (-3905 (((-882 |#1|) $) NIL)) (-1505 (((-905 (-576)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-882 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-882 |#1|) (-1041))) (((-227) $) NIL (|has| (-882 |#1|) (-1041)))) (-1555 (((-176 (-419 (-576))) $) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-882 |#1|)) NIL) (($ (-1196)) NIL (|has| (-882 |#1|) (-1057 (-1196))))) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-926))) (|has| (-882 |#1|) (-146))))) (-2471 (((-783)) NIL T CONST)) (-4179 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2728 (((-419 (-576)) $ (-576)) NIL)) (-3423 (($ $) NIL (|has| (-882 |#1|) (-832)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-882 |#1|) (-917 (-1196)))) (($ $) NIL (|has| (-882 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-882 |#1|) (-237)))) (-3977 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3944 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-4028 (($ $ $) NIL) (($ (-882 |#1|) (-882 |#1|)) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-882 |#1|) $) NIL) (($ $ (-882 |#1|)) NIL))) -(((-883 |#1|) (-13 (-1011 (-882 |#1|)) (-10 -8 (-15 -2728 ((-419 (-576)) $ (-576))) (-15 -1555 ((-176 (-419 (-576))) $)) (-15 -1437 ($ $)) (-15 -1437 ($ (-576) $)))) (-576)) (T -883)) -((-2728 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-1555 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576)))) (-1437 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576)))) (-1437 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2)))) -(-13 (-1011 (-882 |#1|)) (-10 -8 (-15 -2728 ((-419 (-576)) $ (-576))) (-15 -1555 ((-176 (-419 (-576))) $)) (-15 -1437 ($ $)) (-15 -1437 ($ (-576) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 ((|#2| $) NIL (|has| |#2| (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL (|has| |#2| (-832)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (|has| |#2| (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576))))) (-2378 ((|#2| $) NIL) (((-1196) $) NIL (|has| |#2| (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-576)))) (((-576) $) NIL (|has| |#2| (-1057 (-576))))) (-1437 (($ $) 35) (($ (-576) $) 38)) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) 64)) (-2446 (($) NIL (|has| |#2| (-557)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3567 (((-112) $) NIL (|has| |#2| (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#2| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#2| (-899 (-390))))) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-3894 ((|#2| $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| |#2| (-1171)))) (-3713 (((-112) $) NIL (|has| |#2| (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL (|has| |#2| (-862)))) (-2726 (($ $ $) NIL (|has| |#2| (-862)))) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 60)) (-3503 (($) NIL (|has| |#2| (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL (|has| |#2| (-317)))) (-3892 ((|#2| $) NIL (|has| |#2| (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2259 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1196)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1196) |#2|))) (($ $ (-1196) |#2|) NIL (|has| |#2| (-526 (-1196) |#2|)))) (-1787 (((-783) $) NIL)) (-4367 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-1490 (($ $) NIL)) (-3905 ((|#2| $) NIL)) (-1505 (((-905 (-576)) $) NIL (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#2| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1041))) (((-227) $) NIL (|has| |#2| (-1041)))) (-1555 (((-176 (-419 (-576))) $) 78)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-4092 (((-874) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1196)) NIL (|has| |#2| (-1057 (-1196))))) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2471 (((-783)) NIL T CONST)) (-4179 ((|#2| $) NIL (|has| |#2| (-557)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2728 (((-419 (-576)) $ (-576)) 71)) (-3423 (($ $) NIL (|has| |#2| (-832)))) (-4300 (($) 15 T CONST)) (-4310 (($) 17 T CONST)) (-4286 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-3977 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3919 (((-112) $ $) 46)) (-3966 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#2| (-862)))) (-4028 (($ $ $) 24) (($ |#2| |#2|) 65)) (-4018 (($ $) 50) (($ $ $) 52)) (-4007 (($ $ $) 48)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) -(((-884 |#1| |#2|) (-13 (-1011 |#2|) (-10 -8 (-15 -2728 ((-419 (-576)) $ (-576))) (-15 -1555 ((-176 (-419 (-576))) $)) (-15 -1437 ($ $)) (-15 -1437 ($ (-576) $)))) (-576) (-881 |#1|)) (T -884)) -((-2728 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5)) (-5 *3 (-576)) (-4 *5 (-881 *4)))) (-1555 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3)))) (-1437 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2)))) (-1437 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3))))) -(-13 (-1011 |#2|) (-10 -8 (-15 -2728 ((-419 (-576)) $ (-576))) (-15 -1555 ((-176 (-419 (-576))) $)) (-15 -1437 ($ $)) (-15 -1437 ($ (-576) $)))) -((-2034 (((-112) $ $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-3357 ((|#2| $) 12)) (-2586 (($ |#1| |#2|) 9)) (-3288 (((-1178) $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-3139 (((-1139) $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-2701 ((|#1| $) 11)) (-4103 (($ |#1| |#2|) 10)) (-4092 (((-874) $) 18 (-3765 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119)))))) (-1531 (((-112) $ $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-3919 (((-112) $ $) 23 (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119)))))) -(((-885 |#1| |#2|) (-13 (-1237) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1119)) (IF (|has| |#2| (-1119)) (-6 (-1119)) |%noBranch|) |%noBranch|) (-15 -2586 ($ |#1| |#2|)) (-15 -4103 ($ |#1| |#2|)) (-15 -2701 (|#1| $)) (-15 -3357 (|#2| $)))) (-1237) (-1237)) (T -885)) -((-2586 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) (-4103 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) (-2701 (*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1237)))) (-3357 (*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1237))))) -(-13 (-1237) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1119)) (IF (|has| |#2| (-1119)) (-6 (-1119)) |%noBranch|) |%noBranch|) (-15 -2586 ($ |#1| |#2|)) (-15 -4103 ($ |#1| |#2|)) (-15 -2701 (|#1| $)) (-15 -3357 (|#2| $)))) -((-2034 (((-112) $ $) NIL)) (-3631 (((-576) $) 16)) (-1711 (($ (-158)) 13)) (-2427 (($ (-158)) 14)) (-3288 (((-1178) $) NIL)) (-3013 (((-158) $) 15)) (-3139 (((-1139) $) NIL)) (-1937 (($ (-158)) 11)) (-3198 (($ (-158)) 10)) (-4092 (((-874) $) 24) (($ (-158)) 17)) (-2228 (($ (-158)) 12)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-886) (-13 (-1119) (-10 -8 (-15 -3198 ($ (-158))) (-15 -1937 ($ (-158))) (-15 -2228 ($ (-158))) (-15 -1711 ($ (-158))) (-15 -2427 ($ (-158))) (-15 -3013 ((-158) $)) (-15 -3631 ((-576) $)) (-15 -4092 ($ (-158)))))) (T -886)) -((-3198 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-1937 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-1711 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2427 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3013 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(-13 (-1119) (-10 -8 (-15 -3198 ($ (-158))) (-15 -1937 ($ (-158))) (-15 -2228 ($ (-158))) (-15 -1711 ($ (-158))) (-15 -2427 ($ (-158))) (-15 -3013 ((-158) $)) (-15 -3631 ((-576) $)) (-15 -4092 ($ (-158))))) -((-4092 (((-326 (-576)) (-419 (-969 (-48)))) 23) (((-326 (-576)) (-969 (-48))) 18))) -(((-887) (-10 -7 (-15 -4092 ((-326 (-576)) (-969 (-48)))) (-15 -4092 ((-326 (-576)) (-419 (-969 (-48))))))) (T -887)) -((-4092 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-887)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-969 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-887))))) -(-10 -7 (-15 -4092 ((-326 (-576)) (-969 (-48)))) (-15 -4092 ((-326 (-576)) (-419 (-969 (-48)))))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 18) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4291 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1178))) 13)) (-1531 (((-112) $ $) NIL)) (-4323 (((-518) $) 10) (((-1178) $) 14)) (-3919 (((-112) $ $) 15))) -(((-888) (-13 (-1102) (-1282) (-10 -8 (-15 -4291 ((-112) $ (|[\|\|]| (-518)))) (-15 -4323 ((-518) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1178)))) (-15 -4323 ((-1178) $))))) (T -888)) -((-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-888)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-888))))) -(-13 (-1102) (-1282) (-10 -8 (-15 -4291 ((-112) $ (|[\|\|]| (-518)))) (-15 -4323 ((-518) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1178)))) (-15 -4323 ((-1178) $)))) -((-2477 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15))) -(((-889 |#1| |#2|) (-10 -7 (-15 -2477 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1237) (-1237)) (T -889)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))) -(-10 -7 (-15 -2477 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) -((-1547 (($ |#1| |#1|) 8)) (-1811 ((|#1| $ (-783)) 15))) -(((-890 |#1|) (-10 -8 (-15 -1547 ($ |#1| |#1|)) (-15 -1811 (|#1| $ (-783)))) (-1237)) (T -890)) -((-1811 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1237)))) (-1547 (*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1237))))) -(-10 -8 (-15 -1547 ($ |#1| |#1|)) (-15 -1811 (|#1| $ (-783)))) -((-2477 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15))) -(((-891 |#1| |#2|) (-10 -7 (-15 -2477 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1237) (-1237)) (T -891)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) -(-10 -7 (-15 -2477 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) -((-1547 (($ |#1| |#1| |#1|) 8)) (-1811 ((|#1| $ (-783)) 15))) -(((-892 |#1|) (-10 -8 (-15 -1547 ($ |#1| |#1| |#1|)) (-15 -1811 (|#1| $ (-783)))) (-1237)) (T -892)) -((-1811 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1237)))) (-1547 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1237))))) -(-10 -8 (-15 -1547 ($ |#1| |#1| |#1|)) (-15 -1811 (|#1| $ (-783)))) -((-1737 (((-656 (-1201)) (-1178)) 9))) -(((-893) (-10 -7 (-15 -1737 ((-656 (-1201)) (-1178))))) (T -893)) -((-1737 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-893))))) -(-10 -7 (-15 -1737 ((-656 (-1201)) (-1178)))) -((-2477 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 15))) -(((-894 |#1| |#2|) (-10 -7 (-15 -2477 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-1237) (-1237)) (T -894)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6))))) -(-10 -7 (-15 -2477 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) -((-3507 (($ |#1| |#1| |#1|) 8)) (-1811 ((|#1| $ (-783)) 15))) -(((-895 |#1|) (-10 -8 (-15 -3507 ($ |#1| |#1| |#1|)) (-15 -1811 (|#1| $ (-783)))) (-1237)) (T -895)) -((-1811 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1237)))) (-3507 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1237))))) -(-10 -8 (-15 -3507 ($ |#1| |#1| |#1|)) (-15 -1811 (|#1| $ (-783)))) -((-2674 (((-1176 (-656 (-576))) (-656 (-576)) (-1176 (-656 (-576)))) 41)) (-3553 (((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-2409 (((-1176 (-656 (-576))) (-656 (-576))) 53) (((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-1867 (((-1176 (-656 (-576))) (-576)) 55)) (-3120 (((-1176 (-656 (-938))) (-1176 (-656 (-938)))) 22)) (-3646 (((-656 (-938)) (-656 (-938))) 18))) -(((-896) (-10 -7 (-15 -3646 ((-656 (-938)) (-656 (-938)))) (-15 -3120 ((-1176 (-656 (-938))) (-1176 (-656 (-938))))) (-15 -3553 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2674 ((-1176 (-656 (-576))) (-656 (-576)) (-1176 (-656 (-576))))) (-15 -2409 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2409 ((-1176 (-656 (-576))) (-656 (-576)))) (-15 -1867 ((-1176 (-656 (-576))) (-576))))) (T -896)) -((-1867 (*1 *2 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576)))) (-2409 (*1 *2 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-2409 (*1 *2 *3 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-2674 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-896)))) (-3553 (*1 *2 *3 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-3120 (*1 *2 *2) (-12 (-5 *2 (-1176 (-656 (-938)))) (-5 *1 (-896)))) (-3646 (*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-896))))) -(-10 -7 (-15 -3646 ((-656 (-938)) (-656 (-938)))) (-15 -3120 ((-1176 (-656 (-938))) (-1176 (-656 (-938))))) (-15 -3553 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2674 ((-1176 (-656 (-576))) (-656 (-576)) (-1176 (-656 (-576))))) (-15 -2409 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2409 ((-1176 (-656 (-576))) (-656 (-576)))) (-15 -1867 ((-1176 (-656 (-576))) (-576)))) -((-1505 (((-905 (-390)) $) 9 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 8 (|has| |#1| (-626 (-905 (-576))))))) -(((-897 |#1|) (-141) (-1237)) (T -897)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-926)))) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-926)))) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL (|has| (-882 |#1|) (-832)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-882 |#1|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| (-882 |#1|) (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-882 |#1|) (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| (-882 |#1|) (-1057 (-576))))) (-4056 (((-882 |#1|) $) NIL) (((-1195) $) NIL (|has| (-882 |#1|) (-1057 (-1195)))) (((-419 (-576)) $) NIL (|has| (-882 |#1|) (-1057 (-576)))) (((-576) $) NIL (|has| (-882 |#1|) (-1057 (-576))))) (-2092 (($ $) NIL) (($ (-576) $) NIL)) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-882 |#1|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-882 |#1|))) (|:| |vec| (-1286 (-882 |#1|)))) (-701 $) (-1286 $)) NIL) (((-701 (-882 |#1|)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-882 |#1|))) (|:| |vec| (-1286 (-882 |#1|)))) (-1286 $) $) NIL) (((-701 (-882 |#1|)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-882 |#1|) (-557)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1910 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-882 |#1|) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-882 |#1|) (-899 (-390))))) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL)) (-1536 (((-882 |#1|) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-1171)))) (-3566 (((-112) $) NIL (|has| (-882 |#1|) (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-1893 (($ $ $) NIL (|has| (-882 |#1|) (-862)))) (-1632 (($ (-1 (-882 |#1|) (-882 |#1|)) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-882 |#1|) (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL (|has| (-882 |#1|) (-317)))) (-3835 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-926)))) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3306 (($ $ (-656 (-882 |#1|)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-882 |#1|) (-882 |#1|)) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-304 (-882 |#1|))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-304 (-882 |#1|)))) NIL (|has| (-882 |#1|) (-319 (-882 |#1|)))) (($ $ (-656 (-1195)) (-656 (-882 |#1|))) NIL (|has| (-882 |#1|) (-526 (-1195) (-882 |#1|)))) (($ $ (-1195) (-882 |#1|)) NIL (|has| (-882 |#1|) (-526 (-1195) (-882 |#1|))))) (-3112 (((-783) $) NIL)) (-2871 (($ $ (-882 |#1|)) NIL (|has| (-882 |#1|) (-296 (-882 |#1|) (-882 |#1|))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-882 |#1|) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-882 |#1|) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-882 |#1|) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-882 |#1|) (-917 (-1195)))) (($ $) NIL (|has| (-882 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-882 |#1|) (-237)))) (-1880 (($ $) NIL)) (-1549 (((-882 |#1|) $) NIL)) (-4076 (((-905 (-576)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-882 |#1|) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-882 |#1|) (-626 (-548)))) (((-390) $) NIL (|has| (-882 |#1|) (-1041))) (((-227) $) NIL (|has| (-882 |#1|) (-1041)))) (-1436 (((-176 (-419 (-576))) $) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL) (($ (-882 |#1|)) NIL) (($ (-1195)) NIL (|has| (-882 |#1|) (-1057 (-1195))))) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| (-882 |#1|) (-926))) (|has| (-882 |#1|) (-146))))) (-1858 (((-783)) NIL T CONST)) (-3270 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-4125 (((-419 (-576)) $ (-576)) NIL)) (-2264 (($ $) NIL (|has| (-882 |#1|) (-832)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-882 |#1|) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-882 |#1|) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-882 |#1|) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-882 |#1|) (-917 (-1195)))) (($ $) NIL (|has| (-882 |#1|) (-237))) (($ $ (-783)) NIL (|has| (-882 |#1|) (-237)))) (-3049 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3010 (((-112) $ $) NIL (|has| (-882 |#1|) (-862)))) (-3107 (($ $ $) NIL) (($ (-882 |#1|) (-882 |#1|)) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-882 |#1|) $) NIL) (($ $ (-882 |#1|)) NIL))) +(((-883 |#1|) (-13 (-1011 (-882 |#1|)) (-10 -8 (-15 -4125 ((-419 (-576)) $ (-576))) (-15 -1436 ((-176 (-419 (-576))) $)) (-15 -2092 ($ $)) (-15 -2092 ($ (-576) $)))) (-576)) (T -883)) +((-4125 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3) (-5 *3 (-576)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576)))) (-2092 (*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576)))) (-2092 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2)))) +(-13 (-1011 (-882 |#1|)) (-10 -8 (-15 -4125 ((-419 (-576)) $ (-576))) (-15 -1436 ((-176 (-419 (-576))) $)) (-15 -2092 ($ $)) (-15 -2092 ($ (-576) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 ((|#2| $) NIL (|has| |#2| (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL (|has| |#2| (-832)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (|has| |#2| (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576))))) (-4056 ((|#2| $) NIL) (((-1195) $) NIL (|has| |#2| (-1057 (-1195)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-576)))) (((-576) $) NIL (|has| |#2| (-1057 (-576))))) (-2092 (($ $) 35) (($ (-576) $) 38)) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) 64)) (-1803 (($) NIL (|has| |#2| (-557)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1910 (((-112) $) NIL (|has| |#2| (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| |#2| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| |#2| (-899 (-390))))) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL)) (-1536 ((|#2| $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| |#2| (-1171)))) (-3566 (((-112) $) NIL (|has| |#2| (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL (|has| |#2| (-862)))) (-1893 (($ $ $) NIL (|has| |#2| (-862)))) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 60)) (-1538 (($) NIL (|has| |#2| (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL (|has| |#2| (-317)))) (-3835 ((|#2| $) NIL (|has| |#2| (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3306 (($ $ (-656 |#2|) (-656 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-319 |#2|))) (($ $ (-304 |#2|)) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-304 |#2|))) NIL (|has| |#2| (-319 |#2|))) (($ $ (-656 (-1195)) (-656 |#2|)) NIL (|has| |#2| (-526 (-1195) |#2|))) (($ $ (-1195) |#2|) NIL (|has| |#2| (-526 (-1195) |#2|)))) (-3112 (((-783) $) NIL)) (-2871 (($ $ |#2|) NIL (|has| |#2| (-296 |#2| |#2|)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-1880 (($ $) NIL)) (-1549 ((|#2| $) NIL)) (-4076 (((-905 (-576)) $) NIL (|has| |#2| (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| |#2| (-626 (-905 (-390))))) (((-548) $) NIL (|has| |#2| (-626 (-548)))) (((-390) $) NIL (|has| |#2| (-1041))) (((-227) $) NIL (|has| |#2| (-1041)))) (-1436 (((-176 (-419 (-576))) $) 78)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-3563 (((-874) $) 106) (($ (-576)) 20) (($ $) NIL) (($ (-419 (-576))) 25) (($ |#2|) 19) (($ (-1195)) NIL (|has| |#2| (-1057 (-1195))))) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3270 ((|#2| $) NIL (|has| |#2| (-557)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-4125 (((-419 (-576)) $ (-576)) 71)) (-2264 (($ $) NIL (|has| |#2| (-832)))) (-2800 (($) 15 T CONST)) (-2810 (($) 17 T CONST)) (-2051 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195)))) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237)))) (-3049 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#2| (-862)))) (-2988 (((-112) $ $) 46)) (-3037 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#2| (-862)))) (-3107 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3095 (($ $) 50) (($ $ $) 52)) (-3083 (($ $ $) 48)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) 61)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 53) (($ $ $) 55) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL))) +(((-884 |#1| |#2|) (-13 (-1011 |#2|) (-10 -8 (-15 -4125 ((-419 (-576)) $ (-576))) (-15 -1436 ((-176 (-419 (-576))) $)) (-15 -2092 ($ $)) (-15 -2092 ($ (-576) $)))) (-576) (-881 |#1|)) (T -884)) +((-4125 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5)) (-5 *3 (-576)) (-4 *5 (-881 *4)))) (-1436 (*1 *2 *1) (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3)))) (-2092 (*1 *1 *1) (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2)))) (-2092 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3))))) +(-13 (-1011 |#2|) (-10 -8 (-15 -4125 ((-419 (-576)) $ (-576))) (-15 -1436 ((-176 (-419 (-576))) $)) (-15 -2092 ($ $)) (-15 -2092 ($ (-576) $)))) +((-3474 (((-112) $ $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-2882 ((|#2| $) 12)) (-3282 (($ |#1| |#2|) 9)) (-1927 (((-1177) $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-1445 (((-1139) $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-3504 ((|#1| $) 11)) (-3573 (($ |#1| |#2|) 10)) (-3563 (((-874) $) 18 (-2835 (-12 (|has| |#1| (-625 (-874))) (|has| |#2| (-625 (-874)))) (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119)))))) (-3985 (((-112) $ $) NIL (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119))))) (-2988 (((-112) $ $) 23 (-12 (|has| |#1| (-1119)) (|has| |#2| (-1119)))))) +(((-885 |#1| |#2|) (-13 (-1236) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1119)) (IF (|has| |#2| (-1119)) (-6 (-1119)) |%noBranch|) |%noBranch|) (-15 -3282 ($ |#1| |#2|)) (-15 -3573 ($ |#1| |#2|)) (-15 -3504 (|#1| $)) (-15 -2882 (|#2| $)))) (-1236) (-1236)) (T -885)) +((-3282 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) (-3573 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) (-3504 (*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1236)))) (-2882 (*1 *2 *1) (-12 (-4 *2 (-1236)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1236))))) +(-13 (-1236) (-10 -8 (IF (|has| |#1| (-625 (-874))) (IF (|has| |#2| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1119)) (IF (|has| |#2| (-1119)) (-6 (-1119)) |%noBranch|) |%noBranch|) (-15 -3282 ($ |#1| |#2|)) (-15 -3573 ($ |#1| |#2|)) (-15 -3504 (|#1| $)) (-15 -2882 (|#2| $)))) +((-3474 (((-112) $ $) NIL)) (-4277 (((-576) $) 16)) (-4205 (($ (-158)) 13)) (-3994 (($ (-158)) 14)) (-1927 (((-1177) $) NIL)) (-4029 (((-158) $) 15)) (-1445 (((-1139) $) NIL)) (-2722 (($ (-158)) 11)) (-2933 (($ (-158)) 10)) (-3563 (((-874) $) 24) (($ (-158)) 17)) (-3287 (($ (-158)) 12)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-886) (-13 (-1119) (-10 -8 (-15 -2933 ($ (-158))) (-15 -2722 ($ (-158))) (-15 -3287 ($ (-158))) (-15 -4205 ($ (-158))) (-15 -3994 ($ (-158))) (-15 -4029 ((-158) $)) (-15 -4277 ((-576) $)) (-15 -3563 ($ (-158)))))) (T -886)) +((-2933 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-2722 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3287 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-4205 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-3994 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) (-4277 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) +(-13 (-1119) (-10 -8 (-15 -2933 ($ (-158))) (-15 -2722 ($ (-158))) (-15 -3287 ($ (-158))) (-15 -4205 ($ (-158))) (-15 -3994 ($ (-158))) (-15 -4029 ((-158) $)) (-15 -4277 ((-576) $)) (-15 -3563 ($ (-158))))) +((-3563 (((-326 (-576)) (-419 (-969 (-48)))) 23) (((-326 (-576)) (-969 (-48))) 18))) +(((-887) (-10 -7 (-15 -3563 ((-326 (-576)) (-969 (-48)))) (-15 -3563 ((-326 (-576)) (-419 (-969 (-48))))))) (T -887)) +((-3563 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 (-48)))) (-5 *2 (-326 (-576))) (-5 *1 (-887)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-969 (-48))) (-5 *2 (-326 (-576))) (-5 *1 (-887))))) +(-10 -7 (-15 -3563 ((-326 (-576)) (-969 (-48)))) (-15 -3563 ((-326 (-576)) (-419 (-969 (-48)))))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 18) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2787 (((-112) $ (|[\|\|]| (-518))) 9) (((-112) $ (|[\|\|]| (-1177))) 13)) (-3985 (((-112) $ $) NIL)) (-2014 (((-518) $) 10) (((-1177) $) 14)) (-2988 (((-112) $ $) 15))) +(((-888) (-13 (-1102) (-1281) (-10 -8 (-15 -2787 ((-112) $ (|[\|\|]| (-518)))) (-15 -2014 ((-518) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1177)))) (-15 -2014 ((-1177) $))))) (T -888)) +((-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-888)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-888))))) +(-13 (-1102) (-1281) (-10 -8 (-15 -2787 ((-112) $ (|[\|\|]| (-518)))) (-15 -2014 ((-518) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1177)))) (-15 -2014 ((-1177) $)))) +((-1632 (((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)) 15))) +(((-889 |#1| |#2|) (-10 -7 (-15 -1632 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) (-1236) (-1236)) (T -889)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6))))) +(-10 -7 (-15 -1632 ((-890 |#2|) (-1 |#2| |#1|) (-890 |#1|)))) +((-3154 (($ |#1| |#1|) 8)) (-1522 ((|#1| $ (-783)) 15))) +(((-890 |#1|) (-10 -8 (-15 -3154 ($ |#1| |#1|)) (-15 -1522 (|#1| $ (-783)))) (-1236)) (T -890)) +((-1522 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1236)))) (-3154 (*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1236))))) +(-10 -8 (-15 -3154 ($ |#1| |#1|)) (-15 -1522 (|#1| $ (-783)))) +((-1632 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15))) +(((-891 |#1| |#2|) (-10 -7 (-15 -1632 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1236) (-1236)) (T -891)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) +(-10 -7 (-15 -1632 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) +((-3154 (($ |#1| |#1| |#1|) 8)) (-1522 ((|#1| $ (-783)) 15))) +(((-892 |#1|) (-10 -8 (-15 -3154 ($ |#1| |#1| |#1|)) (-15 -1522 (|#1| $ (-783)))) (-1236)) (T -892)) +((-1522 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1236)))) (-3154 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1236))))) +(-10 -8 (-15 -3154 ($ |#1| |#1| |#1|)) (-15 -1522 (|#1| $ (-783)))) +((-2925 (((-656 (-1200)) (-1177)) 9))) +(((-893) (-10 -7 (-15 -2925 ((-656 (-1200)) (-1177))))) (T -893)) +((-2925 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-893))))) +(-10 -7 (-15 -2925 ((-656 (-1200)) (-1177)))) +((-1632 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 15))) +(((-894 |#1| |#2|) (-10 -7 (-15 -1632 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-1236) (-1236)) (T -894)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6))))) +(-10 -7 (-15 -1632 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) +((-2773 (($ |#1| |#1| |#1|) 8)) (-1522 ((|#1| $ (-783)) 15))) +(((-895 |#1|) (-10 -8 (-15 -2773 ($ |#1| |#1| |#1|)) (-15 -1522 (|#1| $ (-783)))) (-1236)) (T -895)) +((-1522 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1236)))) (-2773 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1236))))) +(-10 -8 (-15 -2773 ($ |#1| |#1| |#1|)) (-15 -1522 (|#1| $ (-783)))) +((-2681 (((-1176 (-656 (-576))) (-656 (-576)) (-1176 (-656 (-576)))) 41)) (-2954 (((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576))) 31)) (-1569 (((-1176 (-656 (-576))) (-656 (-576))) 53) (((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576))) 50)) (-3111 (((-1176 (-656 (-576))) (-576)) 55)) (-1865 (((-1176 (-656 (-938))) (-1176 (-656 (-938)))) 22)) (-4026 (((-656 (-938)) (-656 (-938))) 18))) +(((-896) (-10 -7 (-15 -4026 ((-656 (-938)) (-656 (-938)))) (-15 -1865 ((-1176 (-656 (-938))) (-1176 (-656 (-938))))) (-15 -2954 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2681 ((-1176 (-656 (-576))) (-656 (-576)) (-1176 (-656 (-576))))) (-15 -1569 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1569 ((-1176 (-656 (-576))) (-656 (-576)))) (-15 -3111 ((-1176 (-656 (-576))) (-576))))) (T -896)) +((-3111 (*1 *2 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576)))) (-1569 (*1 *2 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-1569 (*1 *2 *3 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-2681 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *3 (-656 (-576))) (-5 *1 (-896)))) (-2954 (*1 *2 *3 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1176 (-656 (-938)))) (-5 *1 (-896)))) (-4026 (*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-896))))) +(-10 -7 (-15 -4026 ((-656 (-938)) (-656 (-938)))) (-15 -1865 ((-1176 (-656 (-938))) (-1176 (-656 (-938))))) (-15 -2954 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -2681 ((-1176 (-656 (-576))) (-656 (-576)) (-1176 (-656 (-576))))) (-15 -1569 ((-1176 (-656 (-576))) (-656 (-576)) (-656 (-576)))) (-15 -1569 ((-1176 (-656 (-576))) (-656 (-576)))) (-15 -3111 ((-1176 (-656 (-576))) (-576)))) +((-4076 (((-905 (-390)) $) 9 (|has| |#1| (-626 (-905 (-390))))) (((-905 (-576)) $) 8 (|has| |#1| (-626 (-905 (-576))))))) +(((-897 |#1|) (-141) (-1236)) (T -897)) NIL (-13 (-10 -7 (IF (|has| |t#1| (-626 (-905 (-576)))) (-6 (-626 (-905 (-576)))) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-390)))) (-6 (-626 (-905 (-390)))) |%noBranch|))) (((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576))))) -((-2034 (((-112) $ $) NIL)) (-1992 (($) 14)) (-2831 (($ (-902 |#1| |#2|) (-902 |#1| |#3|)) 28)) (-4118 (((-902 |#1| |#3|) $) 16)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1546 (((-112) $) 22)) (-2652 (($) 19)) (-4092 (((-874) $) 31)) (-1531 (((-112) $ $) NIL)) (-1604 (((-902 |#1| |#2|) $) 15)) (-3919 (((-112) $ $) 26))) -(((-898 |#1| |#2| |#3|) (-13 (-1119) (-10 -8 (-15 -1546 ((-112) $)) (-15 -2652 ($)) (-15 -1992 ($)) (-15 -2831 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -1604 ((-902 |#1| |#2|) $)) (-15 -4118 ((-902 |#1| |#3|) $)))) (-1119) (-1119) (-678 |#2|)) (T -898)) -((-1546 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4)))) (-2652 (*1 *1) (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) (-4 *4 (-678 *3)))) (-1992 (*1 *1) (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) (-4 *4 (-678 *3)))) (-2831 (*1 *1 *2 *3) (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6)))) (-1604 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4)))) (-4118 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *5)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4))))) -(-13 (-1119) (-10 -8 (-15 -1546 ((-112) $)) (-15 -2652 ($)) (-15 -1992 ($)) (-15 -2831 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -1604 ((-902 |#1| |#2|) $)) (-15 -4118 ((-902 |#1| |#3|) $)))) -((-2034 (((-112) $ $) 7)) (-4375 (((-902 |#1| $) $ (-905 |#1|) (-902 |#1| $)) 14)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-3474 (((-112) $ $) NIL)) (-4033 (($) 14)) (-3932 (($ (-902 |#1| |#2|) (-902 |#1| |#3|)) 28)) (-3677 (((-902 |#1| |#3|) $) 16)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3043 (((-112) $) 22)) (-4170 (($) 19)) (-3563 (((-874) $) 31)) (-3985 (((-112) $ $) NIL)) (-1594 (((-902 |#1| |#2|) $) 15)) (-2988 (((-112) $ $) 26))) +(((-898 |#1| |#2| |#3|) (-13 (-1119) (-10 -8 (-15 -3043 ((-112) $)) (-15 -4170 ($)) (-15 -4033 ($)) (-15 -3932 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -1594 ((-902 |#1| |#2|) $)) (-15 -3677 ((-902 |#1| |#3|) $)))) (-1119) (-1119) (-678 |#2|)) (T -898)) +((-3043 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4)))) (-4170 (*1 *1) (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) (-4 *4 (-678 *3)))) (-4033 (*1 *1) (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) (-4 *4 (-678 *3)))) (-3932 (*1 *1 *2 *3) (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6)))) (-1594 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4)))) (-3677 (*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *5)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4))))) +(-13 (-1119) (-10 -8 (-15 -3043 ((-112) $)) (-15 -4170 ($)) (-15 -4033 ($)) (-15 -3932 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -1594 ((-902 |#1| |#2|) $)) (-15 -3677 ((-902 |#1| |#3|) $)))) +((-3474 (((-112) $ $) 7)) (-3526 (((-902 |#1| $) $ (-905 |#1|) (-902 |#1| $)) 14)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-899 |#1|) (-141) (-1119)) (T -899)) -((-4375 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4)) (-4 *4 (-1119))))) -(-13 (-1119) (-10 -8 (-15 -4375 ((-902 |t#1| $) $ (-905 |t#1|) (-902 |t#1| $))))) +((-3526 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4)) (-4 *4 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -3526 ((-902 |t#1| $) $ (-905 |t#1|) (-902 |t#1| $))))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-1412 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3275 (((-902 |#1| |#2|) |#2| |#3|) 45 (-12 (-2433 (|has| |#2| (-1057 (-1196)))) (-2433 (|has| |#2| (-1068))))) (((-656 (-304 (-969 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1068)) (-2433 (|has| |#2| (-1057 (-1196)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1057 (-1196)))) (((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21))) -(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -1412 ((-112) |#2| |#3|)) (-15 -1412 ((-112) (-656 |#2|) |#3|)) (-15 -3275 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1057 (-1196))) (-15 -3275 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1068)) (-15 -3275 ((-656 (-304 (-969 |#2|))) |#2| |#3|)) (-15 -3275 ((-902 |#1| |#2|) |#2| |#3|))))) (-1119) (-899 |#1|) (-626 (-905 |#1|))) (T -900)) -((-3275 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4)) (-2433 (-4 *3 (-1057 (-1196)))) (-2433 (-4 *3 (-1068))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3275 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 (-969 *3)))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1068)) (-2433 (-4 *3 (-1057 (-1196)))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3275 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1057 (-1196))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3275 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6))) (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5))))) (-1412 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5))))) (-1412 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))) -(-10 -7 (-15 -1412 ((-112) |#2| |#3|)) (-15 -1412 ((-112) (-656 |#2|) |#3|)) (-15 -3275 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1057 (-1196))) (-15 -3275 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1068)) (-15 -3275 ((-656 (-304 (-969 |#2|))) |#2| |#3|)) (-15 -3275 ((-902 |#1| |#2|) |#2| |#3|))))) -((-2477 (((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)) 22))) -(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)))) (-1119) (-1119) (-1119)) (T -901)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-902 *5 *7)) (-5 *1 (-901 *5 *6 *7))))) -(-10 -7 (-15 -2477 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)))) -((-2034 (((-112) $ $) NIL)) (-4006 (($ $ $) 40)) (-2946 (((-3 (-112) "failed") $ (-905 |#1|)) 37)) (-1992 (($) 12)) (-3288 (((-1178) $) NIL)) (-1796 (($ (-905 |#1|) |#2| $) 20)) (-3139 (((-1139) $) NIL)) (-2429 (((-3 |#2| "failed") (-905 |#1|) $) 51)) (-1546 (((-112) $) 15)) (-2652 (($) 13)) (-1471 (((-656 (-2 (|:| -2371 (-1196)) (|:| -2900 |#2|))) $) 25)) (-4103 (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 |#2|)))) 23)) (-4092 (((-874) $) 45)) (-1531 (((-112) $ $) NIL)) (-2117 (($ (-905 |#1|) |#2| $ |#2|) 49)) (-3541 (($ (-905 |#1|) |#2| $) 48)) (-3919 (((-112) $ $) 42))) -(((-902 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -1546 ((-112) $)) (-15 -2652 ($)) (-15 -1992 ($)) (-15 -4006 ($ $ $)) (-15 -2429 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -3541 ($ (-905 |#1|) |#2| $)) (-15 -1796 ($ (-905 |#1|) |#2| $)) (-15 -2117 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -1471 ((-656 (-2 (|:| -2371 (-1196)) (|:| -2900 |#2|))) $)) (-15 -4103 ($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 |#2|))))) (-15 -2946 ((-3 (-112) "failed") $ (-905 |#1|))))) (-1119) (-1119)) (T -902)) -((-1546 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-2652 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-1992 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-4006 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2429 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) (-5 *1 (-902 *4 *2)))) (-3541 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1119)))) (-1796 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1119)))) (-2117 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1119)))) (-1471 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 *4)))) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 *4)))) (-4 *4 (-1119)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)))) (-2946 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1119))))) -(-13 (-1119) (-10 -8 (-15 -1546 ((-112) $)) (-15 -2652 ($)) (-15 -1992 ($)) (-15 -4006 ($ $ $)) (-15 -2429 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -3541 ($ (-905 |#1|) |#2| $)) (-15 -1796 ($ (-905 |#1|) |#2| $)) (-15 -2117 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -1471 ((-656 (-2 (|:| -2371 (-1196)) (|:| -2900 |#2|))) $)) (-15 -4103 ($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 |#2|))))) (-15 -2946 ((-3 (-112) "failed") $ (-905 |#1|))))) -((-2479 (((-905 |#1|) (-905 |#1|) (-656 (-1196)) (-1 (-112) (-656 |#2|))) 32) (((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|)) 35)) (-2946 (((-112) (-656 |#2|) (-905 |#1|)) 42) (((-112) |#2| (-905 |#1|)) 36)) (-1982 (((-1 (-112) |#2|) (-905 |#1|)) 16)) (-3238 (((-656 |#2|) (-905 |#1|)) 24)) (-3108 (((-905 |#1|) (-905 |#1|) |#2|) 20))) -(((-903 |#1| |#2|) (-10 -7 (-15 -2479 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -2479 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2479 ((-905 |#1|) (-905 |#1|) (-656 (-1196)) (-1 (-112) (-656 |#2|)))) (-15 -1982 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -2946 ((-112) |#2| (-905 |#1|))) (-15 -2946 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -3108 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -3238 ((-656 |#2|) (-905 |#1|)))) (-1119) (-1237)) (T -903)) -((-3238 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-656 *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1237)))) (-3108 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1237)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-903 *5 *3)) (-4 *3 (-1237)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1237)))) (-2479 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1196))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *1 (-903 *5 *6)))) (-2479 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1119)) (-4 *5 (-1237)) (-5 *1 (-903 *4 *5)))) (-2479 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1119)) (-4 *5 (-1237)) (-5 *1 (-903 *4 *5))))) -(-10 -7 (-15 -2479 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -2479 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2479 ((-905 |#1|) (-905 |#1|) (-656 (-1196)) (-1 (-112) (-656 |#2|)))) (-15 -1982 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -2946 ((-112) |#2| (-905 |#1|))) (-15 -2946 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -3108 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -3238 ((-656 |#2|) (-905 |#1|)))) -((-2477 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19))) -(((-904 |#1| |#2|) (-10 -7 (-15 -2477 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-1119) (-1119)) (T -904)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6))))) -(-10 -7 (-15 -2477 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) -((-2034 (((-112) $ $) NIL)) (-2157 (($ $ (-656 (-52))) 74)) (-1541 (((-656 $) $) 139)) (-1904 (((-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))) $) 30)) (-4285 (((-112) $) 35)) (-1478 (($ $ (-656 (-1196)) (-52)) 31)) (-3536 (($ $ (-656 (-52))) 73)) (-2974 (((-3 |#1| "failed") $) 71) (((-3 (-1196) "failed") $) 164)) (-2378 ((|#1| $) 68) (((-1196) $) NIL)) (-4390 (($ $) 126)) (-2655 (((-112) $) 55)) (-4110 (((-656 (-52)) $) 50)) (-3276 (($ (-1196) (-112) (-112) (-112)) 75)) (-2800 (((-3 (-656 $) "failed") (-656 $)) 82)) (-2360 (((-112) $) 58)) (-1548 (((-112) $) 57)) (-3288 (((-1178) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) 41)) (-2874 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-4192 (((-3 (-2 (|:| |val| $) (|:| -3175 $)) "failed") $) 97)) (-2016 (((-3 (-656 $) "failed") $) 40)) (-3600 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -3940 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-2092 (((-3 (-656 $) "failed") $) 42)) (-3178 (((-3 (-2 (|:| |val| $) (|:| -3175 (-783))) "failed") $) 45)) (-1594 (((-112) $) 34)) (-3139 (((-1139) $) NIL)) (-1514 (((-112) $) 28)) (-2203 (((-112) $) 52)) (-2757 (((-656 (-52)) $) 130)) (-3834 (((-112) $) 56)) (-4367 (($ (-115) (-656 $)) 104)) (-3569 (((-783) $) 33)) (-4268 (($ $) 72)) (-1505 (($ (-656 $)) 69)) (-3636 (((-112) $) 32)) (-4092 (((-874) $) 63) (($ |#1|) 23) (($ (-1196)) 76)) (-1531 (((-112) $ $) NIL)) (-3108 (($ $ (-52)) 129)) (-4300 (($) 103 T CONST)) (-4310 (($) 83 T CONST)) (-3919 (((-112) $ $) 93)) (-4028 (($ $ $) 117)) (-4007 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122))) -(((-905 |#1|) (-13 (-1119) (-1057 |#1|) (-1057 (-1196)) (-10 -8 (-15 0 ($) -2670) (-15 1 ($) -2670) (-15 -2016 ((-3 (-656 $) "failed") $)) (-15 -3009 ((-3 (-656 $) "failed") $)) (-15 -3600 ((-3 (-656 $) "failed") $ (-115))) (-15 -3600 ((-3 (-2 (|:| -3940 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -3178 ((-3 (-2 (|:| |val| $) (|:| -3175 (-783))) "failed") $)) (-15 -2874 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2092 ((-3 (-656 $) "failed") $)) (-15 -4192 ((-3 (-2 (|:| |val| $) (|:| -3175 $)) "failed") $)) (-15 -4367 ($ (-115) (-656 $))) (-15 -4007 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4028 ($ $ $)) (-15 -3569 ((-783) $)) (-15 -1505 ($ (-656 $))) (-15 -4268 ($ $)) (-15 -1594 ((-112) $)) (-15 -2655 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -3636 ((-112) $)) (-15 -3834 ((-112) $)) (-15 -1548 ((-112) $)) (-15 -2360 ((-112) $)) (-15 -2203 ((-112) $)) (-15 -4110 ((-656 (-52)) $)) (-15 -3536 ($ $ (-656 (-52)))) (-15 -2157 ($ $ (-656 (-52)))) (-15 -3276 ($ (-1196) (-112) (-112) (-112))) (-15 -1478 ($ $ (-656 (-1196)) (-52))) (-15 -1904 ((-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))) $)) (-15 -1514 ((-112) $)) (-15 -4390 ($ $)) (-15 -3108 ($ $ (-52))) (-15 -2757 ((-656 (-52)) $)) (-15 -1541 ((-656 $) $)) (-15 -2800 ((-3 (-656 $) "failed") (-656 $))))) (-1119)) (T -905)) -((-4300 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-4310 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-2016 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3009 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3600 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-3600 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3940 (-115)) (|:| |arg| (-656 (-905 *3))))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3178 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -3175 (-783)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2874 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2092 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4192 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -3175 (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4367 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-4007 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-4028 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4268 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2655 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1548 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2157 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3276 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-112)) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-1478 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-52)) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4390 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-3108 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1541 (*1 *2 *1) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2800 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(-13 (-1119) (-1057 |#1|) (-1057 (-1196)) (-10 -8 (-15 (-4300) ($) -2670) (-15 (-4310) ($) -2670) (-15 -2016 ((-3 (-656 $) "failed") $)) (-15 -3009 ((-3 (-656 $) "failed") $)) (-15 -3600 ((-3 (-656 $) "failed") $ (-115))) (-15 -3600 ((-3 (-2 (|:| -3940 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -3178 ((-3 (-2 (|:| |val| $) (|:| -3175 (-783))) "failed") $)) (-15 -2874 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2092 ((-3 (-656 $) "failed") $)) (-15 -4192 ((-3 (-2 (|:| |val| $) (|:| -3175 $)) "failed") $)) (-15 -4367 ($ (-115) (-656 $))) (-15 -4007 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -4028 ($ $ $)) (-15 -3569 ((-783) $)) (-15 -1505 ($ (-656 $))) (-15 -4268 ($ $)) (-15 -1594 ((-112) $)) (-15 -2655 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -3636 ((-112) $)) (-15 -3834 ((-112) $)) (-15 -1548 ((-112) $)) (-15 -2360 ((-112) $)) (-15 -2203 ((-112) $)) (-15 -4110 ((-656 (-52)) $)) (-15 -3536 ($ $ (-656 (-52)))) (-15 -2157 ($ $ (-656 (-52)))) (-15 -3276 ($ (-1196) (-112) (-112) (-112))) (-15 -1478 ($ $ (-656 (-1196)) (-52))) (-15 -1904 ((-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52))) $)) (-15 -1514 ((-112) $)) (-15 -4390 ($ $)) (-15 -3108 ($ $ (-52))) (-15 -2757 ((-656 (-52)) $)) (-15 -1541 ((-656 $) $)) (-15 -2800 ((-3 (-656 $) "failed") (-656 $))))) -((-2034 (((-112) $ $) NIL)) (-2677 (((-656 |#1|) $) 19)) (-2489 (((-112) $) 49)) (-2974 (((-3 (-684 |#1|) "failed") $) 56)) (-2378 (((-684 |#1|) $) 54)) (-2712 (($ $) 23)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-1325 (((-783) $) 61)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 (((-684 |#1|) $) 21)) (-4092 (((-874) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-1531 (((-112) $ $) NIL)) (-4310 (($) 9 T CONST)) (-2994 (((-656 (-684 |#1|)) $) 28)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 12)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 67))) -(((-906 |#1|) (-13 (-862) (-1057 (-684 |#1|)) (-10 -8 (-15 1 ($) -2670) (-15 -4092 ((-831 |#1|) $)) (-15 -4092 ($ |#1|)) (-15 -2701 ((-684 |#1|) $)) (-15 -1325 ((-783) $)) (-15 -2994 ((-656 (-684 |#1|)) $)) (-15 -2712 ($ $)) (-15 -2489 ((-112) $)) (-15 -2677 ((-656 |#1|) $)))) (-862)) (T -906)) -((-4310 (*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-4092 (*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-2701 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-2994 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862))))) -(-13 (-862) (-1057 (-684 |#1|)) (-10 -8 (-15 (-4310) ($) -2670) (-15 -4092 ((-831 |#1|) $)) (-15 -4092 ($ |#1|)) (-15 -2701 ((-684 |#1|) $)) (-15 -1325 ((-783) $)) (-15 -2994 ((-656 (-684 |#1|)) $)) (-15 -2712 ($ $)) (-15 -2489 ((-112) $)) (-15 -2677 ((-656 |#1|) $)))) -((-1947 ((|#1| |#1| |#1|) 19))) -(((-907 |#1| |#2|) (-10 -7 (-15 -1947 (|#1| |#1| |#1|))) (-1263 |#2|) (-1068)) (T -907)) -((-1947 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1263 *3))))) -(-10 -7 (-15 -1947 (|#1| |#1| |#1|))) -((-4286 ((|#2| $ |#3|) 10))) -(((-908 |#1| |#2| |#3|) (-10 -8 (-15 -4286 (|#2| |#1| |#3|))) (-909 |#2| |#3|) (-1237) (-1237)) (T -908)) -NIL -(-10 -8 (-15 -4286 (|#2| |#1| |#3|))) -((-3614 ((|#1| $ |#2|) 7)) (-4286 ((|#1| $ |#2|) 6))) -(((-909 |#1| |#2|) (-141) (-1237) (-1237)) (T -909)) -((-3614 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) (-4286 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -3614 (|t#1| $ |t#2|)) (-15 -4286 (|t#1| $ |t#2|)))) -(((-1237) . T)) -((-2034 (((-112) $ $) 7)) (-2451 (((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 15)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-1849 (((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 14)) (-3919 (((-112) $ $) 6))) +((-3718 (((-112) (-656 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3165 (((-902 |#1| |#2|) |#2| |#3|) 45 (-12 (-2746 (|has| |#2| (-1057 (-1195)))) (-2746 (|has| |#2| (-1068))))) (((-656 (-304 (-969 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1068)) (-2746 (|has| |#2| (-1057 (-1195)))))) (((-656 (-304 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1057 (-1195)))) (((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|) 21))) +(((-900 |#1| |#2| |#3|) (-10 -7 (-15 -3718 ((-112) |#2| |#3|)) (-15 -3718 ((-112) (-656 |#2|) |#3|)) (-15 -3165 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1057 (-1195))) (-15 -3165 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1068)) (-15 -3165 ((-656 (-304 (-969 |#2|))) |#2| |#3|)) (-15 -3165 ((-902 |#1| |#2|) |#2| |#3|))))) (-1119) (-899 |#1|) (-626 (-905 |#1|))) (T -900)) +((-3165 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4)) (-2746 (-4 *3 (-1057 (-1195)))) (-2746 (-4 *3 (-1068))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3165 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 (-969 *3)))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1068)) (-2746 (-4 *3 (-1057 (-1195)))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3165 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1057 (-1195))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) (-3165 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6))) (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5))))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5))))) (-3718 (*1 *2 *3 *4) (-12 (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))) +(-10 -7 (-15 -3718 ((-112) |#2| |#3|)) (-15 -3718 ((-112) (-656 |#2|) |#3|)) (-15 -3165 ((-898 |#1| |#2| (-656 |#2|)) (-656 |#2|) |#3|)) (IF (|has| |#2| (-1057 (-1195))) (-15 -3165 ((-656 (-304 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1068)) (-15 -3165 ((-656 (-304 (-969 |#2|))) |#2| |#3|)) (-15 -3165 ((-902 |#1| |#2|) |#2| |#3|))))) +((-1632 (((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)) 22))) +(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -1632 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)))) (-1119) (-1119) (-1119)) (T -901)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-902 *5 *7)) (-5 *1 (-901 *5 *6 *7))))) +(-10 -7 (-15 -1632 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)))) +((-3474 (((-112) $ $) NIL)) (-1901 (($ $ $) 40)) (-2178 (((-3 (-112) "failed") $ (-905 |#1|)) 37)) (-4033 (($) 12)) (-1927 (((-1177) $) NIL)) (-2562 (($ (-905 |#1|) |#2| $) 20)) (-1445 (((-1139) $) NIL)) (-4223 (((-3 |#2| "failed") (-905 |#1|) $) 51)) (-3043 (((-112) $) 15)) (-4170 (($) 13)) (-1923 (((-656 (-2 (|:| -4282 (-1195)) (|:| -4353 |#2|))) $) 25)) (-3573 (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 |#2|)))) 23)) (-3563 (((-874) $) 45)) (-3985 (((-112) $ $) NIL)) (-1613 (($ (-905 |#1|) |#2| $ |#2|) 49)) (-4208 (($ (-905 |#1|) |#2| $) 48)) (-2988 (((-112) $ $) 42))) +(((-902 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -3043 ((-112) $)) (-15 -4170 ($)) (-15 -4033 ($)) (-15 -1901 ($ $ $)) (-15 -4223 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -4208 ($ (-905 |#1|) |#2| $)) (-15 -2562 ($ (-905 |#1|) |#2| $)) (-15 -1613 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -1923 ((-656 (-2 (|:| -4282 (-1195)) (|:| -4353 |#2|))) $)) (-15 -3573 ($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 |#2|))))) (-15 -2178 ((-3 (-112) "failed") $ (-905 |#1|))))) (-1119) (-1119)) (T -902)) +((-3043 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-4170 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-4033 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-1901 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-4223 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) (-5 *1 (-902 *4 *2)))) (-4208 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1119)))) (-2562 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1119)))) (-1613 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1119)))) (-1923 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 *4)))) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 *4)))) (-4 *4 (-1119)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)))) (-2178 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -3043 ((-112) $)) (-15 -4170 ($)) (-15 -4033 ($)) (-15 -1901 ($ $ $)) (-15 -4223 ((-3 |#2| "failed") (-905 |#1|) $)) (-15 -4208 ($ (-905 |#1|) |#2| $)) (-15 -2562 ($ (-905 |#1|) |#2| $)) (-15 -1613 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -1923 ((-656 (-2 (|:| -4282 (-1195)) (|:| -4353 |#2|))) $)) (-15 -3573 ($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 |#2|))))) (-15 -2178 ((-3 (-112) "failed") $ (-905 |#1|))))) +((-2887 (((-905 |#1|) (-905 |#1|) (-656 (-1195)) (-1 (-112) (-656 |#2|))) 32) (((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|))) 46) (((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|)) 35)) (-2178 (((-112) (-656 |#2|) (-905 |#1|)) 42) (((-112) |#2| (-905 |#1|)) 36)) (-1341 (((-1 (-112) |#2|) (-905 |#1|)) 16)) (-3806 (((-656 |#2|) (-905 |#1|)) 24)) (-3226 (((-905 |#1|) (-905 |#1|) |#2|) 20))) +(((-903 |#1| |#2|) (-10 -7 (-15 -2887 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -2887 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2887 ((-905 |#1|) (-905 |#1|) (-656 (-1195)) (-1 (-112) (-656 |#2|)))) (-15 -1341 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -2178 ((-112) |#2| (-905 |#1|))) (-15 -2178 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -3226 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -3806 ((-656 |#2|) (-905 |#1|)))) (-1119) (-1236)) (T -903)) +((-3806 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-656 *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1236)))) (-3226 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1236)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-1236)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-903 *5 *3)) (-4 *3 (-1236)))) (-1341 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1236)))) (-2887 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1195))) (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1119)) (-4 *6 (-1236)) (-5 *1 (-903 *5 *6)))) (-2887 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1119)) (-4 *5 (-1236)) (-5 *1 (-903 *4 *5)))) (-2887 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1119)) (-4 *5 (-1236)) (-5 *1 (-903 *4 *5))))) +(-10 -7 (-15 -2887 ((-905 |#1|) (-905 |#1|) (-1 (-112) |#2|))) (-15 -2887 ((-905 |#1|) (-905 |#1|) (-656 (-1 (-112) |#2|)))) (-15 -2887 ((-905 |#1|) (-905 |#1|) (-656 (-1195)) (-1 (-112) (-656 |#2|)))) (-15 -1341 ((-1 (-112) |#2|) (-905 |#1|))) (-15 -2178 ((-112) |#2| (-905 |#1|))) (-15 -2178 ((-112) (-656 |#2|) (-905 |#1|))) (-15 -3226 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -3806 ((-656 |#2|) (-905 |#1|)))) +((-1632 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19))) +(((-904 |#1| |#2|) (-10 -7 (-15 -1632 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-1119) (-1119)) (T -904)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-905 *6)) (-5 *1 (-904 *5 *6))))) +(-10 -7 (-15 -1632 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) +((-3474 (((-112) $ $) NIL)) (-3217 (($ $ (-656 (-52))) 74)) (-1991 (((-656 $) $) 139)) (-1585 (((-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))) $) 30)) (-2792 (((-112) $) 35)) (-3123 (($ $ (-656 (-1195)) (-52)) 31)) (-1844 (($ $ (-656 (-52))) 73)) (-1539 (((-3 |#1| "failed") $) 71) (((-3 (-1195) "failed") $) 164)) (-4056 ((|#1| $) 68) (((-1195) $) NIL)) (-2475 (($ $) 126)) (-3638 (((-112) $) 55)) (-1378 (((-656 (-52)) $) 50)) (-2068 (($ (-1195) (-112) (-112) (-112)) 75)) (-3128 (((-3 (-656 $) "failed") (-656 $)) 82)) (-1934 (((-112) $) 58)) (-2056 (((-112) $) 57)) (-1927 (((-1177) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) 41)) (-2276 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2027 (((-3 (-2 (|:| |val| $) (|:| -4274 $)) "failed") $) 97)) (-2567 (((-3 (-656 $) "failed") $) 40)) (-4177 (((-3 (-656 $) "failed") $ (-115)) 124) (((-3 (-2 (|:| -1832 (-115)) (|:| |arg| (-656 $))) "failed") $) 107)) (-3476 (((-3 (-656 $) "failed") $) 42)) (-1419 (((-3 (-2 (|:| |val| $) (|:| -4274 (-783))) "failed") $) 45)) (-1327 (((-112) $) 34)) (-1445 (((-1139) $) NIL)) (-3285 (((-112) $) 28)) (-3988 (((-112) $) 52)) (-3200 (((-656 (-52)) $) 130)) (-2646 (((-112) $) 56)) (-2871 (($ (-115) (-656 $)) 104)) (-4328 (((-783) $) 33)) (-1954 (($ $) 72)) (-4076 (($ (-656 $)) 69)) (-3652 (((-112) $) 32)) (-3563 (((-874) $) 63) (($ |#1|) 23) (($ (-1195)) 76)) (-3985 (((-112) $ $) NIL)) (-3226 (($ $ (-52)) 129)) (-2800 (($) 103 T CONST)) (-2810 (($) 83 T CONST)) (-2988 (((-112) $ $) 93)) (-3107 (($ $ $) 117)) (-3083 (($ $ $) 121)) (** (($ $ (-783)) 115) (($ $ $) 64)) (* (($ $ $) 122))) +(((-905 |#1|) (-13 (-1119) (-1057 |#1|) (-1057 (-1195)) (-10 -8 (-15 0 ($) -1398) (-15 1 ($) -1398) (-15 -2567 ((-3 (-656 $) "failed") $)) (-15 -1708 ((-3 (-656 $) "failed") $)) (-15 -4177 ((-3 (-656 $) "failed") $ (-115))) (-15 -4177 ((-3 (-2 (|:| -1832 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -1419 ((-3 (-2 (|:| |val| $) (|:| -4274 (-783))) "failed") $)) (-15 -2276 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3476 ((-3 (-656 $) "failed") $)) (-15 -2027 ((-3 (-2 (|:| |val| $) (|:| -4274 $)) "failed") $)) (-15 -2871 ($ (-115) (-656 $))) (-15 -3083 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3107 ($ $ $)) (-15 -4328 ((-783) $)) (-15 -4076 ($ (-656 $))) (-15 -1954 ($ $)) (-15 -1327 ((-112) $)) (-15 -3638 ((-112) $)) (-15 -2792 ((-112) $)) (-15 -3652 ((-112) $)) (-15 -2646 ((-112) $)) (-15 -2056 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -3988 ((-112) $)) (-15 -1378 ((-656 (-52)) $)) (-15 -1844 ($ $ (-656 (-52)))) (-15 -3217 ($ $ (-656 (-52)))) (-15 -2068 ($ (-1195) (-112) (-112) (-112))) (-15 -3123 ($ $ (-656 (-1195)) (-52))) (-15 -1585 ((-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))) $)) (-15 -3285 ((-112) $)) (-15 -2475 ($ $)) (-15 -3226 ($ $ (-52))) (-15 -3200 ((-656 (-52)) $)) (-15 -1991 ((-656 $) $)) (-15 -3128 ((-3 (-656 $) "failed") (-656 $))))) (-1119)) (T -905)) +((-2800 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-2810 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-2567 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1708 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4177 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-4177 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1832 (-115)) (|:| |arg| (-656 (-905 *3))))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1419 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -4274 (-783)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2276 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3476 (*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2027 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -4274 (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2871 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-3083 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-3107 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-4328 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1954 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1378 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1844 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3217 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2068 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-112)) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-3123 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-52)) (-5 *1 (-905 *4)) (-4 *4 (-1119)))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52)))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-2475 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) (-3226 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3200 (*1 *2 *1) (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) (-3128 (*1 *2 *2) (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(-13 (-1119) (-1057 |#1|) (-1057 (-1195)) (-10 -8 (-15 (-2800) ($) -1398) (-15 (-2810) ($) -1398) (-15 -2567 ((-3 (-656 $) "failed") $)) (-15 -1708 ((-3 (-656 $) "failed") $)) (-15 -4177 ((-3 (-656 $) "failed") $ (-115))) (-15 -4177 ((-3 (-2 (|:| -1832 (-115)) (|:| |arg| (-656 $))) "failed") $)) (-15 -1419 ((-3 (-2 (|:| |val| $) (|:| -4274 (-783))) "failed") $)) (-15 -2276 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3476 ((-3 (-656 $) "failed") $)) (-15 -2027 ((-3 (-2 (|:| |val| $) (|:| -4274 $)) "failed") $)) (-15 -2871 ($ (-115) (-656 $))) (-15 -3083 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783))) (-15 ** ($ $ $)) (-15 -3107 ($ $ $)) (-15 -4328 ((-783) $)) (-15 -4076 ($ (-656 $))) (-15 -1954 ($ $)) (-15 -1327 ((-112) $)) (-15 -3638 ((-112) $)) (-15 -2792 ((-112) $)) (-15 -3652 ((-112) $)) (-15 -2646 ((-112) $)) (-15 -2056 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -3988 ((-112) $)) (-15 -1378 ((-656 (-52)) $)) (-15 -1844 ($ $ (-656 (-52)))) (-15 -3217 ($ $ (-656 (-52)))) (-15 -2068 ($ (-1195) (-112) (-112) (-112))) (-15 -3123 ($ $ (-656 (-1195)) (-52))) (-15 -1585 ((-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52))) $)) (-15 -3285 ((-112) $)) (-15 -2475 ($ $)) (-15 -3226 ($ $ (-52))) (-15 -3200 ((-656 (-52)) $)) (-15 -1991 ((-656 $) $)) (-15 -3128 ((-3 (-656 $) "failed") (-656 $))))) +((-3474 (((-112) $ $) NIL)) (-3388 (((-656 |#1|) $) 19)) (-2853 (((-112) $) 49)) (-1539 (((-3 (-684 |#1|) "failed") $) 56)) (-4056 (((-684 |#1|) $) 54)) (-3515 (($ $) 23)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-4261 (((-783) $) 61)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 (((-684 |#1|) $) 21)) (-3563 (((-874) $) 47) (($ (-684 |#1|)) 26) (((-831 |#1|) $) 36) (($ |#1|) 25)) (-3985 (((-112) $ $) NIL)) (-2810 (($) 9 T CONST)) (-3816 (((-656 (-684 |#1|)) $) 28)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 12)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 67))) +(((-906 |#1|) (-13 (-862) (-1057 (-684 |#1|)) (-10 -8 (-15 1 ($) -1398) (-15 -3563 ((-831 |#1|) $)) (-15 -3563 ($ |#1|)) (-15 -3504 ((-684 |#1|) $)) (-15 -4261 ((-783) $)) (-15 -3816 ((-656 (-684 |#1|)) $)) (-15 -3515 ($ $)) (-15 -2853 ((-112) $)) (-15 -3388 ((-656 |#1|) $)))) (-862)) (T -906)) +((-2810 (*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-831 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-3563 (*1 *1 *2) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-3504 (*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-3816 (*1 *2 *1) (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-3515 (*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) (-2853 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862))))) +(-13 (-862) (-1057 (-684 |#1|)) (-10 -8 (-15 (-2810) ($) -1398) (-15 -3563 ((-831 |#1|) $)) (-15 -3563 ($ |#1|)) (-15 -3504 ((-684 |#1|) $)) (-15 -4261 ((-783) $)) (-15 -3816 ((-656 (-684 |#1|)) $)) (-15 -3515 ($ $)) (-15 -2853 ((-112) $)) (-15 -3388 ((-656 |#1|) $)))) +((-2320 ((|#1| |#1| |#1|) 19))) +(((-907 |#1| |#2|) (-10 -7 (-15 -2320 (|#1| |#1| |#1|))) (-1262 |#2|) (-1068)) (T -907)) +((-2320 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1262 *3))))) +(-10 -7 (-15 -2320 (|#1| |#1| |#1|))) +((-2051 ((|#2| $ |#3|) 10))) +(((-908 |#1| |#2| |#3|) (-10 -8 (-15 -2051 (|#2| |#1| |#3|))) (-909 |#2| |#3|) (-1236) (-1236)) (T -908)) +NIL +(-10 -8 (-15 -2051 (|#2| |#1| |#3|))) +((-2735 ((|#1| $ |#2|) 7)) (-2051 ((|#1| $ |#2|) 6))) +(((-909 |#1| |#2|) (-141) (-1236) (-1236)) (T -909)) +((-2735 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) (-2051 (*1 *2 *1 *3) (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236))))) +(-13 (-1236) (-10 -8 (-15 -2735 (|t#1| $ |t#2|)) (-15 -2051 (|t#1| $ |t#2|)))) +(((-1236) . T)) +((-3474 (((-112) $ $) 7)) (-2502 (((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 15)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-1786 (((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 14)) (-2988 (((-112) $ $) 6))) (((-910) (-141)) (T -910)) -((-2451 (*1 *2 *3 *4) (-12 (-4 *1 (-910)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)))))) (-1849 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *2 (-1054))))) -(-13 (-1119) (-10 -7 (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| |explanations| (-1178))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))) (-15 -1849 ((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))))) +((-2502 (*1 *2 *3 *4) (-12 (-4 *1 (-910)) (-5 *3 (-1082)) (-5 *4 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)))))) (-1786 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *3 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *2 (-1054))))) +(-13 (-1119) (-10 -7 (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| |explanations| (-1177))) (-1082) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))) (-15 -1786 ((-1054) (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2516 ((|#1| |#1| (-783)) 27)) (-3354 (((-3 |#1| "failed") |#1| |#1|) 24)) (-3205 (((-3 (-2 (|:| -2114 |#1|) (|:| -2128 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38))) -(((-911 |#1| |#2|) (-10 -7 (-15 -3205 ((-656 |#1|) |#1|)) (-15 -3205 ((-3 (-2 (|:| -2114 |#1|) (|:| -2128 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3354 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2516 (|#1| |#1| (-783)))) (-1263 |#2|) (-374)) (T -911)) -((-2516 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4)) (-4 *2 (-1263 *4)))) (-3354 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3)) (-4 *2 (-1263 *3)))) (-3205 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -2114 *3) (|:| -2128 *3))) (-5 *1 (-911 *3 *5)) (-4 *3 (-1263 *5)))) (-3205 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -3205 ((-656 |#1|) |#1|)) (-15 -3205 ((-3 (-2 (|:| -2114 |#1|) (|:| -2128 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3354 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2516 (|#1| |#1| (-783)))) -((-1843 (((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178)) 104) (((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178) (-227)) 100) (((-1054) (-913) (-1082)) 92) (((-1054) (-913)) 93)) (-2451 (((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913) (-1082)) 62) (((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913)) 64))) -(((-912) (-10 -7 (-15 -1843 ((-1054) (-913))) (-15 -1843 ((-1054) (-913) (-1082))) (-15 -1843 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178) (-227))) (-15 -1843 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913) (-1082))))) (T -912)) -((-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-912)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178))))) (-5 *1 (-912)))) (-1843 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-1843 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1054)) (-5 *1 (-912))))) -(-10 -7 (-15 -1843 ((-1054) (-913))) (-15 -1843 ((-1054) (-913) (-1082))) (-15 -1843 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178) (-227))) (-15 -1843 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1178))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913))) (-15 -2451 ((-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) (|:| |explanations| (-656 (-1178)))) (-913) (-1082)))) -((-2034 (((-112) $ $) NIL)) (-2378 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))) $) 19)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) 18)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-913) (-13 (-1119) (-10 -8 (-15 -4092 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))) (-15 -2378 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))) $))))) (T -913)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *1 (-913)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227)))) (-5 *1 (-913))))) -(-13 (-1119) (-10 -8 (-15 -4092 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))))) (-15 -2378 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) (|:| |tol| (-227))) $)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3614 (($ $ (-656 |#2|) (-656 (-783))) 39) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|)) 37) (($ $ |#2|) 35)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4286 (($ $ (-656 |#2|) (-656 (-783))) 42) (($ $ |#2| (-783)) 41) (($ $ (-656 |#2|)) 40) (($ $ |#2|) 36)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +((-1421 ((|#1| |#1| (-783)) 27)) (-3903 (((-3 |#1| "failed") |#1| |#1|) 24)) (-2450 (((-3 (-2 (|:| -4143 |#1|) (|:| -4154 |#1|)) "failed") |#1| (-783) (-783)) 30) (((-656 |#1|) |#1|) 38))) +(((-911 |#1| |#2|) (-10 -7 (-15 -2450 ((-656 |#1|) |#1|)) (-15 -2450 ((-3 (-2 (|:| -4143 |#1|) (|:| -4154 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3903 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1421 (|#1| |#1| (-783)))) (-1262 |#2|) (-374)) (T -911)) +((-1421 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4)) (-4 *2 (-1262 *4)))) (-3903 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3)) (-4 *2 (-1262 *3)))) (-2450 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) (-5 *2 (-2 (|:| -4143 *3) (|:| -4154 *3))) (-5 *1 (-911 *3 *5)) (-4 *3 (-1262 *5)))) (-2450 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -2450 ((-656 |#1|) |#1|)) (-15 -2450 ((-3 (-2 (|:| -4143 |#1|) (|:| -4154 |#1|)) "failed") |#1| (-783) (-783))) (-15 -3903 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1421 (|#1| |#1| (-783)))) +((-2445 (((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177)) 104) (((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177) (-227)) 100) (((-1054) (-913) (-1082)) 92) (((-1054) (-913)) 93)) (-2502 (((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913) (-1082)) 62) (((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913)) 64))) +(((-912) (-10 -7 (-15 -2445 ((-1054) (-913))) (-15 -2445 ((-1054) (-913) (-1082))) (-15 -2445 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177) (-227))) (-15 -2445 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913) (-1082))))) (T -912)) +((-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-912)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177))))) (-5 *1 (-912)))) (-2445 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-2445 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-912)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1054)) (-5 *1 (-912))))) +(-10 -7 (-15 -2445 ((-1054) (-913))) (-15 -2445 ((-1054) (-913) (-1082))) (-15 -2445 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177) (-227))) (-15 -2445 ((-1054) (-390) (-390) (-390) (-390) (-783) (-783) (-656 (-326 (-390))) (-656 (-656 (-326 (-390)))) (-1177))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913))) (-15 -2502 ((-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) (|:| |explanations| (-656 (-1177)))) (-913) (-1082)))) +((-3474 (((-112) $ $) NIL)) (-4056 (((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))) $) 19)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 21) (($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) 18)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-913) (-13 (-1119) (-10 -8 (-15 -3563 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))) (-15 -4056 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))) $))))) (T -913)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *1 (-913)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *1 (-913))))) +(-13 (-1119) (-10 -8 (-15 -3563 ($ (-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))))) (-15 -4056 ((-2 (|:| |pde| (-656 (-326 (-227)))) (|:| |constraints| (-656 (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227))) $)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2735 (($ $ (-656 |#2|) (-656 (-783))) 39) (($ $ |#2| (-783)) 38) (($ $ (-656 |#2|)) 37) (($ $ |#2|) 35)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2051 (($ $ (-656 |#2|) (-656 (-783))) 42) (($ $ |#2| (-783)) 41) (($ $ (-656 |#2|)) 40) (($ $ |#2|) 36)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) (((-914 |#1| |#2|) (-141) (-1068) (-1119)) (T -914)) NIL (-13 (-111 |t#1| |t#1|) (-917 |t#2|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-729 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-909 $ |#2|) . T) ((-917 |#2|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1237) . T)) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3614 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-4092 (((-874) $) 12) (($ (-576)) 33)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-909 $ |#2|) . T) ((-917 |#2|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T) ((-1236) . T)) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2735 (($ $ (-656 |#1|) (-656 (-783))) 44) (($ $ |#1| (-783)) 43) (($ $ (-656 |#1|)) 42) (($ $ |#1|) 40)) (-3563 (((-874) $) 12) (($ (-576)) 33)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-656 |#1|) (-656 (-783))) 47) (($ $ |#1| (-783)) 46) (($ $ (-656 |#1|)) 45) (($ $ |#1|) 41)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-915 |#1|) (-141) (-1119)) (T -915)) NIL (-13 (-1068) (-917 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ |#1|) . T) ((-917 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T)) -((-3614 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-4286 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21))) -(((-916 |#1| |#2|) (-10 -8 (-15 -4286 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -4286 (|#1| |#1| |#2| (-783))) (-15 -4286 (|#1| |#1| (-656 |#2|))) (-15 -3614 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3614 (|#1| |#1| |#2| (-783))) (-15 -3614 (|#1| |#1| (-656 |#2|))) (-15 -4286 (|#1| |#1| |#2|)) (-15 -3614 (|#1| |#1| |#2|))) (-917 |#2|) (-1119)) (T -916)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-909 $ |#1|) . T) ((-917 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T)) +((-2735 (($ $ |#2|) NIL) (($ $ (-656 |#2|)) 10) (($ $ |#2| (-783)) 12) (($ $ (-656 |#2|) (-656 (-783))) 15)) (-2051 (($ $ |#2|) 16) (($ $ (-656 |#2|)) 18) (($ $ |#2| (-783)) 19) (($ $ (-656 |#2|) (-656 (-783))) 21))) +(((-916 |#1| |#2|) (-10 -8 (-15 -2051 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2051 (|#1| |#1| |#2| (-783))) (-15 -2051 (|#1| |#1| (-656 |#2|))) (-15 -2735 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2735 (|#1| |#1| |#2| (-783))) (-15 -2735 (|#1| |#1| (-656 |#2|))) (-15 -2051 (|#1| |#1| |#2|)) (-15 -2735 (|#1| |#1| |#2|))) (-917 |#2|) (-1119)) (T -916)) NIL -(-10 -8 (-15 -4286 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -4286 (|#1| |#1| |#2| (-783))) (-15 -4286 (|#1| |#1| (-656 |#2|))) (-15 -3614 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -3614 (|#1| |#1| |#2| (-783))) (-15 -3614 (|#1| |#1| (-656 |#2|))) (-15 -4286 (|#1| |#1| |#2|)) (-15 -3614 (|#1| |#1| |#2|))) -((-3614 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-4286 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10))) +(-10 -8 (-15 -2051 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2051 (|#1| |#1| |#2| (-783))) (-15 -2051 (|#1| |#1| (-656 |#2|))) (-15 -2735 (|#1| |#1| (-656 |#2|) (-656 (-783)))) (-15 -2735 (|#1| |#1| |#2| (-783))) (-15 -2735 (|#1| |#1| (-656 |#2|))) (-15 -2051 (|#1| |#1| |#2|)) (-15 -2735 (|#1| |#1| |#2|))) +((-2735 (($ $ |#1|) 7) (($ $ (-656 |#1|)) 15) (($ $ |#1| (-783)) 14) (($ $ (-656 |#1|) (-656 (-783))) 13)) (-2051 (($ $ |#1|) 6) (($ $ (-656 |#1|)) 12) (($ $ |#1| (-783)) 11) (($ $ (-656 |#1|) (-656 (-783))) 10))) (((-917 |#1|) (-141) (-1119)) (T -917)) -((-3614 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))) (-3614 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) (-3614 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) (-4 *4 (-1119)))) (-4286 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))) (-4286 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) (-4286 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) (-4 *4 (-1119))))) -(-13 (-909 $ |t#1|) (-10 -8 (-15 -3614 ($ $ (-656 |t#1|))) (-15 -3614 ($ $ |t#1| (-783))) (-15 -3614 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -4286 ($ $ (-656 |t#1|))) (-15 -4286 ($ $ |t#1| (-783))) (-15 -4286 ($ $ (-656 |t#1|) (-656 (-783)))))) -(((-909 $ |#1|) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) 26)) (-2835 (((-112) $ (-783)) NIL)) (-2597 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-2729 (($ $ $) NIL (|has| $ (-6 -4463)))) (-1323 (($ $ $) NIL (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) (($ $ "left" $) NIL (|has| $ (-6 -4463))) (($ $ "right" $) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2128 (($ $) 25)) (-1492 (($ |#1|) 12) (($ $ $) 17)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-2114 (($ $) 23)) (-3699 (((-656 |#1|) $) NIL)) (-3781 (((-112) $) 20)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3136 (((-576) $ $) NIL)) (-2492 (((-112) $) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-1223 |#1|) $) 9) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 21 (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-918 |#1|) (-13 (-120 |#1|) (-625 (-1223 |#1|)) (-10 -8 (-15 -1492 ($ |#1|)) (-15 -1492 ($ $ $)))) (-1119)) (T -918)) -((-1492 (*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119)))) (-1492 (*1 *1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119))))) -(-13 (-120 |#1|) (-625 (-1223 |#1|)) (-10 -8 (-15 -1492 ($ |#1|)) (-15 -1492 ($ $ $)))) -((-2955 ((|#2| (-1161 |#1| |#2|)) 48))) -(((-919 |#1| |#2|) (-10 -7 (-15 -2955 (|#2| (-1161 |#1| |#2|)))) (-938) (-13 (-1068) (-10 -7 (-6 (-4464 "*"))))) (T -919)) -((-2955 (*1 *2 *3) (-12 (-5 *3 (-1161 *4 *2)) (-14 *4 (-938)) (-4 *2 (-13 (-1068) (-10 -7 (-6 (-4464 "*"))))) (-5 *1 (-919 *4 *2))))) -(-10 -7 (-15 -2955 (|#2| (-1161 |#1| |#2|)))) -((-2034 (((-112) $ $) 7)) (-3589 (((-1121 |#1|) $) 35)) (-3656 (($) 19 T CONST)) (-3179 (((-3 $ "failed") $) 16)) (-3825 (((-1121 |#1|) $ |#1|) 34)) (-1810 (((-112) $) 18)) (-3492 (($ $ $) 32 (-3765 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2726 (($ $ $) 31 (-3765 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3288 (((-1178) $) 10)) (-1644 (($ $) 25)) (-3139 (((-1139) $) 11)) (-4367 ((|#1| $ |#1|) 38)) (-3458 (($ (-656 (-656 |#1|))) 36)) (-2413 (($ (-656 |#1|)) 37)) (-3646 (($ $ $) 22)) (-1361 (($ $ $) 21)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4310 (($) 20 T CONST)) (-3977 (((-112) $ $) 29 (-3765 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3955 (((-112) $ $) 28 (-3765 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 30 (-3765 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3944 (((-112) $ $) 33)) (-4028 (($ $ $) 24)) (** (($ $ (-938)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) +((-2735 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))) (-2735 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) (-2735 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) (-4 *4 (-1119)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) (-4 *4 (-1119))))) +(-13 (-909 $ |t#1|) (-10 -8 (-15 -2735 ($ $ (-656 |t#1|))) (-15 -2735 ($ $ |t#1| (-783))) (-15 -2735 ($ $ (-656 |t#1|) (-656 (-783)))) (-15 -2051 ($ $ (-656 |t#1|))) (-15 -2051 ($ $ |t#1| (-783))) (-15 -2051 ($ $ (-656 |t#1|) (-656 (-783)))))) +(((-909 $ |#1|) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) 26)) (-3131 (((-112) $ (-783)) NIL)) (-3429 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-2122 (($ $ $) NIL (|has| $ (-6 -4462)))) (-4182 (($ $ $) NIL (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) (($ $ "left" $) NIL (|has| $ (-6 -4462))) (($ $ "right" $) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-4154 (($ $) 25)) (-1595 (($ |#1|) 12) (($ $ $) 17)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-4143 (($ $) 23)) (-2942 (((-656 |#1|) $) NIL)) (-1905 (((-112) $) 20)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2972 (((-576) $ $) NIL)) (-3173 (((-112) $) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-1222 |#1|) $) 9) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 21 (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-918 |#1|) (-13 (-120 |#1|) (-625 (-1222 |#1|)) (-10 -8 (-15 -1595 ($ |#1|)) (-15 -1595 ($ $ $)))) (-1119)) (T -918)) +((-1595 (*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119)))) (-1595 (*1 *1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119))))) +(-13 (-120 |#1|) (-625 (-1222 |#1|)) (-10 -8 (-15 -1595 ($ |#1|)) (-15 -1595 ($ $ $)))) +((-2876 ((|#2| (-1161 |#1| |#2|)) 48))) +(((-919 |#1| |#2|) (-10 -7 (-15 -2876 (|#2| (-1161 |#1| |#2|)))) (-938) (-13 (-1068) (-10 -7 (-6 (-4463 "*"))))) (T -919)) +((-2876 (*1 *2 *3) (-12 (-5 *3 (-1161 *4 *2)) (-14 *4 (-938)) (-4 *2 (-13 (-1068) (-10 -7 (-6 (-4463 "*"))))) (-5 *1 (-919 *4 *2))))) +(-10 -7 (-15 -2876 (|#2| (-1161 |#1| |#2|)))) +((-3474 (((-112) $ $) 7)) (-2352 (((-1121 |#1|) $) 35)) (-3767 (($) 19 T CONST)) (-1551 (((-3 $ "failed") $) 16)) (-1800 (((-1121 |#1|) $ |#1|) 34)) (-1414 (((-112) $) 18)) (-2442 (($ $ $) 32 (-2835 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-1893 (($ $ $) 31 (-2835 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-1927 (((-1177) $) 10)) (-2095 (($ $) 25)) (-1445 (((-1139) $) 11)) (-2871 ((|#1| $ |#1|) 38)) (-3324 (($ (-656 (-656 |#1|))) 36)) (-2070 (($ (-656 |#1|)) 37)) (-4026 (($ $ $) 22)) (-4081 (($ $ $) 21)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2810 (($) 20 T CONST)) (-3049 (((-112) $ $) 29 (-2835 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3024 (((-112) $ $) 28 (-2835 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 30 (-2835 (|has| |#1| (-862)) (|has| |#1| (-379))))) (-3010 (((-112) $ $) 33)) (-3107 (($ $ $) 24)) (** (($ $ (-938)) 14) (($ $ (-783)) 17) (($ $ (-576)) 23)) (* (($ $ $) 15))) (((-920 |#1|) (-141) (-1119)) (T -920)) -((-2413 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-920 *3)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-4 *1 (-920 *3)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) (-3825 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) (-3944 (*1 *2 *1 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) -(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -2413 ($ (-656 |t#1|))) (-15 -3458 ($ (-656 (-656 |t#1|)))) (-15 -3589 ((-1121 |t#1|) $)) (-15 -3825 ((-1121 |t#1|) $ |t#1|)) (-15 -3944 ((-112) $ $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-862)) |%noBranch|))) -(((-102) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-862) -3765 (|has| |#1| (-862)) (|has| |#1| (-379))) ((-1131) . T) ((-1119) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1826 (((-656 (-656 (-783))) $) 160)) (-2238 (((-656 (-783)) (-922 |#1|) $) 188)) (-2855 (((-656 (-783)) (-922 |#1|) $) 189)) (-3589 (((-1121 |#1|) $) 152)) (-3852 (((-656 (-922 |#1|)) $) 149)) (-2446 (((-922 |#1|) $ (-576)) 154) (((-922 |#1|) $) 155)) (-2348 (($ (-656 (-922 |#1|))) 162)) (-1538 (((-783) $) 156)) (-1813 (((-1121 (-1121 |#1|)) $) 186)) (-3825 (((-1121 |#1|) $ |#1|) 177) (((-1121 (-1121 |#1|)) $ (-1121 |#1|)) 197) (((-1121 (-656 |#1|)) $ (-656 |#1|)) 200)) (-3990 (((-112) (-922 |#1|) $) 137)) (-3288 (((-1178) $) NIL)) (-2905 (((-1292) $) 142) (((-1292) $ (-576) (-576)) 201)) (-3139 (((-1139) $) NIL)) (-3596 (((-656 (-922 |#1|)) $) 143)) (-4367 (((-922 |#1|) $ (-783)) 150)) (-2369 (((-783) $) 157)) (-4092 (((-874) $) 174) (((-656 (-922 |#1|)) $) 28) (($ (-656 (-922 |#1|))) 161)) (-1531 (((-112) $ $) NIL)) (-1841 (((-656 |#1|) $) 159)) (-3919 (((-112) $ $) 194)) (-3966 (((-112) $ $) 192)) (-3944 (((-112) $ $) 191))) -(((-921 |#1|) (-13 (-1119) (-10 -8 (-15 -4092 ((-656 (-922 |#1|)) $)) (-15 -3596 ((-656 (-922 |#1|)) $)) (-15 -4367 ((-922 |#1|) $ (-783))) (-15 -2446 ((-922 |#1|) $ (-576))) (-15 -2446 ((-922 |#1|) $)) (-15 -1538 ((-783) $)) (-15 -2369 ((-783) $)) (-15 -1841 ((-656 |#1|) $)) (-15 -3852 ((-656 (-922 |#1|)) $)) (-15 -1826 ((-656 (-656 (-783))) $)) (-15 -4092 ($ (-656 (-922 |#1|)))) (-15 -2348 ($ (-656 (-922 |#1|)))) (-15 -3825 ((-1121 |#1|) $ |#1|)) (-15 -1813 ((-1121 (-1121 |#1|)) $)) (-15 -3825 ((-1121 (-1121 |#1|)) $ (-1121 |#1|))) (-15 -3825 ((-1121 (-656 |#1|)) $ (-656 |#1|))) (-15 -3990 ((-112) (-922 |#1|) $)) (-15 -2238 ((-656 (-783)) (-922 |#1|) $)) (-15 -2855 ((-656 (-783)) (-922 |#1|) $)) (-15 -3589 ((-1121 |#1|) $)) (-15 -3944 ((-112) $ $)) (-15 -3966 ((-112) $ $)) (-15 -2905 ((-1292) $)) (-15 -2905 ((-1292) $ (-576) (-576))))) (-1119)) (T -921)) -((-4092 (*1 *2 *1) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-4367 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) (-4 *4 (-1119)))) (-2446 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) (-4 *4 (-1119)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-922 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3852 (*1 *2 *1) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3)))) (-2348 (*1 *1 *2) (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3)))) (-3825 (*1 *2 *1 *3) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-1121 (-1121 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3825 (*1 *2 *1 *3) (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-1121 *4))) (-5 *1 (-921 *4)) (-5 *3 (-1121 *4)))) (-3825 (*1 *2 *1 *3) (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-656 *4))) (-5 *1 (-921 *4)) (-5 *3 (-656 *4)))) (-3990 (*1 *2 *3 *1) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-921 *4)))) (-2238 (*1 *2 *3 *1) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) (-5 *1 (-921 *4)))) (-2855 (*1 *2 *3 *1) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) (-5 *1 (-921 *4)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3944 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3966 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-2905 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-921 *4)) (-4 *4 (-1119))))) -(-13 (-1119) (-10 -8 (-15 -4092 ((-656 (-922 |#1|)) $)) (-15 -3596 ((-656 (-922 |#1|)) $)) (-15 -4367 ((-922 |#1|) $ (-783))) (-15 -2446 ((-922 |#1|) $ (-576))) (-15 -2446 ((-922 |#1|) $)) (-15 -1538 ((-783) $)) (-15 -2369 ((-783) $)) (-15 -1841 ((-656 |#1|) $)) (-15 -3852 ((-656 (-922 |#1|)) $)) (-15 -1826 ((-656 (-656 (-783))) $)) (-15 -4092 ($ (-656 (-922 |#1|)))) (-15 -2348 ($ (-656 (-922 |#1|)))) (-15 -3825 ((-1121 |#1|) $ |#1|)) (-15 -1813 ((-1121 (-1121 |#1|)) $)) (-15 -3825 ((-1121 (-1121 |#1|)) $ (-1121 |#1|))) (-15 -3825 ((-1121 (-656 |#1|)) $ (-656 |#1|))) (-15 -3990 ((-112) (-922 |#1|) $)) (-15 -2238 ((-656 (-783)) (-922 |#1|) $)) (-15 -2855 ((-656 (-783)) (-922 |#1|) $)) (-15 -3589 ((-1121 |#1|) $)) (-15 -3944 ((-112) $ $)) (-15 -3966 ((-112) $ $)) (-15 -2905 ((-1292) $)) (-15 -2905 ((-1292) $ (-576) (-576))))) -((-2034 (((-112) $ $) NIL)) (-3589 (((-1121 |#1|) $) 60)) (-2398 (((-656 $) (-656 $)) 103)) (-3934 (((-576) $) 83)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-1538 (((-783) $) 80)) (-3825 (((-1121 |#1|) $ |#1|) 70)) (-1810 (((-112) $) NIL)) (-3082 (((-112) $) 88)) (-1794 (((-783) $) 84)) (-3492 (($ $ $) NIL (-3765 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2726 (($ $ $) NIL (-3765 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-1876 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 130)) (-3139 (((-1139) $) NIL)) (-2626 (((-1121 |#1|) $) 136 (|has| |#1| (-379)))) (-2015 (((-112) $) 81)) (-4367 ((|#1| $ |#1|) 68)) (-2369 (((-783) $) 62)) (-3458 (($ (-656 (-656 |#1|))) 118)) (-3413 (((-990) $) 74)) (-2413 (($ (-656 |#1|)) 32)) (-3646 (($ $ $) NIL)) (-1361 (($ $ $) NIL)) (-3269 (($ (-656 (-656 |#1|))) 57)) (-1900 (($ (-656 (-656 |#1|))) 123)) (-1800 (($ (-656 |#1|)) 132)) (-4092 (((-874) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-1531 (((-112) $ $) NIL)) (-4310 (($) 24 T CONST)) (-3977 (((-112) $ $) NIL (-3765 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3955 (((-112) $ $) NIL (-3765 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3919 (((-112) $ $) 66)) (-3966 (((-112) $ $) NIL (-3765 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3944 (((-112) $ $) 90)) (-4028 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) -(((-922 |#1|) (-13 (-920 |#1|) (-10 -8 (-15 -1876 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -3269 ($ (-656 (-656 |#1|)))) (-15 -4092 ($ (-656 (-656 |#1|)))) (-15 -4092 ($ (-656 |#1|))) (-15 -1900 ($ (-656 (-656 |#1|)))) (-15 -2369 ((-783) $)) (-15 -3413 ((-990) $)) (-15 -1538 ((-783) $)) (-15 -1794 ((-783) $)) (-15 -3934 ((-576) $)) (-15 -2015 ((-112) $)) (-15 -3082 ((-112) $)) (-15 -2398 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -2626 ((-1121 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -1800 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -1800 ($ (-656 |#1|))) |%noBranch|)))) (-1119)) (T -922)) -((-1876 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3269 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-1900 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-1538 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-922 *3)) (-4 *3 (-379)) (-4 *3 (-1119)))) (-1800 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3))))) -(-13 (-920 |#1|) (-10 -8 (-15 -1876 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -3269 ($ (-656 (-656 |#1|)))) (-15 -4092 ($ (-656 (-656 |#1|)))) (-15 -4092 ($ (-656 |#1|))) (-15 -1900 ($ (-656 (-656 |#1|)))) (-15 -2369 ((-783) $)) (-15 -3413 ((-990) $)) (-15 -1538 ((-783) $)) (-15 -1794 ((-783) $)) (-15 -3934 ((-576) $)) (-15 -2015 ((-112) $)) (-15 -3082 ((-112) $)) (-15 -2398 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -2626 ((-1121 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -1800 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -1800 ($ (-656 |#1|))) |%noBranch|)))) -((-3132 (((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|)) 160)) (-3008 ((|#1|) 97)) (-3333 (((-430 (-1192 |#4|)) (-1192 |#4|)) 169)) (-3058 (((-430 (-1192 |#4|)) (-656 |#3|) (-1192 |#4|)) 84)) (-3815 (((-430 (-1192 |#4|)) (-1192 |#4|)) 179)) (-3790 (((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|) |#3|) 113))) -(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3132 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|))) (-15 -3815 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -3333 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -3008 (|#1|)) (-15 -3790 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|) |#3|)) (-15 -3058 ((-430 (-1192 |#4|)) (-656 |#3|) (-1192 |#4|)))) (-926) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -923)) -((-3058 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-926)) (-4 *6 (-805)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-430 (-1192 *8))) (-5 *1 (-923 *5 *6 *7 *8)) (-5 *4 (-1192 *8)))) (-3790 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) (-4 *7 (-966 *5 *6 *4)) (-4 *5 (-926)) (-4 *6 (-805)) (-4 *4 (-862)) (-5 *1 (-923 *5 *6 *4 *7)))) (-3008 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) (-5 *1 (-923 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-3333 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-3132 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-923 *4 *5 *6 *7))))) -(-10 -7 (-15 -3132 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|))) (-15 -3815 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -3333 ((-430 (-1192 |#4|)) (-1192 |#4|))) (-15 -3008 (|#1|)) (-15 -3790 ((-3 (-656 (-1192 |#4|)) "failed") (-656 (-1192 |#4|)) (-1192 |#4|) |#3|)) (-15 -3058 ((-430 (-1192 |#4|)) (-656 |#3|) (-1192 |#4|)))) -((-3132 (((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|)) 39)) (-3008 ((|#1|) 72)) (-3333 (((-430 (-1192 |#2|)) (-1192 |#2|)) 121)) (-3058 (((-430 (-1192 |#2|)) (-1192 |#2|)) 105)) (-3815 (((-430 (-1192 |#2|)) (-1192 |#2|)) 132))) -(((-924 |#1| |#2|) (-10 -7 (-15 -3132 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|))) (-15 -3815 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -3333 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -3008 (|#1|)) (-15 -3058 ((-430 (-1192 |#2|)) (-1192 |#2|)))) (-926) (-1263 |#1|)) (T -924)) -((-3058 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5)))) (-3008 (*1 *2) (-12 (-4 *2 (-926)) (-5 *1 (-924 *2 *3)) (-4 *3 (-1263 *2)))) (-3333 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5)))) (-3815 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5)))) (-3132 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-926)) (-5 *1 (-924 *4 *5))))) -(-10 -7 (-15 -3132 ((-3 (-656 (-1192 |#2|)) "failed") (-656 (-1192 |#2|)) (-1192 |#2|))) (-15 -3815 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -3333 ((-430 (-1192 |#2|)) (-1192 |#2|))) (-15 -3008 (|#1|)) (-15 -3058 ((-430 (-1192 |#2|)) (-1192 |#2|)))) -((-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 42)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 18)) (-3612 (((-3 $ "failed") $) 36))) -(((-925 |#1|) (-10 -8 (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -2074 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) (-926)) (T -925)) -NIL -(-10 -8 (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -2074 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-1589 (((-430 (-1192 $)) (-1192 $)) 66)) (-1587 (($ $) 57)) (-2100 (((-430 $) $) 58)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 63)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-2725 (((-112) $) 59)) (-1810 (((-112) $) 35)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-4254 (((-430 (-1192 $)) (-1192 $)) 64)) (-3282 (((-430 (-1192 $)) (-1192 $)) 65)) (-1392 (((-430 $) $) 56)) (-2022 (((-3 $ "failed") $ $) 48)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-3612 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-2070 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-920 *3)))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-4 *1 (-920 *3)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) (-1800 (*1 *2 *1 *3) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) (-3010 (*1 *2 *1 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) +(-13 (-485) (-296 |t#1| |t#1|) (-10 -8 (-15 -2070 ($ (-656 |t#1|))) (-15 -3324 ($ (-656 (-656 |t#1|)))) (-15 -2352 ((-1121 |t#1|) $)) (-15 -1800 ((-1121 |t#1|) $ |t#1|)) (-15 -3010 ((-112) $ $)) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-379)) (-6 (-862)) |%noBranch|))) +(((-102) . T) ((-625 (-874)) . T) ((-296 |#1| |#1|) . T) ((-485) . T) ((-738) . T) ((-862) -2835 (|has| |#1| (-862)) (|has| |#1| (-379))) ((-1131) . T) ((-1119) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-3447 (((-656 (-656 (-783))) $) 160)) (-4105 (((-656 (-783)) (-922 |#1|) $) 188)) (-3446 (((-656 (-783)) (-922 |#1|) $) 189)) (-2352 (((-1121 |#1|) $) 152)) (-3439 (((-656 (-922 |#1|)) $) 149)) (-1803 (((-922 |#1|) $ (-576)) 154) (((-922 |#1|) $) 155)) (-2254 (($ (-656 (-922 |#1|))) 162)) (-3333 (((-783) $) 156)) (-1743 (((-1121 (-1121 |#1|)) $) 186)) (-1800 (((-1121 |#1|) $ |#1|) 177) (((-1121 (-1121 |#1|)) $ (-1121 |#1|)) 197) (((-1121 (-656 |#1|)) $ (-656 |#1|)) 200)) (-2511 (((-112) (-922 |#1|) $) 137)) (-1927 (((-1177) $) NIL)) (-3610 (((-1291) $) 142) (((-1291) $ (-576) (-576)) 201)) (-1445 (((-1139) $) NIL)) (-1879 (((-656 (-922 |#1|)) $) 143)) (-2871 (((-922 |#1|) $ (-783)) 150)) (-1433 (((-783) $) 157)) (-3563 (((-874) $) 174) (((-656 (-922 |#1|)) $) 28) (($ (-656 (-922 |#1|))) 161)) (-3985 (((-112) $ $) NIL)) (-3402 (((-656 |#1|) $) 159)) (-2988 (((-112) $ $) 194)) (-3037 (((-112) $ $) 192)) (-3010 (((-112) $ $) 191))) +(((-921 |#1|) (-13 (-1119) (-10 -8 (-15 -3563 ((-656 (-922 |#1|)) $)) (-15 -1879 ((-656 (-922 |#1|)) $)) (-15 -2871 ((-922 |#1|) $ (-783))) (-15 -1803 ((-922 |#1|) $ (-576))) (-15 -1803 ((-922 |#1|) $)) (-15 -3333 ((-783) $)) (-15 -1433 ((-783) $)) (-15 -3402 ((-656 |#1|) $)) (-15 -3439 ((-656 (-922 |#1|)) $)) (-15 -3447 ((-656 (-656 (-783))) $)) (-15 -3563 ($ (-656 (-922 |#1|)))) (-15 -2254 ($ (-656 (-922 |#1|)))) (-15 -1800 ((-1121 |#1|) $ |#1|)) (-15 -1743 ((-1121 (-1121 |#1|)) $)) (-15 -1800 ((-1121 (-1121 |#1|)) $ (-1121 |#1|))) (-15 -1800 ((-1121 (-656 |#1|)) $ (-656 |#1|))) (-15 -2511 ((-112) (-922 |#1|) $)) (-15 -4105 ((-656 (-783)) (-922 |#1|) $)) (-15 -3446 ((-656 (-783)) (-922 |#1|) $)) (-15 -2352 ((-1121 |#1|) $)) (-15 -3010 ((-112) $ $)) (-15 -3037 ((-112) $ $)) (-15 -3610 ((-1291) $)) (-15 -3610 ((-1291) $ (-576) (-576))))) (-1119)) (T -921)) +((-3563 (*1 *2 *1) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1879 (*1 *2 *1) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-2871 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) (-4 *4 (-1119)))) (-1803 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) (-4 *4 (-1119)))) (-1803 (*1 *2 *1) (-12 (-5 *2 (-922 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3402 (*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3)))) (-1800 (*1 *2 *1 *3) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-1121 (-1121 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-1800 (*1 *2 *1 *3) (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-1121 *4))) (-5 *1 (-921 *4)) (-5 *3 (-1121 *4)))) (-1800 (*1 *2 *1 *3) (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-656 *4))) (-5 *1 (-921 *4)) (-5 *3 (-656 *4)))) (-2511 (*1 *2 *3 *1) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-921 *4)))) (-4105 (*1 *2 *3 *1) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) (-5 *1 (-921 *4)))) (-3446 (*1 *2 *3 *1) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) (-5 *1 (-921 *4)))) (-2352 (*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3010 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3037 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) (-3610 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-921 *4)) (-4 *4 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -3563 ((-656 (-922 |#1|)) $)) (-15 -1879 ((-656 (-922 |#1|)) $)) (-15 -2871 ((-922 |#1|) $ (-783))) (-15 -1803 ((-922 |#1|) $ (-576))) (-15 -1803 ((-922 |#1|) $)) (-15 -3333 ((-783) $)) (-15 -1433 ((-783) $)) (-15 -3402 ((-656 |#1|) $)) (-15 -3439 ((-656 (-922 |#1|)) $)) (-15 -3447 ((-656 (-656 (-783))) $)) (-15 -3563 ($ (-656 (-922 |#1|)))) (-15 -2254 ($ (-656 (-922 |#1|)))) (-15 -1800 ((-1121 |#1|) $ |#1|)) (-15 -1743 ((-1121 (-1121 |#1|)) $)) (-15 -1800 ((-1121 (-1121 |#1|)) $ (-1121 |#1|))) (-15 -1800 ((-1121 (-656 |#1|)) $ (-656 |#1|))) (-15 -2511 ((-112) (-922 |#1|) $)) (-15 -4105 ((-656 (-783)) (-922 |#1|) $)) (-15 -3446 ((-656 (-783)) (-922 |#1|) $)) (-15 -2352 ((-1121 |#1|) $)) (-15 -3010 ((-112) $ $)) (-15 -3037 ((-112) $ $)) (-15 -3610 ((-1291) $)) (-15 -3610 ((-1291) $ (-576) (-576))))) +((-3474 (((-112) $ $) NIL)) (-2352 (((-1121 |#1|) $) 60)) (-1758 (((-656 $) (-656 $)) 103)) (-2184 (((-576) $) 83)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-3333 (((-783) $) 80)) (-1800 (((-1121 |#1|) $ |#1|) 70)) (-1414 (((-112) $) NIL)) (-3828 (((-112) $) 88)) (-2393 (((-783) $) 84)) (-2442 (($ $ $) NIL (-2835 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-1893 (($ $ $) NIL (-2835 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-1486 (((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $) 55)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 130)) (-1445 (((-1139) $) NIL)) (-1478 (((-1121 |#1|) $) 136 (|has| |#1| (-379)))) (-2489 (((-112) $) 81)) (-2871 ((|#1| $ |#1|) 68)) (-1433 (((-783) $) 62)) (-3324 (($ (-656 (-656 |#1|))) 118)) (-3786 (((-990) $) 74)) (-2070 (($ (-656 |#1|)) 32)) (-4026 (($ $ $) NIL)) (-4081 (($ $ $) NIL)) (-3643 (($ (-656 (-656 |#1|))) 57)) (-2397 (($ (-656 (-656 |#1|))) 123)) (-2945 (($ (-656 |#1|)) 132)) (-3563 (((-874) $) 117) (($ (-656 (-656 |#1|))) 91) (($ (-656 |#1|)) 92)) (-3985 (((-112) $ $) NIL)) (-2810 (($) 24 T CONST)) (-3049 (((-112) $ $) NIL (-2835 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3024 (((-112) $ $) NIL (-2835 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-2988 (((-112) $ $) 66)) (-3037 (((-112) $ $) NIL (-2835 (|has| |#1| (-379)) (|has| |#1| (-862))))) (-3010 (((-112) $ $) 90)) (-3107 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ $ $) 33))) +(((-922 |#1|) (-13 (-920 |#1|) (-10 -8 (-15 -1486 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -3643 ($ (-656 (-656 |#1|)))) (-15 -3563 ($ (-656 (-656 |#1|)))) (-15 -3563 ($ (-656 |#1|))) (-15 -2397 ($ (-656 (-656 |#1|)))) (-15 -1433 ((-783) $)) (-15 -3786 ((-990) $)) (-15 -3333 ((-783) $)) (-15 -2393 ((-783) $)) (-15 -2184 ((-576) $)) (-15 -2489 ((-112) $)) (-15 -3828 ((-112) $)) (-15 -1758 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -1478 ((-1121 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -2945 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -2945 ($ (-656 |#1|))) |%noBranch|)))) (-1119)) (T -922)) +((-1486 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3643 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3786 (*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-2184 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-2489 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-1758 (*1 *2 *2) (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-1121 *3)) (-5 *1 (-922 *3)) (-4 *3 (-379)) (-4 *3 (-1119)))) (-2945 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3))))) +(-13 (-920 |#1|) (-10 -8 (-15 -1486 ((-2 (|:| |preimage| (-656 |#1|)) (|:| |image| (-656 |#1|))) $)) (-15 -3643 ($ (-656 (-656 |#1|)))) (-15 -3563 ($ (-656 (-656 |#1|)))) (-15 -3563 ($ (-656 |#1|))) (-15 -2397 ($ (-656 (-656 |#1|)))) (-15 -1433 ((-783) $)) (-15 -3786 ((-990) $)) (-15 -3333 ((-783) $)) (-15 -2393 ((-783) $)) (-15 -2184 ((-576) $)) (-15 -2489 ((-112) $)) (-15 -3828 ((-112) $)) (-15 -1758 ((-656 $) (-656 $))) (IF (|has| |#1| (-379)) (-15 -1478 ((-1121 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -2945 ($ (-656 |#1|))) (IF (|has| |#1| (-379)) (-15 -2945 ($ (-656 |#1|))) |%noBranch|)))) +((-3782 (((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|)) 160)) (-1596 ((|#1|) 97)) (-3705 (((-430 (-1191 |#4|)) (-1191 |#4|)) 169)) (-1712 (((-430 (-1191 |#4|)) (-656 |#3|) (-1191 |#4|)) 84)) (-2290 (((-430 (-1191 |#4|)) (-1191 |#4|)) 179)) (-1540 (((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|) |#3|) 113))) +(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3782 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|))) (-15 -2290 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -3705 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -1596 (|#1|)) (-15 -1540 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|) |#3|)) (-15 -1712 ((-430 (-1191 |#4|)) (-656 |#3|) (-1191 |#4|)))) (-926) (-805) (-862) (-966 |#1| |#2| |#3|)) (T -923)) +((-1712 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-926)) (-4 *6 (-805)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-430 (-1191 *8))) (-5 *1 (-923 *5 *6 *7 *8)) (-5 *4 (-1191 *8)))) (-1540 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) (-4 *7 (-966 *5 *6 *4)) (-4 *5 (-926)) (-4 *6 (-805)) (-4 *4 (-862)) (-5 *1 (-923 *5 *6 *4 *7)))) (-1596 (*1 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) (-5 *1 (-923 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-2290 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-3782 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-923 *4 *5 *6 *7))))) +(-10 -7 (-15 -3782 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|))) (-15 -2290 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -3705 ((-430 (-1191 |#4|)) (-1191 |#4|))) (-15 -1596 (|#1|)) (-15 -1540 ((-3 (-656 (-1191 |#4|)) "failed") (-656 (-1191 |#4|)) (-1191 |#4|) |#3|)) (-15 -1712 ((-430 (-1191 |#4|)) (-656 |#3|) (-1191 |#4|)))) +((-3782 (((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|)) 39)) (-1596 ((|#1|) 72)) (-3705 (((-430 (-1191 |#2|)) (-1191 |#2|)) 121)) (-1712 (((-430 (-1191 |#2|)) (-1191 |#2|)) 105)) (-2290 (((-430 (-1191 |#2|)) (-1191 |#2|)) 132))) +(((-924 |#1| |#2|) (-10 -7 (-15 -3782 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|))) (-15 -2290 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -3705 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -1596 (|#1|)) (-15 -1712 ((-430 (-1191 |#2|)) (-1191 |#2|)))) (-926) (-1262 |#1|)) (T -924)) +((-1712 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-1191 *5)))) (-1596 (*1 *2) (-12 (-4 *2 (-926)) (-5 *1 (-924 *2 *3)) (-4 *3 (-1262 *2)))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-1191 *5)))) (-2290 (*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) (-5 *1 (-924 *4 *5)) (-5 *3 (-1191 *5)))) (-3782 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-926)) (-5 *1 (-924 *4 *5))))) +(-10 -7 (-15 -3782 ((-3 (-656 (-1191 |#2|)) "failed") (-656 (-1191 |#2|)) (-1191 |#2|))) (-15 -2290 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -3705 ((-430 (-1191 |#2|)) (-1191 |#2|))) (-15 -1596 (|#1|)) (-15 -1712 ((-430 (-1191 |#2|)) (-1191 |#2|)))) +((-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 42)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 18)) (-2883 (((-3 $ "failed") $) 36))) +(((-925 |#1|) (-10 -8 (-15 -2883 ((-3 |#1| "failed") |#1|)) (-15 -4168 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) (-926)) (T -925)) +NIL +(-10 -8 (-15 -2883 ((-3 |#1| "failed") |#1|)) (-15 -4168 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-1990 (((-430 (-1191 $)) (-1191 $)) 66)) (-1760 (($ $) 57)) (-2732 (((-430 $) $) 58)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 63)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1792 (((-112) $) 59)) (-1414 (((-112) $) 35)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-4299 (((-430 (-1191 $)) (-1191 $)) 64)) (-1340 (((-430 (-1191 $)) (-1191 $)) 65)) (-1839 (((-430 $) $) 56)) (-3463 (((-3 $ "failed") $ $) 48)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 62 (|has| $ (-146)))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2883 (((-3 $ "failed") $) 61 (|has| $ (-146)))) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-926) (-141)) (T -926)) -((-3142 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-926)))) (-1589 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))) (-3282 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))) (-4254 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1)))) (-2074 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1192 *1))) (-5 *3 (-1192 *1)) (-4 *1 (-926)))) (-1789 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-926)) (-5 *2 (-1287 *1)))) (-3612 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-926))))) -(-13 (-1241) (-10 -8 (-15 -1589 ((-430 (-1192 $)) (-1192 $))) (-15 -3282 ((-430 (-1192 $)) (-1192 $))) (-15 -4254 ((-430 (-1192 $)) (-1192 $))) (-15 -3142 ((-1192 $) (-1192 $) (-1192 $))) (-15 -2074 ((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $))) (IF (|has| $ (-146)) (PROGN (-15 -1789 ((-3 (-1287 $) "failed") (-701 $))) (-15 -3612 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4273 (((-112) $) NIL)) (-3062 (((-783)) NIL)) (-3803 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-2178 (((-1209 (-938) (-783)) (-576)) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 $ "failed") $) NIL)) (-2378 (($ $) NIL)) (-3006 (($ (-1287 $)) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-1554 (($) NIL)) (-3506 (((-112) $) NIL)) (-1329 (($ $) NIL) (($ $ (-783)) NIL)) (-2725 (((-112) $) NIL)) (-1538 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1810 (((-112) $) NIL)) (-3783 (($) NIL (|has| $ (-379)))) (-2172 (((-112) $) NIL (|has| $ (-379)))) (-4252 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-2083 (((-3 $ "failed") $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3164 (((-1192 $) $ (-938)) NIL (|has| $ (-379))) (((-1192 $) $) NIL)) (-3225 (((-938) $) NIL)) (-3392 (((-1192 $) $) NIL (|has| $ (-379)))) (-4212 (((-3 (-1192 $) "failed") $ $) NIL (|has| $ (-379))) (((-1192 $) $) NIL (|has| $ (-379)))) (-4216 (($ $ (-1192 $)) NIL (|has| $ (-379)))) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL T CONST)) (-2550 (($ (-938)) NIL)) (-3377 (((-112) $) NIL)) (-3139 (((-1139) $) NIL)) (-2582 (($) NIL (|has| $ (-379)))) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL)) (-1392 (((-430 $) $) NIL)) (-2588 (((-938)) NIL) (((-845 (-938))) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-2547 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-3667 (((-135)) NIL)) (-3614 (($ $) NIL) (($ $ (-783)) NIL)) (-2369 (((-938) $) NIL) (((-845 (-938)) $) NIL)) (-2840 (((-1192 $)) NIL)) (-3870 (($) NIL)) (-2506 (($) NIL (|has| $ (-379)))) (-3287 (((-701 $) (-1287 $)) NIL) (((-1287 $) $) NIL)) (-1505 (((-576) $) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-3612 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $) (-938)) NIL) (((-1287 $)) NIL)) (-2947 (((-112) $ $) NIL)) (-4101 (((-112) $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3847 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +((-2183 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-926)))) (-1990 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))) (-1340 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))) (-4299 (*1 *2 *3) (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1)))) (-4168 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-656 (-1191 *1))) (-5 *3 (-1191 *1)) (-4 *1 (-926)))) (-2110 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-926)) (-5 *2 (-1286 *1)))) (-2883 (*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-926))))) +(-13 (-1240) (-10 -8 (-15 -1990 ((-430 (-1191 $)) (-1191 $))) (-15 -1340 ((-430 (-1191 $)) (-1191 $))) (-15 -4299 ((-430 (-1191 $)) (-1191 $))) (-15 -2183 ((-1191 $) (-1191 $) (-1191 $))) (-15 -4168 ((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $))) (IF (|has| $ (-146)) (PROGN (-15 -2110 ((-3 (-1286 $) "failed") (-701 $))) (-15 -2883 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1240) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-2415 (((-112) $) NIL)) (-4032 (((-783)) NIL)) (-2310 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-1361 (((-1208 (-938) (-783)) (-576)) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 $ "failed") $) NIL)) (-4056 (($ $) NIL)) (-2612 (($ (-1286 $)) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-2580 (($) NIL)) (-2664 (((-112) $) NIL)) (-3499 (($ $) NIL) (($ $ (-783)) NIL)) (-1792 (((-112) $) NIL)) (-3333 (((-845 (-938)) $) NIL) (((-938) $) NIL)) (-1414 (((-112) $) NIL)) (-2136 (($) NIL (|has| $ (-379)))) (-3996 (((-112) $) NIL (|has| $ (-379)))) (-4072 (($ $ (-938)) NIL (|has| $ (-379))) (($ $) NIL)) (-3930 (((-3 $ "failed") $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2554 (((-1191 $) $ (-938)) NIL (|has| $ (-379))) (((-1191 $) $) NIL)) (-1902 (((-938) $) NIL)) (-1936 (((-1191 $) $) NIL (|has| $ (-379)))) (-3275 (((-3 (-1191 $) "failed") $ $) NIL (|has| $ (-379))) (((-1191 $) $) NIL (|has| $ (-379)))) (-1531 (($ $ (-1191 $)) NIL (|has| $ (-379)))) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL T CONST)) (-3257 (($ (-938)) NIL)) (-4206 (((-112) $) NIL)) (-1445 (((-1139) $) NIL)) (-2202 (($) NIL (|has| $ (-379)))) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL)) (-1839 (((-430 $) $) NIL)) (-3201 (((-938)) NIL) (((-845 (-938))) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3721 (((-3 (-783) "failed") $ $) NIL) (((-783) $) NIL)) (-2446 (((-135)) NIL)) (-2735 (($ $) NIL) (($ $ (-783)) NIL)) (-1433 (((-938) $) NIL) (((-845 (-938)) $) NIL)) (-1372 (((-1191 $)) NIL)) (-2594 (($) NIL)) (-1795 (($) NIL (|has| $ (-379)))) (-1809 (((-701 $) (-1286 $)) NIL) (((-1286 $) $) NIL)) (-4076 (((-576) $) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL)) (-2883 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $) (-938)) NIL) (((-1286 $)) NIL)) (-3040 (((-112) $ $) NIL)) (-1847 (((-112) $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-4273 (($ $ (-783)) NIL (|has| $ (-379))) (($ $) NIL (|has| $ (-379)))) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) (((-927 |#1|) (-13 (-360) (-339 $) (-626 (-576))) (-938)) (T -927)) NIL (-13 (-360) (-339 $) (-626 (-576))) -((-2269 (((-3 (-2 (|:| -1538 (-783)) (|:| -3021 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-2080 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-1538 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) -(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1538 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -2080 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -2269 ((-3 (-2 (|:| -1538 (-783)) (|:| -3021 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1057 (-576))) (-442 |#1|) (-1263 |#2|) (-1263 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -928)) -((-2269 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-2 (|:| -1538 (-783)) (|:| -3021 *8))) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-1538 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-783)) (-5 *1 (-928 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -1538 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -2080 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -2269 ((-3 (-2 (|:| -1538 (-783)) (|:| -3021 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) -((-2269 (((-3 (-2 (|:| -1538 (-783)) (|:| -3021 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-2080 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-1538 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) -(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -1538 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2080 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2269 ((-3 (-2 (|:| -1538 (-783)) (|:| -3021 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1263 (-419 (-576))) (-1263 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -929)) -((-2269 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -1538 (-783)) (|:| -3021 *6))) (-5 *1 (-929 *4 *5 *6)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-929 *4 *5 *6)))) (-1538 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-929 *4 *5 *6))))) -(-10 -7 (-15 -1538 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2080 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -2269 ((-3 (-2 (|:| -1538 (-783)) (|:| -3021 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) -((-2159 ((|#2| |#2|) 26)) (-1610 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-3932 (((-938) (-576)) 38)) (-2474 (((-576) |#2|) 45)) (-3502 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) -(((-930 |#1| |#2|) (-10 -7 (-15 -3932 ((-938) (-576))) (-15 -3502 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3502 ((-576) |#2|)) (-15 -1610 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -2474 ((-576) |#2|)) (-15 -2159 (|#2| |#2|))) (-1263 (-419 (-576))) (-1263 (-419 |#1|))) (T -930)) -((-2159 (*1 *2 *2) (-12 (-4 *3 (-1263 (-419 (-576)))) (-5 *1 (-930 *3 *2)) (-4 *2 (-1263 (-419 *3))))) (-2474 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1263 (-419 *4))))) (-3502 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-3502 (*1 *2 *3) (-12 (-4 *3 (-1263 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-930 *3 *4)) (-4 *4 (-1263 (-419 *3))))) (-3932 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1263 (-419 *3))) (-5 *2 (-938)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1263 (-419 *4)))))) -(-10 -7 (-15 -3932 ((-938) (-576))) (-15 -3502 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3502 ((-576) |#2|)) (-15 -1610 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -2474 ((-576) |#2|)) (-15 -2159 (|#2| |#2|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 ((|#1| $) 100)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-1975 (($ $ $) NIL)) (-3179 (((-3 $ "failed") $) 94)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-1953 (($ |#1| (-430 |#1|)) 92)) (-4071 (((-1192 |#1|) |#1| |#1|) 53)) (-2399 (($ $) 61)) (-1810 (((-112) $) NIL)) (-1918 (((-576) $) 97)) (-3604 (($ $ (-576)) 99)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2530 ((|#1| $) 96)) (-3909 (((-430 |#1|) $) 95)) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) 93)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-1568 (($ $) 50)) (-4092 (((-874) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-2471 (((-783)) 71 T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-4300 (($) 26 T CONST)) (-4310 (($) 15 T CONST)) (-3919 (((-112) $ $) 87)) (-4028 (($ $ $) NIL)) (-4018 (($ $) 108) (($ $ $) NIL)) (-4007 (($ $ $) 49)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) -(((-931 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -4092 ((-419 |#1|) $)) (-15 -4092 ($ (-419 (-430 |#1|)))) (-15 -1568 ($ $)) (-15 -3909 ((-430 |#1|) $)) (-15 -2530 (|#1| $)) (-15 -3604 ($ $ (-576))) (-15 -1918 ((-576) $)) (-15 -4071 ((-1192 |#1|) |#1| |#1|)) (-15 -2399 ($ $)) (-15 -1953 ($ |#1| (-430 |#1|))) (-15 -3942 (|#1| $)))) (-317)) (T -931)) -((-4092 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-931 *3)))) (-1568 (*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) (-3909 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-2530 (*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) (-3604 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-4071 (*1 *2 *3 *3) (-12 (-5 *2 (-1192 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-2399 (*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) (-1953 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-931 *2)))) (-3942 (*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317))))) -(-13 (-374) (-38 |#1|) (-10 -8 (-15 -4092 ((-419 |#1|) $)) (-15 -4092 ($ (-419 (-430 |#1|)))) (-15 -1568 ($ $)) (-15 -3909 ((-430 |#1|) $)) (-15 -2530 (|#1| $)) (-15 -3604 ($ $ (-576))) (-15 -1918 ((-576) $)) (-15 -4071 ((-1192 |#1|) |#1| |#1|)) (-15 -2399 ($ $)) (-15 -1953 ($ |#1| (-430 |#1|))) (-15 -3942 (|#1| $)))) -((-1953 (((-52) (-969 |#1|) (-430 (-969 |#1|)) (-1196)) 17) (((-52) (-419 (-969 |#1|)) (-1196)) 18))) -(((-932 |#1|) (-10 -7 (-15 -1953 ((-52) (-419 (-969 |#1|)) (-1196))) (-15 -1953 ((-52) (-969 |#1|) (-430 (-969 |#1|)) (-1196)))) (-13 (-317) (-148))) (T -932)) -((-1953 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-969 *6))) (-5 *5 (-1196)) (-5 *3 (-969 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *6)))) (-1953 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *5))))) -(-10 -7 (-15 -1953 ((-52) (-419 (-969 |#1|)) (-1196))) (-15 -1953 ((-52) (-969 |#1|) (-430 (-969 |#1|)) (-1196)))) -((-1373 ((|#4| (-656 |#4|)) 147) (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3149 (((-1192 |#4|) (-656 (-1192 |#4|))) 140) (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107))) -(((-933 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3149 (|#4| |#4| |#4|)) (-15 -3149 (|#4| (-656 |#4|))) (-15 -3149 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3149 ((-1192 |#4|) (-656 (-1192 |#4|)))) (-15 -1373 (|#4| |#4| |#4|)) (-15 -1373 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -1373 (|#4| (-656 |#4|)))) (-805) (-862) (-317) (-966 |#3| |#1| |#2|)) (T -933)) -((-1373 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-1373 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) (-1373 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-656 (-1192 *7))) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-1192 *7)) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-3149 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-3149 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4))))) -(-10 -7 (-15 -3149 (|#4| |#4| |#4|)) (-15 -3149 (|#4| (-656 |#4|))) (-15 -3149 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3149 ((-1192 |#4|) (-656 (-1192 |#4|)))) (-15 -1373 (|#4| |#4| |#4|)) (-15 -1373 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -1373 (|#4| (-656 |#4|)))) -((-2986 (((-921 (-576)) (-990)) 38) (((-921 (-576)) (-656 (-576))) 34)) (-2687 (((-921 (-576)) (-656 (-576))) 67) (((-921 (-576)) (-938)) 68)) (-1869 (((-921 (-576))) 39)) (-4208 (((-921 (-576))) 53) (((-921 (-576)) (-656 (-576))) 52)) (-3890 (((-921 (-576))) 51) (((-921 (-576)) (-656 (-576))) 50)) (-3971 (((-921 (-576))) 49) (((-921 (-576)) (-656 (-576))) 48)) (-2896 (((-921 (-576))) 47) (((-921 (-576)) (-656 (-576))) 46)) (-2342 (((-921 (-576))) 45) (((-921 (-576)) (-656 (-576))) 44)) (-4311 (((-921 (-576))) 55) (((-921 (-576)) (-656 (-576))) 54)) (-2809 (((-921 (-576)) (-656 (-576))) 72) (((-921 (-576)) (-938)) 74)) (-4173 (((-921 (-576)) (-656 (-576))) 69) (((-921 (-576)) (-938)) 70)) (-1359 (((-921 (-576)) (-656 (-576))) 65) (((-921 (-576)) (-938)) 66)) (-1723 (((-921 (-576)) (-656 (-938))) 57))) -(((-934) (-10 -7 (-15 -2687 ((-921 (-576)) (-938))) (-15 -2687 ((-921 (-576)) (-656 (-576)))) (-15 -1359 ((-921 (-576)) (-938))) (-15 -1359 ((-921 (-576)) (-656 (-576)))) (-15 -1723 ((-921 (-576)) (-656 (-938)))) (-15 -4173 ((-921 (-576)) (-938))) (-15 -4173 ((-921 (-576)) (-656 (-576)))) (-15 -2809 ((-921 (-576)) (-938))) (-15 -2809 ((-921 (-576)) (-656 (-576)))) (-15 -2342 ((-921 (-576)) (-656 (-576)))) (-15 -2342 ((-921 (-576)))) (-15 -2896 ((-921 (-576)) (-656 (-576)))) (-15 -2896 ((-921 (-576)))) (-15 -3971 ((-921 (-576)) (-656 (-576)))) (-15 -3971 ((-921 (-576)))) (-15 -3890 ((-921 (-576)) (-656 (-576)))) (-15 -3890 ((-921 (-576)))) (-15 -4208 ((-921 (-576)) (-656 (-576)))) (-15 -4208 ((-921 (-576)))) (-15 -4311 ((-921 (-576)) (-656 (-576)))) (-15 -4311 ((-921 (-576)))) (-15 -1869 ((-921 (-576)))) (-15 -2986 ((-921 (-576)) (-656 (-576)))) (-15 -2986 ((-921 (-576)) (-990))))) (T -934)) -((-2986 (*1 *2 *3) (-12 (-5 *3 (-990)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2986 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1869 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4311 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4208 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3890 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3971 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2896 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2342 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2809 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1723 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2687 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2687 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(-10 -7 (-15 -2687 ((-921 (-576)) (-938))) (-15 -2687 ((-921 (-576)) (-656 (-576)))) (-15 -1359 ((-921 (-576)) (-938))) (-15 -1359 ((-921 (-576)) (-656 (-576)))) (-15 -1723 ((-921 (-576)) (-656 (-938)))) (-15 -4173 ((-921 (-576)) (-938))) (-15 -4173 ((-921 (-576)) (-656 (-576)))) (-15 -2809 ((-921 (-576)) (-938))) (-15 -2809 ((-921 (-576)) (-656 (-576)))) (-15 -2342 ((-921 (-576)) (-656 (-576)))) (-15 -2342 ((-921 (-576)))) (-15 -2896 ((-921 (-576)) (-656 (-576)))) (-15 -2896 ((-921 (-576)))) (-15 -3971 ((-921 (-576)) (-656 (-576)))) (-15 -3971 ((-921 (-576)))) (-15 -3890 ((-921 (-576)) (-656 (-576)))) (-15 -3890 ((-921 (-576)))) (-15 -4208 ((-921 (-576)) (-656 (-576)))) (-15 -4208 ((-921 (-576)))) (-15 -4311 ((-921 (-576)) (-656 (-576)))) (-15 -4311 ((-921 (-576)))) (-15 -1869 ((-921 (-576)))) (-15 -2986 ((-921 (-576)) (-656 (-576)))) (-15 -2986 ((-921 (-576)) (-990)))) -((-3761 (((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196))) 14)) (-4176 (((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196))) 13))) -(((-935 |#1|) (-10 -7 (-15 -4176 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -3761 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196))))) (-464)) (T -935)) -((-3761 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) (-5 *1 (-935 *4)))) (-4176 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) (-5 *1 (-935 *4))))) -(-10 -7 (-15 -4176 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -3761 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1196))))) -((-4092 (((-326 |#1|) (-489)) 16))) -(((-936 |#1|) (-10 -7 (-15 -4092 ((-326 |#1|) (-489)))) (-568)) (T -936)) -((-4092 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-936 *4)) (-4 *4 (-568))))) -(-10 -7 (-15 -4092 ((-326 |#1|) (-489)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-1810 (((-112) $) 35)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-1471 (((-3 (-2 (|:| -3333 (-783)) (|:| -3356 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)) 77)) (-1682 (((-112) (-347 |#2| |#3| |#4| |#5|)) 17)) (-3333 (((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|)) 15))) +(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3333 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -1682 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1471 ((-3 (-2 (|:| -3333 (-783)) (|:| -3356 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) (-13 (-568) (-1057 (-576))) (-442 |#1|) (-1262 |#2|) (-1262 (-419 |#3|)) (-353 |#2| |#3| |#4|)) (T -928)) +((-1471 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-2 (|:| -3333 (-783)) (|:| -3356 *8))) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-3333 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-783)) (-5 *1 (-928 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -3333 ((-3 (-783) "failed") (-347 |#2| |#3| |#4| |#5|))) (-15 -1682 ((-112) (-347 |#2| |#3| |#4| |#5|))) (-15 -1471 ((-3 (-2 (|:| -3333 (-783)) (|:| -3356 |#5|)) "failed") (-347 |#2| |#3| |#4| |#5|)))) +((-1471 (((-3 (-2 (|:| -3333 (-783)) (|:| -3356 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 64)) (-1682 (((-112) (-347 (-419 (-576)) |#1| |#2| |#3|)) 16)) (-3333 (((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)) 14))) +(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -3333 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1682 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1471 ((-3 (-2 (|:| -3333 (-783)) (|:| -3356 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) (-1262 (-419 (-576))) (-1262 (-419 |#1|)) (-353 (-419 (-576)) |#1| |#2|)) (T -929)) +((-1471 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-2 (|:| -3333 (-783)) (|:| -3356 *6))) (-5 *1 (-929 *4 *5 *6)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-929 *4 *5 *6)))) (-3333 (*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) (-5 *1 (-929 *4 *5 *6))))) +(-10 -7 (-15 -3333 ((-3 (-783) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1682 ((-112) (-347 (-419 (-576)) |#1| |#2| |#3|))) (-15 -1471 ((-3 (-2 (|:| -3333 (-783)) (|:| -3356 |#3|)) "failed") (-347 (-419 (-576)) |#1| |#2| |#3|)))) +((-2195 ((|#2| |#2|) 26)) (-2103 (((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) 15)) (-3171 (((-938) (-576)) 38)) (-4002 (((-576) |#2|) 45)) (-3558 (((-576) |#2|) 21) (((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|) 20))) +(((-930 |#1| |#2|) (-10 -7 (-15 -3171 ((-938) (-576))) (-15 -3558 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3558 ((-576) |#2|)) (-15 -2103 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -4002 ((-576) |#2|)) (-15 -2195 (|#2| |#2|))) (-1262 (-419 (-576))) (-1262 (-419 |#1|))) (T -930)) +((-2195 (*1 *2 *2) (-12 (-4 *3 (-1262 (-419 (-576)))) (-5 *1 (-930 *3 *2)) (-4 *2 (-1262 (-419 *3))))) (-4002 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1262 (-419 *4))))) (-3558 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) (-4 *3 (-1262 (-419 *4))))) (-3558 (*1 *2 *3) (-12 (-4 *3 (-1262 (-419 (-576)))) (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) (-5 *1 (-930 *3 *4)) (-4 *4 (-1262 (-419 *3))))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-576)) (-4 *4 (-1262 (-419 *3))) (-5 *2 (-938)) (-5 *1 (-930 *4 *5)) (-4 *5 (-1262 (-419 *4)))))) +(-10 -7 (-15 -3171 ((-938) (-576))) (-15 -3558 ((-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))) |#1|)) (-15 -3558 ((-576) |#2|)) (-15 -2103 ((-576) (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))))) (-15 -4002 ((-576) |#2|)) (-15 -2195 (|#2| |#2|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 ((|#1| $) 100)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-3420 (($ $ $) NIL)) (-1551 (((-3 $ "failed") $) 94)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1723 (($ |#1| (-430 |#1|)) 92)) (-3856 (((-1191 |#1|) |#1| |#1|) 53)) (-3255 (($ $) 61)) (-1414 (((-112) $) NIL)) (-2537 (((-576) $) 97)) (-3300 (($ $ (-576)) 99)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-2459 ((|#1| $) 96)) (-1701 (((-430 |#1|) $) 95)) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) 93)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3426 (($ $) 50)) (-3563 (((-874) $) 124) (($ (-576)) 73) (($ $) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 41) (((-419 |#1|) $) 78) (($ (-419 (-430 |#1|))) 86)) (-1858 (((-783)) 71 T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2800 (($) 26 T CONST)) (-2810 (($) 15 T CONST)) (-2988 (((-112) $ $) 87)) (-3107 (($ $ $) NIL)) (-3095 (($ $) 108) (($ $ $) NIL)) (-3083 (($ $ $) 49)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 110) (($ $ $) 48) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL))) +(((-931 |#1|) (-13 (-374) (-38 |#1|) (-10 -8 (-15 -3563 ((-419 |#1|) $)) (-15 -3563 ($ (-419 (-430 |#1|)))) (-15 -3426 ($ $)) (-15 -1701 ((-430 |#1|) $)) (-15 -2459 (|#1| $)) (-15 -3300 ($ $ (-576))) (-15 -2537 ((-576) $)) (-15 -3856 ((-1191 |#1|) |#1| |#1|)) (-15 -3255 ($ $)) (-15 -1723 ($ |#1| (-430 |#1|))) (-15 -1560 (|#1| $)))) (-317)) (T -931)) +((-3563 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-419 (-430 *3))) (-4 *3 (-317)) (-5 *1 (-931 *3)))) (-3426 (*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-2459 (*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) (-3300 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-3856 (*1 *2 *3 *3) (-12 (-5 *2 (-1191 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317)))) (-3255 (*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) (-1723 (*1 *1 *2 *3) (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-931 *2)))) (-1560 (*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317))))) +(-13 (-374) (-38 |#1|) (-10 -8 (-15 -3563 ((-419 |#1|) $)) (-15 -3563 ($ (-419 (-430 |#1|)))) (-15 -3426 ($ $)) (-15 -1701 ((-430 |#1|) $)) (-15 -2459 (|#1| $)) (-15 -3300 ($ $ (-576))) (-15 -2537 ((-576) $)) (-15 -3856 ((-1191 |#1|) |#1| |#1|)) (-15 -3255 ($ $)) (-15 -1723 ($ |#1| (-430 |#1|))) (-15 -1560 (|#1| $)))) +((-1723 (((-52) (-969 |#1|) (-430 (-969 |#1|)) (-1195)) 17) (((-52) (-419 (-969 |#1|)) (-1195)) 18))) +(((-932 |#1|) (-10 -7 (-15 -1723 ((-52) (-419 (-969 |#1|)) (-1195))) (-15 -1723 ((-52) (-969 |#1|) (-430 (-969 |#1|)) (-1195)))) (-13 (-317) (-148))) (T -932)) +((-1723 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-430 (-969 *6))) (-5 *5 (-1195)) (-5 *3 (-969 *6)) (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *6)))) (-1723 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *5))))) +(-10 -7 (-15 -1723 ((-52) (-419 (-969 |#1|)) (-1195))) (-15 -1723 ((-52) (-969 |#1|) (-430 (-969 |#1|)) (-1195)))) +((-2145 ((|#4| (-656 |#4|)) 147) (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 84) ((|#4| |#4| |#4|) 146)) (-3495 (((-1191 |#4|) (-656 (-1191 |#4|))) 140) (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 61) ((|#4| (-656 |#4|)) 69) ((|#4| |#4| |#4|) 107))) +(((-933 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3495 (|#4| |#4| |#4|)) (-15 -3495 (|#4| (-656 |#4|))) (-15 -3495 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3495 ((-1191 |#4|) (-656 (-1191 |#4|)))) (-15 -2145 (|#4| |#4| |#4|)) (-15 -2145 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -2145 (|#4| (-656 |#4|)))) (-805) (-862) (-317) (-966 |#3| |#1| |#2|)) (T -933)) +((-2145 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-2145 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) (-2145 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-656 (-1191 *7))) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-1191 *7)) (-5 *1 (-933 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) (-3495 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)))) (-3495 (*1 *2 *2 *2) (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4))))) +(-10 -7 (-15 -3495 (|#4| |#4| |#4|)) (-15 -3495 (|#4| (-656 |#4|))) (-15 -3495 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3495 ((-1191 |#4|) (-656 (-1191 |#4|)))) (-15 -2145 (|#4| |#4| |#4|)) (-15 -2145 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -2145 (|#4| (-656 |#4|)))) +((-4155 (((-921 (-576)) (-990)) 38) (((-921 (-576)) (-656 (-576))) 34)) (-1369 (((-921 (-576)) (-656 (-576))) 67) (((-921 (-576)) (-938)) 68)) (-2108 (((-921 (-576))) 39)) (-2859 (((-921 (-576))) 53) (((-921 (-576)) (-656 (-576))) 52)) (-3654 (((-921 (-576))) 51) (((-921 (-576)) (-656 (-576))) 50)) (-4191 (((-921 (-576))) 49) (((-921 (-576)) (-656 (-576))) 48)) (-2236 (((-921 (-576))) 47) (((-921 (-576)) (-656 (-576))) 46)) (-2990 (((-921 (-576))) 45) (((-921 (-576)) (-656 (-576))) 44)) (-1488 (((-921 (-576))) 55) (((-921 (-576)) (-656 (-576))) 54)) (-1542 (((-921 (-576)) (-656 (-576))) 72) (((-921 (-576)) (-938)) 74)) (-3869 (((-921 (-576)) (-656 (-576))) 69) (((-921 (-576)) (-938)) 70)) (-3378 (((-921 (-576)) (-656 (-576))) 65) (((-921 (-576)) (-938)) 66)) (-2819 (((-921 (-576)) (-656 (-938))) 57))) +(((-934) (-10 -7 (-15 -1369 ((-921 (-576)) (-938))) (-15 -1369 ((-921 (-576)) (-656 (-576)))) (-15 -3378 ((-921 (-576)) (-938))) (-15 -3378 ((-921 (-576)) (-656 (-576)))) (-15 -2819 ((-921 (-576)) (-656 (-938)))) (-15 -3869 ((-921 (-576)) (-938))) (-15 -3869 ((-921 (-576)) (-656 (-576)))) (-15 -1542 ((-921 (-576)) (-938))) (-15 -1542 ((-921 (-576)) (-656 (-576)))) (-15 -2990 ((-921 (-576)) (-656 (-576)))) (-15 -2990 ((-921 (-576)))) (-15 -2236 ((-921 (-576)) (-656 (-576)))) (-15 -2236 ((-921 (-576)))) (-15 -4191 ((-921 (-576)) (-656 (-576)))) (-15 -4191 ((-921 (-576)))) (-15 -3654 ((-921 (-576)) (-656 (-576)))) (-15 -3654 ((-921 (-576)))) (-15 -2859 ((-921 (-576)) (-656 (-576)))) (-15 -2859 ((-921 (-576)))) (-15 -1488 ((-921 (-576)) (-656 (-576)))) (-15 -1488 ((-921 (-576)))) (-15 -2108 ((-921 (-576)))) (-15 -4155 ((-921 (-576)) (-656 (-576)))) (-15 -4155 ((-921 (-576)) (-990))))) (T -934)) +((-4155 (*1 *2 *3) (-12 (-5 *3 (-990)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2108 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1488 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2859 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3654 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4191 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-4191 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2236 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2236 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2990 (*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1542 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-2819 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) (-1369 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(-10 -7 (-15 -1369 ((-921 (-576)) (-938))) (-15 -1369 ((-921 (-576)) (-656 (-576)))) (-15 -3378 ((-921 (-576)) (-938))) (-15 -3378 ((-921 (-576)) (-656 (-576)))) (-15 -2819 ((-921 (-576)) (-656 (-938)))) (-15 -3869 ((-921 (-576)) (-938))) (-15 -3869 ((-921 (-576)) (-656 (-576)))) (-15 -1542 ((-921 (-576)) (-938))) (-15 -1542 ((-921 (-576)) (-656 (-576)))) (-15 -2990 ((-921 (-576)) (-656 (-576)))) (-15 -2990 ((-921 (-576)))) (-15 -2236 ((-921 (-576)) (-656 (-576)))) (-15 -2236 ((-921 (-576)))) (-15 -4191 ((-921 (-576)) (-656 (-576)))) (-15 -4191 ((-921 (-576)))) (-15 -3654 ((-921 (-576)) (-656 (-576)))) (-15 -3654 ((-921 (-576)))) (-15 -2859 ((-921 (-576)) (-656 (-576)))) (-15 -2859 ((-921 (-576)))) (-15 -1488 ((-921 (-576)) (-656 (-576)))) (-15 -1488 ((-921 (-576)))) (-15 -2108 ((-921 (-576)))) (-15 -4155 ((-921 (-576)) (-656 (-576)))) (-15 -4155 ((-921 (-576)) (-990)))) +((-2451 (((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1195))) 14)) (-2978 (((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1195))) 13))) +(((-935 |#1|) (-10 -7 (-15 -2978 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1195)))) (-15 -2451 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1195))))) (-464)) (T -935)) +((-2451 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) (-5 *1 (-935 *4)))) (-2978 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) (-5 *1 (-935 *4))))) +(-10 -7 (-15 -2978 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1195)))) (-15 -2451 ((-656 (-969 |#1|)) (-656 (-969 |#1|)) (-656 (-1195))))) +((-3563 (((-326 |#1|) (-489)) 16))) +(((-936 |#1|) (-10 -7 (-15 -3563 ((-326 |#1|) (-489)))) (-568)) (T -936)) +((-3563 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-936 *4)) (-4 *4 (-568))))) +(-10 -7 (-15 -3563 ((-326 |#1|) (-489)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-1414 (((-112) $) 35)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-937) (-141)) (T -937)) -((-4064 (*1 *2 *3) (-12 (-4 *1 (-937)) (-5 *2 (-2 (|:| -1856 (-656 *1)) (|:| -2582 *1))) (-5 *3 (-656 *1)))) (-1407 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-937))))) -(-13 (-464) (-10 -8 (-15 -4064 ((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $))) (-15 -1407 ((-3 (-656 $) "failed") (-656 $) $)))) +((-4356 (*1 *2 *3) (-12 (-4 *1 (-937)) (-5 *2 (-2 (|:| -1706 (-656 *1)) (|:| -2202 *1))) (-5 *3 (-656 *1)))) (-1350 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-937))))) +(-13 (-464) (-10 -8 (-15 -4356 ((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $))) (-15 -1350 ((-3 (-656 $) "failed") (-656 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3149 (($ $ $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-4310 (($) NIL T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ $ $) NIL))) -(((-938) (-13 (-806) (-738) (-10 -8 (-15 -3149 ($ $ $)) (-6 (-4464 "*"))))) (T -938)) -((-3149 (*1 *1 *1 *1) (-5 *1 (-938)))) -(-13 (-806) (-738) (-10 -8 (-15 -3149 ($ $ $)) (-6 (-4464 "*")))) +((-3474 (((-112) $ $) NIL)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3495 (($ $ $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2810 (($) NIL T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ $ $) NIL))) +(((-938) (-13 (-806) (-738) (-10 -8 (-15 -3495 ($ $ $)) (-6 (-4463 "*"))))) (T -938)) +((-3495 (*1 *1 *1 *1) (-5 *1 (-938)))) +(-13 (-806) (-738) (-10 -8 (-15 -3495 ($ $ $)) (-6 (-4463 "*")))) ((|NonNegativeInteger|) (|%igt| |#1| 0)) -((-2497 ((|#2| (-656 |#1|) (-656 |#1|)) 28))) -(((-939 |#1| |#2|) (-10 -7 (-15 -2497 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1263 |#1|)) (T -939)) -((-2497 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1263 *4)) (-5 *1 (-939 *4 *2))))) -(-10 -7 (-15 -2497 (|#2| (-656 |#1|) (-656 |#1|)))) -((-4267 (((-1192 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1260 |#1| |#2|) (-1260 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13))) -(((-940 |#1| |#2|) (-10 -7 (-15 -4267 ((-1260 |#1| |#2|) (-1260 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -4267 ((-1192 |#2|) (-656 |#2|) (-656 |#2|)))) (-1196) (-374)) (T -940)) -((-4267 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1192 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-1196)))) (-4267 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1260 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1196)) (-4 *5 (-374)) (-5 *1 (-940 *4 *5))))) -(-10 -7 (-15 -4267 ((-1260 |#1| |#2|) (-1260 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -4267 ((-1192 |#2|) (-656 |#2|) (-656 |#2|)))) -((-1889 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178)) 174)) (-3470 ((|#4| |#4|) 193)) (-4177 (((-656 (-419 (-969 |#1|))) (-656 (-1196))) 146)) (-1834 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-2387 (((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))) (-656 |#4|)) 69)) (-3758 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-4325 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178)) 186)) (-3802 (((-576) (-701 |#4|) (-938) (-1178)) 166) (((-576) (-701 |#4|) (-656 (-1196)) (-938) (-1178)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-938) (-1178)) 164) (((-576) (-701 |#4|) (-1178)) 154) (((-576) (-701 |#4|) (-656 (-1196)) (-1178)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1178)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-938)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)) (-938)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-938)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-2321 ((|#4| (-969 |#1|)) 80)) (-3895 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-3924 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-2862 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-2105 (((-783) (-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-1342 (((-783) (-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-2911 (((-112) (-656 (-969 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-2125 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-1636 (((-656 |#4|) |#4|) 57)) (-2890 (((-656 (-419 (-969 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-969 |#1|))) (-701 |#4|)) 66) (((-419 (-969 |#1|)) |#4|) 139)) (-3739 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-783) (-1178) (-576)) 112)) (-2314 (((-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-1927 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-1464 (((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| -2215 (-701 (-419 (-969 |#1|)))) (|:| |vec| (-656 (-419 (-969 |#1|)))) (|:| -4049 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56))) -(((-941 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-938))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)) (-938))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-938))) (-15 -3802 ((-576) (-701 |#4|) (-656 |#4|) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-656 (-1196)) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-656 |#4|) (-938) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-656 (-1196)) (-938) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-938) (-1178))) (-15 -1889 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178))) (-15 -4325 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178))) (-15 -3739 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-783) (-1178) (-576))) (-15 -2890 ((-419 (-969 |#1|)) |#4|)) (-15 -2890 ((-701 (-419 (-969 |#1|))) (-701 |#4|))) (-15 -2890 ((-656 (-419 (-969 |#1|))) (-656 |#4|))) (-15 -4177 ((-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -2321 (|#4| (-969 |#1|))) (-15 -2125 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2314 ((-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -2387 ((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))) (-656 |#4|))) (-15 -1464 ((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| -2215 (-701 (-419 (-969 |#1|)))) (|:| |vec| (-656 (-419 (-969 |#1|)))) (|:| -4049 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -1636 ((-656 |#4|) |#4|)) (-15 -1342 ((-783) (-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2105 ((-783) (-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2862 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3924 ((-656 (-656 (-576))) (-576) (-576))) (-15 -3895 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -1927 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -3758 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -1834 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -3470 (|#4| |#4|)) (-15 -2911 ((-112) (-656 |#4|))) (-15 -2911 ((-112) (-656 (-969 |#1|))))) (-13 (-317) (-148)) (-13 (-862) (-626 (-1196))) (-805) (-966 |#1| |#3| |#2|)) (T -941)) -((-2911 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6 *7)))) (-3470 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1196)))) (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *2)) (-4 *2 (-966 *3 *5 *4)))) (-1834 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-969 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-966 *9 *11 *10)) (-4 *10 (-13 (-862) (-626 (-1196)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-969 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *9)))) (|:| -1999 (-656 (-1287 (-419 (-969 *9))))))))) (-5 *1 (-941 *9 *10 *11 *12)))) (-3758 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7)))) (-1927 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3924 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *6 *5)))) (-2862 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-966 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1196)))) (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *6)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-941 *4 *5 *6 *7)))) (-1342 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-941 *4 *5 *6 *7)))) (-1636 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-941 *4 *5 *6 *3)) (-4 *3 (-966 *4 *6 *5)))) (-1464 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2215 (-701 (-419 (-969 *4)))) (|:| |vec| (-656 (-419 (-969 *4)))) (|:| -4049 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) (|:| -1999 (-656 (-1287 (-419 (-969 *4))))))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-2387 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) (|:| -1999 (-656 (-1287 (-419 (-969 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-966 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7)))) (-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-783)))) (-2125 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-4 *7 (-966 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2321 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-966 *4 *6 *5)) (-5 *1 (-941 *4 *5 *6 *2)) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)))) (-2890 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-419 (-969 *4))) (-5 *1 (-941 *4 *5 *6 *3)) (-4 *3 (-966 *4 *6 *5)))) (-3739 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-969 *8)))) (-5 *5 (-783)) (-5 *6 (-1178)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-966 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1196)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-969 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *8)))) (|:| -1999 (-656 (-1287 (-419 (-969 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-941 *8 *9 *10 *11)) (-5 *7 (-576)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-969 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) (|:| -1999 (-656 (-1287 (-419 (-969 *4)))))))))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) (|:| -1999 (-656 (-1287 (-419 (-969 *5)))))))))) (-5 *4 (-1178)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-966 *5 *7 *6)) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-938)) (-5 *5 (-1178)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *6 *7 *8 *9)))) (-3802 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1196))) (-5 *5 (-938)) (-5 *6 (-1178)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *7 *8 *9 *10)))) (-3802 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-938)) (-5 *6 (-1178)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *7 *8 *9 *10)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1178)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-1178)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *6 *7 *8 *9)))) (-3802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1178)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *6 *7 *8 *9)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-938)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) (|:| -1999 (-656 (-1287 (-419 (-969 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-938)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-969 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *6)))) (|:| -1999 (-656 (-1287 (-419 (-969 *6)))))))))) (-5 *1 (-941 *6 *7 *8 *9)))) (-3802 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-938)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-969 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *6)))) (|:| -1999 (-656 (-1287 (-419 (-969 *6)))))))))) (-5 *1 (-941 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-969 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) (|:| -1999 (-656 (-1287 (-419 (-969 *4)))))))))) (-5 *1 (-941 *4 *5 *6 *7)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1196))) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) (|:| -1999 (-656 (-1287 (-419 (-969 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) (|:| -1999 (-656 (-1287 (-419 (-969 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(-10 -7 (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-938))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1196)) (-938))) (-15 -3802 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-701 |#4|) (-938))) (-15 -3802 ((-576) (-701 |#4|) (-656 |#4|) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-656 (-1196)) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-656 |#4|) (-938) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-656 (-1196)) (-938) (-1178))) (-15 -3802 ((-576) (-701 |#4|) (-938) (-1178))) (-15 -1889 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178))) (-15 -4325 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|))))))))) (-1178))) (-15 -3739 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-783) (-1178) (-576))) (-15 -2890 ((-419 (-969 |#1|)) |#4|)) (-15 -2890 ((-701 (-419 (-969 |#1|))) (-701 |#4|))) (-15 -2890 ((-656 (-419 (-969 |#1|))) (-656 |#4|))) (-15 -4177 ((-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -2321 (|#4| (-969 |#1|))) (-15 -2125 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -2314 ((-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -2387 ((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))) (-656 |#4|))) (-15 -1464 ((-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))) (-2 (|:| -2215 (-701 (-419 (-969 |#1|)))) (|:| |vec| (-656 (-419 (-969 |#1|)))) (|:| -4049 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -1636 ((-656 |#4|) |#4|)) (-15 -1342 ((-783) (-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2105 ((-783) (-656 (-2 (|:| -4049 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -2862 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3924 ((-656 (-656 (-576))) (-576) (-576))) (-15 -3895 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -1927 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -3758 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -1834 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-969 |#1|)))) (|:| -1999 (-656 (-1287 (-419 (-969 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -3470 (|#4| |#4|)) (-15 -2911 ((-112) (-656 |#4|))) (-15 -2911 ((-112) (-656 (-969 |#1|))))) -((-3479 (((-944) |#1| (-1196)) 17) (((-944) |#1| (-1196) (-1113 (-227))) 21)) (-3095 (((-944) |#1| |#1| (-1196) (-1113 (-227))) 19) (((-944) |#1| (-1196) (-1113 (-227))) 15))) -(((-942 |#1|) (-10 -7 (-15 -3095 ((-944) |#1| (-1196) (-1113 (-227)))) (-15 -3095 ((-944) |#1| |#1| (-1196) (-1113 (-227)))) (-15 -3479 ((-944) |#1| (-1196) (-1113 (-227)))) (-15 -3479 ((-944) |#1| (-1196)))) (-626 (-548))) (T -942)) -((-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) (-3479 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) (-3095 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) (-3095 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548)))))) -(-10 -7 (-15 -3095 ((-944) |#1| (-1196) (-1113 (-227)))) (-15 -3095 ((-944) |#1| |#1| (-1196) (-1113 (-227)))) (-15 -3479 ((-944) |#1| (-1196) (-1113 (-227)))) (-15 -3479 ((-944) |#1| (-1196)))) -((-2951 (($ $ (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 121)) (-3864 (((-1113 (-227)) $) 64)) (-3854 (((-1113 (-227)) $) 63)) (-3841 (((-1113 (-227)) $) 62)) (-1486 (((-656 (-656 (-227))) $) 69)) (-2589 (((-1113 (-227)) $) 65)) (-3862 (((-576) (-576)) 57)) (-3185 (((-576) (-576)) 52)) (-2205 (((-576) (-576)) 55)) (-3017 (((-112) (-112)) 59)) (-4408 (((-576)) 56)) (-2198 (($ $ (-1113 (-227))) 124) (($ $) 125)) (-4128 (($ (-1 (-960 (-227)) (-227)) (-1113 (-227))) 131) (($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 132)) (-3095 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 135) (($ $ (-1113 (-227))) 127)) (-2719 (((-576)) 60)) (-3538 (((-576)) 50)) (-2802 (((-576)) 53)) (-2769 (((-656 (-656 (-960 (-227)))) $) 151)) (-3234 (((-112) (-112)) 61)) (-4092 (((-874) $) 149)) (-4080 (((-112)) 58))) -(((-943) (-13 (-993) (-10 -8 (-15 -4128 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -4128 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3095 ($ $ (-1113 (-227)))) (-15 -2951 ($ $ (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2198 ($ $ (-1113 (-227)))) (-15 -2198 ($ $)) (-15 -2589 ((-1113 (-227)) $)) (-15 -1486 ((-656 (-656 (-227))) $)) (-15 -3538 ((-576))) (-15 -3185 ((-576) (-576))) (-15 -2802 ((-576))) (-15 -2205 ((-576) (-576))) (-15 -4408 ((-576))) (-15 -3862 ((-576) (-576))) (-15 -4080 ((-112))) (-15 -3017 ((-112) (-112))) (-15 -2719 ((-576))) (-15 -3234 ((-112) (-112)))))) (T -943)) -((-4128 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-4128 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-3095 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-3095 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-3095 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-2951 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-2198 (*1 *1 *1) (-5 *1 (-943))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-943)))) (-3538 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3185 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2802 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-4408 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3862 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-4080 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-2719 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3234 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) -(-13 (-993) (-10 -8 (-15 -4128 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -4128 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3095 ($ $ (-1113 (-227)))) (-15 -2951 ($ $ (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -2198 ($ $ (-1113 (-227)))) (-15 -2198 ($ $)) (-15 -2589 ((-1113 (-227)) $)) (-15 -1486 ((-656 (-656 (-227))) $)) (-15 -3538 ((-576))) (-15 -3185 ((-576) (-576))) (-15 -2802 ((-576))) (-15 -2205 ((-576) (-576))) (-15 -4408 ((-576))) (-15 -3862 ((-576) (-576))) (-15 -4080 ((-112))) (-15 -3017 ((-112) (-112))) (-15 -2719 ((-576))) (-15 -3234 ((-112) (-112))))) -((-2951 (($ $ (-1113 (-227))) 122) (($ $ (-1113 (-227)) (-1113 (-227))) 123)) (-3854 (((-1113 (-227)) $) 73)) (-3841 (((-1113 (-227)) $) 72)) (-2589 (((-1113 (-227)) $) 74)) (-2024 (((-576) (-576)) 66)) (-2620 (((-576) (-576)) 61)) (-2601 (((-576) (-576)) 64)) (-1570 (((-112) (-112)) 68)) (-3242 (((-576)) 65)) (-2198 (($ $ (-1113 (-227))) 126) (($ $) 127)) (-4128 (($ (-1 (-960 (-227)) (-227)) (-1113 (-227))) 141) (($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 142)) (-3479 (($ (-1 (-227) (-227)) (-1113 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-3095 (($ (-1 (-227) (-227)) (-1113 (-227))) 137) (($ (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1113 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1113 (-227)) (-1113 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 140) (($ $ (-1113 (-227))) 128)) (-2656 (((-112) $) 69)) (-4274 (((-576)) 70)) (-2981 (((-576)) 59)) (-3078 (((-576)) 62)) (-2769 (((-656 (-656 (-960 (-227)))) $) 35)) (-4275 (((-112) (-112)) 71)) (-4092 (((-874) $) 167)) (-2659 (((-112)) 67))) -(((-944) (-13 (-972) (-10 -8 (-15 -3095 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3095 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)))) (-15 -3095 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4128 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -4128 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3479 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -3479 ($ (-1 (-227) (-227)))) (-15 -3095 ($ $ (-1113 (-227)))) (-15 -2656 ((-112) $)) (-15 -2951 ($ $ (-1113 (-227)))) (-15 -2951 ($ $ (-1113 (-227)) (-1113 (-227)))) (-15 -2198 ($ $ (-1113 (-227)))) (-15 -2198 ($ $)) (-15 -2589 ((-1113 (-227)) $)) (-15 -2981 ((-576))) (-15 -2620 ((-576) (-576))) (-15 -3078 ((-576))) (-15 -2601 ((-576) (-576))) (-15 -3242 ((-576))) (-15 -2024 ((-576) (-576))) (-15 -2659 ((-112))) (-15 -1570 ((-112) (-112))) (-15 -4274 ((-576))) (-15 -4275 ((-112) (-112)))))) (T -944)) -((-3095 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3095 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3095 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3095 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3095 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3095 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-4128 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-4128 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3479 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-944)))) (-3095 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-2951 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-2951 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-2198 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-2198 (*1 *1 *1) (-5 *1 (-944))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-2981 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2620 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3078 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3242 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2659 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-1570 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-4274 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-4275 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) -(-13 (-972) (-10 -8 (-15 -3095 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3095 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)))) (-15 -3095 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -3095 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4128 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -4128 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3479 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -3479 ($ (-1 (-227) (-227)))) (-15 -3095 ($ $ (-1113 (-227)))) (-15 -2656 ((-112) $)) (-15 -2951 ($ $ (-1113 (-227)))) (-15 -2951 ($ $ (-1113 (-227)) (-1113 (-227)))) (-15 -2198 ($ $ (-1113 (-227)))) (-15 -2198 ($ $)) (-15 -2589 ((-1113 (-227)) $)) (-15 -2981 ((-576))) (-15 -2620 ((-576) (-576))) (-15 -3078 ((-576))) (-15 -2601 ((-576) (-576))) (-15 -3242 ((-576))) (-15 -2024 ((-576) (-576))) (-15 -2659 ((-112))) (-15 -1570 ((-112) (-112))) (-15 -4274 ((-576))) (-15 -4275 ((-112) (-112))))) -((-3780 (((-656 (-1113 (-227))) (-656 (-656 (-960 (-227))))) 34))) -(((-945) (-10 -7 (-15 -3780 ((-656 (-1113 (-227))) (-656 (-656 (-960 (-227)))))))) (T -945)) -((-3780 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-656 (-1113 (-227)))) (-5 *1 (-945))))) -(-10 -7 (-15 -3780 ((-656 (-1113 (-227))) (-656 (-656 (-960 (-227))))))) -((-2003 ((|#2| |#2|) 28)) (-2395 ((|#2| |#2|) 29)) (-2670 ((|#2| |#2|) 27)) (-1777 ((|#2| |#2| (-518)) 26))) -(((-946 |#1| |#2|) (-10 -7 (-15 -1777 (|#2| |#2| (-518))) (-15 -2670 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -2395 (|#2| |#2|))) (-1119) (-442 |#1|)) (T -946)) -((-2395 (*1 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) (-2003 (*1 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) (-2670 (*1 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) (-1777 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1119)) (-5 *1 (-946 *4 *2)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -1777 (|#2| |#2| (-518))) (-15 -2670 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -2395 (|#2| |#2|))) -((-2003 (((-326 (-576)) (-1196)) 16)) (-2395 (((-326 (-576)) (-1196)) 14)) (-2670 (((-326 (-576)) (-1196)) 12)) (-1777 (((-326 (-576)) (-1196) (-518)) 19))) -(((-947) (-10 -7 (-15 -1777 ((-326 (-576)) (-1196) (-518))) (-15 -2670 ((-326 (-576)) (-1196))) (-15 -2003 ((-326 (-576)) (-1196))) (-15 -2395 ((-326 (-576)) (-1196))))) (T -947)) -((-2395 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-947))))) -(-10 -7 (-15 -1777 ((-326 (-576)) (-1196) (-518))) (-15 -2670 ((-326 (-576)) (-1196))) (-15 -2003 ((-326 (-576)) (-1196))) (-15 -2395 ((-326 (-576)) (-1196)))) -((-4375 (((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)) 25)) (-3070 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -3070 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4375 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)))) (-1119) (-899 |#1|) (-13 (-1119) (-1057 |#2|))) (T -948)) -((-4375 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-13 (-1119) (-1057 *3))) (-4 *3 (-899 *5)) (-5 *1 (-948 *5 *3 *6)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1119) (-1057 *5))) (-4 *5 (-899 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-948 *4 *5 *6))))) -(-10 -7 (-15 -3070 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -4375 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)))) -((-4375 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 30))) -(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -4375 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1119) (-13 (-568) (-899 |#1|)) (-13 (-442 |#2|) (-626 (-905 |#1|)) (-899 |#1|) (-1057 (-624 $)))) (T -949)) -((-4375 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1057 (-624 $)))) (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5))) (-5 *1 (-949 *5 *6 *3))))) -(-10 -7 (-15 -4375 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) -((-4375 (((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)) 13))) -(((-950 |#1|) (-10 -7 (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)))) (-557)) (T -950)) -((-4375 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557)) (-5 *1 (-950 *3))))) -(-10 -7 (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)))) -((-4375 (((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)) 57))) -(((-951 |#1| |#2|) (-10 -7 (-15 -4375 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)))) (-1119) (-13 (-1119) (-1057 (-624 $)) (-626 (-905 |#1|)) (-899 |#1|))) (T -951)) -((-4375 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1119)) (-4 *6 (-13 (-1119) (-1057 (-624 $)) (-626 *4) (-899 *5))) (-5 *4 (-905 *5)) (-5 *1 (-951 *5 *6))))) -(-10 -7 (-15 -4375 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)))) -((-4375 (((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)) 17))) -(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -4375 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)))) (-1119) (-899 |#1|) (-678 |#2|)) (T -952)) -((-4375 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-952 *5 *6 *3))))) -(-10 -7 (-15 -4375 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)))) -((-4375 (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|)) 17 (|has| |#3| (-899 |#1|))) (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|))) 16))) -(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4375 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -4375 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|)) (-1119) (-805) (-862) (-13 (-1068) (-899 |#1|)) (-13 (-966 |#4| |#2| |#3|) (-626 (-905 |#1|)))) (T -953)) -((-4375 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-13 (-966 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5)) (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-13 (-1068) (-899 *5))) (-5 *1 (-953 *5 *6 *7 *8 *3)))) (-4375 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3))) (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6)) (-4 *6 (-1119)) (-4 *3 (-13 (-966 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1068) (-899 *6))) (-5 *1 (-953 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -4375 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -4375 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|)) -((-2479 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -2479 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2479 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1119) (-442 |#1|) (-1237)) (T -954)) -((-2479 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) (-4 *4 (-1119)) (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4)))) (-2479 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1237)) (-4 *4 (-1119)) (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4))))) -(-10 -7 (-15 -2479 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2479 (|#2| |#2| (-656 (-1 (-112) |#3|))))) -((-2479 (((-326 (-576)) (-1196) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1196) (-1 (-112) |#1|)) 15))) -(((-955 |#1|) (-10 -7 (-15 -2479 ((-326 (-576)) (-1196) (-1 (-112) |#1|))) (-15 -2479 ((-326 (-576)) (-1196) (-656 (-1 (-112) |#1|))))) (-1237)) (T -955)) -((-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) (-5 *2 (-326 (-576))) (-5 *1 (-955 *5)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1237)) (-5 *2 (-326 (-576))) (-5 *1 (-955 *5))))) -(-10 -7 (-15 -2479 ((-326 (-576)) (-1196) (-1 (-112) |#1|))) (-15 -2479 ((-326 (-576)) (-1196) (-656 (-1 (-112) |#1|))))) -((-4375 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 25))) -(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -4375 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1119) (-13 (-568) (-899 |#1|) (-626 (-905 |#1|))) (-1011 |#2|)) (T -956)) -((-4375 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-1011 *6)) (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5)) (-5 *1 (-956 *5 *6 *3))))) -(-10 -7 (-15 -4375 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) -((-4375 (((-902 |#1| (-1196)) (-1196) (-905 |#1|) (-902 |#1| (-1196))) 18))) -(((-957 |#1|) (-10 -7 (-15 -4375 ((-902 |#1| (-1196)) (-1196) (-905 |#1|) (-902 |#1| (-1196))))) (-1119)) (T -957)) -((-4375 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 (-1196))) (-5 *3 (-1196)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-5 *1 (-957 *5))))) -(-10 -7 (-15 -4375 ((-902 |#1| (-1196)) (-1196) (-905 |#1|) (-902 |#1| (-1196))))) -((-3573 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 34)) (-4375 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 33))) -(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -4375 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -3573 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))) (-1119) (-1068) (-13 (-1068) (-626 (-905 |#1|)) (-1057 |#2|))) (T -958)) -((-3573 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6))) (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1119)) (-4 *8 (-13 (-1068) (-626 (-905 *6)) (-1057 *7))) (-5 *2 (-902 *6 *8)) (-4 *7 (-1068)) (-5 *1 (-958 *6 *7 *8)))) (-4375 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1119)) (-4 *9 (-13 (-1068) (-626 (-905 *7)) (-1057 *8))) (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1068)) (-5 *1 (-958 *7 *8 *9))))) -(-10 -7 (-15 -4375 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -3573 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))) -((-3980 (((-1192 (-419 (-576))) (-576)) 79)) (-2301 (((-1192 (-576)) (-576)) 82)) (-2818 (((-1192 (-576)) (-576)) 76)) (-1724 (((-576) (-1192 (-576))) 72)) (-1633 (((-1192 (-419 (-576))) (-576)) 65)) (-4434 (((-1192 (-576)) (-576)) 49)) (-1648 (((-1192 (-576)) (-576)) 84)) (-1550 (((-1192 (-576)) (-576)) 83)) (-2366 (((-1192 (-419 (-576))) (-576)) 67))) -(((-959) (-10 -7 (-15 -2366 ((-1192 (-419 (-576))) (-576))) (-15 -1550 ((-1192 (-576)) (-576))) (-15 -1648 ((-1192 (-576)) (-576))) (-15 -4434 ((-1192 (-576)) (-576))) (-15 -1633 ((-1192 (-419 (-576))) (-576))) (-15 -1724 ((-576) (-1192 (-576)))) (-15 -2818 ((-1192 (-576)) (-576))) (-15 -2301 ((-1192 (-576)) (-576))) (-15 -3980 ((-1192 (-419 (-576))) (-576))))) (T -959)) -((-3980 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))) (-2301 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-2818 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-1724 (*1 *2 *3) (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-576)) (-5 *1 (-959)))) (-1633 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))) (-4434 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-1648 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-1550 (*1 *2 *3) (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576))))) -(-10 -7 (-15 -2366 ((-1192 (-419 (-576))) (-576))) (-15 -1550 ((-1192 (-576)) (-576))) (-15 -1648 ((-1192 (-576)) (-576))) (-15 -4434 ((-1192 (-576)) (-576))) (-15 -1633 ((-1192 (-419 (-576))) (-576))) (-15 -1724 ((-576) (-1192 (-576)))) (-15 -2818 ((-1192 (-576)) (-576))) (-15 -2301 ((-1192 (-576)) (-576))) (-15 -3980 ((-1192 (-419 (-576))) (-576)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1705 (($ (-783)) NIL (|has| |#1| (-23)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3433 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3418 (($ (-656 |#1|)) 9)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1602 (((-701 |#1|) $ $) NIL (|has| |#1| (-1068)))) (-1992 (($ (-783) |#1|) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1899 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-3103 (((-112) $ (-783)) NIL)) (-1325 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2701 ((|#1| $) NIL (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-2843 (($ $ (-656 |#1|)) 25)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1254 (-576))) NIL)) (-1660 ((|#1| $ $) NIL (|has| |#1| (-1068)))) (-3667 (((-938) $) 13)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2916 (($ $ $) 23)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-4103 (($ (-656 |#1|)) NIL)) (-2851 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4018 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4007 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2048 (((-783) $) 11 (|has| $ (-6 -4462))))) +((-2263 ((|#2| (-656 |#1|) (-656 |#1|)) 28))) +(((-939 |#1| |#2|) (-10 -7 (-15 -2263 (|#2| (-656 |#1|) (-656 |#1|)))) (-374) (-1262 |#1|)) (T -939)) +((-2263 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1262 *4)) (-5 *1 (-939 *4 *2))))) +(-10 -7 (-15 -2263 (|#2| (-656 |#1|) (-656 |#1|)))) +((-3219 (((-1191 |#2|) (-656 |#2|) (-656 |#2|)) 17) (((-1259 |#1| |#2|) (-1259 |#1| |#2|) (-656 |#2|) (-656 |#2|)) 13))) +(((-940 |#1| |#2|) (-10 -7 (-15 -3219 ((-1259 |#1| |#2|) (-1259 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -3219 ((-1191 |#2|) (-656 |#2|) (-656 |#2|)))) (-1195) (-374)) (T -940)) +((-3219 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1191 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-1195)))) (-3219 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1259 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1195)) (-4 *5 (-374)) (-5 *1 (-940 *4 *5))))) +(-10 -7 (-15 -3219 ((-1259 |#1| |#2|) (-1259 |#1| |#2|) (-656 |#2|) (-656 |#2|))) (-15 -3219 ((-1191 |#2|) (-656 |#2|) (-656 |#2|)))) +((-3607 (((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-1177)) 174)) (-2250 ((|#4| |#4|) 193)) (-3085 (((-656 (-419 (-969 |#1|))) (-656 (-1195))) 146)) (-2940 (((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576)) 88)) (-2427 (((-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))) (-656 |#4|)) 69)) (-2282 (((-701 |#4|) (-701 |#4|) (-656 |#4|)) 65)) (-2118 (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-1177)) 186)) (-3511 (((-576) (-701 |#4|) (-938) (-1177)) 166) (((-576) (-701 |#4|) (-656 (-1195)) (-938) (-1177)) 165) (((-576) (-701 |#4|) (-656 |#4|) (-938) (-1177)) 164) (((-576) (-701 |#4|) (-1177)) 154) (((-576) (-701 |#4|) (-656 (-1195)) (-1177)) 153) (((-576) (-701 |#4|) (-656 |#4|) (-1177)) 152) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-938)) 151) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1195)) (-938)) 150) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-938)) 149) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|)) 148) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1195))) 147) (((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|)) 143)) (-1726 ((|#4| (-969 |#1|)) 80)) (-2820 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 190)) (-3794 (((-656 (-656 (-576))) (-576) (-576)) 159)) (-3070 (((-656 (-656 |#4|)) (-656 (-656 |#4|))) 106)) (-3273 (((-783) (-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 100)) (-2291 (((-783) (-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|))))) 99)) (-3073 (((-112) (-656 (-969 |#1|))) 19) (((-112) (-656 |#4|)) 15)) (-2449 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|)) 84)) (-2569 (((-656 |#4|) |#4|) 57)) (-2934 (((-656 (-419 (-969 |#1|))) (-656 |#4|)) 142) (((-701 (-419 (-969 |#1|))) (-701 |#4|)) 66) (((-419 (-969 |#1|)) |#4|) 139)) (-4290 (((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-783) (-1177) (-576)) 112)) (-3092 (((-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783)) 98)) (-3991 (((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783)) 121)) (-3045 (((-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))) (-2 (|:| -2689 (-701 (-419 (-969 |#1|)))) (|:| |vec| (-656 (-419 (-969 |#1|)))) (|:| -3606 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) 56))) +(((-941 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1195)))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-938))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1195)) (-938))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-938))) (-15 -3511 ((-576) (-701 |#4|) (-656 |#4|) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-656 (-1195)) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-656 |#4|) (-938) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-656 (-1195)) (-938) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-938) (-1177))) (-15 -3607 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-1177))) (-15 -2118 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-1177))) (-15 -4290 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-783) (-1177) (-576))) (-15 -2934 ((-419 (-969 |#1|)) |#4|)) (-15 -2934 ((-701 (-419 (-969 |#1|))) (-701 |#4|))) (-15 -2934 ((-656 (-419 (-969 |#1|))) (-656 |#4|))) (-15 -3085 ((-656 (-419 (-969 |#1|))) (-656 (-1195)))) (-15 -1726 (|#4| (-969 |#1|))) (-15 -2449 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -3092 ((-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -2427 ((-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))) (-656 |#4|))) (-15 -3045 ((-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))) (-2 (|:| -2689 (-701 (-419 (-969 |#1|)))) (|:| |vec| (-656 (-419 (-969 |#1|)))) (|:| -3606 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -2569 ((-656 |#4|) |#4|)) (-15 -2291 ((-783) (-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3273 ((-783) (-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3070 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3794 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2820 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3991 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -2282 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -2940 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -2250 (|#4| |#4|)) (-15 -3073 ((-112) (-656 |#4|))) (-15 -3073 ((-112) (-656 (-969 |#1|))))) (-13 (-317) (-148)) (-13 (-862) (-626 (-1195))) (-805) (-966 |#1| |#3| |#2|)) (T -941)) +((-3073 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6 *7)))) (-2250 (*1 *2 *2) (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *2)) (-4 *2 (-966 *3 *5 *4)))) (-2940 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-969 *9)))) (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) (-4 *9 (-13 (-317) (-148))) (-4 *12 (-966 *9 *11 *10)) (-4 *10 (-13 (-862) (-626 (-1195)))) (-4 *11 (-805)) (-5 *2 (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) (|:| |wcond| (-656 (-969 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *9)))) (|:| -3713 (-656 (-1286 (-419 (-969 *9))))))))) (-5 *1 (-941 *9 *10 *11 *12)))) (-2282 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7)))) (-3991 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3794 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *6 *5)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-966 *3 *5 *4)) (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *6)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-941 *4 *5 *6 *7)))) (-2291 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *7))))) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) (-5 *1 (-941 *4 *5 *6 *7)))) (-2569 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-941 *4 *5 *6 *3)) (-4 *3 (-966 *4 *6 *5)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2689 (-701 (-419 (-969 *4)))) (|:| |vec| (-656 (-419 (-969 *4)))) (|:| -3606 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-2 (|:| |partsol| (-1286 (-419 (-969 *4)))) (|:| -3713 (-656 (-1286 (-419 (-969 *4))))))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-2427 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1286 (-419 (-969 *4)))) (|:| -3713 (-656 (-1286 (-419 (-969 *4))))))) (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) (-4 *7 (-966 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 *8))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-783)))) (-2449 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-4 *7 (-966 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-317) (-148))) (-4 *2 (-966 *4 *6 *5)) (-5 *1 (-941 *4 *5 *6 *2)) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-701 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)))) (-2934 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-419 (-969 *4))) (-5 *1 (-941 *4 *5 *6 *3)) (-4 *3 (-966 *4 *6 *5)))) (-4290 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-969 *8)))) (-5 *5 (-783)) (-5 *6 (-1177)) (-4 *8 (-13 (-317) (-148))) (-4 *11 (-966 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1195)))) (-4 *10 (-805)) (-5 *2 (-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) (|:| |wcond| (-656 (-969 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *8)))) (|:| -3713 (-656 (-1286 (-419 (-969 *8)))))))))) (|:| |rgsz| (-576)))) (-5 *1 (-941 *8 *9 *10 *11)) (-5 *7 (-576)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-969 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *4)))) (|:| -3713 (-656 (-1286 (-419 (-969 *4)))))))))) (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5)))) (-3607 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *5)))) (|:| -3713 (-656 (-1286 (-419 (-969 *5)))))))))) (-5 *4 (-1177)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-966 *5 *7 *6)) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-938)) (-5 *5 (-1177)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *6 *7 *8 *9)))) (-3511 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1195))) (-5 *5 (-938)) (-5 *6 (-1177)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *7 *8 *9 *10)))) (-3511 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-938)) (-5 *6 (-1177)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *7 *8 *9 *10)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-1177)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *5 *6 *7 *8)))) (-3511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-1177)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *6 *7 *8 *9)))) (-3511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1177)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *6 *7 *8 *9)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-938)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *5)))) (|:| -3713 (-656 (-1286 (-419 (-969 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-938)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-969 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *6)))) (|:| -3713 (-656 (-1286 (-419 (-969 *6)))))))))) (-5 *1 (-941 *6 *7 *8 *9)))) (-3511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701 *9)) (-5 *5 (-938)) (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) (|:| |wcond| (-656 (-969 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *6)))) (|:| -3713 (-656 (-1286 (-419 (-969 *6)))))))))) (-5 *1 (-941 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) (|:| |wcond| (-656 (-969 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *4)))) (|:| -3713 (-656 (-1286 (-419 (-969 *4)))))))))) (-5 *1 (-941 *4 *5 *6 *7)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1195))) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *5)))) (|:| -3713 (-656 (-1286 (-419 (-969 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)))) (-3511 (*1 *2 *3 *4) (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-656 (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) (|:| |wcond| (-656 (-969 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 *5)))) (|:| -3713 (-656 (-1286 (-419 (-969 *5)))))))))) (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(-10 -7 (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1195)))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 |#4|) (-938))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-656 (-1195)) (-938))) (-15 -3511 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-701 |#4|) (-938))) (-15 -3511 ((-576) (-701 |#4|) (-656 |#4|) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-656 (-1195)) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-656 |#4|) (-938) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-656 (-1195)) (-938) (-1177))) (-15 -3511 ((-576) (-701 |#4|) (-938) (-1177))) (-15 -3607 ((-576) (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-1177))) (-15 -2118 ((-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|))))))))) (-1177))) (-15 -4290 ((-2 (|:| |rgl| (-656 (-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))))))) (|:| |rgsz| (-576))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-783) (-1177) (-576))) (-15 -2934 ((-419 (-969 |#1|)) |#4|)) (-15 -2934 ((-701 (-419 (-969 |#1|))) (-701 |#4|))) (-15 -2934 ((-656 (-419 (-969 |#1|))) (-656 |#4|))) (-15 -3085 ((-656 (-419 (-969 |#1|))) (-656 (-1195)))) (-15 -1726 (|#4| (-969 |#1|))) (-15 -2449 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-656 |#4|)) (|:| |n0| (-656 |#4|))) (-656 |#4|) (-656 |#4|))) (-15 -3092 ((-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))) (-701 |#4|) (-783))) (-15 -2427 ((-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))) (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))) (-656 |#4|))) (-15 -3045 ((-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))) (-2 (|:| -2689 (-701 (-419 (-969 |#1|)))) (|:| |vec| (-656 (-419 (-969 |#1|)))) (|:| -3606 (-783)) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (-15 -2569 ((-656 |#4|) |#4|)) (-15 -2291 ((-783) (-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3273 ((-783) (-656 (-2 (|:| -3606 (-783)) (|:| |eqns| (-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))))) (|:| |fgb| (-656 |#4|)))))) (-15 -3070 ((-656 (-656 |#4|)) (-656 (-656 |#4|)))) (-15 -3794 ((-656 (-656 (-576))) (-576) (-576))) (-15 -2820 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3991 ((-656 (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) (-701 |#4|) (-783))) (-15 -2282 ((-701 |#4|) (-701 |#4|) (-656 |#4|))) (-15 -2940 ((-2 (|:| |eqzro| (-656 |#4|)) (|:| |neqzro| (-656 |#4|)) (|:| |wcond| (-656 (-969 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1286 (-419 (-969 |#1|)))) (|:| -3713 (-656 (-1286 (-419 (-969 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576)))) (-701 |#4|) (-656 (-419 (-969 |#1|))) (-656 (-656 |#4|)) (-783) (-783) (-576))) (-15 -2250 (|#4| |#4|)) (-15 -3073 ((-112) (-656 |#4|))) (-15 -3073 ((-112) (-656 (-969 |#1|))))) +((-1690 (((-944) |#1| (-1195)) 17) (((-944) |#1| (-1195) (-1113 (-227))) 21)) (-4421 (((-944) |#1| |#1| (-1195) (-1113 (-227))) 19) (((-944) |#1| (-1195) (-1113 (-227))) 15))) +(((-942 |#1|) (-10 -7 (-15 -4421 ((-944) |#1| (-1195) (-1113 (-227)))) (-15 -4421 ((-944) |#1| |#1| (-1195) (-1113 (-227)))) (-15 -1690 ((-944) |#1| (-1195) (-1113 (-227)))) (-15 -1690 ((-944) |#1| (-1195)))) (-626 (-548))) (T -942)) +((-1690 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) (-1690 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) (-4421 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) (-4421 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1195)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) (-5 *1 (-942 *3)) (-4 *3 (-626 (-548)))))) +(-10 -7 (-15 -4421 ((-944) |#1| (-1195) (-1113 (-227)))) (-15 -4421 ((-944) |#1| |#1| (-1195) (-1113 (-227)))) (-15 -1690 ((-944) |#1| (-1195) (-1113 (-227)))) (-15 -1690 ((-944) |#1| (-1195)))) +((-1732 (($ $ (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 121)) (-1750 (((-1113 (-227)) $) 64)) (-1738 (((-1113 (-227)) $) 63)) (-1724 (((-1113 (-227)) $) 62)) (-1468 (((-656 (-656 (-227))) $) 69)) (-1977 (((-1113 (-227)) $) 65)) (-3139 (((-576) (-576)) 57)) (-4161 (((-576) (-576)) 52)) (-4217 (((-576) (-576)) 55)) (-4402 (((-112) (-112)) 59)) (-1917 (((-576)) 56)) (-1565 (($ $ (-1113 (-227))) 124) (($ $) 125)) (-3780 (($ (-1 (-960 (-227)) (-227)) (-1113 (-227))) 131) (($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 132)) (-4421 (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227))) 134) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 135) (($ $ (-1113 (-227))) 127)) (-2396 (((-576)) 60)) (-2059 (((-576)) 50)) (-3301 (((-576)) 53)) (-1811 (((-656 (-656 (-960 (-227)))) $) 151)) (-3417 (((-112) (-112)) 61)) (-3563 (((-874) $) 149)) (-2345 (((-112)) 58))) +(((-943) (-13 (-993) (-10 -8 (-15 -3780 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -3780 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4421 ($ $ (-1113 (-227)))) (-15 -1732 ($ $ (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -1565 ($ $ (-1113 (-227)))) (-15 -1565 ($ $)) (-15 -1977 ((-1113 (-227)) $)) (-15 -1468 ((-656 (-656 (-227))) $)) (-15 -2059 ((-576))) (-15 -4161 ((-576) (-576))) (-15 -3301 ((-576))) (-15 -4217 ((-576) (-576))) (-15 -1917 ((-576))) (-15 -3139 ((-576) (-576))) (-15 -2345 ((-112))) (-15 -4402 ((-112) (-112))) (-15 -2396 ((-576))) (-15 -3417 ((-112) (-112)))))) (T -943)) +((-3780 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-3780 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-4421 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-4421 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) (-4421 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-1732 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-1565 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-1565 (*1 *1 *1) (-5 *1 (-943))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) (-1468 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-943)))) (-2059 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3301 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-4217 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-1917 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3139 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-2345 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-4402 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943)))) (-2396 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943)))) (-3417 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) +(-13 (-993) (-10 -8 (-15 -3780 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -3780 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4421 ($ $ (-1113 (-227)))) (-15 -1732 ($ $ (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -1565 ($ $ (-1113 (-227)))) (-15 -1565 ($ $)) (-15 -1977 ((-1113 (-227)) $)) (-15 -1468 ((-656 (-656 (-227))) $)) (-15 -2059 ((-576))) (-15 -4161 ((-576) (-576))) (-15 -3301 ((-576))) (-15 -4217 ((-576) (-576))) (-15 -1917 ((-576))) (-15 -3139 ((-576) (-576))) (-15 -2345 ((-112))) (-15 -4402 ((-112) (-112))) (-15 -2396 ((-576))) (-15 -3417 ((-112) (-112))))) +((-1732 (($ $ (-1113 (-227))) 122) (($ $ (-1113 (-227)) (-1113 (-227))) 123)) (-1738 (((-1113 (-227)) $) 73)) (-1724 (((-1113 (-227)) $) 72)) (-1977 (((-1113 (-227)) $) 74)) (-2075 (((-576) (-576)) 66)) (-2098 (((-576) (-576)) 61)) (-3871 (((-576) (-576)) 64)) (-3657 (((-112) (-112)) 68)) (-3012 (((-576)) 65)) (-1565 (($ $ (-1113 (-227))) 126) (($ $) 127)) (-3780 (($ (-1 (-960 (-227)) (-227)) (-1113 (-227))) 141) (($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 142)) (-1690 (($ (-1 (-227) (-227)) (-1113 (-227))) 149) (($ (-1 (-227) (-227))) 153)) (-4421 (($ (-1 (-227) (-227)) (-1113 (-227))) 137) (($ (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227))) 138) (($ (-656 (-1 (-227) (-227))) (-1113 (-227))) 146) (($ (-656 (-1 (-227) (-227))) (-1113 (-227)) (-1113 (-227))) 147) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227))) 139) (($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227))) 140) (($ $ (-1113 (-227))) 128)) (-3745 (((-112) $) 69)) (-2493 (((-576)) 70)) (-1741 (((-576)) 59)) (-3137 (((-576)) 62)) (-1811 (((-656 (-656 (-960 (-227)))) $) 35)) (-2039 (((-112) (-112)) 71)) (-3563 (((-874) $) 167)) (-2838 (((-112)) 67))) +(((-944) (-13 (-972) (-10 -8 (-15 -4421 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4421 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)))) (-15 -4421 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3780 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -3780 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -1690 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -1690 ($ (-1 (-227) (-227)))) (-15 -4421 ($ $ (-1113 (-227)))) (-15 -3745 ((-112) $)) (-15 -1732 ($ $ (-1113 (-227)))) (-15 -1732 ($ $ (-1113 (-227)) (-1113 (-227)))) (-15 -1565 ($ $ (-1113 (-227)))) (-15 -1565 ($ $)) (-15 -1977 ((-1113 (-227)) $)) (-15 -1741 ((-576))) (-15 -2098 ((-576) (-576))) (-15 -3137 ((-576))) (-15 -3871 ((-576) (-576))) (-15 -3012 ((-576))) (-15 -2075 ((-576) (-576))) (-15 -2838 ((-112))) (-15 -3657 ((-112) (-112))) (-15 -2493 ((-576))) (-15 -2039 ((-112) (-112)))))) (T -944)) +((-4421 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-4421 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-4421 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-4421 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-4421 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-4421 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3780 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-3780 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-1690 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944)))) (-1690 (*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-944)))) (-4421 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-3745 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-1732 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-1732 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-1565 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-1565 (*1 *1 *1) (-5 *1 (-944))) (-1977 (*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) (-1741 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3137 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-3012 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2075 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2838 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-3657 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944)))) (-2493 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) +(-13 (-972) (-10 -8 (-15 -4421 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -4421 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)))) (-15 -4421 ($ (-656 (-1 (-227) (-227))) (-1113 (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)))) (-15 -4421 ($ (-1 (-227) (-227)) (-1 (-227) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -3780 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)))) (-15 -3780 ($ (-1 (-960 (-227)) (-227)) (-1113 (-227)) (-1113 (-227)) (-1113 (-227)))) (-15 -1690 ($ (-1 (-227) (-227)) (-1113 (-227)))) (-15 -1690 ($ (-1 (-227) (-227)))) (-15 -4421 ($ $ (-1113 (-227)))) (-15 -3745 ((-112) $)) (-15 -1732 ($ $ (-1113 (-227)))) (-15 -1732 ($ $ (-1113 (-227)) (-1113 (-227)))) (-15 -1565 ($ $ (-1113 (-227)))) (-15 -1565 ($ $)) (-15 -1977 ((-1113 (-227)) $)) (-15 -1741 ((-576))) (-15 -2098 ((-576) (-576))) (-15 -3137 ((-576))) (-15 -3871 ((-576) (-576))) (-15 -3012 ((-576))) (-15 -2075 ((-576) (-576))) (-15 -2838 ((-112))) (-15 -3657 ((-112) (-112))) (-15 -2493 ((-576))) (-15 -2039 ((-112) (-112))))) +((-1782 (((-656 (-1113 (-227))) (-656 (-656 (-960 (-227))))) 34))) +(((-945) (-10 -7 (-15 -1782 ((-656 (-1113 (-227))) (-656 (-656 (-960 (-227)))))))) (T -945)) +((-1782 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-656 (-1113 (-227)))) (-5 *1 (-945))))) +(-10 -7 (-15 -1782 ((-656 (-1113 (-227))) (-656 (-656 (-960 (-227))))))) +((-3363 ((|#2| |#2|) 28)) (-4005 ((|#2| |#2|) 29)) (-1398 ((|#2| |#2|) 27)) (-2791 ((|#2| |#2| (-518)) 26))) +(((-946 |#1| |#2|) (-10 -7 (-15 -2791 (|#2| |#2| (-518))) (-15 -1398 (|#2| |#2|)) (-15 -3363 (|#2| |#2|)) (-15 -4005 (|#2| |#2|))) (-1119) (-442 |#1|)) (T -946)) +((-4005 (*1 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) (-3363 (*1 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) (-2791 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1119)) (-5 *1 (-946 *4 *2)) (-4 *2 (-442 *4))))) +(-10 -7 (-15 -2791 (|#2| |#2| (-518))) (-15 -1398 (|#2| |#2|)) (-15 -3363 (|#2| |#2|)) (-15 -4005 (|#2| |#2|))) +((-3363 (((-326 (-576)) (-1195)) 16)) (-4005 (((-326 (-576)) (-1195)) 14)) (-1398 (((-326 (-576)) (-1195)) 12)) (-2791 (((-326 (-576)) (-1195) (-518)) 19))) +(((-947) (-10 -7 (-15 -2791 ((-326 (-576)) (-1195) (-518))) (-15 -1398 ((-326 (-576)) (-1195))) (-15 -3363 ((-326 (-576)) (-1195))) (-15 -4005 ((-326 (-576)) (-1195))))) (T -947)) +((-4005 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) (-3363 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) (-5 *1 (-947))))) +(-10 -7 (-15 -2791 ((-326 (-576)) (-1195) (-518))) (-15 -1398 ((-326 (-576)) (-1195))) (-15 -3363 ((-326 (-576)) (-1195))) (-15 -4005 ((-326 (-576)) (-1195)))) +((-3526 (((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)) 25)) (-3572 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-948 |#1| |#2| |#3|) (-10 -7 (-15 -3572 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3526 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)))) (-1119) (-899 |#1|) (-13 (-1119) (-1057 |#2|))) (T -948)) +((-3526 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-13 (-1119) (-1057 *3))) (-4 *3 (-899 *5)) (-5 *1 (-948 *5 *3 *6)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1119) (-1057 *5))) (-4 *5 (-899 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-948 *4 *5 *6))))) +(-10 -7 (-15 -3572 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3526 ((-902 |#1| |#3|) |#2| (-905 |#1|) (-902 |#1| |#3|)))) +((-3526 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 30))) +(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -3526 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1119) (-13 (-568) (-899 |#1|)) (-13 (-442 |#2|) (-626 (-905 |#1|)) (-899 |#1|) (-1057 (-624 $)))) (T -949)) +((-3526 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1057 (-624 $)))) (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5))) (-5 *1 (-949 *5 *6 *3))))) +(-10 -7 (-15 -3526 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) +((-3526 (((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)) 13))) +(((-950 |#1|) (-10 -7 (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)))) (-557)) (T -950)) +((-3526 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557)) (-5 *1 (-950 *3))))) +(-10 -7 (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|)))) +((-3526 (((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)) 57))) +(((-951 |#1| |#2|) (-10 -7 (-15 -3526 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)))) (-1119) (-13 (-1119) (-1057 (-624 $)) (-626 (-905 |#1|)) (-899 |#1|))) (T -951)) +((-3526 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1119)) (-4 *6 (-13 (-1119) (-1057 (-624 $)) (-626 *4) (-899 *5))) (-5 *4 (-905 *5)) (-5 *1 (-951 *5 *6))))) +(-10 -7 (-15 -3526 ((-902 |#1| |#2|) (-624 |#2|) (-905 |#1|) (-902 |#1| |#2|)))) +((-3526 (((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)) 17))) +(((-952 |#1| |#2| |#3|) (-10 -7 (-15 -3526 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)))) (-1119) (-899 |#1|) (-678 |#2|)) (T -952)) +((-3526 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-952 *5 *6 *3))))) +(-10 -7 (-15 -3526 ((-898 |#1| |#2| |#3|) |#3| (-905 |#1|) (-898 |#1| |#2| |#3|)))) +((-3526 (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|)) 17 (|has| |#3| (-899 |#1|))) (((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|))) 16))) +(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3526 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -3526 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|)) (-1119) (-805) (-862) (-13 (-1068) (-899 |#1|)) (-13 (-966 |#4| |#2| |#3|) (-626 (-905 |#1|)))) (T -953)) +((-3526 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-13 (-966 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5)) (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-13 (-1068) (-899 *5))) (-5 *1 (-953 *5 *6 *7 *8 *3)))) (-3526 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3))) (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6)) (-4 *6 (-1119)) (-4 *3 (-13 (-966 *9 *7 *8) (-626 *4))) (-4 *7 (-805)) (-4 *9 (-13 (-1068) (-899 *6))) (-5 *1 (-953 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3526 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-905 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-899 |#1|)) (-15 -3526 ((-902 |#1| |#5|) |#5| (-905 |#1|) (-902 |#1| |#5|))) |%noBranch|)) +((-2887 ((|#2| |#2| (-656 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -2887 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2887 (|#2| |#2| (-656 (-1 (-112) |#3|))))) (-1119) (-442 |#1|) (-1236)) (T -954)) +((-2887 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) (-4 *4 (-1119)) (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4)))) (-2887 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1236)) (-4 *4 (-1119)) (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4))))) +(-10 -7 (-15 -2887 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2887 (|#2| |#2| (-656 (-1 (-112) |#3|))))) +((-2887 (((-326 (-576)) (-1195) (-656 (-1 (-112) |#1|))) 18) (((-326 (-576)) (-1195) (-1 (-112) |#1|)) 15))) +(((-955 |#1|) (-10 -7 (-15 -2887 ((-326 (-576)) (-1195) (-1 (-112) |#1|))) (-15 -2887 ((-326 (-576)) (-1195) (-656 (-1 (-112) |#1|))))) (-1236)) (T -955)) +((-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) (-5 *2 (-326 (-576))) (-5 *1 (-955 *5)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1236)) (-5 *2 (-326 (-576))) (-5 *1 (-955 *5))))) +(-10 -7 (-15 -2887 ((-326 (-576)) (-1195) (-1 (-112) |#1|))) (-15 -2887 ((-326 (-576)) (-1195) (-656 (-1 (-112) |#1|))))) +((-3526 (((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)) 25))) +(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -3526 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-1119) (-13 (-568) (-899 |#1|) (-626 (-905 |#1|))) (-1011 |#2|)) (T -956)) +((-3526 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-1011 *6)) (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5)) (-5 *1 (-956 *5 *6 *3))))) +(-10 -7 (-15 -3526 ((-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) +((-3526 (((-902 |#1| (-1195)) (-1195) (-905 |#1|) (-902 |#1| (-1195))) 18))) +(((-957 |#1|) (-10 -7 (-15 -3526 ((-902 |#1| (-1195)) (-1195) (-905 |#1|) (-902 |#1| (-1195))))) (-1119)) (T -957)) +((-3526 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 (-1195))) (-5 *3 (-1195)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-5 *1 (-957 *5))))) +(-10 -7 (-15 -3526 ((-902 |#1| (-1195)) (-1195) (-905 |#1|) (-902 |#1| (-1195))))) +((-4255 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 34)) (-3526 (((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))) 33))) +(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -3526 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -4255 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))) (-1119) (-1068) (-13 (-1068) (-626 (-905 |#1|)) (-1057 |#2|))) (T -958)) +((-4255 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6))) (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1119)) (-4 *8 (-13 (-1068) (-626 (-905 *6)) (-1057 *7))) (-5 *2 (-902 *6 *8)) (-4 *7 (-1068)) (-5 *1 (-958 *6 *7 *8)))) (-3526 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9))) (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1119)) (-4 *9 (-13 (-1068) (-626 (-905 *7)) (-1057 *8))) (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1068)) (-5 *1 (-958 *7 *8 *9))))) +(-10 -7 (-15 -3526 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-1 |#3| (-656 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|)))) (-15 -4255 ((-902 |#1| |#3|) (-656 |#3|) (-656 (-905 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-905 |#1|) (-902 |#1| |#3|))))) +((-3819 (((-1191 (-419 (-576))) (-576)) 79)) (-4302 (((-1191 (-576)) (-576)) 82)) (-4118 (((-1191 (-576)) (-576)) 76)) (-2926 (((-576) (-1191 (-576))) 72)) (-2255 (((-1191 (-419 (-576))) (-576)) 65)) (-3843 (((-1191 (-576)) (-576)) 49)) (-4405 (((-1191 (-576)) (-576)) 84)) (-2266 (((-1191 (-576)) (-576)) 83)) (-4344 (((-1191 (-419 (-576))) (-576)) 67))) +(((-959) (-10 -7 (-15 -4344 ((-1191 (-419 (-576))) (-576))) (-15 -2266 ((-1191 (-576)) (-576))) (-15 -4405 ((-1191 (-576)) (-576))) (-15 -3843 ((-1191 (-576)) (-576))) (-15 -2255 ((-1191 (-419 (-576))) (-576))) (-15 -2926 ((-576) (-1191 (-576)))) (-15 -4118 ((-1191 (-576)) (-576))) (-15 -4302 ((-1191 (-576)) (-576))) (-15 -3819 ((-1191 (-419 (-576))) (-576))))) (T -959)) +((-3819 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))) (-4302 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-4118 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-576)) (-5 *1 (-959)))) (-2255 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576)))) (-3843 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-4405 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-2266 (*1 *2 *3) (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) (-4344 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576))))) +(-10 -7 (-15 -4344 ((-1191 (-419 (-576))) (-576))) (-15 -2266 ((-1191 (-576)) (-576))) (-15 -4405 ((-1191 (-576)) (-576))) (-15 -3843 ((-1191 (-576)) (-576))) (-15 -2255 ((-1191 (-419 (-576))) (-576))) (-15 -2926 ((-576) (-1191 (-576)))) (-15 -4118 ((-1191 (-576)) (-576))) (-15 -4302 ((-1191 (-576)) (-576))) (-15 -3819 ((-1191 (-419 (-576))) (-576)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3497 (($ (-783)) NIL (|has| |#1| (-23)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3584 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-2368 (($ (-656 |#1|)) 9)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2351 (((-701 |#1|) $ $) NIL (|has| |#1| (-1068)))) (-4033 (($ (-783) |#1|) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2306 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-2712 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3504 ((|#1| $) NIL (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-1714 (($ $ (-656 |#1|)) 25)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 18) (($ $ (-1253 (-576))) NIL)) (-2962 ((|#1| $ $) NIL (|has| |#1| (-1068)))) (-2446 (((-938) $) 13)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2299 (($ $ $) 23)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 14)) (-3573 (($ (-656 |#1|)) NIL)) (-1661 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-656 $)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3095 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3083 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3485 (((-783) $) 11 (|has| $ (-6 -4461))))) (((-960 |#1|) (-999 |#1|) (-1068)) (T -960)) NIL (-999 |#1|) -((-2440 (((-493 |#1| |#2|) (-969 |#2|)) 22)) (-1395 (((-253 |#1| |#2|) (-969 |#2|)) 35)) (-4280 (((-969 |#2|) (-493 |#1| |#2|)) 27)) (-2498 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-2490 (((-969 |#2|) (-253 |#1| |#2|)) 32)) (-3290 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) -(((-961 |#1| |#2|) (-10 -7 (-15 -3290 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -2498 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -2440 ((-493 |#1| |#2|) (-969 |#2|))) (-15 -4280 ((-969 |#2|) (-493 |#1| |#2|))) (-15 -2490 ((-969 |#2|) (-253 |#1| |#2|))) (-15 -1395 ((-253 |#1| |#2|) (-969 |#2|)))) (-656 (-1196)) (-1068)) (T -961)) -((-1395 (*1 *2 *3) (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-253 *4 *5)) (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1196))))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5)))) (-4280 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5)))) (-2440 (*1 *2 *3) (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1196))))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) (-5 *2 (-253 *4 *5)) (-5 *1 (-961 *4 *5)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5))))) -(-10 -7 (-15 -3290 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -2498 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -2440 ((-493 |#1| |#2|) (-969 |#2|))) (-15 -4280 ((-969 |#2|) (-493 |#1| |#2|))) (-15 -2490 ((-969 |#2|) (-253 |#1| |#2|))) (-15 -1395 ((-253 |#1| |#2|) (-969 |#2|)))) -((-4427 (((-656 |#2|) |#2| |#2|) 10)) (-4410 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-1593 (((-656 |#2|) |#2|) 11)) (-3488 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-2590 ((|#1| |#2|) 38 (|has| |#1| (-860))))) -(((-962 |#1| |#2|) (-10 -7 (-15 -4427 ((-656 |#2|) |#2| |#2|)) (-15 -1593 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2590 (|#1| |#2|)) (-15 -4410 ((-783) (-656 |#1|))) (-15 -3488 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1263 |#1|)) (T -962)) -((-3488 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-962 *5 *6)) (-4 *6 (-1263 *5)))) (-4410 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-962 *4 *5)) (-4 *5 (-1263 *4)))) (-2590 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1263 *2)))) (-1593 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1263 *4)))) (-4427 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -4427 ((-656 |#2|) |#2| |#2|)) (-15 -1593 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2590 (|#1| |#2|)) (-15 -4410 ((-783) (-656 |#1|))) (-15 -3488 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) -((-2477 (((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)) 19))) -(((-963 |#1| |#2|) (-10 -7 (-15 -2477 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)))) (-1068) (-1068)) (T -963)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-969 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-969 *6)) (-5 *1 (-963 *5 *6))))) -(-10 -7 (-15 -2477 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)))) -((-1364 (((-1260 |#1| (-969 |#2|)) (-969 |#2|) (-1283 |#1|)) 18))) -(((-964 |#1| |#2|) (-10 -7 (-15 -1364 ((-1260 |#1| (-969 |#2|)) (-969 |#2|) (-1283 |#1|)))) (-1196) (-1068)) (T -964)) -((-1364 (*1 *2 *3 *4) (-12 (-5 *4 (-1283 *5)) (-14 *5 (-1196)) (-4 *6 (-1068)) (-5 *2 (-1260 *5 (-969 *6))) (-5 *1 (-964 *5 *6)) (-5 *3 (-969 *6))))) -(-10 -7 (-15 -1364 ((-1260 |#1| (-969 |#2|)) (-969 |#2|) (-1283 |#1|)))) -((-1736 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-1587 (($ $) 203)) (-2100 (((-430 $) $) 195)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 141)) (-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2378 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-2996 (($ $ $ |#4|) 95)) (-3687 (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 131) (((-701 |#2|) (-701 $)) 121) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-1363 (($ $) 210) (($ $ |#4|) 213)) (-1704 (((-656 $) $) 77)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 229) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 222)) (-2503 (((-656 $) $) 34)) (-1518 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ |#4|) 192)) (-3009 (((-3 (-656 $) "failed") $) 52)) (-2016 (((-3 (-656 $) "failed") $) 39)) (-3178 (((-3 (-2 (|:| |var| |#4|) (|:| -3175 (-783))) "failed") $) 57)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 134)) (-4254 (((-430 (-1192 $)) (-1192 $)) 147)) (-3282 (((-430 (-1192 $)) (-1192 $)) 145)) (-1392 (((-430 $) $) 165)) (-2259 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-1955 (($ $ |#4|) 97)) (-1505 (((-905 (-390)) $) 243) (((-905 (-576)) $) 236) (((-548) $) 251)) (-3714 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 184)) (-2430 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-3612 (((-3 $ "failed") $) 186)) (-1531 (((-112) $ $) 216))) -(((-965 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -4375 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -3282 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4254 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -2074 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -1789 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -1363 (|#1| |#1| |#4|)) (-15 -3714 (|#1| |#1| |#4|)) (-15 -1955 (|#1| |#1| |#4|)) (-15 -2996 (|#1| |#1| |#1| |#4|)) (-15 -1704 ((-656 |#1|) |#1|)) (-15 -1736 ((-783) |#1| (-656 |#4|))) (-15 -1736 ((-783) |#1|)) (-15 -3178 ((-3 (-2 (|:| |var| |#4|) (|:| -3175 (-783))) "failed") |#1|)) (-15 -3009 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2016 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1518 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1518 (|#1| |#1| |#4| (-783))) (-15 -4005 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1| |#4|)) (-15 -2503 ((-656 |#1|) |#1|)) (-15 -2430 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2430 (|#1| |#1| |#4| (-783))) (-15 -3687 ((-701 |#2|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -2974 ((-3 |#4| "failed") |#1|)) (-15 -2378 (|#4| |#1|)) (-15 -2259 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#4| |#1|)) (-15 -2259 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#4| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1518 (|#1| |#2| |#3|)) (-15 -2430 (|#2| |#1| |#3|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -1531 ((-112) |#1| |#1|))) (-966 |#2| |#3| |#4|) (-1068) (-805) (-862)) (T -965)) -NIL -(-10 -8 (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -3612 ((-3 |#1| "failed") |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -4375 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -3282 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4254 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -2074 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -1789 ((-3 (-1287 |#1|) "failed") (-701 |#1|))) (-15 -1363 (|#1| |#1| |#4|)) (-15 -3714 (|#1| |#1| |#4|)) (-15 -1955 (|#1| |#1| |#4|)) (-15 -2996 (|#1| |#1| |#1| |#4|)) (-15 -1704 ((-656 |#1|) |#1|)) (-15 -1736 ((-783) |#1| (-656 |#4|))) (-15 -1736 ((-783) |#1|)) (-15 -3178 ((-3 (-2 (|:| |var| |#4|) (|:| -3175 (-783))) "failed") |#1|)) (-15 -3009 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2016 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1518 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1518 (|#1| |#1| |#4| (-783))) (-15 -4005 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1| |#4|)) (-15 -2503 ((-656 |#1|) |#1|)) (-15 -2430 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -2430 (|#1| |#1| |#4| (-783))) (-15 -3687 ((-701 |#2|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -2974 ((-3 |#4| "failed") |#1|)) (-15 -2378 (|#4| |#1|)) (-15 -2259 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#4| |#1|)) (-15 -2259 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -2259 (|#1| |#1| |#4| |#2|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1518 (|#1| |#2| |#3|)) (-15 -2430 (|#2| |#1| |#3|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -1363 (|#1| |#1|)) (-15 -1531 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1541 (((-656 |#3|) $) 113)) (-1364 (((-1192 $) $ |#3|) 128) (((-1192 |#1|) $) 127)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2573 (($ $) 91 (|has| |#1| (-568)))) (-4306 (((-112) $) 93 (|has| |#1| (-568)))) (-1736 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3788 (((-3 $ "failed") $ $) 20)) (-1589 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-926)))) (-1587 (($ $) 101 (|has| |#1| (-464)))) (-2100 (((-430 $) $) 100 (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-926)))) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) 143)) (-2378 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1057 (-576)))) ((|#3| $) 144)) (-2996 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-1717 (($ $) 161)) (-3687 (((-701 (-576)) (-1287 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 140 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 137) (((-701 |#1|) (-701 $)) 136) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 135) (((-701 |#1|) (-1287 $)) 134)) (-3179 (((-3 $ "failed") $) 37)) (-1363 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-1704 (((-656 $) $) 112)) (-2725 (((-112) $) 99 (|has| |#1| (-926)))) (-2291 (($ $ |#1| |#2| $) 179)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1810 (((-112) $) 35)) (-1831 (((-783) $) 176)) (-1529 (($ (-1192 |#1|) |#3|) 120) (($ (-1192 $) |#3|) 119)) (-2503 (((-656 $) $) 129)) (-4331 (((-112) $) 159)) (-1518 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ |#3|) 123)) (-1915 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3968 (($ (-1 |#2| |#2|) $) 178)) (-2477 (($ (-1 |#1| |#1|) $) 158)) (-3403 (((-3 |#3| "failed") $) 126)) (-1681 (($ $) 156)) (-1692 ((|#1| $) 155)) (-3117 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3288 (((-1178) $) 10)) (-3009 (((-3 (-656 $) "failed") $) 117)) (-2016 (((-3 (-656 $) "failed") $) 118)) (-3178 (((-3 (-2 (|:| |var| |#3|) (|:| -3175 (-783))) "failed") $) 116)) (-3139 (((-1139) $) 11)) (-1657 (((-112) $) 173)) (-1670 ((|#1| $) 174)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3149 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-926)))) (-1392 (((-430 $) $) 102 (|has| |#1| (-926)))) (-2022 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-2259 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-1955 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3614 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-2369 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-1505 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3714 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 107 (-2445 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-3076 (((-656 |#1|) $) 175)) (-2430 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3612 (((-3 $ "failed") $) 82 (-3765 (-2445 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) 32 T CONST)) (-3141 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +((-2901 (((-493 |#1| |#2|) (-969 |#2|)) 22)) (-4214 (((-253 |#1| |#2|) (-969 |#2|)) 35)) (-3449 (((-969 |#2|) (-493 |#1| |#2|)) 27)) (-2358 (((-253 |#1| |#2|) (-493 |#1| |#2|)) 57)) (-2966 (((-969 |#2|) (-253 |#1| |#2|)) 32)) (-4000 (((-493 |#1| |#2|) (-253 |#1| |#2|)) 48))) +(((-961 |#1| |#2|) (-10 -7 (-15 -4000 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -2358 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -2901 ((-493 |#1| |#2|) (-969 |#2|))) (-15 -3449 ((-969 |#2|) (-493 |#1| |#2|))) (-15 -2966 ((-969 |#2|) (-253 |#1| |#2|))) (-15 -4214 ((-253 |#1| |#2|) (-969 |#2|)))) (-656 (-1195)) (-1068)) (T -961)) +((-4214 (*1 *2 *3) (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-253 *4 *5)) (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1195))))) (-2966 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1068)) (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5)))) (-3449 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1068)) (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1195))))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1068)) (-5 *2 (-253 *4 *5)) (-5 *1 (-961 *4 *5)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5))))) +(-10 -7 (-15 -4000 ((-493 |#1| |#2|) (-253 |#1| |#2|))) (-15 -2358 ((-253 |#1| |#2|) (-493 |#1| |#2|))) (-15 -2901 ((-493 |#1| |#2|) (-969 |#2|))) (-15 -3449 ((-969 |#2|) (-493 |#1| |#2|))) (-15 -2966 ((-969 |#2|) (-253 |#1| |#2|))) (-15 -4214 ((-253 |#1| |#2|) (-969 |#2|)))) +((-4427 (((-656 |#2|) |#2| |#2|) 10)) (-3992 (((-783) (-656 |#1|)) 48 (|has| |#1| (-860)))) (-4321 (((-656 |#2|) |#2|) 11)) (-1460 (((-783) (-656 |#1|) (-576) (-576)) 52 (|has| |#1| (-860)))) (-2082 ((|#1| |#2|) 38 (|has| |#1| (-860))))) +(((-962 |#1| |#2|) (-10 -7 (-15 -4427 ((-656 |#2|) |#2| |#2|)) (-15 -4321 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2082 (|#1| |#2|)) (-15 -3992 ((-783) (-656 |#1|))) (-15 -1460 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) (-374) (-1262 |#1|)) (T -962)) +((-1460 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) (-5 *2 (-783)) (-5 *1 (-962 *5 *6)) (-4 *6 (-1262 *5)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-962 *4 *5)) (-4 *5 (-1262 *4)))) (-2082 (*1 *2 *3) (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-962 *2 *3)) (-4 *3 (-1262 *2)))) (-4321 (*1 *2 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1262 *4)))) (-4427 (*1 *2 *3 *3) (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -4427 ((-656 |#2|) |#2| |#2|)) (-15 -4321 ((-656 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -2082 (|#1| |#2|)) (-15 -3992 ((-783) (-656 |#1|))) (-15 -1460 ((-783) (-656 |#1|) (-576) (-576)))) |%noBranch|)) +((-1632 (((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)) 19))) +(((-963 |#1| |#2|) (-10 -7 (-15 -1632 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)))) (-1068) (-1068)) (T -963)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-969 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-969 *6)) (-5 *1 (-963 *5 *6))))) +(-10 -7 (-15 -1632 ((-969 |#2|) (-1 |#2| |#1|) (-969 |#1|)))) +((-3999 (((-1259 |#1| (-969 |#2|)) (-969 |#2|) (-1282 |#1|)) 18))) +(((-964 |#1| |#2|) (-10 -7 (-15 -3999 ((-1259 |#1| (-969 |#2|)) (-969 |#2|) (-1282 |#1|)))) (-1195) (-1068)) (T -964)) +((-3999 (*1 *2 *3 *4) (-12 (-5 *4 (-1282 *5)) (-14 *5 (-1195)) (-4 *6 (-1068)) (-5 *2 (-1259 *5 (-969 *6))) (-5 *1 (-964 *5 *6)) (-5 *3 (-969 *6))))) +(-10 -7 (-15 -3999 ((-1259 |#1| (-969 |#2|)) (-969 |#2|) (-1282 |#1|)))) +((-2846 (((-783) $) 88) (((-783) $ (-656 |#4|)) 93)) (-1760 (($ $) 203)) (-2732 (((-430 $) $) 195)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 141)) (-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-4056 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) 73)) (-2861 (($ $ $ |#4|) 95)) (-3687 (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 131) (((-701 |#2|) (-701 $)) 121) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-2985 (($ $) 210) (($ $ |#4|) 213)) (-2153 (((-656 $) $) 77)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 229) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 222)) (-1475 (((-656 $) $) 34)) (-1970 (($ |#2| |#3|) NIL) (($ $ |#4| (-783)) NIL) (($ $ (-656 |#4|) (-656 (-783))) 71)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ |#4|) 192)) (-1708 (((-3 (-656 $) "failed") $) 52)) (-2567 (((-3 (-656 $) "failed") $) 39)) (-1419 (((-3 (-2 (|:| |var| |#4|) (|:| -4274 (-783))) "failed") $) 57)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 134)) (-4299 (((-430 (-1191 $)) (-1191 $)) 147)) (-1340 (((-430 (-1191 $)) (-1191 $)) 145)) (-1839 (((-430 $) $) 165)) (-3306 (($ $ (-656 (-304 $))) 24) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-656 |#4|) (-656 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-656 |#4|) (-656 $)) NIL)) (-1960 (($ $ |#4|) 97)) (-4076 (((-905 (-390)) $) 243) (((-905 (-576)) $) 236) (((-548) $) 251)) (-3648 ((|#2| $) NIL) (($ $ |#4|) 205)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 184)) (-4333 ((|#2| $ |#3|) NIL) (($ $ |#4| (-783)) 62) (($ $ (-656 |#4|) (-656 (-783))) 69)) (-2883 (((-3 $ "failed") $) 186)) (-3985 (((-112) $ $) 216))) +(((-965 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -1760 (|#1| |#1|)) (-15 -2883 ((-3 |#1| "failed") |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -3526 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1340 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4299 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4168 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -2110 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -2985 (|#1| |#1| |#4|)) (-15 -3648 (|#1| |#1| |#4|)) (-15 -1960 (|#1| |#1| |#4|)) (-15 -2861 (|#1| |#1| |#1| |#4|)) (-15 -2153 ((-656 |#1|) |#1|)) (-15 -2846 ((-783) |#1| (-656 |#4|))) (-15 -2846 ((-783) |#1|)) (-15 -1419 ((-3 (-2 (|:| |var| |#4|) (|:| -4274 (-783))) "failed") |#1|)) (-15 -1708 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2567 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1970 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1970 (|#1| |#1| |#4| (-783))) (-15 -3539 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1| |#4|)) (-15 -1475 ((-656 |#1|) |#1|)) (-15 -4333 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4333 (|#1| |#1| |#4| (-783))) (-15 -3687 ((-701 |#2|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -1539 ((-3 |#4| "failed") |#1|)) (-15 -4056 (|#4| |#1|)) (-15 -3306 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#4| |#1|)) (-15 -3306 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#4| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1970 (|#1| |#2| |#3|)) (-15 -4333 (|#2| |#1| |#3|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3648 (|#2| |#1|)) (-15 -2985 (|#1| |#1|)) (-15 -3985 ((-112) |#1| |#1|))) (-966 |#2| |#3| |#4|) (-1068) (-805) (-862)) (T -965)) +NIL +(-10 -8 (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -1760 (|#1| |#1|)) (-15 -2883 ((-3 |#1| "failed") |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -3526 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1340 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4299 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4168 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -2110 ((-3 (-1286 |#1|) "failed") (-701 |#1|))) (-15 -2985 (|#1| |#1| |#4|)) (-15 -3648 (|#1| |#1| |#4|)) (-15 -1960 (|#1| |#1| |#4|)) (-15 -2861 (|#1| |#1| |#1| |#4|)) (-15 -2153 ((-656 |#1|) |#1|)) (-15 -2846 ((-783) |#1| (-656 |#4|))) (-15 -2846 ((-783) |#1|)) (-15 -1419 ((-3 (-2 (|:| |var| |#4|) (|:| -4274 (-783))) "failed") |#1|)) (-15 -1708 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -2567 ((-3 (-656 |#1|) "failed") |#1|)) (-15 -1970 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -1970 (|#1| |#1| |#4| (-783))) (-15 -3539 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1| |#4|)) (-15 -1475 ((-656 |#1|) |#1|)) (-15 -4333 (|#1| |#1| (-656 |#4|) (-656 (-783)))) (-15 -4333 (|#1| |#1| |#4| (-783))) (-15 -3687 ((-701 |#2|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -1539 ((-3 |#4| "failed") |#1|)) (-15 -4056 (|#4| |#1|)) (-15 -3306 (|#1| |#1| (-656 |#4|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#4| |#1|)) (-15 -3306 (|#1| |#1| (-656 |#4|) (-656 |#2|))) (-15 -3306 (|#1| |#1| |#4| |#2|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1970 (|#1| |#2| |#3|)) (-15 -4333 (|#2| |#1| |#3|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3648 (|#2| |#1|)) (-15 -2985 (|#1| |#1|)) (-15 -3985 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1991 (((-656 |#3|) $) 113)) (-3999 (((-1191 $) $ |#3|) 128) (((-1191 |#1|) $) 127)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4412 (($ $) 91 (|has| |#1| (-568)))) (-4176 (((-112) $) 93 (|has| |#1| (-568)))) (-2846 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-1367 (((-3 $ "failed") $ $) 20)) (-1990 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-926)))) (-1760 (($ $) 101 (|has| |#1| (-464)))) (-2732 (((-430 $) $) 100 (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-926)))) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) 143)) (-4056 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1057 (-576)))) ((|#3| $) 144)) (-2861 (($ $ $ |#3|) 111 (|has| |#1| (-174)))) (-2166 (($ $) 161)) (-3687 (((-701 (-576)) (-1286 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 140 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 137) (((-701 |#1|) (-701 $)) 136) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 135) (((-701 |#1|) (-1286 $)) 134)) (-1551 (((-3 $ "failed") $) 37)) (-2985 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2153 (((-656 $) $) 112)) (-1792 (((-112) $) 99 (|has| |#1| (-926)))) (-1660 (($ $ |#1| |#2| $) 179)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1414 (((-112) $) 35)) (-3839 (((-783) $) 176)) (-1980 (($ (-1191 |#1|) |#3|) 120) (($ (-1191 $) |#3|) 119)) (-1475 (((-656 $) $) 129)) (-2606 (((-112) $) 159)) (-1970 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ |#3|) 123)) (-3403 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2133 (($ (-1 |#2| |#2|) $) 178)) (-1632 (($ (-1 |#1| |#1|) $) 158)) (-4209 (((-3 |#3| "failed") $) 126)) (-2129 (($ $) 156)) (-2142 ((|#1| $) 155)) (-3459 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1927 (((-1177) $) 10)) (-1708 (((-3 (-656 $) "failed") $) 117)) (-2567 (((-3 (-656 $) "failed") $) 118)) (-1419 (((-3 (-2 (|:| |var| |#3|) (|:| -4274 (-783))) "failed") $) 116)) (-1445 (((-1139) $) 11)) (-2105 (((-112) $) 173)) (-2116 ((|#1| $) 174)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-3495 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-926)))) (-1839 (((-430 $) $) 102 (|has| |#1| (-926)))) (-3463 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3306 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-1960 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2735 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-1433 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-4076 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3648 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 107 (-2758 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (($ $) 88 (|has| |#1| (-568))) (($ (-419 (-576))) 81 (-2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))))) (-2927 (((-656 |#1|) $) 175)) (-4333 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-2883 (((-3 $ "failed") $) 82 (-2835 (-2758 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) 32 T CONST)) (-3274 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) (((-966 |#1| |#2| |#3|) (-141) (-1068) (-805) (-862)) (T -966)) -((-1363 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2369 (*1 *2 *1 *3) (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-2369 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-2430 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *2 (-862)))) (-2430 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) (-2503 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-1364 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1192 *1)) (-4 *1 (-966 *4 *5 *3)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1192 *3)))) (-3403 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-1915 (*1 *2 *1 *3) (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-4005 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-966 *4 *5 *3)))) (-1518 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *2 (-862)))) (-1518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) (-1529 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *4)) (-4 *4 (-1068)) (-4 *1 (-966 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-862)))) (-1529 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)))) (-2016 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-3009 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-3178 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -3175 (-783)))))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-1736 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-1704 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-2996 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-1955 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3714 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-1363 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-1587 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2100 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-430 *1)) (-4 *1 (-966 *3 *4 *5))))) -(-13 (-915 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1057 |t#3|) (-388 |t#1|) (-10 -8 (-15 -2369 ((-783) $ |t#3|)) (-15 -2369 ((-656 (-783)) $ (-656 |t#3|))) (-15 -2430 ($ $ |t#3| (-783))) (-15 -2430 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -2503 ((-656 $) $)) (-15 -1364 ((-1192 $) $ |t#3|)) (-15 -1364 ((-1192 |t#1|) $)) (-15 -3403 ((-3 |t#3| "failed") $)) (-15 -1915 ((-783) $ |t#3|)) (-15 -1915 ((-656 (-783)) $ (-656 |t#3|))) (-15 -4005 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $ |t#3|)) (-15 -1518 ($ $ |t#3| (-783))) (-15 -1518 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1529 ($ (-1192 |t#1|) |t#3|)) (-15 -1529 ($ (-1192 $) |t#3|)) (-15 -2016 ((-3 (-656 $) "failed") $)) (-15 -3009 ((-3 (-656 $) "failed") $)) (-15 -3178 ((-3 (-2 (|:| |var| |t#3|) (|:| -3175 (-783))) "failed") $)) (-15 -1736 ((-783) $)) (-15 -1736 ((-783) $ (-656 |t#3|))) (-15 -1541 ((-656 |t#3|) $)) (-15 -1704 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-576)))) (IF (|has| |t#3| (-626 (-905 (-576)))) (-6 (-626 (-905 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-390)))) (IF (|has| |t#3| (-626 (-905 (-390)))) (-6 (-626 (-905 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-576))) (IF (|has| |t#3| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (IF (|has| |t#3| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2996 ($ $ $ |t#3|)) (-15 -1955 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -3714 ($ $ |t#3|)) (-15 -1363 ($ $)) (-15 -1363 ($ $ |t#3|)) (-15 -2100 ((-430 $) $)) (-15 -1587 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4460)) (-6 -4460) |%noBranch|) (IF (|has| |t#1| (-926)) (-6 (-926)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-300) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3765 (|has| |#1| (-926)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-915 |#3|) . T) ((-917 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-926) |has| |#1| (-926)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1057 |#3|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-1241) |has| |#1| (-926))) -((-1541 (((-656 |#2|) |#5|) 40)) (-1364 (((-1192 |#5|) |#5| |#2| (-1192 |#5|)) 23) (((-419 (-1192 |#5|)) |#5| |#2|) 16)) (-1529 ((|#5| (-419 (-1192 |#5|)) |#2|) 30)) (-3403 (((-3 |#2| "failed") |#5|) 71)) (-3009 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-4192 (((-3 (-2 (|:| |val| |#5|) (|:| -3175 (-576))) "failed") |#5|) 53)) (-2016 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-3178 (((-3 (-2 (|:| |var| |#2|) (|:| -3175 (-576))) "failed") |#5|) 57))) -(((-967 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1541 ((-656 |#2|) |#5|)) (-15 -3403 ((-3 |#2| "failed") |#5|)) (-15 -1364 ((-419 (-1192 |#5|)) |#5| |#2|)) (-15 -1529 (|#5| (-419 (-1192 |#5|)) |#2|)) (-15 -1364 ((-1192 |#5|) |#5| |#2| (-1192 |#5|))) (-15 -2016 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -3009 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -3178 ((-3 (-2 (|:| |var| |#2|) (|:| -3175 (-576))) "failed") |#5|)) (-15 -4192 ((-3 (-2 (|:| |val| |#5|) (|:| -3175 (-576))) "failed") |#5|))) (-805) (-862) (-1068) (-966 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -4092 ($ |#4|)) (-15 -3894 (|#4| $)) (-15 -3905 (|#4| $))))) (T -967)) -((-4192 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3175 (-576)))) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))))) (-3178 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3175 (-576)))) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))))) (-3009 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))))) (-2016 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))))) (-1364 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))) (-4 *7 (-966 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) (-5 *1 (-967 *5 *4 *6 *7 *3)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1192 *2))) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) (-4 *2 (-13 (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))) (-5 *1 (-967 *5 *4 *6 *7 *2)) (-4 *7 (-966 *6 *5 *4)))) (-1364 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-419 (-1192 *3))) (-5 *1 (-967 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))))) (-3403 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1068)) (-4 *6 (-966 *5 *4 *2)) (-4 *2 (-862)) (-5 *1 (-967 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4092 ($ *6)) (-15 -3894 (*6 $)) (-15 -3905 (*6 $))))))) (-1541 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $)))))))) -(-10 -7 (-15 -1541 ((-656 |#2|) |#5|)) (-15 -3403 ((-3 |#2| "failed") |#5|)) (-15 -1364 ((-419 (-1192 |#5|)) |#5| |#2|)) (-15 -1529 (|#5| (-419 (-1192 |#5|)) |#2|)) (-15 -1364 ((-1192 |#5|) |#5| |#2| (-1192 |#5|))) (-15 -2016 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -3009 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -3178 ((-3 (-2 (|:| |var| |#2|) (|:| -3175 (-576))) "failed") |#5|)) (-15 -4192 ((-3 (-2 (|:| |val| |#5|) (|:| -3175 (-576))) "failed") |#5|))) -((-2477 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2477 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-862) (-1068) (-966 |#3| |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -4007 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -968)) -((-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) (-4 *8 (-1068)) (-4 *6 (-805)) (-4 *2 (-13 (-1119) (-10 -8 (-15 -4007 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-968 *6 *7 *8 *5 *2)) (-4 *5 (-966 *8 *6 *7))))) -(-10 -7 (-15 -2477 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-1196)) $) 16)) (-1364 (((-1192 $) $ (-1196)) 21) (((-1192 |#1|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-1196))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1587 (($ $) NIL (|has| |#1| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1196) "failed") $) NIL)) (-2378 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1196) $) NIL)) (-2996 (($ $ $ (-1196)) NIL (|has| |#1| (-174)))) (-1717 (($ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1196)) NIL (|has| |#1| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-926)))) (-2291 (($ $ |#1| (-543 (-1196)) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1196) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1196) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-1529 (($ (-1192 |#1|) (-1196)) NIL) (($ (-1192 $) (-1196)) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-1196)) NIL)) (-1915 (((-543 (-1196)) $) NIL) (((-783) $ (-1196)) NIL) (((-656 (-783)) $ (-656 (-1196))) NIL)) (-3968 (($ (-1 (-543 (-1196)) (-543 (-1196))) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3403 (((-3 (-1196) "failed") $) 19)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3288 (((-1178) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-1196)) (|:| -3175 (-783))) "failed") $) NIL)) (-3597 (($ $ (-1196)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#1| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1196) |#1|) NIL) (($ $ (-656 (-1196)) (-656 |#1|)) NIL) (($ $ (-1196) $) NIL) (($ $ (-656 (-1196)) (-656 $)) NIL)) (-1955 (($ $ (-1196)) NIL (|has| |#1| (-174)))) (-3614 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-2369 (((-543 (-1196)) $) NIL) (((-783) $ (-1196)) NIL) (((-656 (-783)) $ (-656 (-1196))) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-1196) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1196) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1196) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3714 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1196)) NIL (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1196)) 27) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-969 |#1|) (-13 (-966 |#1| (-543 (-1196)) (-1196)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1196))) |%noBranch|))) (-1068)) (T -969)) -((-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-969 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068))))) -(-13 (-966 |#1| (-543 (-1196)) (-1196)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1196))) |%noBranch|))) -((-2827 (((-2 (|:| -3175 (-783)) (|:| -1856 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-4091 (((-2 (|:| -3175 (-783)) (|:| -1856 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-3126 (((-2 (|:| -3175 (-783)) (|:| -1856 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-4320 (((-2 (|:| -3175 (-783)) (|:| -1856 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464))))) -(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2827 ((-2 (|:| -3175 (-783)) (|:| -1856 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -4091 ((-2 (|:| -3175 (-783)) (|:| -1856 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -4320 ((-2 (|:| -3175 (-783)) (|:| -1856 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -3126 ((-2 (|:| -3175 (-783)) (|:| -1856 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-862) (-568) (-966 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -4092 ($ |#4|)) (-15 -3894 (|#4| $)) (-15 -3905 (|#4| $))))) (T -970)) -((-3126 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *3 (-966 *7 *5 *6)) (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-970 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -4092 ($ *3)) (-15 -3894 (*3 $)) (-15 -3905 (*3 $))))))) (-4320 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-966 *7 *5 *6)) (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *3) (|:| |radicand| *3))) (-5 *1 (-970 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -4092 ($ *8)) (-15 -3894 (*8 $)) (-15 -3905 (*8 $))))))) (-4091 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-966 *7 *5 *6)) (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *9) (|:| |radicand| *9))) (-5 *1 (-970 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -4092 ($ *8)) (-15 -3894 (*8 $)) (-15 -3905 (*8 $))))))) (-2827 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568)) (-4 *7 (-966 *3 *5 *6)) (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *8) (|:| |radicand| *8))) (-5 *1 (-970 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $)))))))) -(-10 -7 (-15 -2827 ((-2 (|:| -3175 (-783)) (|:| -1856 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -4091 ((-2 (|:| -3175 (-783)) (|:| -1856 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -4320 ((-2 (|:| -3175 (-783)) (|:| -1856 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -3126 ((-2 (|:| -3175 (-783)) (|:| -1856 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) -((-2034 (((-112) $ $) NIL)) (-4202 (($ (-1139)) 8)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 15) (((-1139) $) 12)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 11))) -(((-971) (-13 (-1119) (-625 (-1139)) (-10 -8 (-15 -4202 ($ (-1139)))))) (T -971)) -((-4202 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-971))))) -(-13 (-1119) (-625 (-1139)) (-10 -8 (-15 -4202 ($ (-1139))))) -((-3854 (((-1113 (-227)) $) 8)) (-3841 (((-1113 (-227)) $) 9)) (-2769 (((-656 (-656 (-960 (-227)))) $) 10)) (-4092 (((-874) $) 6))) +((-2985 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-1433 (*1 *2 *1 *3) (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-1433 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-4333 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *2 (-862)))) (-4333 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) (-1475 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-3999 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1191 *1)) (-4 *1 (-966 *4 *5 *3)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-1191 *3)))) (-4209 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3403 (*1 *2 *1 *3) (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-783)))) (-3403 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) (-3539 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-966 *4 *5 *3)))) (-1970 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *2 (-862)))) (-1970 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) (-1980 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *4)) (-4 *4 (-1068)) (-4 *1 (-966 *4 *5 *3)) (-4 *5 (-805)) (-4 *3 (-862)))) (-1980 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)))) (-2567 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-1708 (*1 *2 *1) (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-1419 (*1 *2 *1) (|partial| -12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -4274 (-783)))))) (-2846 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-2846 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-2153 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) (-2861 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-1960 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-174)))) (-3648 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-2985 (*1 *1 *1 *2) (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *3 (-464)))) (-1760 (*1 *1 *1) (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2732 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-430 *1)) (-4 *1 (-966 *3 *4 *5))))) +(-13 (-915 |t#3|) (-336 |t#1| |t#2|) (-319 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1057 |t#3|) (-388 |t#1|) (-10 -8 (-15 -1433 ((-783) $ |t#3|)) (-15 -1433 ((-656 (-783)) $ (-656 |t#3|))) (-15 -4333 ($ $ |t#3| (-783))) (-15 -4333 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1475 ((-656 $) $)) (-15 -3999 ((-1191 $) $ |t#3|)) (-15 -3999 ((-1191 |t#1|) $)) (-15 -4209 ((-3 |t#3| "failed") $)) (-15 -3403 ((-783) $ |t#3|)) (-15 -3403 ((-656 (-783)) $ (-656 |t#3|))) (-15 -3539 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $ |t#3|)) (-15 -1970 ($ $ |t#3| (-783))) (-15 -1970 ($ $ (-656 |t#3|) (-656 (-783)))) (-15 -1980 ($ (-1191 |t#1|) |t#3|)) (-15 -1980 ($ (-1191 $) |t#3|)) (-15 -2567 ((-3 (-656 $) "failed") $)) (-15 -1708 ((-3 (-656 $) "failed") $)) (-15 -1419 ((-3 (-2 (|:| |var| |t#3|) (|:| -4274 (-783))) "failed") $)) (-15 -2846 ((-783) $)) (-15 -2846 ((-783) $ (-656 |t#3|))) (-15 -1991 ((-656 |t#3|) $)) (-15 -2153 ((-656 $) $)) (IF (|has| |t#1| (-626 (-548))) (IF (|has| |t#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-576)))) (IF (|has| |t#3| (-626 (-905 (-576)))) (-6 (-626 (-905 (-576)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-626 (-905 (-390)))) (IF (|has| |t#3| (-626 (-905 (-390)))) (-6 (-626 (-905 (-390)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-576))) (IF (|has| |t#3| (-899 (-576))) (-6 (-899 (-576))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-899 (-390))) (IF (|has| |t#3| (-899 (-390))) (-6 (-899 (-390))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -2861 ($ $ $ |t#3|)) (-15 -1960 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -3648 ($ $ |t#3|)) (-15 -2985 ($ $)) (-15 -2985 ($ $ |t#3|)) (-15 -2732 ((-430 $) $)) (-15 -1760 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |t#1| (-926)) (-6 (-926)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-300) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2835 (|has| |#1| (-926)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-915 |#3|) . T) ((-917 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-926) |has| |#1| (-926)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1057 |#3|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T) ((-1240) |has| |#1| (-926))) +((-1991 (((-656 |#2|) |#5|) 40)) (-3999 (((-1191 |#5|) |#5| |#2| (-1191 |#5|)) 23) (((-419 (-1191 |#5|)) |#5| |#2|) 16)) (-1980 ((|#5| (-419 (-1191 |#5|)) |#2|) 30)) (-4209 (((-3 |#2| "failed") |#5|) 71)) (-1708 (((-3 (-656 |#5|) "failed") |#5|) 65)) (-2027 (((-3 (-2 (|:| |val| |#5|) (|:| -4274 (-576))) "failed") |#5|) 53)) (-2567 (((-3 (-656 |#5|) "failed") |#5|) 67)) (-1419 (((-3 (-2 (|:| |var| |#2|) (|:| -4274 (-576))) "failed") |#5|) 57))) +(((-967 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1991 ((-656 |#2|) |#5|)) (-15 -4209 ((-3 |#2| "failed") |#5|)) (-15 -3999 ((-419 (-1191 |#5|)) |#5| |#2|)) (-15 -1980 (|#5| (-419 (-1191 |#5|)) |#2|)) (-15 -3999 ((-1191 |#5|) |#5| |#2| (-1191 |#5|))) (-15 -2567 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1708 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1419 ((-3 (-2 (|:| |var| |#2|) (|:| -4274 (-576))) "failed") |#5|)) (-15 -2027 ((-3 (-2 (|:| |val| |#5|) (|:| -4274 (-576))) "failed") |#5|))) (-805) (-862) (-1068) (-966 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3563 ($ |#4|)) (-15 -1536 (|#4| $)) (-15 -1549 (|#4| $))))) (T -967)) +((-2027 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4274 (-576)))) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))))) (-1419 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4274 (-576)))) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))))) (-1708 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))))) (-2567 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))))) (-3999 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))) (-4 *7 (-966 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) (-5 *1 (-967 *5 *4 *6 *7 *3)))) (-1980 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1191 *2))) (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) (-4 *2 (-13 (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))) (-5 *1 (-967 *5 *4 *6 *7 *2)) (-4 *7 (-966 *6 *5 *4)))) (-3999 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-419 (-1191 *3))) (-5 *1 (-967 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))))) (-4209 (*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1068)) (-4 *6 (-966 *5 *4 *2)) (-4 *2 (-862)) (-5 *1 (-967 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3563 ($ *6)) (-15 -1536 (*6 $)) (-15 -1549 (*6 $))))))) (-1991 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *5)) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $)))))))) +(-10 -7 (-15 -1991 ((-656 |#2|) |#5|)) (-15 -4209 ((-3 |#2| "failed") |#5|)) (-15 -3999 ((-419 (-1191 |#5|)) |#5| |#2|)) (-15 -1980 (|#5| (-419 (-1191 |#5|)) |#2|)) (-15 -3999 ((-1191 |#5|) |#5| |#2| (-1191 |#5|))) (-15 -2567 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1708 ((-3 (-656 |#5|) "failed") |#5|)) (-15 -1419 ((-3 (-2 (|:| |var| |#2|) (|:| -4274 (-576))) "failed") |#5|)) (-15 -2027 ((-3 (-2 (|:| |val| |#5|) (|:| -4274 (-576))) "failed") |#5|))) +((-1632 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-968 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1632 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-805) (-862) (-1068) (-966 |#3| |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -3083 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (T -968)) +((-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-862)) (-4 *8 (-1068)) (-4 *6 (-805)) (-4 *2 (-13 (-1119) (-10 -8 (-15 -3083 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-968 *6 *7 *8 *5 *2)) (-4 *5 (-966 *8 *6 *7))))) +(-10 -7 (-15 -1632 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-1195)) $) 16)) (-3999 (((-1191 $) $ (-1195)) 21) (((-1191 |#1|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-1195))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1760 (($ $) NIL (|has| |#1| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) 8) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1195) "failed") $) NIL)) (-4056 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1195) $) NIL)) (-2861 (($ $ $ (-1195)) NIL (|has| |#1| (-174)))) (-2166 (($ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1195)) NIL (|has| |#1| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#1| (-926)))) (-1660 (($ $ |#1| (-543 (-1195)) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1195) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1195) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1980 (($ (-1191 |#1|) (-1195)) NIL) (($ (-1191 $) (-1195)) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-1195)) NIL)) (-3403 (((-543 (-1195)) $) NIL) (((-783) $ (-1195)) NIL) (((-656 (-783)) $ (-656 (-1195))) NIL)) (-2133 (($ (-1 (-543 (-1195)) (-543 (-1195))) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-4209 (((-3 (-1195) "failed") $) 19)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1927 (((-1177) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-1195)) (|:| -4274 (-783))) "failed") $) NIL)) (-3848 (($ $ (-1195)) 29 (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#1| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1195) |#1|) NIL) (($ $ (-656 (-1195)) (-656 |#1|)) NIL) (($ $ (-1195) $) NIL) (($ $ (-656 (-1195)) (-656 $)) NIL)) (-1960 (($ $ (-1195)) NIL (|has| |#1| (-174)))) (-2735 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-1433 (((-543 (-1195)) $) NIL) (((-783) $ (-1195)) NIL) (((-656 (-783)) $ (-656 (-1195))) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-1195) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1195) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1195) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3648 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1195)) NIL (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) 25) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1195)) 27) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-969 |#1|) (-13 (-966 |#1| (-543 (-1195)) (-1195)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1195))) |%noBranch|))) (-1068)) (T -969)) +((-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-969 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068))))) +(-13 (-966 |#1| (-543 (-1195)) (-1195)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1195))) |%noBranch|))) +((-3664 (((-2 (|:| -4274 (-783)) (|:| -1706 |#5|) (|:| |radicand| |#5|)) |#3| (-783)) 49)) (-2034 (((-2 (|:| -4274 (-783)) (|:| -1706 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783)) 44)) (-4367 (((-2 (|:| -4274 (-783)) (|:| -1706 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)) 65)) (-2950 (((-2 (|:| -4274 (-783)) (|:| -1706 |#5|) (|:| |radicand| |#5|)) |#5| (-783)) 74 (|has| |#3| (-464))))) +(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3664 ((-2 (|:| -4274 (-783)) (|:| -1706 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -2034 ((-2 (|:| -4274 (-783)) (|:| -1706 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -2950 ((-2 (|:| -4274 (-783)) (|:| -1706 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -4367 ((-2 (|:| -4274 (-783)) (|:| -1706 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) (-805) (-862) (-568) (-966 |#3| |#1| |#2|) (-13 (-374) (-10 -8 (-15 -3563 ($ |#4|)) (-15 -1536 (|#4| $)) (-15 -1549 (|#4| $))))) (T -970)) +((-4367 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *3 (-966 *7 *5 *6)) (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *3) (|:| |radicand| (-656 *3)))) (-5 *1 (-970 *5 *6 *7 *3 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3563 ($ *3)) (-15 -1536 (*3 $)) (-15 -1549 (*3 $))))))) (-2950 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-966 *7 *5 *6)) (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *3) (|:| |radicand| *3))) (-5 *1 (-970 *5 *6 *7 *8 *3)) (-5 *4 (-783)) (-4 *3 (-13 (-374) (-10 -8 (-15 -3563 ($ *8)) (-15 -1536 (*8 $)) (-15 -1549 (*8 $))))))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) (-4 *8 (-966 *7 *5 *6)) (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *9) (|:| |radicand| *9))) (-5 *1 (-970 *5 *6 *7 *8 *9)) (-5 *4 (-783)) (-4 *9 (-13 (-374) (-10 -8 (-15 -3563 ($ *8)) (-15 -1536 (*8 $)) (-15 -1549 (*8 $))))))) (-3664 (*1 *2 *3 *4) (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568)) (-4 *7 (-966 *3 *5 *6)) (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *8) (|:| |radicand| *8))) (-5 *1 (-970 *5 *6 *3 *7 *8)) (-5 *4 (-783)) (-4 *8 (-13 (-374) (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $)))))))) +(-10 -7 (-15 -3664 ((-2 (|:| -4274 (-783)) (|:| -1706 |#5|) (|:| |radicand| |#5|)) |#3| (-783))) (-15 -2034 ((-2 (|:| -4274 (-783)) (|:| -1706 |#5|) (|:| |radicand| |#5|)) (-419 (-576)) (-783))) (IF (|has| |#3| (-464)) (-15 -2950 ((-2 (|:| -4274 (-783)) (|:| -1706 |#5|) (|:| |radicand| |#5|)) |#5| (-783))) |%noBranch|) (-15 -4367 ((-2 (|:| -4274 (-783)) (|:| -1706 |#4|) (|:| |radicand| (-656 |#4|))) |#4| (-783)))) +((-3474 (((-112) $ $) NIL)) (-2794 (($ (-1139)) 8)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 15) (((-1139) $) 12)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 11))) +(((-971) (-13 (-1119) (-625 (-1139)) (-10 -8 (-15 -2794 ($ (-1139)))))) (T -971)) +((-2794 (*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-971))))) +(-13 (-1119) (-625 (-1139)) (-10 -8 (-15 -2794 ($ (-1139))))) +((-1738 (((-1113 (-227)) $) 8)) (-1724 (((-1113 (-227)) $) 9)) (-1811 (((-656 (-656 (-960 (-227)))) $) 10)) (-3563 (((-874) $) 6))) (((-972) (-141)) (T -972)) -((-2769 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-656 (-656 (-960 (-227))))))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227))))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227)))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2769 ((-656 (-656 (-960 (-227)))) $)) (-15 -3841 ((-1113 (-227)) $)) (-15 -3854 ((-1113 (-227)) $)))) +((-1811 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-656 (-656 (-960 (-227))))))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227))))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227)))))) +(-13 (-625 (-874)) (-10 -8 (-15 -1811 ((-656 (-656 (-960 (-227)))) $)) (-15 -1724 ((-1113 (-227)) $)) (-15 -1738 ((-1113 (-227)) $)))) (((-625 (-874)) . T)) -((-3730 (((-3 (-701 |#1|) "failed") |#2| (-938)) 18))) -(((-973 |#1| |#2|) (-10 -7 (-15 -3730 ((-3 (-701 |#1|) "failed") |#2| (-938)))) (-568) (-668 |#1|)) (T -973)) -((-3730 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-938)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-973 *5 *3)) (-4 *3 (-668 *5))))) -(-10 -7 (-15 -3730 ((-3 (-701 |#1|) "failed") |#2| (-938)))) -((-1687 (((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|) 16)) (-2359 ((|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|) 18)) (-2477 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 13))) -(((-974 |#1| |#2|) (-10 -7 (-15 -1687 ((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2359 (|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2477 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) (-1237) (-1237)) (T -974)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-975 *6)) (-5 *1 (-974 *5 *6)))) (-2359 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-975 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-974 *5 *2)))) (-1687 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-975 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-975 *5)) (-5 *1 (-974 *6 *5))))) -(-10 -7 (-15 -1687 ((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2359 (|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2477 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 16)) (-3433 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1992 (($ (-783) |#1|) 15)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) 11 (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2701 ((|#1| $) NIL (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) 20 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) 12)) (-4367 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1254 (-576))) NIL)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) 21)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 14)) (-2851 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2048 (((-783) $) 8 (|has| $ (-6 -4462))))) -(((-975 |#1|) (-19 |#1|) (-1237)) (T -975)) +((-1452 (((-3 (-701 |#1|) "failed") |#2| (-938)) 18))) +(((-973 |#1| |#2|) (-10 -7 (-15 -1452 ((-3 (-701 |#1|) "failed") |#2| (-938)))) (-568) (-668 |#1|)) (T -973)) +((-1452 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-938)) (-4 *5 (-568)) (-5 *2 (-701 *5)) (-5 *1 (-973 *5 *3)) (-4 *3 (-668 *5))))) +(-10 -7 (-15 -1452 ((-3 (-701 |#1|) "failed") |#2| (-938)))) +((-2874 (((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|) 16)) (-2521 ((|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|) 18)) (-1632 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 13))) +(((-974 |#1| |#2|) (-10 -7 (-15 -2874 ((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -1632 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) (-1236) (-1236)) (T -974)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-975 *6)) (-5 *1 (-974 *5 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-975 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-974 *5 *2)))) (-2874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-975 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-975 *5)) (-5 *1 (-974 *6 *5))))) +(-10 -7 (-15 -2874 ((-975 |#2|) (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-975 |#1|) |#2|)) (-15 -1632 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-576) |#1|) 19 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) 18 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 16)) (-3584 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-4033 (($ (-783) |#1|) 15)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) 11 (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3504 ((|#1| $) NIL (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) 20 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) 12)) (-2871 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) 17) (($ $ (-1253 (-576))) NIL)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) 21)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 14)) (-1661 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3485 (((-783) $) 8 (|has| $ (-6 -4461))))) +(((-975 |#1|) (-19 |#1|) (-1236)) (T -975)) NIL (-19 |#1|) -((-1909 (($ $ (-1111 $)) 7) (($ $ (-1196)) 6))) +((-4019 (($ $ (-1111 $)) 7) (($ $ (-1195)) 6))) (((-976) (-141)) (T -976)) -((-1909 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-976)))) (-1909 (*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-1196))))) -(-13 (-10 -8 (-15 -1909 ($ $ (-1196))) (-15 -1909 ($ $ (-1111 $))))) -((-1554 (((-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)) (-1196)) 26) (((-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 |#1|))) (-969 |#1|) (-1196) (-969 |#1|) (-1196)) 49))) -(((-977 |#1|) (-10 -7 (-15 -1554 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 |#1|))) (-969 |#1|) (-1196) (-969 |#1|) (-1196))) (-15 -1554 ((-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -1554 ((-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)) (-1196)))) (-13 (-374) (-148))) (T -977)) -((-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-5 *5 (-1196)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 *6))) (|:| |prim| (-1192 *6)))) (-5 *1 (-977 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 *5))) (|:| |prim| (-1192 *5)))) (-5 *1 (-977 *5)))) (-1554 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-969 *5)) (-5 *4 (-1196)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 *5)))) (-5 *1 (-977 *5))))) -(-10 -7 (-15 -1554 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1192 |#1|))) (-969 |#1|) (-1196) (-969 |#1|) (-1196))) (-15 -1554 ((-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)))) (-15 -1554 ((-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-656 (-969 |#1|)) (-656 (-1196)) (-1196)))) -((-3588 (((-656 |#1|) |#1| |#1|) 47)) (-2725 (((-112) |#1|) 44)) (-2030 ((|#1| |#1|) 79)) (-2629 ((|#1| |#1|) 78))) -(((-978 |#1|) (-10 -7 (-15 -2725 ((-112) |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -3588 ((-656 |#1|) |#1| |#1|))) (-557)) (T -978)) -((-3588 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-978 *3)) (-4 *3 (-557)))) (-2030 (*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557)))) (-2629 (*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-978 *3)) (-4 *3 (-557))))) -(-10 -7 (-15 -2725 ((-112) |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -2030 (|#1| |#1|)) (-15 -3588 ((-656 |#1|) |#1| |#1|))) -((-3196 (((-1292) (-874)) 9))) -(((-979) (-10 -7 (-15 -3196 ((-1292) (-874))))) (T -979)) -((-3196 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-979))))) -(-10 -7 (-15 -3196 ((-1292) (-874)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-2573 (($ $) 79 (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-1717 (($ $) 31)) (-3179 (((-3 $ "failed") $) 42)) (-1363 (($ $) NIL (|has| |#1| (-464)))) (-2291 (($ $ |#1| |#2| $) 62)) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) 17)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| |#2|) NIL)) (-1915 ((|#2| $) 24)) (-3968 (($ (-1 |#2| |#2|) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (($ $) 28)) (-1692 ((|#1| $) 26)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) 51)) (-1670 ((|#1| $) NIL)) (-3498 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-2022 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-2369 ((|#2| $) 22)) (-3714 ((|#1| $) NIL (|has| |#1| (-464)))) (-4092 (((-874) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ |#2|) 37)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) 15 T CONST)) (-3141 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 84 (|has| |#1| (-568)))) (-4300 (($) 27 T CONST)) (-4310 (($) 12 T CONST)) (-3919 (((-112) $ $) 83)) (-4028 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) 69) (($ $ (-783)) 67)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-980 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -3498 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|))) (-1068) (-804)) (T -980)) -((-3498 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-980 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *2 (-804))))) -(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -3498 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2746 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-3788 (((-3 $ "failed") $ $) 52 (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2247 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3935 ((|#2| $) 22)) (-2976 ((|#1| $) 21)) (-3656 (($) NIL (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-3179 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-2446 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1810 (((-112) $) NIL (-3765 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-3492 (($ $ $) NIL (-3765 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2726 (($ $ $) NIL (-3765 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3107 (($ |#1| |#2|) 20)) (-3225 (((-938) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-2550 (($ (-938)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-3139 (((-1139) $) NIL)) (-3646 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-1361 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4092 (((-874) $) 14)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 42 (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-4310 (($) 25 (-3765 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-3977 (((-112) $ $) NIL (-3765 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3955 (((-112) $ $) NIL (-3765 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3919 (((-112) $ $) 19)) (-3966 (((-112) $ $) NIL (-3765 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3944 (((-112) $ $) 69 (-3765 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-4028 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4018 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4007 (($ $ $) 45 (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-3765 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-938)) NIL (-3765 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-938) $) NIL (-3765 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-3765 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))))) -(((-981 |#1| |#2|) (-13 (-1119) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -3107 ($ |#1| |#2|)) (-15 -2976 (|#1| $)) (-15 -3935 (|#2| $)))) (-1119) (-1119)) (T -981)) -((-3107 (*1 *1 *2 *3) (-12 (-5 *1 (-981 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2976 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1119)))) (-3935 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-981 *3 *2)) (-4 *3 (-1119))))) -(-13 (-1119) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -3107 ($ |#1| |#2|)) (-15 -2976 (|#1| $)) (-15 -3935 (|#2| $)))) -((-1731 (((-1123) $) 12)) (-1324 (($ (-518) (-1123)) 14)) (-4124 (((-518) $) 9)) (-4092 (((-874) $) 24))) -(((-982) (-13 (-625 (-874)) (-10 -8 (-15 -4124 ((-518) $)) (-15 -1731 ((-1123) $)) (-15 -1324 ($ (-518) (-1123)))))) (T -982)) -((-4124 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-982)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-982)))) (-1324 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-982))))) -(-13 (-625 (-874)) (-10 -8 (-15 -4124 ((-518) $)) (-15 -1731 ((-1123) $)) (-15 -1324 ($ (-518) (-1123))))) -((-2034 (((-112) $ $) NIL)) (-4316 (($) NIL T CONST)) (-2457 (($ $ $) 30)) (-2433 (($ $) 24)) (-3288 (((-1178) $) NIL)) (-1533 (((-703 (-885 $ $)) $) 55)) (-3917 (((-703 $) $) 45)) (-2132 (((-703 (-885 $ $)) $) 56)) (-3180 (((-703 (-885 $ $)) $) 57)) (-3566 (((-703 |#1|) $) 36)) (-1451 (((-703 (-885 $ $)) $) 54)) (-4108 (($ $ $) 31)) (-3139 (((-1139) $) NIL)) (-3159 (($) NIL T CONST)) (-2566 (($ $ $) 32)) (-3270 (($ $ $) 29)) (-3111 (($ $ $) 27)) (-4092 (((-874) $) 59) (($ |#1|) 12)) (-1531 (((-112) $ $) NIL)) (-2445 (($ $ $) 28)) (-3919 (((-112) $ $) NIL))) -(((-983 |#1|) (-13 (-986) (-628 |#1|) (-10 -8 (-15 -3566 ((-703 |#1|) $)) (-15 -3917 ((-703 $) $)) (-15 -1451 ((-703 (-885 $ $)) $)) (-15 -1533 ((-703 (-885 $ $)) $)) (-15 -2132 ((-703 (-885 $ $)) $)) (-15 -3180 ((-703 (-885 $ $)) $)) (-15 -3111 ($ $ $)) (-15 -3270 ($ $ $)))) (-1119)) (T -983)) -((-3566 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-703 (-983 *3))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-1451 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-1533 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-3111 (*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119)))) (-3270 (*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119))))) -(-13 (-986) (-628 |#1|) (-10 -8 (-15 -3566 ((-703 |#1|) $)) (-15 -3917 ((-703 $) $)) (-15 -1451 ((-703 (-885 $ $)) $)) (-15 -1533 ((-703 (-885 $ $)) $)) (-15 -2132 ((-703 (-885 $ $)) $)) (-15 -3180 ((-703 (-885 $ $)) $)) (-15 -3111 ($ $ $)) (-15 -3270 ($ $ $)))) -((-4040 (((-983 |#1|) (-983 |#1|)) 46)) (-2169 (((-983 |#1|) (-983 |#1|)) 22)) (-1604 (((-1121 |#1|) (-983 |#1|)) 41))) -(((-984 |#1|) (-13 (-1237) (-10 -7 (-15 -2169 ((-983 |#1|) (-983 |#1|))) (-15 -1604 ((-1121 |#1|) (-983 |#1|))) (-15 -4040 ((-983 |#1|) (-983 |#1|))))) (-1119)) (T -984)) -((-2169 (*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-983 *4)) (-4 *4 (-1119)) (-5 *2 (-1121 *4)) (-5 *1 (-984 *4)))) (-4040 (*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3))))) -(-13 (-1237) (-10 -7 (-15 -2169 ((-983 |#1|) (-983 |#1|))) (-15 -1604 ((-1121 |#1|) (-983 |#1|))) (-15 -4040 ((-983 |#1|) (-983 |#1|))))) -((-2477 (((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|)) 29))) -(((-985 |#1| |#2|) (-13 (-1237) (-10 -7 (-15 -2477 ((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|))))) (-1119) (-1119)) (T -985)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-983 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-983 *6)) (-5 *1 (-985 *5 *6))))) -(-13 (-1237) (-10 -7 (-15 -2477 ((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|))))) -((-2034 (((-112) $ $) 15)) (-4316 (($) 14 T CONST)) (-2457 (($ $ $) 6)) (-2433 (($ $) 8)) (-3288 (((-1178) $) 19)) (-4108 (($ $ $) 12)) (-3139 (((-1139) $) 18)) (-3159 (($) 13 T CONST)) (-2566 (($ $ $) 11)) (-4092 (((-874) $) 17)) (-1531 (((-112) $ $) 20)) (-2445 (($ $ $) 7)) (-3919 (((-112) $ $) 16))) +((-4019 (*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-976)))) (-4019 (*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-1195))))) +(-13 (-10 -8 (-15 -4019 ($ $ (-1195))) (-15 -4019 ($ $ (-1111 $))))) +((-2580 (((-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-969 |#1|)) (-656 (-1195)) (-1195)) 26) (((-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-969 |#1|)) (-656 (-1195))) 27) (((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 |#1|))) (-969 |#1|) (-1195) (-969 |#1|) (-1195)) 49))) +(((-977 |#1|) (-10 -7 (-15 -2580 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 |#1|))) (-969 |#1|) (-1195) (-969 |#1|) (-1195))) (-15 -2580 ((-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-969 |#1|)) (-656 (-1195)))) (-15 -2580 ((-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-969 |#1|)) (-656 (-1195)) (-1195)))) (-13 (-374) (-148))) (T -977)) +((-2580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1195))) (-5 *5 (-1195)) (-4 *6 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 *6))) (|:| |prim| (-1191 *6)))) (-5 *1 (-977 *6)))) (-2580 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 *5))) (|:| |prim| (-1191 *5)))) (-5 *1 (-977 *5)))) (-2580 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-969 *5)) (-5 *4 (-1195)) (-4 *5 (-13 (-374) (-148))) (-5 *2 (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 *5)))) (-5 *1 (-977 *5))))) +(-10 -7 (-15 -2580 ((-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) (|:| |prim| (-1191 |#1|))) (-969 |#1|) (-1195) (-969 |#1|) (-1195))) (-15 -2580 ((-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-969 |#1|)) (-656 (-1195)))) (-15 -2580 ((-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-656 (-969 |#1|)) (-656 (-1195)) (-1195)))) +((-2217 (((-656 |#1|) |#1| |#1|) 47)) (-1792 (((-112) |#1|) 44)) (-3370 ((|#1| |#1|) 79)) (-3697 ((|#1| |#1|) 78))) +(((-978 |#1|) (-10 -7 (-15 -1792 ((-112) |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -3370 (|#1| |#1|)) (-15 -2217 ((-656 |#1|) |#1| |#1|))) (-557)) (T -978)) +((-2217 (*1 *2 *3 *3) (-12 (-5 *2 (-656 *3)) (-5 *1 (-978 *3)) (-4 *3 (-557)))) (-3370 (*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557)))) (-3697 (*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557)))) (-1792 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-978 *3)) (-4 *3 (-557))))) +(-10 -7 (-15 -1792 ((-112) |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -3370 (|#1| |#1|)) (-15 -2217 ((-656 |#1|) |#1| |#1|))) +((-2154 (((-1291) (-874)) 9))) +(((-979) (-10 -7 (-15 -2154 ((-1291) (-874))))) (T -979)) +((-2154 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-979))))) +(-10 -7 (-15 -2154 ((-1291) (-874)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 78 (|has| |#1| (-568)))) (-4412 (($ $) 79 (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 34)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2166 (($ $) 31)) (-1551 (((-3 $ "failed") $) 42)) (-2985 (($ $) NIL (|has| |#1| (-464)))) (-1660 (($ $ |#1| |#2| $) 62)) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) 17)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| |#2|) NIL)) (-3403 ((|#2| $) 24)) (-2133 (($ (-1 |#2| |#2|) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2129 (($ $) 28)) (-2142 ((|#1| $) 26)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) 51)) (-2116 ((|#1| $) NIL)) (-4343 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-132)) (|has| |#1| (-568))))) (-3463 (((-3 $ "failed") $ $) 91 (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-568)))) (-1433 ((|#2| $) 22)) (-3648 ((|#1| $) NIL (|has| |#1| (-464)))) (-3563 (((-874) $) NIL) (($ (-576)) 46) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 41) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ |#2|) 37)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) 15 T CONST)) (-3274 (($ $ $ (-783)) 74 (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) 84 (|has| |#1| (-568)))) (-2800 (($) 27 T CONST)) (-2810 (($) 12 T CONST)) (-2988 (((-112) $ $) 83)) (-3107 (($ $ |#1|) 92 (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) 69) (($ $ (-783)) 67)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-980 |#1| |#2|) (-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -4343 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) (-1068) (-804)) (T -980)) +((-4343 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-980 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *2 (-804))))) +(-13 (-336 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| |#2| (-132)) (-15 -4343 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL (-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-4415 (($ $ $) 65 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (-1367 (((-3 $ "failed") $ $) 52 (-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (-2148 (((-783)) 36 (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-2283 ((|#2| $) 22)) (-2448 ((|#1| $) 21)) (-3767 (($) NIL (-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-1551 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-1803 (($) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1414 (((-112) $) NIL (-2835 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (-2442 (($ $ $) NIL (-2835 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-1893 (($ $ $) NIL (-2835 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3129 (($ |#1| |#2|) 20)) (-1902 (((-938) $) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3257 (($ (-938)) NIL (-12 (|has| |#1| (-379)) (|has| |#2| (-379))))) (-1445 (((-1139) $) NIL)) (-4026 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-4081 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3563 (((-874) $) 14)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 42 (-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))) CONST)) (-2810 (($) 25 (-2835 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))) CONST)) (-3049 (((-112) $ $) NIL (-2835 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3024 (((-112) $ $) NIL (-2835 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-2988 (((-112) $ $) 19)) (-3037 (((-112) $ $) NIL (-2835 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3010 (((-112) $ $) 69 (-2835 (-12 (|has| |#1| (-805)) (|has| |#2| (-805))) (-12 (|has| |#1| (-862)) (|has| |#2| (-862)))))) (-3107 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))))) (-3095 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3083 (($ $ $) 45 (-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805)))))) (** (($ $ (-576)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485)))) (($ $ (-783)) 32 (-2835 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))) (($ $ (-938)) NIL (-2835 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738)))))) (* (($ (-576) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-783) $) 48 (-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ (-938) $) NIL (-2835 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-132)) (|has| |#2| (-132))) (-12 (|has| |#1| (-805)) (|has| |#2| (-805))))) (($ $ $) 28 (-2835 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-738)) (|has| |#2| (-738))))))) +(((-981 |#1| |#2|) (-13 (-1119) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -3129 ($ |#1| |#2|)) (-15 -2448 (|#1| $)) (-15 -2283 (|#2| $)))) (-1119) (-1119)) (T -981)) +((-3129 (*1 *1 *2 *3) (-12 (-5 *1 (-981 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-2448 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1119)))) (-2283 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-981 *3 *2)) (-4 *3 (-1119))))) +(-13 (-1119) (-10 -8 (IF (|has| |#1| (-379)) (IF (|has| |#2| (-379)) (-6 (-379)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-738)) (IF (|has| |#2| (-738)) (-6 (-738)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-132)) (IF (|has| |#2| (-132)) (-6 (-132)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-805)) (IF (|has| |#2| (-805)) (-6 (-805)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-862)) (IF (|has| |#2| (-862)) (-6 (-862)) |%noBranch|) |%noBranch|) (-15 -3129 ($ |#1| |#2|)) (-15 -2448 (|#1| $)) (-15 -2283 (|#2| $)))) +((-3142 (((-1123) $) 12)) (-4311 (($ (-518) (-1123)) 14)) (-2706 (((-518) $) 9)) (-3563 (((-874) $) 24))) +(((-982) (-13 (-625 (-874)) (-10 -8 (-15 -2706 ((-518) $)) (-15 -3142 ((-1123) $)) (-15 -4311 ($ (-518) (-1123)))))) (T -982)) +((-2706 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-982)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-982)))) (-4311 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-982))))) +(-13 (-625 (-874)) (-10 -8 (-15 -2706 ((-518) $)) (-15 -3142 ((-1123) $)) (-15 -4311 ($ (-518) (-1123))))) +((-3474 (((-112) $ $) NIL)) (-2248 (($) NIL T CONST)) (-2768 (($ $ $) 30)) (-2746 (($ $) 24)) (-1927 (((-1177) $) NIL)) (-4194 (((-703 (-885 $ $)) $) 55)) (-3267 (((-703 $) $) 45)) (-1567 (((-703 (-885 $ $)) $) 56)) (-1694 (((-703 (-885 $ $)) $) 57)) (-1807 (((-703 |#1|) $) 36)) (-4139 (((-703 (-885 $ $)) $) 54)) (-4363 (($ $ $) 31)) (-1445 (((-1139) $) NIL)) (-3506 (($) NIL T CONST)) (-1851 (($ $ $) 32)) (-2717 (($ $ $) 29)) (-2297 (($ $ $) 27)) (-3563 (((-874) $) 59) (($ |#1|) 12)) (-3985 (((-112) $ $) NIL)) (-2758 (($ $ $) 28)) (-2988 (((-112) $ $) NIL))) +(((-983 |#1|) (-13 (-986) (-628 |#1|) (-10 -8 (-15 -1807 ((-703 |#1|) $)) (-15 -3267 ((-703 $) $)) (-15 -4139 ((-703 (-885 $ $)) $)) (-15 -4194 ((-703 (-885 $ $)) $)) (-15 -1567 ((-703 (-885 $ $)) $)) (-15 -1694 ((-703 (-885 $ $)) $)) (-15 -2297 ($ $ $)) (-15 -2717 ($ $ $)))) (-1119)) (T -983)) +((-1807 (*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-3267 (*1 *2 *1) (-12 (-5 *2 (-703 (-983 *3))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) (-4 *3 (-1119)))) (-2297 (*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119)))) (-2717 (*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119))))) +(-13 (-986) (-628 |#1|) (-10 -8 (-15 -1807 ((-703 |#1|) $)) (-15 -3267 ((-703 $) $)) (-15 -4139 ((-703 (-885 $ $)) $)) (-15 -4194 ((-703 (-885 $ $)) $)) (-15 -1567 ((-703 (-885 $ $)) $)) (-15 -1694 ((-703 (-885 $ $)) $)) (-15 -2297 ($ $ $)) (-15 -2717 ($ $ $)))) +((-3891 (((-983 |#1|) (-983 |#1|)) 46)) (-1840 (((-983 |#1|) (-983 |#1|)) 22)) (-1594 (((-1121 |#1|) (-983 |#1|)) 41))) +(((-984 |#1|) (-13 (-1236) (-10 -7 (-15 -1840 ((-983 |#1|) (-983 |#1|))) (-15 -1594 ((-1121 |#1|) (-983 |#1|))) (-15 -3891 ((-983 |#1|) (-983 |#1|))))) (-1119)) (T -984)) +((-1840 (*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3)))) (-1594 (*1 *2 *3) (-12 (-5 *3 (-983 *4)) (-4 *4 (-1119)) (-5 *2 (-1121 *4)) (-5 *1 (-984 *4)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3))))) +(-13 (-1236) (-10 -7 (-15 -1840 ((-983 |#1|) (-983 |#1|))) (-15 -1594 ((-1121 |#1|) (-983 |#1|))) (-15 -3891 ((-983 |#1|) (-983 |#1|))))) +((-1632 (((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|)) 29))) +(((-985 |#1| |#2|) (-13 (-1236) (-10 -7 (-15 -1632 ((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|))))) (-1119) (-1119)) (T -985)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-983 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-983 *6)) (-5 *1 (-985 *5 *6))))) +(-13 (-1236) (-10 -7 (-15 -1632 ((-983 |#2|) (-1 |#2| |#1|) (-983 |#1|))))) +((-3474 (((-112) $ $) 15)) (-2248 (($) 14 T CONST)) (-2768 (($ $ $) 6)) (-2746 (($ $) 8)) (-1927 (((-1177) $) 19)) (-4363 (($ $ $) 12)) (-1445 (((-1139) $) 18)) (-3506 (($) 13 T CONST)) (-1851 (($ $ $) 11)) (-3563 (((-874) $) 17)) (-3985 (((-112) $ $) 20)) (-2758 (($ $ $) 7)) (-2988 (((-112) $ $) 16))) (((-986) (-141)) (T -986)) -((-4316 (*1 *1) (-4 *1 (-986))) (-3159 (*1 *1) (-4 *1 (-986))) (-4108 (*1 *1 *1 *1) (-4 *1 (-986))) (-2566 (*1 *1 *1 *1) (-4 *1 (-986)))) -(-13 (-113) (-1119) (-10 -8 (-15 -4316 ($) -2670) (-15 -3159 ($) -2670) (-15 -4108 ($ $ $)) (-15 -2566 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-1119) . T) ((-1237) . T)) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-3656 (($) 7 T CONST)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1897 (($ $ $) 44)) (-3257 (($ $ $) 45)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2726 ((|#1| $) 46)) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 43)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-2248 (*1 *1) (-4 *1 (-986))) (-3506 (*1 *1) (-4 *1 (-986))) (-4363 (*1 *1 *1 *1) (-4 *1 (-986))) (-1851 (*1 *1 *1 *1) (-4 *1 (-986)))) +(-13 (-113) (-1119) (-10 -8 (-15 -2248 ($) -1398) (-15 -3506 ($) -1398) (-15 -4363 ($ $ $)) (-15 -1851 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-625 (-874)) . T) ((-1119) . T) ((-1236) . T)) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-3767 (($) 7 T CONST)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2093 (($ $ $) 44)) (-1854 (($ $ $) 45)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1893 ((|#1| $) 46)) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 43)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-987 |#1|) (-141) (-862)) (T -987)) -((-2726 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))) (-3257 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))) (-1897 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4462) (-15 -2726 (|t#1| $)) (-15 -3257 ($ $ $)) (-15 -1897 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-2902 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3149 |#2|)) |#2| |#2|) 105)) (-2488 ((|#2| |#2| |#2|) 103)) (-4000 (((-2 (|:| |coef2| |#2|) (|:| -3149 |#2|)) |#2| |#2|) 107)) (-2760 (((-2 (|:| |coef1| |#2|) (|:| -3149 |#2|)) |#2| |#2|) 109)) (-1892 (((-2 (|:| |coef2| |#2|) (|:| -1837 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-3565 (((-2 (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|) 56)) (-1474 (((-2 (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|) 80)) (-1732 (((-2 (|:| |coef1| |#2|) (|:| -2996 |#1|)) |#2| |#2|) 82)) (-1360 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-1551 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-4180 (((-2 (|:| |coef2| |#2|) (|:| -1955 |#1|)) |#2|) 121)) (-2944 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-2414 (((-656 (-783)) |#2| |#2|) 102)) (-3233 ((|#1| |#2| |#2|) 50)) (-4117 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1837 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-1837 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-1351 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|) 54)) (-1828 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|) 79)) (-2996 ((|#1| |#2| |#2|) 76)) (-4215 (((-2 (|:| -1856 |#1|) (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2|) 41)) (-2594 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3449 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3918 ((|#2| |#2| |#2|) 93)) (-3561 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-2631 ((|#2| |#2| |#2| (-783)) 85)) (-3149 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-2022 (((-1287 |#2|) (-1287 |#2|) |#1|) 22)) (-2233 (((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2|) 46)) (-3775 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1955 |#1|)) |#2|) 119)) (-1955 ((|#1| |#2|) 116)) (-1761 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-2716 ((|#2| |#2| |#2| (-783)) 90)) (-4242 (((-656 |#2|) |#2| |#2|) 99)) (-4281 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-2956 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1287 |#2|) |#1| (-1287 |#2|)) 17))) -(((-988 |#1| |#2|) (-10 -7 (-15 -2996 (|#1| |#2| |#2|)) (-15 -1828 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|)) (-15 -1474 ((-2 (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|)) (-15 -1732 ((-2 (|:| |coef1| |#2|) (|:| -2996 |#1|)) |#2| |#2|)) (-15 -2631 (|#2| |#2| |#2| (-783))) (-15 -3561 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1551 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2716 (|#2| |#2| |#2| (-783))) (-15 -1761 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2944 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3918 (|#2| |#2| |#2|)) (-15 -3449 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1360 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2488 (|#2| |#2| |#2|)) (-15 -2902 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3149 |#2|)) |#2| |#2|)) (-15 -4000 ((-2 (|:| |coef2| |#2|) (|:| -3149 |#2|)) |#2| |#2|)) (-15 -2760 ((-2 (|:| |coef1| |#2|) (|:| -3149 |#2|)) |#2| |#2|)) (-15 -1955 (|#1| |#2|)) (-15 -3775 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1955 |#1|)) |#2|)) (-15 -4180 ((-2 (|:| |coef2| |#2|) (|:| -1955 |#1|)) |#2|)) (-15 -4242 ((-656 |#2|) |#2| |#2|)) (-15 -2414 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -1837 (|#1| |#2| |#2|)) (-15 -4117 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1837 |#1|)) |#2| |#2|)) (-15 -1892 ((-2 (|:| |coef2| |#2|) (|:| -1837 |#1|)) |#2| |#2|)) (-15 -3149 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1287 |#2|) |#1| (-1287 |#2|))) (-15 -2022 ((-1287 |#2|) (-1287 |#2|) |#1|)) (-15 -4215 ((-2 (|:| -1856 |#1|) (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2|)) (-15 -2233 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2|)) (-15 -2956 (|#1| |#1| |#1| (-783))) (-15 -4281 (|#2| |#2| |#1| |#1| (-783))) (-15 -2594 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3233 (|#1| |#2| |#2|)) (-15 -1351 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|)) (-15 -3565 ((-2 (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|))) (-568) (-1263 |#1|)) (T -988)) -((-3565 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2996 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1351 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2996 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3233 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))) (-2594 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-4281 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-2956 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-988 *2 *4)) (-4 *4 (-1263 *2)))) (-2233 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-4215 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1856 *4) (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-2022 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) (-5 *1 (-988 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) (-5 *1 (-988 *3 *4)))) (-3149 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-1892 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1837 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-4117 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1837 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1837 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))) (-2414 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-4242 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-4180 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1955 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3775 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1955 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1955 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))) (-2760 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3149 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-4000 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3149 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-2902 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3149 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-2488 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-1360 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3449 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-3918 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) (-2944 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))) (-1761 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))) (-2716 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1263 *4)))) (-1551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))) (-3561 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5)))) (-2631 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1263 *4)))) (-1732 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2996 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1474 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2996 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-1828 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2996 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) (-2996 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2))))) -(-10 -7 (-15 -2996 (|#1| |#2| |#2|)) (-15 -1828 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|)) (-15 -1474 ((-2 (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|)) (-15 -1732 ((-2 (|:| |coef1| |#2|) (|:| -2996 |#1|)) |#2| |#2|)) (-15 -2631 (|#2| |#2| |#2| (-783))) (-15 -3561 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1551 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2716 (|#2| |#2| |#2| (-783))) (-15 -1761 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2944 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3918 (|#2| |#2| |#2|)) (-15 -3449 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1360 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2488 (|#2| |#2| |#2|)) (-15 -2902 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3149 |#2|)) |#2| |#2|)) (-15 -4000 ((-2 (|:| |coef2| |#2|) (|:| -3149 |#2|)) |#2| |#2|)) (-15 -2760 ((-2 (|:| |coef1| |#2|) (|:| -3149 |#2|)) |#2| |#2|)) (-15 -1955 (|#1| |#2|)) (-15 -3775 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1955 |#1|)) |#2|)) (-15 -4180 ((-2 (|:| |coef2| |#2|) (|:| -1955 |#1|)) |#2|)) (-15 -4242 ((-656 |#2|) |#2| |#2|)) (-15 -2414 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -1837 (|#1| |#2| |#2|)) (-15 -4117 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1837 |#1|)) |#2| |#2|)) (-15 -1892 ((-2 (|:| |coef2| |#2|) (|:| -1837 |#1|)) |#2| |#2|)) (-15 -3149 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1287 |#2|) |#1| (-1287 |#2|))) (-15 -2022 ((-1287 |#2|) (-1287 |#2|) |#1|)) (-15 -4215 ((-2 (|:| -1856 |#1|) (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2|)) (-15 -2233 ((-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) |#2| |#2|)) (-15 -2956 (|#1| |#1| |#1| (-783))) (-15 -4281 (|#2| |#2| |#1| |#1| (-783))) (-15 -2594 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3233 (|#1| |#2| |#2|)) (-15 -1351 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|)) (-15 -3565 ((-2 (|:| |coef2| |#2|) (|:| -2996 |#1|)) |#2| |#2|))) -((-2034 (((-112) $ $) NIL)) (-4148 (((-1236) $) 13)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2271 (((-1154) $) 10)) (-4092 (((-874) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-989) (-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)) (-15 -4148 ((-1236) $))))) (T -989)) -((-2271 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-989)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-989))))) -(-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)) (-15 -4148 ((-1236) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 40)) (-3788 (((-3 $ "failed") $ $) 54)) (-3656 (($) NIL T CONST)) (-3480 (((-656 (-885 (-938) (-938))) $) 67)) (-4294 (((-938) $) 94)) (-4260 (((-656 (-938)) $) 17)) (-1954 (((-1176 $) (-783)) 39)) (-3769 (($ (-656 (-938))) 16)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3646 (($ $) 70)) (-4092 (((-874) $) 90) (((-656 (-938)) $) 11)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 8 T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 44)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 42)) (-4007 (($ $ $) 46)) (* (($ (-938) $) NIL) (($ (-783) $) 49)) (-2048 (((-783) $) 22))) -(((-990) (-13 (-807) (-625 (-656 (-938))) (-10 -8 (-15 -3769 ($ (-656 (-938)))) (-15 -4260 ((-656 (-938)) $)) (-15 -2048 ((-783) $)) (-15 -1954 ((-1176 $) (-783))) (-15 -3480 ((-656 (-885 (-938) (-938))) $)) (-15 -4294 ((-938) $)) (-15 -3646 ($ $))))) (T -990)) -((-3769 (*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990)))) (-4260 (*1 *2 *1) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-990)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1176 (-990))) (-5 *1 (-990)))) (-3480 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-938) (-938)))) (-5 *1 (-990)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-990)))) (-3646 (*1 *1 *1) (-5 *1 (-990)))) -(-13 (-807) (-625 (-656 (-938))) (-10 -8 (-15 -3769 ($ (-656 (-938)))) (-15 -4260 ((-656 (-938)) $)) (-15 -2048 ((-783) $)) (-15 -1954 ((-1176 $) (-783))) (-15 -3480 ((-656 (-885 (-938) (-938))) $)) (-15 -4294 ((-938) $)) (-15 -3646 ($ $)))) -((-4028 (($ $ |#2|) 31)) (-4018 (($ $) 23) (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) -(((-991 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4028 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-992 |#2| |#3| |#4|) (-1068) (-804) (-862)) (T -991)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -4028 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1541 (((-656 |#3|) $) 86)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2573 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-1717 (($ $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-3840 (((-112) $) 85)) (-1810 (((-112) $) 35)) (-4331 (((-112) $) 74)) (-1518 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-2477 (($ (-1 |#1| |#1|) $) 75)) (-1681 (($ $) 77)) (-1692 ((|#1| $) 78)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2022 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2369 ((|#2| $) 76)) (-1417 (($ $) 84)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2430 ((|#1| $ |#2|) 71)) (-3612 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +((-1893 (*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))) (-1854 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))) (-2093 (*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4461) (-15 -1893 (|t#1| $)) (-15 -1854 ($ $ $)) (-15 -2093 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-1396 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|) 105)) (-2749 ((|#2| |#2| |#2|) 103)) (-4226 (((-2 (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|) 107)) (-2301 (((-2 (|:| |coef1| |#2|) (|:| -3495 |#2|)) |#2| |#2|) 109)) (-2734 (((-2 (|:| |coef2| |#2|) (|:| -3242 |#1|)) |#2| |#2|) 131 (|has| |#1| (-464)))) (-1684 (((-2 (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|) 56)) (-2685 (((-2 (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|) 80)) (-3674 (((-2 (|:| |coef1| |#2|) (|:| -2861 |#1|)) |#2| |#2|) 82)) (-3489 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96)) (-2382 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 89)) (-2175 (((-2 (|:| |coef2| |#2|) (|:| -1960 |#1|)) |#2|) 121)) (-1959 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 92)) (-4015 (((-656 (-783)) |#2| |#2|) 102)) (-3338 ((|#1| |#2| |#2|) 50)) (-4006 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3242 |#1|)) |#2| |#2|) 129 (|has| |#1| (-464)))) (-3242 ((|#1| |#2| |#2|) 127 (|has| |#1| (-464)))) (-2243 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|) 54)) (-3649 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|) 79)) (-2861 ((|#1| |#2| |#2|) 76)) (-1424 (((-2 (|:| -1706 |#1|) (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2|) 41)) (-4351 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-3845 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94)) (-3355 ((|#2| |#2| |#2|) 93)) (-2548 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 87)) (-3910 ((|#2| |#2| |#2| (-783)) 85)) (-3495 ((|#2| |#2| |#2|) 135 (|has| |#1| (-464)))) (-3463 (((-1286 |#2|) (-1286 |#2|) |#1|) 22)) (-1784 (((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2|) 46)) (-2667 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1960 |#1|)) |#2|) 119)) (-1960 ((|#1| |#2|) 116)) (-4221 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783)) 91)) (-3308 ((|#2| |#2| |#2| (-783)) 90)) (-2547 (((-656 |#2|) |#2| |#2|) 99)) (-3567 ((|#2| |#2| |#1| |#1| (-783)) 62)) (-2981 ((|#1| |#1| |#1| (-783)) 61)) (* (((-1286 |#2|) |#1| (-1286 |#2|)) 17))) +(((-988 |#1| |#2|) (-10 -7 (-15 -2861 (|#1| |#2| |#2|)) (-15 -3649 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -2685 ((-2 (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -3674 ((-2 (|:| |coef1| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -3910 (|#2| |#2| |#2| (-783))) (-15 -2548 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2382 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3308 (|#2| |#2| |#2| (-783))) (-15 -4221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1959 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3355 (|#2| |#2| |#2|)) (-15 -3845 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3489 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2749 (|#2| |#2| |#2|)) (-15 -1396 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -4226 ((-2 (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -2301 ((-2 (|:| |coef1| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -1960 (|#1| |#2|)) (-15 -2667 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1960 |#1|)) |#2|)) (-15 -2175 ((-2 (|:| |coef2| |#2|) (|:| -1960 |#1|)) |#2|)) (-15 -2547 ((-656 |#2|) |#2| |#2|)) (-15 -4015 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3242 (|#1| |#2| |#2|)) (-15 -4006 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3242 |#1|)) |#2| |#2|)) (-15 -2734 ((-2 (|:| |coef2| |#2|) (|:| -3242 |#1|)) |#2| |#2|)) (-15 -3495 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1286 |#2|) |#1| (-1286 |#2|))) (-15 -3463 ((-1286 |#2|) (-1286 |#2|) |#1|)) (-15 -1424 ((-2 (|:| -1706 |#1|) (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2|)) (-15 -1784 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2|)) (-15 -2981 (|#1| |#1| |#1| (-783))) (-15 -3567 (|#2| |#2| |#1| |#1| (-783))) (-15 -4351 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3338 (|#1| |#2| |#2|)) (-15 -2243 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -1684 ((-2 (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|))) (-568) (-1262 |#1|)) (T -988)) +((-1684 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2861 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-2243 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2861 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3338 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) (-4351 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-3567 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-2981 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-988 *2 *4)) (-4 *4 (-1262 *2)))) (-1784 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-1424 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1706 *4) (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) (-5 *1 (-988 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) (-5 *1 (-988 *3 *4)))) (-3495 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-2734 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3242 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-4006 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3242 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3242 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) (-4015 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-2547 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-2175 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1960 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-2667 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1960 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-1960 (*1 *2 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) (-2301 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3495 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-4226 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3495 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-1396 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3495 *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-2749 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-3489 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3845 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3355 (*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) (-1959 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5)))) (-4221 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5)))) (-3308 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1262 *4)))) (-2382 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5)))) (-2548 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5)))) (-3910 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) (-4 *2 (-1262 *4)))) (-3674 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2861 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-2685 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2861 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-3649 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2861 *4))) (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2))))) +(-10 -7 (-15 -2861 (|#1| |#2| |#2|)) (-15 -3649 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -2685 ((-2 (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -3674 ((-2 (|:| |coef1| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -3910 (|#2| |#2| |#2| (-783))) (-15 -2548 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -2382 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3308 (|#2| |#2| |#2| (-783))) (-15 -4221 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -1959 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-783))) (-15 -3355 (|#2| |#2| |#2|)) (-15 -3845 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3489 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2749 (|#2| |#2| |#2|)) (-15 -1396 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -4226 ((-2 (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -2301 ((-2 (|:| |coef1| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -1960 (|#1| |#2|)) (-15 -2667 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1960 |#1|)) |#2|)) (-15 -2175 ((-2 (|:| |coef2| |#2|) (|:| -1960 |#1|)) |#2|)) (-15 -2547 ((-656 |#2|) |#2| |#2|)) (-15 -4015 ((-656 (-783)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3242 (|#1| |#2| |#2|)) (-15 -4006 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3242 |#1|)) |#2| |#2|)) (-15 -2734 ((-2 (|:| |coef2| |#2|) (|:| -3242 |#1|)) |#2| |#2|)) (-15 -3495 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1286 |#2|) |#1| (-1286 |#2|))) (-15 -3463 ((-1286 |#2|) (-1286 |#2|) |#1|)) (-15 -1424 ((-2 (|:| -1706 |#1|) (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2|)) (-15 -1784 ((-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) |#2| |#2|)) (-15 -2981 (|#1| |#1| |#1| (-783))) (-15 -3567 (|#2| |#2| |#1| |#1| (-783))) (-15 -4351 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3338 (|#1| |#2| |#2|)) (-15 -2243 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|)) (-15 -1684 ((-2 (|:| |coef2| |#2|) (|:| -2861 |#1|)) |#2| |#2|))) +((-3474 (((-112) $ $) NIL)) (-3042 (((-1235) $) 13)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4269 (((-1154) $) 10)) (-3563 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-989) (-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)) (-15 -3042 ((-1235) $))))) (T -989)) +((-4269 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-989)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-989))))) +(-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)) (-15 -3042 ((-1235) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 40)) (-1367 (((-3 $ "failed") $ $) 54)) (-3767 (($) NIL T CONST)) (-1836 (((-656 (-885 (-938) (-938))) $) 67)) (-2349 (((-938) $) 94)) (-3825 (((-656 (-938)) $) 17)) (-1829 (((-1176 $) (-783)) 39)) (-3316 (($ (-656 (-938))) 16)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4026 (($ $) 70)) (-3563 (((-874) $) 90) (((-656 (-938)) $) 11)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 8 T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 44)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 42)) (-3083 (($ $ $) 46)) (* (($ (-938) $) NIL) (($ (-783) $) 49)) (-3485 (((-783) $) 22))) +(((-990) (-13 (-807) (-625 (-656 (-938))) (-10 -8 (-15 -3316 ($ (-656 (-938)))) (-15 -3825 ((-656 (-938)) $)) (-15 -3485 ((-783) $)) (-15 -1829 ((-1176 $) (-783))) (-15 -1836 ((-656 (-885 (-938) (-938))) $)) (-15 -2349 ((-938) $)) (-15 -4026 ($ $))))) (T -990)) +((-3316 (*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-990)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1176 (-990))) (-5 *1 (-990)))) (-1836 (*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-938) (-938)))) (-5 *1 (-990)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-990)))) (-4026 (*1 *1 *1) (-5 *1 (-990)))) +(-13 (-807) (-625 (-656 (-938))) (-10 -8 (-15 -3316 ($ (-656 (-938)))) (-15 -3825 ((-656 (-938)) $)) (-15 -3485 ((-783) $)) (-15 -1829 ((-1176 $) (-783))) (-15 -1836 ((-656 (-885 (-938) (-938))) $)) (-15 -2349 ((-938) $)) (-15 -4026 ($ $)))) +((-3107 (($ $ |#2|) 31)) (-3095 (($ $) 23) (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-419 (-576)) $) 27) (($ $ (-419 (-576))) 29))) +(((-991 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3107 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) (-992 |#2| |#3| |#4|) (-1068) (-804) (-862)) (T -991)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-419 (-576)))) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 -3107 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 * (|#1| (-938) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1991 (((-656 |#3|) $) 86)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4412 (($ $) 64 (|has| |#1| (-568)))) (-4176 (((-112) $) 66 (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-2166 (($ $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-1822 (((-112) $) 85)) (-1414 (((-112) $) 35)) (-2606 (((-112) $) 74)) (-1970 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-656 |#3|) (-656 |#2|)) 87)) (-1632 (($ (-1 |#1| |#1|) $) 75)) (-2129 (($ $) 77)) (-2142 ((|#1| $) 78)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3463 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1433 ((|#2| $) 76)) (-2869 (($ $) 84)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4333 ((|#1| $ |#2|) 71)) (-2883 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) (((-992 |#1| |#2| |#3|) (-141) (-1068) (-804) (-862)) (T -992)) -((-1692 (*1 *2 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862)) (-4 *2 (-1068)))) (-1681 (*1 *1 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *4 (-862)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *2 *4)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *2 (-804)))) (-1518 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-992 *4 *3 *2)) (-4 *4 (-1068)) (-4 *3 (-804)) (-4 *2 (-862)))) (-1518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-992 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-804)) (-4 *6 (-862)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1417 (*1 *1 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *4 (-862))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1518 ($ $ |t#3| |t#2|)) (-15 -1518 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -1681 ($ $)) (-15 -1692 (|t#1| $)) (-15 -2369 (|t#2| $)) (-15 -1541 ((-656 |t#3|) $)) (-15 -3840 ((-112) $)) (-15 -1417 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-3864 (((-1113 (-227)) $) 8)) (-3854 (((-1113 (-227)) $) 9)) (-3841 (((-1113 (-227)) $) 10)) (-2769 (((-656 (-656 (-960 (-227)))) $) 11)) (-4092 (((-874) $) 6))) +((-2142 (*1 *2 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862)) (-4 *2 (-1068)))) (-2129 (*1 *1 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *4 (-862)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *2 *4)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *2 (-804)))) (-1970 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-992 *4 *3 *2)) (-4 *4 (-1068)) (-4 *3 (-804)) (-4 *2 (-862)))) (-1970 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-992 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-804)) (-4 *6 (-862)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-656 *5)))) (-1822 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2869 (*1 *1 *1) (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *4 (-862))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1970 ($ $ |t#3| |t#2|)) (-15 -1970 ($ $ (-656 |t#3|) (-656 |t#2|))) (-15 -2129 ($ $)) (-15 -2142 (|t#1| $)) (-15 -1433 (|t#2| $)) (-15 -1991 ((-656 |t#3|) $)) (-15 -1822 ((-112) $)) (-15 -2869 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) +((-1750 (((-1113 (-227)) $) 8)) (-1738 (((-1113 (-227)) $) 9)) (-1724 (((-1113 (-227)) $) 10)) (-1811 (((-656 (-656 (-960 (-227)))) $) 11)) (-3563 (((-874) $) 6))) (((-993) (-141)) (T -993)) -((-2769 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-656 (-656 (-960 (-227))))))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))) (-3864 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227)))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2769 ((-656 (-656 (-960 (-227)))) $)) (-15 -3841 ((-1113 (-227)) $)) (-15 -3854 ((-1113 (-227)) $)) (-15 -3864 ((-1113 (-227)) $)))) +((-1811 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-656 (-656 (-960 (-227))))))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227))))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227)))))) +(-13 (-625 (-874)) (-10 -8 (-15 -1811 ((-656 (-656 (-960 (-227)))) $)) (-15 -1724 ((-1113 (-227)) $)) (-15 -1738 ((-1113 (-227)) $)) (-15 -1750 ((-1113 (-227)) $)))) (((-625 (-874)) . T)) -((-1541 (((-656 |#4|) $) 23)) (-3522 (((-112) $) 55)) (-2932 (((-112) $) 54)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#4|) 42)) (-3425 (((-112) $) 56)) (-2623 (((-112) $ $) 62)) (-1582 (((-112) $ $) 65)) (-3347 (((-112) $) 60)) (-4135 (((-656 |#5|) (-656 |#5|) $) 98)) (-1639 (((-656 |#5|) (-656 |#5|) $) 95)) (-4400 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2964 (((-656 |#4|) $) 27)) (-2459 (((-112) |#4| $) 34)) (-1617 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1606 (($ $ |#4|) 39)) (-2333 (($ $ |#4|) 38)) (-2875 (($ $ |#4|) 40)) (-3919 (((-112) $ $) 46))) -(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2932 ((-112) |#1|)) (-15 -4135 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1639 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -4400 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1617 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3425 ((-112) |#1|)) (-15 -1582 ((-112) |#1| |#1|)) (-15 -2623 ((-112) |#1| |#1|)) (-15 -3347 ((-112) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 -2398 ((-2 (|:| |under| |#1|) (|:| -3892 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1606 (|#1| |#1| |#4|)) (-15 -2875 (|#1| |#1| |#4|)) (-15 -2333 (|#1| |#1| |#4|)) (-15 -2459 ((-112) |#4| |#1|)) (-15 -2964 ((-656 |#4|) |#1|)) (-15 -1541 ((-656 |#4|) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) (-995 |#2| |#3| |#4| |#5|) (-1068) (-805) (-862) (-1084 |#2| |#3| |#4|)) (T -994)) +((-1991 (((-656 |#4|) $) 23)) (-1665 (((-112) $) 55)) (-4324 (((-112) $) 54)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#4|) 42)) (-2359 (((-112) $) 56)) (-4268 (((-112) $ $) 62)) (-2556 (((-112) $ $) 65)) (-1376 (((-112) $) 60)) (-2147 (((-656 |#5|) (-656 |#5|) $) 98)) (-1648 (((-656 |#5|) (-656 |#5|) $) 95)) (-2091 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2653 (((-656 |#4|) $) 27)) (-1845 (((-112) |#4| $) 34)) (-1461 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1813 (($ $ |#4|) 39)) (-3418 (($ $ |#4|) 38)) (-1794 (($ $ |#4|) 40)) (-2988 (((-112) $ $) 46))) +(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4324 ((-112) |#1|)) (-15 -2147 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1648 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -2091 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1461 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2359 ((-112) |#1|)) (-15 -2556 ((-112) |#1| |#1|)) (-15 -4268 ((-112) |#1| |#1|)) (-15 -1376 ((-112) |#1|)) (-15 -1665 ((-112) |#1|)) (-15 -1758 ((-2 (|:| |under| |#1|) (|:| -3835 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1813 (|#1| |#1| |#4|)) (-15 -1794 (|#1| |#1| |#4|)) (-15 -3418 (|#1| |#1| |#4|)) (-15 -1845 ((-112) |#4| |#1|)) (-15 -2653 ((-656 |#4|) |#1|)) (-15 -1991 ((-656 |#4|) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) (-995 |#2| |#3| |#4| |#5|) (-1068) (-805) (-862) (-1084 |#2| |#3| |#4|)) (T -994)) NIL -(-10 -8 (-15 -2932 ((-112) |#1|)) (-15 -4135 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1639 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -4400 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1617 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3425 ((-112) |#1|)) (-15 -1582 ((-112) |#1| |#1|)) (-15 -2623 ((-112) |#1| |#1|)) (-15 -3347 ((-112) |#1|)) (-15 -3522 ((-112) |#1|)) (-15 -2398 ((-2 (|:| |under| |#1|) (|:| -3892 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1606 (|#1| |#1| |#4|)) (-15 -2875 (|#1| |#1| |#4|)) (-15 -2333 (|#1| |#1| |#4|)) (-15 -2459 ((-112) |#4| |#1|)) (-15 -2964 ((-656 |#4|) |#1|)) (-15 -1541 ((-656 |#4|) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1541 (((-656 |#3|) $) 34)) (-3522 (((-112) $) 27)) (-2932 (((-112) $) 18 (|has| |#1| (-568)))) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) 28)) (-2835 (((-112) $ (-783)) 45)) (-3457 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462)))) (-3656 (($) 46 T CONST)) (-3425 (((-112) $) 23 (|has| |#1| (-568)))) (-2623 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1582 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3347 (((-112) $) 26 (|has| |#1| (-568)))) (-4135 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) 37)) (-2378 (($ (-656 |#4|)) 36)) (-1690 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462)))) (-4260 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-2565 ((|#3| $) 35)) (-1419 (((-112) $ (-783)) 44)) (-1750 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 48)) (-2964 (((-656 |#3|) $) 33)) (-2459 (((-112) |#3| $) 32)) (-3103 (((-112) $ (-783)) 43)) (-3288 (((-1178) $) 10)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-3139 (((-1139) $) 11)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3292 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) 39)) (-3372 (((-112) $) 42)) (-2643 (($) 41)) (-3150 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-4268 (($ $) 40)) (-1505 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) 61)) (-1606 (($ $ |#3|) 29)) (-2333 (($ $ |#3|) 31)) (-2875 (($ $ |#3|) 30)) (-4092 (((-874) $) 12) (((-656 |#4|) $) 38)) (-1531 (((-112) $ $) 9)) (-2190 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 6)) (-2048 (((-783) $) 47 (|has| $ (-6 -4462))))) +(-10 -8 (-15 -4324 ((-112) |#1|)) (-15 -2147 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -1648 ((-656 |#5|) (-656 |#5|) |#1|)) (-15 -2091 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1461 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2359 ((-112) |#1|)) (-15 -2556 ((-112) |#1| |#1|)) (-15 -4268 ((-112) |#1| |#1|)) (-15 -1376 ((-112) |#1|)) (-15 -1665 ((-112) |#1|)) (-15 -1758 ((-2 (|:| |under| |#1|) (|:| -3835 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1813 (|#1| |#1| |#4|)) (-15 -1794 (|#1| |#1| |#4|)) (-15 -3418 (|#1| |#1| |#4|)) (-15 -1845 ((-112) |#4| |#1|)) (-15 -2653 ((-656 |#4|) |#1|)) (-15 -1991 ((-656 |#4|) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1991 (((-656 |#3|) $) 34)) (-1665 (((-112) $) 27)) (-4324 (((-112) $) 18 (|has| |#1| (-568)))) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) 28)) (-3131 (((-112) $ (-783)) 45)) (-2496 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461)))) (-3767 (($) 46 T CONST)) (-2359 (((-112) $) 23 (|has| |#1| (-568)))) (-4268 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2556 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1376 (((-112) $) 26 (|has| |#1| (-568)))) (-2147 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) 37)) (-4056 (($ (-656 |#4|)) 36)) (-3172 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461)))) (-3825 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-1734 ((|#3| $) 35)) (-3115 (((-112) $ (-783)) 44)) (-2591 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 48)) (-2653 (((-656 |#3|) $) 33)) (-1845 (((-112) |#3| $) 32)) (-2712 (((-112) $ (-783)) 43)) (-1927 (((-1177) $) 10)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1445 (((-1139) $) 11)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-4207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) 39)) (-1911 (((-112) $) 42)) (-2597 (($) 41)) (-1456 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-1954 (($ $) 40)) (-4076 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) 61)) (-1813 (($ $ |#3|) 29)) (-3418 (($ $ |#3|) 31)) (-1794 (($ $ |#3|) 30)) (-3563 (((-874) $) 12) (((-656 |#4|) $) 38)) (-3985 (((-112) $ $) 9)) (-2043 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 6)) (-3485 (((-783) $) 47 (|has| $ (-6 -4461))))) (((-995 |#1| |#2| |#3| |#4|) (-141) (-1068) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -995)) -((-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-995 *3 *4 *5 *6)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-995 *3 *4 *5 *6)))) (-2565 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-1084 *3 *4 *2)) (-4 *2 (-862)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2964 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2459 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *3 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112)))) (-2333 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))) (-2875 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))) (-1606 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))) (-2398 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3892 *1) (|:| |upper| *1))) (-4 *1 (-995 *4 *5 *3 *6)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2623 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1582 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-3425 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1617 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4400 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1639 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)))) (-4135 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) -(-13 (-1119) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4462) (-15 -2974 ((-3 $ "failed") (-656 |t#4|))) (-15 -2378 ($ (-656 |t#4|))) (-15 -2565 (|t#3| $)) (-15 -1541 ((-656 |t#3|) $)) (-15 -2964 ((-656 |t#3|) $)) (-15 -2459 ((-112) |t#3| $)) (-15 -2333 ($ $ |t#3|)) (-15 -2875 ($ $ |t#3|)) (-15 -1606 ($ $ |t#3|)) (-15 -2398 ((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |t#3|)) (-15 -3522 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -3347 ((-112) $)) (-15 -2623 ((-112) $ $)) (-15 -1582 ((-112) $ $)) (-15 -3425 ((-112) $)) (-15 -1617 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4400 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1639 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -4135 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -2932 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-1119) . T) ((-1237) . T)) -((-3320 (((-656 |#4|) |#4| |#4|) 136)) (-1536 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-3467 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-2188 (((-112) |#4|) 43)) (-2691 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-4001 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-3399 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-1766 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-2938 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-2706 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2935 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-4334 (((-656 |#4|) (-656 |#4|)) 128)) (-2765 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-1409 ((|#4| |#4| (-656 |#4|)) 60)) (-2282 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-2537 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-3089 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-4363 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-3109 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3174 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-1719 (((-112) (-656 |#4|)) 79)) (-4413 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-2306 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-1339 (((-112) |#4|) 36)) (-1940 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-3432 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-4129 (((-656 |#4|) (-656 |#4|)) 83)) (-1751 (((-656 |#4|) (-656 |#4|)) 97)) (-4433 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-2696 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-1925 (((-112) |#4|) 45))) -(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4363 ((-656 |#4|) (-656 |#4|))) (-15 -4363 ((-656 |#4|) |#4| |#4|)) (-15 -4334 ((-656 |#4|) (-656 |#4|))) (-15 -3320 ((-656 |#4|) |#4| |#4|)) (-15 -4363 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -4363 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4363 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -4433 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4413 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -1719 ((-112) (-656 |#4|))) (-15 -4001 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -3399 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -1766 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3174 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2188 ((-112) |#4|)) (-15 -3467 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1339 ((-112) |#4|)) (-15 -2306 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1925 ((-112) |#4|)) (-15 -2696 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2765 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2765 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1409 (|#4| |#4| (-656 |#4|))) (-15 -4129 ((-656 |#4|) (-656 |#4|))) (-15 -2938 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -1751 ((-656 |#4|) (-656 |#4|))) (-15 -2706 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2935 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2691 ((-656 |#4|) |#4|)) (-15 -1536 ((-656 |#4|) (-656 |#4|))) (-15 -1536 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -2282 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3089 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2537 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -3432 ((-656 |#4|) (-656 |#4|))) (-15 -1940 ((-656 |#4|) (-656 |#4|))) (-15 -3109 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -996)) -((-3109 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-1940 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3432 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2537 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3089 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2282 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-1536 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))) (-1536 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2691 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-2935 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-996 *5 *6 *7 *8)))) (-2706 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *1 (-996 *6 *7 *8 *9)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2938 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3005 (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-4129 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-1409 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *2)))) (-2765 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))) (-2765 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1925 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-2306 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1339 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3467 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2188 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3174 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1766 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-3399 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7)))) (-4413 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *5 *6 *7 *8)))) (-4433 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7)))) (-4363 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))) (-4363 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-4363 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *3)))) (-3320 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-4334 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-4363 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-4363 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))) -(-10 -7 (-15 -4363 ((-656 |#4|) (-656 |#4|))) (-15 -4363 ((-656 |#4|) |#4| |#4|)) (-15 -4334 ((-656 |#4|) (-656 |#4|))) (-15 -3320 ((-656 |#4|) |#4| |#4|)) (-15 -4363 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -4363 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -4363 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -4433 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4413 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -1719 ((-112) (-656 |#4|))) (-15 -4001 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -3399 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -1766 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -3174 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2188 ((-112) |#4|)) (-15 -3467 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1339 ((-112) |#4|)) (-15 -2306 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1925 ((-112) |#4|)) (-15 -2696 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -2765 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2765 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -1409 (|#4| |#4| (-656 |#4|))) (-15 -4129 ((-656 |#4|) (-656 |#4|))) (-15 -2938 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -1751 ((-656 |#4|) (-656 |#4|))) (-15 -2706 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2935 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2691 ((-656 |#4|) |#4|)) (-15 -1536 ((-656 |#4|) (-656 |#4|))) (-15 -1536 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -2282 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3089 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -2537 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -3432 ((-656 |#4|) (-656 |#4|))) (-15 -1940 ((-656 |#4|) (-656 |#4|))) (-15 -3109 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) -((-3513 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2183 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)) 46)) (-3154 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-997 |#1|) (-10 -7 (-15 -3513 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3154 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2183 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)))) (-374)) (T -997)) -((-2183 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5))))) (-5 *1 (-997 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)))) (-3154 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-997 *5)))) (-3513 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-997 *6)) (-5 *3 (-701 *6))))) -(-10 -7 (-15 -3513 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3154 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2183 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1287 |#1|)))) (-701 |#1|) (-1287 |#1|)))) -((-2100 (((-430 |#4|) |#4|) 56))) -(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2100 ((-430 |#4|) |#4|))) (-862) (-805) (-464) (-966 |#3| |#2| |#1|)) (T -998)) -((-2100 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4))))) -(-10 -7 (-15 -2100 ((-430 |#4|) |#4|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1705 (($ (-783)) 115 (|has| |#1| (-23)))) (-2449 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) 8)) (-4248 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-3129 (($ $) 93 (|has| $ (-6 -4463)))) (-4112 (($ $) 103)) (-1690 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 52)) (-3433 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-3418 (($ (-656 |#1|)) 121)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1602 (((-701 |#1|) $ $) 108 (|has| |#1| (-1068)))) (-1992 (($ (-783) |#1|) 70)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 44 (|has| (-576) (-862)))) (-3492 (($ $ $) 90 (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 45 (|has| (-576) (-862)))) (-2726 (($ $ $) 89 (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1899 ((|#1| $) 105 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-3103 (((-112) $ (-783)) 10)) (-1325 ((|#1| $) 106 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4428 (((-656 (-576)) $) 47)) (-2013 (((-112) (-576) $) 48)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2701 ((|#1| $) 43 (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2918 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-2843 (($ $ (-656 |#1|)) 119)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-1660 ((|#1| $ $) 109 (|has| |#1| (-1068)))) (-3667 (((-938) $) 120)) (-2470 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-2916 (($ $ $) 107)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3582 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-4268 (($ $) 13)) (-1505 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-4103 (($ (-656 |#1|)) 72)) (-2851 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3955 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3966 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3944 (((-112) $ $) 85 (|has| |#1| (-862)))) (-4018 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4007 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-995 *3 *4 *5 *6)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-995 *3 *4 *5 *6)))) (-1734 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-1084 *3 *4 *2)) (-4 *2 (-862)))) (-1991 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) (-2653 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) (-1845 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *3 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112)))) (-3418 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))) (-1794 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))) (-1813 (*1 *1 *1 *2) (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2)))) (-1758 (*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3835 *1) (|:| |upper| *1))) (-4 *1 (-995 *4 *5 *3 *6)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-4268 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2556 (*1 *2 *1 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-2359 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112)))) (-1461 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2091 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1648 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)))) (-2147 (*1 *2 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-5 *2 (-112))))) +(-13 (-1119) (-152 |t#4|) (-625 (-656 |t#4|)) (-10 -8 (-6 -4461) (-15 -1539 ((-3 $ "failed") (-656 |t#4|))) (-15 -4056 ($ (-656 |t#4|))) (-15 -1734 (|t#3| $)) (-15 -1991 ((-656 |t#3|) $)) (-15 -2653 ((-656 |t#3|) $)) (-15 -1845 ((-112) |t#3| $)) (-15 -3418 ($ $ |t#3|)) (-15 -1794 ($ $ |t#3|)) (-15 -1813 ($ $ |t#3|)) (-15 -1758 ((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |t#3|)) (-15 -1665 ((-112) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -1376 ((-112) $)) (-15 -4268 ((-112) $ $)) (-15 -2556 ((-112) $ $)) (-15 -2359 ((-112) $)) (-15 -1461 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2091 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1648 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -2147 ((-656 |t#4|) (-656 |t#4|) $)) (-15 -4324 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-1119) . T) ((-1236) . T)) +((-1886 (((-656 |#4|) |#4| |#4|) 136)) (-2716 (((-656 |#4|) (-656 |#4|) (-112)) 125 (|has| |#1| (-464))) (((-656 |#4|) (-656 |#4|)) 126 (|has| |#1| (-464)))) (-3168 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 44)) (-3064 (((-112) |#4|) 43)) (-3602 (((-656 |#4|) |#4|) 121 (|has| |#1| (-464)))) (-4336 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|)) 24)) (-1705 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 30)) (-1597 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|)) 31)) (-3762 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|)) 90)) (-2293 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-3425 (((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-2932 (((-656 |#4|) (-656 |#4|)) 128)) (-1458 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112)) 59) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 61)) (-3423 ((|#4| |#4| (-656 |#4|)) 60)) (-3271 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 132 (|has| |#1| (-464)))) (-3837 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 135 (|has| |#1| (-464)))) (-3990 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 134 (|has| |#1| (-464)))) (-1796 (((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|))) 105) (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 107) (((-656 |#4|) (-656 |#4|) |#4|) 140) (((-656 |#4|) |#4| |#4|) 137) (((-656 |#4|) (-656 |#4|)) 106)) (-3302 (((-656 |#4|) (-656 |#4|) (-656 |#4|)) 118 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-4181 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 52)) (-3729 (((-112) (-656 |#4|)) 79)) (-4319 (((-112) (-656 |#4|) (-656 (-656 |#4|))) 67)) (-3514 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 37)) (-3211 (((-112) |#4|) 36)) (-3947 (((-656 |#4|) (-656 |#4|)) 116 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1817 (((-656 |#4|) (-656 |#4|)) 117 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2686 (((-656 |#4|) (-656 |#4|)) 83)) (-2678 (((-656 |#4|) (-656 |#4|)) 97)) (-3739 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-2891 (((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|)) 50)) (-1942 (((-112) |#4|) 45))) +(((-996 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1796 ((-656 |#4|) (-656 |#4|))) (-15 -1796 ((-656 |#4|) |#4| |#4|)) (-15 -2932 ((-656 |#4|) (-656 |#4|))) (-15 -1886 ((-656 |#4|) |#4| |#4|)) (-15 -1796 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -1796 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1796 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3739 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4319 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3729 ((-112) (-656 |#4|))) (-15 -4336 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -1705 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -1597 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -4181 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3064 ((-112) |#4|)) (-15 -3168 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3211 ((-112) |#4|)) (-15 -3514 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1942 ((-112) |#4|)) (-15 -2891 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1458 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1458 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3423 (|#4| |#4| (-656 |#4|))) (-15 -2686 ((-656 |#4|) (-656 |#4|))) (-15 -3762 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -2678 ((-656 |#4|) (-656 |#4|))) (-15 -2293 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3425 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3602 ((-656 |#4|) |#4|)) (-15 -2716 ((-656 |#4|) (-656 |#4|))) (-15 -2716 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -3271 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3990 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3837 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1817 ((-656 |#4|) (-656 |#4|))) (-15 -3947 ((-656 |#4|) (-656 |#4|))) (-15 -3302 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) (-568) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -996)) +((-3302 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3990 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3271 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2716 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))) (-2716 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3602 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3425 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-996 *5 *6 *7 *8)))) (-2293 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *1 (-996 *6 *7 *8 *9)))) (-2678 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3762 (*1 *2 *3) (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1346 (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-2686 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-3423 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *2)))) (-1458 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))) (-1458 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-2891 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1942 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3514 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3211 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-3168 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-3064 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-4181 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) (-1597 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-1705 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-4336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7)))) (-4319 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *5 *6 *7 *8)))) (-3739 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *4 *5 *6 *7)))) (-1796 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7)))) (-1796 (*1 *2 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-1796 (*1 *2 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *3)))) (-1886 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) (-1796 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) (-1796 (*1 *2 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))) +(-10 -7 (-15 -1796 ((-656 |#4|) (-656 |#4|))) (-15 -1796 ((-656 |#4|) |#4| |#4|)) (-15 -2932 ((-656 |#4|) (-656 |#4|))) (-15 -1886 ((-656 |#4|) |#4| |#4|)) (-15 -1796 ((-656 |#4|) (-656 |#4|) |#4|)) (-15 -1796 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1796 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-1 (-656 |#4|) (-656 |#4|)))) (-15 -3739 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4319 ((-112) (-656 |#4|) (-656 (-656 |#4|)))) (-15 -3729 ((-112) (-656 |#4|))) (-15 -4336 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-1 (-112) |#4|) (-656 |#4|))) (-15 -1705 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -1597 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 (-1 (-112) |#4|)) (-656 |#4|))) (-15 -4181 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3064 ((-112) |#4|)) (-15 -3168 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -3211 ((-112) |#4|)) (-15 -3514 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1942 ((-112) |#4|)) (-15 -2891 ((-2 (|:| |goodPols| (-656 |#4|)) (|:| |badPols| (-656 |#4|))) (-656 |#4|))) (-15 -1458 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -1458 ((-656 |#4|) (-656 |#4|) (-656 |#4|) (-112))) (-15 -3423 (|#4| |#4| (-656 |#4|))) (-15 -2686 ((-656 |#4|) (-656 |#4|))) (-15 -3762 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|))) (-15 -2678 ((-656 |#4|) (-656 |#4|))) (-15 -2293 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3425 ((-656 |#4|) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3602 ((-656 |#4|) |#4|)) (-15 -2716 ((-656 |#4|) (-656 |#4|))) (-15 -2716 ((-656 |#4|) (-656 |#4|) (-112))) (-15 -3271 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3990 ((-656 |#4|) (-656 |#4|) (-656 |#4|))) (-15 -3837 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (PROGN (-15 -1817 ((-656 |#4|) (-656 |#4|))) (-15 -3947 ((-656 |#4|) (-656 |#4|))) (-15 -3302 ((-656 |#4|) (-656 |#4|) (-656 |#4|)))) |%noBranch|) |%noBranch|)) +((-2237 (((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2730 (((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)) 46)) (-3125 (((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-997 |#1|) (-10 -7 (-15 -2237 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3125 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2730 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)))) (-374)) (T -997)) +((-2730 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5))))) (-5 *1 (-997 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)))) (-3125 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) (-5 *1 (-997 *5)))) (-2237 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) (-5 *1 (-997 *6)) (-5 *3 (-701 *6))))) +(-10 -7 (-15 -2237 ((-2 (|:| R (-701 |#1|)) (|:| A (-701 |#1|)) (|:| |Ainv| (-701 |#1|))) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3125 ((-701 |#1|) (-701 |#1|) (-701 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2730 ((-656 (-2 (|:| C (-701 |#1|)) (|:| |g| (-1286 |#1|)))) (-701 |#1|) (-1286 |#1|)))) +((-2732 (((-430 |#4|) |#4|) 56))) +(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2732 ((-430 |#4|) |#4|))) (-862) (-805) (-464) (-966 |#3| |#2| |#1|)) (T -998)) +((-2732 (*1 *2 *3) (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4))))) +(-10 -7 (-15 -2732 ((-430 |#4|) |#4|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3497 (($ (-783)) 115 (|has| |#1| (-23)))) (-2333 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) 8)) (-3731 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3478 (($ $) 93 (|has| $ (-6 -4462)))) (-3733 (($ $) 103)) (-3172 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 52)) (-3584 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-2368 (($ (-656 |#1|)) 121)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2351 (((-701 |#1|) $ $) 108 (|has| |#1| (-1068)))) (-4033 (($ (-783) |#1|) 70)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 44 (|has| (-576) (-862)))) (-2442 (($ $ $) 90 (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 45 (|has| (-576) (-862)))) (-1893 (($ $ $) 89 (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2306 ((|#1| $) 105 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-2712 (((-112) $ (-783)) 10)) (-4261 ((|#1| $) 106 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3321 (((-656 (-576)) $) 47)) (-2378 (((-112) (-576) $) 48)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3504 ((|#1| $) 43 (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2500 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-1714 (($ $ (-656 |#1|)) 119)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-2962 ((|#1| $ $) 109 (|has| |#1| (-1068)))) (-2446 (((-938) $) 120)) (-3464 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-2299 (($ $ $) 107)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3760 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-1954 (($ $) 13)) (-4076 (((-548) $) 81 (|has| |#1| (-626 (-548)))) (($ (-656 |#1|)) 122)) (-3573 (($ (-656 |#1|)) 72)) (-1661 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 86 (|has| |#1| (-862)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3037 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3010 (((-112) $ $) 85 (|has| |#1| (-862)))) (-3095 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3083 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-999 |#1|) (-141) (-1068)) (T -999)) -((-3418 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-999 *3)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1068)) (-5 *2 (-938)))) (-2916 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1068)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-999 *3)) (-4 *3 (-1068))))) -(-13 (-1285 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -3418 ($ (-656 |t#1|))) (-15 -3667 ((-938) $)) (-15 -2916 ($ $ $)) (-15 -2843 ($ $ (-656 |t#1|))))) -(((-34) . T) ((-102) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1237) . T) ((-1285 |#1|) . T)) -((-2477 (((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)) 17))) -(((-1000 |#1| |#2|) (-10 -7 (-15 -2477 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) (-1068) (-1068)) (T -1000)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-960 *6)) (-5 *1 (-1000 *5 *6))))) -(-10 -7 (-15 -2477 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) -((-2689 ((|#1| (-960 |#1|)) 14)) (-3221 ((|#1| (-960 |#1|)) 13)) (-4271 ((|#1| (-960 |#1|)) 12)) (-2907 ((|#1| (-960 |#1|)) 16)) (-3631 ((|#1| (-960 |#1|)) 24)) (-2010 ((|#1| (-960 |#1|)) 15)) (-4048 ((|#1| (-960 |#1|)) 17)) (-3013 ((|#1| (-960 |#1|)) 23)) (-2367 ((|#1| (-960 |#1|)) 22))) -(((-1001 |#1|) (-10 -7 (-15 -4271 (|#1| (-960 |#1|))) (-15 -3221 (|#1| (-960 |#1|))) (-15 -2689 (|#1| (-960 |#1|))) (-15 -2010 (|#1| (-960 |#1|))) (-15 -2907 (|#1| (-960 |#1|))) (-15 -4048 (|#1| (-960 |#1|))) (-15 -2367 (|#1| (-960 |#1|))) (-15 -3013 (|#1| (-960 |#1|))) (-15 -3631 (|#1| (-960 |#1|)))) (-1068)) (T -1001)) -((-3631 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2907 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-4271 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(-10 -7 (-15 -4271 (|#1| (-960 |#1|))) (-15 -3221 (|#1| (-960 |#1|))) (-15 -2689 (|#1| (-960 |#1|))) (-15 -2010 (|#1| (-960 |#1|))) (-15 -2907 (|#1| (-960 |#1|))) (-15 -4048 (|#1| (-960 |#1|))) (-15 -2367 (|#1| (-960 |#1|))) (-15 -3013 (|#1| (-960 |#1|))) (-15 -3631 (|#1| (-960 |#1|)))) -((-2102 (((-3 |#1| "failed") |#1|) 18)) (-2441 (((-3 |#1| "failed") |#1|) 6)) (-4239 (((-3 |#1| "failed") |#1|) 16)) (-3590 (((-3 |#1| "failed") |#1|) 4)) (-1543 (((-3 |#1| "failed") |#1|) 20)) (-1963 (((-3 |#1| "failed") |#1|) 8)) (-3260 (((-3 |#1| "failed") |#1| (-783)) 1)) (-3948 (((-3 |#1| "failed") |#1|) 3)) (-2280 (((-3 |#1| "failed") |#1|) 2)) (-2147 (((-3 |#1| "failed") |#1|) 21)) (-2200 (((-3 |#1| "failed") |#1|) 9)) (-3285 (((-3 |#1| "failed") |#1|) 19)) (-1484 (((-3 |#1| "failed") |#1|) 7)) (-3220 (((-3 |#1| "failed") |#1|) 17)) (-2660 (((-3 |#1| "failed") |#1|) 5)) (-4240 (((-3 |#1| "failed") |#1|) 24)) (-4107 (((-3 |#1| "failed") |#1|) 12)) (-3033 (((-3 |#1| "failed") |#1|) 22)) (-1447 (((-3 |#1| "failed") |#1|) 10)) (-3671 (((-3 |#1| "failed") |#1|) 26)) (-4076 (((-3 |#1| "failed") |#1|) 14)) (-2103 (((-3 |#1| "failed") |#1|) 27)) (-4424 (((-3 |#1| "failed") |#1|) 15)) (-4146 (((-3 |#1| "failed") |#1|) 25)) (-1579 (((-3 |#1| "failed") |#1|) 13)) (-1345 (((-3 |#1| "failed") |#1|) 23)) (-3364 (((-3 |#1| "failed") |#1|) 11))) -(((-1002 |#1|) (-141) (-1222)) (T -1002)) -((-2103 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3671 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-4146 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-4240 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1345 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3033 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2147 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1543 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3285 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2102 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3220 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-4239 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-4424 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-4076 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1579 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-4107 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1447 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2200 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1963 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-1484 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2441 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2660 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3590 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3948 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-2280 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222)))) (-3260 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(-13 (-10 -7 (-15 -3260 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -2280 ((-3 |t#1| "failed") |t#1|)) (-15 -3948 ((-3 |t#1| "failed") |t#1|)) (-15 -3590 ((-3 |t#1| "failed") |t#1|)) (-15 -2660 ((-3 |t#1| "failed") |t#1|)) (-15 -2441 ((-3 |t#1| "failed") |t#1|)) (-15 -1484 ((-3 |t#1| "failed") |t#1|)) (-15 -1963 ((-3 |t#1| "failed") |t#1|)) (-15 -2200 ((-3 |t#1| "failed") |t#1|)) (-15 -1447 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -4107 ((-3 |t#1| "failed") |t#1|)) (-15 -1579 ((-3 |t#1| "failed") |t#1|)) (-15 -4076 ((-3 |t#1| "failed") |t#1|)) (-15 -4424 ((-3 |t#1| "failed") |t#1|)) (-15 -4239 ((-3 |t#1| "failed") |t#1|)) (-15 -3220 ((-3 |t#1| "failed") |t#1|)) (-15 -2102 ((-3 |t#1| "failed") |t#1|)) (-15 -3285 ((-3 |t#1| "failed") |t#1|)) (-15 -1543 ((-3 |t#1| "failed") |t#1|)) (-15 -2147 ((-3 |t#1| "failed") |t#1|)) (-15 -3033 ((-3 |t#1| "failed") |t#1|)) (-15 -1345 ((-3 |t#1| "failed") |t#1|)) (-15 -4240 ((-3 |t#1| "failed") |t#1|)) (-15 -4146 ((-3 |t#1| "failed") |t#1|)) (-15 -3671 ((-3 |t#1| "failed") |t#1|)) (-15 -2103 ((-3 |t#1| "failed") |t#1|)))) -((-1847 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-2882 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2477 ((|#4| (-1 |#4| (-969 |#1|)) |#4|) 31))) -(((-1003 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2882 (|#4| |#4| |#3|)) (-15 -2882 (|#4| |#4| (-656 |#3|))) (-15 -1847 (|#4| |#4| |#3|)) (-15 -1847 (|#4| |#4| (-656 |#3|))) (-15 -2477 (|#4| (-1 |#4| (-969 |#1|)) |#4|))) (-1068) (-805) (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196))))) (-966 (-969 |#1|) |#2| |#3|)) (T -1003)) -((-2477 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-969 *4))) (-4 *4 (-1068)) (-4 *2 (-966 (-969 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196)))))) (-5 *1 (-1003 *4 *5 *6 *2)))) (-1847 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196)))))) (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2)) (-4 *2 (-966 (-969 *4) *5 *6)))) (-1847 (*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196)))))) (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3)))) (-2882 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196)))))) (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2)) (-4 *2 (-966 (-969 *4) *5 *6)))) (-2882 (*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)) (-15 -1615 ((-3 $ "failed") (-1196)))))) (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3))))) -(-10 -7 (-15 -2882 (|#4| |#4| |#3|)) (-15 -2882 (|#4| |#4| (-656 |#3|))) (-15 -1847 (|#4| |#4| |#3|)) (-15 -1847 (|#4| |#4| (-656 |#3|))) (-15 -2477 (|#4| (-1 |#4| (-969 |#1|)) |#4|))) -((-2618 ((|#2| |#3|) 35)) (-1483 (((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-2186 (((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100))) -(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2186 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1483 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -2618 (|#2| |#3|))) (-360) (-1263 |#1|) (-1263 |#2|) (-736 |#2| |#3|)) (T -1004)) -((-2618 (*1 *2 *3) (-12 (-4 *3 (-1263 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-1004 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-1483 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1004 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-2186 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -1999 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))) -(-10 -7 (-15 -2186 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1483 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -2618 (|#2| |#3|))) -((-3044 (((-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82))) -(((-1005 |#1| |#2|) (-10 -7 (-15 -3044 ((-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1196)) (-783)) (T -1005)) -((-3044 (*1 *2 *2) (-12 (-5 *2 (-1006 (-419 (-576)) (-876 *3) (-245 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-1005 *3 *4))))) -(-10 -7 (-15 -3044 ((-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) -((-2034 (((-112) $ $) NIL)) (-4435 (((-3 (-112) "failed") $) 71)) (-4040 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-1696 (($ $ (-3 (-112) "failed")) 72)) (-2910 (($ (-656 |#4|) |#4|) 25)) (-3288 (((-1178) $) NIL)) (-2528 (($ $) 69)) (-3139 (((-1139) $) NIL)) (-3372 (((-112) $) 70)) (-2643 (($) 30)) (-4187 ((|#4| $) 74)) (-2881 (((-656 |#4|) $) 73)) (-4092 (((-874) $) 68)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1006 |#1| |#2| |#3| |#4|) (-13 (-1119) (-625 (-874)) (-10 -8 (-15 -2643 ($)) (-15 -2910 ($ (-656 |#4|) |#4|)) (-15 -4435 ((-3 (-112) "failed") $)) (-15 -1696 ($ $ (-3 (-112) "failed"))) (-15 -3372 ((-112) $)) (-15 -2881 ((-656 |#4|) $)) (-15 -4187 (|#4| $)) (-15 -2528 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -4040 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-862) (-805) (-966 |#1| |#3| |#2|)) (T -1006)) -((-2643 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) (-2910 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-966 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1006 *4 *5 *6 *3)))) (-4435 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-1696 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-3372 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-2881 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-4187 (*1 *2 *1) (-12 (-4 *2 (-966 *3 *5 *4)) (-5 *1 (-1006 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)))) (-2528 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) (-4040 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3))))) -(-13 (-1119) (-625 (-874)) (-10 -8 (-15 -2643 ($)) (-15 -2910 ($ (-656 |#4|) |#4|)) (-15 -4435 ((-3 (-112) "failed") $)) (-15 -1696 ($ $ (-3 (-112) "failed"))) (-15 -3372 ((-112) $)) (-15 -2881 ((-656 |#4|) $)) (-15 -4187 (|#4| $)) (-15 -2528 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -4040 ($ $)) |%noBranch|) |%noBranch|))) -((-3080 (((-112) |#5| |#5|) 44)) (-2598 (((-112) |#5| |#5|) 59)) (-2042 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3747 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-2004 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) 70)) (-1630 (((-1292)) 32)) (-3397 (((-1292) (-1178) (-1178) (-1178)) 28)) (-4138 (((-656 |#5|) (-656 |#5|)) 100)) (-3727 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) 92)) (-2304 (((-656 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-3660 (((-112) |#5| |#5|) 53)) (-3365 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1406 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-2461 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-3711 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3348 (((-3 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-3849 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1007 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3397 ((-1292) (-1178) (-1178) (-1178))) (-15 -1630 ((-1292))) (-15 -3080 ((-112) |#5| |#5|)) (-15 -3849 ((-656 |#5|) (-656 |#5|))) (-15 -3660 ((-112) |#5| |#5|)) (-15 -2598 ((-112) |#5| |#5|)) (-15 -3747 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1406 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2461 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3711 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3365 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2042 ((-112) |#5| |#5|)) (-15 -2042 ((-112) |#5| (-656 |#5|))) (-15 -4138 ((-656 |#5|) (-656 |#5|))) (-15 -2004 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) (-15 -3727 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-15 -2304 ((-656 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3348 ((-3 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1007)) -((-3348 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| -3278 (-656 *9)) (|:| -4385 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1090 *6 *7 *8 *9)))) (-2304 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -3278 (-656 *9)) (|:| -4385 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4385 *7)))) (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-2004 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4385 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-2042 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8 *3)))) (-2042 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3365 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3711 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2461 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-1406 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3747 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2598 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3660 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-3080 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-1630 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3397 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -(-10 -7 (-15 -3397 ((-1292) (-1178) (-1178) (-1178))) (-15 -1630 ((-1292))) (-15 -3080 ((-112) |#5| |#5|)) (-15 -3849 ((-656 |#5|) (-656 |#5|))) (-15 -3660 ((-112) |#5| |#5|)) (-15 -2598 ((-112) |#5| |#5|)) (-15 -3747 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1406 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2461 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3711 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3365 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2042 ((-112) |#5| |#5|)) (-15 -2042 ((-112) |#5| (-656 |#5|))) (-15 -4138 ((-656 |#5|) (-656 |#5|))) (-15 -2004 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) (-15 -3727 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-15 -2304 ((-656 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3348 ((-3 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1615 (((-1196) $) 15)) (-1731 (((-1178) $) 16)) (-2510 (($ (-1196) (-1178)) 14)) (-4092 (((-874) $) 13))) -(((-1008) (-13 (-625 (-874)) (-10 -8 (-15 -2510 ($ (-1196) (-1178))) (-15 -1615 ((-1196) $)) (-15 -1731 ((-1178) $))))) (T -1008)) -((-2510 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-1008)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1008)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1008))))) -(-13 (-625 (-874)) (-10 -8 (-15 -2510 ($ (-1196) (-1178))) (-15 -1615 ((-1196) $)) (-15 -1731 ((-1178) $)))) -((-2477 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1011 |#1|) (-1011 |#2|)) (T -1009)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1011 *6)) (-5 *1 (-1009 *5 *6 *4 *2)) (-4 *4 (-1011 *5))))) -(-10 -7 (-15 -2477 (|#4| (-1 |#2| |#1|) |#3|))) -((-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-1196) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-2378 ((|#2| $) NIL) (((-1196) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-3687 (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 115) (((-701 |#2|) (-701 $)) 28) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-2446 (($) 99)) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 76) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 85)) (-4272 (($ $) 10)) (-2083 (((-3 $ "failed") $) 20)) (-2477 (($ (-1 |#2| |#2|) $) 22)) (-3503 (($) 16)) (-1846 (($ $) 55)) (-3614 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-1490 (($ $) 12)) (-1505 (((-905 (-576)) $) 71) (((-905 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1196)) 58)) (-2471 (((-783)) 31)) (-3944 (((-112) $ $) 51))) -(((-1010 |#1| |#2|) (-10 -8 (-15 -3944 ((-112) |#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3503 (|#1|)) (-15 -2083 ((-3 |#1| "failed") |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -1505 ((-227) |#1|)) (-15 -1505 ((-390) |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -4092 (|#1| (-1196))) (-15 -2974 ((-3 (-1196) "failed") |#1|)) (-15 -2378 ((-1196) |#1|)) (-15 -2446 (|#1|)) (-15 -1846 (|#1| |#1|)) (-15 -1490 (|#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 -4375 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -3687 ((-701 |#2|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| |#1|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) (-1011 |#2|) (-568)) (T -1010)) -((-2471 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1010 *3 *4)) (-4 *3 (-1011 *4))))) -(-10 -8 (-15 -3944 ((-112) |#1| |#1|)) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3503 (|#1|)) (-15 -2083 ((-3 |#1| "failed") |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -1505 ((-227) |#1|)) (-15 -1505 ((-390) |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -4092 (|#1| (-1196))) (-15 -2974 ((-3 (-1196) "failed") |#1|)) (-15 -2378 ((-1196) |#1|)) (-15 -2446 (|#1|)) (-15 -1846 (|#1| |#1|)) (-15 -1490 (|#1| |#1|)) (-15 -4272 (|#1| |#1|)) (-15 -4375 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -4375 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -3687 ((-701 |#2|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| |#1|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3942 ((|#1| $) 162 (|has| |#1| (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-1589 (((-430 (-1192 $)) (-1192 $)) 153 (|has| |#1| (-926)))) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 156 (|has| |#1| (-926)))) (-4407 (((-112) $ $) 65)) (-3934 (((-576) $) 143 (|has| |#1| (-832)))) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#1| "failed") $) 192) (((-3 (-1196) "failed") $) 151 (|has| |#1| (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) 134 (|has| |#1| (-1057 (-576)))) (((-3 (-576) "failed") $) 132 (|has| |#1| (-1057 (-576))))) (-2378 ((|#1| $) 193) (((-1196) $) 152 (|has| |#1| (-1057 (-1196)))) (((-419 (-576)) $) 135 (|has| |#1| (-1057 (-576)))) (((-576) $) 133 (|has| |#1| (-1057 (-576))))) (-1975 (($ $ $) 61)) (-3687 (((-701 (-576)) (-1287 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 178 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 175) (((-701 |#1|) (-701 $)) 174) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 173) (((-701 |#1|) (-1287 $)) 172)) (-3179 (((-3 $ "failed") $) 37)) (-2446 (($) 160 (|has| |#1| (-557)))) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-2725 (((-112) $) 79)) (-3567 (((-112) $) 145 (|has| |#1| (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 169 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 168 (|has| |#1| (-899 (-390))))) (-1810 (((-112) $) 35)) (-4272 (($ $) 164)) (-3894 ((|#1| $) 166)) (-2083 (((-3 $ "failed") $) 131 (|has| |#1| (-1171)))) (-3713 (((-112) $) 144 (|has| |#1| (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3492 (($ $ $) 141 (|has| |#1| (-862)))) (-2726 (($ $ $) 140 (|has| |#1| (-862)))) (-2477 (($ (-1 |#1| |#1|) $) 184)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 78)) (-3503 (($) 130 (|has| |#1| (-1171)) CONST)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1846 (($ $) 161 (|has| |#1| (-317)))) (-3892 ((|#1| $) 158 (|has| |#1| (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) 155 (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) 154 (|has| |#1| (-926)))) (-1392 (((-430 $) $) 82)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) 190 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 189 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 188 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 187 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 186 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 185 (|has| |#1| (-526 (-1196) |#1|)))) (-1787 (((-783) $) 64)) (-4367 (($ $ |#1|) 191 (|has| |#1| (-296 |#1| |#1|)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-3614 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) 182) (($ $) 129 (|has| |#1| (-237))) (($ $ (-783)) 127 (|has| |#1| (-237))) (($ $ (-1196)) 125 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 123 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 122 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 121 (|has| |#1| (-917 (-1196))))) (-1490 (($ $) 163)) (-3905 ((|#1| $) 165)) (-1505 (((-905 (-576)) $) 171 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 170 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 148 (|has| |#1| (-626 (-548)))) (((-390) $) 147 (|has| |#1| (-1041))) (((-227) $) 146 (|has| |#1| (-1041)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 157 (-2445 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 196) (($ (-1196)) 150 (|has| |#1| (-1057 (-1196))))) (-3612 (((-3 $ "failed") $) 149 (-3765 (|has| |#1| (-146)) (-2445 (|has| $ (-146)) (|has| |#1| (-926)))))) (-2471 (((-783)) 32 T CONST)) (-4179 ((|#1| $) 159 (|has| |#1| (-557)))) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-3423 (($ $) 142 (|has| |#1| (-832)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1 |#1| |#1|)) 181) (($ $ (-1 |#1| |#1|) (-783)) 180) (($ $) 128 (|has| |#1| (-237))) (($ $ (-783)) 126 (|has| |#1| (-237))) (($ $ (-1196)) 124 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 120 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 119 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 118 (|has| |#1| (-917 (-1196))))) (-3977 (((-112) $ $) 138 (|has| |#1| (-862)))) (-3955 (((-112) $ $) 137 (|has| |#1| (-862)))) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 139 (|has| |#1| (-862)))) (-3944 (((-112) $ $) 136 (|has| |#1| (-862)))) (-4028 (($ $ $) 73) (($ |#1| |#1|) 167)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 195) (($ $ |#1|) 194))) +((-2368 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-999 *3)))) (-2446 (*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1068)) (-5 *2 (-938)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1068)))) (-1714 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-999 *3)) (-4 *3 (-1068))))) +(-13 (-1284 |t#1|) (-630 (-656 |t#1|)) (-10 -8 (-15 -2368 ($ (-656 |t#1|))) (-15 -2446 ((-938) $)) (-15 -2299 ($ $ $)) (-15 -1714 ($ $ (-656 |t#1|))))) +(((-34) . T) ((-102) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-630 (-656 |#1|)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1236) . T) ((-1284 |#1|) . T)) +((-1632 (((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)) 17))) +(((-1000 |#1| |#2|) (-10 -7 (-15 -1632 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) (-1068) (-1068)) (T -1000)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-960 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-960 *6)) (-5 *1 (-1000 *5 *6))))) +(-10 -7 (-15 -1632 ((-960 |#2|) (-1 |#2| |#1|) (-960 |#1|)))) +((-3502 ((|#1| (-960 |#1|)) 14)) (-1490 ((|#1| (-960 |#1|)) 13)) (-2198 ((|#1| (-960 |#1|)) 12)) (-3830 ((|#1| (-960 |#1|)) 16)) (-4277 ((|#1| (-960 |#1|)) 24)) (-2215 ((|#1| (-960 |#1|)) 15)) (-2274 ((|#1| (-960 |#1|)) 17)) (-4029 ((|#1| (-960 |#1|)) 23)) (-1329 ((|#1| (-960 |#1|)) 22))) +(((-1001 |#1|) (-10 -7 (-15 -2198 (|#1| (-960 |#1|))) (-15 -1490 (|#1| (-960 |#1|))) (-15 -3502 (|#1| (-960 |#1|))) (-15 -2215 (|#1| (-960 |#1|))) (-15 -3830 (|#1| (-960 |#1|))) (-15 -2274 (|#1| (-960 |#1|))) (-15 -1329 (|#1| (-960 |#1|))) (-15 -4029 (|#1| (-960 |#1|))) (-15 -4277 (|#1| (-960 |#1|)))) (-1068)) (T -1001)) +((-4277 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3830 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068)))) (-2198 (*1 *2 *3) (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) +(-10 -7 (-15 -2198 (|#1| (-960 |#1|))) (-15 -1490 (|#1| (-960 |#1|))) (-15 -3502 (|#1| (-960 |#1|))) (-15 -2215 (|#1| (-960 |#1|))) (-15 -3830 (|#1| (-960 |#1|))) (-15 -2274 (|#1| (-960 |#1|))) (-15 -1329 (|#1| (-960 |#1|))) (-15 -4029 (|#1| (-960 |#1|))) (-15 -4277 (|#1| (-960 |#1|)))) +((-2946 (((-3 |#1| "failed") |#1|) 18)) (-3016 (((-3 |#1| "failed") |#1|) 6)) (-2231 (((-3 |#1| "failed") |#1|) 16)) (-2471 (((-3 |#1| "failed") |#1|) 4)) (-2704 (((-3 |#1| "failed") |#1|) 20)) (-3456 (((-3 |#1| "failed") |#1|) 8)) (-4009 (((-3 |#1| "failed") |#1| (-783)) 1)) (-3873 (((-3 |#1| "failed") |#1|) 3)) (-3174 (((-3 |#1| "failed") |#1|) 2)) (-3507 (((-3 |#1| "failed") |#1|) 21)) (-1798 (((-3 |#1| "failed") |#1|) 9)) (-1555 (((-3 |#1| "failed") |#1|) 19)) (-2514 (((-3 |#1| "failed") |#1|) 7)) (-2627 (((-3 |#1| "failed") |#1|) 17)) (-2941 (((-3 |#1| "failed") |#1|) 5)) (-2337 (((-3 |#1| "failed") |#1|) 24)) (-4251 (((-3 |#1| "failed") |#1|) 12)) (-4004 (((-3 |#1| "failed") |#1|) 22)) (-1804 (((-3 |#1| "failed") |#1|) 10)) (-2739 (((-3 |#1| "failed") |#1|) 26)) (-3169 (((-3 |#1| "failed") |#1|) 14)) (-3055 (((-3 |#1| "failed") |#1|) 27)) (-4193 (((-3 |#1| "failed") |#1|) 15)) (-1768 (((-3 |#1| "failed") |#1|) 25)) (-2241 (((-3 |#1| "failed") |#1|) 13)) (-2503 (((-3 |#1| "failed") |#1|) 23)) (-2490 (((-3 |#1| "failed") |#1|) 11))) +(((-1002 |#1|) (-141) (-1221)) (T -1002)) +((-3055 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2739 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-1768 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2337 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2503 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-4004 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-3507 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2704 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-1555 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2946 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2627 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2231 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-4193 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-3169 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2241 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-4251 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2490 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-1804 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-1798 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-3456 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2514 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-3016 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2941 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-2471 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-3873 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-3174 (*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221)))) (-4009 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(-13 (-10 -7 (-15 -4009 ((-3 |t#1| "failed") |t#1| (-783))) (-15 -3174 ((-3 |t#1| "failed") |t#1|)) (-15 -3873 ((-3 |t#1| "failed") |t#1|)) (-15 -2471 ((-3 |t#1| "failed") |t#1|)) (-15 -2941 ((-3 |t#1| "failed") |t#1|)) (-15 -3016 ((-3 |t#1| "failed") |t#1|)) (-15 -2514 ((-3 |t#1| "failed") |t#1|)) (-15 -3456 ((-3 |t#1| "failed") |t#1|)) (-15 -1798 ((-3 |t#1| "failed") |t#1|)) (-15 -1804 ((-3 |t#1| "failed") |t#1|)) (-15 -2490 ((-3 |t#1| "failed") |t#1|)) (-15 -4251 ((-3 |t#1| "failed") |t#1|)) (-15 -2241 ((-3 |t#1| "failed") |t#1|)) (-15 -3169 ((-3 |t#1| "failed") |t#1|)) (-15 -4193 ((-3 |t#1| "failed") |t#1|)) (-15 -2231 ((-3 |t#1| "failed") |t#1|)) (-15 -2627 ((-3 |t#1| "failed") |t#1|)) (-15 -2946 ((-3 |t#1| "failed") |t#1|)) (-15 -1555 ((-3 |t#1| "failed") |t#1|)) (-15 -2704 ((-3 |t#1| "failed") |t#1|)) (-15 -3507 ((-3 |t#1| "failed") |t#1|)) (-15 -4004 ((-3 |t#1| "failed") |t#1|)) (-15 -2503 ((-3 |t#1| "failed") |t#1|)) (-15 -2337 ((-3 |t#1| "failed") |t#1|)) (-15 -1768 ((-3 |t#1| "failed") |t#1|)) (-15 -2739 ((-3 |t#1| "failed") |t#1|)) (-15 -3055 ((-3 |t#1| "failed") |t#1|)))) +((-1574 ((|#4| |#4| (-656 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1360 ((|#4| |#4| (-656 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-1632 ((|#4| (-1 |#4| (-969 |#1|)) |#4|) 31))) +(((-1003 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1360 (|#4| |#4| |#3|)) (-15 -1360 (|#4| |#4| (-656 |#3|))) (-15 -1574 (|#4| |#4| |#3|)) (-15 -1574 (|#4| |#4| (-656 |#3|))) (-15 -1632 (|#4| (-1 |#4| (-969 |#1|)) |#4|))) (-1068) (-805) (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195))))) (-966 (-969 |#1|) |#2| |#3|)) (T -1003)) +((-1632 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-969 *4))) (-4 *4 (-1068)) (-4 *2 (-966 (-969 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1003 *4 *5 *6 *2)))) (-1574 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195)))))) (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2)) (-4 *2 (-966 (-969 *4) *5 *6)))) (-1574 (*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3)))) (-1360 (*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195)))))) (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2)) (-4 *2 (-966 (-969 *4) *5 *6)))) (-1360 (*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)) (-15 -3022 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3))))) +(-10 -7 (-15 -1360 (|#4| |#4| |#3|)) (-15 -1360 (|#4| |#4| (-656 |#3|))) (-15 -1574 (|#4| |#4| |#3|)) (-15 -1574 (|#4| |#4| (-656 |#3|))) (-15 -1632 (|#4| (-1 |#4| (-969 |#1|)) |#4|))) +((-1984 ((|#2| |#3|) 35)) (-2426 (((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 79)) (-2969 (((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 100))) +(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2969 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2426 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -1984 (|#2| |#3|))) (-360) (-1262 |#1|) (-1262 |#2|) (-736 |#2| |#3|)) (T -1004)) +((-1984 (*1 *2 *3) (-12 (-4 *3 (-1262 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-1004 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) (-5 *2 (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1004 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) (-2969 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -3713 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5))))) +(-10 -7 (-15 -2969 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2426 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|)) (-15 -1984 (|#2| |#3|))) +((-3957 (((-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))) 82))) +(((-1005 |#1| |#2|) (-10 -7 (-15 -3957 ((-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) (-656 (-1195)) (-783)) (T -1005)) +((-3957 (*1 *2 *2) (-12 (-5 *2 (-1006 (-419 (-576)) (-876 *3) (-245 *4 (-783)) (-253 *3 (-419 (-576))))) (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-1005 *3 *4))))) +(-10 -7 (-15 -3957 ((-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576)))) (-1006 (-419 (-576)) (-876 |#1|) (-245 |#2| (-783)) (-253 |#1| (-419 (-576))))))) +((-3474 (((-112) $ $) NIL)) (-2754 (((-3 (-112) "failed") $) 71)) (-3891 (($ $) 36 (-12 (|has| |#1| (-148)) (|has| |#1| (-317))))) (-2433 (($ $ (-3 (-112) "failed")) 72)) (-2955 (($ (-656 |#4|) |#4|) 25)) (-1927 (((-1177) $) NIL)) (-2226 (($ $) 69)) (-1445 (((-1139) $) NIL)) (-1911 (((-112) $) 70)) (-2597 (($) 30)) (-1599 ((|#4| $) 74)) (-4354 (((-656 |#4|) $) 73)) (-3563 (((-874) $) 68)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1006 |#1| |#2| |#3| |#4|) (-13 (-1119) (-625 (-874)) (-10 -8 (-15 -2597 ($)) (-15 -2955 ($ (-656 |#4|) |#4|)) (-15 -2754 ((-3 (-112) "failed") $)) (-15 -2433 ($ $ (-3 (-112) "failed"))) (-15 -1911 ((-112) $)) (-15 -4354 ((-656 |#4|) $)) (-15 -1599 (|#4| $)) (-15 -2226 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -3891 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-862) (-805) (-966 |#1| |#3| |#2|)) (T -1006)) +((-2597 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) (-2955 (*1 *1 *2 *3) (-12 (-5 *2 (-656 *3)) (-4 *3 (-966 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1006 *4 *5 *6 *3)))) (-2754 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-2433 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-1911 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-4354 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) (-1599 (*1 *2 *1) (-12 (-4 *2 (-966 *3 *5 *4)) (-5 *1 (-1006 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)))) (-2226 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) (-3891 (*1 *1 *1) (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3))))) +(-13 (-1119) (-625 (-874)) (-10 -8 (-15 -2597 ($)) (-15 -2955 ($ (-656 |#4|) |#4|)) (-15 -2754 ((-3 (-112) "failed") $)) (-15 -2433 ($ $ (-3 (-112) "failed"))) (-15 -1911 ((-112) $)) (-15 -4354 ((-656 |#4|) $)) (-15 -1599 (|#4| $)) (-15 -2226 ($ $)) (IF (|has| |#1| (-317)) (IF (|has| |#1| (-148)) (-15 -3891 ($ $)) |%noBranch|) |%noBranch|))) +((-2087 (((-112) |#5| |#5|) 44)) (-3556 (((-112) |#5| |#5|) 59)) (-3192 (((-112) |#5| (-656 |#5|)) 81) (((-112) |#5| |#5|) 68)) (-3899 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-2919 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) 70)) (-3153 (((-1291)) 32)) (-1739 (((-1291) (-1177) (-1177) (-1177)) 28)) (-2343 (((-656 |#5|) (-656 |#5|)) 100)) (-2400 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) 92)) (-1412 (((-656 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 122)) (-3013 (((-112) |#5| |#5|) 53)) (-2588 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4368 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-2171 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-3391 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3383 (((-3 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 117)) (-1354 (((-656 |#5|) (-656 |#5|)) 49))) +(((-1007 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1739 ((-1291) (-1177) (-1177) (-1177))) (-15 -3153 ((-1291))) (-15 -2087 ((-112) |#5| |#5|)) (-15 -1354 ((-656 |#5|) (-656 |#5|))) (-15 -3013 ((-112) |#5| |#5|)) (-15 -3556 ((-112) |#5| |#5|)) (-15 -3899 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4368 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2171 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3391 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2588 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3192 ((-112) |#5| |#5|)) (-15 -3192 ((-112) |#5| (-656 |#5|))) (-15 -2343 ((-656 |#5|) (-656 |#5|))) (-15 -2919 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) (-15 -2400 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-15 -1412 ((-656 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3383 ((-3 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1007)) +((-3383 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| -3896 (-656 *9)) (|:| -3887 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1090 *6 *7 *8 *9)))) (-1412 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -3896 (-656 *9)) (|:| -3887 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3887 *7)))) (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-2919 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3887 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8 *3)))) (-3192 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-2588 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3391 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2171 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-4368 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3899 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3556 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3013 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-1354 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-2087 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3153 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-1739 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(-10 -7 (-15 -1739 ((-1291) (-1177) (-1177) (-1177))) (-15 -3153 ((-1291))) (-15 -2087 ((-112) |#5| |#5|)) (-15 -1354 ((-656 |#5|) (-656 |#5|))) (-15 -3013 ((-112) |#5| |#5|)) (-15 -3556 ((-112) |#5| |#5|)) (-15 -3899 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4368 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2171 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3391 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2588 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3192 ((-112) |#5| |#5|)) (-15 -3192 ((-112) |#5| (-656 |#5|))) (-15 -2343 ((-656 |#5|) (-656 |#5|))) (-15 -2919 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) (-15 -2400 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-15 -1412 ((-656 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3383 ((-3 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3022 (((-1195) $) 15)) (-3142 (((-1177) $) 16)) (-2366 (($ (-1195) (-1177)) 14)) (-3563 (((-874) $) 13))) +(((-1008) (-13 (-625 (-874)) (-10 -8 (-15 -2366 ($ (-1195) (-1177))) (-15 -3022 ((-1195) $)) (-15 -3142 ((-1177) $))))) (T -1008)) +((-2366 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-1008)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1008)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1008))))) +(-13 (-625 (-874)) (-10 -8 (-15 -2366 ($ (-1195) (-1177))) (-15 -3022 ((-1195) $)) (-15 -3142 ((-1177) $)))) +((-1632 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-1009 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#4| (-1 |#2| |#1|) |#3|))) (-568) (-568) (-1011 |#1|) (-1011 |#2|)) (T -1009)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) (-4 *2 (-1011 *6)) (-5 *1 (-1009 *5 *6 *4 *2)) (-4 *4 (-1011 *5))))) +(-10 -7 (-15 -1632 (|#4| (-1 |#2| |#1|) |#3|))) +((-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-1195) "failed") $) 66) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) 96)) (-4056 ((|#2| $) NIL) (((-1195) $) 61) (((-419 (-576)) $) NIL) (((-576) $) 93)) (-3687 (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 115) (((-701 |#2|) (-701 $)) 28) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1803 (($) 99)) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 76) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 85)) (-2302 (($ $) 10)) (-3930 (((-3 $ "failed") $) 20)) (-1632 (($ (-1 |#2| |#2|) $) 22)) (-1538 (($) 16)) (-1465 (($ $) 55)) (-2735 (($ $ (-1 |#2| |#2|)) 36) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-1880 (($ $) 12)) (-4076 (((-905 (-576)) $) 71) (((-905 (-390)) $) 80) (((-548) $) 40) (((-390) $) 44) (((-227) $) 48)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 91) (($ |#2|) NIL) (($ (-1195)) 58)) (-1858 (((-783)) 31)) (-3010 (((-112) $ $) 51))) +(((-1010 |#1| |#2|) (-10 -8 (-15 -3010 ((-112) |#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -1538 (|#1|)) (-15 -3930 ((-3 |#1| "failed") |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4076 ((-227) |#1|)) (-15 -4076 ((-390) |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -3563 (|#1| (-1195))) (-15 -1539 ((-3 (-1195) "failed") |#1|)) (-15 -4056 ((-1195) |#1|)) (-15 -1803 (|#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1880 (|#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -3526 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -3687 ((-701 |#2|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| |#1|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) (-1011 |#2|) (-568)) (T -1010)) +((-1858 (*1 *2) (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1010 *3 *4)) (-4 *3 (-1011 *4))))) +(-10 -8 (-15 -3010 ((-112) |#1| |#1|)) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -1538 (|#1|)) (-15 -3930 ((-3 |#1| "failed") |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4076 ((-227) |#1|)) (-15 -4076 ((-390) |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -3563 (|#1| (-1195))) (-15 -1539 ((-3 (-1195) "failed") |#1|)) (-15 -4056 ((-1195) |#1|)) (-15 -1803 (|#1|)) (-15 -1465 (|#1| |#1|)) (-15 -1880 (|#1| |#1|)) (-15 -2302 (|#1| |#1|)) (-15 -3526 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -3526 ((-902 (-576) |#1|) |#1| (-905 (-576)) (-902 (-576) |#1|))) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -3687 ((-701 |#2|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#2|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| |#1|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1560 ((|#1| $) 162 (|has| |#1| (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-1990 (((-430 (-1191 $)) (-1191 $)) 153 (|has| |#1| (-926)))) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 156 (|has| |#1| (-926)))) (-1727 (((-112) $ $) 65)) (-2184 (((-576) $) 143 (|has| |#1| (-832)))) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#1| "failed") $) 192) (((-3 (-1195) "failed") $) 151 (|has| |#1| (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) 134 (|has| |#1| (-1057 (-576)))) (((-3 (-576) "failed") $) 132 (|has| |#1| (-1057 (-576))))) (-4056 ((|#1| $) 193) (((-1195) $) 152 (|has| |#1| (-1057 (-1195)))) (((-419 (-576)) $) 135 (|has| |#1| (-1057 (-576)))) (((-576) $) 133 (|has| |#1| (-1057 (-576))))) (-3420 (($ $ $) 61)) (-3687 (((-701 (-576)) (-1286 $)) 179 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 178 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 177 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 176 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 175) (((-701 |#1|) (-701 $)) 174) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 173) (((-701 |#1|) (-1286 $)) 172)) (-1551 (((-3 $ "failed") $) 37)) (-1803 (($) 160 (|has| |#1| (-557)))) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-1792 (((-112) $) 79)) (-1910 (((-112) $) 145 (|has| |#1| (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 169 (|has| |#1| (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 168 (|has| |#1| (-899 (-390))))) (-1414 (((-112) $) 35)) (-2302 (($ $) 164)) (-1536 ((|#1| $) 166)) (-3930 (((-3 $ "failed") $) 131 (|has| |#1| (-1171)))) (-3566 (((-112) $) 144 (|has| |#1| (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2442 (($ $ $) 141 (|has| |#1| (-862)))) (-1893 (($ $ $) 140 (|has| |#1| (-862)))) (-1632 (($ (-1 |#1| |#1|) $) 184)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 78)) (-1538 (($) 130 (|has| |#1| (-1171)) CONST)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-1465 (($ $) 161 (|has| |#1| (-317)))) (-3835 ((|#1| $) 158 (|has| |#1| (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) 155 (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) 154 (|has| |#1| (-926)))) (-1839 (((-430 $) $) 82)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) 190 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 189 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 188 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 187 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 186 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 185 (|has| |#1| (-526 (-1195) |#1|)))) (-3112 (((-783) $) 64)) (-2871 (($ $ |#1|) 191 (|has| |#1| (-296 |#1| |#1|)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-2735 (($ $ (-1 |#1| |#1|)) 183) (($ $ (-1 |#1| |#1|) (-783)) 182) (($ $) 129 (|has| |#1| (-237))) (($ $ (-783)) 127 (|has| |#1| (-237))) (($ $ (-1195)) 125 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 123 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 122 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 121 (|has| |#1| (-917 (-1195))))) (-1880 (($ $) 163)) (-1549 ((|#1| $) 165)) (-4076 (((-905 (-576)) $) 171 (|has| |#1| (-626 (-905 (-576))))) (((-905 (-390)) $) 170 (|has| |#1| (-626 (-905 (-390))))) (((-548) $) 148 (|has| |#1| (-626 (-548)))) (((-390) $) 147 (|has| |#1| (-1041))) (((-227) $) 146 (|has| |#1| (-1041)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 157 (-2758 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 196) (($ (-1195)) 150 (|has| |#1| (-1057 (-1195))))) (-2883 (((-3 $ "failed") $) 149 (-2835 (|has| |#1| (-146)) (-2758 (|has| $ (-146)) (|has| |#1| (-926)))))) (-1858 (((-783)) 32 T CONST)) (-3270 ((|#1| $) 159 (|has| |#1| (-557)))) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2264 (($ $) 142 (|has| |#1| (-832)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1 |#1| |#1|)) 181) (($ $ (-1 |#1| |#1|) (-783)) 180) (($ $) 128 (|has| |#1| (-237))) (($ $ (-783)) 126 (|has| |#1| (-237))) (($ $ (-1195)) 124 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 120 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 119 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 118 (|has| |#1| (-917 (-1195))))) (-3049 (((-112) $ $) 138 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 137 (|has| |#1| (-862)))) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 139 (|has| |#1| (-862)))) (-3010 (((-112) $ $) 136 (|has| |#1| (-862)))) (-3107 (($ $ $) 73) (($ |#1| |#1|) 167)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ |#1| $) 195) (($ $ |#1|) 194))) (((-1011 |#1|) (-141) (-568)) (T -1011)) -((-4028 (*1 *1 *2 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-3894 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-4272 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-1490 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1846 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-2446 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-3892 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) -(-13 (-374) (-38 |t#1|) (-1057 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-897 |t#1|) (-412 |t#1|) (-10 -8 (-15 -4028 ($ |t#1| |t#1|)) (-15 -3894 (|t#1| $)) (-15 -3905 (|t#1| $)) (-15 -4272 ($ $)) (-15 -1490 ($ $)) (IF (|has| |t#1| (-1171)) (-6 (-1171)) |%noBranch|) (IF (|has| |t#1| (-1057 (-576))) (PROGN (-6 (-1057 (-576))) (-6 (-1057 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1057 (-1196))) (-6 (-1057 (-1196))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -3942 (|t#1| $)) (-15 -1846 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -2446 ($)) (-15 -4179 (|t#1| $)) (-15 -3892 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-926)) (-6 (-926)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1196)) |has| |#1| (-1057 (-1196))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1041)) ((-626 (-390)) |has| |#1| (-1041)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-234 $) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-862) -3765 (|has| |#1| (-862)) (|has| |#1| (-832))) ((-909 $ #3=(-1196)) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #3#) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-926) |has| |#1| (-926)) ((-937) . T) ((-1041) |has| |#1| (-1041)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-576))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #1#) |has| |#1| (-1057 (-1196))) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-1171)) ((-1237) . T) ((-1241) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3056 (($ (-1161 |#1| |#2|)) 11)) (-3297 (((-1161 |#1| |#2|) $) 12)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4367 ((|#2| $ (-245 |#1| |#2|)) 16)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL))) -(((-1012 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3056 ($ (-1161 |#1| |#2|))) (-15 -3297 ((-1161 |#1| |#2|) $)))) (-938) (-374)) (T -1012)) -((-3056 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4)) (-14 *3 (-938)) (-4 *4 (-374)) (-5 *1 (-1012 *3 *4)))) (-3297 (*1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-5 *1 (-1012 *3 *4)) (-14 *3 (-938)) (-4 *4 (-374))))) -(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -3056 ($ (-1161 |#1| |#2|))) (-15 -3297 ((-1161 |#1| |#2|) $)))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2271 (((-1154) $) 9)) (-4092 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1013) (-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $))))) (T -1013)) -((-2271 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1013))))) -(-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) 8)) (-3656 (($) 7 T CONST)) (-2527 (($ $) 47)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-1325 (((-783) $) 46)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4371 ((|#1| $) 45)) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3816 ((|#1| |#1| $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-2082 ((|#1| $) 48)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 43)) (-3701 ((|#1| $) 44)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-1014 |#1|) (-141) (-1237)) (T -1014)) -((-3816 (*1 *2 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))) (-2082 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))) (-2527 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237)))) (-3701 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4462) (-15 -3816 (|t#1| |t#1| $)) (-15 -2082 (|t#1| $)) (-15 -2527 ($ $)) (-15 -1325 ((-783) $)) (-15 -4371 (|t#1| $)) (-15 -3701 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-1962 (((-112) $) 43)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2378 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-1653 (((-3 (-419 (-576)) "failed") $) 78)) (-3863 (((-112) $) 72)) (-4266 (((-419 (-576)) $) 76)) (-1810 (((-112) $) 42)) (-4252 ((|#2| $) 22)) (-2477 (($ (-1 |#2| |#2|) $) 19)) (-1644 (($ $) 58)) (-3614 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-1505 (((-548) $) 67)) (-3646 (($ $) 17)) (-4092 (((-874) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-2471 (((-783)) 10)) (-3423 ((|#2| $) 71)) (-3919 (((-112) $ $) 26)) (-3944 (((-112) $ $) 69)) (-4018 (($ $) 30) (($ $ $) 29)) (-4007 (($ $ $) 27)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) -(((-1015 |#1| |#2|) (-10 -8 (-15 -4092 (|#1| (-419 (-576)))) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3944 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -1644 (|#1| |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -3423 (|#2| |#1|)) (-15 -4252 (|#2| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 -1810 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1962 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) (-1016 |#2|) (-174)) (T -1015)) -((-2471 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1015 *3 *4)) (-4 *3 (-1016 *4))))) -(-10 -8 (-15 -4092 (|#1| (-419 (-576)))) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3944 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -1644 (|#1| |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -3423 (|#2| |#1|)) (-15 -4252 (|#2| |#1|)) (-15 -3646 (|#1| |#1|)) (-15 -2477 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 -1810 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1962 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-2974 (((-3 (-576) "failed") $) 134 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 132 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 129)) (-2378 (((-576) $) 133 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 131 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 130)) (-3687 (((-701 (-576)) (-1287 $)) 116 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 115 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 114 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 113 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 112) (((-701 |#1|) (-701 $)) 111) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 110) (((-701 |#1|) (-1287 $)) 109)) (-3179 (((-3 $ "failed") $) 37)) (-1415 ((|#1| $) 102)) (-1653 (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-557)))) (-3863 (((-112) $) 100 (|has| |#1| (-557)))) (-4266 (((-419 (-576)) $) 99 (|has| |#1| (-557)))) (-4086 (($ |#1| |#1| |#1| |#1|) 103)) (-1810 (((-112) $) 35)) (-4252 ((|#1| $) 104)) (-3492 (($ $ $) 91 (|has| |#1| (-862)))) (-2726 (($ $ $) 90 (|has| |#1| (-862)))) (-2477 (($ (-1 |#1| |#1|) $) 117)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 95 (|has| |#1| (-374)))) (-1322 ((|#1| $) 105)) (-2343 ((|#1| $) 106)) (-3307 ((|#1| $) 107)) (-3139 (((-1139) $) 11)) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) 123 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 122 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 121 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 120 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) 119 (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) 118 (|has| |#1| (-526 (-1196) |#1|)))) (-4367 (($ $ |#1|) 124 (|has| |#1| (-296 |#1| |#1|)))) (-3614 (($ $ (-1 |#1| |#1|)) 128) (($ $ (-1 |#1| |#1|) (-783)) 127) (($ $) 85 (|has| |#1| (-237))) (($ $ (-783)) 83 (|has| |#1| (-237))) (($ $ (-1196)) 81 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 79 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 78 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 77 (|has| |#1| (-917 (-1196))))) (-1505 (((-548) $) 96 (|has| |#1| (-626 (-548))))) (-3646 (($ $) 108)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 73 (-3765 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-3612 (((-3 $ "failed") $) 97 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-3423 ((|#1| $) 101 (|has| |#1| (-1079)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1 |#1| |#1|)) 126) (($ $ (-1 |#1| |#1|) (-783)) 125) (($ $) 84 (|has| |#1| (-237))) (($ $ (-783)) 82 (|has| |#1| (-237))) (($ $ (-1196)) 80 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 76 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 75 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 74 (|has| |#1| (-917 (-1196))))) (-3977 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3955 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 89 (|has| |#1| (-862)))) (-3944 (((-112) $ $) 86 (|has| |#1| (-862)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 94 (|has| |#1| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 93 (|has| |#1| (-374))) (($ (-419 (-576)) $) 92 (|has| |#1| (-374))))) +((-3107 (*1 *1 *2 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-2302 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-1880 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1465 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) (-1803 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-557)) (-4 *2 (-568)))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557))))) +(-13 (-374) (-38 |t#1|) (-1057 |t#1|) (-349 |t#1|) (-232 |t#1|) (-388 |t#1|) (-897 |t#1|) (-412 |t#1|) (-10 -8 (-15 -3107 ($ |t#1| |t#1|)) (-15 -1536 (|t#1| $)) (-15 -1549 (|t#1| $)) (-15 -2302 ($ $)) (-15 -1880 ($ $)) (IF (|has| |t#1| (-1171)) (-6 (-1171)) |%noBranch|) (IF (|has| |t#1| (-1057 (-576))) (PROGN (-6 (-1057 (-576))) (-6 (-1057 (-419 (-576))))) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-832)) (-6 (-832)) |%noBranch|) (IF (|has| |t#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1057 (-1195))) (-6 (-1057 (-1195))) |%noBranch|) (IF (|has| |t#1| (-317)) (PROGN (-15 -1560 (|t#1| $)) (-15 -1465 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -1803 ($)) (-15 -3270 (|t#1| $)) (-15 -3835 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-926)) (-6 (-926)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 #1=(-1195)) |has| |#1| (-1057 (-1195))) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) |has| |#1| (-1041)) ((-626 (-390)) |has| |#1| (-1041)) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-626 (-905 (-390))) |has| |#1| (-626 (-905 (-390)))) ((-626 (-905 (-576))) |has| |#1| (-626 (-905 (-576)))) ((-234 $) -2835 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2835 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) . T) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) . T) ((-317) . T) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-374) . T) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #2=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-651 #2#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-803) |has| |#1| (-832)) ((-804) |has| |#1| (-832)) ((-806) |has| |#1| (-832)) ((-807) |has| |#1| (-832)) ((-832) |has| |#1| (-832)) ((-860) |has| |#1| (-832)) ((-862) -2835 (|has| |#1| (-862)) (|has| |#1| (-832))) ((-909 $ #3=(-1195)) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-915 (-1195)) |has| |#1| (-915 (-1195))) ((-917 #3#) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-899 (-390)) |has| |#1| (-899 (-390))) ((-899 (-576)) |has| |#1| (-899 (-576))) ((-897 |#1|) . T) ((-926) |has| |#1| (-926)) ((-937) . T) ((-1041) |has| |#1| (-1041)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-576))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #1#) |has| |#1| (-1057 (-1195))) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-1171)) ((-1236) . T) ((-1240) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2729 (($ (-1161 |#1| |#2|)) 11)) (-2457 (((-1161 |#1| |#2|) $) 12)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2871 ((|#2| $ (-245 |#1| |#2|)) 16)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL))) +(((-1012 |#1| |#2|) (-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -2729 ($ (-1161 |#1| |#2|))) (-15 -2457 ((-1161 |#1| |#2|) $)))) (-938) (-374)) (T -1012)) +((-2729 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4)) (-14 *3 (-938)) (-4 *4 (-374)) (-5 *1 (-1012 *3 *4)))) (-2457 (*1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-5 *1 (-1012 *3 *4)) (-14 *3 (-938)) (-4 *4 (-374))))) +(-13 (-21) (-296 (-245 |#1| |#2|) |#2|) (-10 -8 (-15 -2729 ($ (-1161 |#1| |#2|))) (-15 -2457 ((-1161 |#1| |#2|) $)))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4269 (((-1154) $) 9)) (-3563 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1013) (-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $))))) (T -1013)) +((-4269 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1013))))) +(-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) 8)) (-3767 (($) 7 T CONST)) (-2132 (($ $) 47)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-4261 (((-783) $) 46)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4416 ((|#1| $) 45)) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-2383 ((|#1| |#1| $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-1944 ((|#1| $) 48)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 43)) (-3667 ((|#1| $) 44)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-1014 |#1|) (-141) (-1236)) (T -1014)) +((-2383 (*1 *2 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236)))) (-1944 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236)))) (-2132 (*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-4416 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236)))) (-3667 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4461) (-15 -2383 (|t#1| |t#1| $)) (-15 -1944 (|t#1| $)) (-15 -2132 ($ $)) (-15 -4261 ((-783) $)) (-15 -4416 (|t#1| $)) (-15 -3667 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-1454 (((-112) $) 43)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-4056 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#2| $) 44)) (-3615 (((-3 (-419 (-576)) "failed") $) 78)) (-3235 (((-112) $) 72)) (-3113 (((-419 (-576)) $) 76)) (-1414 (((-112) $) 42)) (-4072 ((|#2| $) 22)) (-1632 (($ (-1 |#2| |#2|) $) 19)) (-2095 (($ $) 58)) (-2735 (($ $ (-1 |#2| |#2|)) 35) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $) NIL) (($ $ (-783)) NIL)) (-4076 (((-548) $) 67)) (-4026 (($ $) 17)) (-3563 (((-874) $) 53) (($ (-576)) 39) (($ |#2|) 37) (($ (-419 (-576))) NIL)) (-1858 (((-783)) 10)) (-2264 ((|#2| $) 71)) (-2988 (((-112) $ $) 26)) (-3010 (((-112) $ $) 69)) (-3095 (($ $) 30) (($ $ $) 29)) (-3083 (($ $ $) 27)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL))) +(((-1015 |#1| |#2|) (-10 -8 (-15 -3563 (|#1| (-419 (-576)))) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -3010 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2095 (|#1| |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -4072 (|#2| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 -1414 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1454 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) (-1016 |#2|) (-174)) (T -1015)) +((-1858 (*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1015 *3 *4)) (-4 *3 (-1016 *4))))) +(-10 -8 (-15 -3563 (|#1| (-419 (-576)))) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -3010 ((-112) |#1| |#1|)) (-15 * (|#1| (-419 (-576)) |#1|)) (-15 * (|#1| |#1| (-419 (-576)))) (-15 -2095 (|#1| |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -4072 (|#2| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -1632 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 -1414 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 * (|#1| (-783) |#1|)) (-15 -1454 ((-112) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -3083 (|#1| |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1539 (((-3 (-576) "failed") $) 134 (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 132 (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) 129)) (-4056 (((-576) $) 133 (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) 131 (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) 130)) (-3687 (((-701 (-576)) (-1286 $)) 116 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 115 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 114 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 113 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 112) (((-701 |#1|) (-701 $)) 111) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 110) (((-701 |#1|) (-1286 $)) 109)) (-1551 (((-3 $ "failed") $) 37)) (-1864 ((|#1| $) 102)) (-3615 (((-3 (-419 (-576)) "failed") $) 98 (|has| |#1| (-557)))) (-3235 (((-112) $) 100 (|has| |#1| (-557)))) (-3113 (((-419 (-576)) $) 99 (|has| |#1| (-557)))) (-1525 (($ |#1| |#1| |#1| |#1|) 103)) (-1414 (((-112) $) 35)) (-4072 ((|#1| $) 104)) (-2442 (($ $ $) 91 (|has| |#1| (-862)))) (-1893 (($ $ $) 90 (|has| |#1| (-862)))) (-1632 (($ (-1 |#1| |#1|) $) 117)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 95 (|has| |#1| (-374)))) (-4061 ((|#1| $) 105)) (-3098 ((|#1| $) 106)) (-3150 ((|#1| $) 107)) (-1445 (((-1139) $) 11)) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) 123 (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) 122 (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) 121 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) 120 (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) 119 (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) 118 (|has| |#1| (-526 (-1195) |#1|)))) (-2871 (($ $ |#1|) 124 (|has| |#1| (-296 |#1| |#1|)))) (-2735 (($ $ (-1 |#1| |#1|)) 128) (($ $ (-1 |#1| |#1|) (-783)) 127) (($ $) 85 (|has| |#1| (-237))) (($ $ (-783)) 83 (|has| |#1| (-237))) (($ $ (-1195)) 81 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 79 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 78 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 77 (|has| |#1| (-917 (-1195))))) (-4076 (((-548) $) 96 (|has| |#1| (-626 (-548))))) (-4026 (($ $) 108)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 44) (($ (-419 (-576))) 73 (-2835 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-2883 (((-3 $ "failed") $) 97 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2264 ((|#1| $) 101 (|has| |#1| (-1079)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1 |#1| |#1|)) 126) (($ $ (-1 |#1| |#1|) (-783)) 125) (($ $) 84 (|has| |#1| (-237))) (($ $ (-783)) 82 (|has| |#1| (-237))) (($ $ (-1195)) 80 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 76 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 75 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 74 (|has| |#1| (-917 (-1195))))) (-3049 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 87 (|has| |#1| (-862)))) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 89 (|has| |#1| (-862)))) (-3010 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 94 (|has| |#1| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-419 (-576))) 93 (|has| |#1| (-374))) (($ (-419 (-576)) $) 92 (|has| |#1| (-374))))) (((-1016 |#1|) (-141) (-174)) (T -1016)) -((-3646 (*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-2343 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-1322 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-4252 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-4086 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-1415 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-4266 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-1653 (*1 *2 *1) (|partial| -12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) -(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -3646 ($ $)) (-15 -3307 (|t#1| $)) (-15 -2343 (|t#1| $)) (-15 -1322 (|t#1| $)) (-15 -4252 (|t#1| $)) (-15 -4086 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1415 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -3423 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3863 ((-112) $)) (-15 -4266 ((-419 (-576)) $)) (-15 -1653 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -3765 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -3765 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1196) |#1|) |has| |#1| (-526 (-1196) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-909 $ #2=(-1196)) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #2#) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) |has| |#1| (-374)) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1075 #0#) |has| |#1| (-374)) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T)) -((-2477 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-1017 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#3| (-1 |#4| |#2|) |#1|))) (-1016 |#2|) (-174) (-1016 |#4|) (-174)) (T -1017)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1016 *6)) (-5 *1 (-1017 *4 *5 *2 *6)) (-4 *4 (-1016 *5))))) -(-10 -7 (-15 -2477 (|#3| (-1 |#4| |#2|) |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1415 ((|#1| $) 12)) (-1653 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3863 (((-112) $) NIL (|has| |#1| (-557)))) (-4266 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-4086 (($ |#1| |#1| |#1| |#1|) 16)) (-1810 (((-112) $) NIL)) (-4252 ((|#1| $) NIL)) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-1322 ((|#1| $) 15)) (-2343 ((|#1| $) 14)) (-3307 ((|#1| $) 13)) (-3139 (((-1139) $) NIL)) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1196) |#1|))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-526 (-1196) |#1|)))) (-4367 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-3614 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3646 (($ $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-3423 ((|#1| $) NIL (|has| |#1| (-1079)))) (-4300 (($) 8 T CONST)) (-4310 (($) 10 T CONST)) (-4286 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) +((-4026 (*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-3098 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-1525 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) (-3113 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576))))) (-3615 (*1 *2 *1) (|partial| -12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-419 (-576)))))) +(-13 (-38 |t#1|) (-423 |t#1|) (-232 |t#1|) (-349 |t#1|) (-388 |t#1|) (-10 -8 (-15 -4026 ($ $)) (-15 -3150 (|t#1| $)) (-15 -3098 (|t#1| $)) (-15 -4061 (|t#1| $)) (-15 -4072 (|t#1| $)) (-15 -1525 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -1864 (|t#1| $)) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-862)) (-6 (-862)) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-248)) |%noBranch|) (IF (|has| |t#1| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-146)) |%noBranch|) (IF (|has| |t#1| (-1079)) (-15 -2264 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3235 ((-112) $)) (-15 -3113 ((-419 (-576)) $)) (-15 -3615 ((-3 (-419 (-576)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-374)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-374)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-374))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-234 $) -2835 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-232 |#1|) . T) ((-238) |has| |#1| (-238)) ((-237) -2835 (|has| |#1| (-237)) (|has| |#1| (-238))) ((-272 |#1|) . T) ((-248) |has| |#1| (-374)) ((-296 |#1| $) |has| |#1| (-296 |#1| |#1|)) ((-300) -2835 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-319 |#1|) |has| |#1| (-319 |#1|)) ((-349 |#1|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-526 (-1195) |#1|) |has| |#1| (-526 (-1195) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-319 |#1|)) ((-658 #0#) |has| |#1| (-374)) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-374)) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-374)) ((-652 |#1|) . T) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-374)) ((-729 |#1|) . T) ((-738) . T) ((-862) |has| |#1| (-862)) ((-909 $ #2=(-1195)) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-915 (-1195)) |has| |#1| (-915 (-1195))) ((-917 #2#) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1070 #0#) |has| |#1| (-374)) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1075 #0#) |has| |#1| (-374)) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-374)) (|has| |#1| (-300))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T)) +((-1632 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-1017 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#3| (-1 |#4| |#2|) |#1|))) (-1016 |#2|) (-174) (-1016 |#4|) (-174)) (T -1017)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-174)) (-4 *6 (-174)) (-4 *2 (-1016 *6)) (-5 *1 (-1017 *4 *5 *2 *6)) (-4 *4 (-1016 *5))))) +(-10 -7 (-15 -1632 (|#3| (-1 |#4| |#2|) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1864 ((|#1| $) 12)) (-3615 (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-557)))) (-3235 (((-112) $) NIL (|has| |#1| (-557)))) (-3113 (((-419 (-576)) $) NIL (|has| |#1| (-557)))) (-1525 (($ |#1| |#1| |#1| |#1|) 16)) (-1414 (((-112) $) NIL)) (-4072 ((|#1| $) NIL)) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-4061 ((|#1| $) 15)) (-3098 ((|#1| $) 14)) (-3150 ((|#1| $) 13)) (-1445 (((-1139) $) NIL)) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-319 |#1|))) (($ $ (-304 |#1|)) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-304 |#1|))) NIL (|has| |#1| (-319 |#1|))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-526 (-1195) |#1|))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-526 (-1195) |#1|)))) (-2871 (($ $ |#1|) NIL (|has| |#1| (-296 |#1| |#1|)))) (-2735 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4026 (($ $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2264 ((|#1| $) NIL (|has| |#1| (-1079)))) (-2800 (($) 8 T CONST)) (-2810 (($) 10 T CONST)) (-2051 (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237))) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))))) (((-1018 |#1|) (-1016 |#1|) (-174)) (T -1018)) NIL (-1016 |#1|) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2835 (((-112) $ (-783)) NIL)) (-3656 (($) NIL T CONST)) (-2527 (($ $) 23)) (-4066 (($ (-656 |#1|)) 33)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-1325 (((-783) $) 26)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3576 ((|#1| $) 28)) (-2361 (($ |#1| $) 17)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4371 ((|#1| $) 27)) (-1679 ((|#1| $) 22)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3816 ((|#1| |#1| $) 16)) (-3372 (((-112) $) 18)) (-2643 (($) NIL)) (-2082 ((|#1| $) 21)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) NIL)) (-3701 ((|#1| $) 30)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1019 |#1|) (-13 (-1014 |#1|) (-10 -8 (-15 -4066 ($ (-656 |#1|))))) (-1119)) (T -1019)) -((-4066 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1019 *3))))) -(-13 (-1014 |#1|) (-10 -8 (-15 -4066 ($ (-656 |#1|))))) -((-1403 (($ $) 12)) (-3355 (($ $ (-576)) 13))) -(((-1020 |#1|) (-10 -8 (-15 -1403 (|#1| |#1|)) (-15 -3355 (|#1| |#1| (-576)))) (-1021)) (T -1020)) -NIL -(-10 -8 (-15 -1403 (|#1| |#1|)) (-15 -3355 (|#1| |#1| (-576)))) -((-1403 (($ $) 6)) (-3355 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3131 (((-112) $ (-783)) NIL)) (-3767 (($) NIL T CONST)) (-2132 (($ $) 23)) (-3352 (($ (-656 |#1|)) 33)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-4261 (((-783) $) 26)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1409 ((|#1| $) 28)) (-2040 (($ |#1| $) 17)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4416 ((|#1| $) 27)) (-3399 ((|#1| $) 22)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-2383 ((|#1| |#1| $) 16)) (-1911 (((-112) $) 18)) (-2597 (($) NIL)) (-1944 ((|#1| $) 21)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) NIL)) (-3667 ((|#1| $) 30)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1019 |#1|) (-13 (-1014 |#1|) (-10 -8 (-15 -3352 ($ (-656 |#1|))))) (-1119)) (T -1019)) +((-3352 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1019 *3))))) +(-13 (-1014 |#1|) (-10 -8 (-15 -3352 ($ (-656 |#1|))))) +((-1853 (($ $) 12)) (-2826 (($ $ (-576)) 13))) +(((-1020 |#1|) (-10 -8 (-15 -1853 (|#1| |#1|)) (-15 -2826 (|#1| |#1| (-576)))) (-1021)) (T -1020)) +NIL +(-10 -8 (-15 -1853 (|#1| |#1|)) (-15 -2826 (|#1| |#1| (-576)))) +((-1853 (($ $) 6)) (-2826 (($ $ (-576)) 7)) (** (($ $ (-419 (-576))) 8))) (((-1021) (-141)) (T -1021)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-419 (-576))))) (-3355 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-576)))) (-1403 (*1 *1 *1) (-4 *1 (-1021)))) -(-13 (-10 -8 (-15 -1403 ($ $)) (-15 -3355 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2041 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-2573 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4306 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-1532 (((-701 (-419 |#2|)) (-1287 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-3803 (((-419 |#2|) $) NIL)) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2100 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-4407 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2247 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-4020 (((-112)) NIL)) (-2699 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-3006 (($ (-1287 (-419 |#2|)) (-1287 $)) NIL) (($ (-1287 (-419 |#2|))) 79) (($ (-1287 |#2|) |#2|) NIL)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-1975 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3754 (((-701 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-701 $) (-1287 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-1287 $) $) NIL) (((-701 (-419 |#2|)) (-1287 $)) NIL)) (-3601 (((-1287 $) (-1287 $)) NIL)) (-2359 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-3179 (((-3 $ "failed") $) NIL)) (-4229 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-4346 (((-112) |#1| |#1|) NIL)) (-4049 (((-938)) NIL)) (-2446 (($) NIL (|has| (-419 |#2|) (-379)))) (-4127 (((-112)) NIL)) (-3756 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-1986 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-1363 (($ $) NIL)) (-1554 (($) NIL (|has| (-419 |#2|) (-360)))) (-3506 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-1329 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-2725 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-1538 (((-938) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-938)) $) NIL (|has| (-419 |#2|) (-360)))) (-1810 (((-112) $) NIL)) (-1835 (((-783)) NIL)) (-3191 (((-1287 $) (-1287 $)) NIL)) (-4252 (((-419 |#2|) $) NIL)) (-3157 (((-656 (-969 |#1|)) (-1196)) NIL (|has| |#1| (-374)))) (-2083 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3164 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-3225 (((-938) $) NIL (|has| (-419 |#2|) (-379)))) (-2344 ((|#3| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3288 (((-1178) $) NIL)) (-2006 (((-701 (-419 |#2|))) 57)) (-2745 (((-701 (-419 |#2|))) 56)) (-1644 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4382 (($ (-1287 |#2|) |#2|) 80)) (-3619 (((-701 (-419 |#2|))) 55)) (-1686 (((-701 (-419 |#2|))) 54)) (-1742 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-1896 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 86)) (-1780 (((-1287 $)) 51)) (-2186 (((-1287 $)) 50)) (-2256 (((-112) $) NIL)) (-3071 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3503 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-2550 (($ (-938)) NIL (|has| (-419 |#2|) (-379)))) (-2568 (((-3 |#2| "failed")) 70)) (-3139 (((-1139) $) NIL)) (-3379 (((-783)) NIL)) (-2582 (($) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-419 |#2|) (-374)))) (-3149 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1392 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2022 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1787 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-4367 ((|#1| $ |#1| |#1|) NIL)) (-1591 (((-3 |#2| "failed")) 68)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1955 (((-419 |#2|) (-1287 $)) NIL) (((-419 |#2|)) 47)) (-2547 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-3614 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3765 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-4003 (((-701 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-2840 ((|#3|) 58)) (-3870 (($) NIL (|has| (-419 |#2|) (-360)))) (-3287 (((-1287 (-419 |#2|)) $ (-1287 $)) NIL) (((-701 (-419 |#2|)) (-1287 $) (-1287 $)) NIL) (((-1287 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1287 $)) NIL)) (-1505 (((-1287 (-419 |#2|)) $) NIL) (($ (-1287 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2127 (((-1287 $) (-1287 $)) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-3765 (|has| (-419 |#2|) (-1057 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3612 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-3794 ((|#3| $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1819 (((-112)) 65)) (-1457 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) NIL)) (-2947 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3547 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1472 (((-112)) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1196)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1196)))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-3765 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) -(((-1022 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1241) (-1263 |#1|) (-1263 (-419 |#2|)) (-419 |#2|) (-783)) (T -1022)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-419 (-576))))) (-2826 (*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-576)))) (-1853 (*1 *1 *1) (-4 *1 (-1021)))) +(-13 (-10 -8 (-15 -1853 ($ $)) (-15 -2826 ($ $ (-576))) (-15 ** ($ $ (-419 (-576)))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3090 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-374)))) (-4412 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-4176 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-4084 (((-701 (-419 |#2|)) (-1286 $)) NIL) (((-701 (-419 |#2|))) NIL)) (-2310 (((-419 |#2|) $) NIL)) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| (-419 |#2|) (-360)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2732 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-1727 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-2148 (((-783)) NIL (|has| (-419 |#2|) (-379)))) (-3027 (((-112)) NIL)) (-3202 (((-112) |#1|) 162) (((-112) |#2|) 166)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-3 (-419 |#2|) "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| (-419 |#2|) (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| (-419 |#2|) (-1057 (-419 (-576))))) (((-419 |#2|) $) NIL)) (-2612 (($ (-1286 (-419 |#2|)) (-1286 $)) NIL) (($ (-1286 (-419 |#2|))) 79) (($ (-1286 |#2|) |#2|) NIL)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-360)))) (-3420 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3103 (((-701 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-419 |#2|) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-701 $) (-1286 $)) NIL) (((-701 (-419 |#2|)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-419 |#2|))) (|:| |vec| (-1286 (-419 |#2|)))) (-1286 $) $) NIL) (((-701 (-419 |#2|)) (-1286 $)) NIL)) (-4258 (((-1286 $) (-1286 $)) NIL)) (-2521 (($ |#3|) 73) (((-3 $ "failed") (-419 |#3|)) NIL (|has| (-419 |#2|) (-374)))) (-1551 (((-3 $ "failed") $) NIL)) (-3529 (((-656 (-656 |#1|))) NIL (|has| |#1| (-379)))) (-2748 (((-112) |#1| |#1|) NIL)) (-3606 (((-938)) NIL)) (-1803 (($) NIL (|has| (-419 |#2|) (-379)))) (-3671 (((-112)) NIL)) (-3291 (((-112) |#1|) 61) (((-112) |#2|) 164)) (-3431 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| (-419 |#2|) (-374)))) (-2985 (($ $) NIL)) (-2580 (($) NIL (|has| (-419 |#2|) (-360)))) (-2664 (((-112) $) NIL (|has| (-419 |#2|) (-360)))) (-3499 (($ $ (-783)) NIL (|has| (-419 |#2|) (-360))) (($ $) NIL (|has| (-419 |#2|) (-360)))) (-1792 (((-112) $) NIL (|has| (-419 |#2|) (-374)))) (-3333 (((-938) $) NIL (|has| (-419 |#2|) (-360))) (((-845 (-938)) $) NIL (|has| (-419 |#2|) (-360)))) (-1414 (((-112) $) NIL)) (-3052 (((-783)) NIL)) (-3590 (((-1286 $) (-1286 $)) NIL)) (-4072 (((-419 |#2|) $) NIL)) (-2191 (((-656 (-969 |#1|)) (-1195)) NIL (|has| |#1| (-374)))) (-3930 (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-360)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-2554 ((|#3| $) NIL (|has| (-419 |#2|) (-374)))) (-1902 (((-938) $) NIL (|has| (-419 |#2|) (-379)))) (-2510 ((|#3| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-1927 (((-1177) $) NIL)) (-3011 (((-701 (-419 |#2|))) 57)) (-4288 (((-701 (-419 |#2|))) 56)) (-2095 (($ $) NIL (|has| (-419 |#2|) (-374)))) (-3018 (($ (-1286 |#2|) |#2|) 80)) (-2317 (((-701 (-419 |#2|))) 55)) (-2760 (((-701 (-419 |#2|))) 54)) (-3323 (((-2 (|:| |num| (-701 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95)) (-3194 (((-2 (|:| |num| (-1286 |#2|)) (|:| |den| |#2|)) $) 86)) (-3640 (((-1286 $)) 51)) (-2969 (((-1286 $)) 50)) (-1718 (((-112) $) NIL)) (-3665 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1538 (($) NIL (|has| (-419 |#2|) (-360)) CONST)) (-3257 (($ (-938)) NIL (|has| (-419 |#2|) (-379)))) (-3904 (((-3 |#2| "failed")) 70)) (-1445 (((-1139) $) NIL)) (-4418 (((-783)) NIL)) (-2202 (($) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-419 |#2|) (-374)))) (-3495 (($ (-656 $)) NIL (|has| (-419 |#2|) (-374))) (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| (-419 |#2|) (-360)))) (-1839 (((-430 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-419 |#2|) (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3463 (((-3 $ "failed") $ $) NIL (|has| (-419 |#2|) (-374)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| (-419 |#2|) (-374)))) (-3112 (((-783) $) NIL (|has| (-419 |#2|) (-374)))) (-2871 ((|#1| $ |#1| |#1|) NIL)) (-4083 (((-3 |#2| "failed")) 68)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| (-419 |#2|) (-374)))) (-1960 (((-419 |#2|) (-1286 $)) NIL) (((-419 |#2|)) 47)) (-3721 (((-783) $) NIL (|has| (-419 |#2|) (-360))) (((-3 (-783) "failed") $ $) NIL (|has| (-419 |#2|) (-360)))) (-2735 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2835 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-1423 (((-701 (-419 |#2|)) (-1286 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374)))) (-1372 ((|#3|) 58)) (-2594 (($) NIL (|has| (-419 |#2|) (-360)))) (-1809 (((-1286 (-419 |#2|)) $ (-1286 $)) NIL) (((-701 (-419 |#2|)) (-1286 $) (-1286 $)) NIL) (((-1286 (-419 |#2|)) $) 81) (((-701 (-419 |#2|)) (-1286 $)) NIL)) (-4076 (((-1286 (-419 |#2|)) $) NIL) (($ (-1286 (-419 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| (-419 |#2|) (-360)))) (-2524 (((-1286 $) (-1286 $)) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 |#2|)) NIL) (($ (-419 (-576))) NIL (-2835 (|has| (-419 |#2|) (-1057 (-419 (-576)))) (|has| (-419 |#2|) (-374)))) (($ $) NIL (|has| (-419 |#2|) (-374)))) (-2883 (($ $) NIL (|has| (-419 |#2|) (-360))) (((-3 $ "failed") $) NIL (|has| (-419 |#2|) (-146)))) (-3941 ((|#3| $) NIL)) (-1858 (((-783)) NIL T CONST)) (-4188 (((-112)) 65)) (-3579 (((-112) |#1|) 167) (((-112) |#2|) 168)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) NIL)) (-3040 (((-112) $ $) NIL (|has| (-419 |#2|) (-374)))) (-3554 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3684 (((-112)) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-374))) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-783)) NIL (|has| (-419 |#2|) (-374))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-915 (-1195)))) (-12 (|has| (-419 |#2|) (-374)) (|has| (-419 |#2|) (-917 (-1195)))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360)))) (($ $) NIL (-2835 (-12 (|has| (-419 |#2|) (-238)) (|has| (-419 |#2|) (-374))) (-12 (|has| (-419 |#2|) (-237)) (|has| (-419 |#2|) (-374))) (|has| (-419 |#2|) (-360))))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ $) NIL (|has| (-419 |#2|) (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| (-419 |#2|) (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 |#2|)) NIL) (($ (-419 |#2|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-419 |#2|) (-374))) (($ $ (-419 (-576))) NIL (|has| (-419 |#2|) (-374))))) +(((-1022 |#1| |#2| |#3| |#4| |#5|) (-353 |#1| |#2| |#3|) (-1240) (-1262 |#1|) (-1262 (-419 |#2|)) (-419 |#2|) (-783)) (T -1022)) NIL (-353 |#1| |#2| |#3|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1387 (((-656 (-576)) $) 73)) (-4123 (($ (-656 (-576))) 81)) (-3942 (((-576) $) 48 (|has| (-576) (-317)))) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL (|has| (-576) (-832)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) 60) (((-3 (-1196) "failed") $) NIL (|has| (-576) (-1057 (-1196)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1057 (-576))))) (-2378 (((-576) $) NIL) (((-1196) $) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-1975 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2446 (($) NIL (|has| (-576) (-557)))) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3011 (((-656 (-576)) $) 79)) (-3567 (((-112) $) NIL (|has| (-576) (-832)))) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL)) (-3894 (((-576) $) 45)) (-2083 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3713 (((-112) $) NIL (|has| (-576) (-832)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| (-576) (-862)))) (-2477 (($ (-1 (-576) (-576)) $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL)) (-3503 (($) NIL (|has| (-576) (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1846 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-3949 (((-1176 (-576)) $) 78)) (-2555 (($ (-656 (-576)) (-656 (-576))) 82)) (-3892 (((-576) $) 64 (|has| (-576) (-557)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| (-576) (-926)))) (-1392 (((-430 $) $) NIL)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2259 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1196)) (-656 (-576))) NIL (|has| (-576) (-526 (-1196) (-576)))) (($ $ (-1196) (-576)) NIL (|has| (-576) (-526 (-1196) (-576))))) (-1787 (((-783) $) NIL)) (-4367 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-1490 (($ $) NIL)) (-3905 (((-576) $) 47)) (-4083 (((-656 (-576)) $) 80)) (-1505 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-4092 (((-874) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1196)) NIL (|has| (-576) (-1057 (-1196)))) (((-419 (-576)) $) 25)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-2471 (((-783)) 13 T CONST)) (-4179 (((-576) $) 62 (|has| (-576) (-557)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-3423 (($ $) NIL (|has| (-576) (-832)))) (-4300 (($) 14 T CONST)) (-4310 (($) 17 T CONST)) (-4286 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1196)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| (-576) (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| (-576) (-917 (-1196)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3977 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3919 (((-112) $ $) 21)) (-3966 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3944 (((-112) $ $) 40 (|has| (-576) (-862)))) (-4028 (($ $ $) 36) (($ (-576) (-576)) 38)) (-4018 (($ $) 23) (($ $ $) 30)) (-4007 (($ $ $) 28)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) -(((-1023 |#1|) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1846 ((-419 (-576)) $)) (-15 -1387 ((-656 (-576)) $)) (-15 -3949 ((-1176 (-576)) $)) (-15 -3011 ((-656 (-576)) $)) (-15 -4083 ((-656 (-576)) $)) (-15 -4123 ($ (-656 (-576)))) (-15 -2555 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1023)) -((-1846 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-4123 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-2555 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) -(-13 (-1011 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1846 ((-419 (-576)) $)) (-15 -1387 ((-656 (-576)) $)) (-15 -3949 ((-1176 (-576)) $)) (-15 -3011 ((-656 (-576)) $)) (-15 -4083 ((-656 (-576)) $)) (-15 -4123 ($ (-656 (-576)))) (-15 -2555 ($ (-656 (-576)) (-656 (-576)))))) -((-3896 (((-52) (-419 (-576)) (-576)) 9))) -(((-1024) (-10 -7 (-15 -3896 ((-52) (-419 (-576)) (-576))))) (T -1024)) -((-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1024))))) -(-10 -7 (-15 -3896 ((-52) (-419 (-576)) (-576)))) -((-2247 (((-576)) 23)) (-3673 (((-576)) 28)) (-4241 (((-1292) (-576)) 26)) (-4409 (((-576) (-576)) 29) (((-576)) 22))) -(((-1025) (-10 -7 (-15 -4409 ((-576))) (-15 -2247 ((-576))) (-15 -4409 ((-576) (-576))) (-15 -4241 ((-1292) (-576))) (-15 -3673 ((-576))))) (T -1025)) -((-3673 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1025)))) (-4409 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) (-2247 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) (-4409 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025))))) -(-10 -7 (-15 -4409 ((-576))) (-15 -2247 ((-576))) (-15 -4409 ((-576) (-576))) (-15 -4241 ((-1292) (-576))) (-15 -3673 ((-576)))) -((-3029 (((-430 |#1|) |#1|) 43)) (-1392 (((-430 |#1|) |#1|) 41))) -(((-1026 |#1|) (-10 -7 (-15 -1392 ((-430 |#1|) |#1|)) (-15 -3029 ((-430 |#1|) |#1|))) (-1263 (-419 (-576)))) (T -1026)) -((-3029 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1263 (-419 (-576)))))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1263 (-419 (-576))))))) -(-10 -7 (-15 -1392 ((-430 |#1|) |#1|)) (-15 -3029 ((-430 |#1|) |#1|))) -((-1653 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-3863 (((-112) |#1|) 14)) (-4266 (((-419 (-576)) |#1|) 10))) -(((-1027 |#1|) (-10 -7 (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|))) (-1057 (-419 (-576)))) (T -1027)) -((-1653 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2)))) (-3863 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1057 (-419 (-576)))))) (-4266 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2))))) -(-10 -7 (-15 -4266 ((-419 (-576)) |#1|)) (-15 -3863 ((-112) |#1|)) (-15 -1653 ((-3 (-419 (-576)) "failed") |#1|))) -((-4248 ((|#2| $ "value" |#2|) 12)) (-4367 ((|#2| $ "value") 10)) (-3682 (((-112) $ $) 18))) -(((-1028 |#1| |#2|) (-10 -8 (-15 -4248 (|#2| |#1| "value" |#2|)) (-15 -3682 ((-112) |#1| |#1|)) (-15 -4367 (|#2| |#1| "value"))) (-1029 |#2|) (-1237)) (T -1028)) -NIL -(-10 -8 (-15 -4248 (|#2| |#1| "value" |#2|)) (-15 -3682 ((-112) |#1| |#1|)) (-15 -4367 (|#2| |#1| "value"))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1731 ((|#1| $) 49)) (-2835 (((-112) $ (-783)) 8)) (-2597 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3656 (($) 7 T CONST)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 51)) (-2397 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3699 (((-656 |#1|) $) 46)) (-3781 (((-112) $) 50)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ "value") 48)) (-3136 (((-576) $ $) 45)) (-2492 (((-112) $) 47)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) 52)) (-3682 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-1029 |#1|) (-141) (-1237)) (T -1029)) -((-2043 (*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3)))) (-4303 (*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1237)))) (-4367 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1029 *2)) (-4 *2 (-1237)))) (-2492 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3)))) (-3136 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-576)))) (-3682 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-2397 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-3032 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4463)) (-4 *1 (-1029 *3)) (-4 *3 (-1237)))) (-4248 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4463)) (-4 *1 (-1029 *2)) (-4 *2 (-1237)))) (-2597 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1029 *2)) (-4 *2 (-1237))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -2043 ((-656 $) $)) (-15 -4303 ((-656 $) $)) (-15 -3781 ((-112) $)) (-15 -1731 (|t#1| $)) (-15 -4367 (|t#1| $ "value")) (-15 -2492 ((-112) $)) (-15 -3699 ((-656 |t#1|) $)) (-15 -3136 ((-576) $ $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -3682 ((-112) $ $)) (-15 -2397 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4463)) (PROGN (-15 -3032 ($ $ (-656 $))) (-15 -4248 (|t#1| $ "value" |t#1|)) (-15 -2597 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-1403 (($ $) 9) (($ $ (-938)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-1935 (((-3 $ "failed") (-1192 $) (-938) (-874)) 24) (((-3 $ "failed") (-1192 $) (-938)) 32)) (-3355 (($ $ (-576)) 58)) (-2471 (((-783)) 18)) (-4089 (((-656 $) (-1192 $)) NIL) (((-656 $) (-1192 (-419 (-576)))) 63) (((-656 $) (-1192 (-576))) 68) (((-656 $) (-969 $)) 72) (((-656 $) (-969 (-419 (-576)))) 76) (((-656 $) (-969 (-576))) 80)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) -(((-1030 |#1|) (-10 -8 (-15 -1403 (|#1| (-576))) (-15 -1403 (|#1| (-419 (-576)))) (-15 -1403 (|#1| |#1| (-938))) (-15 -4089 ((-656 |#1|) (-969 (-576)))) (-15 -4089 ((-656 |#1|) (-969 (-419 (-576))))) (-15 -4089 ((-656 |#1|) (-969 |#1|))) (-15 -4089 ((-656 |#1|) (-1192 (-576)))) (-15 -4089 ((-656 |#1|) (-1192 (-419 (-576))))) (-15 -4089 ((-656 |#1|) (-1192 |#1|))) (-15 -1935 ((-3 |#1| "failed") (-1192 |#1|) (-938))) (-15 -1935 ((-3 |#1| "failed") (-1192 |#1|) (-938) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3355 (|#1| |#1| (-576))) (-15 -1403 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2471 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) (-1031)) (T -1030)) -((-2471 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1030 *3)) (-4 *3 (-1031))))) -(-10 -8 (-15 -1403 (|#1| (-576))) (-15 -1403 (|#1| (-419 (-576)))) (-15 -1403 (|#1| |#1| (-938))) (-15 -4089 ((-656 |#1|) (-969 (-576)))) (-15 -4089 ((-656 |#1|) (-969 (-419 (-576))))) (-15 -4089 ((-656 |#1|) (-969 |#1|))) (-15 -4089 ((-656 |#1|) (-1192 (-576)))) (-15 -4089 ((-656 |#1|) (-1192 (-419 (-576))))) (-15 -4089 ((-656 |#1|) (-1192 |#1|))) (-15 -1935 ((-3 |#1| "failed") (-1192 |#1|) (-938))) (-15 -1935 ((-3 |#1| "failed") (-1192 |#1|) (-938) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3355 (|#1| |#1| (-576))) (-15 -1403 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2471 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 102)) (-2573 (($ $) 103)) (-4306 (((-112) $) 105)) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 122)) (-2100 (((-430 $) $) 123)) (-1403 (($ $) 86) (($ $ (-938)) 72) (($ (-419 (-576))) 71) (($ (-576)) 70)) (-4407 (((-112) $ $) 113)) (-3934 (((-576) $) 139)) (-3656 (($) 18 T CONST)) (-1935 (((-3 $ "failed") (-1192 $) (-938) (-874)) 80) (((-3 $ "failed") (-1192 $) (-938)) 79)) (-2974 (((-3 (-576) "failed") $) 99 (|has| (-419 (-576)) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 94)) (-2378 (((-576) $) 98 (|has| (-419 (-576)) (-1057 (-576)))) (((-419 (-576)) $) 96 (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-419 (-576)) $) 95)) (-4168 (($ $ (-874)) 69)) (-1504 (($ $ (-874)) 68)) (-1975 (($ $ $) 117)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 116)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 111)) (-2725 (((-112) $) 124)) (-3567 (((-112) $) 137)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 85)) (-3713 (((-112) $) 138)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 120)) (-3492 (($ $ $) 136)) (-2726 (($ $ $) 135)) (-3003 (((-3 (-1192 $) "failed") $) 81)) (-2265 (((-3 (-874) "failed") $) 83)) (-4259 (((-3 (-1192 $) "failed") $) 82)) (-3117 (($ (-656 $)) 109) (($ $ $) 108)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 125)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 110)) (-3149 (($ (-656 $)) 107) (($ $ $) 106)) (-1392 (((-430 $) $) 121)) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 118)) (-2022 (((-3 $ "failed") $ $) 101)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 112)) (-1787 (((-783) $) 114)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 115)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 129) (($ $) 100) (($ (-419 (-576))) 93) (($ (-576)) 92) (($ (-419 (-576))) 89)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 104)) (-2728 (((-419 (-576)) $ $) 67)) (-4089 (((-656 $) (-1192 $)) 78) (((-656 $) (-1192 (-419 (-576)))) 77) (((-656 $) (-1192 (-576))) 76) (((-656 $) (-969 $)) 75) (((-656 $) (-969 (-419 (-576)))) 74) (((-656 $) (-969 (-576))) 73)) (-3423 (($ $) 140)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3977 (((-112) $ $) 133)) (-3955 (((-112) $ $) 132)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 134)) (-3944 (((-112) $ $) 131)) (-4028 (($ $ $) 130)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 126) (($ $ (-419 (-576))) 84)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 128) (($ $ (-419 (-576))) 127) (($ (-576) $) 91) (($ $ (-576)) 90) (($ (-419 (-576)) $) 88) (($ $ (-419 (-576))) 87))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2278 (((-656 (-576)) $) 73)) (-3360 (($ (-656 (-576))) 81)) (-1560 (((-576) $) 48 (|has| (-576) (-317)))) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL (|has| (-576) (-832)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) 60) (((-3 (-1195) "failed") $) NIL (|has| (-576) (-1057 (-1195)))) (((-3 (-419 (-576)) "failed") $) 57 (|has| (-576) (-1057 (-576)))) (((-3 (-576) "failed") $) 60 (|has| (-576) (-1057 (-576))))) (-4056 (((-576) $) NIL) (((-1195) $) NIL (|has| (-576) (-1057 (-1195)))) (((-419 (-576)) $) NIL (|has| (-576) (-1057 (-576)))) (((-576) $) NIL (|has| (-576) (-1057 (-576))))) (-3420 (($ $ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| (-576) (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| (-576) (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1803 (($) NIL (|has| (-576) (-557)))) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1955 (((-656 (-576)) $) 79)) (-1910 (((-112) $) NIL (|has| (-576) (-832)))) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (|has| (-576) (-899 (-576)))) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (|has| (-576) (-899 (-390))))) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL)) (-1536 (((-576) $) 45)) (-3930 (((-3 $ "failed") $) NIL (|has| (-576) (-1171)))) (-3566 (((-112) $) NIL (|has| (-576) (-832)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| (-576) (-862)))) (-1632 (($ (-1 (-576) (-576)) $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL)) (-1538 (($) NIL (|has| (-576) (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1465 (($ $) NIL (|has| (-576) (-317))) (((-419 (-576)) $) 50)) (-4007 (((-1176 (-576)) $) 78)) (-3117 (($ (-656 (-576)) (-656 (-576))) 82)) (-3835 (((-576) $) 64 (|has| (-576) (-557)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| (-576) (-926)))) (-1839 (((-430 $) $) NIL)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3306 (($ $ (-656 (-576)) (-656 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-576) (-576)) NIL (|has| (-576) (-319 (-576)))) (($ $ (-304 (-576))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-304 (-576)))) NIL (|has| (-576) (-319 (-576)))) (($ $ (-656 (-1195)) (-656 (-576))) NIL (|has| (-576) (-526 (-1195) (-576)))) (($ $ (-1195) (-576)) NIL (|has| (-576) (-526 (-1195) (-576))))) (-3112 (((-783) $) NIL)) (-2871 (($ $ (-576)) NIL (|has| (-576) (-296 (-576) (-576))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-917 (-1195)))) (($ $) 15 (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-1880 (($ $) NIL)) (-1549 (((-576) $) 47)) (-2516 (((-656 (-576)) $) 80)) (-4076 (((-905 (-576)) $) NIL (|has| (-576) (-626 (-905 (-576))))) (((-905 (-390)) $) NIL (|has| (-576) (-626 (-905 (-390))))) (((-548) $) NIL (|has| (-576) (-626 (-548)))) (((-390) $) NIL (|has| (-576) (-1041))) (((-227) $) NIL (|has| (-576) (-1041)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-576) (-926))))) (-3563 (((-874) $) 107) (($ (-576)) 51) (($ $) NIL) (($ (-419 (-576))) 27) (($ (-576)) 51) (($ (-1195)) NIL (|has| (-576) (-1057 (-1195)))) (((-419 (-576)) $) 25)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| (-576) (-926))) (|has| (-576) (-146))))) (-1858 (((-783)) 13 T CONST)) (-3270 (((-576) $) 62 (|has| (-576) (-557)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2264 (($ $) NIL (|has| (-576) (-832)))) (-2800 (($) 14 T CONST)) (-2810 (($) 17 T CONST)) (-2051 (($ $ (-1 (-576) (-576))) NIL) (($ $ (-1 (-576) (-576)) (-783)) NIL) (($ $ (-1195)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| (-576) (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| (-576) (-917 (-1195)))) (($ $) NIL (|has| (-576) (-237))) (($ $ (-783)) NIL (|has| (-576) (-237)))) (-3049 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-576) (-862)))) (-2988 (((-112) $ $) 21)) (-3037 (((-112) $ $) NIL (|has| (-576) (-862)))) (-3010 (((-112) $ $) 40 (|has| (-576) (-862)))) (-3107 (($ $ $) 36) (($ (-576) (-576)) 38)) (-3095 (($ $) 23) (($ $ $) 30)) (-3083 (($ $ $) 28)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 32) (($ $ $) 34) (($ $ (-419 (-576))) NIL) (($ (-419 (-576)) $) NIL) (($ (-576) $) 32) (($ $ (-576)) NIL))) +(((-1023 |#1|) (-13 (-1011 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1465 ((-419 (-576)) $)) (-15 -2278 ((-656 (-576)) $)) (-15 -4007 ((-1176 (-576)) $)) (-15 -1955 ((-656 (-576)) $)) (-15 -2516 ((-656 (-576)) $)) (-15 -3360 ($ (-656 (-576)))) (-15 -3117 ($ (-656 (-576)) (-656 (-576)))))) (-576)) (T -1023)) +((-1465 (*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-3360 (*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) (-3117 (*1 *1 *2 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) +(-13 (-1011 (-576)) (-625 (-419 (-576))) (-10 -8 (-15 -1465 ((-419 (-576)) $)) (-15 -2278 ((-656 (-576)) $)) (-15 -4007 ((-1176 (-576)) $)) (-15 -1955 ((-656 (-576)) $)) (-15 -2516 ((-656 (-576)) $)) (-15 -3360 ($ (-656 (-576)))) (-15 -3117 ($ (-656 (-576)) (-656 (-576)))))) +((-2914 (((-52) (-419 (-576)) (-576)) 9))) +(((-1024) (-10 -7 (-15 -2914 ((-52) (-419 (-576)) (-576))))) (T -1024)) +((-2914 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) (-5 *1 (-1024))))) +(-10 -7 (-15 -2914 ((-52) (-419 (-576)) (-576)))) +((-2148 (((-576)) 23)) (-1751 (((-576)) 28)) (-2443 (((-1291) (-576)) 26)) (-2035 (((-576) (-576)) 29) (((-576)) 22))) +(((-1025) (-10 -7 (-15 -2035 ((-576))) (-15 -2148 ((-576))) (-15 -2035 ((-576) (-576))) (-15 -2443 ((-1291) (-576))) (-15 -1751 ((-576))))) (T -1025)) +((-1751 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1025)))) (-2035 (*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) (-2148 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) (-2035 (*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025))))) +(-10 -7 (-15 -2035 ((-576))) (-15 -2148 ((-576))) (-15 -2035 ((-576) (-576))) (-15 -2443 ((-1291) (-576))) (-15 -1751 ((-576)))) +((-1770 (((-430 |#1|) |#1|) 43)) (-1839 (((-430 |#1|) |#1|) 41))) +(((-1026 |#1|) (-10 -7 (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1|))) (-1262 (-419 (-576)))) (T -1026)) +((-1770 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1262 (-419 (-576)))))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) (-4 *3 (-1262 (-419 (-576))))))) +(-10 -7 (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1|))) +((-3615 (((-3 (-419 (-576)) "failed") |#1|) 15)) (-3235 (((-112) |#1|) 14)) (-3113 (((-419 (-576)) |#1|) 10))) +(((-1027 |#1|) (-10 -7 (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|))) (-1057 (-419 (-576)))) (T -1027)) +((-3615 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2)))) (-3235 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1057 (-419 (-576)))))) (-3113 (*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2))))) +(-10 -7 (-15 -3113 ((-419 (-576)) |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -3615 ((-3 (-419 (-576)) "failed") |#1|))) +((-3731 ((|#2| $ "value" |#2|) 12)) (-2871 ((|#2| $ "value") 10)) (-4369 (((-112) $ $) 18))) +(((-1028 |#1| |#2|) (-10 -8 (-15 -3731 (|#2| |#1| "value" |#2|)) (-15 -4369 ((-112) |#1| |#1|)) (-15 -2871 (|#2| |#1| "value"))) (-1029 |#2|) (-1236)) (T -1028)) +NIL +(-10 -8 (-15 -3731 (|#2| |#1| "value" |#2|)) (-15 -4369 ((-112) |#1| |#1|)) (-15 -2871 (|#2| |#1| "value"))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3142 ((|#1| $) 49)) (-3131 (((-112) $ (-783)) 8)) (-3429 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-3767 (($) 7 T CONST)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 51)) (-3180 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-2942 (((-656 |#1|) $) 46)) (-1905 (((-112) $) 50)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ "value") 48)) (-2972 (((-576) $ $) 45)) (-3173 (((-112) $) 47)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) 52)) (-4369 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-1029 |#1|) (-141) (-1236)) (T -1029)) +((-3281 (*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3)))) (-1994 (*1 *2 *1) (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) (-2871 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) (-3173 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3)))) (-2972 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-576)))) (-4369 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-3180 (*1 *2 *1 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-2047 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4462)) (-4 *1 (-1029 *3)) (-4 *3 (-1236)))) (-3731 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4462)) (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) (-3429 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1029 *2)) (-4 *2 (-1236))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -3281 ((-656 $) $)) (-15 -1994 ((-656 $) $)) (-15 -1905 ((-112) $)) (-15 -3142 (|t#1| $)) (-15 -2871 (|t#1| $ "value")) (-15 -3173 ((-112) $)) (-15 -2942 ((-656 |t#1|) $)) (-15 -2972 ((-576) $ $)) (IF (|has| |t#1| (-1119)) (PROGN (-15 -4369 ((-112) $ $)) (-15 -3180 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4462)) (PROGN (-15 -2047 ($ $ (-656 $))) (-15 -3731 (|t#1| $ "value" |t#1|)) (-15 -3429 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-1853 (($ $) 9) (($ $ (-938)) 49) (($ (-419 (-576))) 13) (($ (-576)) 15)) (-3532 (((-3 $ "failed") (-1191 $) (-938) (-874)) 24) (((-3 $ "failed") (-1191 $) (-938)) 32)) (-2826 (($ $ (-576)) 58)) (-1858 (((-783)) 18)) (-1846 (((-656 $) (-1191 $)) NIL) (((-656 $) (-1191 (-419 (-576)))) 63) (((-656 $) (-1191 (-576))) 68) (((-656 $) (-969 $)) 72) (((-656 $) (-969 (-419 (-576)))) 76) (((-656 $) (-969 (-576))) 80)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) 53))) +(((-1030 |#1|) (-10 -8 (-15 -1853 (|#1| (-576))) (-15 -1853 (|#1| (-419 (-576)))) (-15 -1853 (|#1| |#1| (-938))) (-15 -1846 ((-656 |#1|) (-969 (-576)))) (-15 -1846 ((-656 |#1|) (-969 (-419 (-576))))) (-15 -1846 ((-656 |#1|) (-969 |#1|))) (-15 -1846 ((-656 |#1|) (-1191 (-576)))) (-15 -1846 ((-656 |#1|) (-1191 (-419 (-576))))) (-15 -1846 ((-656 |#1|) (-1191 |#1|))) (-15 -3532 ((-3 |#1| "failed") (-1191 |#1|) (-938))) (-15 -3532 ((-3 |#1| "failed") (-1191 |#1|) (-938) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2826 (|#1| |#1| (-576))) (-15 -1853 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -1858 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) (-1031)) (T -1030)) +((-1858 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1030 *3)) (-4 *3 (-1031))))) +(-10 -8 (-15 -1853 (|#1| (-576))) (-15 -1853 (|#1| (-419 (-576)))) (-15 -1853 (|#1| |#1| (-938))) (-15 -1846 ((-656 |#1|) (-969 (-576)))) (-15 -1846 ((-656 |#1|) (-969 (-419 (-576))))) (-15 -1846 ((-656 |#1|) (-969 |#1|))) (-15 -1846 ((-656 |#1|) (-1191 (-576)))) (-15 -1846 ((-656 |#1|) (-1191 (-419 (-576))))) (-15 -1846 ((-656 |#1|) (-1191 |#1|))) (-15 -3532 ((-3 |#1| "failed") (-1191 |#1|) (-938))) (-15 -3532 ((-3 |#1| "failed") (-1191 |#1|) (-938) (-874))) (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2826 (|#1| |#1| (-576))) (-15 -1853 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -1858 ((-783))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 102)) (-4412 (($ $) 103)) (-4176 (((-112) $) 105)) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 122)) (-2732 (((-430 $) $) 123)) (-1853 (($ $) 86) (($ $ (-938)) 72) (($ (-419 (-576))) 71) (($ (-576)) 70)) (-1727 (((-112) $ $) 113)) (-2184 (((-576) $) 139)) (-3767 (($) 18 T CONST)) (-3532 (((-3 $ "failed") (-1191 $) (-938) (-874)) 80) (((-3 $ "failed") (-1191 $) (-938)) 79)) (-1539 (((-3 (-576) "failed") $) 99 (|has| (-419 (-576)) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 97 (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) 94)) (-4056 (((-576) $) 98 (|has| (-419 (-576)) (-1057 (-576)))) (((-419 (-576)) $) 96 (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-419 (-576)) $) 95)) (-3390 (($ $ (-874)) 69)) (-3596 (($ $ (-874)) 68)) (-3420 (($ $ $) 117)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 116)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 111)) (-1792 (((-112) $) 124)) (-1910 (((-112) $) 137)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 85)) (-3566 (((-112) $) 138)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 120)) (-2442 (($ $ $) 136)) (-1893 (($ $ $) 135)) (-2409 (((-3 (-1191 $) "failed") $) 81)) (-4286 (((-3 (-874) "failed") $) 83)) (-3672 (((-3 (-1191 $) "failed") $) 82)) (-3459 (($ (-656 $)) 109) (($ $ $) 108)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 125)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 110)) (-3495 (($ (-656 $)) 107) (($ $ $) 106)) (-1839 (((-430 $) $) 121)) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 118)) (-3463 (((-3 $ "failed") $ $) 101)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 112)) (-3112 (((-783) $) 114)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 115)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 129) (($ $) 100) (($ (-419 (-576))) 93) (($ (-576)) 92) (($ (-419 (-576))) 89)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 104)) (-4125 (((-419 (-576)) $ $) 67)) (-1846 (((-656 $) (-1191 $)) 78) (((-656 $) (-1191 (-419 (-576)))) 77) (((-656 $) (-1191 (-576))) 76) (((-656 $) (-969 $)) 75) (((-656 $) (-969 (-419 (-576)))) 74) (((-656 $) (-969 (-576))) 73)) (-2264 (($ $) 140)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-3049 (((-112) $ $) 133)) (-3024 (((-112) $ $) 132)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 134)) (-3010 (((-112) $ $) 131)) (-3107 (($ $ $) 130)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 126) (($ $ (-419 (-576))) 84)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ (-419 (-576)) $) 128) (($ $ (-419 (-576))) 127) (($ (-576) $) 91) (($ $ (-576)) 90) (($ (-419 (-576)) $) 88) (($ $ (-419 (-576))) 87))) (((-1031) (-141)) (T -1031)) -((-1403 (*1 *1 *1) (-4 *1 (-1031))) (-2265 (*1 *2 *1) (|partial| -12 (-4 *1 (-1031)) (-5 *2 (-874)))) (-4259 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1031)))) (-3003 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1031)))) (-1935 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-5 *4 (-874)) (-4 *1 (-1031)))) (-1935 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-4 *1 (-1031)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1192 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-1403 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-938)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1031)))) (-1403 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1031)))) (-4168 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874)))) (-1504 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874)))) (-2728 (*1 *2 *1 *1) (-12 (-4 *1 (-1031)) (-5 *2 (-419 (-576)))))) -(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1021) (-10 -8 (-15 -2265 ((-3 (-874) "failed") $)) (-15 -4259 ((-3 (-1192 $) "failed") $)) (-15 -3003 ((-3 (-1192 $) "failed") $)) (-15 -1935 ((-3 $ "failed") (-1192 $) (-938) (-874))) (-15 -1935 ((-3 $ "failed") (-1192 $) (-938))) (-15 -4089 ((-656 $) (-1192 $))) (-15 -4089 ((-656 $) (-1192 (-419 (-576))))) (-15 -4089 ((-656 $) (-1192 (-576)))) (-15 -4089 ((-656 $) (-969 $))) (-15 -4089 ((-656 $) (-969 (-419 (-576))))) (-15 -4089 ((-656 $) (-969 (-576)))) (-15 -1403 ($ $ (-938))) (-15 -1403 ($ $)) (-15 -1403 ($ (-419 (-576)))) (-15 -1403 ($ (-576))) (-15 -4168 ($ $ (-874))) (-15 -1504 ($ $ (-874))) (-15 -2728 ((-419 (-576)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 #1#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-937) . T) ((-1021) . T) ((-1057 (-419 (-576))) . T) ((-1057 (-576)) |has| (-419 (-576)) (-1057 (-576))) ((-1070 #0#) . T) ((-1070 #1#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 #1#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T)) -((-2961 (((-2 (|:| |ans| |#2|) (|:| -2128 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1032 |#1| |#2|) (-10 -7 (-15 -2961 ((-2 (|:| |ans| |#2|) (|:| -2128 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-27) (-442 |#1|))) (T -1032)) -((-2961 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1196)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4015 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1222) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2128 *4) (|:| |sol?| (-112)))) (-5 *1 (-1032 *8 *4))))) -(-10 -7 (-15 -2961 ((-2 (|:| |ans| |#2|) (|:| -2128 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-2595 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1033 |#1| |#2|) (-10 -7 (-15 -2595 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1222) (-27) (-442 |#1|))) (T -1033)) -((-2595 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1196)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4015 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1222) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1033 *8 *4))))) -(-10 -7 (-15 -2595 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1196) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -4015 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3112 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3278 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-3826 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -4220 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-2412 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) -(((-1034 |#1| |#2|) (-10 -7 (-15 -3826 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -4220 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2412 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -3112 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3278 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1057 (-576))) (-1263 |#1|)) (T -1034)) -((-3112 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1263 *6)) (-4 *6 (-13 (-374) (-148) (-1057 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3278 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1034 *6 *3)))) (-2412 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5)))) (-3826 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -4220 *6))) (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -3826 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -4220 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2412 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -3112 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3278 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) -((-3969 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -4220 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-3460 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) -(((-1035 |#1| |#2|) (-10 -7 (-15 -3969 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -4220 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3460 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1057 (-576))) (-1263 |#1|)) (T -1035)) -((-3460 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1035 *4 *5)) (-5 *3 (-419 *5)))) (-3969 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -4220 *6))) (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) -(-10 -7 (-15 -3969 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -4220 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3460 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) -((-4119 (((-1 |#1|) (-656 (-2 (|:| -1731 |#1|) (|:| -2483 (-576))))) 34)) (-1853 (((-1 |#1|) (-1121 |#1|)) 42)) (-1712 (((-1 |#1|) (-1287 |#1|) (-1287 (-576)) (-576)) 31))) -(((-1036 |#1|) (-10 -7 (-15 -1853 ((-1 |#1|) (-1121 |#1|))) (-15 -4119 ((-1 |#1|) (-656 (-2 (|:| -1731 |#1|) (|:| -2483 (-576)))))) (-15 -1712 ((-1 |#1|) (-1287 |#1|) (-1287 (-576)) (-576)))) (-1119)) (T -1036)) -((-1712 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1287 *6)) (-5 *4 (-1287 (-576))) (-5 *5 (-576)) (-4 *6 (-1119)) (-5 *2 (-1 *6)) (-5 *1 (-1036 *6)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -1731 *4) (|:| -2483 (-576))))) (-4 *4 (-1119)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1121 *4)) (-4 *4 (-1119)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4))))) -(-10 -7 (-15 -1853 ((-1 |#1|) (-1121 |#1|))) (-15 -4119 ((-1 |#1|) (-656 (-2 (|:| -1731 |#1|) (|:| -2483 (-576)))))) (-15 -1712 ((-1 |#1|) (-1287 |#1|) (-1287 (-576)) (-576)))) -((-1538 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1538 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1263 |#1|) (-1263 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1037)) -((-1538 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1263 *6)) (-4 *4 (-1263 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1037 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -1538 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2034 (((-112) $ $) NIL)) (-1344 (((-1154) $) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-1154) $) 11)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1038) (-13 (-1102) (-10 -8 (-15 -1344 ((-1154) $)) (-15 -4136 ((-1154) $))))) (T -1038)) -((-1344 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038))))) -(-13 (-1102) (-10 -8 (-15 -1344 ((-1154) $)) (-15 -4136 ((-1154) $)))) -((-2198 (((-3 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) "failed") |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) 32) (((-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576))) 29)) (-1881 (((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) 33) (((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1|) 28)) (-2845 (((-656 (-419 (-576))) (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) 20)) (-3607 (((-419 (-576)) (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) 17))) -(((-1039 |#1|) (-10 -7 (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1|)) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576)))) (-15 -2198 ((-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576)))) (-15 -2198 ((-3 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) "failed") |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-15 -3607 ((-419 (-576)) (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-15 -2845 ((-656 (-419 (-576))) (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))))) (-1263 (-576))) (T -1039)) -((-2845 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1039 *4)) (-4 *4 (-1263 (-576))))) (-3607 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1039 *4)) (-4 *4 (-1263 (-576))))) (-2198 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))))) (-2198 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))))) (-1881 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2114 *5) (|:| -2128 *5)))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-2 (|:| -2114 *5) (|:| -2128 *5))))) (-1881 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-419 (-576))))) (-1881 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))))) (-1881 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576)))))) -(-10 -7 (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1|)) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576)))) (-15 -2198 ((-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576)))) (-15 -2198 ((-3 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) "failed") |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-15 -3607 ((-419 (-576)) (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-15 -2845 ((-656 (-419 (-576))) (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))))) -((-2198 (((-3 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) "failed") |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) 35) (((-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576))) 32)) (-1881 (((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) 28) (((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1|) 24))) -(((-1040 |#1|) (-10 -7 (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1|)) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576)))) (-15 -2198 ((-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576)))) (-15 -2198 ((-3 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) "failed") |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))))) (-1263 (-419 (-576)))) (T -1040)) -((-2198 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576)))))) (-2198 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 *4)))) (-1881 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2114 *5) (|:| -2128 *5)))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 *5)) (-5 *4 (-2 (|:| -2114 *5) (|:| -2128 *5))))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -2114 *4) (|:| -2128 *4)))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 *4)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576)))) (-5 *4 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))))) (-1881 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576))))))) -(-10 -7 (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1|)) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -1881 ((-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576)))) (-15 -2198 ((-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-419 (-576)))) (-15 -2198 ((-3 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) "failed") |#1| (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))) (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))))) -((-1505 (((-227) $) 6) (((-390) $) 9))) +((-1853 (*1 *1 *1) (-4 *1 (-1031))) (-4286 (*1 *2 *1) (|partial| -12 (-4 *1 (-1031)) (-5 *2 (-874)))) (-3672 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1031)))) (-2409 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1031)))) (-3532 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-938)) (-5 *4 (-874)) (-4 *1 (-1031)))) (-3532 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-938)) (-4 *1 (-1031)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-1191 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) (-1853 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-938)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1031)))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1031)))) (-3390 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874)))) (-3596 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874)))) (-4125 (*1 *2 *1 *1) (-12 (-4 *1 (-1031)) (-5 *2 (-419 (-576)))))) +(-13 (-148) (-860) (-174) (-374) (-423 (-419 (-576))) (-38 (-576)) (-38 (-419 (-576))) (-1021) (-10 -8 (-15 -4286 ((-3 (-874) "failed") $)) (-15 -3672 ((-3 (-1191 $) "failed") $)) (-15 -2409 ((-3 (-1191 $) "failed") $)) (-15 -3532 ((-3 $ "failed") (-1191 $) (-938) (-874))) (-15 -3532 ((-3 $ "failed") (-1191 $) (-938))) (-15 -1846 ((-656 $) (-1191 $))) (-15 -1846 ((-656 $) (-1191 (-419 (-576))))) (-15 -1846 ((-656 $) (-1191 (-576)))) (-15 -1846 ((-656 $) (-969 $))) (-15 -1846 ((-656 $) (-969 (-419 (-576))))) (-15 -1846 ((-656 $) (-969 (-576)))) (-15 -1853 ($ $ (-938))) (-15 -1853 ($ $)) (-15 -1853 ($ (-419 (-576)))) (-15 -1853 ($ (-576))) (-15 -3390 ($ $ (-874))) (-15 -3596 ($ $ (-874))) (-15 -4125 ((-419 (-576)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 #1=(-576)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-423 (-419 (-576))) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 #1#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 #1#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-937) . T) ((-1021) . T) ((-1057 (-419 (-576))) . T) ((-1057 (-576)) |has| (-419 (-576)) (-1057 (-576))) ((-1070 #0#) . T) ((-1070 #1#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 #1#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1240) . T)) +((-2833 (((-2 (|:| |ans| |#2|) (|:| -4154 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1032 |#1| |#2|) (-10 -7 (-15 -2833 ((-2 (|:| |ans| |#2|) (|:| -4154 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1221) (-27) (-442 |#1|))) (T -1032)) +((-2833 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1195)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3116 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1221) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4154 *4) (|:| |sol?| (-112)))) (-5 *1 (-1032 *8 *4))))) +(-10 -7 (-15 -2833 ((-2 (|:| |ans| |#2|) (|:| -4154 |#2|) (|:| |sol?| (-112))) (-576) |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-1345 (((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1033 |#1| |#2|) (-10 -7 (-15 -1345 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-464) (-148) (-1057 (-576)) (-651 (-576))) (-13 (-1221) (-27) (-442 |#1|))) (T -1033)) +((-1345 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1195)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-656 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3116 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1221) (-27) (-442 *8))) (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) (-5 *2 (-656 *4)) (-5 *1 (-1033 *8 *4))))) +(-10 -7 (-15 -1345 ((-3 (-656 |#2|) "failed") (-576) |#2| |#2| |#2| (-1195) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-656 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-656 |#2|)) (-1 (-3 (-2 (|:| -3116 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2390 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3896 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)) 38)) (-1892 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2818 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 69)) (-1952 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|)) 74))) +(((-1034 |#1| |#2|) (-10 -7 (-15 -1892 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2818 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1952 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -2390 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3896 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) (-13 (-374) (-148) (-1057 (-576))) (-1262 |#1|)) (T -1034)) +((-2390 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1262 *6)) (-4 *6 (-13 (-374) (-148) (-1057 *4))) (-5 *4 (-576)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3896 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1034 *6 *3)))) (-1952 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5)))) (-1892 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -2818 *6))) (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -1892 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -2818 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -1952 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-112))) (-419 |#2|) (-419 |#2|))) (-15 -2390 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3896 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-576)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-576) (-1 |#2| |#2|)))) +((-2247 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2818 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22)) (-2336 (((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -2247 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2818 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2336 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-374) (-148) (-1057 (-576))) (-1262 |#1|)) (T -1035)) +((-2336 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1262 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1035 *4 *5)) (-5 *3 (-419 *5)))) (-2247 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2818 *6))) (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) +(-10 -7 (-15 -2247 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -2818 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2336 ((-3 (-656 (-419 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-419 |#2|)))) +((-4127 (((-1 |#1|) (-656 (-2 (|:| -3142 |#1|) (|:| -3457 (-576))))) 34)) (-4042 (((-1 |#1|) (-1121 |#1|)) 42)) (-4312 (((-1 |#1|) (-1286 |#1|) (-1286 (-576)) (-576)) 31))) +(((-1036 |#1|) (-10 -7 (-15 -4042 ((-1 |#1|) (-1121 |#1|))) (-15 -4127 ((-1 |#1|) (-656 (-2 (|:| -3142 |#1|) (|:| -3457 (-576)))))) (-15 -4312 ((-1 |#1|) (-1286 |#1|) (-1286 (-576)) (-576)))) (-1119)) (T -1036)) +((-4312 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1286 *6)) (-5 *4 (-1286 (-576))) (-5 *5 (-576)) (-4 *6 (-1119)) (-5 *2 (-1 *6)) (-5 *1 (-1036 *6)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -3142 *4) (|:| -3457 (-576))))) (-4 *4 (-1119)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-1121 *4)) (-4 *4 (-1119)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4))))) +(-10 -7 (-15 -4042 ((-1 |#1|) (-1121 |#1|))) (-15 -4127 ((-1 |#1|) (-656 (-2 (|:| -3142 |#1|) (|:| -3457 (-576)))))) (-15 -4312 ((-1 |#1|) (-1286 |#1|) (-1286 (-576)) (-576)))) +((-3333 (((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3333 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-374) (-1262 |#1|) (-1262 (-419 |#2|)) (-353 |#1| |#2| |#3|) (-13 (-379) (-374))) (T -1037)) +((-3333 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) (-4 *7 (-1262 *6)) (-4 *4 (-1262 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) (-5 *1 (-1037 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -3333 ((-783) (-347 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3474 (((-112) $ $) NIL)) (-3974 (((-1154) $) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-1154) $) 11)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1038) (-13 (-1102) (-10 -8 (-15 -3974 ((-1154) $)) (-15 -2719 ((-1154) $))))) (T -1038)) +((-3974 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038))))) +(-13 (-1102) (-10 -8 (-15 -3974 ((-1154) $)) (-15 -2719 ((-1154) $)))) +((-1565 (((-3 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) "failed") |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) 32) (((-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576))) 29)) (-3935 (((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576))) 34) (((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-419 (-576))) 30) (((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) 33) (((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1|) 28)) (-1949 (((-656 (-419 (-576))) (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) 20)) (-3625 (((-419 (-576)) (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) 17))) +(((-1039 |#1|) (-10 -7 (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1|)) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576)))) (-15 -1565 ((-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576)))) (-15 -1565 ((-3 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) "failed") |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-15 -3625 ((-419 (-576)) (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-15 -1949 ((-656 (-419 (-576))) (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))))) (-1262 (-576))) (T -1039)) +((-1949 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1039 *4)) (-4 *4 (-1262 (-576))))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) (-5 *2 (-419 (-576))) (-5 *1 (-1039 *4)) (-4 *4 (-1262 (-576))))) (-1565 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))))) (-1565 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))))) (-3935 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4143 *5) (|:| -4154 *5)))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-2 (|:| -4143 *5) (|:| -4154 *5))))) (-3935 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-419 (-576))))) (-3935 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))))) (-3935 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576)))))) +(-10 -7 (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1|)) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576)))) (-15 -1565 ((-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576)))) (-15 -1565 ((-3 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) "failed") |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-15 -3625 ((-419 (-576)) (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-15 -1949 ((-656 (-419 (-576))) (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))))) +((-1565 (((-3 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) "failed") |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) 35) (((-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576))) 32)) (-3935 (((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576))) 30) (((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-419 (-576))) 26) (((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) 28) (((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1|) 24))) +(((-1040 |#1|) (-10 -7 (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1|)) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576)))) (-15 -1565 ((-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576)))) (-15 -1565 ((-3 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) "failed") |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))))) (-1262 (-419 (-576)))) (T -1040)) +((-1565 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-419 (-576)))))) (-1565 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) (-5 *4 (-419 (-576))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 *4)))) (-3935 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4143 *5) (|:| -4154 *5)))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 *5)) (-5 *4 (-2 (|:| -4143 *5) (|:| -4154 *5))))) (-3935 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-5 *2 (-656 (-2 (|:| -4143 *4) (|:| -4154 *4)))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 *4)))) (-3935 (*1 *2 *3 *4) (-12 (-5 *2 (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-419 (-576)))) (-5 *4 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))))) (-3935 (*1 *2 *3) (-12 (-5 *2 (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-419 (-576))))))) +(-10 -7 (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1|)) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-419 (-576)))) (-15 -3935 ((-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576)))) (-15 -1565 ((-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-419 (-576)))) (-15 -1565 ((-3 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) "failed") |#1| (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))) (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))))) +((-4076 (((-227) $) 6) (((-390) $) 9))) (((-1041) (-141)) (T -1041)) NIL (-13 (-626 (-227)) (-626 (-390))) (((-626 (-227)) . T) ((-626 (-390)) . T)) -((-1843 (((-656 (-390)) (-969 (-576)) (-390)) 28) (((-656 (-390)) (-969 (-419 (-576))) (-390)) 27)) (-1854 (((-656 (-656 (-390))) (-656 (-969 (-576))) (-656 (-1196)) (-390)) 37))) -(((-1042) (-10 -7 (-15 -1843 ((-656 (-390)) (-969 (-419 (-576))) (-390))) (-15 -1843 ((-656 (-390)) (-969 (-576)) (-390))) (-15 -1854 ((-656 (-656 (-390))) (-656 (-969 (-576))) (-656 (-1196)) (-390))))) (T -1042)) -((-1854 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1042)) (-5 *5 (-390)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1042)) (-5 *4 (-390)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1042)) (-5 *4 (-390))))) -(-10 -7 (-15 -1843 ((-656 (-390)) (-969 (-419 (-576))) (-390))) (-15 -1843 ((-656 (-390)) (-969 (-576)) (-390))) (-15 -1854 ((-656 (-656 (-390))) (-656 (-969 (-576))) (-656 (-1196)) (-390)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 75)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-1403 (($ $) NIL) (($ $ (-938)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) 70)) (-3656 (($) NIL T CONST)) (-1935 (((-3 $ "failed") (-1192 $) (-938) (-874)) NIL) (((-3 $ "failed") (-1192 $) (-938)) 55)) (-2974 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-3765 (|has| (-419 (-576)) (-1057 (-576))) (|has| |#1| (-1057 (-576)))))) (-2378 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-3765 (|has| (-419 (-576)) (-1057 (-576))) (|has| |#1| (-1057 (-576)))))) (-4168 (($ $ (-874)) 47)) (-1504 (($ $ (-874)) 48)) (-1975 (($ $ $) NIL)) (-1496 (((-419 (-576)) $ $) 21)) (-3179 (((-3 $ "failed") $) 88)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-3567 (((-112) $) 66)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL)) (-3713 (((-112) $) 69)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3003 (((-3 (-1192 $) "failed") $) 83)) (-2265 (((-3 (-874) "failed") $) 82)) (-4259 (((-3 (-1192 $) "failed") $) 80)) (-3704 (((-3 (-1080 $ (-1192 $)) "failed") $) 78)) (-3117 (($ (-656 $)) NIL) (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 89)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-4092 (((-874) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-2728 (((-419 (-576)) $ $) 27)) (-4089 (((-656 $) (-1192 $)) 61) (((-656 $) (-1192 (-419 (-576)))) NIL) (((-656 $) (-1192 (-576))) NIL) (((-656 $) (-969 $)) NIL) (((-656 $) (-969 (-419 (-576)))) NIL) (((-656 $) (-969 (-576))) NIL)) (-1427 (($ (-1080 $ (-1192 $)) (-874)) 46)) (-3423 (($ $) 22)) (-4300 (($) 32 T CONST)) (-4310 (($) 39 T CONST)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 76)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 24)) (-4028 (($ $ $) 37)) (-4018 (($ $) 38) (($ $ $) 74)) (-4007 (($ $ $) 112)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1043 |#1|) (-13 (-1031) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -1427 ($ (-1080 $ (-1192 $)) (-874))) (-15 -3704 ((-3 (-1080 $ (-1192 $)) "failed") $)) (-15 -1496 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1041))) (T -1043)) -((-1427 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 (-1043 *4) (-1192 (-1043 *4)))) (-5 *3 (-874)) (-5 *1 (-1043 *4)) (-4 *4 (-13 (-860) (-374) (-1041))))) (-3704 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080 (-1043 *3) (-1192 (-1043 *3)))) (-5 *1 (-1043 *3)) (-4 *3 (-13 (-860) (-374) (-1041))))) (-1496 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1043 *3)) (-4 *3 (-13 (-860) (-374) (-1041)))))) -(-13 (-1031) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -1427 ($ (-1080 $ (-1192 $)) (-874))) (-15 -3704 ((-3 (-1080 $ (-1192 $)) "failed") $)) (-15 -1496 ((-419 (-576)) $ $)))) -((-2592 (((-2 (|:| -3278 |#2|) (|:| -3940 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1044 |#1| |#2|) (-10 -7 (-15 -2592 (|#2| |#2| |#1|)) (-15 -2592 ((-2 (|:| -3278 |#2|) (|:| -3940 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1044)) -((-2592 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3278 *3) (|:| -3940 (-656 *5)))) (-5 *1 (-1044 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-2592 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-668 *3))))) -(-10 -7 (-15 -2592 (|#2| |#2| |#1|)) (-15 -2592 ((-2 (|:| -3278 |#2|) (|:| -3940 (-656 |#1|))) |#2| (-656 |#1|)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2118 ((|#1| $ |#1|) 14)) (-4248 ((|#1| $ |#1|) 12)) (-2707 (($ |#1|) 10)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4367 ((|#1| $) 11)) (-3366 ((|#1| $) 13)) (-4092 (((-874) $) 21 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3919 (((-112) $ $) 9))) -(((-1045 |#1|) (-13 (-1237) (-10 -8 (-15 -2707 ($ |#1|)) (-15 -4367 (|#1| $)) (-15 -4248 (|#1| $ |#1|)) (-15 -3366 (|#1| $)) (-15 -2118 (|#1| $ |#1|)) (-15 -3919 ((-112) $ $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) (-1237)) (T -1045)) -((-2707 (*1 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-4367 (*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-4248 (*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-3366 (*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-2118 (*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) (-3919 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1045 *3)) (-4 *3 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -2707 ($ |#1|)) (-15 -4367 (|#1| $)) (-15 -4248 (|#1| $ |#1|)) (-15 -3366 (|#1| $)) (-15 -2118 (|#1| $ |#1|)) (-15 -3919 ((-112) $ $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2567 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1541 (((-656 |#3|) $) NIL)) (-3522 (((-112) $) NIL)) (-2932 (((-112) $) NIL (|has| |#1| (-568)))) (-1701 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2919 ((|#4| |#4| $) NIL)) (-1587 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| $) 112)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3457 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 66)) (-3656 (($) NIL T CONST)) (-3425 (((-112) $) 29 (|has| |#1| (-568)))) (-2623 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3347 (((-112) $) NIL (|has| |#1| (-568)))) (-1574 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4135 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2378 (($ (-656 |#4|)) NIL)) (-2712 (((-3 $ "failed") $) 45)) (-3996 ((|#4| |#4| $) 69)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-2892 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-3532 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2948 ((|#4| |#4| $) NIL)) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2740 (((-2 (|:| -1627 (-656 |#4|)) (|:| -3709 (-656 |#4|))) $) NIL)) (-3638 (((-112) |#4| $) NIL)) (-1752 (((-112) |#4| $) NIL)) (-2040 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3114 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-4260 (((-656 |#4|) $) 18 (|has| $ (-6 -4462)))) (-3871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2565 ((|#3| $) 38)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#4|) $) 19 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3874 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 23)) (-2964 (((-656 |#3|) $) NIL)) (-2459 (((-112) |#3| $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-4204 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-3918 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| |#4| $) 110)) (-2912 (((-3 |#4| "failed") $) 42)) (-3860 (((-656 $) |#4| $) 93)) (-2711 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-1851 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3586 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-4198 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-3869 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2106 (((-656 |#4|) $) NIL)) (-3593 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4395 ((|#4| |#4| $) NIL)) (-3711 (((-112) $ $) NIL)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1875 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3987 ((|#4| |#4| $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 (((-3 |#4| "failed") $) 40)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1479 (((-3 $ "failed") $ |#4|) 59)) (-2843 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-3292 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 17)) (-2643 (($) 14)) (-2369 (((-783) $) NIL)) (-3150 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) 13)) (-1505 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) 22)) (-1606 (($ $ |#3|) 52)) (-2333 (($ $ |#3|) 54)) (-2792 (($ $) NIL)) (-2875 (($ $ |#3|) NIL)) (-4092 (((-874) $) 35) (((-656 |#4|) $) 46)) (-2727 (((-783) $) NIL (|has| |#3| (-379)))) (-1531 (((-112) $ $) NIL)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2196 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-4088 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2190 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-1895 (((-656 |#3|) $) NIL)) (-2813 (((-112) |#4| $) NIL)) (-4101 (((-112) |#3| $) 65)) (-3919 (((-112) $ $) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1046 |#1| |#2| |#3| |#4|) (-13 (-1090 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3869 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2567 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2567 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -4198 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3114 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -1046)) -((-3869 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) (-4 *3 (-1084 *5 *6 *7)))) (-2567 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-2567 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-4198 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-3114 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1046 *5 *6 *7 *8))))) (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1090 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3869 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2567 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2567 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -4198 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3114 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-2770 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-3410 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938)) 63) (((-701 |#1|) (-701 |#1|) (-938)) 62)) (-2667 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-922 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-922 (-576)) (-576)) 75)) (-2273 (((-701 (-969 |#1|)) (-783)) 95)) (-1993 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938)) 49 (|has| |#1| (-6 (-4464 "*")))) (((-701 |#1|) (-701 |#1|) (-938)) 47 (|has| |#1| (-6 (-4464 "*")))))) -(((-1047 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4464 "*"))) (-15 -1993 ((-701 |#1|) (-701 |#1|) (-938))) |%noBranch|) (IF (|has| |#1| (-6 (-4464 "*"))) (-15 -1993 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) |%noBranch|) (-15 -2273 ((-701 (-969 |#1|)) (-783))) (-15 -3410 ((-701 |#1|) (-701 |#1|) (-938))) (-15 -3410 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) (-15 -2770 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2770 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2770 ((-701 |#1|) (-701 |#1|))) (-15 -2770 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2667 ((-701 (-576)) (-922 (-576)) (-576))) (-15 -2667 ((-701 (-576)) (-656 (-576)))) (-15 -2667 ((-656 (-701 (-576))) (-656 (-922 (-576))) (-576))) (-15 -2667 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1068)) (T -1047)) -((-2667 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1047 *4)) (-4 *4 (-1068)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-922 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) (-2667 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1047 *4)) (-4 *4 (-1068)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-922 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-2770 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-2770 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-3410 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) (-3410 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-969 *4))) (-5 *1 (-1047 *4)) (-4 *4 (-1068)))) (-1993 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) (|has| *4 (-6 (-4464 "*"))) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) (-1993 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (|has| *4 (-6 (-4464 "*"))) (-4 *4 (-1068)) (-5 *1 (-1047 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4464 "*"))) (-15 -1993 ((-701 |#1|) (-701 |#1|) (-938))) |%noBranch|) (IF (|has| |#1| (-6 (-4464 "*"))) (-15 -1993 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) |%noBranch|) (-15 -2273 ((-701 (-969 |#1|)) (-783))) (-15 -3410 ((-701 |#1|) (-701 |#1|) (-938))) (-15 -3410 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) (-15 -2770 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -2770 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2770 ((-701 |#1|) (-701 |#1|))) (-15 -2770 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2667 ((-701 (-576)) (-922 (-576)) (-576))) (-15 -2667 ((-701 (-576)) (-656 (-576)))) (-15 -2667 ((-656 (-701 (-576))) (-656 (-922 (-576))) (-576))) (-15 -2667 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) -((-2742 (((-701 |#1|) (-656 (-701 |#1|)) (-1287 |#1|)) 70 (|has| |#1| (-317)))) (-3930 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 (-1287 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 |#1|)) 117 (|has| |#1| (-374)))) (-2571 (((-1287 |#1|) (-656 (-1287 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-1926 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-938)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-1928 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-4182 (((-1287 (-1287 |#1|)) (-656 (-701 |#1|)) (-1287 |#1|)) 67 (|has| |#1| (-317)))) (-1888 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-2732 (((-701 |#1|) (-1287 (-1287 |#1|))) 40)) (-3074 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) -(((-1048 |#1|) (-10 -7 (-15 -2732 ((-701 |#1|) (-1287 (-1287 |#1|)))) (-15 -1888 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -4182 ((-1287 (-1287 |#1|)) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -2742 ((-701 |#1|) (-656 (-701 |#1|)) (-1287 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3074 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -3074 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3074 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -1928 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -1928 ((-112) (-656 (-701 |#1|)))) (-15 -3930 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -3930 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 (-1287 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -1926 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -1926 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -1926 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -1926 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-938))) (-15 -2571 ((-1287 |#1|) (-656 (-1287 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1068)) (T -1048)) -((-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1287 *5))) (-5 *4 (-576)) (-5 *2 (-1287 *5)) (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-1926 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-1926 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1068)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1048 *4)) (-5 *3 (-656 (-701 *4))))) (-1926 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1068)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1048 *6)) (-5 *3 (-656 (-701 *6))))) (-3930 (*1 *2 *3 *4) (-12 (-5 *4 (-1287 (-1287 *5))) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-3930 (*1 *2 *3 *4) (-12 (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-1048 *4)))) (-1928 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-1048 *5)))) (-3074 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-1068)))) (-3074 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1048 *4)) (-4 *4 (-374)) (-4 *4 (-1068)))) (-3074 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1048 *6)) (-4 *6 (-374)) (-4 *6 (-1068)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1287 *5)) (-4 *5 (-317)) (-4 *5 (-1068)) (-5 *2 (-701 *5)) (-5 *1 (-1048 *5)))) (-4182 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1068)) (-5 *2 (-1287 (-1287 *5))) (-5 *1 (-1048 *5)) (-5 *4 (-1287 *5)))) (-1888 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1068)) (-5 *1 (-1048 *4)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-1287 (-1287 *4))) (-4 *4 (-1068)) (-5 *2 (-701 *4)) (-5 *1 (-1048 *4))))) -(-10 -7 (-15 -2732 ((-701 |#1|) (-1287 (-1287 |#1|)))) (-15 -1888 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -4182 ((-1287 (-1287 |#1|)) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -2742 ((-701 |#1|) (-656 (-701 |#1|)) (-1287 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3074 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -3074 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3074 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -1928 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -1928 ((-112) (-656 (-701 |#1|)))) (-15 -3930 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 |#1|))) (-15 -3930 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1287 (-1287 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -1926 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -1926 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -1926 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -1926 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-938))) (-15 -2571 ((-1287 |#1|) (-656 (-1287 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) -((-3391 ((|#1| (-938) |#1|) 18))) -(((-1049 |#1|) (-10 -7 (-15 -3391 (|#1| (-938) |#1|))) (-13 (-1119) (-10 -8 (-15 -4007 ($ $ $))))) (T -1049)) -((-3391 (*1 *2 *3 *2) (-12 (-5 *3 (-938)) (-5 *1 (-1049 *2)) (-4 *2 (-13 (-1119) (-10 -8 (-15 -4007 ($ $ $)))))))) -(-10 -7 (-15 -3391 (|#1| (-938) |#1|))) -((-3584 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-969 (-576))))) 67)) (-3188 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-969 (-576))))) 52)) (-2997 (((-656 (-326 (-576))) (-701 (-419 (-969 (-576))))) 45)) (-2293 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-969 (-576))))) 85)) (-3618 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-4170 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-1527 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-969 (-576))))) 82))) -(((-1050) (-10 -7 (-15 -3584 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-969 (-576)))))) (-15 -3188 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-969 (-576)))))) (-15 -2997 ((-656 (-326 (-576))) (-701 (-419 (-969 (-576)))))) (-15 -1527 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-969 (-576)))))) (-15 -3618 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -4170 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -2293 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-969 (-576)))))))) (T -1050)) -((-2293 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050)))) (-1527 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050)))) (-2997 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1050)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)) (-5 *3 (-326 (-576))))) (-3584 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1050))))) -(-10 -7 (-15 -3584 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-969 (-576)))))) (-15 -3188 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-969 (-576)))))) (-15 -2997 ((-656 (-326 (-576))) (-701 (-419 (-969 (-576)))))) (-15 -1527 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-969 (-576)))))) (-15 -3618 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -4170 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -2293 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-969 (-576))))))) -((-1972 ((|#1| |#1| (-938)) 18))) -(((-1051 |#1|) (-10 -7 (-15 -1972 (|#1| |#1| (-938)))) (-13 (-1119) (-10 -8 (-15 * ($ $ $))))) (T -1051)) -((-1972 (*1 *2 *2 *3) (-12 (-5 *3 (-938)) (-5 *1 (-1051 *2)) (-4 *2 (-13 (-1119) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -1972 (|#1| |#1| (-938)))) -((-4092 ((|#1| (-322)) 11) (((-1292) |#1|) 9))) -(((-1052 |#1|) (-10 -7 (-15 -4092 ((-1292) |#1|)) (-15 -4092 (|#1| (-322)))) (-1237)) (T -1052)) -((-4092 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1052 *2)) (-4 *2 (-1237)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-1292)) (-5 *1 (-1052 *3)) (-4 *3 (-1237))))) -(-10 -7 (-15 -4092 ((-1292) |#1|)) (-15 -4092 (|#1| (-322)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2359 (($ |#4|) 25)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-2344 ((|#4| $) 27)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2471 (((-783)) 43 T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 21 T CONST)) (-4310 (($) 23 T CONST)) (-3919 (((-112) $ $) 40)) (-4018 (($ $) 31) (($ $ $) NIL)) (-4007 (($ $ $) 29)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1053 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2359 ($ |#4|)) (-15 -4092 ($ |#4|)) (-15 -2344 (|#4| $)))) (-374) (-805) (-862) (-966 |#1| |#2| |#3|) (-656 |#4|)) (T -1053)) -((-2359 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5)) (-14 *6 (-656 *2)))) (-4092 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2344 (*1 *2 *1) (-12 (-4 *2 (-966 *3 *4 *5)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2))))) -(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2359 ($ |#4|)) (-15 -4092 ($ |#4|)) (-15 -2344 (|#4| $)))) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL)) (-2449 (((-1292) $ (-1196) (-1196)) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-1571 (((-112) (-112)) 43)) (-2649 (((-112) (-112)) 42)) (-4248 (((-52) $ (-1196) (-52)) NIL)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 (-52) "failed") (-1196) $) NIL)) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-4376 (($ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-3 (-52) "failed") (-1196) $) NIL)) (-2892 (($ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-3888 (((-52) $ (-1196) (-52)) NIL (|has| $ (-6 -4463)))) (-3817 (((-52) $ (-1196)) NIL)) (-4260 (((-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-1196) $) NIL (|has| (-1196) (-862)))) (-1750 (((-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-4315 (((-1196) $) NIL (|has| (-1196) (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-2364 (((-656 (-1196)) $) 37)) (-3700 (((-112) (-1196) $) NIL)) (-3576 (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL)) (-2361 (($ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL)) (-4428 (((-656 (-1196)) $) NIL)) (-2013 (((-112) (-1196) $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-2701 (((-52) $) NIL (|has| (-1196) (-862)))) (-1863 (((-3 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) "failed") (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL)) (-2918 (($ $ (-52)) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))))) NIL (-12 (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ $ (-304 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL (-12 (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ $ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) NIL (-12 (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ $ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL (-12 (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-3060 (((-656 (-52)) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 (((-52) $ (-1196)) 39) (((-52) $ (-1196) (-52)) NIL)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL)) (-4092 (((-874) $) 41 (-3765 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-625 (-874)))))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1054) (-13 (-1213 (-1196) (-52)) (-10 -7 (-15 -1571 ((-112) (-112))) (-15 -2649 ((-112) (-112))) (-6 -4462)))) (T -1054)) -((-1571 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054))))) -(-13 (-1213 (-1196) (-52)) (-10 -7 (-15 -1571 ((-112) (-112))) (-15 -2649 ((-112) (-112))) (-6 -4462))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2271 (((-1154) $) 9)) (-4092 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1055) (-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $))))) (T -1055)) -((-2271 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1055))))) -(-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)))) -((-2378 ((|#2| $) 10))) -(((-1056 |#1| |#2|) (-10 -8 (-15 -2378 (|#2| |#1|))) (-1057 |#2|) (-1237)) (T -1056)) -NIL -(-10 -8 (-15 -2378 (|#2| |#1|))) -((-2974 (((-3 |#1| "failed") $) 9)) (-2378 ((|#1| $) 8)) (-4092 (($ |#1|) 6))) -(((-1057 |#1|) (-141) (-1237)) (T -1057)) -((-2974 (*1 *2 *1) (|partial| -12 (-4 *1 (-1057 *2)) (-4 *2 (-1237)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1237))))) -(-13 (-628 |t#1|) (-10 -8 (-15 -2974 ((-3 |t#1| "failed") $)) (-15 -2378 (|t#1| $)))) +((-2445 (((-656 (-390)) (-969 (-576)) (-390)) 28) (((-656 (-390)) (-969 (-419 (-576))) (-390)) 27)) (-4141 (((-656 (-656 (-390))) (-656 (-969 (-576))) (-656 (-1195)) (-390)) 37))) +(((-1042) (-10 -7 (-15 -2445 ((-656 (-390)) (-969 (-419 (-576))) (-390))) (-15 -2445 ((-656 (-390)) (-969 (-576)) (-390))) (-15 -4141 ((-656 (-656 (-390))) (-656 (-969 (-576))) (-656 (-1195)) (-390))))) (T -1042)) +((-4141 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1042)) (-5 *5 (-390)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1042)) (-5 *4 (-390)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 (-390))) (-5 *1 (-1042)) (-5 *4 (-390))))) +(-10 -7 (-15 -2445 ((-656 (-390)) (-969 (-419 (-576))) (-390))) (-15 -2445 ((-656 (-390)) (-969 (-576)) (-390))) (-15 -4141 ((-656 (-656 (-390))) (-656 (-969 (-576))) (-656 (-1195)) (-390)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 75)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1853 (($ $) NIL) (($ $ (-938)) NIL) (($ (-419 (-576))) NIL) (($ (-576)) NIL)) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) 70)) (-3767 (($) NIL T CONST)) (-3532 (((-3 $ "failed") (-1191 $) (-938) (-874)) NIL) (((-3 $ "failed") (-1191 $) (-938)) 55)) (-1539 (((-3 (-419 (-576)) "failed") $) NIL (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-576) "failed") $) NIL (-2835 (|has| (-419 (-576)) (-1057 (-576))) (|has| |#1| (-1057 (-576)))))) (-4056 (((-419 (-576)) $) 17 (|has| (-419 (-576)) (-1057 (-419 (-576))))) (((-419 (-576)) $) 17) ((|#1| $) 117) (((-576) $) NIL (-2835 (|has| (-419 (-576)) (-1057 (-576))) (|has| |#1| (-1057 (-576)))))) (-3390 (($ $ (-874)) 47)) (-3596 (($ $ (-874)) 48)) (-3420 (($ $ $) NIL)) (-4229 (((-419 (-576)) $ $) 21)) (-1551 (((-3 $ "failed") $) 88)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-1910 (((-112) $) 66)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL)) (-3566 (((-112) $) 69)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-2409 (((-3 (-1191 $) "failed") $) 83)) (-4286 (((-3 (-874) "failed") $) 82)) (-3672 (((-3 (-1191 $) "failed") $) 80)) (-2782 (((-3 (-1080 $ (-1191 $)) "failed") $) 78)) (-3459 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 89)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ (-656 $)) NIL) (($ $ $) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3563 (((-874) $) 87) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) 63) (($ (-419 (-576))) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#1|) 119)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-4125 (((-419 (-576)) $ $) 27)) (-1846 (((-656 $) (-1191 $)) 61) (((-656 $) (-1191 (-419 (-576)))) NIL) (((-656 $) (-1191 (-576))) NIL) (((-656 $) (-969 $)) NIL) (((-656 $) (-969 (-419 (-576)))) NIL) (((-656 $) (-969 (-576))) NIL)) (-2452 (($ (-1080 $ (-1191 $)) (-874)) 46)) (-2264 (($ $) 22)) (-2800 (($) 32 T CONST)) (-2810 (($) 39 T CONST)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 76)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 24)) (-3107 (($ $ $) 37)) (-3095 (($ $) 38) (($ $ $) 74)) (-3083 (($ $ $) 112)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL) (($ $ (-419 (-576))) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 98) (($ $ $) 104) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ (-576) $) 98) (($ $ (-576)) NIL) (($ (-419 (-576)) $) NIL) (($ $ (-419 (-576))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1043 |#1|) (-13 (-1031) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2452 ($ (-1080 $ (-1191 $)) (-874))) (-15 -2782 ((-3 (-1080 $ (-1191 $)) "failed") $)) (-15 -4229 ((-419 (-576)) $ $)))) (-13 (-860) (-374) (-1041))) (T -1043)) +((-2452 (*1 *1 *2 *3) (-12 (-5 *2 (-1080 (-1043 *4) (-1191 (-1043 *4)))) (-5 *3 (-874)) (-5 *1 (-1043 *4)) (-4 *4 (-13 (-860) (-374) (-1041))))) (-2782 (*1 *2 *1) (|partial| -12 (-5 *2 (-1080 (-1043 *3) (-1191 (-1043 *3)))) (-5 *1 (-1043 *3)) (-4 *3 (-13 (-860) (-374) (-1041))))) (-4229 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1043 *3)) (-4 *3 (-13 (-860) (-374) (-1041)))))) +(-13 (-1031) (-423 |#1|) (-38 |#1|) (-10 -8 (-15 -2452 ($ (-1080 $ (-1191 $)) (-874))) (-15 -2782 ((-3 (-1080 $ (-1191 $)) "failed") $)) (-15 -4229 ((-419 (-576)) $ $)))) +((-4113 (((-2 (|:| -3896 |#2|) (|:| -1832 (-656 |#1|))) |#2| (-656 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1044 |#1| |#2|) (-10 -7 (-15 -4113 (|#2| |#2| |#1|)) (-15 -4113 ((-2 (|:| -3896 |#2|) (|:| -1832 (-656 |#1|))) |#2| (-656 |#1|)))) (-374) (-668 |#1|)) (T -1044)) +((-4113 (*1 *2 *3 *4) (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3896 *3) (|:| -1832 (-656 *5)))) (-5 *1 (-1044 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5)))) (-4113 (*1 *2 *2 *3) (-12 (-4 *3 (-374)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-668 *3))))) +(-10 -7 (-15 -4113 (|#2| |#2| |#1|)) (-15 -4113 ((-2 (|:| -3896 |#2|) (|:| -1832 (-656 |#1|))) |#2| (-656 |#1|)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3017 ((|#1| $ |#1|) 14)) (-3731 ((|#1| $ |#1|) 12)) (-2386 (($ |#1|) 10)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2871 ((|#1| $) 11)) (-2683 ((|#1| $) 13)) (-3563 (((-874) $) 21 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2988 (((-112) $ $) 9))) +(((-1045 |#1|) (-13 (-1236) (-10 -8 (-15 -2386 ($ |#1|)) (-15 -2871 (|#1| $)) (-15 -3731 (|#1| $ |#1|)) (-15 -2683 (|#1| $)) (-15 -3017 (|#1| $ |#1|)) (-15 -2988 ((-112) $ $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) (-1236)) (T -1045)) +((-2386 (*1 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-2871 (*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-3731 (*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-2683 (*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-3017 (*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) (-2988 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1045 *3)) (-4 *3 (-1236))))) +(-13 (-1236) (-10 -8 (-15 -2386 ($ |#1|)) (-15 -2871 (|#1| $)) (-15 -3731 (|#1| $ |#1|)) (-15 -2683 (|#1| $)) (-15 -3017 (|#1| $ |#1|)) (-15 -2988 ((-112) $ $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |#4|)))) (-656 |#4|)) NIL)) (-1968 (((-656 $) (-656 |#4|)) 118) (((-656 $) (-656 |#4|) (-112)) 119) (((-656 $) (-656 |#4|) (-112) (-112)) 117) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 120)) (-1991 (((-656 |#3|) $) NIL)) (-1665 (((-112) $) NIL)) (-4324 (((-112) $) NIL (|has| |#1| (-568)))) (-1587 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2596 ((|#4| |#4| $) NIL)) (-1760 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| $) 112)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2496 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 66)) (-3767 (($) NIL T CONST)) (-2359 (((-112) $) 29 (|has| |#1| (-568)))) (-4268 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2556 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1376 (((-112) $) NIL (|has| |#1| (-568)))) (-2905 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2147 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4056 (($ (-656 |#4|)) NIL)) (-3515 (((-3 $ "failed") $) 45)) (-1937 ((|#4| |#4| $) 69)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-3902 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-568)))) (-1426 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1679 ((|#4| |#4| $) NIL)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1852 (((-2 (|:| -2055 (-656 |#4|)) (|:| -3223 (-656 |#4|))) $) NIL)) (-3844 (((-112) |#4| $) NIL)) (-1548 (((-112) |#4| $) NIL)) (-2984 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2577 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 133)) (-3825 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-1453 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1734 ((|#3| $) 38)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#4|) $) 19 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-1763 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 23)) (-2653 (((-656 |#3|) $) NIL)) (-1845 (((-112) |#3| $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-3707 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-3355 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| |#4| $) 110)) (-3923 (((-3 |#4| "failed") $) 42)) (-2918 (((-656 $) |#4| $) 93)) (-1494 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-1992 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-2021 (((-656 $) |#4| $) 115) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 116) (((-656 $) |#4| (-656 $)) NIL)) (-1337 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 128)) (-2509 (($ |#4| $) 82) (($ (-656 |#4|) $) 83) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2181 (((-656 |#4|) $) NIL)) (-1521 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1582 ((|#4| |#4| $) NIL)) (-3391 (((-112) $ $) NIL)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1393 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2196 ((|#4| |#4| $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 (((-3 |#4| "failed") $) 40)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3229 (((-3 $ "failed") $ |#4|) 59)) (-1714 (($ $ |#4|) NIL) (((-656 $) |#4| $) 95) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 89)) (-4207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 17)) (-2597 (($) 14)) (-1433 (((-783) $) NIL)) (-1456 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) 13)) (-4076 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) 22)) (-1813 (($ $ |#3|) 52)) (-3418 (($ $ |#3|) 54)) (-3543 (($ $) NIL)) (-1794 (($ $ |#3|) NIL)) (-3563 (((-874) $) 35) (((-656 |#4|) $) 46)) (-2025 (((-783) $) NIL (|has| |#3| (-379)))) (-3985 (((-112) $ $) NIL)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1352 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-1744 (((-656 $) |#4| $) 92) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3094 (((-656 |#3|) $) NIL)) (-1877 (((-112) |#4| $) NIL)) (-1847 (((-112) |#3| $) 65)) (-2988 (((-112) $ $) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1046 |#1| |#2| |#3| |#4|) (-13 (-1090 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2509 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1968 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -1968 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -1337 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2577 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -1046)) +((-2509 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) (-4 *3 (-1084 *5 *6 *7)))) (-1968 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-1968 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-1337 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) (-2577 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1046 *5 *6 *7 *8))))) (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(-13 (-1090 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2509 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1968 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -1968 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -1337 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2577 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) +((-1903 (((-656 (-701 |#1|)) (-656 (-701 |#1|))) 70) (((-701 |#1|) (-701 |#1|)) 69) (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 68) (((-701 |#1|) (-701 |#1|) (-701 |#1|)) 65)) (-3508 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938)) 63) (((-701 |#1|) (-701 |#1|) (-938)) 62)) (-2308 (((-656 (-701 (-576))) (-656 (-656 (-576)))) 81) (((-656 (-701 (-576))) (-656 (-922 (-576))) (-576)) 80) (((-701 (-576)) (-656 (-576))) 77) (((-701 (-576)) (-922 (-576)) (-576)) 75)) (-3701 (((-701 (-969 |#1|)) (-783)) 95)) (-1374 (((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938)) 49 (|has| |#1| (-6 (-4463 "*")))) (((-701 |#1|) (-701 |#1|) (-938)) 47 (|has| |#1| (-6 (-4463 "*")))))) +(((-1047 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -1374 ((-701 |#1|) (-701 |#1|) (-938))) |%noBranch|) (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -1374 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) |%noBranch|) (-15 -3701 ((-701 (-969 |#1|)) (-783))) (-15 -3508 ((-701 |#1|) (-701 |#1|) (-938))) (-15 -3508 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) (-15 -1903 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1903 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1903 ((-701 |#1|) (-701 |#1|))) (-15 -1903 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2308 ((-701 (-576)) (-922 (-576)) (-576))) (-15 -2308 ((-701 (-576)) (-656 (-576)))) (-15 -2308 ((-656 (-701 (-576))) (-656 (-922 (-576))) (-576))) (-15 -2308 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) (-1068)) (T -1047)) +((-2308 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1047 *4)) (-4 *4 (-1068)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-922 (-576)))) (-5 *4 (-576)) (-5 *2 (-656 (-701 *4))) (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1047 *4)) (-4 *4 (-1068)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-922 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) (-1903 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-1903 (*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-1903 (*1 *2 *2 *2) (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-1903 (*1 *2 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) (-3508 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) (-3508 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-701 (-969 *4))) (-5 *1 (-1047 *4)) (-4 *4 (-1068)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) (|has| *4 (-6 (-4463 "*"))) (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (|has| *4 (-6 (-4463 "*"))) (-4 *4 (-1068)) (-5 *1 (-1047 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -1374 ((-701 |#1|) (-701 |#1|) (-938))) |%noBranch|) (IF (|has| |#1| (-6 (-4463 "*"))) (-15 -1374 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) |%noBranch|) (-15 -3701 ((-701 (-969 |#1|)) (-783))) (-15 -3508 ((-701 |#1|) (-701 |#1|) (-938))) (-15 -3508 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-938))) (-15 -1903 ((-701 |#1|) (-701 |#1|) (-701 |#1|))) (-15 -1903 ((-656 (-701 |#1|)) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1903 ((-701 |#1|) (-701 |#1|))) (-15 -1903 ((-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -2308 ((-701 (-576)) (-922 (-576)) (-576))) (-15 -2308 ((-701 (-576)) (-656 (-576)))) (-15 -2308 ((-656 (-701 (-576))) (-656 (-922 (-576))) (-576))) (-15 -2308 ((-656 (-701 (-576))) (-656 (-656 (-576)))))) +((-3949 (((-701 |#1|) (-656 (-701 |#1|)) (-1286 |#1|)) 70 (|has| |#1| (-317)))) (-2952 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 (-1286 |#1|))) 110 (|has| |#1| (-374))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 |#1|)) 117 (|has| |#1| (-374)))) (-4173 (((-1286 |#1|) (-656 (-1286 |#1|)) (-576)) 135 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-2061 (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-938)) 123 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112)) 122 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|))) 121 (-12 (|has| |#1| (-374)) (|has| |#1| (-379)))) (((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576)) 120 (-12 (|has| |#1| (-374)) (|has| |#1| (-379))))) (-4091 (((-112) (-656 (-701 |#1|))) 103 (|has| |#1| (-374))) (((-112) (-656 (-701 |#1|)) (-576)) 106 (|has| |#1| (-374)))) (-2370 (((-1286 (-1286 |#1|)) (-656 (-701 |#1|)) (-1286 |#1|)) 67 (|has| |#1| (-317)))) (-3481 (((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|)) 47)) (-4308 (((-701 |#1|) (-1286 (-1286 |#1|))) 40)) (-3888 (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576)) 94 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|))) 93 (|has| |#1| (-374))) (((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576)) 101 (|has| |#1| (-374))))) +(((-1048 |#1|) (-10 -7 (-15 -4308 ((-701 |#1|) (-1286 (-1286 |#1|)))) (-15 -3481 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2370 ((-1286 (-1286 |#1|)) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -3949 ((-701 |#1|) (-656 (-701 |#1|)) (-1286 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3888 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -3888 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3888 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -4091 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -4091 ((-112) (-656 (-701 |#1|)))) (-15 -2952 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -2952 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 (-1286 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -2061 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -2061 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -2061 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -2061 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-938))) (-15 -4173 ((-1286 |#1|) (-656 (-1286 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) (-1068)) (T -1048)) +((-4173 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1286 *5))) (-5 *4 (-576)) (-5 *2 (-1286 *5)) (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)))) (-2061 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-2061 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1068)) (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1048 *4)) (-5 *3 (-656 (-701 *4))))) (-2061 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) (-4 *6 (-1068)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1048 *6)) (-5 *3 (-656 (-701 *6))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *4 (-1286 (-1286 *5))) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-2952 (*1 *2 *3 *4) (-12 (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-1048 *4)))) (-4091 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-1048 *5)))) (-3888 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-1068)))) (-3888 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1048 *4)) (-4 *4 (-374)) (-4 *4 (-1068)))) (-3888 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) (-5 *2 (-701 *6)) (-5 *1 (-1048 *6)) (-4 *6 (-374)) (-4 *6 (-1068)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1286 *5)) (-4 *5 (-317)) (-4 *5 (-1068)) (-5 *2 (-701 *5)) (-5 *1 (-1048 *5)))) (-2370 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1068)) (-5 *2 (-1286 (-1286 *5))) (-5 *1 (-1048 *5)) (-5 *4 (-1286 *5)))) (-3481 (*1 *2 *3 *2) (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1068)) (-5 *1 (-1048 *4)))) (-4308 (*1 *2 *3) (-12 (-5 *3 (-1286 (-1286 *4))) (-4 *4 (-1068)) (-5 *2 (-701 *4)) (-5 *1 (-1048 *4))))) +(-10 -7 (-15 -4308 ((-701 |#1|) (-1286 (-1286 |#1|)))) (-15 -3481 ((-701 |#1|) (-656 (-701 |#1|)) (-701 |#1|))) (IF (|has| |#1| (-317)) (PROGN (-15 -2370 ((-1286 (-1286 |#1|)) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -3949 ((-701 |#1|) (-656 (-701 |#1|)) (-1286 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3888 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-112) (-576))) (-15 -3888 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3888 ((-701 |#1|) (-656 (-701 |#1|)) (-656 (-701 |#1|)) (-576))) (-15 -4091 ((-112) (-656 (-701 |#1|)) (-576))) (-15 -4091 ((-112) (-656 (-701 |#1|)))) (-15 -2952 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 |#1|))) (-15 -2952 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-1286 (-1286 |#1|))))) |%noBranch|) (IF (|has| |#1| (-379)) (IF (|has| |#1| (-374)) (PROGN (-15 -2061 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112) (-576) (-576))) (-15 -2061 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)))) (-15 -2061 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-112))) (-15 -2061 ((-656 (-656 (-701 |#1|))) (-656 (-701 |#1|)) (-938))) (-15 -4173 ((-1286 |#1|) (-656 (-1286 |#1|)) (-576)))) |%noBranch|) |%noBranch|)) +((-2677 ((|#1| (-938) |#1|) 18))) +(((-1049 |#1|) (-10 -7 (-15 -2677 (|#1| (-938) |#1|))) (-13 (-1119) (-10 -8 (-15 -3083 ($ $ $))))) (T -1049)) +((-2677 (*1 *2 *3 *2) (-12 (-5 *3 (-938)) (-5 *1 (-1049 *2)) (-4 *2 (-13 (-1119) (-10 -8 (-15 -3083 ($ $ $)))))))) +(-10 -7 (-15 -2677 (|#1| (-938) |#1|))) +((-2767 (((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-969 (-576))))) 67)) (-3288 (((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-969 (-576))))) 52)) (-2964 (((-656 (-326 (-576))) (-701 (-419 (-969 (-576))))) 45)) (-1899 (((-656 (-701 (-326 (-576)))) (-701 (-419 (-969 (-576))))) 85)) (-2222 (((-701 (-326 (-576))) (-701 (-326 (-576)))) 38)) (-3587 (((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576))))) 74)) (-1827 (((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-969 (-576))))) 82))) +(((-1050) (-10 -7 (-15 -2767 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-969 (-576)))))) (-15 -3288 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-969 (-576)))))) (-15 -2964 ((-656 (-326 (-576))) (-701 (-419 (-969 (-576)))))) (-15 -1827 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-969 (-576)))))) (-15 -2222 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -3587 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -1899 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-969 (-576)))))))) (T -1050)) +((-1899 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050)))) (-1827 (*1 *2 *3) (|partial| -12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050)))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-326 (-576)))) (-5 *1 (-1050)))) (-3288 (*1 *2 *3 *4) (-12 (-5 *4 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)) (-5 *3 (-326 (-576))))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576)))))))) (-5 *1 (-1050))))) +(-10 -7 (-15 -2767 ((-656 (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) (|:| |radvect| (-656 (-701 (-326 (-576))))))) (-701 (-419 (-969 (-576)))))) (-15 -3288 ((-656 (-701 (-326 (-576)))) (-326 (-576)) (-701 (-419 (-969 (-576)))))) (-15 -2964 ((-656 (-326 (-576))) (-701 (-419 (-969 (-576)))))) (-15 -1827 ((-3 (-701 (-326 (-576))) "failed") (-701 (-419 (-969 (-576)))))) (-15 -2222 ((-701 (-326 (-576))) (-701 (-326 (-576))))) (-15 -3587 ((-656 (-701 (-326 (-576)))) (-656 (-701 (-326 (-576)))))) (-15 -1899 ((-656 (-701 (-326 (-576)))) (-701 (-419 (-969 (-576))))))) +((-3149 ((|#1| |#1| (-938)) 18))) +(((-1051 |#1|) (-10 -7 (-15 -3149 (|#1| |#1| (-938)))) (-13 (-1119) (-10 -8 (-15 * ($ $ $))))) (T -1051)) +((-3149 (*1 *2 *2 *3) (-12 (-5 *3 (-938)) (-5 *1 (-1051 *2)) (-4 *2 (-13 (-1119) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3149 (|#1| |#1| (-938)))) +((-3563 ((|#1| (-322)) 11) (((-1291) |#1|) 9))) +(((-1052 |#1|) (-10 -7 (-15 -3563 ((-1291) |#1|)) (-15 -3563 (|#1| (-322)))) (-1236)) (T -1052)) +((-3563 (*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1052 *2)) (-4 *2 (-1236)))) (-3563 (*1 *2 *3) (-12 (-5 *2 (-1291)) (-5 *1 (-1052 *3)) (-4 *3 (-1236))))) +(-10 -7 (-15 -3563 ((-1291) |#1|)) (-15 -3563 (|#1| (-322)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-2521 (($ |#4|) 25)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-2510 ((|#4| $) 27)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 46) (($ (-576)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-1858 (((-783)) 43 T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 21 T CONST)) (-2810 (($) 23 T CONST)) (-2988 (((-112) $ $) 40)) (-3095 (($ $) 31) (($ $ $) NIL)) (-3083 (($ $ $) 29)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1053 |#1| |#2| |#3| |#4| |#5|) (-13 (-174) (-38 |#1|) (-10 -8 (-15 -2521 ($ |#4|)) (-15 -3563 ($ |#4|)) (-15 -2510 (|#4| $)))) (-374) (-805) (-862) (-966 |#1| |#2| |#3|) (-656 |#4|)) (T -1053)) +((-2521 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5)) (-14 *6 (-656 *2)))) (-3563 (*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5)) (-14 *6 (-656 *2)))) (-2510 (*1 *2 *1) (-12 (-4 *2 (-966 *3 *4 *5)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2))))) +(-13 (-174) (-38 |#1|) (-10 -8 (-15 -2521 ($ |#4|)) (-15 -3563 ($ |#4|)) (-15 -2510 (|#4| $)))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL)) (-2333 (((-1291) $ (-1195) (-1195)) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3753 (((-112) (-112)) 43)) (-1332 (((-112) (-112)) 42)) (-3731 (((-52) $ (-1195) (-52)) NIL)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 (-52) "failed") (-1195) $) NIL)) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3623 (($ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-3 (-52) "failed") (-1195) $) NIL)) (-3902 (($ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-1776 (((-52) $ (-1195) (-52)) NIL (|has| $ (-6 -4462)))) (-1698 (((-52) $ (-1195)) NIL)) (-3825 (((-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-1195) $) NIL (|has| (-1195) (-862)))) (-2591 (((-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1119))))) (-3814 (((-1195) $) NIL (|has| (-1195) (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3135 (((-656 (-1195)) $) 37)) (-2937 (((-112) (-1195) $) NIL)) (-1409 (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL)) (-2040 (($ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL)) (-3321 (((-656 (-1195)) $) NIL)) (-2378 (((-112) (-1195) $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3504 (((-52) $) NIL (|has| (-1195) (-862)))) (-2644 (((-3 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) "failed") (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL)) (-2500 (($ $ (-52)) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))))) NIL (-12 (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ $ (-304 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL (-12 (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ $ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) NIL (-12 (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ $ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL (-12 (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1119))))) (-1947 (((-656 (-52)) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 (((-52) $ (-1195)) 39) (((-52) $ (-1195) (-52)) NIL)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1119)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL)) (-3563 (((-874) $) 41 (-2835 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-625 (-874)))))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1054) (-13 (-1212 (-1195) (-52)) (-10 -7 (-15 -3753 ((-112) (-112))) (-15 -1332 ((-112) (-112))) (-6 -4461)))) (T -1054)) +((-3753 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054))))) +(-13 (-1212 (-1195) (-52)) (-10 -7 (-15 -3753 ((-112) (-112))) (-15 -1332 ((-112) (-112))) (-6 -4461))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4269 (((-1154) $) 9)) (-3563 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1055) (-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $))))) (T -1055)) +((-4269 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1055))))) +(-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)))) +((-4056 ((|#2| $) 10))) +(((-1056 |#1| |#2|) (-10 -8 (-15 -4056 (|#2| |#1|))) (-1057 |#2|) (-1236)) (T -1056)) +NIL +(-10 -8 (-15 -4056 (|#2| |#1|))) +((-1539 (((-3 |#1| "failed") $) 9)) (-4056 ((|#1| $) 8)) (-3563 (($ |#1|) 6))) +(((-1057 |#1|) (-141) (-1236)) (T -1057)) +((-1539 (*1 *2 *1) (|partial| -12 (-4 *1 (-1057 *2)) (-4 *2 (-1236)))) (-4056 (*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1236))))) +(-13 (-628 |t#1|) (-10 -8 (-15 -1539 ((-3 |t#1| "failed") $)) (-15 -4056 (|t#1| $)))) (((-628 |#1|) . T)) -((-1860 (((-656 (-656 (-304 (-419 (-969 |#2|))))) (-656 (-969 |#2|)) (-656 (-1196))) 38))) -(((-1058 |#1| |#2|) (-10 -7 (-15 -1860 ((-656 (-656 (-304 (-419 (-969 |#2|))))) (-656 (-969 |#2|)) (-656 (-1196))))) (-568) (-13 (-568) (-1057 |#1|))) (T -1058)) -((-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-4 *6 (-13 (-568) (-1057 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *6)))))) (-5 *1 (-1058 *5 *6))))) -(-10 -7 (-15 -1860 ((-656 (-656 (-304 (-419 (-969 |#2|))))) (-656 (-969 |#2|)) (-656 (-1196))))) -((-3465 (((-390)) 17)) (-1853 (((-1 (-390)) (-390) (-390)) 22)) (-4220 (((-1 (-390)) (-783)) 48)) (-3913 (((-390)) 37)) (-2296 (((-1 (-390)) (-390) (-390)) 38)) (-3920 (((-390)) 29)) (-1970 (((-1 (-390)) (-390)) 30)) (-2771 (((-390) (-783)) 43)) (-2194 (((-1 (-390)) (-783)) 44)) (-2221 (((-1 (-390)) (-783) (-783)) 47)) (-1802 (((-1 (-390)) (-783) (-783)) 45))) -(((-1059) (-10 -7 (-15 -3465 ((-390))) (-15 -3913 ((-390))) (-15 -3920 ((-390))) (-15 -2771 ((-390) (-783))) (-15 -1853 ((-1 (-390)) (-390) (-390))) (-15 -2296 ((-1 (-390)) (-390) (-390))) (-15 -1970 ((-1 (-390)) (-390))) (-15 -2194 ((-1 (-390)) (-783))) (-15 -1802 ((-1 (-390)) (-783) (-783))) (-15 -2221 ((-1 (-390)) (-783) (-783))) (-15 -4220 ((-1 (-390)) (-783))))) (T -1059)) -((-4220 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-2221 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-1802 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-1970 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) (-2296 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) (-1853 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1059)))) (-3920 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))) (-3913 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))) (-3465 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059))))) -(-10 -7 (-15 -3465 ((-390))) (-15 -3913 ((-390))) (-15 -3920 ((-390))) (-15 -2771 ((-390) (-783))) (-15 -1853 ((-1 (-390)) (-390) (-390))) (-15 -2296 ((-1 (-390)) (-390) (-390))) (-15 -1970 ((-1 (-390)) (-390))) (-15 -2194 ((-1 (-390)) (-783))) (-15 -1802 ((-1 (-390)) (-783) (-783))) (-15 -2221 ((-1 (-390)) (-783) (-783))) (-15 -4220 ((-1 (-390)) (-783)))) -((-1392 (((-430 |#1|) |#1|) 33))) -(((-1060 |#1|) (-10 -7 (-15 -1392 ((-430 |#1|) |#1|))) (-1263 (-419 (-969 (-576))))) (T -1060)) -((-1392 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-1263 (-419 (-969 (-576)))))))) -(-10 -7 (-15 -1392 ((-430 |#1|) |#1|))) -((-4042 (((-419 (-430 (-969 |#1|))) (-419 (-969 |#1|))) 14))) -(((-1061 |#1|) (-10 -7 (-15 -4042 ((-419 (-430 (-969 |#1|))) (-419 (-969 |#1|))))) (-317)) (T -1061)) -((-4042 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-969 *4)))) (-5 *1 (-1061 *4))))) -(-10 -7 (-15 -4042 ((-419 (-430 (-969 |#1|))) (-419 (-969 |#1|))))) -((-1541 (((-656 (-1196)) (-419 (-969 |#1|))) 17)) (-1364 (((-419 (-1192 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196)) 24)) (-1529 (((-419 (-969 |#1|)) (-419 (-1192 (-419 (-969 |#1|)))) (-1196)) 26)) (-3403 (((-3 (-1196) "failed") (-419 (-969 |#1|))) 20)) (-2259 (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-304 (-419 (-969 |#1|))))) 32) (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|)))) 33) (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-1196)) (-656 (-419 (-969 |#1|)))) 28) (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|))) 29)) (-4092 (((-419 (-969 |#1|)) |#1|) 11))) -(((-1062 |#1|) (-10 -7 (-15 -1541 ((-656 (-1196)) (-419 (-969 |#1|)))) (-15 -3403 ((-3 (-1196) "failed") (-419 (-969 |#1|)))) (-15 -1364 ((-419 (-1192 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196))) (-15 -1529 ((-419 (-969 |#1|)) (-419 (-1192 (-419 (-969 |#1|)))) (-1196))) (-15 -2259 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)))) (-15 -2259 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-1196)) (-656 (-419 (-969 |#1|))))) (-15 -2259 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -2259 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -4092 ((-419 (-969 |#1|)) |#1|))) (-568)) (T -1062)) -((-4092 (*1 *2 *3) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-1062 *3)) (-4 *3 (-568)))) (-2259 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) (-5 *2 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *1 (-1062 *4)))) (-2259 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-5 *2 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *1 (-1062 *4)))) (-2259 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1196))) (-5 *4 (-656 (-419 (-969 *5)))) (-5 *2 (-419 (-969 *5))) (-4 *5 (-568)) (-5 *1 (-1062 *5)))) (-2259 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-1062 *4)))) (-1529 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1192 (-419 (-969 *5))))) (-5 *4 (-1196)) (-5 *2 (-419 (-969 *5))) (-5 *1 (-1062 *5)) (-4 *5 (-568)))) (-1364 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-419 (-1192 (-419 (-969 *5))))) (-5 *1 (-1062 *5)) (-5 *3 (-419 (-969 *5))))) (-3403 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-1196)) (-5 *1 (-1062 *4)))) (-1541 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1196))) (-5 *1 (-1062 *4))))) -(-10 -7 (-15 -1541 ((-656 (-1196)) (-419 (-969 |#1|)))) (-15 -3403 ((-3 (-1196) "failed") (-419 (-969 |#1|)))) (-15 -1364 ((-419 (-1192 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196))) (-15 -1529 ((-419 (-969 |#1|)) (-419 (-1192 (-419 (-969 |#1|)))) (-1196))) (-15 -2259 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)))) (-15 -2259 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-1196)) (-656 (-419 (-969 |#1|))))) (-15 -2259 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -2259 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -4092 ((-419 (-969 |#1|)) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3656 (($) 18 T CONST)) (-3331 ((|#1| $) 23)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2613 ((|#1| $) 22)) (-1353 ((|#1|) 20 T CONST)) (-4092 (((-874) $) 12)) (-3280 ((|#1| $) 21)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16))) +((-2848 (((-656 (-656 (-304 (-419 (-969 |#2|))))) (-656 (-969 |#2|)) (-656 (-1195))) 38))) +(((-1058 |#1| |#2|) (-10 -7 (-15 -2848 ((-656 (-656 (-304 (-419 (-969 |#2|))))) (-656 (-969 |#2|)) (-656 (-1195))))) (-568) (-13 (-568) (-1057 |#1|))) (T -1058)) +((-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1195))) (-4 *6 (-13 (-568) (-1057 *5))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *6)))))) (-5 *1 (-1058 *5 *6))))) +(-10 -7 (-15 -2848 ((-656 (-656 (-304 (-419 (-969 |#2|))))) (-656 (-969 |#2|)) (-656 (-1195))))) +((-2947 (((-390)) 17)) (-4042 (((-1 (-390)) (-390) (-390)) 22)) (-2818 (((-1 (-390)) (-783)) 48)) (-4023 (((-390)) 37)) (-2960 (((-1 (-390)) (-390) (-390)) 38)) (-3458 (((-390)) 29)) (-2916 (((-1 (-390)) (-390)) 30)) (-1998 (((-390) (-783)) 43)) (-2512 (((-1 (-390)) (-783)) 44)) (-2060 (((-1 (-390)) (-783) (-783)) 47)) (-3177 (((-1 (-390)) (-783) (-783)) 45))) +(((-1059) (-10 -7 (-15 -2947 ((-390))) (-15 -4023 ((-390))) (-15 -3458 ((-390))) (-15 -1998 ((-390) (-783))) (-15 -4042 ((-1 (-390)) (-390) (-390))) (-15 -2960 ((-1 (-390)) (-390) (-390))) (-15 -2916 ((-1 (-390)) (-390))) (-15 -2512 ((-1 (-390)) (-783))) (-15 -3177 ((-1 (-390)) (-783) (-783))) (-15 -2060 ((-1 (-390)) (-783) (-783))) (-15 -2818 ((-1 (-390)) (-783))))) (T -1059)) +((-2818 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-2060 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-3177 (*1 *2 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) (-2916 (*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) (-2960 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) (-4042 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1059)))) (-3458 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))) (-4023 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059)))) (-2947 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059))))) +(-10 -7 (-15 -2947 ((-390))) (-15 -4023 ((-390))) (-15 -3458 ((-390))) (-15 -1998 ((-390) (-783))) (-15 -4042 ((-1 (-390)) (-390) (-390))) (-15 -2960 ((-1 (-390)) (-390) (-390))) (-15 -2916 ((-1 (-390)) (-390))) (-15 -2512 ((-1 (-390)) (-783))) (-15 -3177 ((-1 (-390)) (-783) (-783))) (-15 -2060 ((-1 (-390)) (-783) (-783))) (-15 -2818 ((-1 (-390)) (-783)))) +((-1839 (((-430 |#1|) |#1|) 33))) +(((-1060 |#1|) (-10 -7 (-15 -1839 ((-430 |#1|) |#1|))) (-1262 (-419 (-969 (-576))))) (T -1060)) +((-1839 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1060 *3)) (-4 *3 (-1262 (-419 (-969 (-576)))))))) +(-10 -7 (-15 -1839 ((-430 |#1|) |#1|))) +((-2897 (((-419 (-430 (-969 |#1|))) (-419 (-969 |#1|))) 14))) +(((-1061 |#1|) (-10 -7 (-15 -2897 ((-419 (-430 (-969 |#1|))) (-419 (-969 |#1|))))) (-317)) (T -1061)) +((-2897 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-317)) (-5 *2 (-419 (-430 (-969 *4)))) (-5 *1 (-1061 *4))))) +(-10 -7 (-15 -2897 ((-419 (-430 (-969 |#1|))) (-419 (-969 |#1|))))) +((-1991 (((-656 (-1195)) (-419 (-969 |#1|))) 17)) (-3999 (((-419 (-1191 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1195)) 24)) (-1980 (((-419 (-969 |#1|)) (-419 (-1191 (-419 (-969 |#1|)))) (-1195)) 26)) (-4209 (((-3 (-1195) "failed") (-419 (-969 |#1|))) 20)) (-3306 (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-304 (-419 (-969 |#1|))))) 32) (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|)))) 33) (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-1195)) (-656 (-419 (-969 |#1|)))) 28) (((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-1195) (-419 (-969 |#1|))) 29)) (-3563 (((-419 (-969 |#1|)) |#1|) 11))) +(((-1062 |#1|) (-10 -7 (-15 -1991 ((-656 (-1195)) (-419 (-969 |#1|)))) (-15 -4209 ((-3 (-1195) "failed") (-419 (-969 |#1|)))) (-15 -3999 ((-419 (-1191 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1195))) (-15 -1980 ((-419 (-969 |#1|)) (-419 (-1191 (-419 (-969 |#1|)))) (-1195))) (-15 -3306 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-1195) (-419 (-969 |#1|)))) (-15 -3306 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-1195)) (-656 (-419 (-969 |#1|))))) (-15 -3306 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -3306 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -3563 ((-419 (-969 |#1|)) |#1|))) (-568)) (T -1062)) +((-3563 (*1 *2 *3) (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-1062 *3)) (-4 *3 (-568)))) (-3306 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) (-5 *2 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *1 (-1062 *4)))) (-3306 (*1 *2 *2 *3) (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-5 *2 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *1 (-1062 *4)))) (-3306 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-656 (-1195))) (-5 *4 (-656 (-419 (-969 *5)))) (-5 *2 (-419 (-969 *5))) (-4 *5 (-568)) (-5 *1 (-1062 *5)))) (-3306 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-1062 *4)))) (-1980 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1191 (-419 (-969 *5))))) (-5 *4 (-1195)) (-5 *2 (-419 (-969 *5))) (-5 *1 (-1062 *5)) (-4 *5 (-568)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-568)) (-5 *2 (-419 (-1191 (-419 (-969 *5))))) (-5 *1 (-1062 *5)) (-5 *3 (-419 (-969 *5))))) (-4209 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-1195)) (-5 *1 (-1062 *4)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1195))) (-5 *1 (-1062 *4))))) +(-10 -7 (-15 -1991 ((-656 (-1195)) (-419 (-969 |#1|)))) (-15 -4209 ((-3 (-1195) "failed") (-419 (-969 |#1|)))) (-15 -3999 ((-419 (-1191 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1195))) (-15 -1980 ((-419 (-969 |#1|)) (-419 (-1191 (-419 (-969 |#1|)))) (-1195))) (-15 -3306 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-1195) (-419 (-969 |#1|)))) (-15 -3306 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-1195)) (-656 (-419 (-969 |#1|))))) (-15 -3306 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-304 (-419 (-969 |#1|))))) (-15 -3306 ((-419 (-969 |#1|)) (-419 (-969 |#1|)) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -3563 ((-419 (-969 |#1|)) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3767 (($) 18 T CONST)) (-3580 ((|#1| $) 23)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2750 ((|#1| $) 22)) (-3973 ((|#1|) 20 T CONST)) (-3563 (((-874) $) 12)) (-2403 ((|#1| $) 21)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16))) (((-1063 |#1|) (-141) (-23)) (T -1063)) -((-3331 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-1353 (*1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3331 (|t#1| $)) (-15 -2613 (|t#1| $)) (-15 -3280 (|t#1| $)) (-15 -1353 (|t#1|) -2670))) +((-3580 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-2750 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23)))) (-3973 (*1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3580 (|t#1| $)) (-15 -2750 (|t#1| $)) (-15 -2403 (|t#1| $)) (-15 -3973 (|t#1|) -1398))) (((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-2345 (($) 25 T CONST)) (-3656 (($) 18 T CONST)) (-3331 ((|#1| $) 23)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2613 ((|#1| $) 22)) (-1353 ((|#1|) 20 T CONST)) (-4092 (((-874) $) 12)) (-3280 ((|#1| $) 21)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3197 (($) 25 T CONST)) (-3767 (($) 18 T CONST)) (-3580 ((|#1| $) 23)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2750 ((|#1| $) 22)) (-3973 ((|#1|) 20 T CONST)) (-3563 (((-874) $) 12)) (-2403 ((|#1| $) 21)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16))) (((-1064 |#1|) (-141) (-23)) (T -1064)) -((-2345 (*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) -(-13 (-1063 |t#1|) (-10 -8 (-15 -2345 ($) -2670))) +((-3197 (*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) +(-13 (-1063 |t#1|) (-10 -8 (-15 -3197 ($) -1398))) (((-23) . T) ((-25) . T) ((-102) . T) ((-625 (-874)) . T) ((-1063 |#1|) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 (-792 |#1| (-876 |#2|)))))) (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-2567 (((-656 $) (-656 (-792 |#1| (-876 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112)) NIL)) (-1541 (((-656 (-876 |#2|)) $) NIL)) (-3522 (((-112) $) NIL)) (-2932 (((-112) $) NIL (|has| |#1| (-568)))) (-1701 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-2919 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1587 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -4385 $))) (-792 |#1| (-876 |#2|)) $) NIL)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ (-876 |#2|)) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3457 (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 (-792 |#1| (-876 |#2|)) "failed") $ (-876 |#2|)) NIL)) (-3656 (($) NIL T CONST)) (-3425 (((-112) $) NIL (|has| |#1| (-568)))) (-2623 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3347 (((-112) $) NIL (|has| |#1| (-568)))) (-1574 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-4135 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-1639 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-2378 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-2712 (((-3 $ "failed") $) NIL)) (-3996 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119))))) (-2892 (($ (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-3532 (((-112) (-792 |#1| (-876 |#2|)) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-2948 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-2359 (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|))) NIL (|has| $ (-6 -4462))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-2740 (((-2 (|:| -1627 (-656 (-792 |#1| (-876 |#2|)))) (|:| -3709 (-656 (-792 |#1| (-876 |#2|))))) $) NIL)) (-3638 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-1752 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-2040 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-4260 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3871 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-2565 (((-876 |#2|) $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119))))) (-3874 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL)) (-2964 (((-656 (-876 |#2|)) $) NIL)) (-2459 (((-112) (-876 |#2|) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-4204 (((-3 (-792 |#1| (-876 |#2|)) (-656 $)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3918 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -4385 $))) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-2912 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-3860 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL)) (-2711 (((-3 (-112) (-656 $)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1851 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 $))) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-3586 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL)) (-3869 (($ (-792 |#1| (-876 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-2106 (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-3593 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-4395 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3711 (((-112) $ $) NIL)) (-1617 (((-2 (|:| |num| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-1875 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-3987 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-1863 (((-3 (-792 |#1| (-876 |#2|)) "failed") (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL)) (-1479 (((-3 $ "failed") $ (-792 |#1| (-876 |#2|))) NIL)) (-2843 (($ $ (-792 |#1| (-876 |#2|))) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-3292 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ $ (-304 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ $ (-656 (-304 (-792 |#1| (-876 |#2|))))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-2369 (((-783) $) NIL)) (-3150 (((-783) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (((-783) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-792 |#1| (-876 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-1606 (($ $ (-876 |#2|)) NIL)) (-2333 (($ $ (-876 |#2|)) NIL)) (-2792 (($ $) NIL)) (-2875 (($ $ (-876 |#2|)) NIL)) (-4092 (((-874) $) NIL) (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-2727 (((-783) $) NIL (|has| (-876 |#2|) (-379)))) (-1531 (((-112) $ $) NIL)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-2196 (((-112) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-656 (-792 |#1| (-876 |#2|))))) NIL)) (-4088 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-2190 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1895 (((-656 (-876 |#2|)) $) NIL)) (-2813 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-4101 (((-112) (-876 |#2|) $) NIL)) (-3919 (((-112) $ $) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1065 |#1| |#2|) (-13 (-1090 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -2567 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112))))) (-464) (-656 (-1196))) (T -1065)) -((-2567 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1065 *5 *6))))) -(-13 (-1090 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -2567 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112))))) -((-1853 (((-1 (-576)) (-1113 (-576))) 32)) (-4214 (((-576) (-576) (-576) (-576) (-576)) 29)) (-1590 (((-1 (-576)) |RationalNumber|) NIL)) (-3585 (((-1 (-576)) |RationalNumber|) NIL)) (-1760 (((-1 (-576)) (-576) |RationalNumber|) NIL))) -(((-1066) (-10 -7 (-15 -1853 ((-1 (-576)) (-1113 (-576)))) (-15 -1760 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -1590 ((-1 (-576)) |RationalNumber|)) (-15 -3585 ((-1 (-576)) |RationalNumber|)) (-15 -4214 ((-576) (-576) (-576) (-576) (-576))))) (T -1066)) -((-4214 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1066)))) (-3585 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))) (-1590 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))) (-1760 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)) (-5 *3 (-576)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1113 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1066))))) -(-10 -7 (-15 -1853 ((-1 (-576)) (-1113 (-576)))) (-15 -1760 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -1590 ((-1 (-576)) |RationalNumber|)) (-15 -3585 ((-1 (-576)) |RationalNumber|)) (-15 -4214 ((-576) (-576) (-576) (-576) (-576)))) -((-4092 (((-874) $) NIL) (($ (-576)) 10))) -(((-1067 |#1|) (-10 -8 (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) (-1068)) (T -1067)) -NIL -(-10 -8 (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 33)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3474 (((-112) $ $) NIL)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 (-792 |#1| (-876 |#2|)))))) (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-1968 (((-656 $) (-656 (-792 |#1| (-876 |#2|)))) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112)) NIL)) (-1991 (((-656 (-876 |#2|)) $) NIL)) (-1665 (((-112) $) NIL)) (-4324 (((-112) $) NIL (|has| |#1| (-568)))) (-1587 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-2596 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1760 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -3887 $))) (-792 |#1| (-876 |#2|)) $) NIL)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ (-876 |#2|)) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2496 (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 (-792 |#1| (-876 |#2|)) "failed") $ (-876 |#2|)) NIL)) (-3767 (($) NIL T CONST)) (-2359 (((-112) $) NIL (|has| |#1| (-568)))) (-4268 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2556 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1376 (((-112) $) NIL (|has| |#1| (-568)))) (-2905 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-2147 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-1648 (((-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-4056 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-3515 (((-3 $ "failed") $) NIL)) (-1937 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1119))))) (-3902 (($ (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-1426 (((-112) (-792 |#1| (-876 |#2|)) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-1679 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-2521 (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $ (-792 |#1| (-876 |#2|))) NIL (|has| $ (-6 -4461))) (((-792 |#1| (-876 |#2|)) (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-1852 (((-2 (|:| -2055 (-656 (-792 |#1| (-876 |#2|)))) (|:| -3223 (-656 (-792 |#1| (-876 |#2|))))) $) NIL)) (-3844 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-1548 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-2984 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-3825 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1453 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-1734 (((-876 |#2|) $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1119))))) (-1763 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) $) NIL)) (-2653 (((-656 (-876 |#2|)) $) NIL)) (-1845 (((-112) (-876 |#2|) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-3707 (((-3 (-792 |#1| (-876 |#2|)) (-656 $)) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3355 (((-656 (-2 (|:| |val| (-792 |#1| (-876 |#2|))) (|:| -3887 $))) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3923 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-2918 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL)) (-1494 (((-3 (-112) (-656 $)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1992 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 $))) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-2021 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL)) (-2509 (($ (-792 |#1| (-876 |#2|)) $) NIL) (($ (-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-2181 (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-1521 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-1582 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-3391 (((-112) $ $) NIL)) (-1461 (((-2 (|:| |num| (-792 |#1| (-876 |#2|))) (|:| |den| |#1|)) (-792 |#1| (-876 |#2|)) $) NIL (|has| |#1| (-568)))) (-1393 (((-112) (-792 |#1| (-876 |#2|)) $) NIL) (((-112) $) NIL)) (-2196 (((-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)) $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 (((-3 (-792 |#1| (-876 |#2|)) "failed") $) NIL)) (-2644 (((-3 (-792 |#1| (-876 |#2|)) "failed") (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL)) (-3229 (((-3 $ "failed") $ (-792 |#1| (-876 |#2|))) NIL)) (-1714 (($ $ (-792 |#1| (-876 |#2|))) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-4207 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-792 |#1| (-876 |#2|))) (-656 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ $ (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ $ (-304 (-792 |#1| (-876 |#2|)))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (($ $ (-656 (-304 (-792 |#1| (-876 |#2|))))) NIL (-12 (|has| (-792 |#1| (-876 |#2|)) (-319 (-792 |#1| (-876 |#2|)))) (|has| (-792 |#1| (-876 |#2|)) (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-1433 (((-783) $) NIL)) (-1456 (((-783) (-792 |#1| (-876 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-792 |#1| (-876 |#2|)) (-1119)))) (((-783) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-792 |#1| (-876 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-792 |#1| (-876 |#2|)))) NIL)) (-1813 (($ $ (-876 |#2|)) NIL)) (-3418 (($ $ (-876 |#2|)) NIL)) (-3543 (($ $) NIL)) (-1794 (($ $ (-876 |#2|)) NIL)) (-3563 (((-874) $) NIL) (((-656 (-792 |#1| (-876 |#2|))) $) NIL)) (-2025 (((-783) $) NIL (|has| (-876 |#2|) (-379)))) (-3985 (((-112) $ $) NIL)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 (-792 |#1| (-876 |#2|))))) "failed") (-656 (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|))) (-1 (-112) (-792 |#1| (-876 |#2|)) (-792 |#1| (-876 |#2|)))) NIL)) (-1352 (((-112) $ (-1 (-112) (-792 |#1| (-876 |#2|)) (-656 (-792 |#1| (-876 |#2|))))) NIL)) (-1744 (((-656 $) (-792 |#1| (-876 |#2|)) $) NIL) (((-656 $) (-792 |#1| (-876 |#2|)) (-656 $)) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) $) NIL) (((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-656 $)) NIL)) (-2043 (((-112) (-1 (-112) (-792 |#1| (-876 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-3094 (((-656 (-876 |#2|)) $) NIL)) (-1877 (((-112) (-792 |#1| (-876 |#2|)) $) NIL)) (-1847 (((-112) (-876 |#2|) $) NIL)) (-2988 (((-112) $ $) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1065 |#1| |#2|) (-13 (-1090 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -1968 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112))))) (-464) (-656 (-1195))) (T -1065)) +((-1968 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1065 *5 *6))))) +(-13 (-1090 |#1| (-543 (-876 |#2|)) (-876 |#2|) (-792 |#1| (-876 |#2|))) (-10 -8 (-15 -1968 ((-656 $) (-656 (-792 |#1| (-876 |#2|))) (-112) (-112))))) +((-4042 (((-1 (-576)) (-1113 (-576))) 32)) (-2260 (((-576) (-576) (-576) (-576) (-576)) 29)) (-3960 (((-1 (-576)) |RationalNumber|) NIL)) (-3132 (((-1 (-576)) |RationalNumber|) NIL)) (-4114 (((-1 (-576)) (-576) |RationalNumber|) NIL))) +(((-1066) (-10 -7 (-15 -4042 ((-1 (-576)) (-1113 (-576)))) (-15 -4114 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -3960 ((-1 (-576)) |RationalNumber|)) (-15 -3132 ((-1 (-576)) |RationalNumber|)) (-15 -2260 ((-576) (-576) (-576) (-576) (-576))))) (T -1066)) +((-2260 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1066)))) (-3132 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))) (-3960 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)) (-5 *3 (-576)))) (-4042 (*1 *2 *3) (-12 (-5 *3 (-1113 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1066))))) +(-10 -7 (-15 -4042 ((-1 (-576)) (-1113 (-576)))) (-15 -4114 ((-1 (-576)) (-576) |RationalNumber|)) (-15 -3960 ((-1 (-576)) |RationalNumber|)) (-15 -3132 ((-1 (-576)) |RationalNumber|)) (-15 -2260 ((-576) (-576) (-576) (-576) (-576)))) +((-3563 (((-874) $) NIL) (($ (-576)) 10))) +(((-1067 |#1|) (-10 -8 (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) (-1068)) (T -1067)) +NIL +(-10 -8 (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 33)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-1068) (-141)) (T -1068)) -((-2471 (*1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-783))))) -(-13 (-1077) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -2471 ((-783)) -2670) (-6 -4459))) +((-1858 (*1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-783))))) +(-13 (-1077) (-738) (-660 $) (-628 (-576)) (-10 -7 (-15 -1858 ((-783)) -1398) (-6 -4458))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-628 (-576)) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-738) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-4267 (((-419 (-969 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54))) -(((-1069 |#1| |#2|) (-10 -7 (-15 -4267 ((-419 (-969 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1196) (-374)) (T -1069)) -((-4267 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-969 *6))) (-5 *1 (-1069 *5 *6)) (-14 *5 (-1196))))) -(-10 -7 (-15 -4267 ((-419 (-969 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) +((-3219 (((-419 (-969 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)) 54))) +(((-1069 |#1| |#2|) (-10 -7 (-15 -3219 ((-419 (-969 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) (-1195) (-374)) (T -1069)) +((-3219 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) (-5 *2 (-419 (-969 *6))) (-5 *1 (-1069 *5 *6)) (-14 *5 (-1195))))) +(-10 -7 (-15 -3219 ((-419 (-969 |#2|)) (-656 |#2|) (-656 |#2|) (-783) (-783)))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6)) (* (($ $ |#1|) 14))) (((-1070 |#1|) (-141) (-1131)) (T -1070)) ((* (*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1131))))) (-13 (-1119) (-10 -8 (-15 * ($ $ |t#1|)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2454 (((-112) $) 38)) (-2478 (((-112) $) 17)) (-2126 (((-783) $) 13)) (-2140 (((-783) $) 14)) (-2849 (((-112) $) 30)) (-1485 (((-112) $) 40))) -(((-1071 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2140 ((-783) |#1|)) (-15 -2126 ((-783) |#1|)) (-15 -1485 ((-112) |#1|)) (-15 -2454 ((-112) |#1|)) (-15 -2849 ((-112) |#1|)) (-15 -2478 ((-112) |#1|))) (-1072 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1068) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1071)) +((-1491 (((-112) $) 38)) (-4294 (((-112) $) 17)) (-1622 (((-783) $) 13)) (-1636 (((-783) $) 14)) (-4237 (((-112) $) 30)) (-2609 (((-112) $) 40))) +(((-1071 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1636 ((-783) |#1|)) (-15 -1622 ((-783) |#1|)) (-15 -2609 ((-112) |#1|)) (-15 -1491 ((-112) |#1|)) (-15 -4237 ((-112) |#1|)) (-15 -4294 ((-112) |#1|))) (-1072 |#2| |#3| |#4| |#5| |#6|) (-783) (-783) (-1068) (-243 |#3| |#4|) (-243 |#2| |#4|)) (T -1071)) NIL -(-10 -8 (-15 -2140 ((-783) |#1|)) (-15 -2126 ((-783) |#1|)) (-15 -1485 ((-112) |#1|)) (-15 -2454 ((-112) |#1|)) (-15 -2849 ((-112) |#1|)) (-15 -2478 ((-112) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-2454 (((-112) $) 56)) (-3788 (((-3 $ "failed") $ $) 20)) (-2478 (((-112) $) 58)) (-2835 (((-112) $ (-783)) 66)) (-3656 (($) 18 T CONST)) (-2664 (($ $) 39 (|has| |#3| (-317)))) (-4059 ((|#4| $ (-576)) 44)) (-4049 (((-783) $) 38 (|has| |#3| (-568)))) (-3817 ((|#3| $ (-576) (-576)) 46)) (-4260 (((-656 |#3|) $) 73 (|has| $ (-6 -4462)))) (-1659 (((-783) $) 37 (|has| |#3| (-568)))) (-3865 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-2126 (((-783) $) 50)) (-2140 (((-783) $) 49)) (-1419 (((-112) $ (-783)) 65)) (-4217 (((-576) $) 54)) (-1961 (((-576) $) 52)) (-1750 (((-656 |#3|) $) 74 (|has| $ (-6 -4462)))) (-3990 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1119)) (|has| $ (-6 -4462))))) (-1439 (((-576) $) 53)) (-2743 (((-576) $) 51)) (-3297 (($ (-656 (-656 |#3|))) 59)) (-3874 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2318 (((-656 (-656 |#3|)) $) 48)) (-3103 (((-112) $ (-783)) 64)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2022 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-3292 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1905 (((-112) $ $) 60)) (-3372 (((-112) $) 63)) (-2643 (($) 62)) (-4367 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-2849 (((-112) $) 57)) (-3150 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4462)))) (-4268 (($ $) 61)) (-1762 ((|#5| $ (-576)) 43)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-2190 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4462)))) (-1485 (((-112) $) 55)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2048 (((-783) $) 67 (|has| $ (-6 -4462))))) +(-10 -8 (-15 -1636 ((-783) |#1|)) (-15 -1622 ((-783) |#1|)) (-15 -2609 ((-112) |#1|)) (-15 -1491 ((-112) |#1|)) (-15 -4237 ((-112) |#1|)) (-15 -4294 ((-112) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1491 (((-112) $) 56)) (-1367 (((-3 $ "failed") $ $) 20)) (-4294 (((-112) $) 58)) (-3131 (((-112) $ (-783)) 66)) (-3767 (($) 18 T CONST)) (-3243 (($ $) 39 (|has| |#3| (-317)))) (-1946 ((|#4| $ (-576)) 44)) (-3606 (((-783) $) 38 (|has| |#3| (-568)))) (-1698 ((|#3| $ (-576) (-576)) 46)) (-3825 (((-656 |#3|) $) 73 (|has| $ (-6 -4461)))) (-2849 (((-783) $) 37 (|has| |#3| (-568)))) (-2115 (((-656 |#5|) $) 36 (|has| |#3| (-568)))) (-1622 (((-783) $) 50)) (-1636 (((-783) $) 49)) (-3115 (((-112) $ (-783)) 65)) (-1650 (((-576) $) 54)) (-1351 (((-576) $) 52)) (-2591 (((-656 |#3|) $) 74 (|has| $ (-6 -4461)))) (-2511 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1119)) (|has| $ (-6 -4461))))) (-4159 (((-576) $) 53)) (-4062 (((-576) $) 51)) (-2457 (($ (-656 (-656 |#3|))) 59)) (-1763 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-2156 (((-656 (-656 |#3|)) $) 48)) (-2712 (((-112) $ (-783)) 64)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3463 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-568)))) (-4207 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#3|) (-656 |#3|)) 80 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) 78 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 (-304 |#3|))) 77 (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1693 (((-112) $ $) 60)) (-1911 (((-112) $) 63)) (-2597 (($) 62)) (-2871 ((|#3| $ (-576) (-576)) 47) ((|#3| $ (-576) (-576) |#3|) 45)) (-4237 (((-112) $) 57)) (-1456 (((-783) |#3| $) 75 (-12 (|has| |#3| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4461)))) (-1954 (($ $) 61)) (-4331 ((|#5| $ (-576)) 43)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2043 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4461)))) (-2609 (((-112) $) 55)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#3|) 40 (|has| |#3| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3485 (((-783) $) 67 (|has| $ (-6 -4461))))) (((-1072 |#1| |#2| |#3| |#4| |#5|) (-141) (-783) (-783) (-1068) (-243 |t#2| |t#3|) (-243 |t#1| |t#3|)) (T -1072)) -((-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3297 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1068)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2478 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2743 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-4367 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068)))) (-3817 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068)))) (-4367 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *2 (-1068)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-4059 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *2 *7)) (-4 *6 (-1068)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *7 *2)) (-4 *6 (-1068)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-2477 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2022 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-2664 (*1 *1 *1) (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-3865 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7))))) -(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4462) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -3297 ($ (-656 (-656 |t#3|)))) (-15 -2478 ((-112) $)) (-15 -2849 ((-112) $)) (-15 -2454 ((-112) $)) (-15 -1485 ((-112) $)) (-15 -4217 ((-576) $)) (-15 -1439 ((-576) $)) (-15 -1961 ((-576) $)) (-15 -2743 ((-576) $)) (-15 -2126 ((-783) $)) (-15 -2140 ((-783) $)) (-15 -2318 ((-656 (-656 |t#3|)) $)) (-15 -4367 (|t#3| $ (-576) (-576))) (-15 -3817 (|t#3| $ (-576) (-576))) (-15 -4367 (|t#3| $ (-576) (-576) |t#3|)) (-15 -4059 (|t#4| $ (-576))) (-15 -1762 (|t#5| $ (-576))) (-15 -2477 ($ (-1 |t#3| |t#3|) $)) (-15 -2477 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -2022 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -4028 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -2664 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -4049 ((-783) $)) (-15 -1659 ((-783) $)) (-15 -3865 ((-656 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-874)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))) ((-658 (-576)) . T) ((-658 |#3|) . T) ((-660 |#3|) . T) ((-652 |#3|) |has| |#3| (-174)) ((-729 |#3|) |has| |#3| (-174)) ((-1070 |#3|) . T) ((-1075 |#3|) . T) ((-1119) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2454 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2478 (((-112) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3656 (($) NIL T CONST)) (-2664 (($ $) 47 (|has| |#3| (-317)))) (-4059 (((-245 |#2| |#3|) $ (-576)) 36)) (-1893 (($ (-701 |#3|)) 45)) (-4049 (((-783) $) 49 (|has| |#3| (-568)))) (-3817 ((|#3| $ (-576) (-576)) NIL)) (-4260 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-1659 (((-783) $) 51 (|has| |#3| (-568)))) (-3865 (((-656 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-2126 (((-783) $) NIL)) (-2140 (((-783) $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-4217 (((-576) $) NIL)) (-1961 (((-576) $) NIL)) (-1750 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-1439 (((-576) $) NIL)) (-2743 (((-576) $) NIL)) (-3297 (($ (-656 (-656 |#3|))) 31)) (-3874 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2318 (((-656 (-656 |#3|)) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2022 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-3292 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-3667 (((-135)) 59 (|has| |#3| (-374)))) (-2849 (((-112) $) NIL)) (-3150 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-1762 (((-245 |#1| |#3|) $ (-576)) 40)) (-4092 (((-874) $) 19) (((-701 |#3|) $) 42)) (-1531 (((-112) $ $) NIL)) (-2190 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-1485 (((-112) $) NIL)) (-4300 (($) 16 T CONST)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1073 |#1| |#2| |#3|) (-13 (-1072 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1294 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -1893 ($ (-701 |#3|))))) (-783) (-783) (-1068)) (T -1073)) -((-1893 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1068)) (-5 *1 (-1073 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783))))) -(-13 (-1072 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1294 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -1893 ($ (-701 |#3|))))) -((-2359 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2477 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1074 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2477 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2359 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1068) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1072 |#1| |#2| |#3| |#4| |#5|) (-1068) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1072 |#1| |#2| |#7| |#8| |#9|)) (T -1074)) -((-2359 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1068)) (-4 *2 (-1068)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *12 (-1072 *5 *6 *2 *10 *11)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1068)) (-4 *10 (-1068)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1072 *5 *6 *10 *11 *12)) (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) -(-10 -7 (-15 -2477 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2359 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) +((-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-2457 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1068)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-4237 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112)))) (-1650 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-4062 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783)))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) (-2871 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068)))) (-1698 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068)))) (-2871 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *2 (-1068)) (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) (-1946 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *2 *7)) (-4 *6 (-1068)) (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6)))) (-4331 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *7 *2)) (-4 *6 (-1068)) (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6)))) (-1632 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)))) (-3463 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) (-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) (-3243 (*1 *1 *1) (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-2849 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-783)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) (-5 *2 (-656 *7))))) +(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4461) (IF (|has| |t#3| (-174)) (-6 (-729 |t#3|)) |%noBranch|) (-15 -2457 ($ (-656 (-656 |t#3|)))) (-15 -4294 ((-112) $)) (-15 -4237 ((-112) $)) (-15 -1491 ((-112) $)) (-15 -2609 ((-112) $)) (-15 -1650 ((-576) $)) (-15 -4159 ((-576) $)) (-15 -1351 ((-576) $)) (-15 -4062 ((-576) $)) (-15 -1622 ((-783) $)) (-15 -1636 ((-783) $)) (-15 -2156 ((-656 (-656 |t#3|)) $)) (-15 -2871 (|t#3| $ (-576) (-576))) (-15 -1698 (|t#3| $ (-576) (-576))) (-15 -2871 (|t#3| $ (-576) (-576) |t#3|)) (-15 -1946 (|t#4| $ (-576))) (-15 -4331 (|t#5| $ (-576))) (-15 -1632 ($ (-1 |t#3| |t#3|) $)) (-15 -1632 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-568)) (-15 -3463 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-374)) (-15 -3107 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-317)) (-15 -3243 ($ $)) |%noBranch|) (IF (|has| |t#3| (-568)) (PROGN (-15 -3606 ((-783) $)) (-15 -2849 ((-783) $)) (-15 -2115 ((-656 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-132) . T) ((-625 (-874)) . T) ((-319 |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))) ((-658 (-576)) . T) ((-658 |#3|) . T) ((-660 |#3|) . T) ((-652 |#3|) |has| |#3| (-174)) ((-729 |#3|) |has| |#3| (-174)) ((-1070 |#3|) . T) ((-1075 |#3|) . T) ((-1119) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1491 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4294 (((-112) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-3767 (($) NIL T CONST)) (-3243 (($ $) 47 (|has| |#3| (-317)))) (-1946 (((-245 |#2| |#3|) $ (-576)) 36)) (-2851 (($ (-701 |#3|)) 45)) (-3606 (((-783) $) 49 (|has| |#3| (-568)))) (-1698 ((|#3| $ (-576) (-576)) NIL)) (-3825 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-2849 (((-783) $) 51 (|has| |#3| (-568)))) (-2115 (((-656 (-245 |#1| |#3|)) $) 55 (|has| |#3| (-568)))) (-1622 (((-783) $) NIL)) (-1636 (((-783) $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1650 (((-576) $) NIL)) (-1351 (((-576) $) NIL)) (-2591 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1119))))) (-4159 (((-576) $) NIL)) (-4062 (((-576) $) NIL)) (-2457 (($ (-656 (-656 |#3|))) 31)) (-1763 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2156 (((-656 (-656 |#3|)) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3463 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-568)))) (-4207 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#3| $ (-576) (-576)) NIL) ((|#3| $ (-576) (-576) |#3|) NIL)) (-2446 (((-135)) 59 (|has| |#3| (-374)))) (-4237 (((-112) $) NIL)) (-1456 (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1119)))) (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) 65 (|has| |#3| (-626 (-548))))) (-4331 (((-245 |#1| |#3|) $ (-576)) 40)) (-3563 (((-874) $) 19) (((-701 |#3|) $) 42)) (-3985 (((-112) $ $) NIL)) (-2043 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-2609 (((-112) $) NIL)) (-2800 (($) 16 T CONST)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1073 |#1| |#2| |#3|) (-13 (-1072 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1293 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2851 ($ (-701 |#3|))))) (-783) (-783) (-1068)) (T -1073)) +((-2851 (*1 *1 *2) (-12 (-5 *2 (-701 *5)) (-4 *5 (-1068)) (-5 *1 (-1073 *3 *4 *5)) (-14 *3 (-783)) (-14 *4 (-783))))) +(-13 (-1072 |#1| |#2| |#3| (-245 |#2| |#3|) (-245 |#1| |#3|)) (-625 (-701 |#3|)) (-10 -8 (IF (|has| |#3| (-374)) (-6 (-1293 |#3|)) |%noBranch|) (IF (|has| |#3| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|) (-15 -2851 ($ (-701 |#3|))))) +((-2521 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-1632 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1074 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1632 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2521 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-783) (-783) (-1068) (-243 |#2| |#3|) (-243 |#1| |#3|) (-1072 |#1| |#2| |#3| |#4| |#5|) (-1068) (-243 |#2| |#7|) (-243 |#1| |#7|) (-1072 |#1| |#2| |#7| |#8| |#9|)) (T -1074)) +((-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1068)) (-4 *2 (-1068)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *12 (-1072 *5 *6 *2 *10 *11)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1068)) (-4 *10 (-1068)) (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) (-4 *9 (-243 *5 *7)) (-4 *2 (-1072 *5 *6 *10 *11 *12)) (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10))))) +(-10 -7 (-15 -1632 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2521 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ |#1|) 27))) (((-1075 |#1|) (-141) (-1077)) (T -1075)) NIL (-13 (-21) (-1070 |t#1|)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1070 |#1|) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1615 (((-1196) $) 11)) (-1745 ((|#1| $) 12)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2510 (($ (-1196) |#1|) 10)) (-4092 (((-874) $) 22 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3919 (((-112) $ $) 17 (|has| |#1| (-1119))))) -(((-1076 |#1| |#2|) (-13 (-1237) (-10 -8 (-15 -2510 ($ (-1196) |#1|)) (-15 -1615 ((-1196) $)) (-15 -1745 (|#1| $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) (-1112 |#2|) (-1237)) (T -1076)) -((-2510 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-4 *4 (-1237)) (-5 *1 (-1076 *3 *4)) (-4 *3 (-1112 *4)))) (-1615 (*1 *2 *1) (-12 (-4 *4 (-1237)) (-5 *2 (-1196)) (-5 *1 (-1076 *3 *4)) (-4 *3 (-1112 *4)))) (-1745 (*1 *2 *1) (-12 (-4 *2 (-1112 *3)) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -2510 ($ (-1196) |#1|)) (-15 -1615 ((-1196) $)) (-15 -1745 (|#1| $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3022 (((-1195) $) 11)) (-2834 ((|#1| $) 12)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2366 (($ (-1195) |#1|) 10)) (-3563 (((-874) $) 22 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2988 (((-112) $ $) 17 (|has| |#1| (-1119))))) +(((-1076 |#1| |#2|) (-13 (-1236) (-10 -8 (-15 -2366 ($ (-1195) |#1|)) (-15 -3022 ((-1195) $)) (-15 -2834 (|#1| $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) (-1112 |#2|) (-1236)) (T -1076)) +((-2366 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-4 *4 (-1236)) (-5 *1 (-1076 *3 *4)) (-4 *3 (-1112 *4)))) (-3022 (*1 *2 *1) (-12 (-4 *4 (-1236)) (-5 *2 (-1195)) (-5 *1 (-1076 *3 *4)) (-4 *3 (-1112 *4)))) (-2834 (*1 *2 *1) (-12 (-4 *2 (-1112 *3)) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1236))))) +(-13 (-1236) (-10 -8 (-15 -2366 ($ (-1195) |#1|)) (-15 -3022 ((-1195) $)) (-15 -2834 (|#1| $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) (((-1077) (-141)) (T -1077)) NIL (-13 (-21) (-1131)) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-1131) . T) ((-1119) . T)) -((-2255 (($ $) 17)) (-4327 (($ $) 25)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 55)) (-4252 (($ $) 27)) (-1846 (($ $) 12)) (-3892 (($ $) 43)) (-1505 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) 36)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-2471 (((-783)) 9)) (-4179 (($ $) 45))) -(((-1078 |#1|) (-10 -8 (-15 -4327 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -4179 (|#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -4375 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| (-576))) (-15 -1505 ((-227) |#1|)) (-15 -1505 ((-390) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| |#1|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) (-1079)) (T -1078)) -((-2471 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1078 *3)) (-4 *3 (-1079))))) -(-10 -8 (-15 -4327 (|#1| |#1|)) (-15 -2255 (|#1| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -3892 (|#1| |#1|)) (-15 -4179 (|#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -4375 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| (-576))) (-15 -1505 ((-227) |#1|)) (-15 -1505 ((-390) |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| |#1|)) (-15 -2471 ((-783))) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3942 (((-576) $) 97)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-2255 (($ $) 95)) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-1403 (($ $) 105)) (-4407 (((-112) $ $) 65)) (-3934 (((-576) $) 122)) (-3656 (($) 18 T CONST)) (-4327 (($ $) 94)) (-2974 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-2378 (((-576) $) 111) (((-419 (-576)) $) 108)) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-2725 (((-112) $) 79)) (-3567 (((-112) $) 120)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 104)) (-4252 (($ $) 100)) (-3713 (((-112) $) 121)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3492 (($ $ $) 119)) (-2726 (($ $ $) 118)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 78)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1846 (($ $) 96)) (-3892 (($ $) 98)) (-1392 (((-430 $) $) 82)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-1505 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-2471 (((-783)) 32 T CONST)) (-4179 (($ $) 99)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-3423 (($ $) 123)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3977 (((-112) $ $) 116)) (-3955 (((-112) $ $) 115)) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 117)) (-3944 (((-112) $ $) 114)) (-4028 (($ $ $) 73)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) +((-1615 (($ $) 17)) (-2703 (($ $) 25)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 55)) (-4072 (($ $) 27)) (-1465 (($ $) 12)) (-3835 (($ $) 43)) (-4076 (((-390) $) NIL) (((-227) $) NIL) (((-905 (-390)) $) 36)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL) (($ (-419 (-576))) 31) (($ (-576)) NIL) (($ (-419 (-576))) 31)) (-1858 (((-783)) 9)) (-3270 (($ $) 45))) +(((-1078 |#1|) (-10 -8 (-15 -2703 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3270 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -3526 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| (-576))) (-15 -4076 ((-227) |#1|)) (-15 -4076 ((-390) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| |#1|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) (-1079)) (T -1078)) +((-1858 (*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1078 *3)) (-4 *3 (-1079))))) +(-10 -8 (-15 -2703 (|#1| |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1465 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3270 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -3526 ((-902 (-390) |#1|) |#1| (-905 (-390)) (-902 (-390) |#1|))) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| (-576))) (-15 -4076 ((-227) |#1|)) (-15 -4076 ((-390) |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| |#1|)) (-15 -1858 ((-783))) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1560 (((-576) $) 97)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1615 (($ $) 95)) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-1853 (($ $) 105)) (-1727 (((-112) $ $) 65)) (-2184 (((-576) $) 122)) (-3767 (($) 18 T CONST)) (-2703 (($ $) 94)) (-1539 (((-3 (-576) "failed") $) 110) (((-3 (-419 (-576)) "failed") $) 107)) (-4056 (((-576) $) 111) (((-419 (-576)) $) 108)) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-1792 (((-112) $) 79)) (-1910 (((-112) $) 120)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 101)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 104)) (-4072 (($ $) 100)) (-3566 (((-112) $) 121)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-2442 (($ $ $) 119)) (-1893 (($ $ $) 118)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 78)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-1465 (($ $) 96)) (-3835 (($ $) 98)) (-1839 (((-430 $) $) 82)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-4076 (((-390) $) 113) (((-227) $) 112) (((-905 (-390)) $) 102)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ (-576)) 109) (($ (-419 (-576))) 106)) (-1858 (((-783)) 32 T CONST)) (-3270 (($ $) 99)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2264 (($ $) 123)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-3049 (((-112) $ $) 116)) (-3024 (((-112) $ $) 115)) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 117)) (-3010 (((-112) $ $) 114)) (-3107 (($ $ $) 73)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77) (($ $ (-419 (-576))) 103)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75))) (((-1079) (-141)) (T -1079)) -((-3423 (*1 *1 *1) (-4 *1 (-1079))) (-4252 (*1 *1 *1) (-4 *1 (-1079))) (-4179 (*1 *1 *1) (-4 *1 (-1079))) (-3892 (*1 *1 *1) (-4 *1 (-1079))) (-3942 (*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-576)))) (-1846 (*1 *1 *1) (-4 *1 (-1079))) (-2255 (*1 *1 *1) (-4 *1 (-1079))) (-4327 (*1 *1 *1) (-4 *1 (-1079)))) -(-13 (-374) (-860) (-1041) (-1057 (-576)) (-1057 (-419 (-576))) (-1021) (-626 (-905 (-390))) (-899 (-390)) (-148) (-10 -8 (-15 -4252 ($ $)) (-15 -4179 ($ $)) (-15 -3892 ($ $)) (-15 -3942 ((-576) $)) (-15 -1846 ($ $)) (-15 -2255 ($ $)) (-15 -4327 ($ $)) (-15 -3423 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-937) . T) ((-1021) . T) ((-1041) . T) ((-1057 (-419 (-576))) . T) ((-1057 (-576)) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) |#2| $) 26)) (-2247 ((|#1| $) 10)) (-3934 (((-576) |#2| $) 116)) (-1935 (((-3 $ "failed") |#2| (-938)) 75)) (-2128 ((|#1| $) 31)) (-1496 ((|#1| |#2| $ |#1|) 40)) (-2198 (($ $) 28)) (-3179 (((-3 |#2| "failed") |#2| $) 111)) (-3567 (((-112) |#2| $) NIL)) (-3713 (((-112) |#2| $) NIL)) (-1494 (((-112) |#2| $) 27)) (-1685 ((|#1| $) 117)) (-2114 ((|#1| $) 30)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2840 ((|#2| $) 102)) (-4092 (((-874) $) 92)) (-1531 (((-112) $ $) NIL)) (-2728 ((|#1| |#2| $ |#1|) 41)) (-4089 (((-656 $) |#2|) 77)) (-3919 (((-112) $ $) 97))) -(((-1080 |#1| |#2|) (-13 (-1087 |#1| |#2|) (-10 -8 (-15 -2114 (|#1| $)) (-15 -2128 (|#1| $)) (-15 -2247 (|#1| $)) (-15 -1685 (|#1| $)) (-15 -2198 ($ $)) (-15 -1494 ((-112) |#2| $)) (-15 -1496 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1263 |#1|)) (T -1080)) -((-1496 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-2114 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-2128 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-2247 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-1685 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-2198 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1263 *2)))) (-1494 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1080 *4 *3)) (-4 *3 (-1263 *4))))) -(-13 (-1087 |#1| |#2|) (-10 -8 (-15 -2114 (|#1| $)) (-15 -2128 (|#1| $)) (-15 -2247 (|#1| $)) (-15 -1685 (|#1| $)) (-15 -2198 ($ $)) (-15 -1494 ((-112) |#2| $)) (-15 -1496 (|#1| |#2| $ |#1|)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4253 (($ $ $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2908 (($ $ $ $) NIL)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-3934 (((-576) $) NIL)) (-3298 (($ $ $) NIL)) (-3656 (($) NIL T CONST)) (-3741 (($ (-1196)) 10) (($ (-576)) 7)) (-2974 (((-3 (-576) "failed") $) NIL)) (-2378 (((-576) $) NIL)) (-1975 (($ $ $) NIL)) (-3687 (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1653 (((-3 (-419 (-576)) "failed") $) NIL)) (-3863 (((-112) $) NIL)) (-4266 (((-419 (-576)) $) NIL)) (-2446 (($) NIL) (($ $) NIL)) (-1986 (($ $ $) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-2217 (($ $ $ $) NIL)) (-3166 (($ $ $) NIL)) (-3567 (((-112) $) NIL)) (-2135 (($ $ $) NIL)) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1810 (((-112) $) NIL)) (-3082 (((-112) $) NIL)) (-2083 (((-3 $ "failed") $) NIL)) (-3713 (((-112) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3077 (($ $ $ $) NIL)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-2391 (($ $) NIL)) (-1325 (($ $) NIL)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-2268 (($ $ $) NIL)) (-3503 (($) NIL T CONST)) (-3796 (($ $) NIL)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1765 (($ $) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2015 (((-112) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-3614 (($ $) NIL) (($ $ (-783)) NIL)) (-3273 (($ $) NIL)) (-4268 (($ $) NIL)) (-1505 (((-576) $) 16) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1196)) 9)) (-4092 (((-874) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-2471 (((-783)) NIL T CONST)) (-4276 (((-112) $ $) NIL)) (-1760 (($ $ $) NIL)) (-1531 (((-112) $ $) NIL)) (-1841 (($) NIL)) (-2947 (((-112) $ $) NIL)) (-2967 (($ $ $ $) NIL)) (-3423 (($ $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL)) (-4018 (($ $) 22) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) -(((-1081) (-13 (-557) (-630 (-1196)) (-10 -8 (-6 -4449) (-6 -4454) (-6 -4450) (-15 -3741 ($ (-1196))) (-15 -3741 ($ (-576)))))) (T -1081)) -((-3741 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1081)))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1081))))) -(-13 (-557) (-630 (-1196)) (-10 -8 (-6 -4449) (-6 -4454) (-6 -4450) (-15 -3741 ($ (-1196))) (-15 -3741 ($ (-576))))) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL)) (-2449 (((-1292) $ (-1196) (-1196)) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-3212 (($) 9)) (-4248 (((-52) $ (-1196) (-52)) NIL)) (-4016 (($ $) 32)) (-1605 (($ $) 30)) (-4318 (($ $) 29)) (-1781 (($ $) 31)) (-4321 (($ $) 35)) (-2410 (($ $) 36)) (-2245 (($ $) 28)) (-3813 (($ $) 33)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) 27 (|has| $ (-6 -4462)))) (-2131 (((-3 (-52) "failed") (-1196) $) 43)) (-3656 (($) NIL T CONST)) (-1784 (($) 7)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-4376 (($ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) 53 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-3 (-52) "failed") (-1196) $) NIL)) (-2892 (($ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462)))) (-2773 (((-3 (-1178) "failed") $ (-1178) (-576)) 72)) (-3888 (((-52) $ (-1196) (-52)) NIL (|has| $ (-6 -4463)))) (-3817 (((-52) $ (-1196)) NIL)) (-4260 (((-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-1196) $) NIL (|has| (-1196) (-862)))) (-1750 (((-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) 38 (|has| $ (-6 -4462))) (((-656 (-52)) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-4315 (((-1196) $) NIL (|has| (-1196) (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4463))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-2364 (((-656 (-1196)) $) NIL)) (-3700 (((-112) (-1196) $) NIL)) (-3576 (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL)) (-2361 (($ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) 46)) (-4428 (((-656 (-1196)) $) NIL)) (-2013 (((-112) (-1196) $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-4004 (((-390) $ (-1196)) 52)) (-3213 (((-656 (-1178)) $ (-1178)) 74)) (-2701 (((-52) $) NIL (|has| (-1196) (-862)))) (-1863 (((-3 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) "failed") (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL)) (-2918 (($ $ (-52)) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))))) NIL (-12 (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ $ (-304 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL (-12 (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ $ (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) NIL (-12 (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ $ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL (-12 (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-319 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119))))) (-3060 (((-656 (-52)) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 (((-52) $ (-1196)) NIL) (((-52) $ (-1196) (-52)) NIL)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL)) (-3253 (($ $ (-1196)) 54)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-52) (-1119)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) 40)) (-2851 (($ $ $) 41)) (-4092 (((-874) $) NIL (-3765 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-625 (-874)))))) (-1321 (($ $ (-1196) (-390)) 50)) (-4184 (($ $ (-1196) (-390)) 51)) (-1531 (((-112) $ $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 (-1196)) (|:| -2900 (-52)))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-52) (-1119)) (|has| (-2 (|:| -2371 (-1196)) (|:| -2900 (-52))) (-1119))))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1082) (-13 (-1213 (-1196) (-52)) (-10 -8 (-15 -2851 ($ $ $)) (-15 -1784 ($)) (-15 -2245 ($ $)) (-15 -4318 ($ $)) (-15 -1605 ($ $)) (-15 -1781 ($ $)) (-15 -3813 ($ $)) (-15 -4016 ($ $)) (-15 -4321 ($ $)) (-15 -2410 ($ $)) (-15 -1321 ($ $ (-1196) (-390))) (-15 -4184 ($ $ (-1196) (-390))) (-15 -4004 ((-390) $ (-1196))) (-15 -3213 ((-656 (-1178)) $ (-1178))) (-15 -3253 ($ $ (-1196))) (-15 -3212 ($)) (-15 -2773 ((-3 (-1178) "failed") $ (-1178) (-576))) (-6 -4462)))) (T -1082)) -((-2851 (*1 *1 *1 *1) (-5 *1 (-1082))) (-1784 (*1 *1) (-5 *1 (-1082))) (-2245 (*1 *1 *1) (-5 *1 (-1082))) (-4318 (*1 *1 *1) (-5 *1 (-1082))) (-1605 (*1 *1 *1) (-5 *1 (-1082))) (-1781 (*1 *1 *1) (-5 *1 (-1082))) (-3813 (*1 *1 *1) (-5 *1 (-1082))) (-4016 (*1 *1 *1) (-5 *1 (-1082))) (-4321 (*1 *1 *1) (-5 *1 (-1082))) (-2410 (*1 *1 *1) (-5 *1 (-1082))) (-1321 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1082)))) (-4184 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1082)))) (-4004 (*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-390)) (-5 *1 (-1082)))) (-3213 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1082)) (-5 *3 (-1178)))) (-3253 (*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1082)))) (-3212 (*1 *1) (-5 *1 (-1082))) (-2773 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-1082))))) -(-13 (-1213 (-1196) (-52)) (-10 -8 (-15 -2851 ($ $ $)) (-15 -1784 ($)) (-15 -2245 ($ $)) (-15 -4318 ($ $)) (-15 -1605 ($ $)) (-15 -1781 ($ $)) (-15 -3813 ($ $)) (-15 -4016 ($ $)) (-15 -4321 ($ $)) (-15 -2410 ($ $)) (-15 -1321 ($ $ (-1196) (-390))) (-15 -4184 ($ $ (-1196) (-390))) (-15 -4004 ((-390) $ (-1196))) (-15 -3213 ((-656 (-1178)) $ (-1178))) (-15 -3253 ($ $ (-1196))) (-15 -3212 ($)) (-15 -2773 ((-3 (-1178) "failed") $ (-1178) (-576))) (-6 -4462))) -((-3053 (($ $) 46)) (-3034 (((-112) $ $) 82)) (-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-969 (-419 (-576)))) 247) (((-3 $ "failed") (-969 (-576))) 246) (((-3 $ "failed") (-969 |#2|)) 249)) (-2378 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-969 (-419 (-576)))) 235) (($ (-969 (-576))) 231) (($ (-969 |#2|)) 255)) (-1717 (($ $) NIL) (($ $ |#4|) 44)) (-3532 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-3530 (((-112) $) 60)) (-4215 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 125)) (-3598 (($ $) 160)) (-3954 (($ $) 156)) (-1663 (($ $) 155)) (-4417 (($ $ $) 87) (($ $ $ |#4|) 92)) (-2504 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3871 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-2565 ((|#4| $) 32)) (-2039 (($ $ $) 128)) (-2863 (((-112) $) 59)) (-3718 (((-783) $) 35)) (-4194 (($ $) 174)) (-4120 (($ $) 171)) (-2731 (((-656 $) $) 72)) (-3303 (($ $) 62)) (-2234 (($ $) 167)) (-3394 (((-656 $) $) 69)) (-2848 (($ $) 64)) (-1692 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1421 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1522 (-783))) $ $) 130)) (-1894 (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $) 126) (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $ |#4|) 127)) (-2650 (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -4400 $)) $ $) 121) (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -4400 $)) $ $ |#4|) 123)) (-2708 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3628 (($ $ $) 98) (($ $ $ |#4|) 107)) (-4368 (((-656 $) $) 54)) (-3593 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-4395 (($ $ $) 116)) (-3503 (($ $) 37)) (-3711 (((-112) $ $) 80)) (-1875 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-3987 (($ $ $) 112)) (-3989 (($ $) 41)) (-3149 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-3229 (($ $ |#2|) NIL) (($ $ $) 153)) (-4278 (($ $ |#2|) 148) (($ $ $) 151)) (-2327 (($ $) 49)) (-2235 (($ $) 55)) (-1505 (((-905 (-390)) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (($ (-969 (-419 (-576)))) 237) (($ (-969 (-576))) 233) (($ (-969 |#2|)) 248) (((-1178) $) 279) (((-969 |#2|) $) 184)) (-4092 (((-874) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-969 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-1491 (((-3 (-112) "failed") $ $) 79))) -(((-1083 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4092 (|#1| |#1|)) (-15 -3149 (|#1| |#1| |#1|)) (-15 -3149 (|#1| (-656 |#1|))) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 ((-969 |#2|) |#1|)) (-15 -1505 ((-969 |#2|) |#1|)) (-15 -1505 ((-1178) |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4120 (|#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3149 (|#2| |#2| |#1|)) (-15 -3229 (|#1| |#1| |#1|)) (-15 -4278 (|#1| |#1| |#1|)) (-15 -3229 (|#1| |#1| |#2|)) (-15 -4278 (|#1| |#1| |#2|)) (-15 -3954 (|#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -1505 (|#1| (-969 |#2|))) (-15 -2378 (|#1| (-969 |#2|))) (-15 -2974 ((-3 |#1| "failed") (-969 |#2|))) (-15 -1505 (|#1| (-969 (-576)))) (-15 -2378 (|#1| (-969 (-576)))) (-15 -2974 ((-3 |#1| "failed") (-969 (-576)))) (-15 -1505 (|#1| (-969 (-419 (-576))))) (-15 -2378 (|#1| (-969 (-419 (-576))))) (-15 -2974 ((-3 |#1| "failed") (-969 (-419 (-576))))) (-15 -4395 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -1421 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1522 (-783))) |#1| |#1|)) (-15 -2039 (|#1| |#1| |#1|)) (-15 -4215 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -1894 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1| |#4|)) (-15 -1894 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -2650 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -4400 |#1|)) |#1| |#1| |#4|)) (-15 -2650 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -3628 (|#1| |#1| |#1| |#4|)) (-15 -2708 (|#1| |#1| |#1| |#4|)) (-15 -3628 (|#1| |#1| |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -2504 (|#1| |#1| |#1| |#4|)) (-15 -4417 (|#1| |#1| |#1| |#4|)) (-15 -2504 (|#1| |#1| |#1|)) (-15 -4417 (|#1| |#1| |#1|)) (-15 -3871 ((-112) |#1| (-656 |#1|))) (-15 -3871 ((-112) |#1| |#1|)) (-15 -3593 ((-112) |#1| (-656 |#1|))) (-15 -3593 ((-112) |#1| |#1|)) (-15 -1875 ((-112) |#1| (-656 |#1|))) (-15 -1875 ((-112) |#1| |#1|)) (-15 -3532 ((-112) |#1| (-656 |#1|))) (-15 -3532 ((-112) |#1| |#1|)) (-15 -3034 ((-112) |#1| |#1|)) (-15 -3711 ((-112) |#1| |#1|)) (-15 -1491 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2731 ((-656 |#1|) |#1|)) (-15 -3394 ((-656 |#1|) |#1|)) (-15 -2848 (|#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3530 ((-112) |#1|)) (-15 -2863 ((-112) |#1|)) (-15 -1717 (|#1| |#1| |#4|)) (-15 -1692 (|#1| |#1| |#4|)) (-15 -2235 (|#1| |#1|)) (-15 -4368 ((-656 |#1|) |#1|)) (-15 -2327 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3718 ((-783) |#1|)) (-15 -2565 (|#4| |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -4092 (|#1| |#4|)) (-15 -2974 ((-3 |#4| "failed") |#1|)) (-15 -2378 (|#4| |#1|)) (-15 -1692 (|#2| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) (-1084 |#2| |#3| |#4|) (-1068) (-805) (-862)) (T -1083)) -NIL -(-10 -8 (-15 -4092 (|#1| |#1|)) (-15 -3149 (|#1| |#1| |#1|)) (-15 -3149 (|#1| (-656 |#1|))) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 ((-969 |#2|) |#1|)) (-15 -1505 ((-969 |#2|) |#1|)) (-15 -1505 ((-1178) |#1|)) (-15 -4194 (|#1| |#1|)) (-15 -4120 (|#1| |#1|)) (-15 -2234 (|#1| |#1|)) (-15 -3598 (|#1| |#1|)) (-15 -3149 (|#2| |#2| |#1|)) (-15 -3229 (|#1| |#1| |#1|)) (-15 -4278 (|#1| |#1| |#1|)) (-15 -3229 (|#1| |#1| |#2|)) (-15 -4278 (|#1| |#1| |#2|)) (-15 -3954 (|#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -1505 (|#1| (-969 |#2|))) (-15 -2378 (|#1| (-969 |#2|))) (-15 -2974 ((-3 |#1| "failed") (-969 |#2|))) (-15 -1505 (|#1| (-969 (-576)))) (-15 -2378 (|#1| (-969 (-576)))) (-15 -2974 ((-3 |#1| "failed") (-969 (-576)))) (-15 -1505 (|#1| (-969 (-419 (-576))))) (-15 -2378 (|#1| (-969 (-419 (-576))))) (-15 -2974 ((-3 |#1| "failed") (-969 (-419 (-576))))) (-15 -4395 (|#1| |#1| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -1421 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1522 (-783))) |#1| |#1|)) (-15 -2039 (|#1| |#1| |#1|)) (-15 -4215 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -1894 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1| |#4|)) (-15 -1894 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -2650 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -4400 |#1|)) |#1| |#1| |#4|)) (-15 -2650 ((-2 (|:| -1856 |#1|) (|:| |gap| (-783)) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -3628 (|#1| |#1| |#1| |#4|)) (-15 -2708 (|#1| |#1| |#1| |#4|)) (-15 -3628 (|#1| |#1| |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -2504 (|#1| |#1| |#1| |#4|)) (-15 -4417 (|#1| |#1| |#1| |#4|)) (-15 -2504 (|#1| |#1| |#1|)) (-15 -4417 (|#1| |#1| |#1|)) (-15 -3871 ((-112) |#1| (-656 |#1|))) (-15 -3871 ((-112) |#1| |#1|)) (-15 -3593 ((-112) |#1| (-656 |#1|))) (-15 -3593 ((-112) |#1| |#1|)) (-15 -1875 ((-112) |#1| (-656 |#1|))) (-15 -1875 ((-112) |#1| |#1|)) (-15 -3532 ((-112) |#1| (-656 |#1|))) (-15 -3532 ((-112) |#1| |#1|)) (-15 -3034 ((-112) |#1| |#1|)) (-15 -3711 ((-112) |#1| |#1|)) (-15 -1491 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2731 ((-656 |#1|) |#1|)) (-15 -3394 ((-656 |#1|) |#1|)) (-15 -2848 (|#1| |#1|)) (-15 -3303 (|#1| |#1|)) (-15 -3530 ((-112) |#1|)) (-15 -2863 ((-112) |#1|)) (-15 -1717 (|#1| |#1| |#4|)) (-15 -1692 (|#1| |#1| |#4|)) (-15 -2235 (|#1| |#1|)) (-15 -4368 ((-656 |#1|) |#1|)) (-15 -2327 (|#1| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -3503 (|#1| |#1|)) (-15 -3718 ((-783) |#1|)) (-15 -2565 (|#4| |#1|)) (-15 -1505 ((-548) |#1|)) (-15 -1505 ((-905 (-576)) |#1|)) (-15 -1505 ((-905 (-390)) |#1|)) (-15 -4092 (|#1| |#4|)) (-15 -2974 ((-3 |#4| "failed") |#1|)) (-15 -2378 (|#4| |#1|)) (-15 -1692 (|#2| |#1|)) (-15 -1717 (|#1| |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1541 (((-656 |#3|) $) 113)) (-1364 (((-1192 $) $ |#3|) 128) (((-1192 |#1|) $) 127)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2573 (($ $) 91 (|has| |#1| (-568)))) (-4306 (((-112) $) 93 (|has| |#1| (-568)))) (-1736 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-3053 (($ $) 278)) (-3034 (((-112) $ $) 264)) (-3788 (((-3 $ "failed") $ $) 20)) (-2488 (($ $ $) 223 (|has| |#1| (-568)))) (-3370 (((-656 $) $ $) 218 (|has| |#1| (-568)))) (-1589 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-926)))) (-1587 (($ $) 101 (|has| |#1| (-464)))) (-2100 (((-430 $) $) 100 (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-926)))) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-969 (-419 (-576)))) 238 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))) (((-3 $ "failed") (-969 (-576))) 235 (-3765 (-12 (-2433 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196)))))) (((-3 $ "failed") (-969 |#1|)) 232 (-3765 (-12 (-2433 (|has| |#1| (-38 (-419 (-576))))) (-2433 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1196)))) (-12 (-2433 (|has| |#1| (-557))) (-2433 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (-2433 (|has| |#1| (-1011 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))))) (-2378 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1057 (-576)))) ((|#3| $) 144) (($ (-969 (-419 (-576)))) 237 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))) (($ (-969 (-576))) 234 (-3765 (-12 (-2433 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196)))))) (($ (-969 |#1|)) 231 (-3765 (-12 (-2433 (|has| |#1| (-38 (-419 (-576))))) (-2433 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1196)))) (-12 (-2433 (|has| |#1| (-557))) (-2433 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (-2433 (|has| |#1| (-1011 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))))) (-2996 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-568)))) (-1717 (($ $) 161) (($ $ |#3|) 273)) (-3687 (((-701 (-576)) (-1287 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 140 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 137) (((-701 |#1|) (-701 $)) 136) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 135) (((-701 |#1|) (-1287 $)) 134)) (-3532 (((-112) $ $) 263) (((-112) $ (-656 $)) 262)) (-3179 (((-3 $ "failed") $) 37)) (-3530 (((-112) $) 271)) (-4215 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 243)) (-3598 (($ $) 212 (|has| |#1| (-464)))) (-1363 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-1704 (((-656 $) $) 112)) (-2725 (((-112) $) 99 (|has| |#1| (-926)))) (-3954 (($ $) 228 (|has| |#1| (-568)))) (-1663 (($ $) 229 (|has| |#1| (-568)))) (-4417 (($ $ $) 255) (($ $ $ |#3|) 253)) (-2504 (($ $ $) 254) (($ $ $ |#3|) 252)) (-2291 (($ $ |#1| |#2| $) 179)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1810 (((-112) $) 35)) (-1831 (((-783) $) 176)) (-3871 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-1675 (($ $ $ $ $) 214 (|has| |#1| (-568)))) (-2565 ((|#3| $) 282)) (-1529 (($ (-1192 |#1|) |#3|) 120) (($ (-1192 $) |#3|) 119)) (-2503 (((-656 $) $) 129)) (-4331 (((-112) $) 159)) (-1518 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-2039 (($ $ $) 242)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ |#3|) 123)) (-2863 (((-112) $) 272)) (-1915 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-3718 (((-783) $) 281)) (-3968 (($ (-1 |#2| |#2|) $) 178)) (-2477 (($ (-1 |#1| |#1|) $) 158)) (-3403 (((-3 |#3| "failed") $) 126)) (-4194 (($ $) 209 (|has| |#1| (-464)))) (-4120 (($ $) 210 (|has| |#1| (-464)))) (-2731 (((-656 $) $) 267)) (-3303 (($ $) 270)) (-2234 (($ $) 211 (|has| |#1| (-464)))) (-3394 (((-656 $) $) 268)) (-2848 (($ $) 269)) (-1681 (($ $) 156)) (-1692 ((|#1| $) 155) (($ $ |#3|) 274)) (-3117 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1421 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1522 (-783))) $ $) 241)) (-1894 (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $) 245) (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $ |#3|) 244)) (-2650 (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -4400 $)) $ $) 247) (((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -4400 $)) $ $ |#3|) 246)) (-2708 (($ $ $) 251) (($ $ $ |#3|) 249)) (-3628 (($ $ $) 250) (($ $ $ |#3|) 248)) (-3288 (((-1178) $) 10)) (-3918 (($ $ $) 217 (|has| |#1| (-568)))) (-4368 (((-656 $) $) 276)) (-3009 (((-3 (-656 $) "failed") $) 117)) (-2016 (((-3 (-656 $) "failed") $) 118)) (-3178 (((-3 (-2 (|:| |var| |#3|) (|:| -3175 (-783))) "failed") $) 116)) (-3593 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-4395 (($ $ $) 239)) (-3503 (($ $) 280)) (-3711 (((-112) $ $) 265)) (-1875 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-3987 (($ $ $) 240)) (-3989 (($ $) 279)) (-3139 (((-1139) $) 11)) (-2953 (((-2 (|:| -3149 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-2676 (((-2 (|:| -3149 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-568)))) (-1657 (((-112) $) 173)) (-1670 ((|#1| $) 174)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3149 ((|#1| |#1| $) 213 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-926)))) (-1392 (((-430 $) $) 102 (|has| |#1| (-926)))) (-2795 (((-2 (|:| -3149 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-568)))) (-2022 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-3229 (($ $ |#1|) 226 (|has| |#1| (-568))) (($ $ $) 224 (|has| |#1| (-568)))) (-4278 (($ $ |#1|) 227 (|has| |#1| (-568))) (($ $ $) 225 (|has| |#1| (-568)))) (-2259 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-1955 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-3614 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-2369 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-2327 (($ $) 277)) (-2235 (($ $) 275)) (-1505 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-969 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196))))) (($ (-969 (-576))) 233 (-3765 (-12 (-2433 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1196)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1196)))))) (($ (-969 |#1|)) 230 (|has| |#3| (-626 (-1196)))) (((-1178) $) 208 (-12 (|has| |#1| (-1057 (-576))) (|has| |#3| (-626 (-1196))))) (((-969 |#1|) $) 207 (|has| |#3| (-626 (-1196))))) (-3714 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 107 (-2445 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-969 |#1|) $) 206 (|has| |#3| (-626 (-1196)))) (($ (-419 (-576))) 81 (-3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) 175)) (-2430 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-3612 (((-3 $ "failed") $) 82 (-3765 (-2445 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) 32 T CONST)) (-3141 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4300 (($) 19 T CONST)) (-1491 (((-3 (-112) "failed") $ $) 266)) (-4310 (($) 34 T CONST)) (-1877 (($ $ $ $ (-783)) 215 (|has| |#1| (-568)))) (-2104 (($ $ $ (-783)) 216 (|has| |#1| (-568)))) (-4286 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +((-2264 (*1 *1 *1) (-4 *1 (-1079))) (-4072 (*1 *1 *1) (-4 *1 (-1079))) (-3270 (*1 *1 *1) (-4 *1 (-1079))) (-3835 (*1 *1 *1) (-4 *1 (-1079))) (-1560 (*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-576)))) (-1465 (*1 *1 *1) (-4 *1 (-1079))) (-1615 (*1 *1 *1) (-4 *1 (-1079))) (-2703 (*1 *1 *1) (-4 *1 (-1079)))) +(-13 (-374) (-860) (-1041) (-1057 (-576)) (-1057 (-419 (-576))) (-1021) (-626 (-905 (-390))) (-899 (-390)) (-148) (-10 -8 (-15 -4072 ($ $)) (-15 -3270 ($ $)) (-15 -3835 ($ $)) (-15 -1560 ((-576) $)) (-15 -1465 ($ $)) (-15 -1615 ($ $)) (-15 -2703 ($ $)) (-15 -2264 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-132) . T) ((-148) . T) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-626 (-227)) . T) ((-626 (-390)) . T) ((-626 (-905 (-390))) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 $) . T) ((-738) . T) ((-803) . T) ((-804) . T) ((-806) . T) ((-807) . T) ((-860) . T) ((-862) . T) ((-899 (-390)) . T) ((-937) . T) ((-1021) . T) ((-1041) . T) ((-1057 (-419 (-576))) . T) ((-1057 (-576)) . T) ((-1070 #0#) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1240) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) |#2| $) 26)) (-2148 ((|#1| $) 10)) (-2184 (((-576) |#2| $) 116)) (-3532 (((-3 $ "failed") |#2| (-938)) 75)) (-4154 ((|#1| $) 31)) (-4229 ((|#1| |#2| $ |#1|) 40)) (-1565 (($ $) 28)) (-1551 (((-3 |#2| "failed") |#2| $) 111)) (-1910 (((-112) |#2| $) NIL)) (-3566 (((-112) |#2| $) NIL)) (-4046 (((-112) |#2| $) 27)) (-3859 ((|#1| $) 117)) (-4143 ((|#1| $) 30)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-1372 ((|#2| $) 102)) (-3563 (((-874) $) 92)) (-3985 (((-112) $ $) NIL)) (-4125 ((|#1| |#2| $ |#1|) 41)) (-1846 (((-656 $) |#2|) 77)) (-2988 (((-112) $ $) 97))) +(((-1080 |#1| |#2|) (-13 (-1087 |#1| |#2|) (-10 -8 (-15 -4143 (|#1| $)) (-15 -4154 (|#1| $)) (-15 -2148 (|#1| $)) (-15 -3859 (|#1| $)) (-15 -1565 ($ $)) (-15 -4046 ((-112) |#2| $)) (-15 -4229 (|#1| |#2| $ |#1|)))) (-13 (-860) (-374)) (-1262 |#1|)) (T -1080)) +((-4229 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-4143 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-4154 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-2148 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-3859 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-1565 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1262 *2)))) (-4046 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1080 *4 *3)) (-4 *3 (-1262 *4))))) +(-13 (-1087 |#1| |#2|) (-10 -8 (-15 -4143 (|#1| $)) (-15 -4154 (|#1| $)) (-15 -2148 (|#1| $)) (-15 -3859 (|#1| $)) (-15 -1565 ($ $)) (-15 -4046 ((-112) |#2| $)) (-15 -4229 (|#1| |#2| $ |#1|)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-4192 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $ $ $) NIL)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2184 (((-576) $) NIL)) (-2745 (($ $ $) NIL)) (-3767 (($) NIL T CONST)) (-1380 (($ (-1195)) 10) (($ (-576)) 7)) (-1539 (((-3 (-576) "failed") $) NIL)) (-4056 (((-576) $) NIL)) (-3420 (($ $ $) NIL)) (-3687 (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3615 (((-3 (-419 (-576)) "failed") $) NIL)) (-3235 (((-112) $) NIL)) (-3113 (((-419 (-576)) $) NIL)) (-1803 (($) NIL) (($ $) NIL)) (-3431 (($ $ $) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-2917 (($ $ $ $) NIL)) (-1493 (($ $ $) NIL)) (-1910 (((-112) $) NIL)) (-1891 (($ $ $) NIL)) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-1414 (((-112) $) NIL)) (-3828 (((-112) $) NIL)) (-3930 (((-3 $ "failed") $) NIL)) (-3566 (((-112) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3020 (($ $ $ $) NIL)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1591 (($ $) NIL)) (-4261 (($ $) NIL)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-1368 (($ $ $) NIL)) (-1538 (($) NIL T CONST)) (-4393 (($ $) NIL)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1473 (($ $) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2489 (((-112) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-2735 (($ $) NIL) (($ $ (-783)) NIL)) (-1771 (($ $) NIL)) (-1954 (($ $) NIL)) (-4076 (((-576) $) 16) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL) (($ (-1195)) 9)) (-3563 (((-874) $) 23) (($ (-576)) 6) (($ $) NIL) (($ (-576)) 6)) (-1858 (((-783)) NIL T CONST)) (-2599 (((-112) $ $) NIL)) (-4114 (($ $ $) NIL)) (-3985 (((-112) $ $) NIL)) (-3402 (($) NIL)) (-3040 (((-112) $ $) NIL)) (-3002 (($ $ $ $) NIL)) (-2264 (($ $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL)) (-3095 (($ $) 22) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ (-576) $) NIL))) +(((-1081) (-13 (-557) (-630 (-1195)) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -1380 ($ (-1195))) (-15 -1380 ($ (-576)))))) (T -1081)) +((-1380 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1081)))) (-1380 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1081))))) +(-13 (-557) (-630 (-1195)) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -1380 ($ (-1195))) (-15 -1380 ($ (-576))))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL)) (-2333 (((-1291) $ (-1195) (-1195)) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3030 (($) 9)) (-3731 (((-52) $ (-1195) (-52)) NIL)) (-1948 (($ $) 32)) (-1703 (($ $) 30)) (-3921 (($ $) 29)) (-3749 (($ $) 31)) (-3069 (($ $) 35)) (-1702 (($ $) 36)) (-3591 (($ $) 28)) (-2199 (($ $) 33)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) 27 (|has| $ (-6 -4461)))) (-2287 (((-3 (-52) "failed") (-1195) $) 43)) (-3767 (($) NIL T CONST)) (-2765 (($) 7)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3623 (($ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) 53 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-3 (-52) "failed") (-1195) $) NIL)) (-3902 (($ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461)))) (-4012 (((-3 (-1177) "failed") $ (-1177) (-576)) 72)) (-1776 (((-52) $ (-1195) (-52)) NIL (|has| $ (-6 -4462)))) (-1698 (((-52) $ (-1195)) NIL)) (-3825 (((-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-1195) $) NIL (|has| (-1195) (-862)))) (-2591 (((-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) 38 (|has| $ (-6 -4461))) (((-656 (-52)) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1119))))) (-3814 (((-1195) $) NIL (|has| (-1195) (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3135 (((-656 (-1195)) $) NIL)) (-2937 (((-112) (-1195) $) NIL)) (-1409 (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL)) (-2040 (($ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) 46)) (-3321 (((-656 (-1195)) $) NIL)) (-2378 (((-112) (-1195) $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3436 (((-390) $ (-1195)) 52)) (-3146 (((-656 (-1177)) $ (-1177)) 74)) (-3504 (((-52) $) NIL (|has| (-1195) (-862)))) (-2644 (((-3 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) "failed") (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL)) (-2500 (($ $ (-52)) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))))) NIL (-12 (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ $ (-304 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL (-12 (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ $ (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) NIL (-12 (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ $ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL (-12 (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-319 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (($ $ (-656 (-52)) (-656 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-304 (-52))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119)))) (($ $ (-656 (-304 (-52)))) NIL (-12 (|has| (-52) (-319 (-52))) (|has| (-52) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1119))))) (-1947 (((-656 (-52)) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 (((-52) $ (-1195)) NIL) (((-52) $ (-1195) (-52)) NIL)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL)) (-1519 (($ $ (-1195)) 54)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119)))) (((-783) (-52) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-52) (-1119)))) (((-783) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) 40)) (-1661 (($ $ $) 41)) (-3563 (((-874) $) NIL (-2835 (|has| (-52) (-625 (-874))) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-625 (-874)))))) (-3950 (($ $ (-1195) (-390)) 50)) (-2558 (($ $ (-1195) (-390)) 51)) (-3985 (((-112) $ $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 (-1195)) (|:| -4353 (-52)))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-52) (-1119)) (|has| (-2 (|:| -4282 (-1195)) (|:| -4353 (-52))) (-1119))))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1082) (-13 (-1212 (-1195) (-52)) (-10 -8 (-15 -1661 ($ $ $)) (-15 -2765 ($)) (-15 -3591 ($ $)) (-15 -3921 ($ $)) (-15 -1703 ($ $)) (-15 -3749 ($ $)) (-15 -2199 ($ $)) (-15 -1948 ($ $)) (-15 -3069 ($ $)) (-15 -1702 ($ $)) (-15 -3950 ($ $ (-1195) (-390))) (-15 -2558 ($ $ (-1195) (-390))) (-15 -3436 ((-390) $ (-1195))) (-15 -3146 ((-656 (-1177)) $ (-1177))) (-15 -1519 ($ $ (-1195))) (-15 -3030 ($)) (-15 -4012 ((-3 (-1177) "failed") $ (-1177) (-576))) (-6 -4461)))) (T -1082)) +((-1661 (*1 *1 *1 *1) (-5 *1 (-1082))) (-2765 (*1 *1) (-5 *1 (-1082))) (-3591 (*1 *1 *1) (-5 *1 (-1082))) (-3921 (*1 *1 *1) (-5 *1 (-1082))) (-1703 (*1 *1 *1) (-5 *1 (-1082))) (-3749 (*1 *1 *1) (-5 *1 (-1082))) (-2199 (*1 *1 *1) (-5 *1 (-1082))) (-1948 (*1 *1 *1) (-5 *1 (-1082))) (-3069 (*1 *1 *1) (-5 *1 (-1082))) (-1702 (*1 *1 *1) (-5 *1 (-1082))) (-3950 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1082)))) (-2558 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1082)))) (-3436 (*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-390)) (-5 *1 (-1082)))) (-3146 (*1 *2 *1 *3) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1082)) (-5 *3 (-1177)))) (-1519 (*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1082)))) (-3030 (*1 *1) (-5 *1 (-1082))) (-4012 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-1082))))) +(-13 (-1212 (-1195) (-52)) (-10 -8 (-15 -1661 ($ $ $)) (-15 -2765 ($)) (-15 -3591 ($ $)) (-15 -3921 ($ $)) (-15 -1703 ($ $)) (-15 -3749 ($ $)) (-15 -2199 ($ $)) (-15 -1948 ($ $)) (-15 -3069 ($ $)) (-15 -1702 ($ $)) (-15 -3950 ($ $ (-1195) (-390))) (-15 -2558 ($ $ (-1195) (-390))) (-15 -3436 ((-390) $ (-1195))) (-15 -3146 ((-656 (-1177)) $ (-1177))) (-15 -1519 ($ $ (-1195))) (-15 -3030 ($)) (-15 -4012 ((-3 (-1177) "failed") $ (-1177) (-576))) (-6 -4461))) +((-2464 (($ $) 46)) (-4104 (((-112) $ $) 82)) (-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-969 (-419 (-576)))) 247) (((-3 $ "failed") (-969 (-576))) 246) (((-3 $ "failed") (-969 |#2|)) 249)) (-4056 ((|#2| $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL) ((|#4| $) NIL) (($ (-969 (-419 (-576)))) 235) (($ (-969 (-576))) 231) (($ (-969 |#2|)) 255)) (-2166 (($ $) NIL) (($ $ |#4|) 44)) (-1426 (((-112) $ $) 131) (((-112) $ (-656 $)) 135)) (-2581 (((-112) $) 60)) (-1424 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 125)) (-3954 (($ $) 160)) (-3289 (($ $) 156)) (-1469 (($ $) 155)) (-1463 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1586 (($ $ $) 90) (($ $ $ |#4|) 94)) (-1453 (((-112) $ $) 143) (((-112) $ (-656 $)) 144)) (-1734 ((|#4| $) 32)) (-2880 (($ $ $) 128)) (-3182 (((-112) $) 59)) (-2737 (((-783) $) 35)) (-4074 (($ $) 174)) (-4243 (($ $) 171)) (-4201 (((-656 $) $) 72)) (-2811 (($ $) 62)) (-1896 (($ $) 167)) (-2144 (((-656 $) $) 69)) (-4131 (($ $) 64)) (-2142 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3212 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2568 (-783))) $ $) 130)) (-2976 (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $) 126) (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $ |#4|) 127)) (-3318 (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -2091 $)) $ $) 121) (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -2091 $)) $ $ |#4|) 123)) (-2463 (($ $ $) 97) (($ $ $ |#4|) 106)) (-3929 (($ $ $) 98) (($ $ $ |#4|) 107)) (-4085 (((-656 $) $) 54)) (-1521 (((-112) $ $) 140) (((-112) $ (-656 $)) 141)) (-1582 (($ $ $) 116)) (-1538 (($ $) 37)) (-3391 (((-112) $ $) 80)) (-1393 (((-112) $ $) 136) (((-112) $ (-656 $)) 138)) (-2196 (($ $ $) 112)) (-2391 (($ $) 41)) (-3495 ((|#2| |#2| $) 164) (($ (-656 $)) NIL) (($ $ $) NIL)) (-4157 (($ $ |#2|) NIL) (($ $ $) 153)) (-1449 (($ $ |#2|) 148) (($ $ $) 151)) (-4219 (($ $) 49)) (-2004 (($ $) 55)) (-4076 (((-905 (-390)) $) NIL) (((-905 (-576)) $) NIL) (((-548) $) NIL) (($ (-969 (-419 (-576)))) 237) (($ (-969 (-576))) 233) (($ (-969 |#2|)) 248) (((-1177) $) 279) (((-969 |#2|) $) 184)) (-3563 (((-874) $) 29) (($ (-576)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-969 |#2|) $) 185) (($ (-419 (-576))) NIL) (($ $) NIL)) (-1986 (((-3 (-112) "failed") $ $) 79))) +(((-1083 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3563 (|#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-656 |#1|))) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 ((-969 |#2|) |#1|)) (-15 -4076 ((-969 |#2|) |#1|)) (-15 -4076 ((-1177) |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4243 (|#1| |#1|)) (-15 -1896 (|#1| |#1|)) (-15 -3954 (|#1| |#1|)) (-15 -3495 (|#2| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -1449 (|#1| |#1| |#2|)) (-15 -3289 (|#1| |#1|)) (-15 -1469 (|#1| |#1|)) (-15 -4076 (|#1| (-969 |#2|))) (-15 -4056 (|#1| (-969 |#2|))) (-15 -1539 ((-3 |#1| "failed") (-969 |#2|))) (-15 -4076 (|#1| (-969 (-576)))) (-15 -4056 (|#1| (-969 (-576)))) (-15 -1539 ((-3 |#1| "failed") (-969 (-576)))) (-15 -4076 (|#1| (-969 (-419 (-576))))) (-15 -4056 (|#1| (-969 (-419 (-576))))) (-15 -1539 ((-3 |#1| "failed") (-969 (-419 (-576))))) (-15 -1582 (|#1| |#1| |#1|)) (-15 -2196 (|#1| |#1| |#1|)) (-15 -3212 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2568 (-783))) |#1| |#1|)) (-15 -2880 (|#1| |#1| |#1|)) (-15 -1424 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -2976 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1| |#4|)) (-15 -2976 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3318 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -2091 |#1|)) |#1| |#1| |#4|)) (-15 -3318 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3929 (|#1| |#1| |#1| |#4|)) (-15 -2463 (|#1| |#1| |#1| |#4|)) (-15 -3929 (|#1| |#1| |#1|)) (-15 -2463 (|#1| |#1| |#1|)) (-15 -1586 (|#1| |#1| |#1| |#4|)) (-15 -1463 (|#1| |#1| |#1| |#4|)) (-15 -1586 (|#1| |#1| |#1|)) (-15 -1463 (|#1| |#1| |#1|)) (-15 -1453 ((-112) |#1| (-656 |#1|))) (-15 -1453 ((-112) |#1| |#1|)) (-15 -1521 ((-112) |#1| (-656 |#1|))) (-15 -1521 ((-112) |#1| |#1|)) (-15 -1393 ((-112) |#1| (-656 |#1|))) (-15 -1393 ((-112) |#1| |#1|)) (-15 -1426 ((-112) |#1| (-656 |#1|))) (-15 -1426 ((-112) |#1| |#1|)) (-15 -4104 ((-112) |#1| |#1|)) (-15 -3391 ((-112) |#1| |#1|)) (-15 -1986 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4201 ((-656 |#1|) |#1|)) (-15 -2144 ((-656 |#1|) |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2581 ((-112) |#1|)) (-15 -3182 ((-112) |#1|)) (-15 -2166 (|#1| |#1| |#4|)) (-15 -2142 (|#1| |#1| |#4|)) (-15 -2004 (|#1| |#1|)) (-15 -4085 ((-656 |#1|) |#1|)) (-15 -4219 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -2737 ((-783) |#1|)) (-15 -1734 (|#4| |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -3563 (|#1| |#4|)) (-15 -1539 ((-3 |#4| "failed") |#1|)) (-15 -4056 (|#4| |#1|)) (-15 -2142 (|#2| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) (-1084 |#2| |#3| |#4|) (-1068) (-805) (-862)) (T -1083)) +NIL +(-10 -8 (-15 -3563 (|#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-656 |#1|))) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 ((-969 |#2|) |#1|)) (-15 -4076 ((-969 |#2|) |#1|)) (-15 -4076 ((-1177) |#1|)) (-15 -4074 (|#1| |#1|)) (-15 -4243 (|#1| |#1|)) (-15 -1896 (|#1| |#1|)) (-15 -3954 (|#1| |#1|)) (-15 -3495 (|#2| |#2| |#1|)) (-15 -4157 (|#1| |#1| |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -4157 (|#1| |#1| |#2|)) (-15 -1449 (|#1| |#1| |#2|)) (-15 -3289 (|#1| |#1|)) (-15 -1469 (|#1| |#1|)) (-15 -4076 (|#1| (-969 |#2|))) (-15 -4056 (|#1| (-969 |#2|))) (-15 -1539 ((-3 |#1| "failed") (-969 |#2|))) (-15 -4076 (|#1| (-969 (-576)))) (-15 -4056 (|#1| (-969 (-576)))) (-15 -1539 ((-3 |#1| "failed") (-969 (-576)))) (-15 -4076 (|#1| (-969 (-419 (-576))))) (-15 -4056 (|#1| (-969 (-419 (-576))))) (-15 -1539 ((-3 |#1| "failed") (-969 (-419 (-576))))) (-15 -1582 (|#1| |#1| |#1|)) (-15 -2196 (|#1| |#1| |#1|)) (-15 -3212 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2568 (-783))) |#1| |#1|)) (-15 -2880 (|#1| |#1| |#1|)) (-15 -1424 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -2976 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1| |#4|)) (-15 -2976 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3318 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -2091 |#1|)) |#1| |#1| |#4|)) (-15 -3318 ((-2 (|:| -1706 |#1|) (|:| |gap| (-783)) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3929 (|#1| |#1| |#1| |#4|)) (-15 -2463 (|#1| |#1| |#1| |#4|)) (-15 -3929 (|#1| |#1| |#1|)) (-15 -2463 (|#1| |#1| |#1|)) (-15 -1586 (|#1| |#1| |#1| |#4|)) (-15 -1463 (|#1| |#1| |#1| |#4|)) (-15 -1586 (|#1| |#1| |#1|)) (-15 -1463 (|#1| |#1| |#1|)) (-15 -1453 ((-112) |#1| (-656 |#1|))) (-15 -1453 ((-112) |#1| |#1|)) (-15 -1521 ((-112) |#1| (-656 |#1|))) (-15 -1521 ((-112) |#1| |#1|)) (-15 -1393 ((-112) |#1| (-656 |#1|))) (-15 -1393 ((-112) |#1| |#1|)) (-15 -1426 ((-112) |#1| (-656 |#1|))) (-15 -1426 ((-112) |#1| |#1|)) (-15 -4104 ((-112) |#1| |#1|)) (-15 -3391 ((-112) |#1| |#1|)) (-15 -1986 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4201 ((-656 |#1|) |#1|)) (-15 -2144 ((-656 |#1|) |#1|)) (-15 -4131 (|#1| |#1|)) (-15 -2811 (|#1| |#1|)) (-15 -2581 ((-112) |#1|)) (-15 -3182 ((-112) |#1|)) (-15 -2166 (|#1| |#1| |#4|)) (-15 -2142 (|#1| |#1| |#4|)) (-15 -2004 (|#1| |#1|)) (-15 -4085 ((-656 |#1|) |#1|)) (-15 -4219 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -1538 (|#1| |#1|)) (-15 -2737 ((-783) |#1|)) (-15 -1734 (|#4| |#1|)) (-15 -4076 ((-548) |#1|)) (-15 -4076 ((-905 (-576)) |#1|)) (-15 -4076 ((-905 (-390)) |#1|)) (-15 -3563 (|#1| |#4|)) (-15 -1539 ((-3 |#4| "failed") |#1|)) (-15 -4056 (|#4| |#1|)) (-15 -2142 (|#2| |#1|)) (-15 -2166 (|#1| |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1991 (((-656 |#3|) $) 113)) (-3999 (((-1191 $) $ |#3|) 128) (((-1191 |#1|) $) 127)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4412 (($ $) 91 (|has| |#1| (-568)))) (-4176 (((-112) $) 93 (|has| |#1| (-568)))) (-2846 (((-783) $) 115) (((-783) $ (-656 |#3|)) 114)) (-2464 (($ $) 278)) (-4104 (((-112) $ $) 264)) (-1367 (((-3 $ "failed") $ $) 20)) (-2749 (($ $ $) 223 (|has| |#1| (-568)))) (-1797 (((-656 $) $ $) 218 (|has| |#1| (-568)))) (-1990 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-926)))) (-1760 (($ $) 101 (|has| |#1| (-464)))) (-2732 (((-430 $) $) 100 (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-926)))) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1057 (-576)))) (((-3 |#3| "failed") $) 143) (((-3 $ "failed") (-969 (-419 (-576)))) 238 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))) (((-3 $ "failed") (-969 (-576))) 235 (-2835 (-12 (-2746 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195)))))) (((-3 $ "failed") (-969 |#1|)) 232 (-2835 (-12 (-2746 (|has| |#1| (-38 (-419 (-576))))) (-2746 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1195)))) (-12 (-2746 (|has| |#1| (-557))) (-2746 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (-2746 (|has| |#1| (-1011 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))))) (-4056 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1057 (-576)))) ((|#3| $) 144) (($ (-969 (-419 (-576)))) 237 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))) (($ (-969 (-576))) 234 (-2835 (-12 (-2746 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195)))))) (($ (-969 |#1|)) 231 (-2835 (-12 (-2746 (|has| |#1| (-38 (-419 (-576))))) (-2746 (|has| |#1| (-38 (-576)))) (|has| |#3| (-626 (-1195)))) (-12 (-2746 (|has| |#1| (-557))) (-2746 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (-2746 (|has| |#1| (-1011 (-576)))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))))) (-2861 (($ $ $ |#3|) 111 (|has| |#1| (-174))) (($ $ $) 219 (|has| |#1| (-568)))) (-2166 (($ $) 161) (($ $ |#3|) 273)) (-3687 (((-701 (-576)) (-1286 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 140 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 137) (((-701 |#1|) (-701 $)) 136) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 135) (((-701 |#1|) (-1286 $)) 134)) (-1426 (((-112) $ $) 263) (((-112) $ (-656 $)) 262)) (-1551 (((-3 $ "failed") $) 37)) (-2581 (((-112) $) 271)) (-1424 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 243)) (-3954 (($ $) 212 (|has| |#1| (-464)))) (-2985 (($ $) 183 (|has| |#1| (-464))) (($ $ |#3|) 108 (|has| |#1| (-464)))) (-2153 (((-656 $) $) 112)) (-1792 (((-112) $) 99 (|has| |#1| (-926)))) (-3289 (($ $) 228 (|has| |#1| (-568)))) (-1469 (($ $) 229 (|has| |#1| (-568)))) (-1463 (($ $ $) 255) (($ $ $ |#3|) 253)) (-1586 (($ $ $) 254) (($ $ $ |#3|) 252)) (-1660 (($ $ |#1| |#2| $) 179)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| |#3| (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| |#3| (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1414 (((-112) $) 35)) (-3839 (((-783) $) 176)) (-1453 (((-112) $ $) 257) (((-112) $ (-656 $)) 256)) (-4295 (($ $ $ $ $) 214 (|has| |#1| (-568)))) (-1734 ((|#3| $) 282)) (-1980 (($ (-1191 |#1|) |#3|) 120) (($ (-1191 $) |#3|) 119)) (-1475 (((-656 $) $) 129)) (-2606 (((-112) $) 159)) (-1970 (($ |#1| |#2|) 160) (($ $ |#3| (-783)) 122) (($ $ (-656 |#3|) (-656 (-783))) 121)) (-2880 (($ $ $) 242)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ |#3|) 123)) (-3182 (((-112) $) 272)) (-3403 ((|#2| $) 177) (((-783) $ |#3|) 125) (((-656 (-783)) $ (-656 |#3|)) 124)) (-2737 (((-783) $) 281)) (-2133 (($ (-1 |#2| |#2|) $) 178)) (-1632 (($ (-1 |#1| |#1|) $) 158)) (-4209 (((-3 |#3| "failed") $) 126)) (-4074 (($ $) 209 (|has| |#1| (-464)))) (-4243 (($ $) 210 (|has| |#1| (-464)))) (-4201 (((-656 $) $) 267)) (-2811 (($ $) 270)) (-1896 (($ $) 211 (|has| |#1| (-464)))) (-2144 (((-656 $) $) 268)) (-4131 (($ $) 269)) (-2129 (($ $) 156)) (-2142 ((|#1| $) 155) (($ $ |#3|) 274)) (-3459 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3212 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2568 (-783))) $ $) 241)) (-2976 (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $) 245) (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $ |#3|) 244)) (-3318 (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -2091 $)) $ $) 247) (((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -2091 $)) $ $ |#3|) 246)) (-2463 (($ $ $) 251) (($ $ $ |#3|) 249)) (-3929 (($ $ $) 250) (($ $ $ |#3|) 248)) (-1927 (((-1177) $) 10)) (-3355 (($ $ $) 217 (|has| |#1| (-568)))) (-4085 (((-656 $) $) 276)) (-1708 (((-3 (-656 $) "failed") $) 117)) (-2567 (((-3 (-656 $) "failed") $) 118)) (-1419 (((-3 (-2 (|:| |var| |#3|) (|:| -4274 (-783))) "failed") $) 116)) (-1521 (((-112) $ $) 259) (((-112) $ (-656 $)) 258)) (-1582 (($ $ $) 239)) (-1538 (($ $) 280)) (-3391 (((-112) $ $) 265)) (-1393 (((-112) $ $) 261) (((-112) $ (-656 $)) 260)) (-2196 (($ $ $) 240)) (-2391 (($ $) 279)) (-1445 (((-1139) $) 11)) (-2752 (((-2 (|:| -3495 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-568)))) (-1671 (((-2 (|:| -3495 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-568)))) (-2105 (((-112) $) 173)) (-2116 ((|#1| $) 174)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-3495 ((|#1| |#1| $) 213 (|has| |#1| (-464))) (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-926)))) (-1839 (((-430 $) $) 102 (|has| |#1| (-926)))) (-3829 (((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-568)))) (-3463 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-4157 (($ $ |#1|) 226 (|has| |#1| (-568))) (($ $ $) 224 (|has| |#1| (-568)))) (-1449 (($ $ |#1|) 227 (|has| |#1| (-568))) (($ $ $) 225 (|has| |#1| (-568)))) (-3306 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ |#3| |#1|) 148) (($ $ (-656 |#3|) (-656 |#1|)) 147) (($ $ |#3| $) 146) (($ $ (-656 |#3|) (-656 $)) 145)) (-1960 (($ $ |#3|) 110 (|has| |#1| (-174)))) (-2735 (($ $ (-656 |#3|) (-656 (-783))) 44) (($ $ |#3| (-783)) 43) (($ $ (-656 |#3|)) 42) (($ $ |#3|) 40)) (-1433 ((|#2| $) 157) (((-783) $ |#3|) 133) (((-656 (-783)) $ (-656 |#3|)) 132)) (-4219 (($ $) 277)) (-2004 (($ $) 275)) (-4076 (((-905 (-390)) $) 85 (-12 (|has| |#3| (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| |#3| (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| |#3| (-626 (-548))) (|has| |#1| (-626 (-548))))) (($ (-969 (-419 (-576)))) 236 (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195))))) (($ (-969 (-576))) 233 (-2835 (-12 (-2746 (|has| |#1| (-38 (-419 (-576))))) (|has| |#1| (-38 (-576))) (|has| |#3| (-626 (-1195)))) (-12 (|has| |#1| (-38 (-419 (-576)))) (|has| |#3| (-626 (-1195)))))) (($ (-969 |#1|)) 230 (|has| |#3| (-626 (-1195)))) (((-1177) $) 208 (-12 (|has| |#1| (-1057 (-576))) (|has| |#3| (-626 (-1195))))) (((-969 |#1|) $) 207 (|has| |#3| (-626 (-1195))))) (-3648 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ |#3|) 109 (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 107 (-2758 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ |#3|) 142) (((-969 |#1|) $) 206 (|has| |#3| (-626 (-1195)))) (($ (-419 (-576))) 81 (-2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) 175)) (-4333 ((|#1| $ |#2|) 162) (($ $ |#3| (-783)) 131) (($ $ (-656 |#3|) (-656 (-783))) 130)) (-2883 (((-3 $ "failed") $) 82 (-2835 (-2758 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) 32 T CONST)) (-3274 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2800 (($) 19 T CONST)) (-1986 (((-3 (-112) "failed") $ $) 266)) (-2810 (($) 34 T CONST)) (-1611 (($ $ $ $ (-783)) 215 (|has| |#1| (-568)))) (-3166 (($ $ $ (-783)) 216 (|has| |#1| (-568)))) (-2051 (($ $ (-656 |#3|) (-656 (-783))) 47) (($ $ |#3| (-783)) 46) (($ $ (-656 |#3|)) 45) (($ $ |#3|) 41)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) (((-1084 |#1| |#2| |#3|) (-141) (-1068) (-805) (-862)) (T -1084)) -((-2565 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-3503 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3989 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2327 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4368 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-2235 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1692 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-1717 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3303 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2848 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3394 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-2731 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-1491 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3711 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3034 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3532 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3532 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-1875 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1875 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3593 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3593 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-3871 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-4417 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2504 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4417 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2504 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2708 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3628 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2708 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3628 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2650 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1856 *1) (|:| |gap| (-783)) (|:| -4400 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2650 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1856 *1) (|:| |gap| (-783)) (|:| -4400 *1))) (-4 *1 (-1084 *4 *5 *3)))) (-1894 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1856 *1) (|:| |gap| (-783)) (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-1894 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1856 *1) (|:| |gap| (-783)) (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-1084 *4 *5 *3)))) (-4215 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2039 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1421 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1522 (-783)))) (-4 *1 (-1084 *3 *4 *5)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4395 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2974 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))) (-2974 (*1 *1 *2) (|partial| -3765 (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2378 (*1 *1 *2) (-3765 (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) (-1505 (*1 *1 *2) (-3765 (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2974 (*1 *1 *2) (|partial| -3765 (-12 (-5 *2 (-969 *3)) (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) (-2433 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-2433 (-4 *3 (-557))) (-2433 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-2433 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-2378 (*1 *1 *2) (-3765 (-12 (-5 *2 (-969 *3)) (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) (-2433 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-2433 (-4 *3 (-557))) (-2433 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-2433 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *5 (-626 (-1196))) (-4 *4 (-805)) (-4 *5 (-862)))) (-1663 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3954 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4278 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3229 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4278 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3229 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2488 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2795 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3149 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2676 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3149 *1) (|:| |coef1| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2953 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3149 *1) (|:| |coef2| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2996 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3370 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-3918 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2104 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-1877 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-1675 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3149 (*1 *2 *2 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-2234 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-4120 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-4194 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464))))) -(-13 (-966 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2565 (|t#3| $)) (-15 -3718 ((-783) $)) (-15 -3503 ($ $)) (-15 -3989 ($ $)) (-15 -3053 ($ $)) (-15 -2327 ($ $)) (-15 -4368 ((-656 $) $)) (-15 -2235 ($ $)) (-15 -1692 ($ $ |t#3|)) (-15 -1717 ($ $ |t#3|)) (-15 -2863 ((-112) $)) (-15 -3530 ((-112) $)) (-15 -3303 ($ $)) (-15 -2848 ($ $)) (-15 -3394 ((-656 $) $)) (-15 -2731 ((-656 $) $)) (-15 -1491 ((-3 (-112) "failed") $ $)) (-15 -3711 ((-112) $ $)) (-15 -3034 ((-112) $ $)) (-15 -3532 ((-112) $ $)) (-15 -3532 ((-112) $ (-656 $))) (-15 -1875 ((-112) $ $)) (-15 -1875 ((-112) $ (-656 $))) (-15 -3593 ((-112) $ $)) (-15 -3593 ((-112) $ (-656 $))) (-15 -3871 ((-112) $ $)) (-15 -3871 ((-112) $ (-656 $))) (-15 -4417 ($ $ $)) (-15 -2504 ($ $ $)) (-15 -4417 ($ $ $ |t#3|)) (-15 -2504 ($ $ $ |t#3|)) (-15 -2708 ($ $ $)) (-15 -3628 ($ $ $)) (-15 -2708 ($ $ $ |t#3|)) (-15 -3628 ($ $ $ |t#3|)) (-15 -2650 ((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -4400 $)) $ $)) (-15 -2650 ((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -4400 $)) $ $ |t#3|)) (-15 -1894 ((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -1894 ((-2 (|:| -1856 $) (|:| |gap| (-783)) (|:| -1720 $) (|:| -4400 $)) $ $ |t#3|)) (-15 -4215 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -2039 ($ $ $)) (-15 -1421 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1522 (-783))) $ $)) (-15 -3987 ($ $ $)) (-15 -4395 ($ $ $)) (IF (|has| |t#3| (-626 (-1196))) (PROGN (-6 (-625 (-969 |t#1|))) (-6 (-626 (-969 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -2974 ((-3 $ "failed") (-969 (-419 (-576))))) (-15 -2378 ($ (-969 (-419 (-576))))) (-15 -1505 ($ (-969 (-419 (-576))))) (-15 -2974 ((-3 $ "failed") (-969 (-576)))) (-15 -2378 ($ (-969 (-576)))) (-15 -1505 ($ (-969 (-576)))) (IF (|has| |t#1| (-1011 (-576))) |%noBranch| (PROGN (-15 -2974 ((-3 $ "failed") (-969 |t#1|))) (-15 -2378 ($ (-969 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2974 ((-3 $ "failed") (-969 (-576)))) (-15 -2378 ($ (-969 (-576)))) (-15 -1505 ($ (-969 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -2974 ((-3 $ "failed") (-969 |t#1|))) (-15 -2378 ($ (-969 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -2974 ((-3 $ "failed") (-969 |t#1|))) (-15 -2378 ($ (-969 |t#1|)))))) (-15 -1505 ($ (-969 |t#1|))) (IF (|has| |t#1| (-1057 (-576))) (-6 (-626 (-1178))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -1663 ($ $)) (-15 -3954 ($ $)) (-15 -4278 ($ $ |t#1|)) (-15 -3229 ($ $ |t#1|)) (-15 -4278 ($ $ $)) (-15 -3229 ($ $ $)) (-15 -2488 ($ $ $)) (-15 -2795 ((-2 (|:| -3149 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2676 ((-2 (|:| -3149 $) (|:| |coef1| $)) $ $)) (-15 -2953 ((-2 (|:| -3149 $) (|:| |coef2| $)) $ $)) (-15 -2996 ($ $ $)) (-15 -3370 ((-656 $) $ $)) (-15 -3918 ($ $ $)) (-15 -2104 ($ $ $ (-783))) (-15 -1877 ($ $ $ $ (-783))) (-15 -1675 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3149 (|t#1| |t#1| $)) (-15 -3598 ($ $)) (-15 -2234 ($ $)) (-15 -4120 ($ $)) (-15 -4194 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-625 (-969 |#1|)) |has| |#3| (-626 (-1196))) ((-174) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-626 (-969 |#1|)) |has| |#3| (-626 (-1196))) ((-626 (-1178)) -12 (|has| |#1| (-1057 (-576))) (|has| |#3| (-626 (-1196)))) ((-300) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3765 (|has| |#1| (-926)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-915 |#3|) . T) ((-917 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-966 |#1| |#2| |#3|) . T) ((-926) |has| |#1| (-926)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1057 |#3|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T) ((-1241) |has| |#1| (-926))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-1629 (((-656 (-1154)) $) 18)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 27) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-1154) $) 20)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1085) (-13 (-1102) (-10 -8 (-15 -1629 ((-656 (-1154)) $)) (-15 -4136 ((-1154) $))))) (T -1085)) -((-1629 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1085)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1085))))) -(-13 (-1102) (-10 -8 (-15 -1629 ((-656 (-1154)) $)) (-15 -4136 ((-1154) $)))) -((-1962 (((-112) |#3| $) 15)) (-1935 (((-3 $ "failed") |#3| (-938)) 29)) (-3179 (((-3 |#3| "failed") |#3| $) 45)) (-3567 (((-112) |#3| $) 19)) (-3713 (((-112) |#3| $) 17))) -(((-1086 |#1| |#2| |#3|) (-10 -8 (-15 -1935 ((-3 |#1| "failed") |#3| (-938))) (-15 -3179 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3567 ((-112) |#3| |#1|)) (-15 -3713 ((-112) |#3| |#1|)) (-15 -1962 ((-112) |#3| |#1|))) (-1087 |#2| |#3|) (-13 (-860) (-374)) (-1263 |#2|)) (T -1086)) -NIL -(-10 -8 (-15 -1935 ((-3 |#1| "failed") |#3| (-938))) (-15 -3179 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3567 ((-112) |#3| |#1|)) (-15 -3713 ((-112) |#3| |#1|)) (-15 -1962 ((-112) |#3| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) |#2| $) 22)) (-3934 (((-576) |#2| $) 23)) (-1935 (((-3 $ "failed") |#2| (-938)) 16)) (-1496 ((|#1| |#2| $ |#1|) 14)) (-3179 (((-3 |#2| "failed") |#2| $) 19)) (-3567 (((-112) |#2| $) 20)) (-3713 (((-112) |#2| $) 21)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2840 ((|#2| $) 18)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-2728 ((|#1| |#2| $ |#1|) 15)) (-4089 (((-656 $) |#2|) 17)) (-3919 (((-112) $ $) 6))) -(((-1087 |#1| |#2|) (-141) (-13 (-860) (-374)) (-1263 |t#1|)) (T -1087)) -((-3934 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-576)))) (-1962 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-112)))) (-3713 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-112)))) (-3567 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-112)))) (-3179 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1263 *3)))) (-2840 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1263 *3)))) (-4089 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1087 *4 *3)))) (-1935 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-938)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1087 *4 *2)) (-4 *2 (-1263 *4)))) (-2728 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1263 *2)))) (-1496 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1263 *2))))) -(-13 (-1119) (-10 -8 (-15 -3934 ((-576) |t#2| $)) (-15 -1962 ((-112) |t#2| $)) (-15 -3713 ((-112) |t#2| $)) (-15 -3567 ((-112) |t#2| $)) (-15 -3179 ((-3 |t#2| "failed") |t#2| $)) (-15 -2840 (|t#2| $)) (-15 -4089 ((-656 $) |t#2|)) (-15 -1935 ((-3 $ "failed") |t#2| (-938))) (-15 -2728 (|t#1| |t#2| $ |t#1|)) (-15 -1496 (|t#1| |t#2| $ |t#1|)))) +((-1734 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-783)))) (-1538 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2391 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2464 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4219 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4085 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-2004 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2142 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2166 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3182 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2581 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-2811 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-4131 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2144 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-4201 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-1986 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-3391 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-4104 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1426 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1426 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-1393 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1393 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-1521 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1521 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-1453 (*1 *2 *1 *1) (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) (-1463 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1586 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1463 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-1586 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-2463 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3929 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-2463 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3929 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *2 (-862)))) (-3318 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1706 *1) (|:| |gap| (-783)) (|:| -2091 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-3318 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1706 *1) (|:| |gap| (-783)) (|:| -2091 *1))) (-4 *1 (-1084 *4 *5 *3)))) (-2976 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -1706 *1) (|:| |gap| (-783)) (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2976 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-2 (|:| -1706 *1) (|:| |gap| (-783)) (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-1084 *4 *5 *3)))) (-1424 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2880 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-3212 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2568 (-783)))) (-4 *1 (-1084 *3 *4 *5)))) (-2196 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1582 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) (-1539 (*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))) (-4056 (*1 *1 *2) (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)))) (-1539 (*1 *1 *2) (|partial| -2835 (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) (-4056 (*1 *1 *2) (-2835 (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) (-4076 (*1 *1 *2) (-2835 (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) (-1539 (*1 *1 *2) (|partial| -2835 (-12 (-5 *2 (-969 *3)) (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) (-2746 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-2746 (-4 *3 (-557))) (-2746 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-2746 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-4056 (*1 *1 *2) (-2835 (-12 (-5 *2 (-969 *3)) (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) (-2746 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-2746 (-4 *3 (-557))) (-2746 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))) (-12 (-5 *2 (-969 *3)) (-12 (-2746 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) (-4 *5 (-862))))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *5 (-626 (-1195))) (-4 *4 (-805)) (-4 *5 (-862)))) (-1469 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3289 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1449 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4157 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1449 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-4157 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-2749 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3829 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-1671 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2752 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-2 (|:| -3495 *1) (|:| |coef2| *1))) (-4 *1 (-1084 *3 *4 *5)))) (-2861 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-1797 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5)))) (-3355 (*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3166 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-1611 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568)))) (-4295 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-568)))) (-3495 (*1 *2 *2 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-3954 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-1896 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-4243 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464)))) (-4074 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-464))))) +(-13 (-966 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1734 (|t#3| $)) (-15 -2737 ((-783) $)) (-15 -1538 ($ $)) (-15 -2391 ($ $)) (-15 -2464 ($ $)) (-15 -4219 ($ $)) (-15 -4085 ((-656 $) $)) (-15 -2004 ($ $)) (-15 -2142 ($ $ |t#3|)) (-15 -2166 ($ $ |t#3|)) (-15 -3182 ((-112) $)) (-15 -2581 ((-112) $)) (-15 -2811 ($ $)) (-15 -4131 ($ $)) (-15 -2144 ((-656 $) $)) (-15 -4201 ((-656 $) $)) (-15 -1986 ((-3 (-112) "failed") $ $)) (-15 -3391 ((-112) $ $)) (-15 -4104 ((-112) $ $)) (-15 -1426 ((-112) $ $)) (-15 -1426 ((-112) $ (-656 $))) (-15 -1393 ((-112) $ $)) (-15 -1393 ((-112) $ (-656 $))) (-15 -1521 ((-112) $ $)) (-15 -1521 ((-112) $ (-656 $))) (-15 -1453 ((-112) $ $)) (-15 -1453 ((-112) $ (-656 $))) (-15 -1463 ($ $ $)) (-15 -1586 ($ $ $)) (-15 -1463 ($ $ $ |t#3|)) (-15 -1586 ($ $ $ |t#3|)) (-15 -2463 ($ $ $)) (-15 -3929 ($ $ $)) (-15 -2463 ($ $ $ |t#3|)) (-15 -3929 ($ $ $ |t#3|)) (-15 -3318 ((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -2091 $)) $ $)) (-15 -3318 ((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -2091 $)) $ $ |t#3|)) (-15 -2976 ((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -2976 ((-2 (|:| -1706 $) (|:| |gap| (-783)) (|:| -3824 $) (|:| -2091 $)) $ $ |t#3|)) (-15 -1424 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -2880 ($ $ $)) (-15 -3212 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2568 (-783))) $ $)) (-15 -2196 ($ $ $)) (-15 -1582 ($ $ $)) (IF (|has| |t#3| (-626 (-1195))) (PROGN (-6 (-625 (-969 |t#1|))) (-6 (-626 (-969 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -1539 ((-3 $ "failed") (-969 (-419 (-576))))) (-15 -4056 ($ (-969 (-419 (-576))))) (-15 -4076 ($ (-969 (-419 (-576))))) (-15 -1539 ((-3 $ "failed") (-969 (-576)))) (-15 -4056 ($ (-969 (-576)))) (-15 -4076 ($ (-969 (-576)))) (IF (|has| |t#1| (-1011 (-576))) |%noBranch| (PROGN (-15 -1539 ((-3 $ "failed") (-969 |t#1|))) (-15 -4056 ($ (-969 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1539 ((-3 $ "failed") (-969 (-576)))) (-15 -4056 ($ (-969 (-576)))) (-15 -4076 ($ (-969 (-576)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -1539 ((-3 $ "failed") (-969 |t#1|))) (-15 -4056 ($ (-969 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-576))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-576)))) |%noBranch| (PROGN (-15 -1539 ((-3 $ "failed") (-969 |t#1|))) (-15 -4056 ($ (-969 |t#1|)))))) (-15 -4076 ($ (-969 |t#1|))) (IF (|has| |t#1| (-1057 (-576))) (-6 (-626 (-1177))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-15 -1469 ($ $)) (-15 -3289 ($ $)) (-15 -1449 ($ $ |t#1|)) (-15 -4157 ($ $ |t#1|)) (-15 -1449 ($ $ $)) (-15 -4157 ($ $ $)) (-15 -2749 ($ $ $)) (-15 -3829 ((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1671 ((-2 (|:| -3495 $) (|:| |coef1| $)) $ $)) (-15 -2752 ((-2 (|:| -3495 $) (|:| |coef2| $)) $ $)) (-15 -2861 ($ $ $)) (-15 -1797 ((-656 $) $ $)) (-15 -3355 ($ $ $)) (-15 -3166 ($ $ $ (-783))) (-15 -1611 ($ $ $ $ (-783))) (-15 -4295 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3495 (|t#1| |t#1| $)) (-15 -3954 ($ $)) (-15 -1896 ($ $)) (-15 -4243 ($ $)) (-15 -4074 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) -2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 |#3|) . T) ((-628 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-625 (-874)) . T) ((-625 (-969 |#1|)) |has| |#3| (-626 (-1195))) ((-174) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| |#1| (-626 (-548))) (|has| |#3| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#3| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#3| (-626 (-905 (-576))))) ((-626 (-969 |#1|)) |has| |#3| (-626 (-1195))) ((-626 (-1177)) -12 (|has| |#1| (-1057 (-576))) (|has| |#3| (-626 (-1195)))) ((-300) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-319 $) . T) ((-336 |#1| |#2|) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2835 (|has| |#1| (-926)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-568) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 #1=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-651 #1#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464))) ((-738) . T) ((-909 $ |#3|) . T) ((-915 |#3|) . T) ((-917 |#3|) . T) ((-899 (-390)) -12 (|has| |#1| (-899 (-390))) (|has| |#3| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-899 (-576))) (|has| |#3| (-899 (-576)))) ((-966 |#1| |#2| |#3|) . T) ((-926) |has| |#1| (-926)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 |#1|) . T) ((-1057 |#3|) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T) ((-1240) |has| |#1| (-926))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-3035 (((-656 (-1154)) $) 18)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 27) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-1154) $) 20)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1085) (-13 (-1102) (-10 -8 (-15 -3035 ((-656 (-1154)) $)) (-15 -2719 ((-1154) $))))) (T -1085)) +((-3035 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1085)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1085))))) +(-13 (-1102) (-10 -8 (-15 -3035 ((-656 (-1154)) $)) (-15 -2719 ((-1154) $)))) +((-1454 (((-112) |#3| $) 15)) (-3532 (((-3 $ "failed") |#3| (-938)) 29)) (-1551 (((-3 |#3| "failed") |#3| $) 45)) (-1910 (((-112) |#3| $) 19)) (-3566 (((-112) |#3| $) 17))) +(((-1086 |#1| |#2| |#3|) (-10 -8 (-15 -3532 ((-3 |#1| "failed") |#3| (-938))) (-15 -1551 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1910 ((-112) |#3| |#1|)) (-15 -3566 ((-112) |#3| |#1|)) (-15 -1454 ((-112) |#3| |#1|))) (-1087 |#2| |#3|) (-13 (-860) (-374)) (-1262 |#2|)) (T -1086)) +NIL +(-10 -8 (-15 -3532 ((-3 |#1| "failed") |#3| (-938))) (-15 -1551 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1910 ((-112) |#3| |#1|)) (-15 -3566 ((-112) |#3| |#1|)) (-15 -1454 ((-112) |#3| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) |#2| $) 22)) (-2184 (((-576) |#2| $) 23)) (-3532 (((-3 $ "failed") |#2| (-938)) 16)) (-4229 ((|#1| |#2| $ |#1|) 14)) (-1551 (((-3 |#2| "failed") |#2| $) 19)) (-1910 (((-112) |#2| $) 20)) (-3566 (((-112) |#2| $) 21)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-1372 ((|#2| $) 18)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-4125 ((|#1| |#2| $ |#1|) 15)) (-1846 (((-656 $) |#2|) 17)) (-2988 (((-112) $ $) 6))) +(((-1087 |#1| |#2|) (-141) (-13 (-860) (-374)) (-1262 |t#1|)) (T -1087)) +((-2184 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-576)))) (-1454 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-112)))) (-3566 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-112)))) (-1910 (*1 *2 *3 *1) (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-112)))) (-1551 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1262 *3)))) (-1372 (*1 *2 *1) (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) (-4 *2 (-1262 *3)))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-656 *1)) (-4 *1 (-1087 *4 *3)))) (-3532 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-938)) (-4 *4 (-13 (-860) (-374))) (-4 *1 (-1087 *4 *2)) (-4 *2 (-1262 *4)))) (-4125 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1262 *2)))) (-4229 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) (-4 *3 (-1262 *2))))) +(-13 (-1119) (-10 -8 (-15 -2184 ((-576) |t#2| $)) (-15 -1454 ((-112) |t#2| $)) (-15 -3566 ((-112) |t#2| $)) (-15 -1910 ((-112) |t#2| $)) (-15 -1551 ((-3 |t#2| "failed") |t#2| $)) (-15 -1372 (|t#2| $)) (-15 -1846 ((-656 $) |t#2|)) (-15 -3532 ((-3 $ "failed") |t#2| (-938))) (-15 -4125 (|t#1| |t#2| $ |t#1|)) (-15 -4229 (|t#1| |t#2| $ |t#1|)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-4335 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-783)) 114)) (-2807 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783)) 63)) (-2705 (((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-783)) 99)) (-1625 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-4228 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-3205 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-1505 (((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) 92)) (-2737 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-112)) 62)) (-2893 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2893 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1625 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2737 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-112))) (-15 -2807 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783))) (-15 -2807 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783))) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -3205 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3205 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4335 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-783))) (-15 -1505 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) (-15 -2705 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-783)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1088)) -((-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4385 *9)))) (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1292)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4385 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1178)) (-5 *1 (-1088 *4 *5 *6 *7 *8)))) (-4335 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4385 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4385 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) (-4 *11 (-1090 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1088 *7 *8 *9 *10 *11)))) (-3205 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-3205 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-4228 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-4228 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-4228 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1088 *7 *8 *9 *3 *4)) (-4 *4 (-1090 *7 *8 *9 *3)))) (-2807 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2807 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-2737 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-2893 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2893 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1625 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2737 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-112))) (-15 -2807 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783))) (-15 -2807 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783))) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -3205 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3205 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4335 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-783))) (-15 -1505 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) (-15 -2705 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-783)))) -((-3638 (((-112) |#5| $) 26)) (-1752 (((-112) |#5| $) 29)) (-2040 (((-112) |#5| $) 18) (((-112) $) 52)) (-3586 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-2843 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-4088 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-2813 (((-112) |#5| $) 32))) -(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2843 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2843 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2843 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2843 ((-656 |#1|) |#5| |#1|)) (-15 -4088 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -4088 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -4088 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -4088 ((-656 |#1|) |#5| |#1|)) (-15 -3586 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3586 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3586 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3586 ((-656 |#1|) |#5| |#1|)) (-15 -1752 ((-112) |#5| |#1|)) (-15 -2040 ((-112) |#1|)) (-15 -2813 ((-112) |#5| |#1|)) (-15 -3638 ((-112) |#5| |#1|)) (-15 -2040 ((-112) |#5| |#1|)) (-15 -2843 (|#1| |#1| |#5|))) (-1090 |#2| |#3| |#4| |#5|) (-464) (-805) (-862) (-1084 |#2| |#3| |#4|)) (T -1089)) -NIL -(-10 -8 (-15 -2843 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2843 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2843 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2843 ((-656 |#1|) |#5| |#1|)) (-15 -4088 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -4088 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -4088 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -4088 ((-656 |#1|) |#5| |#1|)) (-15 -3586 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -3586 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -3586 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -3586 ((-656 |#1|) |#5| |#1|)) (-15 -1752 ((-112) |#5| |#1|)) (-15 -2040 ((-112) |#1|)) (-15 -2813 ((-112) |#5| |#1|)) (-15 -3638 ((-112) |#5| |#1|)) (-15 -2040 ((-112) |#5| |#1|)) (-15 -2843 (|#1| |#1| |#5|))) -((-2034 (((-112) $ $) 7)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |#4|)))) (-656 |#4|)) 86)) (-2567 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1541 (((-656 |#3|) $) 34)) (-3522 (((-112) $) 27)) (-2932 (((-112) $) 18 (|has| |#1| (-568)))) (-1701 (((-112) |#4| $) 102) (((-112) $) 98)) (-2919 ((|#4| |#4| $) 93)) (-1587 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| $) 127)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) 28)) (-2835 (((-112) $ (-783)) 45)) (-3457 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-3656 (($) 46 T CONST)) (-3425 (((-112) $) 23 (|has| |#1| (-568)))) (-2623 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1582 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3347 (((-112) $) 26 (|has| |#1| (-568)))) (-1574 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4135 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) 37)) (-2378 (($ (-656 |#4|)) 36)) (-2712 (((-3 $ "failed") $) 83)) (-3996 ((|#4| |#4| $) 90)) (-1690 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3532 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2948 ((|#4| |#4| $) 88)) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2740 (((-2 (|:| -1627 (-656 |#4|)) (|:| -3709 (-656 |#4|))) $) 106)) (-3638 (((-112) |#4| $) 137)) (-1752 (((-112) |#4| $) 134)) (-2040 (((-112) |#4| $) 138) (((-112) $) 135)) (-4260 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-3871 (((-112) |#4| $) 105) (((-112) $) 104)) (-2565 ((|#3| $) 35)) (-1419 (((-112) $ (-783)) 44)) (-1750 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 48)) (-2964 (((-656 |#3|) $) 33)) (-2459 (((-112) |#3| $) 32)) (-3103 (((-112) $ (-783)) 43)) (-3288 (((-1178) $) 10)) (-4204 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3918 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| |#4| $) 128)) (-2912 (((-3 |#4| "failed") $) 84)) (-3860 (((-656 $) |#4| $) 130)) (-2711 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1851 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3586 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-3869 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2106 (((-656 |#4|) $) 108)) (-3593 (((-112) |#4| $) 100) (((-112) $) 96)) (-4395 ((|#4| |#4| $) 91)) (-3711 (((-112) $ $) 111)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1875 (((-112) |#4| $) 101) (((-112) $) 97)) (-3987 ((|#4| |#4| $) 92)) (-3139 (((-1139) $) 11)) (-2701 (((-3 |#4| "failed") $) 85)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1479 (((-3 $ "failed") $ |#4|) 79)) (-2843 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3292 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) 39)) (-3372 (((-112) $) 42)) (-2643 (($) 41)) (-2369 (((-783) $) 107)) (-3150 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-4268 (($ $) 40)) (-1505 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) 61)) (-1606 (($ $ |#3|) 29)) (-2333 (($ $ |#3|) 31)) (-2792 (($ $) 89)) (-2875 (($ $ |#3|) 30)) (-4092 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2727 (((-783) $) 77 (|has| |#3| (-379)))) (-1531 (((-112) $ $) 9)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2196 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-4088 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2190 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1895 (((-656 |#3|) $) 82)) (-2813 (((-112) |#4| $) 136)) (-4101 (((-112) |#3| $) 81)) (-3919 (((-112) $ $) 6)) (-2048 (((-783) $) 47 (|has| $ (-6 -4462))))) +((-3029 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-783)) 114)) (-2604 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783)) 63)) (-2469 (((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-783)) 99)) (-2804 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-3407 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783)) 65) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783) (-112)) 67)) (-2450 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 87)) (-4076 (((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) 92)) (-1572 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-112)) 62)) (-3167 (((-783) (-656 |#4|) (-656 |#5|)) 21))) +(((-1088 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3167 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2804 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1572 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-112))) (-15 -2604 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783))) (-15 -2604 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783))) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -2450 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2450 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3029 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-783))) (-15 -4076 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) (-15 -2469 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-783)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1088)) +((-2469 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3887 *9)))) (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3887 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) (-5 *1 (-1088 *4 *5 *6 *7 *8)))) (-3029 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3887 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3887 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) (-4 *11 (-1090 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1088 *7 *8 *9 *10 *11)))) (-2450 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-2450 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-3407 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3407 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3407 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1088 *7 *8 *9 *3 *4)) (-4 *4 (-1090 *7 *8 *9 *3)))) (-2604 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2604 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-1572 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-2804 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3167 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2804 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1572 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-112))) (-15 -2604 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783))) (-15 -2604 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783))) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -2450 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2450 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3029 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-783))) (-15 -4076 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) (-15 -2469 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-783)))) +((-3844 (((-112) |#5| $) 26)) (-1548 (((-112) |#5| $) 29)) (-2984 (((-112) |#5| $) 18) (((-112) $) 52)) (-2021 (((-656 $) |#5| $) NIL) (((-656 $) (-656 |#5|) $) 94) (((-656 $) (-656 |#5|) (-656 $)) 92) (((-656 $) |#5| (-656 $)) 95)) (-1714 (($ $ |#5|) NIL) (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 73) (((-656 $) (-656 |#5|) $) 75) (((-656 $) (-656 |#5|) (-656 $)) 77)) (-1744 (((-656 $) |#5| $) NIL) (((-656 $) |#5| (-656 $)) 64) (((-656 $) (-656 |#5|) $) 69) (((-656 $) (-656 |#5|) (-656 $)) 71)) (-1877 (((-112) |#5| $) 32))) +(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1714 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1714 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1714 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1714 ((-656 |#1|) |#5| |#1|)) (-15 -1744 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1744 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1744 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1744 ((-656 |#1|) |#5| |#1|)) (-15 -2021 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2021 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2021 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2021 ((-656 |#1|) |#5| |#1|)) (-15 -1548 ((-112) |#5| |#1|)) (-15 -2984 ((-112) |#1|)) (-15 -1877 ((-112) |#5| |#1|)) (-15 -3844 ((-112) |#5| |#1|)) (-15 -2984 ((-112) |#5| |#1|)) (-15 -1714 (|#1| |#1| |#5|))) (-1090 |#2| |#3| |#4| |#5|) (-464) (-805) (-862) (-1084 |#2| |#3| |#4|)) (T -1089)) +NIL +(-10 -8 (-15 -1714 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1714 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1714 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1714 ((-656 |#1|) |#5| |#1|)) (-15 -1744 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -1744 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -1744 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -1744 ((-656 |#1|) |#5| |#1|)) (-15 -2021 ((-656 |#1|) |#5| (-656 |#1|))) (-15 -2021 ((-656 |#1|) (-656 |#5|) (-656 |#1|))) (-15 -2021 ((-656 |#1|) (-656 |#5|) |#1|)) (-15 -2021 ((-656 |#1|) |#5| |#1|)) (-15 -1548 ((-112) |#5| |#1|)) (-15 -2984 ((-112) |#1|)) (-15 -1877 ((-112) |#5| |#1|)) (-15 -3844 ((-112) |#5| |#1|)) (-15 -2984 ((-112) |#5| |#1|)) (-15 -1714 (|#1| |#1| |#5|))) +((-3474 (((-112) $ $) 7)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |#4|)))) (-656 |#4|)) 86)) (-1968 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1991 (((-656 |#3|) $) 34)) (-1665 (((-112) $) 27)) (-4324 (((-112) $) 18 (|has| |#1| (-568)))) (-1587 (((-112) |#4| $) 102) (((-112) $) 98)) (-2596 ((|#4| |#4| $) 93)) (-1760 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| $) 127)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) 28)) (-3131 (((-112) $ (-783)) 45)) (-2496 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-3767 (($) 46 T CONST)) (-2359 (((-112) $) 23 (|has| |#1| (-568)))) (-4268 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2556 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1376 (((-112) $) 26 (|has| |#1| (-568)))) (-2905 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2147 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) 37)) (-4056 (($ (-656 |#4|)) 36)) (-3515 (((-3 $ "failed") $) 83)) (-1937 ((|#4| |#4| $) 90)) (-3172 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1426 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1679 ((|#4| |#4| $) 88)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1852 (((-2 (|:| -2055 (-656 |#4|)) (|:| -3223 (-656 |#4|))) $) 106)) (-3844 (((-112) |#4| $) 137)) (-1548 (((-112) |#4| $) 134)) (-2984 (((-112) |#4| $) 138) (((-112) $) 135)) (-3825 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-1453 (((-112) |#4| $) 105) (((-112) $) 104)) (-1734 ((|#3| $) 35)) (-3115 (((-112) $ (-783)) 44)) (-2591 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 48)) (-2653 (((-656 |#3|) $) 33)) (-1845 (((-112) |#3| $) 32)) (-2712 (((-112) $ (-783)) 43)) (-1927 (((-1177) $) 10)) (-3707 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3355 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| |#4| $) 128)) (-3923 (((-3 |#4| "failed") $) 84)) (-2918 (((-656 $) |#4| $) 130)) (-1494 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1992 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2021 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2509 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2181 (((-656 |#4|) $) 108)) (-1521 (((-112) |#4| $) 100) (((-112) $) 96)) (-1582 ((|#4| |#4| $) 91)) (-3391 (((-112) $ $) 111)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1393 (((-112) |#4| $) 101) (((-112) $) 97)) (-2196 ((|#4| |#4| $) 92)) (-1445 (((-1139) $) 11)) (-3504 (((-3 |#4| "failed") $) 85)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3229 (((-3 $ "failed") $ |#4|) 79)) (-1714 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-4207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) 39)) (-1911 (((-112) $) 42)) (-2597 (($) 41)) (-1433 (((-783) $) 107)) (-1456 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-1954 (($ $) 40)) (-4076 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) 61)) (-1813 (($ $ |#3|) 29)) (-3418 (($ $ |#3|) 31)) (-3543 (($ $) 89)) (-1794 (($ $ |#3|) 30)) (-3563 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2025 (((-783) $) 77 (|has| |#3| (-379)))) (-3985 (((-112) $ $) 9)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1352 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1744 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2043 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3094 (((-656 |#3|) $) 82)) (-1877 (((-112) |#4| $) 136)) (-1847 (((-112) |#3| $) 81)) (-2988 (((-112) $ $) 6)) (-3485 (((-783) $) 47 (|has| $ (-6 -4461))))) (((-1090 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -1090)) -((-2040 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-3638 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-2813 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-1752 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-2711 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-1851 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-1851 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-3860 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-4204 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3918 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-1587 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3586 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3586 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-3586 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)))) (-3586 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) (-4088 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-4088 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) (-4088 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-4088 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)))) (-3869 (*1 *1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3869 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)))) (-2843 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-2843 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) (-2843 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-2843 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)))) (-2567 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *5 *6 *7 *8))))) -(-13 (-1230 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2040 ((-112) |t#4| $)) (-15 -3638 ((-112) |t#4| $)) (-15 -2813 ((-112) |t#4| $)) (-15 -2040 ((-112) $)) (-15 -1752 ((-112) |t#4| $)) (-15 -2711 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -1851 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 $))) |t#4| $)) (-15 -1851 ((-112) |t#4| $)) (-15 -3860 ((-656 $) |t#4| $)) (-15 -4204 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -3918 ((-656 (-2 (|:| |val| |t#4|) (|:| -4385 $))) |t#4| |t#4| $)) (-15 -1587 ((-656 (-2 (|:| |val| |t#4|) (|:| -4385 $))) |t#4| $)) (-15 -3586 ((-656 $) |t#4| $)) (-15 -3586 ((-656 $) (-656 |t#4|) $)) (-15 -3586 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3586 ((-656 $) |t#4| (-656 $))) (-15 -4088 ((-656 $) |t#4| $)) (-15 -4088 ((-656 $) |t#4| (-656 $))) (-15 -4088 ((-656 $) (-656 |t#4|) $)) (-15 -4088 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -3869 ($ |t#4| $)) (-15 -3869 ($ (-656 |t#4|) $)) (-15 -2843 ((-656 $) |t#4| $)) (-15 -2843 ((-656 $) |t#4| (-656 $))) (-15 -2843 ((-656 $) (-656 |t#4|) $)) (-15 -2843 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2567 ((-656 $) (-656 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) -((-1328 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#5|) 86)) (-2241 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|) 127)) (-3245 (((-656 |#5|) |#4| |#5|) 74)) (-3494 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-1991 (((-1292)) 36)) (-3661 (((-1292)) 25)) (-1678 (((-1292) (-1178) (-1178) (-1178)) 32)) (-1618 (((-1292) (-1178) (-1178) (-1178)) 21)) (-3098 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#4| |#4| |#5|) 107)) (-3061 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2639 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|) 113))) -(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1618 ((-1292) (-1178) (-1178) (-1178))) (-15 -3661 ((-1292))) (-15 -1678 ((-1292) (-1178) (-1178) (-1178))) (-15 -1991 ((-1292))) (-15 -3098 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -3061 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3061 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#3| (-112))) (-15 -2639 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -2241 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -3494 ((-112) |#4| |#5|)) (-15 -3494 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -3245 ((-656 |#5|) |#4| |#5|)) (-15 -1328 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1091)) -((-1328 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3245 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3494 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3494 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2241 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2639 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3061 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4385 *9)))) (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4385 *9)))) (-5 *1 (-1091 *6 *7 *4 *8 *9)))) (-3061 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3098 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1991 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-1678 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3661 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-1618 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -(-10 -7 (-15 -1618 ((-1292) (-1178) (-1178) (-1178))) (-15 -3661 ((-1292))) (-15 -1678 ((-1292) (-1178) (-1178) (-1178))) (-15 -1991 ((-1292))) (-15 -3098 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -3061 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3061 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#3| (-112))) (-15 -2639 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -2241 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -3494 ((-112) |#4| |#5|)) (-15 -3494 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -3245 ((-656 |#5|) |#4| |#5|)) (-15 -1328 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#5|))) -((-2034 (((-112) $ $) NIL)) (-4148 (((-1236) $) 13)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2271 (((-1154) $) 10)) (-4092 (((-874) $) 20) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1092) (-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)) (-15 -4148 ((-1236) $))))) (T -1092)) -((-2271 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1092)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-1092))))) -(-13 (-1102) (-10 -8 (-15 -2271 ((-1154) $)) (-15 -4148 ((-1236) $)))) -((-3278 (((-112) $ $) 7))) -(((-1093) (-13 (-1237) (-10 -8 (-15 -3278 ((-112) $ $))))) (T -1093)) -((-3278 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1093))))) -(-13 (-1237) (-10 -8 (-15 -3278 ((-112) $ $)))) -((-2034 (((-112) $ $) NIL)) (-4124 (((-1196) $) 8)) (-3288 (((-1178) $) 17)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 11)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 14))) -(((-1094 |#1|) (-13 (-1119) (-10 -8 (-15 -4124 ((-1196) $)))) (-1196)) (T -1094)) -((-4124 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1094 *3)) (-14 *3 *2)))) -(-13 (-1119) (-10 -8 (-15 -4124 ((-1196) $)))) -((-2034 (((-112) $ $) NIL)) (-2479 (($ $ (-656 (-1196)) (-1 (-112) (-656 |#3|))) 34)) (-4190 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1196))) 21)) (-1804 ((|#3| $) 13)) (-2974 (((-3 (-304 |#3|) "failed") $) 60)) (-2378 (((-304 |#3|) $) NIL)) (-3984 (((-656 (-1196)) $) 16)) (-2052 (((-905 |#1|) $) 11)) (-1790 ((|#3| $) 12)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4367 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-938)) 41)) (-4092 (((-874) $) 89) (($ (-304 |#3|)) 22)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 38))) -(((-1095 |#1| |#2| |#3|) (-13 (-1119) (-296 |#3| |#3|) (-1057 (-304 |#3|)) (-10 -8 (-15 -4190 ($ |#3| |#3|)) (-15 -4190 ($ |#3| |#3| (-656 (-1196)))) (-15 -2479 ($ $ (-656 (-1196)) (-1 (-112) (-656 |#3|)))) (-15 -2052 ((-905 |#1|) $)) (-15 -1790 (|#3| $)) (-15 -1804 (|#3| $)) (-15 -4367 (|#3| $ |#3| (-938))) (-15 -3984 ((-656 (-1196)) $)))) (-1119) (-13 (-1068) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1095)) -((-4190 (*1 *1 *2 *2) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-4190 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-2479 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *6)))) (-2052 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 *2))) (-5 *2 (-905 *3)) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2))))) (-1790 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) (-1804 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) (-4367 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-3984 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1196))) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) -(-13 (-1119) (-296 |#3| |#3|) (-1057 (-304 |#3|)) (-10 -8 (-15 -4190 ($ |#3| |#3|)) (-15 -4190 ($ |#3| |#3| (-656 (-1196)))) (-15 -2479 ($ $ (-656 (-1196)) (-1 (-112) (-656 |#3|)))) (-15 -2052 ((-905 |#1|) $)) (-15 -1790 (|#3| $)) (-15 -1804 (|#3| $)) (-15 -4367 (|#3| $ |#3| (-938))) (-15 -3984 ((-656 (-1196)) $)))) -((-2034 (((-112) $ $) NIL)) (-2442 (($ (-656 (-1095 |#1| |#2| |#3|))) 14)) (-2005 (((-656 (-1095 |#1| |#2| |#3|)) $) 21)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4367 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-938)) 27)) (-4092 (((-874) $) 17)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 20))) -(((-1096 |#1| |#2| |#3|) (-13 (-1119) (-296 |#3| |#3|) (-10 -8 (-15 -2442 ($ (-656 (-1095 |#1| |#2| |#3|)))) (-15 -2005 ((-656 (-1095 |#1| |#2| |#3|)) $)) (-15 -4367 (|#3| $ |#3| (-938))))) (-1119) (-13 (-1068) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1096)) -((-2442 (*1 *1 *2) (-12 (-5 *2 (-656 (-1095 *3 *4 *5))) (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1096 *3 *4 *5)))) (-2005 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1095 *3 *4 *5))) (-5 *1 (-1096 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-4367 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1096 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))) -(-13 (-1119) (-296 |#3| |#3|) (-10 -8 (-15 -2442 ($ (-656 (-1095 |#1| |#2| |#3|)))) (-15 -2005 ((-656 (-1095 |#1| |#2| |#3|)) $)) (-15 -4367 (|#3| $ |#3| (-938))))) -((-1572 (((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|))) 92) (((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112)) 90))) -(((-1097 |#1| |#2|) (-10 -7 (-15 -1572 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -1572 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -1572 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1196))) (T -1097)) -((-1572 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196))))) (-1572 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2210 (-1192 *4)) (|:| -3287 (-656 (-969 *4)))))) (-5 *1 (-1097 *4 *5)) (-5 *3 (-656 (-969 *4))) (-14 *5 (-656 (-1196))))) (-1572 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196)))))) -(-10 -7 (-15 -1572 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -1572 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -1572 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)))) -((-1392 (((-430 |#3|) |#3|) 18))) -(((-1098 |#1| |#2| |#3|) (-10 -7 (-15 -1392 ((-430 |#3|) |#3|))) (-1263 (-419 (-576))) (-13 (-374) (-148) (-736 (-419 (-576)) |#1|)) (-1263 |#2|)) (T -1098)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -1392 ((-430 |#3|) |#3|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 136)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-2573 (($ $) NIL (|has| |#1| (-374)))) (-4306 (((-112) $) NIL (|has| |#1| (-374)))) (-1532 (((-701 |#1|) (-1287 $)) NIL) (((-701 |#1|)) 121)) (-3803 ((|#1| $) 125)) (-2178 (((-1209 (-938) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| |#1| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-374)))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2247 (((-783)) 43 (|has| |#1| (-379)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-3006 (($ (-1287 |#1|) (-1287 $)) NIL) (($ (-1287 |#1|)) 46)) (-2000 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-3754 (((-701 |#1|) $ (-1287 $)) NIL) (((-701 |#1|) $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 113) (((-701 |#1|) (-701 $)) 108) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-2359 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-3179 (((-3 $ "failed") $) NIL)) (-4049 (((-938)) 84)) (-2446 (($) 47 (|has| |#1| (-379)))) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1554 (($) NIL (|has| |#1| (-360)))) (-3506 (((-112) $) NIL (|has| |#1| (-360)))) (-1329 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-2725 (((-112) $) NIL (|has| |#1| (-374)))) (-1538 (((-938) $) NIL (|has| |#1| (-360))) (((-845 (-938)) $) NIL (|has| |#1| (-360)))) (-1810 (((-112) $) NIL)) (-4252 ((|#1| $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3164 ((|#2| $) 91 (|has| |#1| (-374)))) (-3225 (((-938) $) 145 (|has| |#1| (-379)))) (-2344 ((|#2| $) 62)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-3503 (($) NIL (|has| |#1| (-360)) CONST)) (-2550 (($ (-938)) 135 (|has| |#1| (-379)))) (-3139 (((-1139) $) NIL)) (-2582 (($) 127)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4002 (((-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576))))) NIL (|has| |#1| (-360)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-1955 ((|#1| (-1287 $)) NIL) ((|#1|) 117)) (-2547 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-3614 (($ $ (-783)) NIL (-3765 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3765 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-4003 (((-701 |#1|) (-1287 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-2840 ((|#2|) 81)) (-3870 (($) NIL (|has| |#1| (-360)))) (-3287 (((-1287 |#1|) $ (-1287 $)) 96) (((-701 |#1|) (-1287 $) (-1287 $)) NIL) (((-1287 |#1|) $) 75) (((-701 |#1|) (-1287 $)) 92)) (-1505 (((-1287 |#1|) $) NIL) (($ (-1287 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-4092 (((-874) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-3612 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3794 ((|#2| $) 89)) (-2471 (((-783)) 83 T CONST)) (-1531 (((-112) $ $) NIL)) (-1999 (((-1287 $)) 88)) (-2947 (((-112) $ $) NIL (|has| |#1| (-374)))) (-4300 (($) 32 T CONST)) (-4310 (($) 19 T CONST)) (-4286 (($ $ (-783)) NIL (-3765 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-3765 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1196)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1196))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-3919 (((-112) $ $) 67)) (-4028 (($ $ $) NIL (|has| |#1| (-374)))) (-4018 (($ $) 71) (($ $ $) NIL)) (-4007 (($ $ $) 69)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) -(((-1099 |#1| |#2| |#3|) (-736 |#1| |#2|) (-174) (-1263 |#1|) |#2|) (T -1099)) +((-2984 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-3844 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1877 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-1548 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1494 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-1992 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-1992 (*1 *2 *3 *1) (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-2918 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3707 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-3355 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-1760 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *1)))) (-4 *1 (-1090 *4 *5 *6 *3)))) (-2021 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-2021 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)))) (-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) (-1744 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-1744 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) (-1744 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-1744 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)))) (-2509 (*1 *1 *2 *1) (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2509 (*1 *1 *2 *1) (-12 (-5 *2 (-656 *6)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)))) (-1714 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) (-1714 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) (-1714 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) (-1714 (*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)))) (-1968 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *5 *6 *7 *8))))) +(-13 (-1229 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2984 ((-112) |t#4| $)) (-15 -3844 ((-112) |t#4| $)) (-15 -1877 ((-112) |t#4| $)) (-15 -2984 ((-112) $)) (-15 -1548 ((-112) |t#4| $)) (-15 -1494 ((-3 (-112) (-656 $)) |t#4| $)) (-15 -1992 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 $))) |t#4| $)) (-15 -1992 ((-112) |t#4| $)) (-15 -2918 ((-656 $) |t#4| $)) (-15 -3707 ((-3 |t#4| (-656 $)) |t#4| |t#4| $)) (-15 -3355 ((-656 (-2 (|:| |val| |t#4|) (|:| -3887 $))) |t#4| |t#4| $)) (-15 -1760 ((-656 (-2 (|:| |val| |t#4|) (|:| -3887 $))) |t#4| $)) (-15 -2021 ((-656 $) |t#4| $)) (-15 -2021 ((-656 $) (-656 |t#4|) $)) (-15 -2021 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2021 ((-656 $) |t#4| (-656 $))) (-15 -1744 ((-656 $) |t#4| $)) (-15 -1744 ((-656 $) |t#4| (-656 $))) (-15 -1744 ((-656 $) (-656 |t#4|) $)) (-15 -1744 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -2509 ($ |t#4| $)) (-15 -2509 ($ (-656 |t#4|) $)) (-15 -1714 ((-656 $) |t#4| $)) (-15 -1714 ((-656 $) |t#4| (-656 $))) (-15 -1714 ((-656 $) (-656 |t#4|) $)) (-15 -1714 ((-656 $) (-656 |t#4|) (-656 $))) (-15 -1968 ((-656 $) (-656 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) +((-3421 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#5|) 86)) (-1347 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|) 127)) (-3294 (((-656 |#5|) |#4| |#5|) 74)) (-3874 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-4433 (((-1291)) 36)) (-3130 (((-1291)) 25)) (-3327 (((-1291) (-1177) (-1177) (-1177)) 32)) (-3461 (((-1291) (-1177) (-1177) (-1177)) 21)) (-3448 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#4| |#4| |#5|) 107)) (-2077 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#3| (-112)) 118) (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-3995 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|) 113))) +(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3461 ((-1291) (-1177) (-1177) (-1177))) (-15 -3130 ((-1291))) (-15 -3327 ((-1291) (-1177) (-1177) (-1177))) (-15 -4433 ((-1291))) (-15 -3448 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -2077 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2077 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#3| (-112))) (-15 -3995 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -1347 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -3874 ((-112) |#4| |#5|)) (-15 -3874 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -3294 ((-656 |#5|) |#4| |#5|)) (-15 -3421 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1091)) +((-3421 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3874 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3874 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1347 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3995 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3887 *9)))) (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3887 *9)))) (-5 *1 (-1091 *6 *7 *4 *8 *9)))) (-2077 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3448 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))) (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-4433 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3327 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3130 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3461 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(-10 -7 (-15 -3461 ((-1291) (-1177) (-1177) (-1177))) (-15 -3130 ((-1291))) (-15 -3327 ((-1291) (-1177) (-1177) (-1177))) (-15 -4433 ((-1291))) (-15 -3448 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -2077 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2077 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#3| (-112))) (-15 -3995 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -1347 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -3874 ((-112) |#4| |#5|)) (-15 -3874 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -3294 ((-656 |#5|) |#4| |#5|)) (-15 -3421 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#5|))) +((-3474 (((-112) $ $) NIL)) (-3042 (((-1235) $) 13)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4269 (((-1154) $) 10)) (-3563 (((-874) $) 20) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1092) (-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)) (-15 -3042 ((-1235) $))))) (T -1092)) +((-4269 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1092)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1092))))) +(-13 (-1102) (-10 -8 (-15 -4269 ((-1154) $)) (-15 -3042 ((-1235) $)))) +((-3896 (((-112) $ $) 7))) +(((-1093) (-13 (-1236) (-10 -8 (-15 -3896 ((-112) $ $))))) (T -1093)) +((-3896 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1093))))) +(-13 (-1236) (-10 -8 (-15 -3896 ((-112) $ $)))) +((-3474 (((-112) $ $) NIL)) (-2706 (((-1195) $) 8)) (-1927 (((-1177) $) 17)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 11)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 14))) +(((-1094 |#1|) (-13 (-1119) (-10 -8 (-15 -2706 ((-1195) $)))) (-1195)) (T -1094)) +((-2706 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1094 *3)) (-14 *3 *2)))) +(-13 (-1119) (-10 -8 (-15 -2706 ((-1195) $)))) +((-3474 (((-112) $ $) NIL)) (-2887 (($ $ (-656 (-1195)) (-1 (-112) (-656 |#3|))) 34)) (-2428 (($ |#3| |#3|) 23) (($ |#3| |#3| (-656 (-1195))) 21)) (-1649 ((|#3| $) 13)) (-1539 (((-3 (-304 |#3|) "failed") $) 60)) (-4056 (((-304 |#3|) $) NIL)) (-3086 (((-656 (-1195)) $) 16)) (-2799 (((-905 |#1|) $) 11)) (-1637 ((|#3| $) 12)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2871 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-938)) 41)) (-3563 (((-874) $) 89) (($ (-304 |#3|)) 22)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 38))) +(((-1095 |#1| |#2| |#3|) (-13 (-1119) (-296 |#3| |#3|) (-1057 (-304 |#3|)) (-10 -8 (-15 -2428 ($ |#3| |#3|)) (-15 -2428 ($ |#3| |#3| (-656 (-1195)))) (-15 -2887 ($ $ (-656 (-1195)) (-1 (-112) (-656 |#3|)))) (-15 -2799 ((-905 |#1|) $)) (-15 -1637 (|#3| $)) (-15 -1649 (|#3| $)) (-15 -2871 (|#3| $ |#3| (-938))) (-15 -3086 ((-656 (-1195)) $)))) (-1119) (-13 (-1068) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1095)) +((-2428 (*1 *1 *2 *2) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-2428 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-2887 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1 (-112) (-656 *6))) (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *6)))) (-2799 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 *2))) (-5 *2 (-905 *3)) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2))))) (-1637 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) (-1649 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) (-2871 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) (-3086 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1195))) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) +(-13 (-1119) (-296 |#3| |#3|) (-1057 (-304 |#3|)) (-10 -8 (-15 -2428 ($ |#3| |#3|)) (-15 -2428 ($ |#3| |#3| (-656 (-1195)))) (-15 -2887 ($ $ (-656 (-1195)) (-1 (-112) (-656 |#3|)))) (-15 -2799 ((-905 |#1|) $)) (-15 -1637 (|#3| $)) (-15 -1649 (|#3| $)) (-15 -2871 (|#3| $ |#3| (-938))) (-15 -3086 ((-656 (-1195)) $)))) +((-3474 (((-112) $ $) NIL)) (-4049 (($ (-656 (-1095 |#1| |#2| |#3|))) 14)) (-1867 (((-656 (-1095 |#1| |#2| |#3|)) $) 21)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2871 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-938)) 27)) (-3563 (((-874) $) 17)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 20))) +(((-1096 |#1| |#2| |#3|) (-13 (-1119) (-296 |#3| |#3|) (-10 -8 (-15 -4049 ($ (-656 (-1095 |#1| |#2| |#3|)))) (-15 -1867 ((-656 (-1095 |#1| |#2| |#3|)) $)) (-15 -2871 (|#3| $ |#3| (-938))))) (-1119) (-13 (-1068) (-899 |#1|) (-626 (-905 |#1|))) (-13 (-442 |#2|) (-899 |#1|) (-626 (-905 |#1|)))) (T -1096)) +((-4049 (*1 *1 *2) (-12 (-5 *2 (-656 (-1095 *3 *4 *5))) (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) (-5 *1 (-1096 *3 *4 *5)))) (-1867 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) (-5 *2 (-656 (-1095 *3 *4 *5))) (-5 *1 (-1096 *3 *4 *5)) (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))))) (-2871 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-1119)) (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) (-5 *1 (-1096 *4 *5 *2)) (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))) +(-13 (-1119) (-296 |#3| |#3|) (-10 -8 (-15 -4049 ($ (-656 (-1095 |#1| |#2| |#3|)))) (-15 -1867 ((-656 (-1095 |#1| |#2| |#3|)) $)) (-15 -2871 (|#3| $ |#3| (-938))))) +((-2679 (((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)) 88) (((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|))) 92) (((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112)) 90))) +(((-1097 |#1| |#2|) (-10 -7 (-15 -2679 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -2679 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -2679 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)))) (-13 (-317) (-148)) (-656 (-1195))) (T -1097)) +((-2679 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1195))))) (-2679 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3416 (-1191 *4)) (|:| -1809 (-656 (-969 *4)))))) (-5 *1 (-1097 *4 *5)) (-5 *3 (-656 (-969 *4))) (-14 *5 (-656 (-1195))))) (-2679 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1195)))))) +(-10 -7 (-15 -2679 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -2679 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -2679 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)))) +((-1839 (((-430 |#3|) |#3|) 18))) +(((-1098 |#1| |#2| |#3|) (-10 -7 (-15 -1839 ((-430 |#3|) |#3|))) (-1262 (-419 (-576))) (-13 (-374) (-148) (-736 (-419 (-576)) |#1|)) (-1262 |#2|)) (T -1098)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1262 *5))))) +(-10 -7 (-15 -1839 ((-430 |#3|) |#3|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 136)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-374)))) (-4412 (($ $) NIL (|has| |#1| (-374)))) (-4176 (((-112) $) NIL (|has| |#1| (-374)))) (-4084 (((-701 |#1|) (-1286 $)) NIL) (((-701 |#1|)) 121)) (-2310 ((|#1| $) 125)) (-1361 (((-1208 (-938) (-783)) (-576)) NIL (|has| |#1| (-360)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| |#1| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2148 (((-783)) 43 (|has| |#1| (-379)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2612 (($ (-1286 |#1|) (-1286 $)) NIL) (($ (-1286 |#1|)) 46)) (-3815 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-360)))) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-3103 (((-701 |#1|) $ (-1286 $)) NIL) (((-701 |#1|) $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 113) (((-701 |#1|) (-701 $)) 108) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-2521 (($ |#2|) 65) (((-3 $ "failed") (-419 |#2|)) NIL (|has| |#1| (-374)))) (-1551 (((-3 $ "failed") $) NIL)) (-3606 (((-938)) 84)) (-1803 (($) 47 (|has| |#1| (-379)))) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2580 (($) NIL (|has| |#1| (-360)))) (-2664 (((-112) $) NIL (|has| |#1| (-360)))) (-3499 (($ $ (-783)) NIL (|has| |#1| (-360))) (($ $) NIL (|has| |#1| (-360)))) (-1792 (((-112) $) NIL (|has| |#1| (-374)))) (-3333 (((-938) $) NIL (|has| |#1| (-360))) (((-845 (-938)) $) NIL (|has| |#1| (-360)))) (-1414 (((-112) $) NIL)) (-4072 ((|#1| $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-360)))) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2554 ((|#2| $) 91 (|has| |#1| (-374)))) (-1902 (((-938) $) 145 (|has| |#1| (-379)))) (-2510 ((|#2| $) 62)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-1538 (($) NIL (|has| |#1| (-360)) CONST)) (-3257 (($ (-938)) 135 (|has| |#1| (-379)))) (-1445 (((-1139) $) NIL)) (-2202 (($) 127)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4440 (((-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576))))) NIL (|has| |#1| (-360)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-1960 ((|#1| (-1286 $)) NIL) ((|#1|) 117)) (-3721 (((-783) $) NIL (|has| |#1| (-360))) (((-3 (-783) "failed") $ $) NIL (|has| |#1| (-360)))) (-2735 (($ $ (-783)) NIL (-2835 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2835 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195))))) (($ $ (-1195)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-1423 (((-701 |#1|) (-1286 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-374)))) (-1372 ((|#2|) 81)) (-2594 (($) NIL (|has| |#1| (-360)))) (-1809 (((-1286 |#1|) $ (-1286 $)) 96) (((-701 |#1|) (-1286 $) (-1286 $)) NIL) (((-1286 |#1|) $) 75) (((-701 |#1|) (-1286 $)) 92)) (-4076 (((-1286 |#1|) $) NIL) (($ (-1286 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (|has| |#1| (-360)))) (-3563 (((-874) $) 61) (($ (-576)) 56) (($ |#1|) 58) (($ $) NIL (|has| |#1| (-374))) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-374)) (|has| |#1| (-1057 (-419 (-576))))))) (-2883 (($ $) NIL (|has| |#1| (-360))) (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-3941 ((|#2| $) 89)) (-1858 (((-783)) 83 T CONST)) (-3985 (((-112) $ $) NIL)) (-3713 (((-1286 $)) 88)) (-3040 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2800 (($) 32 T CONST)) (-2810 (($) 19 T CONST)) (-2051 (($ $ (-783)) NIL (-2835 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $) NIL (-2835 (-12 (|has| |#1| (-237)) (|has| |#1| (-374))) (|has| |#1| (-360)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195))))) (($ $ (-1195)) NIL (-12 (|has| |#1| (-374)) (|has| |#1| (-917 (-1195))))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-374))) (($ $ (-1 |#1| |#1|) (-783)) NIL (|has| |#1| (-374)))) (-2988 (((-112) $ $) 67)) (-3107 (($ $ $) NIL (|has| |#1| (-374)))) (-3095 (($ $) 71) (($ $ $) NIL)) (-3083 (($ $ $) 69)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 54) (($ $ $) 73) (($ $ |#1|) NIL) (($ |#1| $) 51) (($ (-419 (-576)) $) NIL (|has| |#1| (-374))) (($ $ (-419 (-576))) NIL (|has| |#1| (-374))))) +(((-1099 |#1| |#2| |#3|) (-736 |#1| |#2|) (-174) (-1262 |#1|) |#2|) (T -1099)) NIL (-736 |#1| |#2|) -((-1392 (((-430 |#3|) |#3|) 19))) -(((-1100 |#1| |#2| |#3|) (-10 -7 (-15 -1392 ((-430 |#3|) |#3|))) (-1263 (-419 (-969 (-576)))) (-13 (-374) (-148) (-736 (-419 (-969 (-576))) |#1|)) (-1263 |#2|)) (T -1100)) -((-1392 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 (-969 (-576))))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-969 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(-10 -7 (-15 -1392 ((-430 |#3|) |#3|))) -((-2034 (((-112) $ $) NIL)) (-3492 (($ $ $) 16)) (-2726 (($ $ $) 17)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3343 (($) 6)) (-1505 (((-1196) $) 20)) (-4092 (((-874) $) 13)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 15)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 9))) -(((-1101) (-13 (-862) (-626 (-1196)) (-10 -8 (-15 -3343 ($))))) (T -1101)) -((-3343 (*1 *1) (-5 *1 (-1101)))) -(-13 (-862) (-626 (-1196)) (-10 -8 (-15 -3343 ($)))) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-1201)) 17) (((-1201) $) 16)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-1839 (((-430 |#3|) |#3|) 19))) +(((-1100 |#1| |#2| |#3|) (-10 -7 (-15 -1839 ((-430 |#3|) |#3|))) (-1262 (-419 (-969 (-576)))) (-13 (-374) (-148) (-736 (-419 (-969 (-576))) |#1|)) (-1262 |#2|)) (T -1100)) +((-1839 (*1 *2 *3) (-12 (-4 *4 (-1262 (-419 (-969 (-576))))) (-4 *5 (-13 (-374) (-148) (-736 (-419 (-969 (-576))) *4))) (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1262 *5))))) +(-10 -7 (-15 -1839 ((-430 |#3|) |#3|))) +((-3474 (((-112) $ $) NIL)) (-2442 (($ $ $) 16)) (-1893 (($ $ $) 17)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4070 (($) 6)) (-4076 (((-1195) $) 20)) (-3563 (((-874) $) 13)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 15)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 9))) +(((-1101) (-13 (-862) (-626 (-1195)) (-10 -8 (-15 -4070 ($))))) (T -1101)) +((-4070 (*1 *1) (-5 *1 (-1101)))) +(-13 (-862) (-626 (-1195)) (-10 -8 (-15 -4070 ($)))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-1200)) 17) (((-1200) $) 16)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-1102) (-141)) (T -1102)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-628 #0=(-1201)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T)) -((-3383 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-3246 (((-1292)) 21)) (-2014 (((-656 |#1|)) 13))) -(((-1103 |#1|) (-10 -7 (-15 -3246 ((-1292))) (-15 -2014 ((-656 |#1|))) (-15 -3383 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3383 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1103)) -((-3383 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2)))) (-3383 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2)))) (-2014 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-133)))) (-3246 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1103 *3)) (-4 *3 (-133))))) -(-10 -7 (-15 -3246 ((-1292))) (-15 -2014 ((-656 |#1|))) (-15 -3383 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3383 (|#1| |#1| (-1 (-576) |#1| |#1|)))) -((-2604 (($ (-109) $) 20)) (-2834 (((-703 (-109)) (-518) $) 19)) (-2643 (($) 7)) (-1540 (($) 21)) (-2115 (($) 22)) (-2838 (((-656 (-177)) $) 10)) (-4092 (((-874) $) 25))) -(((-1104) (-13 (-625 (-874)) (-10 -8 (-15 -2643 ($)) (-15 -2838 ((-656 (-177)) $)) (-15 -2834 ((-703 (-109)) (-518) $)) (-15 -2604 ($ (-109) $)) (-15 -1540 ($)) (-15 -2115 ($))))) (T -1104)) -((-2643 (*1 *1) (-5 *1 (-1104))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1104)))) (-2834 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1104)))) (-2604 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1104)))) (-1540 (*1 *1) (-5 *1 (-1104))) (-2115 (*1 *1) (-5 *1 (-1104)))) -(-13 (-625 (-874)) (-10 -8 (-15 -2643 ($)) (-15 -2838 ((-656 (-177)) $)) (-15 -2834 ((-703 (-109)) (-518) $)) (-15 -2604 ($ (-109) $)) (-15 -1540 ($)) (-15 -2115 ($)))) -((-3925 (((-1287 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1287 (-701 (-969 |#1|))) (-656 (-1196)) (-701 (-969 |#1|))) 75) (((-1287 (-701 (-419 (-969 |#1|)))) (-656 (-1196)) (-701 (-419 (-969 |#1|)))) 92)) (-3287 (((-1287 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39))) -(((-1105 |#1|) (-10 -7 (-15 -3925 ((-1287 (-701 (-419 (-969 |#1|)))) (-656 (-1196)) (-701 (-419 (-969 |#1|))))) (-15 -3925 ((-1287 (-701 (-969 |#1|))) (-656 (-1196)) (-701 (-969 |#1|)))) (-15 -3925 ((-1287 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3287 ((-1287 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1105)) -((-3287 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1287 *5)) (-5 *1 (-1105 *5)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-1105 *4)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) (-5 *2 (-1287 (-701 (-969 *5)))) (-5 *1 (-1105 *5)) (-5 *4 (-701 (-969 *5))))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) (-5 *2 (-1287 (-701 (-419 (-969 *5))))) (-5 *1 (-1105 *5)) (-5 *4 (-701 (-419 (-969 *5))))))) -(-10 -7 (-15 -3925 ((-1287 (-701 (-419 (-969 |#1|)))) (-656 (-1196)) (-701 (-419 (-969 |#1|))))) (-15 -3925 ((-1287 (-701 (-969 |#1|))) (-656 (-1196)) (-701 (-969 |#1|)))) (-15 -3925 ((-1287 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -3287 ((-1287 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-4406 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1196)) NIL)) (-2483 (((-783) $) NIL) (((-783) $ (-1196)) NIL)) (-1541 (((-656 (-1107 (-1196))) $) NIL)) (-1364 (((-1192 $) $ (-1107 (-1196))) NIL) (((-1192 |#1|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-1107 (-1196)))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1587 (($ $) NIL (|has| |#1| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-2289 (($ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1107 (-1196)) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL) (((-3 (-1144 |#1| (-1196)) "failed") $) NIL)) (-2378 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1107 (-1196)) $) NIL) (((-1196) $) NIL) (((-1144 |#1| (-1196)) $) NIL)) (-2996 (($ $ $ (-1107 (-1196))) NIL (|has| |#1| (-174)))) (-1717 (($ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1107 (-1196))) NIL (|has| |#1| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-926)))) (-2291 (($ $ |#1| (-543 (-1107 (-1196))) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1107 (-1196)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1107 (-1196)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1538 (((-783) $ (-1196)) NIL) (((-783) $) NIL)) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-1529 (($ (-1192 |#1|) (-1107 (-1196))) NIL) (($ (-1192 $) (-1107 (-1196))) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-543 (-1107 (-1196)))) NIL) (($ $ (-1107 (-1196)) (-783)) NIL) (($ $ (-656 (-1107 (-1196))) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-1107 (-1196))) NIL)) (-1915 (((-543 (-1107 (-1196))) $) NIL) (((-783) $ (-1107 (-1196))) NIL) (((-656 (-783)) $ (-656 (-1107 (-1196)))) NIL)) (-3968 (($ (-1 (-543 (-1107 (-1196))) (-543 (-1107 (-1196)))) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3789 (((-1 $ (-783)) (-1196)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-3403 (((-3 (-1107 (-1196)) "failed") $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3446 (((-1107 (-1196)) $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3288 (((-1178) $) NIL)) (-1614 (((-112) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-1107 (-1196))) (|:| -3175 (-783))) "failed") $) NIL)) (-3473 (($ $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#1| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1107 (-1196)) |#1|) NIL) (($ $ (-656 (-1107 (-1196))) (-656 |#1|)) NIL) (($ $ (-1107 (-1196)) $) NIL) (($ $ (-656 (-1107 (-1196))) (-656 $)) NIL) (($ $ (-1196) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1196)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1955 (($ $ (-1107 (-1196))) NIL (|has| |#1| (-174)))) (-3614 (($ $ (-656 (-1107 (-1196))) (-656 (-783))) NIL) (($ $ (-1107 (-1196)) (-783)) NIL) (($ $ (-656 (-1107 (-1196)))) NIL) (($ $ (-1107 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-4332 (((-656 (-1196)) $) NIL)) (-2369 (((-543 (-1107 (-1196))) $) NIL) (((-783) $ (-1107 (-1196))) NIL) (((-656 (-783)) $ (-656 (-1107 (-1196)))) NIL) (((-783) $ (-1196)) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-1107 (-1196)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1107 (-1196)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1107 (-1196)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3714 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1107 (-1196))) NIL (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1107 (-1196))) NIL) (($ (-1196)) NIL) (($ (-1144 |#1| (-1196))) NIL) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-543 (-1107 (-1196)))) NIL) (($ $ (-1107 (-1196)) (-783)) NIL) (($ $ (-656 (-1107 (-1196))) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-656 (-1107 (-1196))) (-656 (-783))) NIL) (($ $ (-1107 (-1196)) (-783)) NIL) (($ $ (-656 (-1107 (-1196)))) NIL) (($ $ (-1107 (-1196))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1106 |#1|) (-13 (-260 |#1| (-1196) (-1107 (-1196)) (-543 (-1107 (-1196)))) (-1057 (-1144 |#1| (-1196)))) (-1068)) (T -1106)) -NIL -(-13 (-260 |#1| (-1196) (-1107 (-1196)) (-543 (-1107 (-1196)))) (-1057 (-1144 |#1| (-1196)))) -((-2034 (((-112) $ $) NIL)) (-2483 (((-783) $) NIL)) (-1615 ((|#1| $) 10)) (-2974 (((-3 |#1| "failed") $) NIL)) (-2378 ((|#1| $) NIL)) (-1538 (((-783) $) 11)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-3789 (($ |#1| (-783)) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3614 (($ $ (-783)) NIL) (($ $) NIL)) (-4092 (((-874) $) NIL) (($ |#1|) NIL)) (-1531 (((-112) $ $) NIL)) (-4286 (($ $ (-783)) NIL) (($ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 16))) +(((-93) . T) ((-102) . T) ((-628 #0=(-1200)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T)) +((-3527 ((|#1| |#1| (-1 (-576) |#1| |#1|)) 42) ((|#1| |#1| (-1 (-112) |#1|)) 33)) (-1634 (((-1291)) 21)) (-3927 (((-656 |#1|)) 13))) +(((-1103 |#1|) (-10 -7 (-15 -1634 ((-1291))) (-15 -3927 ((-656 |#1|))) (-15 -3527 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3527 (|#1| |#1| (-1 (-576) |#1| |#1|)))) (-133)) (T -1103)) +((-3527 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2)))) (-3527 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2)))) (-3927 (*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-133)))) (-1634 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1103 *3)) (-4 *3 (-133))))) +(-10 -7 (-15 -1634 ((-1291))) (-15 -3927 ((-656 |#1|))) (-15 -3527 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3527 (|#1| |#1| (-1 (-576) |#1| |#1|)))) +((-3001 (($ (-109) $) 20)) (-3033 (((-703 (-109)) (-518) $) 19)) (-2597 (($) 7)) (-1680 (($) 21)) (-1437 (($) 22)) (-2533 (((-656 (-177)) $) 10)) (-3563 (((-874) $) 25))) +(((-1104) (-13 (-625 (-874)) (-10 -8 (-15 -2597 ($)) (-15 -2533 ((-656 (-177)) $)) (-15 -3033 ((-703 (-109)) (-518) $)) (-15 -3001 ($ (-109) $)) (-15 -1680 ($)) (-15 -1437 ($))))) (T -1104)) +((-2597 (*1 *1) (-5 *1 (-1104))) (-2533 (*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1104)))) (-3033 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1104)))) (-3001 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1104)))) (-1680 (*1 *1) (-5 *1 (-1104))) (-1437 (*1 *1) (-5 *1 (-1104)))) +(-13 (-625 (-874)) (-10 -8 (-15 -2597 ($)) (-15 -2533 ((-656 (-177)) $)) (-15 -3033 ((-703 (-109)) (-518) $)) (-15 -3001 ($ (-109) $)) (-15 -1680 ($)) (-15 -1437 ($)))) +((-2697 (((-1286 (-701 |#1|)) (-656 (-701 |#1|))) 45) (((-1286 (-701 (-969 |#1|))) (-656 (-1195)) (-701 (-969 |#1|))) 75) (((-1286 (-701 (-419 (-969 |#1|)))) (-656 (-1195)) (-701 (-419 (-969 |#1|)))) 92)) (-1809 (((-1286 |#1|) (-701 |#1|) (-656 (-701 |#1|))) 39))) +(((-1105 |#1|) (-10 -7 (-15 -2697 ((-1286 (-701 (-419 (-969 |#1|)))) (-656 (-1195)) (-701 (-419 (-969 |#1|))))) (-15 -2697 ((-1286 (-701 (-969 |#1|))) (-656 (-1195)) (-701 (-969 |#1|)))) (-15 -2697 ((-1286 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1809 ((-1286 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) (-374)) (T -1105)) +((-1809 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) (-5 *2 (-1286 *5)) (-5 *1 (-1105 *5)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-1105 *4)))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) (-5 *2 (-1286 (-701 (-969 *5)))) (-5 *1 (-1105 *5)) (-5 *4 (-701 (-969 *5))))) (-2697 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) (-5 *2 (-1286 (-701 (-419 (-969 *5))))) (-5 *1 (-1105 *5)) (-5 *4 (-701 (-419 (-969 *5))))))) +(-10 -7 (-15 -2697 ((-1286 (-701 (-419 (-969 |#1|)))) (-656 (-1195)) (-701 (-419 (-969 |#1|))))) (-15 -2697 ((-1286 (-701 (-969 |#1|))) (-656 (-1195)) (-701 (-969 |#1|)))) (-15 -2697 ((-1286 (-701 |#1|)) (-656 (-701 |#1|)))) (-15 -1809 ((-1286 |#1|) (-701 |#1|) (-656 (-701 |#1|))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1641 (((-656 (-783)) $) NIL) (((-656 (-783)) $ (-1195)) NIL)) (-3457 (((-783) $) NIL) (((-783) $ (-1195)) NIL)) (-1991 (((-656 (-1107 (-1195))) $) NIL)) (-3999 (((-1191 $) $ (-1107 (-1195))) NIL) (((-1191 |#1|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-1107 (-1195)))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1760 (($ $) NIL (|has| |#1| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-2671 (($ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1107 (-1195)) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL) (((-3 (-1144 |#1| (-1195)) "failed") $) NIL)) (-4056 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1107 (-1195)) $) NIL) (((-1195) $) NIL) (((-1144 |#1| (-1195)) $) NIL)) (-2861 (($ $ $ (-1107 (-1195))) NIL (|has| |#1| (-174)))) (-2166 (($ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-464))) (($ $ (-1107 (-1195))) NIL (|has| |#1| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#1| (-926)))) (-1660 (($ $ |#1| (-543 (-1107 (-1195))) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1107 (-1195)) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1107 (-1195)) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3333 (((-783) $ (-1195)) NIL) (((-783) $) NIL)) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1980 (($ (-1191 |#1|) (-1107 (-1195))) NIL) (($ (-1191 $) (-1107 (-1195))) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-543 (-1107 (-1195)))) NIL) (($ $ (-1107 (-1195)) (-783)) NIL) (($ $ (-656 (-1107 (-1195))) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-1107 (-1195))) NIL)) (-3403 (((-543 (-1107 (-1195))) $) NIL) (((-783) $ (-1107 (-1195))) NIL) (((-656 (-783)) $ (-656 (-1107 (-1195)))) NIL)) (-2133 (($ (-1 (-543 (-1107 (-1195))) (-543 (-1107 (-1195)))) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1388 (((-1 $ (-783)) (-1195)) NIL) (((-1 $ (-783)) $) NIL (|has| |#1| (-238)))) (-4209 (((-3 (-1107 (-1195)) "failed") $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3897 (((-1107 (-1195)) $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1927 (((-1177) $) NIL)) (-4374 (((-112) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-1107 (-1195))) (|:| -4274 (-783))) "failed") $) NIL)) (-4175 (($ $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#1| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1107 (-1195)) |#1|) NIL) (($ $ (-656 (-1107 (-1195))) (-656 |#1|)) NIL) (($ $ (-1107 (-1195)) $) NIL) (($ $ (-656 (-1107 (-1195))) (-656 $)) NIL) (($ $ (-1195) $) NIL (|has| |#1| (-238))) (($ $ (-656 (-1195)) (-656 $)) NIL (|has| |#1| (-238))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-238))) (($ $ (-656 (-1195)) (-656 |#1|)) NIL (|has| |#1| (-238)))) (-1960 (($ $ (-1107 (-1195))) NIL (|has| |#1| (-174)))) (-2735 (($ $ (-656 (-1107 (-1195))) (-656 (-783))) NIL) (($ $ (-1107 (-1195)) (-783)) NIL) (($ $ (-656 (-1107 (-1195)))) NIL) (($ $ (-1107 (-1195))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2684 (((-656 (-1195)) $) NIL)) (-1433 (((-543 (-1107 (-1195))) $) NIL) (((-783) $ (-1107 (-1195))) NIL) (((-656 (-783)) $ (-656 (-1107 (-1195)))) NIL) (((-783) $ (-1195)) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-1107 (-1195)) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1107 (-1195)) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1107 (-1195)) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3648 ((|#1| $) NIL (|has| |#1| (-464))) (($ $ (-1107 (-1195))) NIL (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-1107 (-1195))) NIL) (($ (-1195)) NIL) (($ (-1144 |#1| (-1195))) NIL) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-543 (-1107 (-1195)))) NIL) (($ $ (-1107 (-1195)) (-783)) NIL) (($ $ (-656 (-1107 (-1195))) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-656 (-1107 (-1195))) (-656 (-783))) NIL) (($ $ (-1107 (-1195)) (-783)) NIL) (($ $ (-656 (-1107 (-1195)))) NIL) (($ $ (-1107 (-1195))) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195)))) (($ $) NIL (|has| |#1| (-237))) (($ $ (-783)) NIL (|has| |#1| (-237)))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1106 |#1|) (-13 (-260 |#1| (-1195) (-1107 (-1195)) (-543 (-1107 (-1195)))) (-1057 (-1144 |#1| (-1195)))) (-1068)) (T -1106)) +NIL +(-13 (-260 |#1| (-1195) (-1107 (-1195)) (-543 (-1107 (-1195)))) (-1057 (-1144 |#1| (-1195)))) +((-3474 (((-112) $ $) NIL)) (-3457 (((-783) $) NIL)) (-3022 ((|#1| $) 10)) (-1539 (((-3 |#1| "failed") $) NIL)) (-4056 ((|#1| $) NIL)) (-3333 (((-783) $) 11)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1388 (($ |#1| (-783)) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2735 (($ $ (-783)) NIL) (($ $) NIL)) (-3563 (((-874) $) NIL) (($ |#1|) NIL)) (-3985 (((-112) $ $) NIL)) (-2051 (($ $ (-783)) NIL) (($ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 16))) (((-1107 |#1|) (-275 |#1|) (-862)) (T -1107)) NIL (-275 |#1|) -((-2477 (((-656 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 29 (|has| |#1| (-860))) (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 14))) -(((-1108 |#1| |#2|) (-10 -7 (-15 -2477 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) (IF (|has| |#1| (-860)) (-15 -2477 ((-656 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) |%noBranch|)) (-1237) (-1237)) (T -1108)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-860)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-656 *6)) (-5 *1 (-1108 *5 *6)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1113 *6)) (-5 *1 (-1108 *5 *6))))) -(-10 -7 (-15 -2477 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) (IF (|has| |#1| (-860)) (-15 -2477 ((-656 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) |%noBranch|)) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 16) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4031 (((-656 (-1154)) $) 10)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1109) (-13 (-1102) (-10 -8 (-15 -4031 ((-656 (-1154)) $))))) (T -1109)) -((-4031 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1109))))) -(-13 (-1102) (-10 -8 (-15 -4031 ((-656 (-1154)) $)))) -((-2477 (((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 19))) -(((-1110 |#1| |#2|) (-10 -7 (-15 -2477 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)))) (-1237) (-1237)) (T -1110)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1111 *6)) (-5 *1 (-1110 *5 *6))))) -(-10 -7 (-15 -2477 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)))) -((-2034 (((-112) $ $) NIL (|has| (-1113 |#1|) (-1119)))) (-1615 (((-1196) $) NIL)) (-1745 (((-1113 |#1|) $) NIL)) (-3288 (((-1178) $) NIL (|has| (-1113 |#1|) (-1119)))) (-3139 (((-1139) $) NIL (|has| (-1113 |#1|) (-1119)))) (-2510 (($ (-1196) (-1113 |#1|)) NIL)) (-4092 (((-874) $) NIL (|has| (-1113 |#1|) (-1119)))) (-1531 (((-112) $ $) NIL (|has| (-1113 |#1|) (-1119)))) (-3919 (((-112) $ $) NIL (|has| (-1113 |#1|) (-1119))))) -(((-1111 |#1|) (-13 (-1237) (-10 -8 (-15 -2510 ($ (-1196) (-1113 |#1|))) (-15 -1615 ((-1196) $)) (-15 -1745 ((-1113 |#1|) $)) (IF (|has| (-1113 |#1|) (-1119)) (-6 (-1119)) |%noBranch|))) (-1237)) (T -1111)) -((-2510 (*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1113 *4)) (-4 *4 (-1237)) (-5 *1 (-1111 *4)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1111 *3)) (-4 *3 (-1237)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-1111 *3)) (-4 *3 (-1237))))) -(-13 (-1237) (-10 -8 (-15 -2510 ($ (-1196) (-1113 |#1|))) (-15 -1615 ((-1196) $)) (-15 -1745 ((-1113 |#1|) $)) (IF (|has| (-1113 |#1|) (-1119)) (-6 (-1119)) |%noBranch|))) -((-1745 (($ |#1| |#1|) 8)) (-2877 ((|#1| $) 11)) (-2969 ((|#1| $) 13)) (-2661 (((-576) $) 9)) (-3722 ((|#1| $) 10)) (-2672 ((|#1| $) 12)) (-1505 (($ |#1|) 6)) (-2619 (($ |#1| |#1|) 15)) (-3676 (($ $ (-576)) 14))) -(((-1112 |#1|) (-141) (-1237)) (T -1112)) -((-2619 (*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1112 *3)) (-4 *3 (-1237)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) (-2661 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1237)) (-5 *2 (-576)))) (-1745 (*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237))))) -(-13 (-630 |t#1|) (-10 -8 (-15 -2619 ($ |t#1| |t#1|)) (-15 -3676 ($ $ (-576))) (-15 -2969 (|t#1| $)) (-15 -2672 (|t#1| $)) (-15 -2877 (|t#1| $)) (-15 -3722 (|t#1| $)) (-15 -2661 ((-576) $)) (-15 -1745 ($ |t#1| |t#1|)))) +((-1632 (((-656 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 29 (|has| |#1| (-860))) (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 14))) +(((-1108 |#1| |#2|) (-10 -7 (-15 -1632 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) (IF (|has| |#1| (-860)) (-15 -1632 ((-656 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) |%noBranch|)) (-1236) (-1236)) (T -1108)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-860)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-1108 *5 *6)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1113 *6)) (-5 *1 (-1108 *5 *6))))) +(-10 -7 (-15 -1632 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) (IF (|has| |#1| (-860)) (-15 -1632 ((-656 |#2|) (-1 |#2| |#1|) (-1113 |#1|))) |%noBranch|)) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 16) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3187 (((-656 (-1154)) $) 10)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1109) (-13 (-1102) (-10 -8 (-15 -3187 ((-656 (-1154)) $))))) (T -1109)) +((-3187 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1109))))) +(-13 (-1102) (-10 -8 (-15 -3187 ((-656 (-1154)) $)))) +((-1632 (((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)) 19))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -1632 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)))) (-1236) (-1236)) (T -1110)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1111 *6)) (-5 *1 (-1110 *5 *6))))) +(-10 -7 (-15 -1632 ((-1111 |#2|) (-1 |#2| |#1|) (-1111 |#1|)))) +((-3474 (((-112) $ $) NIL (|has| (-1113 |#1|) (-1119)))) (-3022 (((-1195) $) NIL)) (-2834 (((-1113 |#1|) $) NIL)) (-1927 (((-1177) $) NIL (|has| (-1113 |#1|) (-1119)))) (-1445 (((-1139) $) NIL (|has| (-1113 |#1|) (-1119)))) (-2366 (($ (-1195) (-1113 |#1|)) NIL)) (-3563 (((-874) $) NIL (|has| (-1113 |#1|) (-1119)))) (-3985 (((-112) $ $) NIL (|has| (-1113 |#1|) (-1119)))) (-2988 (((-112) $ $) NIL (|has| (-1113 |#1|) (-1119))))) +(((-1111 |#1|) (-13 (-1236) (-10 -8 (-15 -2366 ($ (-1195) (-1113 |#1|))) (-15 -3022 ((-1195) $)) (-15 -2834 ((-1113 |#1|) $)) (IF (|has| (-1113 |#1|) (-1119)) (-6 (-1119)) |%noBranch|))) (-1236)) (T -1111)) +((-2366 (*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1113 *4)) (-4 *4 (-1236)) (-5 *1 (-1111 *4)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1111 *3)) (-4 *3 (-1236)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-1111 *3)) (-4 *3 (-1236))))) +(-13 (-1236) (-10 -8 (-15 -2366 ($ (-1195) (-1113 |#1|))) (-15 -3022 ((-1195) $)) (-15 -2834 ((-1113 |#1|) $)) (IF (|has| (-1113 |#1|) (-1119)) (-6 (-1119)) |%noBranch|))) +((-2834 (($ |#1| |#1|) 8)) (-3884 ((|#1| $) 11)) (-3093 ((|#1| $) 13)) (-2294 (((-576) $) 9)) (-3140 ((|#1| $) 10)) (-2305 ((|#1| $) 12)) (-4076 (($ |#1|) 6)) (-1850 (($ |#1| |#1|) 15)) (-2751 (($ $ (-576)) 14))) +(((-1112 |#1|) (-141) (-1236)) (T -1112)) +((-1850 (*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236)))) (-2751 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1112 *3)) (-4 *3 (-1236)))) (-3093 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1236)) (-5 *2 (-576)))) (-2834 (*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236))))) +(-13 (-630 |t#1|) (-10 -8 (-15 -1850 ($ |t#1| |t#1|)) (-15 -2751 ($ $ (-576))) (-15 -3093 (|t#1| $)) (-15 -2305 (|t#1| $)) (-15 -3884 (|t#1| $)) (-15 -3140 (|t#1| $)) (-15 -2294 ((-576) $)) (-15 -2834 ($ |t#1| |t#1|)))) (((-630 |#1|) . T)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1745 (($ |#1| |#1|) 16)) (-2477 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-2877 ((|#1| $) 12)) (-2969 ((|#1| $) 11)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2661 (((-576) $) 15)) (-3722 ((|#1| $) 14)) (-2672 ((|#1| $) 13)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2824 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-1505 (($ |#1|) 29)) (-4092 (((-874) $) 28 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2619 (($ |#1| |#1|) 10)) (-3676 (($ $ (-576)) 17)) (-3919 (((-112) $ $) 22 (|has| |#1| (-1119))))) -(((-1113 |#1|) (-13 (-1112 |#1|) (-10 -7 (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-656 |#1|))) |%noBranch|))) (-1237)) (T -1113)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2834 (($ |#1| |#1|) 16)) (-1632 (((-656 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-860)))) (-3884 ((|#1| $) 12)) (-3093 ((|#1| $) 11)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2294 (((-576) $) 15)) (-3140 ((|#1| $) 14)) (-2305 ((|#1| $) 13)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2465 (((-656 |#1|) $) 44 (|has| |#1| (-860))) (((-656 |#1|) (-656 $)) 43 (|has| |#1| (-860)))) (-4076 (($ |#1|) 29)) (-3563 (((-874) $) 28 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1850 (($ |#1| |#1|) 10)) (-2751 (($ $ (-576)) 17)) (-2988 (((-112) $ $) 22 (|has| |#1| (-1119))))) +(((-1113 |#1|) (-13 (-1112 |#1|) (-10 -7 (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-656 |#1|))) |%noBranch|))) (-1236)) (T -1113)) NIL (-13 (-1112 |#1|) (-10 -7 (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-656 |#1|))) |%noBranch|))) -((-1745 (($ |#1| |#1|) 8)) (-2477 ((|#2| (-1 |#1| |#1|) $) 16)) (-2877 ((|#1| $) 11)) (-2969 ((|#1| $) 13)) (-2661 (((-576) $) 9)) (-3722 ((|#1| $) 10)) (-2672 ((|#1| $) 12)) (-2824 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-1505 (($ |#1|) 6)) (-2619 (($ |#1| |#1|) 15)) (-3676 (($ $ (-576)) 14))) +((-2834 (($ |#1| |#1|) 8)) (-1632 ((|#2| (-1 |#1| |#1|) $) 16)) (-3884 ((|#1| $) 11)) (-3093 ((|#1| $) 13)) (-2294 (((-576) $) 9)) (-3140 ((|#1| $) 10)) (-2305 ((|#1| $) 12)) (-2465 ((|#2| (-656 $)) 18) ((|#2| $) 17)) (-4076 (($ |#1|) 6)) (-1850 (($ |#1| |#1|) 15)) (-2751 (($ $ (-576)) 14))) (((-1114 |#1| |#2|) (-141) (-860) (-1168 |t#1|)) (T -1114)) -((-2824 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1168 *4)))) (-2824 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1168 *3)))) (-2477 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1168 *4))))) -(-13 (-1112 |t#1|) (-10 -8 (-15 -2824 (|t#2| (-656 $))) (-15 -2824 (|t#2| $)) (-15 -2477 (|t#2| (-1 |t#1| |t#1|) $)))) +((-2465 (*1 *2 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1168 *4)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-1114 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1168 *3)))) (-1632 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1168 *4))))) +(-13 (-1112 |t#1|) (-10 -8 (-15 -2465 (|t#2| (-656 $))) (-15 -2465 (|t#2| $)) (-15 -1632 (|t#2| (-1 |t#1| |t#1|) $)))) (((-630 |#1|) . T) ((-1112 |#1|) . T)) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-2912 (((-1154) $) 12)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 18) (($ (-1201)) NIL) (((-1201) $) NIL)) (-4136 (((-656 (-1154)) $) 10)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1115) (-13 (-1102) (-10 -8 (-15 -4136 ((-656 (-1154)) $)) (-15 -2912 ((-1154) $))))) (T -1115)) -((-4136 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1115)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1115))))) -(-13 (-1102) (-10 -8 (-15 -4136 ((-656 (-1154)) $)) (-15 -2912 ((-1154) $)))) -((-4006 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4369 (($ $ $) 10)) (-3182 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1116 |#1| |#2|) (-10 -8 (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -3182 (|#1| |#1| |#2|)) (-15 -3182 (|#1| |#1| |#1|))) (-1117 |#2|) (-1119)) (T -1116)) -NIL -(-10 -8 (-15 -4006 (|#1| |#2| |#1|)) (-15 -4006 (|#1| |#1| |#2|)) (-15 -4006 (|#1| |#1| |#1|)) (-15 -4369 (|#1| |#1| |#1|)) (-15 -3182 (|#1| |#1| |#2|)) (-15 -3182 (|#1| |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-4006 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-4369 (($ $ $) 21)) (-3004 (((-112) $ $) 20)) (-2835 (((-112) $ (-783)) 36)) (-3662 (($) 26) (($ (-656 |#1|)) 25)) (-3457 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4462)))) (-3656 (($) 37 T CONST)) (-1690 (($ $) 60 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#1| $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4462)))) (-4260 (((-656 |#1|) $) 44 (|has| $ (-6 -4462)))) (-1583 (((-112) $ $) 29)) (-1419 (((-112) $ (-783)) 35)) (-1750 (((-656 |#1|) $) 45 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 39)) (-3103 (((-112) $ (-783)) 34)) (-3288 (((-1178) $) 10)) (-3586 (($ $ $) 24)) (-3139 (((-1139) $) 11)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-3292 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 30)) (-3372 (((-112) $) 33)) (-2643 (($) 32)) (-3182 (($ $ $) 23) (($ $ |#1|) 22)) (-3150 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4462)))) (-4268 (($ $) 31)) (-1505 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 52)) (-4092 (((-874) $) 12)) (-1460 (($) 28) (($ (-656 |#1|)) 27)) (-1531 (((-112) $ $) 9)) (-2190 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 6)) (-2048 (((-783) $) 38 (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-3923 (((-1154) $) 12)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 18) (($ (-1200)) NIL) (((-1200) $) NIL)) (-2719 (((-656 (-1154)) $) 10)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1115) (-13 (-1102) (-10 -8 (-15 -2719 ((-656 (-1154)) $)) (-15 -3923 ((-1154) $))))) (T -1115)) +((-2719 (*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1115)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1115))))) +(-13 (-1102) (-10 -8 (-15 -2719 ((-656 (-1154)) $)) (-15 -3923 ((-1154) $)))) +((-1901 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-4195 (($ $ $) 10)) (-1956 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1116 |#1| |#2|) (-10 -8 (-15 -1901 (|#1| |#2| |#1|)) (-15 -1901 (|#1| |#1| |#2|)) (-15 -1901 (|#1| |#1| |#1|)) (-15 -4195 (|#1| |#1| |#1|)) (-15 -1956 (|#1| |#1| |#2|)) (-15 -1956 (|#1| |#1| |#1|))) (-1117 |#2|) (-1119)) (T -1116)) +NIL +(-10 -8 (-15 -1901 (|#1| |#2| |#1|)) (-15 -1901 (|#1| |#1| |#2|)) (-15 -1901 (|#1| |#1| |#1|)) (-15 -4195 (|#1| |#1| |#1|)) (-15 -1956 (|#1| |#1| |#2|)) (-15 -1956 (|#1| |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-1901 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-4195 (($ $ $) 21)) (-2529 (((-112) $ $) 20)) (-3131 (((-112) $ (-783)) 36)) (-2187 (($) 26) (($ (-656 |#1|)) 25)) (-2496 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4461)))) (-3767 (($) 37 T CONST)) (-3172 (($ $) 60 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#1| $) 59 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4461)))) (-3825 (((-656 |#1|) $) 44 (|has| $ (-6 -4461)))) (-1408 (((-112) $ $) 29)) (-3115 (((-112) $ (-783)) 35)) (-2591 (((-656 |#1|) $) 45 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 39)) (-2712 (((-112) $ (-783)) 34)) (-1927 (((-1177) $) 10)) (-2021 (($ $ $) 24)) (-1445 (((-1139) $) 11)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-4207 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#1|) (-656 |#1|)) 51 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 49 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 (-304 |#1|))) 48 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 30)) (-1911 (((-112) $) 33)) (-2597 (($) 32)) (-1956 (($ $ $) 23) (($ $ |#1|) 22)) (-1456 (((-783) |#1| $) 46 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4461)))) (-1954 (($ $) 31)) (-4076 (((-548) $) 61 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 52)) (-3563 (((-874) $) 12)) (-1909 (($) 28) (($ (-656 |#1|)) 27)) (-3985 (((-112) $ $) 9)) (-2043 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 6)) (-3485 (((-783) $) 38 (|has| $ (-6 -4461))))) (((-1117 |#1|) (-141) (-1119)) (T -1117)) -((-1583 (*1 *2 *1 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-1460 (*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) (-3662 (*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-3662 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) (-3586 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-3182 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-3182 (*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-4369 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-3004 (*1 *2 *1 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-4006 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-4006 (*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-4006 (*1 *1 *2 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) -(-13 (-1119) (-152 |t#1|) (-10 -8 (-6 -4452) (-15 -1583 ((-112) $ $)) (-15 -1460 ($)) (-15 -1460 ($ (-656 |t#1|))) (-15 -3662 ($)) (-15 -3662 ($ (-656 |t#1|))) (-15 -3586 ($ $ $)) (-15 -3182 ($ $ $)) (-15 -3182 ($ $ |t#1|)) (-15 -4369 ($ $ $)) (-15 -3004 ((-112) $ $)) (-15 -4006 ($ $ $)) (-15 -4006 ($ $ |t#1|)) (-15 -4006 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) . T) ((-1237) . T)) -((-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 8)) (-1531 (((-112) $ $) 12))) -(((-1118 |#1|) (-10 -8 (-15 -1531 ((-112) |#1| |#1|)) (-15 -3288 ((-1178) |#1|)) (-15 -3139 ((-1139) |#1|))) (-1119)) (T -1118)) -NIL -(-10 -8 (-15 -1531 ((-112) |#1| |#1|)) (-15 -3288 ((-1178) |#1|)) (-15 -3139 ((-1139) |#1|))) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-1408 (*1 *2 *1 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-1909 (*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) (-2187 (*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-2187 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) (-2021 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-1956 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-1956 (*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-4195 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-2529 (*1 *2 *1 *1) (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) (-1901 (*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-1901 (*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) (-1901 (*1 *1 *2 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) +(-13 (-1119) (-152 |t#1|) (-10 -8 (-6 -4451) (-15 -1408 ((-112) $ $)) (-15 -1909 ($)) (-15 -1909 ($ (-656 |t#1|))) (-15 -2187 ($)) (-15 -2187 ($ (-656 |t#1|))) (-15 -2021 ($ $ $)) (-15 -1956 ($ $ $)) (-15 -1956 ($ $ |t#1|)) (-15 -4195 ($ $ $)) (-15 -2529 ((-112) $ $)) (-15 -1901 ($ $ $)) (-15 -1901 ($ $ |t#1|)) (-15 -1901 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-625 (-874)) . T) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) . T) ((-1236) . T)) +((-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 8)) (-3985 (((-112) $ $) 12))) +(((-1118 |#1|) (-10 -8 (-15 -3985 ((-112) |#1| |#1|)) (-15 -1927 ((-1177) |#1|)) (-15 -1445 ((-1139) |#1|))) (-1119)) (T -1118)) +NIL +(-10 -8 (-15 -3985 ((-112) |#1| |#1|)) (-15 -1927 ((-1177) |#1|)) (-15 -1445 ((-1139) |#1|))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-1119) (-141)) (T -1119)) -((-3139 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1139)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1178)))) (-1531 (*1 *2 *1 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-112))))) -(-13 (-102) (-625 (-874)) (-10 -8 (-15 -3139 ((-1139) $)) (-15 -3288 ((-1178) $)) (-15 -1531 ((-112) $ $)))) +((-1445 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1139)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1177)))) (-3985 (*1 *2 *1 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-112))))) +(-13 (-102) (-625 (-874)) (-10 -8 (-15 -1445 ((-1139) $)) (-15 -1927 ((-1177) $)) (-15 -3985 ((-112) $ $)))) (((-102) . T) ((-625 (-874)) . T)) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) 36)) (-3485 (($ (-656 (-938))) 70)) (-2991 (((-3 $ "failed") $ (-938) (-938)) 81)) (-2446 (($) 40)) (-3990 (((-112) (-938) $) 42)) (-3225 (((-938) $) 64)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) 39)) (-2206 (((-3 $ "failed") $ (-938)) 77)) (-3139 (((-1139) $) NIL)) (-3695 (((-1287 $)) 47)) (-2952 (((-656 (-938)) $) 27)) (-1354 (((-783) $ (-938) (-938)) 78)) (-4092 (((-874) $) 32)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 24))) -(((-1120 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -2206 ((-3 $ "failed") $ (-938))) (-15 -2991 ((-3 $ "failed") $ (-938) (-938))) (-15 -2952 ((-656 (-938)) $)) (-15 -3485 ($ (-656 (-938)))) (-15 -3695 ((-1287 $))) (-15 -3990 ((-112) (-938) $)) (-15 -1354 ((-783) $ (-938) (-938))))) (-938) (-938)) (T -1120)) -((-2206 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2991 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2952 (*1 *2 *1) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3485 (*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3695 (*1 *2) (-12 (-5 *2 (-1287 (-1120 *3 *4))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3990 (*1 *2 *3 *1) (-12 (-5 *3 (-938)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1354 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-783)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-379) (-10 -8 (-15 -2206 ((-3 $ "failed") $ (-938))) (-15 -2991 ((-3 $ "failed") $ (-938) (-938))) (-15 -2952 ((-656 (-938)) $)) (-15 -3485 ($ (-656 (-938)))) (-15 -3695 ((-1287 $))) (-15 -3990 ((-112) (-938) $)) (-15 -1354 ((-783) $ (-938) (-938))))) -((-2034 (((-112) $ $) NIL)) (-1922 (($) NIL (|has| |#1| (-379)))) (-4006 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-4369 (($ $ $) 81)) (-3004 (((-112) $ $) 82)) (-2835 (((-112) $ (-783)) NIL)) (-2247 (((-783)) NIL (|has| |#1| (-379)))) (-3662 (($ (-656 |#1|)) NIL) (($) 13)) (-3831 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4376 (($ |#1| $) 74 (|has| $ (-6 -4462))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4462)))) (-2446 (($) NIL (|has| |#1| (-379)))) (-4260 (((-656 |#1|) $) 19 (|has| $ (-6 -4462)))) (-1583 (((-112) $ $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-3492 ((|#1| $) 55 (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2726 ((|#1| $) 53 (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 34)) (-3225 (((-938) $) NIL (|has| |#1| (-379)))) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-3586 (($ $ $) 79)) (-3576 ((|#1| $) 25)) (-2361 (($ |#1| $) 69)) (-2550 (($ (-938)) NIL (|has| |#1| (-379)))) (-3139 (((-1139) $) NIL)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1679 ((|#1| $) 27)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 21)) (-2643 (($) 11)) (-3182 (($ $ |#1|) NIL) (($ $ $) 80)) (-1833 (($) NIL) (($ (-656 |#1|)) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) 16)) (-1505 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 62)) (-3737 (($ $) NIL (|has| |#1| (-379)))) (-4092 (((-874) $) NIL)) (-2214 (((-783) $) NIL)) (-1460 (($ (-656 |#1|)) NIL) (($) 12)) (-1531 (((-112) $ $) NIL)) (-3688 (($ (-656 |#1|)) NIL)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 52)) (-2048 (((-783) $) 10 (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) 36)) (-4240 (($ (-656 (-938))) 70)) (-3493 (((-3 $ "failed") $ (-938) (-938)) 81)) (-1803 (($) 40)) (-2511 (((-112) (-938) $) 42)) (-1902 (((-938) $) 64)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) 39)) (-4327 (((-3 $ "failed") $ (-938)) 77)) (-1445 (((-1139) $) NIL)) (-2107 (((-1286 $)) 47)) (-2634 (((-656 (-938)) $) 27)) (-2843 (((-783) $ (-938) (-938)) 78)) (-3563 (((-874) $) 32)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 24))) +(((-1120 |#1| |#2|) (-13 (-379) (-10 -8 (-15 -4327 ((-3 $ "failed") $ (-938))) (-15 -3493 ((-3 $ "failed") $ (-938) (-938))) (-15 -2634 ((-656 (-938)) $)) (-15 -4240 ($ (-656 (-938)))) (-15 -2107 ((-1286 $))) (-15 -2511 ((-112) (-938) $)) (-15 -2843 ((-783) $ (-938) (-938))))) (-938) (-938)) (T -1120)) +((-4327 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3493 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2634 (*1 *2 *1) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-4240 (*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-2107 (*1 *2) (-12 (-5 *2 (-1286 (-1120 *3 *4))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-2511 (*1 *2 *3 *1) (-12 (-5 *3 (-938)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2843 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-783)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-379) (-10 -8 (-15 -4327 ((-3 $ "failed") $ (-938))) (-15 -3493 ((-3 $ "failed") $ (-938) (-938))) (-15 -2634 ((-656 (-938)) $)) (-15 -4240 ($ (-656 (-938)))) (-15 -2107 ((-1286 $))) (-15 -2511 ((-112) (-938) $)) (-15 -2843 ((-783) $ (-938) (-938))))) +((-3474 (((-112) $ $) NIL)) (-1642 (($) NIL (|has| |#1| (-379)))) (-1901 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-4195 (($ $ $) 81)) (-2529 (((-112) $ $) 82)) (-3131 (((-112) $ (-783)) NIL)) (-2148 (((-783)) NIL (|has| |#1| (-379)))) (-2187 (($ (-656 |#1|)) NIL) (($) 13)) (-4001 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3623 (($ |#1| $) 74 (|has| $ (-6 -4461))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4461)))) (-1803 (($) NIL (|has| |#1| (-379)))) (-3825 (((-656 |#1|) $) 19 (|has| $ (-6 -4461)))) (-1408 (((-112) $ $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-2442 ((|#1| $) 55 (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1893 ((|#1| $) 53 (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 34)) (-1902 (((-938) $) NIL (|has| |#1| (-379)))) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-2021 (($ $ $) 79)) (-1409 ((|#1| $) 25)) (-2040 (($ |#1| $) 69)) (-3257 (($ (-938)) NIL (|has| |#1| (-379)))) (-1445 (((-1139) $) NIL)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3399 ((|#1| $) 27)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 21)) (-2597 (($) 11)) (-1956 (($ $ |#1|) NIL) (($ $ $) 80)) (-2837 (($) NIL) (($ (-656 |#1|)) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) 16)) (-4076 (((-548) $) 50 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 62)) (-4063 (($ $) NIL (|has| |#1| (-379)))) (-3563 (((-874) $) NIL)) (-3763 (((-783) $) NIL)) (-1909 (($ (-656 |#1|)) NIL) (($) 12)) (-3985 (((-112) $ $) NIL)) (-3773 (($ (-656 |#1|)) NIL)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 52)) (-3485 (((-783) $) 10 (|has| $ (-6 -4461))))) (((-1121 |#1|) (-437 |#1|) (-1119)) (T -1121)) NIL (-437 |#1|) -((-2034 (((-112) $ $) 7)) (-4285 (((-112) $) 33)) (-2258 ((|#2| $) 28)) (-1327 (((-112) $) 34)) (-1552 ((|#1| $) 29)) (-1379 (((-112) $) 36)) (-3878 (((-112) $) 38)) (-1433 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3738 (((-112) $) 32)) (-2284 ((|#3| $) 27)) (-3139 (((-1139) $) 11)) (-4211 (((-112) $) 31)) (-2733 ((|#4| $) 26)) (-2870 ((|#5| $) 25)) (-3278 (((-112) $ $) 39)) (-4367 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-1471 (((-656 $) $) 30)) (-1505 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-4092 (((-874) $) 12)) (-3456 (($ $) 23)) (-2979 (($ $) 24)) (-1531 (((-112) $ $) 9)) (-3263 (((-112) $) 37)) (-3919 (((-112) $ $) 6)) (-2048 (((-576) $) 22))) +((-3474 (((-112) $ $) 7)) (-2792 (((-112) $) 33)) (-4257 ((|#2| $) 28)) (-3342 (((-112) $) 34)) (-1328 ((|#1| $) 29)) (-1520 (((-112) $) 36)) (-2084 (((-112) $) 38)) (-1745 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-4185 (((-112) $) 32)) (-4281 ((|#3| $) 27)) (-1445 (((-1139) $) 11)) (-3203 (((-112) $) 31)) (-3096 ((|#4| $) 26)) (-2975 ((|#5| $) 25)) (-3896 (((-112) $ $) 39)) (-2871 (($ $ (-576)) 41) (($ $ (-656 (-576))) 40)) (-1923 (((-656 $) $) 30)) (-4076 (($ |#1|) 47) (($ |#2|) 46) (($ |#3|) 45) (($ |#4|) 44) (($ |#5|) 43) (($ (-656 $)) 42)) (-3563 (((-874) $) 12)) (-3256 (($ $) 23)) (-1501 (($ $) 24)) (-3985 (((-112) $ $) 9)) (-4291 (((-112) $) 37)) (-2988 (((-112) $ $) 6)) (-3485 (((-576) $) 22))) (((-1122 |#1| |#2| |#3| |#4| |#5|) (-141) (-1119) (-1119) (-1119) (-1119) (-1119)) (T -1122)) -((-3278 (*1 *2 *1 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-3263 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-1379 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-1327 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-4285 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-3738 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-1471 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-1122 *3 *4 *5 *6 *7)))) (-1552 (*1 *2 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-2284 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *2)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-2979 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)))) (-3456 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-576))))) -(-13 (-1119) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -3278 ((-112) $ $)) (-15 -3878 ((-112) $)) (-15 -3263 ((-112) $)) (-15 -1379 ((-112) $)) (-15 -1433 ((-112) $)) (-15 -1327 ((-112) $)) (-15 -4285 ((-112) $)) (-15 -3738 ((-112) $)) (-15 -4211 ((-112) $)) (-15 -1471 ((-656 $) $)) (-15 -1552 (|t#1| $)) (-15 -2258 (|t#2| $)) (-15 -2284 (|t#3| $)) (-15 -2733 (|t#4| $)) (-15 -2870 (|t#5| $)) (-15 -2979 ($ $)) (-15 -3456 ($ $)) (-15 -2048 ((-576) $)))) -(((-102) . T) ((-625 (-874)) . T) ((-630 (-656 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-656 (-576)) $) . T) ((-1119) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-4285 (((-112) $) NIL)) (-2258 (((-1196) $) NIL)) (-1327 (((-112) $) NIL)) (-1552 (((-1178) $) NIL)) (-1379 (((-112) $) NIL)) (-3878 (((-112) $) NIL)) (-1433 (((-112) $) NIL)) (-3288 (((-1178) $) NIL)) (-3738 (((-112) $) NIL)) (-2284 (((-576) $) NIL)) (-3139 (((-1139) $) NIL)) (-4211 (((-112) $) NIL)) (-2733 (((-227) $) NIL)) (-2870 (((-874) $) NIL)) (-3278 (((-112) $ $) NIL)) (-4367 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1471 (((-656 $) $) NIL)) (-1505 (($ (-1178)) NIL) (($ (-1196)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-874)) NIL) (($ (-656 $)) NIL)) (-4092 (((-874) $) NIL)) (-3456 (($ $) NIL)) (-2979 (($ $) NIL)) (-1531 (((-112) $ $) NIL)) (-3263 (((-112) $) NIL)) (-3919 (((-112) $ $) NIL)) (-2048 (((-576) $) NIL))) -(((-1123) (-1122 (-1178) (-1196) (-576) (-227) (-874))) (T -1123)) -NIL -(-1122 (-1178) (-1196) (-576) (-227) (-874)) -((-2034 (((-112) $ $) NIL)) (-4285 (((-112) $) 45)) (-2258 ((|#2| $) 48)) (-1327 (((-112) $) 20)) (-1552 ((|#1| $) 21)) (-1379 (((-112) $) 42)) (-3878 (((-112) $) 14)) (-1433 (((-112) $) 44)) (-3288 (((-1178) $) NIL)) (-3738 (((-112) $) 46)) (-2284 ((|#3| $) 50)) (-3139 (((-1139) $) NIL)) (-4211 (((-112) $) 47)) (-2733 ((|#4| $) 49)) (-2870 ((|#5| $) 51)) (-3278 (((-112) $ $) 41)) (-4367 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-1471 (((-656 $) $) 27)) (-1505 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-4092 (((-874) $) 28)) (-3456 (($ $) 26)) (-2979 (($ $) 58)) (-1531 (((-112) $ $) NIL)) (-3263 (((-112) $) 23)) (-3919 (((-112) $ $) 40)) (-2048 (((-576) $) 60))) +((-3896 (*1 *2 *1 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-4291 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-1520 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-1745 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112)))) (-1923 (*1 *2 *1) (-12 (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-1122 *3 *4 *5 *6 *7)))) (-1328 (*1 *2 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-4257 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *2 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-2975 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *2)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) (-1501 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)))) (-3256 (*1 *1 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-576))))) +(-13 (-1119) (-630 |t#1|) (-630 |t#2|) (-630 |t#3|) (-630 |t#4|) (-630 |t#4|) (-630 |t#5|) (-630 (-656 $)) (-296 (-576) $) (-296 (-656 (-576)) $) (-10 -8 (-15 -3896 ((-112) $ $)) (-15 -2084 ((-112) $)) (-15 -4291 ((-112) $)) (-15 -1520 ((-112) $)) (-15 -1745 ((-112) $)) (-15 -3342 ((-112) $)) (-15 -2792 ((-112) $)) (-15 -4185 ((-112) $)) (-15 -3203 ((-112) $)) (-15 -1923 ((-656 $) $)) (-15 -1328 (|t#1| $)) (-15 -4257 (|t#2| $)) (-15 -4281 (|t#3| $)) (-15 -3096 (|t#4| $)) (-15 -2975 (|t#5| $)) (-15 -1501 ($ $)) (-15 -3256 ($ $)) (-15 -3485 ((-576) $)))) +(((-102) . T) ((-625 (-874)) . T) ((-630 (-656 $)) . T) ((-630 |#1|) . T) ((-630 |#2|) . T) ((-630 |#3|) . T) ((-630 |#4|) . T) ((-630 |#5|) . T) ((-296 (-576) $) . T) ((-296 (-656 (-576)) $) . T) ((-1119) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-2792 (((-112) $) NIL)) (-4257 (((-1195) $) NIL)) (-3342 (((-112) $) NIL)) (-1328 (((-1177) $) NIL)) (-1520 (((-112) $) NIL)) (-2084 (((-112) $) NIL)) (-1745 (((-112) $) NIL)) (-1927 (((-1177) $) NIL)) (-4185 (((-112) $) NIL)) (-4281 (((-576) $) NIL)) (-1445 (((-1139) $) NIL)) (-3203 (((-112) $) NIL)) (-3096 (((-227) $) NIL)) (-2975 (((-874) $) NIL)) (-3896 (((-112) $ $) NIL)) (-2871 (($ $ (-576)) NIL) (($ $ (-656 (-576))) NIL)) (-1923 (((-656 $) $) NIL)) (-4076 (($ (-1177)) NIL) (($ (-1195)) NIL) (($ (-576)) NIL) (($ (-227)) NIL) (($ (-874)) NIL) (($ (-656 $)) NIL)) (-3563 (((-874) $) NIL)) (-3256 (($ $) NIL)) (-1501 (($ $) NIL)) (-3985 (((-112) $ $) NIL)) (-4291 (((-112) $) NIL)) (-2988 (((-112) $ $) NIL)) (-3485 (((-576) $) NIL))) +(((-1123) (-1122 (-1177) (-1195) (-576) (-227) (-874))) (T -1123)) +NIL +(-1122 (-1177) (-1195) (-576) (-227) (-874)) +((-3474 (((-112) $ $) NIL)) (-2792 (((-112) $) 45)) (-4257 ((|#2| $) 48)) (-3342 (((-112) $) 20)) (-1328 ((|#1| $) 21)) (-1520 (((-112) $) 42)) (-2084 (((-112) $) 14)) (-1745 (((-112) $) 44)) (-1927 (((-1177) $) NIL)) (-4185 (((-112) $) 46)) (-4281 ((|#3| $) 50)) (-1445 (((-1139) $) NIL)) (-3203 (((-112) $) 47)) (-3096 ((|#4| $) 49)) (-2975 ((|#5| $) 51)) (-3896 (((-112) $ $) 41)) (-2871 (($ $ (-576)) 62) (($ $ (-656 (-576))) 64)) (-1923 (((-656 $) $) 27)) (-4076 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-656 $)) 52)) (-3563 (((-874) $) 28)) (-3256 (($ $) 26)) (-1501 (($ $) 58)) (-3985 (((-112) $ $) NIL)) (-4291 (((-112) $) 23)) (-2988 (((-112) $ $) 40)) (-3485 (((-576) $) 60))) (((-1124 |#1| |#2| |#3| |#4| |#5|) (-1122 |#1| |#2| |#3| |#4| |#5|) (-1119) (-1119) (-1119) (-1119) (-1119)) (T -1124)) NIL (-1122 |#1| |#2| |#3| |#4| |#5|) -((-3472 (((-1292) $) 22)) (-2681 (($ (-1196) (-446) |#2|) 11)) (-4092 (((-874) $) 16))) -(((-1125 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2681 ($ (-1196) (-446) |#2|)))) (-1119) (-442 |#1|)) (T -1125)) -((-2681 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1196)) (-5 *3 (-446)) (-4 *5 (-1119)) (-5 *1 (-1125 *5 *4)) (-4 *4 (-442 *5))))) -(-13 (-407) (-10 -8 (-15 -2681 ($ (-1196) (-446) |#2|)))) -((-3080 (((-112) |#5| |#5|) 44)) (-2598 (((-112) |#5| |#5|) 59)) (-2042 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3747 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-2004 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) 70)) (-1630 (((-1292)) 32)) (-3397 (((-1292) (-1178) (-1178) (-1178)) 28)) (-4138 (((-656 |#5|) (-656 |#5|)) 101)) (-3727 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) 93)) (-2304 (((-656 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-3660 (((-112) |#5| |#5|) 53)) (-3365 (((-3 (-112) "failed") |#5| |#5|) 78)) (-1406 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-2461 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-3711 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3348 (((-3 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-3849 (((-656 |#5|) (-656 |#5|)) 49))) -(((-1126 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3397 ((-1292) (-1178) (-1178) (-1178))) (-15 -1630 ((-1292))) (-15 -3080 ((-112) |#5| |#5|)) (-15 -3849 ((-656 |#5|) (-656 |#5|))) (-15 -3660 ((-112) |#5| |#5|)) (-15 -2598 ((-112) |#5| |#5|)) (-15 -3747 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1406 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2461 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3711 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3365 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2042 ((-112) |#5| |#5|)) (-15 -2042 ((-112) |#5| (-656 |#5|))) (-15 -4138 ((-656 |#5|) (-656 |#5|))) (-15 -2004 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) (-15 -3727 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-15 -2304 ((-656 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3348 ((-3 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1126)) -((-3348 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| -3278 (-656 *9)) (|:| -4385 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1126 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1090 *6 *7 *8 *9)))) (-2304 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -3278 (-656 *9)) (|:| -4385 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1126 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4385 *7)))) (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-2004 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4385 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)))) (-4138 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-2042 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1126 *5 *6 *7 *8 *3)))) (-2042 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3365 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3711 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2461 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-1406 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3747 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2598 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3660 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-3080 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-1630 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3397 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -(-10 -7 (-15 -3397 ((-1292) (-1178) (-1178) (-1178))) (-15 -1630 ((-1292))) (-15 -3080 ((-112) |#5| |#5|)) (-15 -3849 ((-656 |#5|) (-656 |#5|))) (-15 -3660 ((-112) |#5| |#5|)) (-15 -2598 ((-112) |#5| |#5|)) (-15 -3747 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -1406 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2461 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3711 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3365 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2042 ((-112) |#5| |#5|)) (-15 -2042 ((-112) |#5| (-656 |#5|))) (-15 -4138 ((-656 |#5|) (-656 |#5|))) (-15 -2004 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) (-15 -3727 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-15 -2304 ((-656 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3348 ((-3 (-2 (|:| -3278 (-656 |#4|)) (|:| -4385 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-1708 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#5|) 108)) (-3577 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#4| |#4| |#5|) 80)) (-1874 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|) 102)) (-3299 (((-656 |#5|) |#4| |#5|) 124)) (-3356 (((-656 |#5|) |#4| |#5|) 131)) (-1380 (((-656 |#5|) |#4| |#5|) 132)) (-2924 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|) 109)) (-2365 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|) 130)) (-2914 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-2634 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2339 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|) 87)) (-1991 (((-1292)) 36)) (-3661 (((-1292)) 25)) (-1678 (((-1292) (-1178) (-1178) (-1178)) 32)) (-1618 (((-1292) (-1178) (-1178) (-1178)) 21))) -(((-1127 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1618 ((-1292) (-1178) (-1178) (-1178))) (-15 -3661 ((-1292))) (-15 -1678 ((-1292) (-1178) (-1178) (-1178))) (-15 -1991 ((-1292))) (-15 -3577 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -2634 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2634 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#3| (-112))) (-15 -2339 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -1874 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -2914 ((-112) |#4| |#5|)) (-15 -2924 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -3299 ((-656 |#5|) |#4| |#5|)) (-15 -2365 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -3356 ((-656 |#5|) |#4| |#5|)) (-15 -2914 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -1380 ((-656 |#5|) |#4| |#5|)) (-15 -1708 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1127)) -((-1708 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1380 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2914 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3356 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2365 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3299 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2924 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2914 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1874 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2339 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2634 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4385 *9)))) (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4385 *9)))) (-5 *1 (-1127 *6 *7 *4 *8 *9)))) (-2634 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3577 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1991 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-1678 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3661 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-1618 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -(-10 -7 (-15 -1618 ((-1292) (-1178) (-1178) (-1178))) (-15 -3661 ((-1292))) (-15 -1678 ((-1292) (-1178) (-1178) (-1178))) (-15 -1991 ((-1292))) (-15 -3577 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -2634 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -2634 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) |#3| (-112))) (-15 -2339 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -1874 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#4| |#5|)) (-15 -2914 ((-112) |#4| |#5|)) (-15 -2924 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -3299 ((-656 |#5|) |#4| |#5|)) (-15 -2365 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -3356 ((-656 |#5|) |#4| |#5|)) (-15 -2914 ((-656 (-2 (|:| |val| (-112)) (|:| -4385 |#5|))) |#4| |#5|)) (-15 -1380 ((-656 |#5|) |#4| |#5|)) (-15 -1708 ((-656 (-2 (|:| |val| |#4|) (|:| -4385 |#5|))) |#4| |#5|))) -((-2034 (((-112) $ $) 7)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |#4|)))) (-656 |#4|)) 86)) (-2567 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1541 (((-656 |#3|) $) 34)) (-3522 (((-112) $) 27)) (-2932 (((-112) $) 18 (|has| |#1| (-568)))) (-1701 (((-112) |#4| $) 102) (((-112) $) 98)) (-2919 ((|#4| |#4| $) 93)) (-1587 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| $) 127)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) 28)) (-2835 (((-112) $ (-783)) 45)) (-3457 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-3656 (($) 46 T CONST)) (-3425 (((-112) $) 23 (|has| |#1| (-568)))) (-2623 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1582 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3347 (((-112) $) 26 (|has| |#1| (-568)))) (-1574 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4135 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) 37)) (-2378 (($ (-656 |#4|)) 36)) (-2712 (((-3 $ "failed") $) 83)) (-3996 ((|#4| |#4| $) 90)) (-1690 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3532 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2948 ((|#4| |#4| $) 88)) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2740 (((-2 (|:| -1627 (-656 |#4|)) (|:| -3709 (-656 |#4|))) $) 106)) (-3638 (((-112) |#4| $) 137)) (-1752 (((-112) |#4| $) 134)) (-2040 (((-112) |#4| $) 138) (((-112) $) 135)) (-4260 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-3871 (((-112) |#4| $) 105) (((-112) $) 104)) (-2565 ((|#3| $) 35)) (-1419 (((-112) $ (-783)) 44)) (-1750 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 48)) (-2964 (((-656 |#3|) $) 33)) (-2459 (((-112) |#3| $) 32)) (-3103 (((-112) $ (-783)) 43)) (-3288 (((-1178) $) 10)) (-4204 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3918 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| |#4| $) 128)) (-2912 (((-3 |#4| "failed") $) 84)) (-3860 (((-656 $) |#4| $) 130)) (-2711 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1851 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3586 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-3869 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2106 (((-656 |#4|) $) 108)) (-3593 (((-112) |#4| $) 100) (((-112) $) 96)) (-4395 ((|#4| |#4| $) 91)) (-3711 (((-112) $ $) 111)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1875 (((-112) |#4| $) 101) (((-112) $) 97)) (-3987 ((|#4| |#4| $) 92)) (-3139 (((-1139) $) 11)) (-2701 (((-3 |#4| "failed") $) 85)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1479 (((-3 $ "failed") $ |#4|) 79)) (-2843 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3292 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) 39)) (-3372 (((-112) $) 42)) (-2643 (($) 41)) (-2369 (((-783) $) 107)) (-3150 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-4268 (($ $) 40)) (-1505 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) 61)) (-1606 (($ $ |#3|) 29)) (-2333 (($ $ |#3|) 31)) (-2792 (($ $) 89)) (-2875 (($ $ |#3|) 30)) (-4092 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2727 (((-783) $) 77 (|has| |#3| (-379)))) (-1531 (((-112) $ $) 9)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2196 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-4088 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2190 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1895 (((-656 |#3|) $) 82)) (-2813 (((-112) |#4| $) 136)) (-4101 (((-112) |#3| $) 81)) (-3919 (((-112) $ $) 6)) (-2048 (((-783) $) 47 (|has| $ (-6 -4462))))) +((-3188 (((-1291) $) 22)) (-2124 (($ (-1195) (-446) |#2|) 11)) (-3563 (((-874) $) 16))) +(((-1125 |#1| |#2|) (-13 (-407) (-10 -8 (-15 -2124 ($ (-1195) (-446) |#2|)))) (-1119) (-442 |#1|)) (T -1125)) +((-2124 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1195)) (-5 *3 (-446)) (-4 *5 (-1119)) (-5 *1 (-1125 *5 *4)) (-4 *4 (-442 *5))))) +(-13 (-407) (-10 -8 (-15 -2124 ($ (-1195) (-446) |#2|)))) +((-2087 (((-112) |#5| |#5|) 44)) (-3556 (((-112) |#5| |#5|) 59)) (-3192 (((-112) |#5| (-656 |#5|)) 82) (((-112) |#5| |#5|) 68)) (-3899 (((-112) (-656 |#4|) (-656 |#4|)) 65)) (-2919 (((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) 70)) (-3153 (((-1291)) 32)) (-1739 (((-1291) (-1177) (-1177) (-1177)) 28)) (-2343 (((-656 |#5|) (-656 |#5|)) 101)) (-2400 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) 93)) (-1412 (((-656 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112)) 123)) (-3013 (((-112) |#5| |#5|) 53)) (-2588 (((-3 (-112) "failed") |#5| |#5|) 78)) (-4368 (((-112) (-656 |#4|) (-656 |#4|)) 64)) (-2171 (((-112) (-656 |#4|) (-656 |#4|)) 66)) (-3391 (((-112) (-656 |#4|) (-656 |#4|)) 67)) (-3383 (((-3 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-1354 (((-656 |#5|) (-656 |#5|)) 49))) +(((-1126 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1739 ((-1291) (-1177) (-1177) (-1177))) (-15 -3153 ((-1291))) (-15 -2087 ((-112) |#5| |#5|)) (-15 -1354 ((-656 |#5|) (-656 |#5|))) (-15 -3013 ((-112) |#5| |#5|)) (-15 -3556 ((-112) |#5| |#5|)) (-15 -3899 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4368 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2171 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3391 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2588 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3192 ((-112) |#5| |#5|)) (-15 -3192 ((-112) |#5| (-656 |#5|))) (-15 -2343 ((-656 |#5|) (-656 |#5|))) (-15 -2919 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) (-15 -2400 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-15 -1412 ((-656 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3383 ((-3 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1126)) +((-3383 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| -3896 (-656 *9)) (|:| -3887 *4) (|:| |ineq| (-656 *9)))) (-5 *1 (-1126 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) (-4 *4 (-1090 *6 *7 *8 *9)))) (-1412 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| -3896 (-656 *9)) (|:| -3887 *10) (|:| |ineq| (-656 *9))))) (-5 *1 (-1126 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3887 *7)))) (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-2919 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3887 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1126 *5 *6 *7 *8 *3)))) (-3192 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-2588 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3391 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-2171 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-4368 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3899 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3556 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3013 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-1354 (*1 *2 *2) (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-1126 *3 *4 *5 *6 *7)))) (-2087 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) (-3153 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-1739 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(-10 -7 (-15 -1739 ((-1291) (-1177) (-1177) (-1177))) (-15 -3153 ((-1291))) (-15 -2087 ((-112) |#5| |#5|)) (-15 -1354 ((-656 |#5|) (-656 |#5|))) (-15 -3013 ((-112) |#5| |#5|)) (-15 -3556 ((-112) |#5| |#5|)) (-15 -3899 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -4368 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2171 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -3391 ((-112) (-656 |#4|) (-656 |#4|))) (-15 -2588 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3192 ((-112) |#5| |#5|)) (-15 -3192 ((-112) |#5| (-656 |#5|))) (-15 -2343 ((-656 |#5|) (-656 |#5|))) (-15 -2919 ((-112) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) (-15 -2400 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-15 -1412 ((-656 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|)))) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3383 ((-3 (-2 (|:| -3896 (-656 |#4|)) (|:| -3887 |#5|) (|:| |ineq| (-656 |#4|))) "failed") (-656 |#4|) |#5| (-656 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3986 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#5|) 108)) (-3406 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#4| |#4| |#5|) 80)) (-2551 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|) 102)) (-3553 (((-656 |#5|) |#4| |#5|) 124)) (-2943 (((-656 |#5|) |#4| |#5|) 131)) (-1667 (((-656 |#5|) |#4| |#5|) 132)) (-1818 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|) 109)) (-4235 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|) 130)) (-3286 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|) 47) (((-112) |#4| |#5|) 55)) (-3059 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#3| (-112)) 92) (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5| (-112) (-112)) 52)) (-2780 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|) 87)) (-4433 (((-1291)) 36)) (-3130 (((-1291)) 25)) (-3327 (((-1291) (-1177) (-1177) (-1177)) 32)) (-3461 (((-1291) (-1177) (-1177) (-1177)) 21))) +(((-1127 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3461 ((-1291) (-1177) (-1177) (-1177))) (-15 -3130 ((-1291))) (-15 -3327 ((-1291) (-1177) (-1177) (-1177))) (-15 -4433 ((-1291))) (-15 -3406 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -3059 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3059 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#3| (-112))) (-15 -2780 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -2551 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -3286 ((-112) |#4| |#5|)) (-15 -1818 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -3553 ((-656 |#5|) |#4| |#5|)) (-15 -4235 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -2943 ((-656 |#5|) |#4| |#5|)) (-15 -3286 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -1667 ((-656 |#5|) |#4| |#5|)) (-15 -3986 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#5|))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1090 |#1| |#2| |#3| |#4|)) (T -1127)) +((-3986 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1667 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3286 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2943 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-4235 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3553 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-1818 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3286 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2551 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-2780 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-3059 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3887 *9)))) (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3887 *9)))) (-5 *1 (-1127 *6 *7 *4 *8 *9)))) (-3059 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) (-3406 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) (-4433 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3327 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) (-3130 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) (-3461 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(-10 -7 (-15 -3461 ((-1291) (-1177) (-1177) (-1177))) (-15 -3130 ((-1291))) (-15 -3327 ((-1291) (-1177) (-1177) (-1177))) (-15 -4433 ((-1291))) (-15 -3406 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -3059 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3059 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) |#3| (-112))) (-15 -2780 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -2551 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#4| |#5|)) (-15 -3286 ((-112) |#4| |#5|)) (-15 -1818 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -3553 ((-656 |#5|) |#4| |#5|)) (-15 -4235 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -2943 ((-656 |#5|) |#4| |#5|)) (-15 -3286 ((-656 (-2 (|:| |val| (-112)) (|:| -3887 |#5|))) |#4| |#5|)) (-15 -1667 ((-656 |#5|) |#4| |#5|)) (-15 -3986 ((-656 (-2 (|:| |val| |#4|) (|:| -3887 |#5|))) |#4| |#5|))) +((-3474 (((-112) $ $) 7)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |#4|)))) (-656 |#4|)) 86)) (-1968 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1991 (((-656 |#3|) $) 34)) (-1665 (((-112) $) 27)) (-4324 (((-112) $) 18 (|has| |#1| (-568)))) (-1587 (((-112) |#4| $) 102) (((-112) $) 98)) (-2596 ((|#4| |#4| $) 93)) (-1760 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| $) 127)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) 28)) (-3131 (((-112) $ (-783)) 45)) (-2496 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-3767 (($) 46 T CONST)) (-2359 (((-112) $) 23 (|has| |#1| (-568)))) (-4268 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2556 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1376 (((-112) $) 26 (|has| |#1| (-568)))) (-2905 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2147 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) 37)) (-4056 (($ (-656 |#4|)) 36)) (-3515 (((-3 $ "failed") $) 83)) (-1937 ((|#4| |#4| $) 90)) (-3172 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1426 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1679 ((|#4| |#4| $) 88)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1852 (((-2 (|:| -2055 (-656 |#4|)) (|:| -3223 (-656 |#4|))) $) 106)) (-3844 (((-112) |#4| $) 137)) (-1548 (((-112) |#4| $) 134)) (-2984 (((-112) |#4| $) 138) (((-112) $) 135)) (-3825 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-1453 (((-112) |#4| $) 105) (((-112) $) 104)) (-1734 ((|#3| $) 35)) (-3115 (((-112) $ (-783)) 44)) (-2591 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 48)) (-2653 (((-656 |#3|) $) 33)) (-1845 (((-112) |#3| $) 32)) (-2712 (((-112) $ (-783)) 43)) (-1927 (((-1177) $) 10)) (-3707 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3355 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| |#4| $) 128)) (-3923 (((-3 |#4| "failed") $) 84)) (-2918 (((-656 $) |#4| $) 130)) (-1494 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1992 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2021 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2509 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2181 (((-656 |#4|) $) 108)) (-1521 (((-112) |#4| $) 100) (((-112) $) 96)) (-1582 ((|#4| |#4| $) 91)) (-3391 (((-112) $ $) 111)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1393 (((-112) |#4| $) 101) (((-112) $) 97)) (-2196 ((|#4| |#4| $) 92)) (-1445 (((-1139) $) 11)) (-3504 (((-3 |#4| "failed") $) 85)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3229 (((-3 $ "failed") $ |#4|) 79)) (-1714 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-4207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) 39)) (-1911 (((-112) $) 42)) (-2597 (($) 41)) (-1433 (((-783) $) 107)) (-1456 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-1954 (($ $) 40)) (-4076 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) 61)) (-1813 (($ $ |#3|) 29)) (-3418 (($ $ |#3|) 31)) (-3543 (($ $) 89)) (-1794 (($ $ |#3|) 30)) (-3563 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2025 (((-783) $) 77 (|has| |#3| (-379)))) (-3985 (((-112) $ $) 9)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1352 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1744 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2043 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3094 (((-656 |#3|) $) 82)) (-1877 (((-112) |#4| $) 136)) (-1847 (((-112) |#3| $) 81)) (-2988 (((-112) $ $) 6)) (-3485 (((-783) $) 47 (|has| $ (-6 -4461))))) (((-1128 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -1128)) NIL (-13 (-1090 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) -((-3122 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-1870 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-4295 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-3778 (((-576) (-576) (-576)) 21)) (-1858 (((-1287 (-576)) (-656 (-576)) (-1287 (-576)) (-576)) 77) (((-1287 (-576)) (-1287 (-576)) (-1287 (-576)) (-576)) 72)) (-2370 (((-656 (-576)) (-656 (-938)) (-656 (-576)) (-112)) 54)) (-1635 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 76)) (-1674 (((-701 (-576)) (-656 (-938)) (-656 (-576))) 59)) (-3580 (((-656 (-701 (-576))) (-656 (-938))) 65)) (-1442 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 80)) (-3268 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 90))) -(((-1129) (-10 -7 (-15 -3268 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -1442 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3580 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -1674 ((-701 (-576)) (-656 (-938)) (-656 (-576)))) (-15 -1635 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2370 ((-656 (-576)) (-656 (-938)) (-656 (-576)) (-112))) (-15 -1858 ((-1287 (-576)) (-1287 (-576)) (-1287 (-576)) (-576))) (-15 -1858 ((-1287 (-576)) (-656 (-576)) (-1287 (-576)) (-576))) (-15 -3778 ((-576) (-576) (-576))) (-15 -4295 ((-656 (-576)) (-576) (-576) (-576))) (-15 -1870 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3122 ((-656 (-576)) (-576) (-576) (-576))))) (T -1129)) -((-3122 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))) (-1870 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))) (-4295 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))) (-3778 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1129)))) (-1858 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1129)))) (-1858 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-576)) (-5 *1 (-1129)))) (-2370 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-938))) (-5 *4 (-112)) (-5 *1 (-1129)))) (-1635 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1129)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1129)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1129)))) (-1442 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1129)))) (-3268 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1129))))) -(-10 -7 (-15 -3268 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -1442 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3580 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -1674 ((-701 (-576)) (-656 (-938)) (-656 (-576)))) (-15 -1635 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -2370 ((-656 (-576)) (-656 (-938)) (-656 (-576)) (-112))) (-15 -1858 ((-1287 (-576)) (-1287 (-576)) (-1287 (-576)) (-576))) (-15 -1858 ((-1287 (-576)) (-656 (-576)) (-1287 (-576)) (-576))) (-15 -3778 ((-576) (-576) (-576))) (-15 -4295 ((-656 (-576)) (-576) (-576) (-576))) (-15 -1870 ((-656 (-576)) (-576) (-576) (-576))) (-15 -3122 ((-656 (-576)) (-576) (-576) (-576)))) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) +((-2085 (((-656 (-576)) (-576) (-576) (-576)) 38)) (-2208 (((-656 (-576)) (-576) (-576) (-576)) 28)) (-2458 (((-656 (-576)) (-576) (-576) (-576)) 33)) (-1654 (((-576) (-576) (-576)) 21)) (-4429 (((-1286 (-576)) (-656 (-576)) (-1286 (-576)) (-576)) 77) (((-1286 (-576)) (-1286 (-576)) (-1286 (-576)) (-576)) 72)) (-3444 (((-656 (-576)) (-656 (-938)) (-656 (-576)) (-112)) 54)) (-2470 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 76)) (-4199 (((-701 (-576)) (-656 (-938)) (-656 (-576))) 59)) (-3695 (((-656 (-701 (-576))) (-656 (-938))) 65)) (-4386 (((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576))) 80)) (-3550 (((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576))) 90))) +(((-1129) (-10 -7 (-15 -3550 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -4386 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3695 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -4199 ((-701 (-576)) (-656 (-938)) (-656 (-576)))) (-15 -2470 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3444 ((-656 (-576)) (-656 (-938)) (-656 (-576)) (-112))) (-15 -4429 ((-1286 (-576)) (-1286 (-576)) (-1286 (-576)) (-576))) (-15 -4429 ((-1286 (-576)) (-656 (-576)) (-1286 (-576)) (-576))) (-15 -1654 ((-576) (-576) (-576))) (-15 -2458 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2208 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2085 ((-656 (-576)) (-576) (-576) (-576))))) (T -1129)) +((-2085 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))) (-2208 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))) (-2458 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576)))) (-1654 (*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1129)))) (-4429 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) (-5 *1 (-1129)))) (-4429 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-576)) (-5 *1 (-1129)))) (-3444 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-938))) (-5 *4 (-112)) (-5 *1 (-1129)))) (-2470 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1129)))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1129)))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-1129)))) (-4386 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1129)))) (-3550 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1129))))) +(-10 -7 (-15 -3550 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-656 (-576)))) (-15 -4386 ((-656 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3695 ((-656 (-701 (-576))) (-656 (-938)))) (-15 -4199 ((-701 (-576)) (-656 (-938)) (-656 (-576)))) (-15 -2470 ((-701 (-576)) (-656 (-576)) (-656 (-576)) (-701 (-576)))) (-15 -3444 ((-656 (-576)) (-656 (-938)) (-656 (-576)) (-112))) (-15 -4429 ((-1286 (-576)) (-1286 (-576)) (-1286 (-576)) (-576))) (-15 -4429 ((-1286 (-576)) (-656 (-576)) (-1286 (-576)) (-576))) (-15 -1654 ((-576) (-576) (-576))) (-15 -2458 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2208 ((-656 (-576)) (-576) (-576) (-576))) (-15 -2085 ((-656 (-576)) (-576) (-576) (-576)))) ((** (($ $ (-938)) 10))) (((-1130 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-938)))) (-1131)) (T -1130)) NIL (-10 -8 (-15 ** (|#1| |#1| (-938)))) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6)) (** (($ $ (-938)) 14)) (* (($ $ $) 15))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6)) (** (($ $ (-938)) 14)) (* (($ $ $) 15))) (((-1131) (-141)) (T -1131)) ((* (*1 *1 *1 *1) (-4 *1 (-1131))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-938))))) (-13 (-1119) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-938))))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL (|has| |#3| (-1119)))) (-1962 (((-112) $) NIL (|has| |#3| (-23)))) (-3001 (($ (-938)) NIL (|has| |#3| (-1068)))) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2746 (($ $ $) NIL (|has| |#3| (-805)))) (-3788 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-2835 (((-112) $ (-783)) NIL)) (-2247 (((-783)) NIL (|has| |#3| (-379)))) (-4248 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1119)))) (-2378 (((-576) $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) ((|#3| $) NIL (|has| |#3| (-1119)))) (-3687 (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1068))) (((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 $) $) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-1287 $)) NIL (|has| |#3| (-1068)))) (-3179 (((-3 $ "failed") $) NIL (|has| |#3| (-1068)))) (-2446 (($) NIL (|has| |#3| (-379)))) (-3888 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#3| $ (-576)) 12)) (-4260 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-1810 (((-112) $) NIL (|has| |#3| (-1068)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#3| (-862)))) (-1750 (((-656 |#3|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#3| (-862)))) (-3874 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#3| |#3|) $) NIL)) (-3225 (((-938) $) NIL (|has| |#3| (-379)))) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#3| (-1119)))) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-2550 (($ (-938)) NIL (|has| |#3| (-379)))) (-3139 (((-1139) $) NIL (|has| |#3| (-1119)))) (-2701 ((|#3| $) NIL (|has| (-576) (-862)))) (-2918 (($ $ |#3|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-3060 (((-656 |#3|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-1660 ((|#3| $ $) NIL (|has| |#3| (-1068)))) (-1440 (($ (-1287 |#3|)) NIL)) (-3667 (((-135)) NIL (|has| |#3| (-374)))) (-3614 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068)))) (-3150 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#3| (-1119))))) (-4268 (($ $) NIL)) (-4092 (((-1287 |#3|) $) NIL) (($ (-576)) NIL (-3765 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) (($ |#3|) NIL (|has| |#3| (-1119))) (((-874) $) NIL (|has| |#3| (-625 (-874))))) (-2471 (((-783)) NIL (|has| |#3| (-1068)) CONST)) (-1531 (((-112) $ $) NIL (|has| |#3| (-1119)))) (-2190 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4462)))) (-4300 (($) NIL (|has| |#3| (-23)) CONST)) (-4310 (($) NIL (|has| |#3| (-1068)) CONST)) (-4286 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1196)) NIL (-12 (|has| |#3| (-917 (-1196))) (|has| |#3| (-1068)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068)))) (-3977 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#3| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3944 (((-112) $ $) 24 (|has| |#3| (-862)))) (-4028 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-4018 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-4007 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1068))) (($ $ (-938)) NIL (|has| |#3| (-1068)))) (* (($ $ $) NIL (|has| |#3| (-1068))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-938) $) NIL (|has| |#3| (-25)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL (|has| |#3| (-1119)))) (-1454 (((-112) $) NIL (|has| |#3| (-23)))) (-2204 (($ (-938)) NIL (|has| |#3| (-1068)))) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-4415 (($ $ $) NIL (|has| |#3| (-805)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#3| (-132)))) (-3131 (((-112) $ (-783)) NIL)) (-2148 (((-783)) NIL (|has| |#3| (-379)))) (-3731 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1119)))) (-4056 (((-576) $) NIL (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119)))) (((-419 (-576)) $) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) ((|#3| $) NIL (|has| |#3| (-1119)))) (-3687 (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#3| (-651 (-576))) (|has| |#3| (-1068)))) (((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-701 $)) NIL (|has| |#3| (-1068))) (((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 $) $) NIL (|has| |#3| (-1068))) (((-701 |#3|) (-1286 $)) NIL (|has| |#3| (-1068)))) (-1551 (((-3 $ "failed") $) NIL (|has| |#3| (-1068)))) (-1803 (($) NIL (|has| |#3| (-379)))) (-1776 ((|#3| $ (-576) |#3|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#3| $ (-576)) 12)) (-3825 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-1414 (((-112) $) NIL (|has| |#3| (-1068)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#3| (-862)))) (-2591 (((-656 |#3|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#3| (-862)))) (-1763 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#3| |#3|) $) NIL)) (-1902 (((-938) $) NIL (|has| |#3| (-379)))) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#3| (-1119)))) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-3257 (($ (-938)) NIL (|has| |#3| (-379)))) (-1445 (((-1139) $) NIL (|has| |#3| (-1119)))) (-3504 ((|#3| $) NIL (|has| (-576) (-862)))) (-2500 (($ $ |#3|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#3|))) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-304 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119)))) (($ $ (-656 |#3|) (-656 |#3|)) NIL (-12 (|has| |#3| (-319 |#3|)) (|has| |#3| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1119))))) (-1947 (((-656 |#3|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#3| $ (-576) |#3|) NIL) ((|#3| $ (-576)) NIL)) (-2962 ((|#3| $ $) NIL (|has| |#3| (-1068)))) (-1887 (($ (-1286 |#3|)) NIL)) (-2446 (((-135)) NIL (|has| |#3| (-374)))) (-2735 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068)))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068)))) (-1456 (((-783) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461))) (((-783) |#3| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#3| (-1119))))) (-1954 (($ $) NIL)) (-3563 (((-1286 |#3|) $) NIL) (($ (-576)) NIL (-2835 (-12 (|has| |#3| (-1057 (-576))) (|has| |#3| (-1119))) (|has| |#3| (-1068)))) (($ (-419 (-576))) NIL (-12 (|has| |#3| (-1057 (-419 (-576)))) (|has| |#3| (-1119)))) (($ |#3|) NIL (|has| |#3| (-1119))) (((-874) $) NIL (|has| |#3| (-625 (-874))))) (-1858 (((-783)) NIL (|has| |#3| (-1068)) CONST)) (-3985 (((-112) $ $) NIL (|has| |#3| (-1119)))) (-2043 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4461)))) (-2800 (($) NIL (|has| |#3| (-23)) CONST)) (-2810 (($) NIL (|has| |#3| (-1068)) CONST)) (-2051 (($ $ (-783)) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $) NIL (-12 (|has| |#3| (-237)) (|has| |#3| (-1068)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068)))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068)))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068)))) (($ $ (-1195)) NIL (-12 (|has| |#3| (-917 (-1195))) (|has| |#3| (-1068)))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1068))) (($ $ (-1 |#3| |#3|) (-783)) NIL (|has| |#3| (-1068)))) (-3049 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#3| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#3| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#3| (-862)))) (-3010 (((-112) $ $) 24 (|has| |#3| (-862)))) (-3107 (($ $ |#3|) NIL (|has| |#3| (-374)))) (-3095 (($ $ $) NIL (|has| |#3| (-21))) (($ $) NIL (|has| |#3| (-21)))) (-3083 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-783)) NIL (|has| |#3| (-1068))) (($ $ (-938)) NIL (|has| |#3| (-1068)))) (* (($ $ $) NIL (|has| |#3| (-1068))) (($ $ |#3|) NIL (|has| |#3| (-738))) (($ |#3| $) NIL (|has| |#3| (-738))) (($ (-576) $) NIL (|has| |#3| (-21))) (($ (-783) $) NIL (|has| |#3| (-23))) (($ (-938) $) NIL (|has| |#3| (-25)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) (((-1132 |#1| |#2| |#3|) (-243 |#1| |#3|) (-783) (-783) (-805)) (T -1132)) NIL (-243 |#1| |#3|) -((-1391 (((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 50)) (-2797 (((-576) (-1260 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-3647 (((-576) (-1260 |#2| |#1|)) 76)) (-4288 (((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 58)) (-2218 (((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-1700 (((-656 |#1|) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 61)) (-2481 (((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|)) 75))) -(((-1133 |#1| |#2|) (-10 -7 (-15 -1391 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -4288 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1700 ((-656 |#1|) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2481 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -3647 ((-576) (-1260 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2218 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2797 ((-576) (-1260 |#2| |#1|)))) |%noBranch|)) (-832) (-1196)) (T -1133)) -((-2797 (*1 *2 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-2218 (*1 *2 *3 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-2481 (*1 *2 *3 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-1700 (*1 *2 *3 *3) (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 *4)) (-5 *1 (-1133 *4 *5)))) (-4288 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) (-5 *1 (-1133 *4 *5)) (-5 *3 (-1260 *5 *4)))) (-1391 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) (-5 *1 (-1133 *4 *5)) (-5 *3 (-1260 *5 *4))))) -(-10 -7 (-15 -1391 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -4288 ((-656 (-1260 |#2| |#1|)) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -1700 ((-656 |#1|) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2481 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -3647 ((-576) (-1260 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -2218 ((-576) (-1260 |#2| |#1|) (-1260 |#2| |#1|))) (-15 -2797 ((-576) (-1260 |#2| |#1|)))) |%noBranch|)) -((-2034 (((-112) $ $) NIL)) (-3190 (($ (-518) (-1137)) 13)) (-3404 (((-1137) $) 19)) (-4124 (((-518) $) 16)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 26) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1134) (-13 (-1102) (-10 -8 (-15 -3190 ($ (-518) (-1137))) (-15 -4124 ((-518) $)) (-15 -3404 ((-1137) $))))) (T -1134)) -((-3190 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-1134)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1134)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1134))))) -(-13 (-1102) (-10 -8 (-15 -3190 ($ (-518) (-1137))) (-15 -4124 ((-518) $)) (-15 -3404 ((-1137) $)))) -((-3934 (((-3 (-576) "failed") |#2| (-1196) |#2| (-1178)) 19) (((-3 (-576) "failed") |#2| (-1196) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) -(((-1135 |#1| |#2|) (-10 -7 (-15 -3934 ((-3 (-576) "failed") |#2|)) (-15 -3934 ((-3 (-576) "failed") |#2| (-1196) (-855 |#2|))) (-15 -3934 ((-3 (-576) "failed") |#2| (-1196) |#2| (-1178)))) (-13 (-568) (-1057 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1222) (-442 |#1|))) (T -1135)) -((-3934 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-1178)) (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1135 *6 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))))) (-3934 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1135 *6 *3)))) (-3934 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1135 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4)))))) -(-10 -7 (-15 -3934 ((-3 (-576) "failed") |#2|)) (-15 -3934 ((-3 (-576) "failed") |#2| (-1196) (-855 |#2|))) (-15 -3934 ((-3 (-576) "failed") |#2| (-1196) |#2| (-1178)))) -((-3934 (((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)) (-1178)) 38) (((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-855 (-419 (-969 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-969 |#1|))) 14))) -(((-1136 |#1|) (-10 -7 (-15 -3934 ((-3 (-576) "failed") (-419 (-969 |#1|)))) (-15 -3934 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-855 (-419 (-969 |#1|))))) (-15 -3934 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)) (-1178)))) (-464)) (T -1136)) -((-3934 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1196)) (-5 *5 (-1178)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *6)))) (-3934 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 (-419 (-969 *6)))) (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *6)))) (-3934 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *4))))) -(-10 -7 (-15 -3934 ((-3 (-576) "failed") (-419 (-969 |#1|)))) (-15 -3934 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-855 (-419 (-969 |#1|))))) (-15 -3934 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1196) (-419 (-969 |#1|)) (-1178)))) -((-2034 (((-112) $ $) NIL)) (-4148 (((-1201) $) 12)) (-4097 (((-656 (-1201)) $) 14)) (-3404 (($ (-656 (-1201)) (-1201)) 10)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 29)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 17))) -(((-1137) (-13 (-1119) (-10 -8 (-15 -3404 ($ (-656 (-1201)) (-1201))) (-15 -4148 ((-1201) $)) (-15 -4097 ((-656 (-1201)) $))))) (T -1137)) -((-3404 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1201))) (-5 *3 (-1201)) (-5 *1 (-1137)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1137)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1137))))) -(-13 (-1119) (-10 -8 (-15 -3404 ($ (-656 (-1201)) (-1201))) (-15 -4148 ((-1201) $)) (-15 -4097 ((-656 (-1201)) $)))) -((-4040 (((-326 (-576)) (-48)) 12))) -(((-1138) (-10 -7 (-15 -4040 ((-326 (-576)) (-48))))) (T -1138)) -((-4040 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1138))))) -(-10 -7 (-15 -4040 ((-326 (-576)) (-48)))) -((-2034 (((-112) $ $) NIL)) (-2060 (($ $) 44)) (-1962 (((-112) $) 70)) (-4279 (($ $ $) 53)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 98)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-4253 (($ $ $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2908 (($ $ $ $) 81)) (-1587 (($ $) NIL)) (-2100 (((-430 $) $) NIL)) (-4407 (((-112) $ $) NIL)) (-2247 (((-783)) 83)) (-3934 (((-576) $) NIL)) (-3298 (($ $ $) 78)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL)) (-2378 (((-576) $) NIL)) (-1975 (($ $ $) 64)) (-3687 (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 92) (((-701 (-576)) (-701 $)) 32) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1653 (((-3 (-419 (-576)) "failed") $) NIL)) (-3863 (((-112) $) NIL)) (-4266 (((-419 (-576)) $) NIL)) (-2446 (($) 95) (($ $) 96)) (-1986 (($ $ $) 63)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL)) (-2725 (((-112) $) NIL)) (-2217 (($ $ $ $) NIL)) (-3166 (($ $ $) 93)) (-3567 (((-112) $) NIL)) (-2135 (($ $ $) NIL)) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-2457 (($ $ $) 52)) (-1810 (((-112) $) 72)) (-3082 (((-112) $) 69)) (-2433 (($ $) 45)) (-2083 (((-3 $ "failed") $) NIL)) (-3713 (((-112) $) 82)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3077 (($ $ $ $) 79)) (-3492 (($ $ $) 74) (($) 42 T CONST)) (-2726 (($ $ $) 73) (($) 41 T CONST)) (-2391 (($ $) NIL)) (-3225 (((-938) $) 88)) (-1325 (($ $) 77)) (-3117 (($ $ $) NIL) (($ (-656 $)) NIL)) (-3288 (((-1178) $) NIL)) (-2268 (($ $ $) NIL)) (-3503 (($) NIL T CONST)) (-2550 (($ (-938)) 87)) (-3796 (($ $) 57)) (-3139 (((-1139) $) 76)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL)) (-3149 (($ $ $) 67) (($ (-656 $)) NIL)) (-1765 (($ $) NIL)) (-1392 (((-430 $) $) NIL)) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL)) (-2022 (((-3 $ "failed") $ $) NIL)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2015 (((-112) $) NIL)) (-1787 (((-783) $) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 66)) (-3614 (($ $) NIL) (($ $ (-783)) NIL)) (-3273 (($ $) 58)) (-4268 (($ $) NIL)) (-1505 (((-576) $) 17) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-4092 (((-874) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-2471 (((-783)) NIL T CONST)) (-4276 (((-112) $ $) NIL)) (-1760 (($ $ $) NIL)) (-1531 (((-112) $ $) NIL)) (-1841 (($) 40)) (-2947 (((-112) $ $) NIL)) (-2445 (($ $ $) 50)) (-2967 (($ $ $ $) 80)) (-3423 (($ $) 68)) (-2107 (($ $ $) 47)) (-4300 (($) 7 T CONST)) (-1741 (($ $ $) 51)) (-4310 (($) 39 T CONST)) (-3774 (((-1178) $) 26) (((-1178) $ (-112)) 27) (((-1292) (-834) $) 28) (((-1292) (-834) $ (-112)) 29)) (-1755 (($ $) 48)) (-4286 (($ $) NIL) (($ $ (-783)) NIL)) (-1729 (($ $ $) 49)) (-3977 (((-112) $ $) 56)) (-3955 (((-112) $ $) 54)) (-3919 (((-112) $ $) 43)) (-3966 (((-112) $ $) 55)) (-3944 (((-112) $ $) 10)) (-2094 (($ $ $) 46)) (-4018 (($ $) 16) (($ $ $) 60)) (-4007 (($ $ $) 59)) (** (($ $ (-938)) NIL) (($ $ (-783)) 62)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) -(((-1139) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4449) (-6 -4454) (-6 -4450) (-15 -4279 ($ $ $)) (-15 -1755 ($ $)) (-15 -1729 ($ $ $)) (-15 -1741 ($ $ $))))) (T -1139)) -((-4279 (*1 *1 *1 *1) (-5 *1 (-1139))) (-1755 (*1 *1 *1) (-5 *1 (-1139))) (-1729 (*1 *1 *1 *1) (-5 *1 (-1139))) (-1741 (*1 *1 *1 *1) (-5 *1 (-1139)))) -(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4449) (-6 -4454) (-6 -4450) (-15 -4279 ($ $ $)) (-15 -1755 ($ $)) (-15 -1729 ($ $ $)) (-15 -1741 ($ $ $)))) +((-3997 (((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 50)) (-2825 (((-576) (-1259 |#2| |#1|)) 94 (|has| |#1| (-464)))) (-4124 (((-576) (-1259 |#2| |#1|)) 76)) (-3028 (((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 58)) (-3050 (((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 93 (|has| |#1| (-464)))) (-1476 (((-656 |#1|) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 61)) (-1383 (((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|)) 75))) +(((-1133 |#1| |#2|) (-10 -7 (-15 -3997 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3028 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1476 ((-656 |#1|) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1383 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -4124 ((-576) (-1259 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3050 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -2825 ((-576) (-1259 |#2| |#1|)))) |%noBranch|)) (-832) (-1195)) (T -1133)) +((-2825 (*1 *2 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-3050 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-1383 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5)))) (-1476 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 *4)) (-5 *1 (-1133 *4 *5)))) (-3028 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) (-5 *1 (-1133 *4 *5)) (-5 *3 (-1259 *5 *4)))) (-3997 (*1 *2 *3 *3) (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) (-5 *1 (-1133 *4 *5)) (-5 *3 (-1259 *5 *4))))) +(-10 -7 (-15 -3997 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -3028 ((-656 (-1259 |#2| |#1|)) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1476 ((-656 |#1|) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -1383 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -4124 ((-576) (-1259 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3050 ((-576) (-1259 |#2| |#1|) (-1259 |#2| |#1|))) (-15 -2825 ((-576) (-1259 |#2| |#1|)))) |%noBranch|)) +((-3474 (((-112) $ $) NIL)) (-3487 (($ (-518) (-1137)) 13)) (-2707 (((-1137) $) 19)) (-2706 (((-518) $) 16)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 26) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1134) (-13 (-1102) (-10 -8 (-15 -3487 ($ (-518) (-1137))) (-15 -2706 ((-518) $)) (-15 -2707 ((-1137) $))))) (T -1134)) +((-3487 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-1134)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1134)))) (-2707 (*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1134))))) +(-13 (-1102) (-10 -8 (-15 -3487 ($ (-518) (-1137))) (-15 -2706 ((-518) $)) (-15 -2707 ((-1137) $)))) +((-2184 (((-3 (-576) "failed") |#2| (-1195) |#2| (-1177)) 19) (((-3 (-576) "failed") |#2| (-1195) (-855 |#2|)) 17) (((-3 (-576) "failed") |#2|) 60))) +(((-1135 |#1| |#2|) (-10 -7 (-15 -2184 ((-3 (-576) "failed") |#2|)) (-15 -2184 ((-3 (-576) "failed") |#2| (-1195) (-855 |#2|))) (-15 -2184 ((-3 (-576) "failed") |#2| (-1195) |#2| (-1177)))) (-13 (-568) (-1057 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1221) (-442 |#1|))) (T -1135)) +((-2184 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-1177)) (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1135 *6 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))))) (-2184 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1135 *6 *3)))) (-2184 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) (-5 *1 (-1135 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4)))))) +(-10 -7 (-15 -2184 ((-3 (-576) "failed") |#2|)) (-15 -2184 ((-3 (-576) "failed") |#2| (-1195) (-855 |#2|))) (-15 -2184 ((-3 (-576) "failed") |#2| (-1195) |#2| (-1177)))) +((-2184 (((-3 (-576) "failed") (-419 (-969 |#1|)) (-1195) (-419 (-969 |#1|)) (-1177)) 38) (((-3 (-576) "failed") (-419 (-969 |#1|)) (-1195) (-855 (-419 (-969 |#1|)))) 33) (((-3 (-576) "failed") (-419 (-969 |#1|))) 14))) +(((-1136 |#1|) (-10 -7 (-15 -2184 ((-3 (-576) "failed") (-419 (-969 |#1|)))) (-15 -2184 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1195) (-855 (-419 (-969 |#1|))))) (-15 -2184 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1195) (-419 (-969 |#1|)) (-1177)))) (-464)) (T -1136)) +((-2184 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1195)) (-5 *5 (-1177)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *6)))) (-2184 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 (-419 (-969 *6)))) (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *6)))) (-2184 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *4))))) +(-10 -7 (-15 -2184 ((-3 (-576) "failed") (-419 (-969 |#1|)))) (-15 -2184 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1195) (-855 (-419 (-969 |#1|))))) (-15 -2184 ((-3 (-576) "failed") (-419 (-969 |#1|)) (-1195) (-419 (-969 |#1|)) (-1177)))) +((-3474 (((-112) $ $) NIL)) (-3042 (((-1200) $) 12)) (-2980 (((-656 (-1200)) $) 14)) (-2707 (($ (-656 (-1200)) (-1200)) 10)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 29)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 17))) +(((-1137) (-13 (-1119) (-10 -8 (-15 -2707 ($ (-656 (-1200)) (-1200))) (-15 -3042 ((-1200) $)) (-15 -2980 ((-656 (-1200)) $))))) (T -1137)) +((-2707 (*1 *1 *2 *3) (-12 (-5 *2 (-656 (-1200))) (-5 *3 (-1200)) (-5 *1 (-1137)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-1137)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1137))))) +(-13 (-1119) (-10 -8 (-15 -2707 ($ (-656 (-1200)) (-1200))) (-15 -3042 ((-1200) $)) (-15 -2980 ((-656 (-1200)) $)))) +((-3891 (((-326 (-576)) (-48)) 12))) +(((-1138) (-10 -7 (-15 -3891 ((-326 (-576)) (-48))))) (T -1138)) +((-3891 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1138))))) +(-10 -7 (-15 -3891 ((-326 (-576)) (-48)))) +((-3474 (((-112) $ $) NIL)) (-3498 (($ $) 44)) (-1454 (((-112) $) 70)) (-2777 (($ $ $) 53)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 98)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-4192 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3938 (($ $ $ $) 81)) (-1760 (($ $) NIL)) (-2732 (((-430 $) $) NIL)) (-1727 (((-112) $ $) NIL)) (-2148 (((-783)) 83)) (-2184 (((-576) $) NIL)) (-2745 (($ $ $) 78)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL)) (-4056 (((-576) $) NIL)) (-3420 (($ $ $) 64)) (-3687 (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 92) (((-701 (-576)) (-701 $)) 32) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3615 (((-3 (-419 (-576)) "failed") $) NIL)) (-3235 (((-112) $) NIL)) (-3113 (((-419 (-576)) $) NIL)) (-1803 (($) 95) (($ $) 96)) (-3431 (($ $ $) 63)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL)) (-1792 (((-112) $) NIL)) (-2917 (($ $ $ $) NIL)) (-1493 (($ $ $) 93)) (-1910 (((-112) $) NIL)) (-1891 (($ $ $) NIL)) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL)) (-2768 (($ $ $) 52)) (-1414 (((-112) $) 72)) (-3828 (((-112) $) 69)) (-2746 (($ $) 45)) (-3930 (((-3 $ "failed") $) NIL)) (-3566 (((-112) $) 82)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-3020 (($ $ $ $) 79)) (-2442 (($ $ $) 74) (($) 42 T CONST)) (-1893 (($ $ $) 73) (($) 41 T CONST)) (-1591 (($ $) NIL)) (-1902 (((-938) $) 88)) (-4261 (($ $) 77)) (-3459 (($ $ $) NIL) (($ (-656 $)) NIL)) (-1927 (((-1177) $) NIL)) (-1368 (($ $ $) NIL)) (-1538 (($) NIL T CONST)) (-3257 (($ (-938)) 87)) (-4393 (($ $) 57)) (-1445 (((-1139) $) 76)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL)) (-3495 (($ $ $) 67) (($ (-656 $)) NIL)) (-1473 (($ $) NIL)) (-1839 (((-430 $) $) NIL)) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL)) (-3463 (((-3 $ "failed") $ $) NIL)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL)) (-2489 (((-112) $) NIL)) (-3112 (((-783) $) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 66)) (-2735 (($ $) NIL) (($ $ (-783)) NIL)) (-1771 (($ $) 58)) (-1954 (($ $) NIL)) (-4076 (((-576) $) 17) (((-548) $) NIL) (((-905 (-576)) $) NIL) (((-390) $) NIL) (((-227) $) NIL)) (-3563 (((-874) $) 35) (($ (-576)) 94) (($ $) NIL) (($ (-576)) 94)) (-1858 (((-783)) NIL T CONST)) (-2599 (((-112) $ $) NIL)) (-4114 (($ $ $) NIL)) (-3985 (((-112) $ $) NIL)) (-3402 (($) 40)) (-3040 (((-112) $ $) NIL)) (-2758 (($ $ $) 50)) (-3002 (($ $ $ $) 80)) (-2264 (($ $) 68)) (-3546 (($ $ $) 47)) (-2800 (($) 7 T CONST)) (-3533 (($ $ $) 51)) (-2810 (($) 39 T CONST)) (-2584 (((-1177) $) 26) (((-1177) $ (-112)) 27) (((-1291) (-834) $) 28) (((-1291) (-834) $ (-112)) 29)) (-3545 (($ $) 48)) (-2051 (($ $) NIL) (($ $ (-783)) NIL)) (-3521 (($ $ $) 49)) (-3049 (((-112) $ $) 56)) (-3024 (((-112) $ $) 54)) (-2988 (((-112) $ $) 43)) (-3037 (((-112) $ $) 55)) (-3010 (((-112) $ $) 10)) (-3534 (($ $ $) 46)) (-3095 (($ $) 16) (($ $ $) 60)) (-3083 (($ $ $) 59)) (** (($ $ (-938)) NIL) (($ $ (-783)) 62)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 38) (($ $ $) 37) (($ (-576) $) 38))) +(((-1139) (-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -2777 ($ $ $)) (-15 -3545 ($ $)) (-15 -3521 ($ $ $)) (-15 -3533 ($ $ $))))) (T -1139)) +((-2777 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3545 (*1 *1 *1) (-5 *1 (-1139))) (-3521 (*1 *1 *1 *1) (-5 *1 (-1139))) (-3533 (*1 *1 *1 *1) (-5 *1 (-1139)))) +(-13 (-557) (-856) (-113) (-673) (-840) (-10 -8 (-6 -4448) (-6 -4453) (-6 -4449) (-15 -2777 ($ $ $)) (-15 -3545 ($ $)) (-15 -3521 ($ $ $)) (-15 -3533 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3005 ((|#1| $) 45)) (-2835 (((-112) $ (-783)) 8)) (-3656 (($) 7 T CONST)) (-3833 ((|#1| |#1| $) 47)) (-2156 ((|#1| $) 46)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3576 ((|#1| $) 40)) (-2361 (($ |#1| $) 41)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-1679 ((|#1| $) 42)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-3569 (((-783) $) 44)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) 43)) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-1140 |#1|) (-141) (-1237)) (T -1140)) -((-3833 (*1 *2 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237)))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4462) (-15 -3833 (|t#1| |t#1| $)) (-15 -2156 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -3569 ((-783) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-3803 ((|#3| $) 87)) (-2974 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2378 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-3687 (((-701 (-576)) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL) (((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 $) (-1287 $)) 84) (((-701 |#3|) (-701 $)) 76) (((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 $) $) NIL) (((-701 |#3|) (-1287 $)) NIL)) (-3614 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2888 ((|#3| $) 89)) (-4387 ((|#4| $) 43)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-938)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95))) -(((-1141 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2888 (|#3| |#1|)) (-15 -3803 (|#3| |#1|)) (-15 -4387 (|#4| |#1|)) (-15 -3687 ((-701 |#3|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#3|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -4092 (|#1| |#3|)) (-15 -2974 ((-3 |#3| "failed") |#1|)) (-15 -2378 (|#3| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4092 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -4092 ((-874) |#1|))) (-1142 |#2| |#3| |#4| |#5|) (-783) (-1068) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1141)) -NIL -(-10 -8 (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2888 (|#3| |#1|)) (-15 -3803 (|#3| |#1|)) (-15 -4387 (|#4| |#1|)) (-15 -3687 ((-701 |#3|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 |#3|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 |#3|)) (|:| |vec| (-1287 |#3|))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 |#1|) (-1287 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1287 |#1|))) (-15 -4092 (|#1| |#3|)) (-15 -2974 ((-3 |#3| "failed") |#1|)) (-15 -2378 (|#3| |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3614 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -4092 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3803 ((|#2| $) 80)) (-2454 (((-112) $) 124)) (-3788 (((-3 $ "failed") $ $) 20)) (-2478 (((-112) $) 122)) (-2835 (((-112) $ (-783)) 114)) (-3483 (($ |#2|) 83)) (-3656 (($) 18 T CONST)) (-2664 (($ $) 141 (|has| |#2| (-317)))) (-4059 ((|#3| $ (-576)) 136)) (-2974 (((-3 (-576) "failed") $) 99 (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 96 (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) 93)) (-2378 (((-576) $) 98 (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) 95 (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) 94)) (-3687 (((-701 (-576)) (-1287 $)) 91 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 90 (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) 89 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 88 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 87) (((-701 |#2|) (-701 $)) 86) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) 85) (((-701 |#2|) (-1287 $)) 84)) (-3179 (((-3 $ "failed") $) 37)) (-4049 (((-783) $) 142 (|has| |#2| (-568)))) (-3817 ((|#2| $ (-576) (-576)) 134)) (-4260 (((-656 |#2|) $) 107 (|has| $ (-6 -4462)))) (-1810 (((-112) $) 35)) (-1659 (((-783) $) 143 (|has| |#2| (-568)))) (-3865 (((-656 |#4|) $) 144 (|has| |#2| (-568)))) (-2126 (((-783) $) 130)) (-2140 (((-783) $) 131)) (-1419 (((-112) $ (-783)) 115)) (-1497 ((|#2| $) 75 (|has| |#2| (-6 (-4464 "*"))))) (-4217 (((-576) $) 126)) (-1961 (((-576) $) 128)) (-1750 (((-656 |#2|) $) 106 (|has| $ (-6 -4462)))) (-3990 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-1439 (((-576) $) 127)) (-2743 (((-576) $) 129)) (-3297 (($ (-656 (-656 |#2|))) 121)) (-3874 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-2318 (((-656 (-656 |#2|)) $) 132)) (-3103 (((-112) $ (-783)) 116)) (-3288 (((-1178) $) 10)) (-2295 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-3139 (((-1139) $) 11)) (-2022 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-568)))) (-3292 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#2|))) 103 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 102 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) 120)) (-3372 (((-112) $) 117)) (-2643 (($) 118)) (-4367 ((|#2| $ (-576) (-576) |#2|) 135) ((|#2| $ (-576) (-576)) 133)) (-3614 (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-783)) 45 (|has| |#2| (-237))) (($ $ (-1196)) 55 (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) 53 (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) 52 (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 51 (|has| |#2| (-917 (-1196))))) (-2888 ((|#2| $) 79)) (-2779 (($ (-656 |#2|)) 82)) (-2849 (((-112) $) 123)) (-4387 ((|#3| $) 81)) (-2058 ((|#2| $) 76 (|has| |#2| (-6 (-4464 "*"))))) (-3150 (((-783) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4462))) (((-783) |#2| $) 105 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 119)) (-1762 ((|#4| $ (-576)) 137)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 97 (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) 92)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2190 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4462)))) (-1485 (((-112) $) 125)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1 |#2| |#2|) (-783)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-783)) 44 (|has| |#2| (-237))) (($ $ (-1196)) 54 (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) 50 (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) 49 (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 48 (|has| |#2| (-917 (-1196))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#2|) 140 (|has| |#2| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-2048 (((-783) $) 113 (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1346 ((|#1| $) 45)) (-3131 (((-112) $ (-783)) 8)) (-3767 (($) 7 T CONST)) (-2552 ((|#1| |#1| $) 47)) (-3119 ((|#1| $) 46)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-1409 ((|#1| $) 40)) (-2040 (($ |#1| $) 41)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3399 ((|#1| $) 42)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-4328 (((-783) $) 44)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) 43)) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-1140 |#1|) (-141) (-1236)) (T -1140)) +((-2552 (*1 *2 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236)))) (-3119 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236)))) (-1346 (*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236)))) (-4328 (*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4461) (-15 -2552 (|t#1| |t#1| $)) (-15 -3119 (|t#1| $)) (-15 -1346 (|t#1| $)) (-15 -4328 ((-783) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-2310 ((|#3| $) 87)) (-1539 (((-3 (-576) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-4056 (((-576) $) NIL) (((-419 (-576)) $) NIL) ((|#3| $) 47)) (-3687 (((-701 (-576)) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL) (((-701 (-576)) (-701 $)) NIL) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL) (((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 $) (-1286 $)) 84) (((-701 |#3|) (-701 $)) 76) (((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 $) $) NIL) (((-701 |#3|) (-1286 $)) NIL)) (-2735 (($ $ (-1 |#3| |#3|) (-783)) NIL) (($ $ (-1 |#3| |#3|)) 28) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-2731 ((|#3| $) 89)) (-2212 ((|#4| $) 43)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ |#3|) 25)) (** (($ $ (-938)) NIL) (($ $ (-783)) 24) (($ $ (-576)) 95))) +(((-1141 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2731 (|#3| |#1|)) (-15 -2310 (|#3| |#1|)) (-15 -2212 (|#4| |#1|)) (-15 -3687 ((-701 |#3|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#3|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -3563 (|#1| |#3|)) (-15 -1539 ((-3 |#3| "failed") |#1|)) (-15 -4056 (|#3| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3563 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -3563 ((-874) |#1|))) (-1142 |#2| |#3| |#4| |#5|) (-783) (-1068) (-243 |#2| |#3|) (-243 |#2| |#3|)) (T -1141)) +NIL +(-10 -8 (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 ** (|#1| |#1| (-576))) (-15 -2731 (|#3| |#1|)) (-15 -2310 (|#3| |#1|)) (-15 -2212 (|#4| |#1|)) (-15 -3687 ((-701 |#3|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 |#3|) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 |#3|)) (|:| |vec| (-1286 |#3|))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 |#1|) (-1286 |#1|))) (-15 -3687 ((-701 (-576)) (-701 |#1|))) (-15 -3687 ((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 |#1|) |#1|)) (-15 -3687 ((-701 (-576)) (-1286 |#1|))) (-15 -3563 (|#1| |#3|)) (-15 -1539 ((-3 |#3| "failed") |#1|)) (-15 -4056 (|#3| |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2735 (|#1| |#1| (-1 |#3| |#3|) (-783))) (-15 -3563 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2310 ((|#2| $) 80)) (-1491 (((-112) $) 124)) (-1367 (((-3 $ "failed") $ $) 20)) (-4294 (((-112) $) 122)) (-3131 (((-112) $ (-783)) 114)) (-4027 (($ |#2|) 83)) (-3767 (($) 18 T CONST)) (-3243 (($ $) 141 (|has| |#2| (-317)))) (-1946 ((|#3| $ (-576)) 136)) (-1539 (((-3 (-576) "failed") $) 99 (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) 96 (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) 93)) (-4056 (((-576) $) 98 (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) 95 (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) 94)) (-3687 (((-701 (-576)) (-1286 $)) 91 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 90 (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) 89 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 88 (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 87) (((-701 |#2|) (-701 $)) 86) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) 85) (((-701 |#2|) (-1286 $)) 84)) (-1551 (((-3 $ "failed") $) 37)) (-3606 (((-783) $) 142 (|has| |#2| (-568)))) (-1698 ((|#2| $ (-576) (-576)) 134)) (-3825 (((-656 |#2|) $) 107 (|has| $ (-6 -4461)))) (-1414 (((-112) $) 35)) (-2849 (((-783) $) 143 (|has| |#2| (-568)))) (-2115 (((-656 |#4|) $) 144 (|has| |#2| (-568)))) (-1622 (((-783) $) 130)) (-1636 (((-783) $) 131)) (-3115 (((-112) $ (-783)) 115)) (-4329 ((|#2| $) 75 (|has| |#2| (-6 (-4463 "*"))))) (-1650 (((-576) $) 126)) (-1351 (((-576) $) 128)) (-2591 (((-656 |#2|) $) 106 (|has| $ (-6 -4461)))) (-2511 (((-112) |#2| $) 104 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461))))) (-4159 (((-576) $) 127)) (-4062 (((-576) $) 129)) (-2457 (($ (-656 (-656 |#2|))) 121)) (-1763 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#2| |#2| |#2|) $ $) 138) (($ (-1 |#2| |#2|) $) 112)) (-2156 (((-656 (-656 |#2|)) $) 132)) (-2712 (((-112) $ (-783)) 116)) (-1927 (((-1177) $) 10)) (-2030 (((-3 $ "failed") $) 74 (|has| |#2| (-374)))) (-1445 (((-1139) $) 11)) (-3463 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-568)))) (-4207 (((-112) (-1 (-112) |#2|) $) 109 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#2|))) 103 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 102 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 100 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) 120)) (-1911 (((-112) $) 117)) (-2597 (($) 118)) (-2871 ((|#2| $ (-576) (-576) |#2|) 135) ((|#2| $ (-576) (-576)) 133)) (-2735 (($ $ (-1 |#2| |#2|) (-783)) 57) (($ $ (-1 |#2| |#2|)) 56) (($ $) 47 (|has| |#2| (-237))) (($ $ (-783)) 45 (|has| |#2| (-237))) (($ $ (-1195)) 55 (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) 53 (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) 52 (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 51 (|has| |#2| (-917 (-1195))))) (-2731 ((|#2| $) 79)) (-1716 (($ (-656 |#2|)) 82)) (-4237 (((-112) $) 123)) (-2212 ((|#3| $) 81)) (-2201 ((|#2| $) 76 (|has| |#2| (-6 (-4463 "*"))))) (-1456 (((-783) (-1 (-112) |#2|) $) 108 (|has| $ (-6 -4461))) (((-783) |#2| $) 105 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 119)) (-4331 ((|#4| $ (-576)) 137)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 97 (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) 92)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2043 (((-112) (-1 (-112) |#2|) $) 110 (|has| $ (-6 -4461)))) (-2609 (((-112) $) 125)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1 |#2| |#2|) (-783)) 59) (($ $ (-1 |#2| |#2|)) 58) (($ $) 46 (|has| |#2| (-237))) (($ $ (-783)) 44 (|has| |#2| (-237))) (($ $ (-1195)) 54 (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) 50 (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) 49 (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 48 (|has| |#2| (-917 (-1195))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#2|) 140 (|has| |#2| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 73 (|has| |#2| (-374)))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#2|) 146) (($ |#2| $) 145) ((|#4| $ |#4|) 78) ((|#3| |#3| $) 77)) (-3485 (((-783) $) 113 (|has| $ (-6 -4461))))) (((-1142 |#1| |#2| |#3| |#4|) (-141) (-783) (-1068) (-243 |t#1| |t#2|) (-243 |t#1| |t#2|)) (T -1142)) -((-3483 (*1 *1 *2) (-12 (-4 *2 (-1068)) (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-2779 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1068)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1068)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1068)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1142 *3 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) (-2295 (*1 *1 *1) (|partial| -12 (-4 *1 (-1142 *2 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))) -(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1072 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -3483 ($ |t#2|)) (-15 -2779 ($ (-656 |t#2|))) (-15 -4387 (|t#3| $)) (-15 -3803 (|t#2| $)) (-15 -2888 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4464 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2058 (|t#2| $)) (-15 -1497 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -2295 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4464 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-234 $) -3765 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -3765 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-6 (-4464 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -3765 (|has| |#2| (-174)) (|has| |#2| (-6 (-4464 "*")))) ((-738) . T) ((-909 $ #2=(-1196)) -3765 (|has| |#2| (-917 (-1196))) (|has| |#2| (-915 (-1196)))) ((-915 (-1196)) |has| |#2| (-915 (-1196))) ((-917 #2#) -3765 (|has| |#2| (-917 (-1196))) (|has| |#2| (-915 (-1196)))) ((-1072 |#1| |#1| |#2| |#3| |#4|) . T) ((-1057 #0#) |has| |#2| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#2| (-1057 (-576))) ((-1057 |#2|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T)) -((-4388 ((|#4| |#4|) 81)) (-2818 ((|#4| |#4|) 76)) (-3042 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-656 |#3|))) |#4| |#3|) 91)) (-2561 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1584 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) -(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2818 (|#4| |#4|)) (-15 -1584 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4388 (|#4| |#4|)) (-15 -2561 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3042 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1143)) -((-3042 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) (-5 *1 (-1143 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-2561 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4388 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1584 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2818 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -2818 (|#4| |#4|)) (-15 -1584 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -4388 (|#4| |#4|)) (-15 -2561 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3042 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1999 (-656 |#3|))) |#4| |#3|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 18)) (-1541 (((-656 |#2|) $) 174)) (-1364 (((-1192 $) $ |#2|) 60) (((-1192 |#1|) $) 49)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-2573 (($ $) 118 (|has| |#1| (-568)))) (-4306 (((-112) $) 120 (|has| |#1| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1587 (($ $) NIL (|has| |#1| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 |#2| "failed") $) NIL)) (-2378 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) ((|#2| $) NIL)) (-2996 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-1717 (($ $) 217)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) 90)) (-1363 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-926)))) (-2291 (($ $ |#1| (-543 |#2|) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1810 (((-112) $) 20)) (-1831 (((-783) $) 30)) (-1529 (($ (-1192 |#1|) |#2|) 54) (($ (-1192 $) |#2|) 71)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) 38)) (-1518 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ |#2|) NIL)) (-1915 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-3968 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) 128)) (-3403 (((-3 |#2| "failed") $) 177)) (-1681 (($ $) 216)) (-1692 ((|#1| $) 43)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3288 (((-1178) $) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| |#2|) (|:| -3175 (-783))) "failed") $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) 39)) (-1670 ((|#1| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 148 (|has| |#1| (-464)))) (-3149 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-926)))) (-2022 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-1955 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-3614 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-2369 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3714 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-4092 (((-874) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-3076 (((-656 |#1|) $) 162)) (-2430 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) 87 T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) 123 (|has| |#1| (-568)))) (-4300 (($) 12 T CONST)) (-4310 (($) 14 T CONST)) (-4286 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3919 (((-112) $ $) 106)) (-4028 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-4018 (($ $) 93) (($ $ $) 104)) (-4007 (($ $ $) 55)) (** (($ $ (-938)) 110) (($ $ (-783)) 109)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +((-4027 (*1 *1 *2) (-12 (-4 *2 (-1068)) (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)))) (-1716 (*1 *1 *2) (-12 (-5 *2 (-656 *4)) (-4 *4 (-1068)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1068)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (-4 *2 (-1068)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1142 *3 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *2 (-243 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *2 (-243 *3 *4)) (-4 *5 (-243 *3 *4)))) (-2201 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1068)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1068)))) (-2030 (*1 *1 *1) (|partial| -12 (-4 *1 (-1142 *2 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374))))) +(-13 (-232 |t#2|) (-111 |t#2| |t#2|) (-1072 |t#1| |t#1| |t#2| |t#3| |t#4|) (-423 |t#2|) (-388 |t#2|) (-10 -8 (IF (|has| |t#2| (-174)) (-6 (-729 |t#2|)) |%noBranch|) (-15 -4027 ($ |t#2|)) (-15 -1716 ($ (-656 |t#2|))) (-15 -2212 (|t#3| $)) (-15 -2310 (|t#2| $)) (-15 -2731 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4463 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -2201 (|t#2| $)) (-15 -4329 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-374)) (PROGN (-15 -2030 ((-3 $ "failed") $)) (-15 ** ($ $ (-576)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4463 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 #0=(-419 (-576))) |has| |#2| (-1057 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-234 $) -2835 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-232 |#2|) . T) ((-238) |has| |#2| (-238)) ((-237) -2835 (|has| |#2| (-237)) (|has| |#2| (-238))) ((-272 |#2|) . T) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-388 |#2|) . T) ((-423 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 #1=(-576)) |has| |#2| (-651 (-576))) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-6 (-4463 "*")))) ((-651 #1#) |has| |#2| (-651 (-576))) ((-651 |#2|) . T) ((-729 |#2|) -2835 (|has| |#2| (-174)) (|has| |#2| (-6 (-4463 "*")))) ((-738) . T) ((-909 $ #2=(-1195)) -2835 (|has| |#2| (-917 (-1195))) (|has| |#2| (-915 (-1195)))) ((-915 (-1195)) |has| |#2| (-915 (-1195))) ((-917 #2#) -2835 (|has| |#2| (-917 (-1195))) (|has| |#2| (-915 (-1195)))) ((-1072 |#1| |#1| |#2| |#3| |#4|) . T) ((-1057 #0#) |has| |#2| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#2| (-1057 (-576))) ((-1057 |#2|) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T)) +((-2304 ((|#4| |#4|) 81)) (-4118 ((|#4| |#4|) 76)) (-3736 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3713 (-656 |#3|))) |#4| |#3|) 91)) (-2538 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1518 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78))) +(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4118 (|#4| |#4|)) (-15 -1518 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2304 (|#4| |#4|)) (-15 -2538 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3736 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3713 (-656 |#3|))) |#4| |#3|))) (-317) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1143)) +((-3736 (*1 *2 *3 *4) (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) (-5 *1 (-1143 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) (-2538 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-1518 (*1 *2 *3) (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(-10 -7 (-15 -4118 (|#4| |#4|)) (-15 -1518 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2304 (|#4| |#4|)) (-15 -2538 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3736 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3713 (-656 |#3|))) |#4| |#3|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 18)) (-1991 (((-656 |#2|) $) 174)) (-3999 (((-1191 $) $ |#2|) 60) (((-1191 |#1|) $) 49)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 116 (|has| |#1| (-568)))) (-4412 (($ $) 118 (|has| |#1| (-568)))) (-4176 (((-112) $) 120 (|has| |#1| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 |#2|)) 213)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1760 (($ $) NIL (|has| |#1| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) 167) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 |#2| "failed") $) NIL)) (-4056 ((|#1| $) 165) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) ((|#2| $) NIL)) (-2861 (($ $ $ |#2|) NIL (|has| |#1| (-174)))) (-2166 (($ $) 217)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) 90)) (-2985 (($ $) NIL (|has| |#1| (-464))) (($ $ |#2|) NIL (|has| |#1| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#1| (-926)))) (-1660 (($ $ |#1| (-543 |#2|) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#1| (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#1| (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1414 (((-112) $) 20)) (-3839 (((-783) $) 30)) (-1980 (($ (-1191 |#1|) |#2|) 54) (($ (-1191 $) |#2|) 71)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) 38)) (-1970 (($ |#1| (-543 |#2|)) 78) (($ $ |#2| (-783)) 58) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ |#2|) NIL)) (-3403 (((-543 |#2|) $) 205) (((-783) $ |#2|) 206) (((-656 (-783)) $ (-656 |#2|)) 207)) (-2133 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) 128)) (-4209 (((-3 |#2| "failed") $) 177)) (-2129 (($ $) 216)) (-2142 ((|#1| $) 43)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1927 (((-1177) $) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| |#2|) (|:| -4274 (-783))) "failed") $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) 39)) (-2116 ((|#1| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 148 (|has| |#1| (-464)))) (-3495 (($ (-656 $)) 153 (|has| |#1| (-464))) (($ $ $) 138 (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-926)))) (-3463 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-568)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ |#2| |#1|) 180) (($ $ (-656 |#2|) (-656 |#1|)) 195) (($ $ |#2| $) 179) (($ $ (-656 |#2|) (-656 $)) 194)) (-1960 (($ $ |#2|) NIL (|has| |#1| (-174)))) (-2735 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 215)) (-1433 (((-543 |#2|) $) 201) (((-783) $ |#2|) 196) (((-656 (-783)) $ (-656 |#2|)) 199)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| |#1| (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| |#1| (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| |#1| (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3648 ((|#1| $) 134 (|has| |#1| (-464))) (($ $ |#2|) 137 (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3563 (((-874) $) 159) (($ (-576)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2927 (((-656 |#1|) $) 162)) (-4333 ((|#1| $ (-543 |#2|)) 80) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) 87 T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) 123 (|has| |#1| (-568)))) (-2800 (($) 12 T CONST)) (-2810 (($) 14 T CONST)) (-2051 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2988 (((-112) $ $) 106)) (-3107 (($ $ |#1|) 132 (|has| |#1| (-374)))) (-3095 (($ $) 93) (($ $ $) 104)) (-3083 (($ $ $) 55)) (** (($ $ (-938)) 110) (($ $ (-783)) 109)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 96) (($ $ $) 72) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) (((-1144 |#1| |#2|) (-966 |#1| (-543 |#2|) |#2|) (-1068) (-862)) (T -1144)) NIL (-966 |#1| (-543 |#2|) |#2|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 |#2|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2266 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2236 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-2294 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-3928 (((-969 |#1|) $ (-783)) NIL) (((-969 |#1|) $ (-783) (-783)) NIL)) (-3840 (((-112) $) NIL)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4331 (((-112) $) NIL)) (-1518 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2703 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3597 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3139 (((-1139) $) NIL)) (-2628 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2843 (($ $ (-783)) 16)) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3353 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-3614 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-2369 (((-543 |#2|) $) NIL)) (-4221 (((-1 (-1176 |#3|) |#3|) (-656 |#2|) (-656 (-1176 |#3|))) 87)) (-2307 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) 18)) (-4092 (((-874) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-2430 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3945 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 52 T CONST)) (-4310 (($) 62 T CONST)) (-4286 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 66)) (** (($ $ (-938)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1145 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -2430 (|#3| $ (-783))) (-15 -4092 ($ |#2|)) (-15 -4092 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4221 ((-1 (-1176 |#3|) |#3|) (-656 |#2|) (-656 (-1176 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $ |#2| |#1|)) (-15 -2628 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1068) (-862) (-966 |#1| (-543 |#2|) |#2|)) (T -1145)) -((-2430 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-966 *4 (-543 *5) *5)) (-5 *1 (-1145 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-862)))) (-4092 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *2 (-862)) (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-966 *3 (-543 *2) *2)))) (-4092 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *4 (-862)) (-5 *1 (-1145 *3 *4 *2)) (-4 *2 (-966 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-862)) (-5 *1 (-1145 *3 *4 *2)) (-4 *2 (-966 *3 (-543 *4) *4)))) (-4221 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1176 *7))) (-4 *6 (-862)) (-4 *7 (-966 *5 (-543 *6) *6)) (-4 *5 (-1068)) (-5 *2 (-1 (-1176 *7) *7)) (-5 *1 (-1145 *5 *6 *7)))) (-3597 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-4 *2 (-862)) (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-966 *3 (-543 *2) *2)))) (-2628 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1145 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068)) (-4 *3 (-862)) (-5 *1 (-1145 *4 *3 *5)) (-4 *5 (-966 *4 (-543 *3) *3))))) -(-13 (-752 |#1| |#2|) (-10 -8 (-15 -2430 (|#3| $ (-783))) (-15 -4092 ($ |#2|)) (-15 -4092 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -4221 ((-1 (-1176 |#3|) |#3|) (-656 |#2|) (-656 (-1176 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $ |#2| |#1|)) (-15 -2628 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2034 (((-112) $ $) 7)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |#4|)))) (-656 |#4|)) 86)) (-2567 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1541 (((-656 |#3|) $) 34)) (-3522 (((-112) $) 27)) (-2932 (((-112) $) 18 (|has| |#1| (-568)))) (-1701 (((-112) |#4| $) 102) (((-112) $) 98)) (-2919 ((|#4| |#4| $) 93)) (-1587 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| $) 127)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) 28)) (-2835 (((-112) $ (-783)) 45)) (-3457 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-3656 (($) 46 T CONST)) (-3425 (((-112) $) 23 (|has| |#1| (-568)))) (-2623 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1582 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3347 (((-112) $) 26 (|has| |#1| (-568)))) (-1574 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4135 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) 37)) (-2378 (($ (-656 |#4|)) 36)) (-2712 (((-3 $ "failed") $) 83)) (-3996 ((|#4| |#4| $) 90)) (-1690 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3532 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2948 ((|#4| |#4| $) 88)) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2740 (((-2 (|:| -1627 (-656 |#4|)) (|:| -3709 (-656 |#4|))) $) 106)) (-3638 (((-112) |#4| $) 137)) (-1752 (((-112) |#4| $) 134)) (-2040 (((-112) |#4| $) 138) (((-112) $) 135)) (-4260 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-3871 (((-112) |#4| $) 105) (((-112) $) 104)) (-2565 ((|#3| $) 35)) (-1419 (((-112) $ (-783)) 44)) (-1750 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 48)) (-2964 (((-656 |#3|) $) 33)) (-2459 (((-112) |#3| $) 32)) (-3103 (((-112) $ (-783)) 43)) (-3288 (((-1178) $) 10)) (-4204 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3918 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| |#4| $) 128)) (-2912 (((-3 |#4| "failed") $) 84)) (-3860 (((-656 $) |#4| $) 130)) (-2711 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1851 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3586 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-3869 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2106 (((-656 |#4|) $) 108)) (-3593 (((-112) |#4| $) 100) (((-112) $) 96)) (-4395 ((|#4| |#4| $) 91)) (-3711 (((-112) $ $) 111)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1875 (((-112) |#4| $) 101) (((-112) $) 97)) (-3987 ((|#4| |#4| $) 92)) (-3139 (((-1139) $) 11)) (-2701 (((-3 |#4| "failed") $) 85)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1479 (((-3 $ "failed") $ |#4|) 79)) (-2843 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-3292 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) 39)) (-3372 (((-112) $) 42)) (-2643 (($) 41)) (-2369 (((-783) $) 107)) (-3150 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-4268 (($ $) 40)) (-1505 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) 61)) (-1606 (($ $ |#3|) 29)) (-2333 (($ $ |#3|) 31)) (-2792 (($ $) 89)) (-2875 (($ $ |#3|) 30)) (-4092 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2727 (((-783) $) 77 (|has| |#3| (-379)))) (-1531 (((-112) $ $) 9)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2196 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-4088 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2190 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1895 (((-656 |#3|) $) 82)) (-2813 (((-112) |#4| $) 136)) (-4101 (((-112) |#3| $) 81)) (-3919 (((-112) $ $) 6)) (-2048 (((-783) $) 47 (|has| $ (-6 -4462))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 |#2|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-3894 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3872 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3916 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1731 (((-969 |#1|) $ (-783)) NIL) (((-969 |#1|) $ (-783) (-783)) NIL)) (-1822 (((-112) $) NIL)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-783) $ |#2|) NIL) (((-783) $ |#2| (-783)) NIL)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2606 (((-112) $) NIL)) (-1970 (($ $ (-656 |#2|) (-656 (-543 |#2|))) NIL) (($ $ |#2| (-543 |#2|)) NIL) (($ |#1| (-543 |#2|)) NIL) (($ $ |#2| (-783)) 63) (($ $ (-656 |#2|) (-656 (-783))) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3710 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-3848 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-1139) $) NIL)) (-3594 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-576)))))) (-1714 (($ $ (-783)) 16)) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3984 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($ $ |#2| $) 106) (($ $ (-656 |#2|) (-656 $)) 99) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2735 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) 109)) (-1433 (((-543 |#2|) $) NIL)) (-3858 (((-1 (-1176 |#3|) |#3|) (-656 |#2|) (-656 (-1176 |#3|))) 87)) (-3928 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) 18)) (-3563 (((-874) $) 198) (($ (-576)) NIL) (($ |#1|) 45 (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#2|) 70) (($ |#3|) 68)) (-4333 ((|#1| $ (-543 |#2|)) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|) (-656 (-783))) NIL) ((|#3| $ (-783)) 43)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-1830 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 52 T CONST)) (-2810 (($) 62 T CONST)) (-2051 (($ $ (-656 |#2|) (-656 (-783))) NIL) (($ $ |#2| (-783)) NIL) (($ $ (-656 |#2|)) NIL) (($ $ |#2|) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) 200 (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 66)) (** (($ $ (-938)) NIL) (($ $ (-783)) 77) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 112 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 65) (($ $ (-419 (-576))) 117 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 115 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1145 |#1| |#2| |#3|) (-13 (-752 |#1| |#2|) (-10 -8 (-15 -4333 (|#3| $ (-783))) (-15 -3563 ($ |#2|)) (-15 -3563 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3858 ((-1 (-1176 |#3|) |#3|) (-656 |#2|) (-656 (-1176 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $ |#2| |#1|)) (-15 -3594 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1068) (-862) (-966 |#1| (-543 |#2|) |#2|)) (T -1145)) +((-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *2 (-966 *4 (-543 *5) *5)) (-5 *1 (-1145 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-862)))) (-3563 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *2 (-862)) (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-966 *3 (-543 *2) *2)))) (-3563 (*1 *1 *2) (-12 (-4 *3 (-1068)) (-4 *4 (-862)) (-5 *1 (-1145 *3 *4 *2)) (-4 *2 (-966 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1068)) (-4 *4 (-862)) (-5 *1 (-1145 *3 *4 *2)) (-4 *2 (-966 *3 (-543 *4) *4)))) (-3858 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1176 *7))) (-4 *6 (-862)) (-4 *7 (-966 *5 (-543 *6) *6)) (-4 *5 (-1068)) (-5 *2 (-1 (-1176 *7) *7)) (-5 *1 (-1145 *5 *6 *7)))) (-3848 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-4 *2 (-862)) (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-966 *3 (-543 *2) *2)))) (-3594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1145 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068)) (-4 *3 (-862)) (-5 *1 (-1145 *4 *3 *5)) (-4 *5 (-966 *4 (-543 *3) *3))))) +(-13 (-752 |#1| |#2|) (-10 -8 (-15 -4333 (|#3| $ (-783))) (-15 -3563 ($ |#2|)) (-15 -3563 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3858 ((-1 (-1176 |#3|) |#3|) (-656 |#2|) (-656 (-1176 |#3|)))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $ |#2| |#1|)) (-15 -3594 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3474 (((-112) $ $) 7)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |#4|)))) (-656 |#4|)) 86)) (-1968 (((-656 $) (-656 |#4|)) 87) (((-656 $) (-656 |#4|) (-112)) 112)) (-1991 (((-656 |#3|) $) 34)) (-1665 (((-112) $) 27)) (-4324 (((-112) $) 18 (|has| |#1| (-568)))) (-1587 (((-112) |#4| $) 102) (((-112) $) 98)) (-2596 ((|#4| |#4| $) 93)) (-1760 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| $) 127)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) 28)) (-3131 (((-112) $ (-783)) 45)) (-2496 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-3767 (($) 46 T CONST)) (-2359 (((-112) $) 23 (|has| |#1| (-568)))) (-4268 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2556 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1376 (((-112) $) 26 (|has| |#1| (-568)))) (-2905 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2147 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) 37)) (-4056 (($ (-656 |#4|)) 36)) (-3515 (((-3 $ "failed") $) 83)) (-1937 ((|#4| |#4| $) 90)) (-3172 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1426 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1679 ((|#4| |#4| $) 88)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1852 (((-2 (|:| -2055 (-656 |#4|)) (|:| -3223 (-656 |#4|))) $) 106)) (-3844 (((-112) |#4| $) 137)) (-1548 (((-112) |#4| $) 134)) (-2984 (((-112) |#4| $) 138) (((-112) $) 135)) (-3825 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-1453 (((-112) |#4| $) 105) (((-112) $) 104)) (-1734 ((|#3| $) 35)) (-3115 (((-112) $ (-783)) 44)) (-2591 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 48)) (-2653 (((-656 |#3|) $) 33)) (-1845 (((-112) |#3| $) 32)) (-2712 (((-112) $ (-783)) 43)) (-1927 (((-1177) $) 10)) (-3707 (((-3 |#4| (-656 $)) |#4| |#4| $) 129)) (-3355 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| |#4| $) 128)) (-3923 (((-3 |#4| "failed") $) 84)) (-2918 (((-656 $) |#4| $) 130)) (-1494 (((-3 (-112) (-656 $)) |#4| $) 133)) (-1992 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-2021 (((-656 $) |#4| $) 126) (((-656 $) (-656 |#4|) $) 125) (((-656 $) (-656 |#4|) (-656 $)) 124) (((-656 $) |#4| (-656 $)) 123)) (-2509 (($ |#4| $) 118) (($ (-656 |#4|) $) 117)) (-2181 (((-656 |#4|) $) 108)) (-1521 (((-112) |#4| $) 100) (((-112) $) 96)) (-1582 ((|#4| |#4| $) 91)) (-3391 (((-112) $ $) 111)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1393 (((-112) |#4| $) 101) (((-112) $) 97)) (-2196 ((|#4| |#4| $) 92)) (-1445 (((-1139) $) 11)) (-3504 (((-3 |#4| "failed") $) 85)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3229 (((-3 $ "failed") $ |#4|) 79)) (-1714 (($ $ |#4|) 78) (((-656 $) |#4| $) 116) (((-656 $) |#4| (-656 $)) 115) (((-656 $) (-656 |#4|) $) 114) (((-656 $) (-656 |#4|) (-656 $)) 113)) (-4207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) 39)) (-1911 (((-112) $) 42)) (-2597 (($) 41)) (-1433 (((-783) $) 107)) (-1456 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-1954 (($ $) 40)) (-4076 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) 61)) (-1813 (($ $ |#3|) 29)) (-3418 (($ $ |#3|) 31)) (-3543 (($ $) 89)) (-1794 (($ $ |#3|) 30)) (-3563 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2025 (((-783) $) 77 (|has| |#3| (-379)))) (-3985 (((-112) $ $) 9)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1352 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-1744 (((-656 $) |#4| $) 122) (((-656 $) |#4| (-656 $)) 121) (((-656 $) (-656 |#4|) $) 120) (((-656 $) (-656 |#4|) (-656 $)) 119)) (-2043 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3094 (((-656 |#3|) $) 82)) (-1877 (((-112) |#4| $) 136)) (-1847 (((-112) |#3| $) 81)) (-2988 (((-112) $ $) 6)) (-3485 (((-783) $) 47 (|has| $ (-6 -4461))))) (((-1146 |#1| |#2| |#3| |#4|) (-141) (-464) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -1146)) NIL (-13 (-1128 |t#1| |t#2| |t#3| |t#4|) (-796 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-796 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1128 |#1| |#2| |#3| |#4|) . T) ((-1230 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) -((-1843 (((-656 |#2|) |#1|) 15)) (-2202 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-3685 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-4381 ((|#2| |#1|) 54)) (-4149 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3907 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-3861 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-2894 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-4139 ((|#2| |#2| |#2| |#2|) 51)) (-2400 ((|#2| |#2| |#2|) 50)) (-3734 ((|#2| |#2| |#2| |#2| |#2|) 52))) -(((-1147 |#1| |#2|) (-10 -7 (-15 -1843 ((-656 |#2|) |#1|)) (-15 -4381 (|#2| |#1|)) (-15 -4149 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3907 ((-656 |#2|) |#1|)) (-15 -3685 ((-656 |#2|) |#1|)) (-15 -3861 ((-656 |#2|) |#1|)) (-15 -2202 ((-656 |#2|) |#1|)) (-15 -3907 ((-656 |#2|) |#2| |#2|)) (-15 -3685 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3861 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2202 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2400 (|#2| |#2| |#2|)) (-15 -4139 (|#2| |#2| |#2| |#2|)) (-15 -3734 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2894 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1263 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1147)) -((-2894 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-3734 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-4139 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-2400 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-2202 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))) (-3861 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))) (-3907 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3)))) (-2202 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) (-3861 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) (-3685 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1147 *3 *5)) (-4 *3 (-1263 *5)))) (-4381 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2)))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -1843 ((-656 |#2|) |#1|)) (-15 -4381 (|#2| |#1|)) (-15 -4149 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3907 ((-656 |#2|) |#1|)) (-15 -3685 ((-656 |#2|) |#1|)) (-15 -3861 ((-656 |#2|) |#1|)) (-15 -2202 ((-656 |#2|) |#1|)) (-15 -3907 ((-656 |#2|) |#2| |#2|)) (-15 -3685 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3861 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2202 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2400 (|#2| |#2| |#2|)) (-15 -4139 (|#2| |#2| |#2| |#2|)) (-15 -3734 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2894 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3579 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))) (-656 (-1196))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))) (-1196)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)) (-1196)) 82)) (-1822 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196))) 111) (((-656 (-326 |#1|)) (-419 (-969 |#1|)) (-1196)) 54)) (-4345 (((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-969 |#1|)) (-1196)) 122) (((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196)) 121))) -(((-1148 |#1|) (-10 -7 (-15 -3579 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -3579 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)))) (-15 -3579 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -3579 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))))) (-15 -3579 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -3579 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))))) (-15 -3579 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196)))) (-15 -3579 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -1822 ((-656 (-326 |#1|)) (-419 (-969 |#1|)) (-1196))) (-15 -1822 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -4345 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -4345 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-969 |#1|)) (-1196)))) (-13 (-317) (-148))) (T -1148)) -((-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-1822 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1148 *5)))) (-1822 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1148 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1148 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-969 *5))))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1148 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1148 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) (-3579 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1148 *5))))) -(-10 -7 (-15 -3579 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)) (-1196))) (-15 -3579 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)))) (-15 -3579 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -3579 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))))) (-15 -3579 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -3579 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))))) (-15 -3579 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196)))) (-15 -3579 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -1822 ((-656 (-326 |#1|)) (-419 (-969 |#1|)) (-1196))) (-15 -1822 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -4345 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -4345 ((-1185 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-969 |#1|)) (-1196)))) -((-1389 (((-419 (-1192 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-576)) 36)) (-2627 (((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|)))) 48))) -(((-1149 |#1|) (-10 -7 (-15 -2627 ((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))))) (-15 -1389 ((-419 (-1192 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-576)))) (-568)) (T -1149)) -((-1389 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1192 (-326 *5)))) (-5 *3 (-1287 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1149 *5)))) (-2627 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1192 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1149 *3))))) -(-10 -7 (-15 -2627 ((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))))) (-15 -1389 ((-419 (-1192 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-576)))) -((-1843 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1196))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1196)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1196)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24))) -(((-1150 |#1|) (-10 -7 (-15 -1843 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -1843 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -1843 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1196))) (-15 -1843 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1196))) (-15 -1843 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1196))))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (T -1150)) -((-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1196))) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) (-5 *3 (-326 *5)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) (-5 *3 (-304 (-326 *5))))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-304 (-326 *4))))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-326 *4))))) -(-10 -7 (-15 -1843 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -1843 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -1843 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1196))) (-15 -1843 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1196))) (-15 -1843 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1196))))) -((-1654 ((|#2| |#2|) 28 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-4365 ((|#2| |#2|) 27 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1151 |#1| |#2|) (-10 -7 (-15 -4365 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1654 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -4365 (|#2| |#2|)) (-15 -1654 (|#2| |#2|))) |%noBranch|)) (-1237) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4462) (-6 -4463)))) (T -1151)) -((-1654 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1237)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4462) (-6 -4463)))))) (-4365 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1237)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4462) (-6 -4463)))))) (-1654 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4462) (-6 -4463)))))) (-4365 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4462) (-6 -4463))))))) -(-10 -7 (-15 -4365 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -1654 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -4365 (|#2| |#2|)) (-15 -1654 (|#2| |#2|))) |%noBranch|)) -((-2034 (((-112) $ $) NIL)) (-1376 (((-1184 3 |#1|) $) 141)) (-2859 (((-112) $) 101)) (-1477 (($ $ (-656 (-960 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-960 |#1|))) 103) (((-656 (-960 |#1|)) $) 102)) (-2428 (((-112) $) 72)) (-3418 (($ $ (-960 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-960 |#1|)) 77) (((-960 |#1|) $) 75)) (-1829 (((-2 (|:| -2085 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-3743 (((-783) $) 53)) (-1835 (((-783) $) 52)) (-4157 (($ $ (-783) (-960 |#1|)) 67)) (-3639 (((-112) $) 111)) (-3043 (($ $ (-656 (-656 (-960 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-960 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-960 |#1|)))) 116) (($ (-656 (-656 (-960 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-960 |#1|))) $) 114)) (-3257 (($ (-656 $)) 56) (($ $ $) 57)) (-3546 (((-656 (-173)) $) 133)) (-1516 (((-656 (-960 |#1|)) $) 130)) (-4029 (((-656 (-656 (-173))) $) 132)) (-3846 (((-656 (-656 (-656 (-960 |#1|)))) $) NIL)) (-2279 (((-656 (-656 (-656 (-783)))) $) 131)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3549 (((-783) $ (-656 (-960 |#1|))) 65)) (-1459 (((-112) $) 84)) (-1547 (($ $ (-656 (-960 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-960 |#1|))) 87) (((-656 (-960 |#1|)) $) 85)) (-3431 (($) 48) (($ (-1184 3 |#1|)) 49)) (-4268 (($ $) 63)) (-4017 (((-656 $) $) 62)) (-4352 (($ (-656 $)) 59)) (-2574 (((-656 $) $) 61)) (-4092 (((-874) $) 146)) (-2798 (((-112) $) 94)) (-2089 (($ $ (-656 (-960 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-960 |#1|))) 97) (((-656 (-960 |#1|)) $) 95)) (-3334 (($ $) 140)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-796 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1090 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1128 |#1| |#2| |#3| |#4|) . T) ((-1229 |#1| |#2| |#3| |#4|) . T) ((-1236) . T)) +((-2445 (((-656 |#2|) |#1|) 15)) (-3889 (((-656 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-656 |#2|) |#1|) 61)) (-3469 (((-656 |#2|) |#2| |#2| |#2|) 45) (((-656 |#2|) |#1|) 59)) (-2915 ((|#2| |#1|) 54)) (-1951 (((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-1704 (((-656 |#2|) |#2| |#2|) 42) (((-656 |#2|) |#1|) 58)) (-3039 (((-656 |#2|) |#2| |#2| |#2| |#2|) 46) (((-656 |#2|) |#1|) 60)) (-3254 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53)) (-2425 ((|#2| |#2| |#2| |#2|) 51)) (-3334 ((|#2| |#2| |#2|) 50)) (-1888 ((|#2| |#2| |#2| |#2| |#2|) 52))) +(((-1147 |#1| |#2|) (-10 -7 (-15 -2445 ((-656 |#2|) |#1|)) (-15 -2915 (|#2| |#1|)) (-15 -1951 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1704 ((-656 |#2|) |#1|)) (-15 -3469 ((-656 |#2|) |#1|)) (-15 -3039 ((-656 |#2|) |#1|)) (-15 -3889 ((-656 |#2|) |#1|)) (-15 -1704 ((-656 |#2|) |#2| |#2|)) (-15 -3469 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3039 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3889 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3334 (|#2| |#2| |#2|)) (-15 -2425 (|#2| |#2| |#2| |#2|)) (-15 -1888 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3254 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1262 |#2|) (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (T -1147)) +((-3254 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-1888 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-2425 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-3334 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-3889 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3)))) (-3039 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3)))) (-3469 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3)))) (-1704 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3)))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) (-3039 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) (-3469 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) (-1704 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-2 (|:| |solns| (-656 *5)) (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1147 *3 *5)) (-4 *3 (-1262 *5)))) (-2915 (*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2)))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -2445 ((-656 |#2|) |#1|)) (-15 -2915 (|#2| |#1|)) (-15 -1951 ((-2 (|:| |solns| (-656 |#2|)) (|:| |maps| (-656 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1704 ((-656 |#2|) |#1|)) (-15 -3469 ((-656 |#2|) |#1|)) (-15 -3039 ((-656 |#2|) |#1|)) (-15 -3889 ((-656 |#2|) |#1|)) (-15 -1704 ((-656 |#2|) |#2| |#2|)) (-15 -3469 ((-656 |#2|) |#2| |#2| |#2|)) (-15 -3039 ((-656 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3889 ((-656 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3334 (|#2| |#2| |#2|)) (-15 -2425 (|#2| |#2| |#2| |#2|)) (-15 -1888 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3254 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3603 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|))))) 118) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1195))) 117) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|)))) 115) (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))) (-656 (-1195))) 113) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|)))) 97) (((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))) (-1195)) 98) (((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|))) 92) (((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)) (-1195)) 82)) (-4384 (((-656 (-656 (-326 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1195))) 111) (((-656 (-326 |#1|)) (-419 (-969 |#1|)) (-1195)) 54)) (-3850 (((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-969 |#1|)) (-1195)) 122) (((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-969 |#1|))) (-1195)) 121))) +(((-1148 |#1|) (-10 -7 (-15 -3603 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)) (-1195))) (-15 -3603 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)))) (-15 -3603 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))) (-1195))) (-15 -3603 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))))) (-15 -3603 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))) (-656 (-1195)))) (-15 -3603 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))))) (-15 -3603 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1195)))) (-15 -3603 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -4384 ((-656 (-326 |#1|)) (-419 (-969 |#1|)) (-1195))) (-15 -4384 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1195)))) (-15 -3850 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-969 |#1|))) (-1195))) (-15 -3850 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-969 |#1|)) (-1195)))) (-13 (-317) (-148))) (T -1148)) +((-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-4384 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) (-5 *1 (-1148 *5)))) (-4384 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) (-5 *1 (-1148 *5)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1148 *4)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-304 (-419 (-969 *5))))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1148 *4)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1148 *5)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1148 *5)))) (-3603 (*1 *2 *3) (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1148 *5))))) +(-10 -7 (-15 -3603 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)) (-1195))) (-15 -3603 ((-656 (-304 (-326 |#1|))) (-419 (-969 |#1|)))) (-15 -3603 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))) (-1195))) (-15 -3603 ((-656 (-304 (-326 |#1|))) (-304 (-419 (-969 |#1|))))) (-15 -3603 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))) (-656 (-1195)))) (-15 -3603 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-419 (-969 |#1|))))) (-15 -3603 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1195)))) (-15 -3603 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -4384 ((-656 (-326 |#1|)) (-419 (-969 |#1|)) (-1195))) (-15 -4384 ((-656 (-656 (-326 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1195)))) (-15 -3850 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-304 (-419 (-969 |#1|))) (-1195))) (-15 -3850 ((-1184 (-656 (-326 |#1|)) (-656 (-304 (-326 |#1|)))) (-419 (-969 |#1|)) (-1195)))) +((-2384 (((-419 (-1191 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-576)) 36)) (-3479 (((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|)))) 48))) +(((-1149 |#1|) (-10 -7 (-15 -3479 ((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))))) (-15 -2384 ((-419 (-1191 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-576)))) (-568)) (T -1149)) +((-2384 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1191 (-326 *5)))) (-5 *3 (-1286 (-326 *5))) (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1149 *5)))) (-3479 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1191 (-326 *3)))) (-4 *3 (-568)) (-5 *1 (-1149 *3))))) +(-10 -7 (-15 -3479 ((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))))) (-15 -2384 ((-419 (-1191 (-326 |#1|))) (-1286 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-576)))) +((-2445 (((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1195))) 244) (((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1195)) 23) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1195)) 29) (((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|))) 28) (((-656 (-304 (-326 |#1|))) (-326 |#1|)) 24))) +(((-1150 |#1|) (-10 -7 (-15 -2445 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2445 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2445 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1195))) (-15 -2445 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1195))) (-15 -2445 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1195))))) (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (T -1150)) +((-2445 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1195))) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)) (-5 *3 (-656 (-304 (-326 *5)))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) (-5 *3 (-326 *5)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) (-5 *3 (-304 (-326 *5))))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-304 (-326 *4))))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) (-5 *3 (-326 *4))))) +(-10 -7 (-15 -2445 ((-656 (-304 (-326 |#1|))) (-326 |#1|))) (-15 -2445 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)))) (-15 -2445 ((-656 (-304 (-326 |#1|))) (-304 (-326 |#1|)) (-1195))) (-15 -2445 ((-656 (-304 (-326 |#1|))) (-326 |#1|) (-1195))) (-15 -2445 ((-656 (-656 (-304 (-326 |#1|)))) (-656 (-304 (-326 |#1|))) (-656 (-1195))))) +((-3720 ((|#2| |#2|) 28 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 25)) (-2005 ((|#2| |#2|) 27 (|has| |#1| (-862))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1151 |#1| |#2|) (-10 -7 (-15 -2005 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3720 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -2005 (|#2| |#2|)) (-15 -3720 (|#2| |#2|))) |%noBranch|)) (-1236) (-13 (-616 (-576) |#1|) (-10 -7 (-6 -4461) (-6 -4462)))) (T -1151)) +((-3720 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462)))))) (-2005 (*1 *2 *2) (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462)))))) (-3720 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462)))))) (-2005 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1151 *4 *2)) (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462))))))) +(-10 -7 (-15 -2005 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3720 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-862)) (PROGN (-15 -2005 (|#2| |#2|)) (-15 -3720 (|#2| |#2|))) |%noBranch|)) +((-3474 (((-112) $ $) NIL)) (-2657 (((-1183 3 |#1|) $) 141)) (-2710 (((-112) $) 101)) (-3005 (($ $ (-656 (-960 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 104) (($ (-656 (-960 |#1|))) 103) (((-656 (-960 |#1|)) $) 102)) (-4095 (((-112) $) 72)) (-2368 (($ $ (-960 |#1|)) 76) (($ $ (-656 |#1|)) 81) (($ $ (-783)) 83) (($ (-960 |#1|)) 77) (((-960 |#1|) $) 75)) (-3393 (((-2 (|:| -4040 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 139)) (-3513 (((-783) $) 53)) (-3052 (((-783) $) 52)) (-1653 (($ $ (-783) (-960 |#1|)) 67)) (-2774 (((-112) $) 111)) (-3851 (($ $ (-656 (-656 (-960 |#1|))) (-656 (-173)) (-173)) 118) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 120) (($ $ (-656 (-656 (-960 |#1|))) (-112) (-112)) 115) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 127) (($ (-656 (-656 (-960 |#1|)))) 116) (($ (-656 (-656 (-960 |#1|))) (-112) (-112)) 117) (((-656 (-656 (-960 |#1|))) $) 114)) (-1854 (($ (-656 $)) 56) (($ $ $) 57)) (-3471 (((-656 (-173)) $) 133)) (-4419 (((-656 (-960 |#1|)) $) 130)) (-2992 (((-656 (-656 (-173))) $) 132)) (-4179 (((-656 (-656 (-656 (-960 |#1|)))) $) NIL)) (-3063 (((-656 (-656 (-656 (-783)))) $) 131)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3765 (((-783) $ (-656 (-960 |#1|))) 65)) (-3790 (((-112) $) 84)) (-3154 (($ $ (-656 (-960 |#1|))) 86) (($ $ (-656 (-656 |#1|))) 92) (($ (-656 (-960 |#1|))) 87) (((-656 (-960 |#1|)) $) 85)) (-1722 (($) 48) (($ (-1183 3 |#1|)) 49)) (-1954 (($ $) 63)) (-2067 (((-656 $) $) 62)) (-3251 (($ (-656 $)) 59)) (-3322 (((-656 $) $) 61)) (-3563 (((-874) $) 146)) (-2930 (((-112) $) 94)) (-4389 (($ $ (-656 (-960 |#1|))) 96) (($ $ (-656 (-656 |#1|))) 99) (($ (-656 (-960 |#1|))) 97) (((-656 (-960 |#1|)) $) 95)) (-3800 (($ $) 140)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) (((-1152 |#1|) (-1153 |#1|) (-1068)) (T -1152)) NIL (-1153 |#1|) -((-2034 (((-112) $ $) 7)) (-1376 (((-1184 3 |#1|) $) 14)) (-2859 (((-112) $) 30)) (-1477 (($ $ (-656 (-960 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-960 |#1|))) 32) (((-656 (-960 |#1|)) $) 31)) (-2428 (((-112) $) 45)) (-3418 (($ $ (-960 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-960 |#1|)) 47) (((-960 |#1|) $) 46)) (-1829 (((-2 (|:| -2085 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-3743 (((-783) $) 59)) (-1835 (((-783) $) 60)) (-4157 (($ $ (-783) (-960 |#1|)) 51)) (-3639 (((-112) $) 22)) (-3043 (($ $ (-656 (-656 (-960 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-960 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-960 |#1|)))) 25) (($ (-656 (-656 (-960 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-960 |#1|))) $) 23)) (-3257 (($ (-656 $)) 58) (($ $ $) 57)) (-3546 (((-656 (-173)) $) 17)) (-1516 (((-656 (-960 |#1|)) $) 21)) (-4029 (((-656 (-656 (-173))) $) 18)) (-3846 (((-656 (-656 (-656 (-960 |#1|)))) $) 19)) (-2279 (((-656 (-656 (-656 (-783)))) $) 20)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3549 (((-783) $ (-656 (-960 |#1|))) 52)) (-1459 (((-112) $) 40)) (-1547 (($ $ (-656 (-960 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-960 |#1|))) 42) (((-656 (-960 |#1|)) $) 41)) (-3431 (($) 62) (($ (-1184 3 |#1|)) 61)) (-4268 (($ $) 53)) (-4017 (((-656 $) $) 54)) (-4352 (($ (-656 $)) 56)) (-2574 (((-656 $) $) 55)) (-4092 (((-874) $) 12)) (-2798 (((-112) $) 35)) (-2089 (($ $ (-656 (-960 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-960 |#1|))) 37) (((-656 (-960 |#1|)) $) 36)) (-3334 (($ $) 15)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-3474 (((-112) $ $) 7)) (-2657 (((-1183 3 |#1|) $) 14)) (-2710 (((-112) $) 30)) (-3005 (($ $ (-656 (-960 |#1|))) 34) (($ $ (-656 (-656 |#1|))) 33) (($ (-656 (-960 |#1|))) 32) (((-656 (-960 |#1|)) $) 31)) (-4095 (((-112) $) 45)) (-2368 (($ $ (-960 |#1|)) 50) (($ $ (-656 |#1|)) 49) (($ $ (-783)) 48) (($ (-960 |#1|)) 47) (((-960 |#1|) $) 46)) (-3393 (((-2 (|:| -4040 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $) 16)) (-3513 (((-783) $) 59)) (-3052 (((-783) $) 60)) (-1653 (($ $ (-783) (-960 |#1|)) 51)) (-2774 (((-112) $) 22)) (-3851 (($ $ (-656 (-656 (-960 |#1|))) (-656 (-173)) (-173)) 29) (($ $ (-656 (-656 (-656 |#1|))) (-656 (-173)) (-173)) 28) (($ $ (-656 (-656 (-960 |#1|))) (-112) (-112)) 27) (($ $ (-656 (-656 (-656 |#1|))) (-112) (-112)) 26) (($ (-656 (-656 (-960 |#1|)))) 25) (($ (-656 (-656 (-960 |#1|))) (-112) (-112)) 24) (((-656 (-656 (-960 |#1|))) $) 23)) (-1854 (($ (-656 $)) 58) (($ $ $) 57)) (-3471 (((-656 (-173)) $) 17)) (-4419 (((-656 (-960 |#1|)) $) 21)) (-2992 (((-656 (-656 (-173))) $) 18)) (-4179 (((-656 (-656 (-656 (-960 |#1|)))) $) 19)) (-3063 (((-656 (-656 (-656 (-783)))) $) 20)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3765 (((-783) $ (-656 (-960 |#1|))) 52)) (-3790 (((-112) $) 40)) (-3154 (($ $ (-656 (-960 |#1|))) 44) (($ $ (-656 (-656 |#1|))) 43) (($ (-656 (-960 |#1|))) 42) (((-656 (-960 |#1|)) $) 41)) (-1722 (($) 62) (($ (-1183 3 |#1|)) 61)) (-1954 (($ $) 53)) (-2067 (((-656 $) $) 54)) (-3251 (($ (-656 $)) 56)) (-3322 (((-656 $) $) 55)) (-3563 (((-874) $) 12)) (-2930 (((-112) $) 35)) (-4389 (($ $ (-656 (-960 |#1|))) 39) (($ $ (-656 (-656 |#1|))) 38) (($ (-656 (-960 |#1|))) 37) (((-656 (-960 |#1|)) $) 36)) (-3800 (($ $) 15)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-1153 |#1|) (-141) (-1068)) (T -1153)) -((-4092 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-874)))) (-3431 (*1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-3431 (*1 *1 *2) (-12 (-5 *2 (-1184 3 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-3257 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3257 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-4352 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-2574 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)))) (-4017 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)))) (-4268 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-3549 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-960 *4))) (-4 *1 (-1153 *4)) (-4 *4 (-1068)) (-5 *2 (-783)))) (-4157 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-960 *4)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-3418 (*1 *1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3418 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3418 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3418 (*1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-960 *3)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-1547 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-1547 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-1547 (*1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-1547 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-1459 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-2089 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-2089 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-2089 (*1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-2089 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-1477 (*1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-2859 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3043 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-960 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) (-3043 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) (-3043 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-3043 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 *3)))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3043 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) (-4 *4 (-1068)) (-4 *1 (-1153 *4)))) (-3043 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-960 *3)))))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-656 (-960 *3))))))) (-4029 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-173)))))) (-3546 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-173))))) (-1829 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -2085 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-3334 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-1184 3 *3))))) -(-13 (-1119) (-10 -8 (-15 -3431 ($)) (-15 -3431 ($ (-1184 3 |t#1|))) (-15 -1835 ((-783) $)) (-15 -3743 ((-783) $)) (-15 -3257 ($ (-656 $))) (-15 -3257 ($ $ $)) (-15 -4352 ($ (-656 $))) (-15 -2574 ((-656 $) $)) (-15 -4017 ((-656 $) $)) (-15 -4268 ($ $)) (-15 -3549 ((-783) $ (-656 (-960 |t#1|)))) (-15 -4157 ($ $ (-783) (-960 |t#1|))) (-15 -3418 ($ $ (-960 |t#1|))) (-15 -3418 ($ $ (-656 |t#1|))) (-15 -3418 ($ $ (-783))) (-15 -3418 ($ (-960 |t#1|))) (-15 -3418 ((-960 |t#1|) $)) (-15 -2428 ((-112) $)) (-15 -1547 ($ $ (-656 (-960 |t#1|)))) (-15 -1547 ($ $ (-656 (-656 |t#1|)))) (-15 -1547 ($ (-656 (-960 |t#1|)))) (-15 -1547 ((-656 (-960 |t#1|)) $)) (-15 -1459 ((-112) $)) (-15 -2089 ($ $ (-656 (-960 |t#1|)))) (-15 -2089 ($ $ (-656 (-656 |t#1|)))) (-15 -2089 ($ (-656 (-960 |t#1|)))) (-15 -2089 ((-656 (-960 |t#1|)) $)) (-15 -2798 ((-112) $)) (-15 -1477 ($ $ (-656 (-960 |t#1|)))) (-15 -1477 ($ $ (-656 (-656 |t#1|)))) (-15 -1477 ($ (-656 (-960 |t#1|)))) (-15 -1477 ((-656 (-960 |t#1|)) $)) (-15 -2859 ((-112) $)) (-15 -3043 ($ $ (-656 (-656 (-960 |t#1|))) (-656 (-173)) (-173))) (-15 -3043 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -3043 ($ $ (-656 (-656 (-960 |t#1|))) (-112) (-112))) (-15 -3043 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -3043 ($ (-656 (-656 (-960 |t#1|))))) (-15 -3043 ($ (-656 (-656 (-960 |t#1|))) (-112) (-112))) (-15 -3043 ((-656 (-656 (-960 |t#1|))) $)) (-15 -3639 ((-112) $)) (-15 -1516 ((-656 (-960 |t#1|)) $)) (-15 -2279 ((-656 (-656 (-656 (-783)))) $)) (-15 -3846 ((-656 (-656 (-656 (-960 |t#1|)))) $)) (-15 -4029 ((-656 (-656 (-173))) $)) (-15 -3546 ((-656 (-173)) $)) (-15 -1829 ((-2 (|:| -2085 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -3334 ($ $)) (-15 -1376 ((-1184 3 |t#1|) $)) (-15 -4092 ((-874) $)))) +((-3563 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-874)))) (-1722 (*1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-1183 3 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3052 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-1854 (*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-3251 (*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3322 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)))) (-2067 (*1 *2 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)))) (-1954 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-3765 (*1 *2 *1 *3) (-12 (-5 *3 (-656 (-960 *4))) (-4 *1 (-1153 *4)) (-4 *4 (-1068)) (-5 *2 (-783)))) (-1653 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-960 *4)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-2368 (*1 *1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-2368 (*1 *1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-2368 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-960 *3)))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3154 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-4389 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4389 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-4389 (*1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3005 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3005 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) (-3005 (*1 *1 *2) (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-3851 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-960 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) (-3851 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) (-3851 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-3851 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) (-3851 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 *3)))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) (-3851 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) (-4 *4 (-1068)) (-4 *1 (-1153 *4)))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-960 *3)))))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112)))) (-4419 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-656 (-783))))))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-656 (-960 *3))))))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-173)))))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-173))))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -4040 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783)))))) (-3800 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) (-2657 (*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-1183 3 *3))))) +(-13 (-1119) (-10 -8 (-15 -1722 ($)) (-15 -1722 ($ (-1183 3 |t#1|))) (-15 -3052 ((-783) $)) (-15 -3513 ((-783) $)) (-15 -1854 ($ (-656 $))) (-15 -1854 ($ $ $)) (-15 -3251 ($ (-656 $))) (-15 -3322 ((-656 $) $)) (-15 -2067 ((-656 $) $)) (-15 -1954 ($ $)) (-15 -3765 ((-783) $ (-656 (-960 |t#1|)))) (-15 -1653 ($ $ (-783) (-960 |t#1|))) (-15 -2368 ($ $ (-960 |t#1|))) (-15 -2368 ($ $ (-656 |t#1|))) (-15 -2368 ($ $ (-783))) (-15 -2368 ($ (-960 |t#1|))) (-15 -2368 ((-960 |t#1|) $)) (-15 -4095 ((-112) $)) (-15 -3154 ($ $ (-656 (-960 |t#1|)))) (-15 -3154 ($ $ (-656 (-656 |t#1|)))) (-15 -3154 ($ (-656 (-960 |t#1|)))) (-15 -3154 ((-656 (-960 |t#1|)) $)) (-15 -3790 ((-112) $)) (-15 -4389 ($ $ (-656 (-960 |t#1|)))) (-15 -4389 ($ $ (-656 (-656 |t#1|)))) (-15 -4389 ($ (-656 (-960 |t#1|)))) (-15 -4389 ((-656 (-960 |t#1|)) $)) (-15 -2930 ((-112) $)) (-15 -3005 ($ $ (-656 (-960 |t#1|)))) (-15 -3005 ($ $ (-656 (-656 |t#1|)))) (-15 -3005 ($ (-656 (-960 |t#1|)))) (-15 -3005 ((-656 (-960 |t#1|)) $)) (-15 -2710 ((-112) $)) (-15 -3851 ($ $ (-656 (-656 (-960 |t#1|))) (-656 (-173)) (-173))) (-15 -3851 ($ $ (-656 (-656 (-656 |t#1|))) (-656 (-173)) (-173))) (-15 -3851 ($ $ (-656 (-656 (-960 |t#1|))) (-112) (-112))) (-15 -3851 ($ $ (-656 (-656 (-656 |t#1|))) (-112) (-112))) (-15 -3851 ($ (-656 (-656 (-960 |t#1|))))) (-15 -3851 ($ (-656 (-656 (-960 |t#1|))) (-112) (-112))) (-15 -3851 ((-656 (-656 (-960 |t#1|))) $)) (-15 -2774 ((-112) $)) (-15 -4419 ((-656 (-960 |t#1|)) $)) (-15 -3063 ((-656 (-656 (-656 (-783)))) $)) (-15 -4179 ((-656 (-656 (-656 (-960 |t#1|)))) $)) (-15 -2992 ((-656 (-656 (-173))) $)) (-15 -3471 ((-656 (-173)) $)) (-15 -3393 ((-2 (|:| -4040 (-783)) (|:| |curves| (-783)) (|:| |polygons| (-783)) (|:| |constructs| (-783))) $)) (-15 -3800 ($ $)) (-15 -2657 ((-1183 3 |t#1|) $)) (-15 -3563 ((-874) $)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 184) (($ (-1201)) NIL) (((-1201) $) 7)) (-4291 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1297))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1134))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1085))) 63) (((-112) $ (|[\|\|]| (-1298))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1170))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1055))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-989))) 99) (((-112) $ (|[\|\|]| (-1092))) 103) (((-112) $ (|[\|\|]| (-1109))) 107) (((-112) $ (|[\|\|]| (-1115))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1186))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1178))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-1531 (((-112) $ $) NIL)) (-4323 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1297) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1134) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1085) $) 64) (((-1298) $) 68) (((-537) $) 72) (((-1170) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1055) $) 92) (((-182) $) 96) (((-989) $) 100) (((-1092) $) 104) (((-1109) $) 108) (((-1115) $) 112) (((-638) $) 116) (((-1186) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1178) $) 144) (((-576) $) 148)) (-3919 (((-112) $ $) NIL))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 184) (($ (-1200)) NIL) (((-1200) $) 7)) (-2787 (((-112) $ (|[\|\|]| (-536))) 19) (((-112) $ (|[\|\|]| (-220))) 23) (((-112) $ (|[\|\|]| (-688))) 27) (((-112) $ (|[\|\|]| (-1296))) 31) (((-112) $ (|[\|\|]| (-139))) 35) (((-112) $ (|[\|\|]| (-618))) 39) (((-112) $ (|[\|\|]| (-134))) 43) (((-112) $ (|[\|\|]| (-1134))) 47) (((-112) $ (|[\|\|]| (-96))) 51) (((-112) $ (|[\|\|]| (-693))) 55) (((-112) $ (|[\|\|]| (-529))) 59) (((-112) $ (|[\|\|]| (-1085))) 63) (((-112) $ (|[\|\|]| (-1297))) 67) (((-112) $ (|[\|\|]| (-537))) 71) (((-112) $ (|[\|\|]| (-1170))) 75) (((-112) $ (|[\|\|]| (-155))) 79) (((-112) $ (|[\|\|]| (-683))) 83) (((-112) $ (|[\|\|]| (-321))) 87) (((-112) $ (|[\|\|]| (-1055))) 91) (((-112) $ (|[\|\|]| (-182))) 95) (((-112) $ (|[\|\|]| (-989))) 99) (((-112) $ (|[\|\|]| (-1092))) 103) (((-112) $ (|[\|\|]| (-1109))) 107) (((-112) $ (|[\|\|]| (-1115))) 111) (((-112) $ (|[\|\|]| (-638))) 115) (((-112) $ (|[\|\|]| (-1185))) 119) (((-112) $ (|[\|\|]| (-157))) 123) (((-112) $ (|[\|\|]| (-138))) 127) (((-112) $ (|[\|\|]| (-490))) 131) (((-112) $ (|[\|\|]| (-604))) 135) (((-112) $ (|[\|\|]| (-518))) 139) (((-112) $ (|[\|\|]| (-1177))) 143) (((-112) $ (|[\|\|]| (-576))) 147)) (-3985 (((-112) $ $) NIL)) (-2014 (((-536) $) 20) (((-220) $) 24) (((-688) $) 28) (((-1296) $) 32) (((-139) $) 36) (((-618) $) 40) (((-134) $) 44) (((-1134) $) 48) (((-96) $) 52) (((-693) $) 56) (((-529) $) 60) (((-1085) $) 64) (((-1297) $) 68) (((-537) $) 72) (((-1170) $) 76) (((-155) $) 80) (((-683) $) 84) (((-321) $) 88) (((-1055) $) 92) (((-182) $) 96) (((-989) $) 100) (((-1092) $) 104) (((-1109) $) 108) (((-1115) $) 112) (((-638) $) 116) (((-1185) $) 120) (((-157) $) 124) (((-138) $) 128) (((-490) $) 132) (((-604) $) 136) (((-518) $) 140) (((-1177) $) 144) (((-576) $) 148)) (-2988 (((-112) $ $) NIL))) (((-1154) (-1156)) (T -1154)) NIL (-1156) -((-2421 (((-656 (-1201)) (-1178)) 9))) -(((-1155) (-10 -7 (-15 -2421 ((-656 (-1201)) (-1178))))) (T -1155)) -((-2421 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-1155))))) -(-10 -7 (-15 -2421 ((-656 (-1201)) (-1178)))) -((-2034 (((-112) $ $) 7)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-1201)) 17) (((-1201) $) 16)) (-4291 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1297))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1134))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1085))) 63) (((-112) $ (|[\|\|]| (-1298))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1170))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1055))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-989))) 45) (((-112) $ (|[\|\|]| (-1092))) 43) (((-112) $ (|[\|\|]| (-1109))) 41) (((-112) $ (|[\|\|]| (-1115))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1186))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1178))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-1531 (((-112) $ $) 9)) (-4323 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1297) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1134) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1085) $) 62) (((-1298) $) 60) (((-537) $) 58) (((-1170) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1055) $) 48) (((-182) $) 46) (((-989) $) 44) (((-1092) $) 42) (((-1109) $) 40) (((-1115) $) 38) (((-638) $) 36) (((-1186) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1178) $) 22) (((-576) $) 20)) (-3919 (((-112) $ $) 6))) +((-4325 (((-656 (-1200)) (-1177)) 9))) +(((-1155) (-10 -7 (-15 -4325 ((-656 (-1200)) (-1177))))) (T -1155)) +((-4325 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-1155))))) +(-10 -7 (-15 -4325 ((-656 (-1200)) (-1177)))) +((-3474 (((-112) $ $) 7)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-1200)) 17) (((-1200) $) 16)) (-2787 (((-112) $ (|[\|\|]| (-536))) 85) (((-112) $ (|[\|\|]| (-220))) 83) (((-112) $ (|[\|\|]| (-688))) 81) (((-112) $ (|[\|\|]| (-1296))) 79) (((-112) $ (|[\|\|]| (-139))) 77) (((-112) $ (|[\|\|]| (-618))) 75) (((-112) $ (|[\|\|]| (-134))) 73) (((-112) $ (|[\|\|]| (-1134))) 71) (((-112) $ (|[\|\|]| (-96))) 69) (((-112) $ (|[\|\|]| (-693))) 67) (((-112) $ (|[\|\|]| (-529))) 65) (((-112) $ (|[\|\|]| (-1085))) 63) (((-112) $ (|[\|\|]| (-1297))) 61) (((-112) $ (|[\|\|]| (-537))) 59) (((-112) $ (|[\|\|]| (-1170))) 57) (((-112) $ (|[\|\|]| (-155))) 55) (((-112) $ (|[\|\|]| (-683))) 53) (((-112) $ (|[\|\|]| (-321))) 51) (((-112) $ (|[\|\|]| (-1055))) 49) (((-112) $ (|[\|\|]| (-182))) 47) (((-112) $ (|[\|\|]| (-989))) 45) (((-112) $ (|[\|\|]| (-1092))) 43) (((-112) $ (|[\|\|]| (-1109))) 41) (((-112) $ (|[\|\|]| (-1115))) 39) (((-112) $ (|[\|\|]| (-638))) 37) (((-112) $ (|[\|\|]| (-1185))) 35) (((-112) $ (|[\|\|]| (-157))) 33) (((-112) $ (|[\|\|]| (-138))) 31) (((-112) $ (|[\|\|]| (-490))) 29) (((-112) $ (|[\|\|]| (-604))) 27) (((-112) $ (|[\|\|]| (-518))) 25) (((-112) $ (|[\|\|]| (-1177))) 23) (((-112) $ (|[\|\|]| (-576))) 21)) (-3985 (((-112) $ $) 9)) (-2014 (((-536) $) 84) (((-220) $) 82) (((-688) $) 80) (((-1296) $) 78) (((-139) $) 76) (((-618) $) 74) (((-134) $) 72) (((-1134) $) 70) (((-96) $) 68) (((-693) $) 66) (((-529) $) 64) (((-1085) $) 62) (((-1297) $) 60) (((-537) $) 58) (((-1170) $) 56) (((-155) $) 54) (((-683) $) 52) (((-321) $) 50) (((-1055) $) 48) (((-182) $) 46) (((-989) $) 44) (((-1092) $) 42) (((-1109) $) 40) (((-1115) $) 38) (((-638) $) 36) (((-1185) $) 34) (((-157) $) 32) (((-138) $) 30) (((-490) $) 28) (((-604) $) 26) (((-518) $) 24) (((-1177) $) 22) (((-576) $) 20)) (-2988 (((-112) $ $) 6))) (((-1156) (-141)) (T -1156)) -((-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-536)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-220)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-688)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1297)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-139)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-618)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-134)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1134)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-96)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-693)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-529)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1085)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1298)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-537)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1170)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-155)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-683)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-321)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1055))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1055)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-182)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-989)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1092)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1109)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1115)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-638)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1186))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1186)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-157)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-138)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-490)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-604)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-518)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1178)))) (-4291 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-576))))) -(-13 (-1102) (-1282) (-10 -8 (-15 -4291 ((-112) $ (|[\|\|]| (-536)))) (-15 -4323 ((-536) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-220)))) (-15 -4323 ((-220) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-688)))) (-15 -4323 ((-688) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1297)))) (-15 -4323 ((-1297) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-139)))) (-15 -4323 ((-139) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-618)))) (-15 -4323 ((-618) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-134)))) (-15 -4323 ((-134) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1134)))) (-15 -4323 ((-1134) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-96)))) (-15 -4323 ((-96) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-693)))) (-15 -4323 ((-693) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-529)))) (-15 -4323 ((-529) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1085)))) (-15 -4323 ((-1085) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1298)))) (-15 -4323 ((-1298) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-537)))) (-15 -4323 ((-537) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1170)))) (-15 -4323 ((-1170) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-155)))) (-15 -4323 ((-155) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-683)))) (-15 -4323 ((-683) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-321)))) (-15 -4323 ((-321) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1055)))) (-15 -4323 ((-1055) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-182)))) (-15 -4323 ((-182) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-989)))) (-15 -4323 ((-989) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1092)))) (-15 -4323 ((-1092) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1109)))) (-15 -4323 ((-1109) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1115)))) (-15 -4323 ((-1115) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-638)))) (-15 -4323 ((-638) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1186)))) (-15 -4323 ((-1186) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-157)))) (-15 -4323 ((-157) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-138)))) (-15 -4323 ((-138) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-490)))) (-15 -4323 ((-490) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-604)))) (-15 -4323 ((-604) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-518)))) (-15 -4323 ((-518) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-1178)))) (-15 -4323 ((-1178) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-576)))) (-15 -4323 ((-576) $)))) -(((-93) . T) ((-102) . T) ((-628 #0=(-1201)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T) ((-1102) . T) ((-1282) . T)) -((-2219 (((-1292) (-656 (-874))) 22) (((-1292) (-874)) 21)) (-3204 (((-1292) (-656 (-874))) 20) (((-1292) (-874)) 19)) (-3472 (((-1292) (-656 (-874))) 18) (((-1292) (-874)) 10) (((-1292) (-1178) (-874)) 16))) -(((-1157) (-10 -7 (-15 -3472 ((-1292) (-1178) (-874))) (-15 -3472 ((-1292) (-874))) (-15 -3204 ((-1292) (-874))) (-15 -2219 ((-1292) (-874))) (-15 -3472 ((-1292) (-656 (-874)))) (-15 -3204 ((-1292) (-656 (-874)))) (-15 -2219 ((-1292) (-656 (-874)))))) (T -1157)) -((-2219 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-1178)) (-5 *4 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157))))) -(-10 -7 (-15 -3472 ((-1292) (-1178) (-874))) (-15 -3472 ((-1292) (-874))) (-15 -3204 ((-1292) (-874))) (-15 -2219 ((-1292) (-874))) (-15 -3472 ((-1292) (-656 (-874)))) (-15 -3204 ((-1292) (-656 (-874)))) (-15 -2219 ((-1292) (-656 (-874))))) -((-3381 (($ $ $) 10)) (-1382 (($ $) 9)) (-3400 (($ $ $) 13)) (-2621 (($ $ $) 15)) (-4199 (($ $ $) 12)) (-2624 (($ $ $) 14)) (-2456 (($ $) 17)) (-2154 (($ $) 16)) (-3423 (($ $) 6)) (-2917 (($ $ $) 11) (($ $) 7)) (-1802 (($ $ $) 8))) +((-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-536)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-220)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-688)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1296)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-139)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-618)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-134)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1134)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-96)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-693)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-529)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1085)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1297)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-537)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1170)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-155)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-683)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-321)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1055))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1055)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-182)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-989)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1092)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1109)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1115)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-638)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1185))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1185)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-157)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-138)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-490)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-604)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-518)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1177)))) (-2787 (*1 *2 *1 *3) (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-576))))) +(-13 (-1102) (-1281) (-10 -8 (-15 -2787 ((-112) $ (|[\|\|]| (-536)))) (-15 -2014 ((-536) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-220)))) (-15 -2014 ((-220) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-688)))) (-15 -2014 ((-688) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1296)))) (-15 -2014 ((-1296) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-139)))) (-15 -2014 ((-139) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-618)))) (-15 -2014 ((-618) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-134)))) (-15 -2014 ((-134) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1134)))) (-15 -2014 ((-1134) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-96)))) (-15 -2014 ((-96) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-693)))) (-15 -2014 ((-693) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-529)))) (-15 -2014 ((-529) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1085)))) (-15 -2014 ((-1085) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1297)))) (-15 -2014 ((-1297) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-537)))) (-15 -2014 ((-537) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1170)))) (-15 -2014 ((-1170) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-155)))) (-15 -2014 ((-155) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-683)))) (-15 -2014 ((-683) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-321)))) (-15 -2014 ((-321) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1055)))) (-15 -2014 ((-1055) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-182)))) (-15 -2014 ((-182) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-989)))) (-15 -2014 ((-989) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1092)))) (-15 -2014 ((-1092) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1109)))) (-15 -2014 ((-1109) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1115)))) (-15 -2014 ((-1115) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-638)))) (-15 -2014 ((-638) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1185)))) (-15 -2014 ((-1185) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-157)))) (-15 -2014 ((-157) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-138)))) (-15 -2014 ((-138) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-490)))) (-15 -2014 ((-490) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-604)))) (-15 -2014 ((-604) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-518)))) (-15 -2014 ((-518) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-1177)))) (-15 -2014 ((-1177) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-576)))) (-15 -2014 ((-576) $)))) +(((-93) . T) ((-102) . T) ((-628 #0=(-1200)) . T) ((-625 (-874)) . T) ((-625 #0#) . T) ((-502 #0#) . T) ((-1119) . T) ((-1102) . T) ((-1281) . T)) +((-3160 (((-1291) (-656 (-874))) 22) (((-1291) (-874)) 21)) (-2363 (((-1291) (-656 (-874))) 20) (((-1291) (-874)) 19)) (-3188 (((-1291) (-656 (-874))) 18) (((-1291) (-874)) 10) (((-1291) (-1177) (-874)) 16))) +(((-1157) (-10 -7 (-15 -3188 ((-1291) (-1177) (-874))) (-15 -3188 ((-1291) (-874))) (-15 -2363 ((-1291) (-874))) (-15 -3160 ((-1291) (-874))) (-15 -3188 ((-1291) (-656 (-874)))) (-15 -2363 ((-1291) (-656 (-874)))) (-15 -3160 ((-1291) (-656 (-874)))))) (T -1157)) +((-3160 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1157)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1157)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1157)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1157)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1157)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1157)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-1157))))) +(-10 -7 (-15 -3188 ((-1291) (-1177) (-874))) (-15 -3188 ((-1291) (-874))) (-15 -2363 ((-1291) (-874))) (-15 -3160 ((-1291) (-874))) (-15 -3188 ((-1291) (-656 (-874)))) (-15 -2363 ((-1291) (-656 (-874)))) (-15 -3160 ((-1291) (-656 (-874))))) +((-3415 (($ $ $) 10)) (-1440 (($ $) 9)) (-3946 (($ $ $) 13)) (-4054 (($ $ $) 15)) (-1432 (($ $ $) 12)) (-4381 (($ $ $) 14)) (-1678 (($ $) 17)) (-2907 (($ $) 16)) (-2264 (($ $) 6)) (-2402 (($ $ $) 11) (($ $) 7)) (-3177 (($ $ $) 8))) (((-1158) (-141)) (T -1158)) -((-2456 (*1 *1 *1) (-4 *1 (-1158))) (-2154 (*1 *1 *1) (-4 *1 (-1158))) (-2621 (*1 *1 *1 *1) (-4 *1 (-1158))) (-2624 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3400 (*1 *1 *1 *1) (-4 *1 (-1158))) (-4199 (*1 *1 *1 *1) (-4 *1 (-1158))) (-2917 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3381 (*1 *1 *1 *1) (-4 *1 (-1158))) (-1382 (*1 *1 *1) (-4 *1 (-1158))) (-1802 (*1 *1 *1 *1) (-4 *1 (-1158))) (-2917 (*1 *1 *1) (-4 *1 (-1158))) (-3423 (*1 *1 *1) (-4 *1 (-1158)))) -(-13 (-10 -8 (-15 -3423 ($ $)) (-15 -2917 ($ $)) (-15 -1802 ($ $ $)) (-15 -1382 ($ $)) (-15 -3381 ($ $ $)) (-15 -2917 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -3400 ($ $ $)) (-15 -2624 ($ $ $)) (-15 -2621 ($ $ $)) (-15 -2154 ($ $)) (-15 -2456 ($ $)))) -((-2034 (((-112) $ $) 44)) (-1731 ((|#1| $) 17)) (-2753 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-4435 (((-112) $) 19)) (-2796 (($ $ |#1|) 30)) (-2487 (($ $ (-112)) 32)) (-2593 (($ $) 33)) (-4289 (($ $ |#2|) 31)) (-3288 (((-1178) $) NIL)) (-4033 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3139 (((-1139) $) NIL)) (-3372 (((-112) $) 16)) (-2643 (($) 13)) (-4268 (($ $) 29)) (-4103 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -4385 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4385 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-3193 ((|#2| $) 18)) (-4092 (((-874) $) 53)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 42))) -(((-1159 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -2643 ($)) (-15 -3372 ((-112) $)) (-15 -1731 (|#1| $)) (-15 -3193 (|#2| $)) (-15 -4435 ((-112) $)) (-15 -4103 ($ |#1| |#2| (-112))) (-15 -4103 ($ |#1| |#2|)) (-15 -4103 ($ (-2 (|:| |val| |#1|) (|:| -4385 |#2|)))) (-15 -4103 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4385 |#2|))))) (-15 -4103 ((-656 $) |#1| (-656 |#2|))) (-15 -4268 ($ $)) (-15 -2796 ($ $ |#1|)) (-15 -4289 ($ $ |#2|)) (-15 -2487 ($ $ (-112))) (-15 -2593 ($ $)) (-15 -4033 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2753 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1119) (-34)) (-13 (-1119) (-34))) (T -1159)) -((-2643 (*1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-1731 (*1 *2 *1) (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *2 *3)) (-4 *3 (-13 (-1119) (-34))))) (-3193 (*1 *2 *1) (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1119) (-34))))) (-4435 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-4103 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-4103 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4385 *4))) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *4)))) (-4103 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4385 *5)))) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-656 (-1159 *4 *5))) (-5 *1 (-1159 *4 *5)))) (-4103 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-656 (-1159 *3 *5))) (-5 *1 (-1159 *3 *5)) (-4 *3 (-13 (-1119) (-34))))) (-4268 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-2796 (*1 *1 *1 *2) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-4289 (*1 *1 *1 *2) (-12 (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1119) (-34))) (-4 *2 (-13 (-1119) (-34))))) (-2487 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-2593 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-4033 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *5 *6)))) (-2753 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34)))))) -(-13 (-1119) (-10 -8 (-15 -2643 ($)) (-15 -3372 ((-112) $)) (-15 -1731 (|#1| $)) (-15 -3193 (|#2| $)) (-15 -4435 ((-112) $)) (-15 -4103 ($ |#1| |#2| (-112))) (-15 -4103 ($ |#1| |#2|)) (-15 -4103 ($ (-2 (|:| |val| |#1|) (|:| -4385 |#2|)))) (-15 -4103 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -4385 |#2|))))) (-15 -4103 ((-656 $) |#1| (-656 |#2|))) (-15 -4268 ($ $)) (-15 -2796 ($ $ |#1|)) (-15 -4289 ($ $ |#2|)) (-15 -2487 ($ $ (-112))) (-15 -2593 ($ $)) (-15 -4033 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2753 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2034 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-1731 (((-1159 |#1| |#2|) $) 27)) (-3943 (($ $) 91)) (-3583 (((-112) (-1159 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1994 (($ $ $ (-656 (-1159 |#1| |#2|))) 108) (($ $ $ (-656 (-1159 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2835 (((-112) $ (-783)) NIL)) (-2597 (((-1159 |#1| |#2|) $ (-1159 |#1| |#2|)) 46 (|has| $ (-6 -4463)))) (-4248 (((-1159 |#1| |#2|) $ "value" (-1159 |#1| |#2|)) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 44 (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-3752 (((-656 (-2 (|:| |val| |#1|) (|:| -4385 |#2|))) $) 95)) (-4376 (($ (-1159 |#1| |#2|) $) 42)) (-2892 (($ (-1159 |#1| |#2|) $) 34)) (-4260 (((-656 (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 54)) (-3250 (((-112) (-1159 |#1| |#2|) $) 97)) (-2397 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 (-1159 |#1| |#2|)) $) 58 (|has| $ (-6 -4462)))) (-3990 (((-112) (-1159 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-1159 |#1| |#2|) (-1119))))) (-3874 (($ (-1 (-1159 |#1| |#2|) (-1159 |#1| |#2|)) $) 50 (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-1159 |#1| |#2|) (-1159 |#1| |#2|)) $) 49)) (-3103 (((-112) $ (-783)) NIL)) (-3699 (((-656 (-1159 |#1| |#2|)) $) 56)) (-3781 (((-112) $) 45)) (-3288 (((-1178) $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-3139 (((-1139) $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-3376 (((-3 $ "failed") $) 89)) (-3292 (((-112) (-1 (-112) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-1159 |#1| |#2|)))) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119)))) (($ $ (-304 (-1159 |#1| |#2|))) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119)))) (($ $ (-1159 |#1| |#2|) (-1159 |#1| |#2|)) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119)))) (($ $ (-656 (-1159 |#1| |#2|)) (-656 (-1159 |#1| |#2|))) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119))))) (-1905 (((-112) $ $) 53)) (-3372 (((-112) $) 24)) (-2643 (($) 26)) (-4367 (((-1159 |#1| |#2|) $ "value") NIL)) (-3136 (((-576) $ $) NIL)) (-2492 (((-112) $) 47)) (-3150 (((-783) (-1 (-112) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4462))) (((-783) (-1159 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-1159 |#1| |#2|) (-1119))))) (-4268 (($ $) 52)) (-4103 (($ (-1159 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1159 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-1394 (((-656 |#2|) $) 96)) (-4092 (((-874) $) 87 (|has| (-1159 |#1| |#2|) (-625 (-874))))) (-2043 (((-656 $) $) 31)) (-3682 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-1531 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-2190 (((-112) (-1 (-112) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 70 (|has| (-1159 |#1| |#2|) (-1119)))) (-2048 (((-783) $) 64 (|has| $ (-6 -4462))))) -(((-1160 |#1| |#2|) (-13 (-1029 (-1159 |#1| |#2|)) (-10 -8 (-6 -4463) (-6 -4462) (-15 -3376 ((-3 $ "failed") $)) (-15 -3943 ($ $)) (-15 -4103 ($ (-1159 |#1| |#2|))) (-15 -4103 ($ |#1| |#2| (-656 $))) (-15 -4103 ($ |#1| |#2| (-656 (-1159 |#1| |#2|)))) (-15 -4103 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1394 ((-656 |#2|) $)) (-15 -3752 ((-656 (-2 (|:| |val| |#1|) (|:| -4385 |#2|))) $)) (-15 -3250 ((-112) (-1159 |#1| |#2|) $)) (-15 -3583 ((-112) (-1159 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2892 ($ (-1159 |#1| |#2|) $)) (-15 -4376 ($ (-1159 |#1| |#2|) $)) (-15 -1994 ($ $ $ (-656 (-1159 |#1| |#2|)))) (-15 -1994 ($ $ $ (-656 (-1159 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1119) (-34)) (-13 (-1119) (-34))) (T -1160)) -((-3376 (*1 *1 *1) (|partial| -12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-4103 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-4103 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1160 *2 *3))) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-4103 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1159 *2 *3))) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))) (-5 *1 (-1160 *2 *3)))) (-4103 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1119) (-34))) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-3752 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-3250 (*1 *2 *3 *1) (-12 (-5 *3 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *4 *5)))) (-3583 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1159 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *5 *6)))) (-2892 (*1 *1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-4376 (*1 *1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-1994 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1159 *3 *4))) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-1994 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1159 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *1 (-1160 *4 *5))))) -(-13 (-1029 (-1159 |#1| |#2|)) (-10 -8 (-6 -4463) (-6 -4462) (-15 -3376 ((-3 $ "failed") $)) (-15 -3943 ($ $)) (-15 -4103 ($ (-1159 |#1| |#2|))) (-15 -4103 ($ |#1| |#2| (-656 $))) (-15 -4103 ($ |#1| |#2| (-656 (-1159 |#1| |#2|)))) (-15 -4103 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -1394 ((-656 |#2|) $)) (-15 -3752 ((-656 (-2 (|:| |val| |#1|) (|:| -4385 |#2|))) $)) (-15 -3250 ((-112) (-1159 |#1| |#2|) $)) (-15 -3583 ((-112) (-1159 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2892 ($ (-1159 |#1| |#2|) $)) (-15 -4376 ($ (-1159 |#1| |#2|) $)) (-15 -1994 ($ $ $ (-656 (-1159 |#1| |#2|)))) (-15 -1994 ($ $ $ (-656 (-1159 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2645 (($ $) NIL)) (-3803 ((|#2| $) NIL)) (-2454 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3819 (($ (-701 |#2|)) 56)) (-2478 (((-112) $) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3483 (($ |#2|) 14)) (-3656 (($) NIL T CONST)) (-2664 (($ $) 69 (|has| |#2| (-317)))) (-4059 (((-245 |#1| |#2|) $ (-576)) 42)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) 83)) (-4049 (((-783) $) 71 (|has| |#2| (-568)))) (-3817 ((|#2| $ (-576) (-576)) NIL)) (-4260 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1810 (((-112) $) NIL)) (-1659 (((-783) $) 73 (|has| |#2| (-568)))) (-3865 (((-656 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-2126 (((-783) $) NIL)) (-1992 (($ |#2|) 25)) (-2140 (((-783) $) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-1497 ((|#2| $) 67 (|has| |#2| (-6 (-4464 "*"))))) (-4217 (((-576) $) NIL)) (-1961 (((-576) $) NIL)) (-1750 (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-1439 (((-576) $) NIL)) (-2743 (((-576) $) NIL)) (-3297 (($ (-656 (-656 |#2|))) 37)) (-3874 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2318 (((-656 (-656 |#2|)) $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-2295 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-3139 (((-1139) $) NIL)) (-2022 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-3292 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-3614 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-2888 ((|#2| $) NIL)) (-2779 (($ (-656 |#2|)) 50)) (-2849 (((-112) $) NIL)) (-4387 (((-245 |#1| |#2|) $) NIL)) (-2058 ((|#2| $) 65 (|has| |#2| (-6 (-4464 "*"))))) (-3150 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4268 (($ $) NIL)) (-1505 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-1762 (((-245 |#1| |#2|) $ (-576)) 44)) (-4092 (((-874) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-2471 (((-783)) 23 T CONST)) (-1531 (((-112) $ $) NIL)) (-2190 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-1485 (((-112) $) NIL)) (-4300 (($) 16 T CONST)) (-4310 (($) 21 T CONST)) (-4286 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1161 |#1| |#2|) (-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -1992 ($ |#2|)) (-15 -2645 ($ $)) (-15 -3819 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4464 "*"))) (-6 -4451) |%noBranch|) (IF (|has| |#2| (-6 (-4464 "*"))) (IF (|has| |#2| (-6 -4459)) (-6 -4459) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1068)) (T -1161)) -((-1992 (*1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1068)))) (-2645 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1068)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1068)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-783))))) -(-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -1992 ($ |#2|)) (-15 -2645 ($ $)) (-15 -3819 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4464 "*"))) (-6 -4451) |%noBranch|) (IF (|has| |#2| (-6 (-4464 "*"))) (IF (|has| |#2| (-6 -4459)) (-6 -4459) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) -((-3402 (($ $) 19)) (-1396 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-2303 (((-112) $ $) 24)) (-4130 (($ $) 17)) (-4367 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1254 (-576))) NIL) (($ $ $) 31)) (-4092 (($ (-145)) 29) (((-874) $) NIL))) -(((-1162 |#1|) (-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -4367 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| (-142))) (-15 -1396 (|#1| |#1| (-145))) (-15 -4092 (|#1| (-145))) (-15 -2303 ((-112) |#1| |#1|)) (-15 -3402 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4367 (|#1| |#1| (-1254 (-576)))) (-15 -4367 ((-145) |#1| (-576))) (-15 -4367 ((-145) |#1| (-576) (-145)))) (-1163)) (T -1162)) -NIL -(-10 -8 (-15 -4092 ((-874) |#1|)) (-15 -4367 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| (-142))) (-15 -1396 (|#1| |#1| (-145))) (-15 -4092 (|#1| (-145))) (-15 -2303 ((-112) |#1| |#1|)) (-15 -3402 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -4367 (|#1| |#1| (-1254 (-576)))) (-15 -4367 ((-145) |#1| (-576))) (-15 -4367 ((-145) |#1| (-576) (-145)))) -((-2034 (((-112) $ $) 19 (|has| (-145) (-1119)))) (-3983 (($ $) 123)) (-3402 (($ $) 124)) (-1396 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2449 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2277 (((-112) $ $) 121)) (-2249 (((-112) $ $ (-576)) 120)) (-3930 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-2761 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-3362 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4463))))) (-2398 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-2835 (((-112) $ (-783)) 8)) (-4248 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4463))) (((-145) $ (-1254 (-576)) (-145)) 60 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-4425 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3129 (($ $) 93 (|has| $ (-6 -4463)))) (-4112 (($ $) 103)) (-3059 (($ $ (-1254 (-576)) $) 117)) (-1690 (($ $) 80 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ (-145) $) 79 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4462)))) (-2359 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4462)))) (-3888 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4463)))) (-3817 (((-145) $ (-576)) 52)) (-2303 (((-112) $ $) 122)) (-3433 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1119))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-4260 (((-656 (-145)) $) 31 (|has| $ (-6 -4462)))) (-1992 (($ (-783) (-145)) 70)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 44 (|has| (-576) (-862)))) (-3492 (($ $ $) 90 (|has| (-145) (-862)))) (-3257 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-1750 (((-656 (-145)) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 45 (|has| (-576) (-862)))) (-2726 (($ $ $) 89 (|has| (-145) (-862)))) (-4317 (((-112) $ $ (-145)) 118)) (-1404 (((-783) $ $ (-145)) 119)) (-3874 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-4262 (($ $) 125)) (-4130 (($ $) 126)) (-3103 (((-112) $ (-783)) 10)) (-4436 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3288 (((-1178) $) 22 (|has| (-145) (-1119)))) (-3371 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-4428 (((-656 (-576)) $) 47)) (-2013 (((-112) (-576) $) 48)) (-3139 (((-1139) $) 21 (|has| (-145) (-1119)))) (-2701 (((-145) $) 43 (|has| (-576) (-862)))) (-1863 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2918 (($ $ (-145)) 42 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3060 (((-656 (-145)) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1254 (-576))) 71) (($ $ $) 105)) (-2470 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3150 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4462))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-3582 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-4268 (($ $) 13)) (-1505 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-4103 (($ (-656 (-145))) 72)) (-2851 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4092 (($ (-145)) 114) (((-874) $) 18 (|has| (-145) (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| (-145) (-1119)))) (-2190 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) 87 (|has| (-145) (-862)))) (-3955 (((-112) $ $) 86 (|has| (-145) (-862)))) (-3919 (((-112) $ $) 20 (|has| (-145) (-1119)))) (-3966 (((-112) $ $) 88 (|has| (-145) (-862)))) (-3944 (((-112) $ $) 85 (|has| (-145) (-862)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) +((-1678 (*1 *1 *1) (-4 *1 (-1158))) (-2907 (*1 *1 *1) (-4 *1 (-1158))) (-4054 (*1 *1 *1 *1) (-4 *1 (-1158))) (-4381 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3946 (*1 *1 *1 *1) (-4 *1 (-1158))) (-1432 (*1 *1 *1 *1) (-4 *1 (-1158))) (-2402 (*1 *1 *1 *1) (-4 *1 (-1158))) (-3415 (*1 *1 *1 *1) (-4 *1 (-1158))) (-1440 (*1 *1 *1) (-4 *1 (-1158))) (-3177 (*1 *1 *1 *1) (-4 *1 (-1158))) (-2402 (*1 *1 *1) (-4 *1 (-1158))) (-2264 (*1 *1 *1) (-4 *1 (-1158)))) +(-13 (-10 -8 (-15 -2264 ($ $)) (-15 -2402 ($ $)) (-15 -3177 ($ $ $)) (-15 -1440 ($ $)) (-15 -3415 ($ $ $)) (-15 -2402 ($ $ $)) (-15 -1432 ($ $ $)) (-15 -3946 ($ $ $)) (-15 -4381 ($ $ $)) (-15 -4054 ($ $ $)) (-15 -2907 ($ $)) (-15 -1678 ($ $)))) +((-3474 (((-112) $ $) 44)) (-3142 ((|#1| $) 17)) (-2742 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2754 (((-112) $) 19)) (-2726 (($ $ |#1|) 30)) (-3860 (($ $ (-112)) 32)) (-4241 (($ $) 33)) (-3141 (($ $ |#2|) 31)) (-1927 (((-1177) $) NIL)) (-3357 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-1445 (((-1139) $) NIL)) (-1911 (((-112) $) 16)) (-2597 (($) 13)) (-1954 (($ $) 29)) (-3573 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3887 |#2|))) 23) (((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3887 |#2|)))) 26) (((-656 $) |#1| (-656 |#2|)) 28)) (-2006 ((|#2| $) 18)) (-3563 (((-874) $) 53)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 42))) +(((-1159 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -2597 ($)) (-15 -1911 ((-112) $)) (-15 -3142 (|#1| $)) (-15 -2006 (|#2| $)) (-15 -2754 ((-112) $)) (-15 -3573 ($ |#1| |#2| (-112))) (-15 -3573 ($ |#1| |#2|)) (-15 -3573 ($ (-2 (|:| |val| |#1|) (|:| -3887 |#2|)))) (-15 -3573 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3887 |#2|))))) (-15 -3573 ((-656 $) |#1| (-656 |#2|))) (-15 -1954 ($ $)) (-15 -2726 ($ $ |#1|)) (-15 -3141 ($ $ |#2|)) (-15 -3860 ($ $ (-112))) (-15 -4241 ($ $)) (-15 -3357 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2742 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1119) (-34)) (-13 (-1119) (-34))) (T -1159)) +((-2597 (*1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-3142 (*1 *2 *1) (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *2 *3)) (-4 *3 (-13 (-1119) (-34))))) (-2006 (*1 *2 *1) (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1119) (-34))))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-3573 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3573 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3887 *4))) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *4)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -3887 *5)))) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-656 (-1159 *4 *5))) (-5 *1 (-1159 *4 *5)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-656 (-1159 *3 *5))) (-5 *1 (-1159 *3 *5)) (-4 *3 (-13 (-1119) (-34))))) (-1954 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-2726 (*1 *1 *1 *2) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3141 (*1 *1 *1 *2) (-12 (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1119) (-34))) (-4 *2 (-13 (-1119) (-34))))) (-3860 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-4241 (*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3357 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *5 *6)))) (-2742 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34)))))) +(-13 (-1119) (-10 -8 (-15 -2597 ($)) (-15 -1911 ((-112) $)) (-15 -3142 (|#1| $)) (-15 -2006 (|#2| $)) (-15 -2754 ((-112) $)) (-15 -3573 ($ |#1| |#2| (-112))) (-15 -3573 ($ |#1| |#2|)) (-15 -3573 ($ (-2 (|:| |val| |#1|) (|:| -3887 |#2|)))) (-15 -3573 ((-656 $) (-656 (-2 (|:| |val| |#1|) (|:| -3887 |#2|))))) (-15 -3573 ((-656 $) |#1| (-656 |#2|))) (-15 -1954 ($ $)) (-15 -2726 ($ $ |#1|)) (-15 -3141 ($ $ |#2|)) (-15 -3860 ($ $ (-112))) (-15 -4241 ($ $)) (-15 -3357 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -2742 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3474 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-3142 (((-1159 |#1| |#2|) $) 27)) (-1681 (($ $) 91)) (-3865 (((-112) (-1159 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-3374 (($ $ $ (-656 (-1159 |#1| |#2|))) 108) (($ $ $ (-656 (-1159 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-3131 (((-112) $ (-783)) NIL)) (-3429 (((-1159 |#1| |#2|) $ (-1159 |#1| |#2|)) 46 (|has| $ (-6 -4462)))) (-3731 (((-1159 |#1| |#2|) $ "value" (-1159 |#1| |#2|)) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 44 (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-2526 (((-656 (-2 (|:| |val| |#1|) (|:| -3887 |#2|))) $) 95)) (-3623 (($ (-1159 |#1| |#2|) $) 42)) (-3902 (($ (-1159 |#1| |#2|) $) 34)) (-3825 (((-656 (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 54)) (-2499 (((-112) (-1159 |#1| |#2|) $) 97)) (-3180 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 (-1159 |#1| |#2|)) $) 58 (|has| $ (-6 -4461)))) (-2511 (((-112) (-1159 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-1159 |#1| |#2|) (-1119))))) (-1763 (($ (-1 (-1159 |#1| |#2|) (-1159 |#1| |#2|)) $) 50 (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-1159 |#1| |#2|) (-1159 |#1| |#2|)) $) 49)) (-2712 (((-112) $ (-783)) NIL)) (-2942 (((-656 (-1159 |#1| |#2|)) $) 56)) (-1905 (((-112) $) 45)) (-1927 (((-1177) $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-1445 (((-1139) $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-4086 (((-3 $ "failed") $) 89)) (-4207 (((-112) (-1 (-112) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-1159 |#1| |#2|)))) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119)))) (($ $ (-304 (-1159 |#1| |#2|))) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119)))) (($ $ (-1159 |#1| |#2|) (-1159 |#1| |#2|)) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119)))) (($ $ (-656 (-1159 |#1| |#2|)) (-656 (-1159 |#1| |#2|))) NIL (-12 (|has| (-1159 |#1| |#2|) (-319 (-1159 |#1| |#2|))) (|has| (-1159 |#1| |#2|) (-1119))))) (-1693 (((-112) $ $) 53)) (-1911 (((-112) $) 24)) (-2597 (($) 26)) (-2871 (((-1159 |#1| |#2|) $ "value") NIL)) (-2972 (((-576) $ $) NIL)) (-3173 (((-112) $) 47)) (-1456 (((-783) (-1 (-112) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4461))) (((-783) (-1159 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-1159 |#1| |#2|) (-1119))))) (-1954 (($ $) 52)) (-3573 (($ (-1159 |#1| |#2|)) 10) (($ |#1| |#2| (-656 $)) 13) (($ |#1| |#2| (-656 (-1159 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-656 |#2|)) 18)) (-4400 (((-656 |#2|) $) 96)) (-3563 (((-874) $) 87 (|has| (-1159 |#1| |#2|) (-625 (-874))))) (-3281 (((-656 $) $) 31)) (-4369 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-3985 (((-112) $ $) NIL (|has| (-1159 |#1| |#2|) (-1119)))) (-2043 (((-112) (-1 (-112) (-1159 |#1| |#2|)) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 70 (|has| (-1159 |#1| |#2|) (-1119)))) (-3485 (((-783) $) 64 (|has| $ (-6 -4461))))) +(((-1160 |#1| |#2|) (-13 (-1029 (-1159 |#1| |#2|)) (-10 -8 (-6 -4462) (-6 -4461) (-15 -4086 ((-3 $ "failed") $)) (-15 -1681 ($ $)) (-15 -3573 ($ (-1159 |#1| |#2|))) (-15 -3573 ($ |#1| |#2| (-656 $))) (-15 -3573 ($ |#1| |#2| (-656 (-1159 |#1| |#2|)))) (-15 -3573 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -4400 ((-656 |#2|) $)) (-15 -2526 ((-656 (-2 (|:| |val| |#1|) (|:| -3887 |#2|))) $)) (-15 -2499 ((-112) (-1159 |#1| |#2|) $)) (-15 -3865 ((-112) (-1159 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3902 ($ (-1159 |#1| |#2|) $)) (-15 -3623 ($ (-1159 |#1| |#2|) $)) (-15 -3374 ($ $ $ (-656 (-1159 |#1| |#2|)))) (-15 -3374 ($ $ $ (-656 (-1159 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1119) (-34)) (-13 (-1119) (-34))) (T -1160)) +((-4086 (*1 *1 *1) (|partial| -12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-1681 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-3573 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1160 *2 *3))) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))))) (-3573 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-656 (-1159 *2 *3))) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34))) (-5 *1 (-1160 *2 *3)))) (-3573 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-656 *3)) (-4 *3 (-13 (-1119) (-34))) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-656 *4)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))))) (-2499 (*1 *2 *3 *1) (-12 (-5 *3 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *4 *5)))) (-3865 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1159 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *5 *6)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-3623 (*1 *1 *2 *1) (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-3374 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-656 (-1159 *3 *4))) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) (-3374 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-1159 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *1 (-1160 *4 *5))))) +(-13 (-1029 (-1159 |#1| |#2|)) (-10 -8 (-6 -4462) (-6 -4461) (-15 -4086 ((-3 $ "failed") $)) (-15 -1681 ($ $)) (-15 -3573 ($ (-1159 |#1| |#2|))) (-15 -3573 ($ |#1| |#2| (-656 $))) (-15 -3573 ($ |#1| |#2| (-656 (-1159 |#1| |#2|)))) (-15 -3573 ($ |#1| |#2| |#1| (-656 |#2|))) (-15 -4400 ((-656 |#2|) $)) (-15 -2526 ((-656 (-2 (|:| |val| |#1|) (|:| -3887 |#2|))) $)) (-15 -2499 ((-112) (-1159 |#1| |#2|) $)) (-15 -3865 ((-112) (-1159 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3902 ($ (-1159 |#1| |#2|) $)) (-15 -3623 ($ (-1159 |#1| |#2|) $)) (-15 -3374 ($ $ $ (-656 (-1159 |#1| |#2|)))) (-15 -3374 ($ $ $ (-656 (-1159 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2793 (($ $) NIL)) (-2310 ((|#2| $) NIL)) (-1491 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2544 (($ (-701 |#2|)) 56)) (-4294 (((-112) $) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-4027 (($ |#2|) 14)) (-3767 (($) NIL T CONST)) (-3243 (($ $) 69 (|has| |#2| (-317)))) (-1946 (((-245 |#1| |#2|) $ (-576)) 42)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 |#2| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) ((|#2| $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) 83)) (-3606 (((-783) $) 71 (|has| |#2| (-568)))) (-1698 ((|#2| $ (-576) (-576)) NIL)) (-3825 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-1414 (((-112) $) NIL)) (-2849 (((-783) $) 73 (|has| |#2| (-568)))) (-2115 (((-656 (-245 |#1| |#2|)) $) 77 (|has| |#2| (-568)))) (-1622 (((-783) $) NIL)) (-4033 (($ |#2|) 25)) (-1636 (((-783) $) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-4329 ((|#2| $) 67 (|has| |#2| (-6 (-4463 "*"))))) (-1650 (((-576) $) NIL)) (-1351 (((-576) $) NIL)) (-2591 (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-4159 (((-576) $) NIL)) (-4062 (((-576) $) NIL)) (-2457 (($ (-656 (-656 |#2|))) 37)) (-1763 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2156 (((-656 (-656 |#2|)) $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-2030 (((-3 $ "failed") $) 80 (|has| |#2| (-374)))) (-1445 (((-1139) $) NIL)) (-3463 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568)))) (-4207 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ (-576) (-576) |#2|) NIL) ((|#2| $ (-576) (-576)) NIL)) (-2735 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195))))) (-2731 ((|#2| $) NIL)) (-1716 (($ (-656 |#2|)) 50)) (-4237 (((-112) $) NIL)) (-2212 (((-245 |#1| |#2|) $) NIL)) (-2201 ((|#2| $) 65 (|has| |#2| (-6 (-4463 "*"))))) (-1456 (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1954 (($ $) NIL)) (-4076 (((-548) $) 89 (|has| |#2| (-626 (-548))))) (-4331 (((-245 |#1| |#2|) $ (-576)) 44)) (-3563 (((-874) $) 47) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#2| (-1057 (-419 (-576))))) (($ |#2|) NIL) (((-701 |#2|) $) 52)) (-1858 (((-783)) 23 T CONST)) (-3985 (((-112) $ $) NIL)) (-2043 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2609 (((-112) $) NIL)) (-2800 (($) 16 T CONST)) (-2810 (($) 21 T CONST)) (-2051 (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $) NIL (|has| |#2| (-237))) (($ $ (-783)) NIL (|has| |#2| (-237))) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195))))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) 63) (($ $ (-576)) 82 (|has| |#2| (-374)))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-245 |#1| |#2|) $ (-245 |#1| |#2|)) 59) (((-245 |#1| |#2|) (-245 |#1| |#2|) $) 61)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1161 |#1| |#2|) (-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -4033 ($ |#2|)) (-15 -2793 ($ $)) (-15 -2544 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4463 "*"))) (-6 -4450) |%noBranch|) (IF (|has| |#2| (-6 (-4463 "*"))) (IF (|has| |#2| (-6 -4458)) (-6 -4458) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) (-783) (-1068)) (T -1161)) +((-4033 (*1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1068)))) (-2793 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1068)))) (-2544 (*1 *1 *2) (-12 (-5 *2 (-701 *4)) (-4 *4 (-1068)) (-5 *1 (-1161 *3 *4)) (-14 *3 (-783))))) +(-13 (-1142 |#1| |#2| (-245 |#1| |#2|) (-245 |#1| |#2|)) (-625 (-701 |#2|)) (-10 -8 (-15 -4033 ($ |#2|)) (-15 -2793 ($ $)) (-15 -2544 ($ (-701 |#2|))) (IF (|has| |#2| (-6 (-4463 "*"))) (-6 -4450) |%noBranch|) (IF (|has| |#2| (-6 (-4463 "*"))) (IF (|has| |#2| (-6 -4458)) (-6 -4458) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-626 (-548))) (-6 (-626 (-548))) |%noBranch|))) +((-4146 (($ $) 19)) (-4323 (($ $ (-145)) 10) (($ $ (-142)) 14)) (-1514 (((-112) $ $) 24)) (-2795 (($ $) 17)) (-2871 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1253 (-576))) NIL) (($ $ $) 31)) (-3563 (($ (-145)) 29) (((-874) $) NIL))) +(((-1162 |#1|) (-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#1| (-142))) (-15 -4323 (|#1| |#1| (-145))) (-15 -3563 (|#1| (-145))) (-15 -1514 ((-112) |#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -2795 (|#1| |#1|)) (-15 -2871 (|#1| |#1| (-1253 (-576)))) (-15 -2871 ((-145) |#1| (-576))) (-15 -2871 ((-145) |#1| (-576) (-145)))) (-1163)) (T -1162)) +NIL +(-10 -8 (-15 -3563 ((-874) |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -4323 (|#1| |#1| (-142))) (-15 -4323 (|#1| |#1| (-145))) (-15 -3563 (|#1| (-145))) (-15 -1514 ((-112) |#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -2795 (|#1| |#1|)) (-15 -2871 (|#1| |#1| (-1253 (-576)))) (-15 -2871 ((-145) |#1| (-576))) (-15 -2871 ((-145) |#1| (-576) (-145)))) +((-3474 (((-112) $ $) 19 (|has| (-145) (-1119)))) (-2968 (($ $) 123)) (-4146 (($ $) 124)) (-4323 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2333 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-1492 (((-112) $ $) 121)) (-1470 (((-112) $ $ (-576)) 120)) (-2952 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-2373 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-2265 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4462))))) (-1758 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-3131 (((-112) $ (-783)) 8)) (-3731 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) 60 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-2701 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3478 (($ $) 93 (|has| $ (-6 -4462)))) (-3733 (($ $) 103)) (-1842 (($ $ (-1253 (-576)) $) 117)) (-3172 (($ $) 80 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ (-145) $) 79 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4461)))) (-2521 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4461)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4461)))) (-1776 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4462)))) (-1698 (((-145) $ (-576)) 52)) (-1514 (((-112) $ $) 122)) (-3584 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1119))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-3825 (((-656 (-145)) $) 31 (|has| $ (-6 -4461)))) (-4033 (($ (-783) (-145)) 70)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 44 (|has| (-576) (-862)))) (-2442 (($ $ $) 90 (|has| (-145) (-862)))) (-1854 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-2591 (((-656 (-145)) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 45 (|has| (-576) (-862)))) (-1893 (($ $ $) 89 (|has| (-145) (-862)))) (-2008 (((-112) $ $ (-145)) 118)) (-4413 (((-783) $ $ (-145)) 119)) (-1763 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-2675 (($ $) 125)) (-2795 (($ $) 126)) (-2712 (((-112) $ (-783)) 10)) (-2715 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-1927 (((-1177) $) 22 (|has| (-145) (-1119)))) (-2277 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-3321 (((-656 (-576)) $) 47)) (-2378 (((-112) (-576) $) 48)) (-1445 (((-1139) $) 21 (|has| (-145) (-1119)))) (-3504 (((-145) $) 43 (|has| (-576) (-862)))) (-2644 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2500 (($ $ (-145)) 42 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-1947 (((-656 (-145)) $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1253 (-576))) 71) (($ $ $) 105)) (-3464 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-1456 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4461))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4461))))) (-3760 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-1954 (($ $) 13)) (-4076 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-3573 (($ (-656 (-145))) 72)) (-1661 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3563 (($ (-145)) 114) (((-874) $) 18 (|has| (-145) (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| (-145) (-1119)))) (-2043 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) 87 (|has| (-145) (-862)))) (-3024 (((-112) $ $) 86 (|has| (-145) (-862)))) (-2988 (((-112) $ $) 20 (|has| (-145) (-1119)))) (-3037 (((-112) $ $) 88 (|has| (-145) (-862)))) (-3010 (((-112) $ $) 85 (|has| (-145) (-862)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) (((-1163) (-141)) (T -1163)) -((-4130 (*1 *1 *1) (-4 *1 (-1163))) (-4262 (*1 *1 *1) (-4 *1 (-1163))) (-3402 (*1 *1 *1) (-4 *1 (-1163))) (-3983 (*1 *1 *1) (-4 *1 (-1163))) (-2303 (*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112)))) (-2277 (*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112)))) (-2249 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-576)) (-5 *2 (-112)))) (-1404 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-783)))) (-4317 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-112)))) (-3059 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-1254 (-576))))) (-3433 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)))) (-3433 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)) (-5 *3 (-142)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1163)))) (-3930 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1163)))) (-3930 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1163)))) (-1396 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))) (-1396 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) (-4436 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))) (-4436 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) (-4425 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))) (-4425 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) (-4367 (*1 *1 *1 *1) (-4 *1 (-1163)))) -(-13 (-19 (-145)) (-10 -8 (-15 -4130 ($ $)) (-15 -4262 ($ $)) (-15 -3402 ($ $)) (-15 -3983 ($ $)) (-15 -2303 ((-112) $ $)) (-15 -2277 ((-112) $ $)) (-15 -2249 ((-112) $ $ (-576))) (-15 -1404 ((-783) $ $ (-145))) (-15 -4317 ((-112) $ $ (-145))) (-15 -3059 ($ $ (-1254 (-576)) $)) (-15 -3433 ((-576) $ $ (-576))) (-15 -3433 ((-576) (-142) $ (-576))) (-15 -4092 ($ (-145))) (-15 -3930 ((-656 $) $ (-145))) (-15 -3930 ((-656 $) $ (-142))) (-15 -1396 ($ $ (-145))) (-15 -1396 ($ $ (-142))) (-15 -4436 ($ $ (-145))) (-15 -4436 ($ $ (-142))) (-15 -4425 ($ $ (-145))) (-15 -4425 ($ $ (-142))) (-15 -4367 ($ $ $)))) -(((-34) . T) ((-102) -3765 (|has| (-145) (-1119)) (|has| (-145) (-862))) ((-625 (-874)) -3765 (|has| (-145) (-1119)) (|has| (-145) (-862)) (|has| (-145) (-625 (-874)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-663 #0#) . T) ((-19 #0#) . T) ((-862) |has| (-145) (-862)) ((-1119) -3765 (|has| (-145) (-1119)) (|has| (-145) (-862))) ((-1237) . T)) -((-4335 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-783)) 112)) (-2807 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783)) 61)) (-2705 (((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-783)) 97)) (-1625 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-4228 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-3205 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-1505 (((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) 90)) (-2737 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|) 60)) (-2893 (((-783) (-656 |#4|) (-656 |#5|)) 21))) -(((-1164 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2893 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1625 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2737 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -2807 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783))) (-15 -2807 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783))) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -3205 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3205 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4335 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-783))) (-15 -1505 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) (-15 -2705 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-783)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1128 |#1| |#2| |#3| |#4|)) (T -1164)) -((-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4385 *9)))) (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1292)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4385 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1128 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1178)) (-5 *1 (-1164 *4 *5 *6 *7 *8)))) (-4335 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4385 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4385 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) (-4 *11 (-1128 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1164 *7 *8 *9 *10 *11)))) (-3205 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-3205 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-4228 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-4228 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) (-4228 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1164 *7 *8 *9 *3 *4)) (-4 *4 (-1128 *7 *8 *9 *3)))) (-2807 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-2807 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) (-2737 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-2893 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2893 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1625 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2737 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -2807 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783))) (-15 -2807 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5| (-783))) (-15 -4228 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) |#4| |#5|)) (-15 -3205 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -3205 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -4335 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))))) (-783))) (-15 -1505 ((-1178) (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|)))) (-15 -2705 ((-1292) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -4385 |#5|))) (-783)))) -((-2034 (((-112) $ $) NIL)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2567 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1541 (((-656 |#3|) $) NIL)) (-3522 (((-112) $) NIL)) (-2932 (((-112) $) NIL (|has| |#1| (-568)))) (-1701 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2919 ((|#4| |#4| $) NIL)) (-1587 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| $) 97)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3457 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 75)) (-3656 (($) NIL T CONST)) (-3425 (((-112) $) 29 (|has| |#1| (-568)))) (-2623 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3347 (((-112) $) NIL (|has| |#1| (-568)))) (-1574 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4135 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2378 (($ (-656 |#4|)) NIL)) (-2712 (((-3 $ "failed") $) 45)) (-3996 ((|#4| |#4| $) 78)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-2892 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-3532 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2948 ((|#4| |#4| $) NIL)) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2740 (((-2 (|:| -1627 (-656 |#4|)) (|:| -3709 (-656 |#4|))) $) NIL)) (-3638 (((-112) |#4| $) NIL)) (-1752 (((-112) |#4| $) NIL)) (-2040 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3114 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-4260 (((-656 |#4|) $) 18 (|has| $ (-6 -4462)))) (-3871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2565 ((|#3| $) 38)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#4|) $) 19 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3874 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 23)) (-2964 (((-656 |#3|) $) NIL)) (-2459 (((-112) |#3| $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-4204 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-3918 (((-656 (-2 (|:| |val| |#4|) (|:| -4385 $))) |#4| |#4| $) 117)) (-2912 (((-3 |#4| "failed") $) 42)) (-3860 (((-656 $) |#4| $) 102)) (-2711 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-1851 (((-656 (-2 (|:| |val| (-112)) (|:| -4385 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3586 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-4198 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-3869 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2106 (((-656 |#4|) $) NIL)) (-3593 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4395 ((|#4| |#4| $) NIL)) (-3711 (((-112) $ $) NIL)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1875 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3987 ((|#4| |#4| $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 (((-3 |#4| "failed") $) 40)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1479 (((-3 $ "failed") $ |#4|) 59)) (-2843 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-3292 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 17)) (-2643 (($) 14)) (-2369 (((-783) $) NIL)) (-3150 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) 13)) (-1505 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) 22)) (-1606 (($ $ |#3|) 52)) (-2333 (($ $ |#3|) 54)) (-2792 (($ $) NIL)) (-2875 (($ $ |#3|) NIL)) (-4092 (((-874) $) 35) (((-656 |#4|) $) 46)) (-2727 (((-783) $) NIL (|has| |#3| (-379)))) (-1531 (((-112) $ $) NIL)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2196 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-4088 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2190 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-1895 (((-656 |#3|) $) NIL)) (-2813 (((-112) |#4| $) NIL)) (-4101 (((-112) |#3| $) 74)) (-3919 (((-112) $ $) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1165 |#1| |#2| |#3| |#4|) (-13 (-1128 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3869 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2567 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2567 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -4198 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3114 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -1165)) -((-3869 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *3))) (-5 *1 (-1165 *5 *6 *7 *3)) (-4 *3 (-1084 *5 *6 *7)))) (-2567 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-2567 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-4198 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-3114 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1165 *5 *6 *7 *8))))) (-5 *1 (-1165 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(-13 (-1128 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3869 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2567 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -2567 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -4198 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -3114 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3005 ((|#1| $) 37)) (-4050 (($ (-656 |#1|)) 45)) (-2835 (((-112) $ (-783)) NIL)) (-3656 (($) NIL T CONST)) (-3833 ((|#1| |#1| $) 40)) (-2156 ((|#1| $) 35)) (-4260 (((-656 |#1|) $) 18 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 22)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3576 ((|#1| $) 38)) (-2361 (($ |#1| $) 41)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1679 ((|#1| $) 36)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 32)) (-2643 (($) 43)) (-3569 (((-783) $) 30)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) 27)) (-4092 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3688 (($ (-656 |#1|)) NIL)) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 17 (|has| |#1| (-1119)))) (-2048 (((-783) $) 31 (|has| $ (-6 -4462))))) -(((-1166 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -4050 ($ (-656 |#1|))))) (-1237)) (T -1166)) -((-4050 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1166 *3))))) -(-13 (-1140 |#1|) (-10 -8 (-15 -4050 ($ (-656 |#1|))))) -((-4248 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1254 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-3235 (((-112) $) 12)) (-3874 (($ (-1 |#2| |#2|) $) 48)) (-2701 ((|#2| $) NIL) (($ $ (-783)) 17)) (-2918 (($ $ |#2|) 49)) (-3020 (((-112) $) 11)) (-4367 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1254 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-2116 (($ $ $) 56) (($ $ |#2|) NIL)) (-2851 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL))) -(((-1167 |#1| |#2|) (-10 -8 (-15 -3235 ((-112) |#1|)) (-15 -3020 ((-112) |#1|)) (-15 -4248 (|#2| |#1| (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576))) (-15 -2918 (|#1| |#1| |#2|)) (-15 -4367 (|#1| |#1| (-1254 (-576)))) (-15 -2851 (|#1| |#1| |#2|)) (-15 -2851 (|#1| (-656 |#1|))) (-15 -4248 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -4248 (|#2| |#1| "last" |#2|)) (-15 -4248 (|#1| |#1| "rest" |#1|)) (-15 -4248 (|#2| |#1| "first" |#2|)) (-15 -2116 (|#1| |#1| |#2|)) (-15 -2116 (|#1| |#1| |#1|)) (-15 -4367 (|#2| |#1| "last")) (-15 -4367 (|#1| |#1| "rest")) (-15 -2701 (|#1| |#1| (-783))) (-15 -4367 (|#2| |#1| "first")) (-15 -2701 (|#2| |#1|)) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -4248 (|#2| |#1| "value" |#2|)) (-15 -4367 (|#2| |#1| "value")) (-15 -3874 (|#1| (-1 |#2| |#2|) |#1|))) (-1168 |#2|) (-1237)) (T -1167)) -NIL -(-10 -8 (-15 -3235 ((-112) |#1|)) (-15 -3020 ((-112) |#1|)) (-15 -4248 (|#2| |#1| (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576) |#2|)) (-15 -4367 (|#2| |#1| (-576))) (-15 -2918 (|#1| |#1| |#2|)) (-15 -4367 (|#1| |#1| (-1254 (-576)))) (-15 -2851 (|#1| |#1| |#2|)) (-15 -2851 (|#1| (-656 |#1|))) (-15 -4248 (|#2| |#1| (-1254 (-576)) |#2|)) (-15 -4248 (|#2| |#1| "last" |#2|)) (-15 -4248 (|#1| |#1| "rest" |#1|)) (-15 -4248 (|#2| |#1| "first" |#2|)) (-15 -2116 (|#1| |#1| |#2|)) (-15 -2116 (|#1| |#1| |#1|)) (-15 -4367 (|#2| |#1| "last")) (-15 -4367 (|#1| |#1| "rest")) (-15 -2701 (|#1| |#1| (-783))) (-15 -4367 (|#2| |#1| "first")) (-15 -2701 (|#2| |#1|)) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -4248 (|#2| |#1| "value" |#2|)) (-15 -4367 (|#2| |#1| "value")) (-15 -3874 (|#1| (-1 |#2| |#2|) |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1731 ((|#1| $) 49)) (-3367 ((|#1| $) 66)) (-3053 (($ $) 68)) (-2449 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4463)))) (-2633 (($ $ (-576)) 53 (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) 8)) (-2597 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-3744 (($ $ $) 57 (|has| $ (-6 -4463)))) (-3476 ((|#1| $ |#1|) 55 (|has| $ (-6 -4463)))) (-2466 ((|#1| $ |#1|) 59 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4463))) (($ $ "rest" $) 56 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 119 (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4462)))) (-3357 ((|#1| $) 67)) (-3656 (($) 7 T CONST)) (-2712 (($ $) 74) (($ $ (-783)) 72)) (-1690 (($ $) 101 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4462))) (($ |#1| $) 102 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3888 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 89)) (-3235 (((-112) $) 85)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 51)) (-2397 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-1992 (($ (-783) |#1|) 111)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 97 (|has| (-576) (-862)))) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 96 (|has| (-576) (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-3103 (((-112) $ (-783)) 10)) (-3699 (((-656 |#1|) $) 46)) (-3781 (((-112) $) 50)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2912 ((|#1| $) 71) (($ $ (-783)) 69)) (-3371 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-4428 (((-656 (-576)) $) 94)) (-2013 (((-112) (-576) $) 93)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2701 ((|#1| $) 77) (($ $ (-783)) 75)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2918 (($ $ |#1|) 98 (|has| $ (-6 -4463)))) (-3020 (((-112) $) 86)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) 92)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1254 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-3136 (((-576) $ $) 45)) (-2470 (($ $ (-1254 (-576))) 116) (($ $ (-576)) 115)) (-2492 (((-112) $) 47)) (-1398 (($ $) 63)) (-1556 (($ $) 60 (|has| $ (-6 -4463)))) (-2212 (((-783) $) 64)) (-2251 (($ $) 65)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-1505 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 109)) (-2116 (($ $ $) 62 (|has| $ (-6 -4463))) (($ $ |#1|) 61 (|has| $ (-6 -4463)))) (-2851 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) 52)) (-3682 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-1168 |#1|) (-141) (-1237)) (T -1168)) -((-3020 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(-13 (-1275 |t#1|) (-663 |t#1|) (-10 -8 (-15 -3020 ((-112) $)) (-15 -3235 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T) ((-1275 |#1|) . T)) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2449 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#2| $ |#1| |#2|) NIL)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 |#2| "failed") |#1| $) NIL)) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) NIL)) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) NIL)) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 ((|#1| $) NIL (|has| |#1| (-862)))) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4315 ((|#1| $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2364 (((-656 |#1|) $) NIL)) (-3700 (((-112) |#1| $) NIL)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-4428 (((-656 |#1|) $) NIL)) (-2013 (((-112) |#1| $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2701 ((|#2| $) NIL (|has| |#1| (-862)))) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-4092 (((-874) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1169 |#1| |#2| |#3|) (-1213 |#1| |#2|) (-1119) (-1119) |#2|) (T -1169)) -NIL -(-1213 |#1| |#2|) -((-2034 (((-112) $ $) NIL)) (-4122 (((-703 (-1154)) $) 27)) (-3304 (((-1154) $) 15)) (-3526 (((-1154) $) 17)) (-3288 (((-1178) $) NIL)) (-1489 (((-518) $) 13)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 37) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1170) (-13 (-1102) (-10 -8 (-15 -1489 ((-518) $)) (-15 -3526 ((-1154) $)) (-15 -4122 ((-703 (-1154)) $)) (-15 -3304 ((-1154) $))))) (T -1170)) -((-1489 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1170)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170)))) (-4122 (*1 *2 *1) (-12 (-5 *2 (-703 (-1154))) (-5 *1 (-1170)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170))))) -(-13 (-1102) (-10 -8 (-15 -1489 ((-518) $)) (-15 -3526 ((-1154) $)) (-15 -4122 ((-703 (-1154)) $)) (-15 -3304 ((-1154) $)))) -((-2034 (((-112) $ $) 7)) (-2083 (((-3 $ "failed") $) 14)) (-3288 (((-1178) $) 10)) (-3503 (($) 15 T CONST)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-3919 (((-112) $ $) 6))) +((-2795 (*1 *1 *1) (-4 *1 (-1163))) (-2675 (*1 *1 *1) (-4 *1 (-1163))) (-4146 (*1 *1 *1) (-4 *1 (-1163))) (-2968 (*1 *1 *1) (-4 *1 (-1163))) (-1514 (*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112)))) (-1492 (*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112)))) (-1470 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-576)) (-5 *2 (-112)))) (-4413 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-783)))) (-2008 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-112)))) (-1842 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-1253 (-576))))) (-3584 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)))) (-3584 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)) (-5 *3 (-142)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1163)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1163)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1163)))) (-4323 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))) (-4323 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) (-2715 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))) (-2715 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) (-2701 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145)))) (-2701 (*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) (-2871 (*1 *1 *1 *1) (-4 *1 (-1163)))) +(-13 (-19 (-145)) (-10 -8 (-15 -2795 ($ $)) (-15 -2675 ($ $)) (-15 -4146 ($ $)) (-15 -2968 ($ $)) (-15 -1514 ((-112) $ $)) (-15 -1492 ((-112) $ $)) (-15 -1470 ((-112) $ $ (-576))) (-15 -4413 ((-783) $ $ (-145))) (-15 -2008 ((-112) $ $ (-145))) (-15 -1842 ($ $ (-1253 (-576)) $)) (-15 -3584 ((-576) $ $ (-576))) (-15 -3584 ((-576) (-142) $ (-576))) (-15 -3563 ($ (-145))) (-15 -2952 ((-656 $) $ (-145))) (-15 -2952 ((-656 $) $ (-142))) (-15 -4323 ($ $ (-145))) (-15 -4323 ($ $ (-142))) (-15 -2715 ($ $ (-145))) (-15 -2715 ($ $ (-142))) (-15 -2701 ($ $ (-145))) (-15 -2701 ($ $ (-142))) (-15 -2871 ($ $ $)))) +(((-34) . T) ((-102) -2835 (|has| (-145) (-1119)) (|has| (-145) (-862))) ((-625 (-874)) -2835 (|has| (-145) (-1119)) (|has| (-145) (-862)) (|has| (-145) (-625 (-874)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-663 #0#) . T) ((-19 #0#) . T) ((-862) |has| (-145) (-862)) ((-1119) -2835 (|has| (-145) (-1119)) (|has| (-145) (-862))) ((-1236) . T)) +((-3029 (((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-783)) 112)) (-2604 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783)) 61)) (-2469 (((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-783)) 97)) (-2804 (((-783) (-656 |#4|) (-656 |#5|)) 30)) (-3407 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783)) 63) (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783) (-112)) 65)) (-2450 (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112)) 85)) (-4076 (((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) 90)) (-1572 (((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|) 60)) (-3167 (((-783) (-656 |#4|) (-656 |#5|)) 21))) +(((-1164 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3167 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2804 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1572 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -2604 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783))) (-15 -2604 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783))) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -2450 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2450 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3029 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-783))) (-15 -4076 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) (-15 -2469 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-783)))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|) (-1128 |#1| |#2| |#3| |#4|)) (T -1164)) +((-2469 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3887 *9)))) (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3887 *8))) (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1128 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) (-5 *1 (-1164 *4 *5 *6 *7 *8)))) (-3029 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-656 *11)) (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3887 *11)))))) (-5 *6 (-783)) (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3887 *11)))) (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) (-4 *11 (-1128 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-5 *1 (-1164 *7 *8 *9 *10 *11)))) (-2450 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-2450 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-3407 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-3407 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) (-3407 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1164 *7 *8 *9 *3 *4)) (-4 *4 (-1128 *7 *8 *9 *3)))) (-2604 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-2604 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) (-1572 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-656 *4)) (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3)))) (-2804 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3167 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -2804 ((-783) (-656 |#4|) (-656 |#5|))) (-15 -1572 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -2604 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783))) (-15 -2604 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783) (-112))) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5| (-783))) (-15 -3407 ((-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) |#4| |#5|)) (-15 -2450 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112))) (-15 -2450 ((-656 |#5|) (-656 |#4|) (-656 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3029 ((-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-656 |#4|) (-656 |#5|) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-2 (|:| |done| (-656 |#5|)) (|:| |todo| (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))))) (-783))) (-15 -4076 ((-1177) (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|)))) (-15 -2469 ((-1291) (-656 (-2 (|:| |val| (-656 |#4|)) (|:| -3887 |#5|))) (-783)))) +((-3474 (((-112) $ $) NIL)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |#4|)))) (-656 |#4|)) NIL)) (-1968 (((-656 $) (-656 |#4|)) 124) (((-656 $) (-656 |#4|) (-112)) 125) (((-656 $) (-656 |#4|) (-112) (-112)) 123) (((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112)) 126)) (-1991 (((-656 |#3|) $) NIL)) (-1665 (((-112) $) NIL)) (-4324 (((-112) $) NIL (|has| |#1| (-568)))) (-1587 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2596 ((|#4| |#4| $) NIL)) (-1760 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| $) 97)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2496 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 75)) (-3767 (($) NIL T CONST)) (-2359 (((-112) $) 29 (|has| |#1| (-568)))) (-4268 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2556 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1376 (((-112) $) NIL (|has| |#1| (-568)))) (-2905 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2147 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4056 (($ (-656 |#4|)) NIL)) (-3515 (((-3 $ "failed") $) 45)) (-1937 ((|#4| |#4| $) 78)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-3902 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-568)))) (-1426 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1679 ((|#4| |#4| $) NIL)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1852 (((-2 (|:| -2055 (-656 |#4|)) (|:| -3223 (-656 |#4|))) $) NIL)) (-3844 (((-112) |#4| $) NIL)) (-1548 (((-112) |#4| $) NIL)) (-2984 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2577 (((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112)) 139)) (-3825 (((-656 |#4|) $) 18 (|has| $ (-6 -4461)))) (-1453 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1734 ((|#3| $) 38)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#4|) $) 19 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-1763 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 23)) (-2653 (((-656 |#3|) $) NIL)) (-1845 (((-112) |#3| $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-3707 (((-3 |#4| (-656 $)) |#4| |#4| $) NIL)) (-3355 (((-656 (-2 (|:| |val| |#4|) (|:| -3887 $))) |#4| |#4| $) 117)) (-3923 (((-3 |#4| "failed") $) 42)) (-2918 (((-656 $) |#4| $) 102)) (-1494 (((-3 (-112) (-656 $)) |#4| $) NIL)) (-1992 (((-656 (-2 (|:| |val| (-112)) (|:| -3887 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-2021 (((-656 $) |#4| $) 121) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 122) (((-656 $) |#4| (-656 $)) NIL)) (-1337 (((-656 $) (-656 |#4|) (-112) (-112) (-112)) 134)) (-2509 (($ |#4| $) 88) (($ (-656 |#4|) $) 89) (((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2181 (((-656 |#4|) $) NIL)) (-1521 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1582 ((|#4| |#4| $) NIL)) (-3391 (((-112) $ $) NIL)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1393 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2196 ((|#4| |#4| $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 (((-3 |#4| "failed") $) 40)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3229 (((-3 $ "failed") $ |#4|) 59)) (-1714 (($ $ |#4|) NIL) (((-656 $) |#4| $) 104) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) 99)) (-4207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 17)) (-2597 (($) 14)) (-1433 (((-783) $) NIL)) (-1456 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) 13)) (-4076 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) 22)) (-1813 (($ $ |#3|) 52)) (-3418 (($ $ |#3|) 54)) (-3543 (($ $) NIL)) (-1794 (($ $ |#3|) NIL)) (-3563 (((-874) $) 35) (((-656 |#4|) $) 46)) (-2025 (((-783) $) NIL (|has| |#3| (-379)))) (-3985 (((-112) $ $) NIL)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1352 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-1744 (((-656 $) |#4| $) 66) (((-656 $) |#4| (-656 $)) NIL) (((-656 $) (-656 |#4|) $) NIL) (((-656 $) (-656 |#4|) (-656 $)) NIL)) (-2043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3094 (((-656 |#3|) $) NIL)) (-1877 (((-112) |#4| $) NIL)) (-1847 (((-112) |#3| $) 74)) (-2988 (((-112) $ $) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1165 |#1| |#2| |#3| |#4|) (-13 (-1128 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2509 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1968 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -1968 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -1337 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2577 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) (-464) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -1165)) +((-2509 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *3))) (-5 *1 (-1165 *5 *6 *7 *3)) (-4 *3 (-1084 *5 *6 *7)))) (-1968 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-1968 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-1337 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) (-2577 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-656 *8)) (|:| |towers| (-656 (-1165 *5 *6 *7 *8))))) (-5 *1 (-1165 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(-13 (-1128 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2509 ((-656 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1968 ((-656 $) (-656 |#4|) (-112) (-112))) (-15 -1968 ((-656 $) (-656 |#4|) (-112) (-112) (-112) (-112))) (-15 -1337 ((-656 $) (-656 |#4|) (-112) (-112) (-112))) (-15 -2577 ((-2 (|:| |val| (-656 |#4|)) (|:| |towers| (-656 $))) (-656 |#4|) (-112) (-112))))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1346 ((|#1| $) 37)) (-2672 (($ (-656 |#1|)) 45)) (-3131 (((-112) $ (-783)) NIL)) (-3767 (($) NIL T CONST)) (-2552 ((|#1| |#1| $) 40)) (-3119 ((|#1| $) 35)) (-3825 (((-656 |#1|) $) 18 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 22)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1409 ((|#1| $) 38)) (-2040 (($ |#1| $) 41)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3399 ((|#1| $) 36)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 32)) (-2597 (($) 43)) (-4328 (((-783) $) 30)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) 27)) (-3563 (((-874) $) 14 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3773 (($ (-656 |#1|)) NIL)) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 17 (|has| |#1| (-1119)))) (-3485 (((-783) $) 31 (|has| $ (-6 -4461))))) +(((-1166 |#1|) (-13 (-1140 |#1|) (-10 -8 (-15 -2672 ($ (-656 |#1|))))) (-1236)) (T -1166)) +((-2672 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1166 *3))))) +(-13 (-1140 |#1|) (-10 -8 (-15 -2672 ($ (-656 |#1|))))) +((-3731 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1253 (-576)) |#2|) 53) ((|#2| $ (-576) |#2|) 50)) (-3518 (((-112) $) 12)) (-1763 (($ (-1 |#2| |#2|) $) 48)) (-3504 ((|#2| $) NIL) (($ $ (-783)) 17)) (-2500 (($ $ |#2|) 49)) (-3524 (((-112) $) 11)) (-2871 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1253 (-576))) 36) ((|#2| $ (-576)) 26) ((|#2| $ (-576) |#2|) NIL)) (-1523 (($ $ $) 56) (($ $ |#2|) NIL)) (-1661 (($ $ $) 38) (($ |#2| $) NIL) (($ (-656 $)) 45) (($ $ |#2|) NIL))) +(((-1167 |#1| |#2|) (-10 -8 (-15 -3518 ((-112) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -3731 (|#2| |#1| (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576))) (-15 -2500 (|#1| |#1| |#2|)) (-15 -2871 (|#1| |#1| (-1253 (-576)))) (-15 -1661 (|#1| |#1| |#2|)) (-15 -1661 (|#1| (-656 |#1|))) (-15 -3731 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -3731 (|#2| |#1| "last" |#2|)) (-15 -3731 (|#1| |#1| "rest" |#1|)) (-15 -3731 (|#2| |#1| "first" |#2|)) (-15 -1523 (|#1| |#1| |#2|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -2871 (|#2| |#1| "last")) (-15 -2871 (|#1| |#1| "rest")) (-15 -3504 (|#1| |#1| (-783))) (-15 -2871 (|#2| |#1| "first")) (-15 -3504 (|#2| |#1|)) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3731 (|#2| |#1| "value" |#2|)) (-15 -2871 (|#2| |#1| "value")) (-15 -1763 (|#1| (-1 |#2| |#2|) |#1|))) (-1168 |#2|) (-1236)) (T -1167)) +NIL +(-10 -8 (-15 -3518 ((-112) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -3731 (|#2| |#1| (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576) |#2|)) (-15 -2871 (|#2| |#1| (-576))) (-15 -2500 (|#1| |#1| |#2|)) (-15 -2871 (|#1| |#1| (-1253 (-576)))) (-15 -1661 (|#1| |#1| |#2|)) (-15 -1661 (|#1| (-656 |#1|))) (-15 -3731 (|#2| |#1| (-1253 (-576)) |#2|)) (-15 -3731 (|#2| |#1| "last" |#2|)) (-15 -3731 (|#1| |#1| "rest" |#1|)) (-15 -3731 (|#2| |#1| "first" |#2|)) (-15 -1523 (|#1| |#1| |#2|)) (-15 -1523 (|#1| |#1| |#1|)) (-15 -2871 (|#2| |#1| "last")) (-15 -2871 (|#1| |#1| "rest")) (-15 -3504 (|#1| |#1| (-783))) (-15 -2871 (|#2| |#1| "first")) (-15 -3504 (|#2| |#1|)) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3731 (|#2| |#1| "value" |#2|)) (-15 -2871 (|#2| |#1| "value")) (-15 -1763 (|#1| (-1 |#2| |#2|) |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3142 ((|#1| $) 49)) (-2893 ((|#1| $) 66)) (-2464 (($ $) 68)) (-2333 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-2938 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) 8)) (-3429 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3614 (($ $ $) 57 (|has| $ (-6 -4462)))) (-2611 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1438 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 119 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 88 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4461)))) (-2882 ((|#1| $) 67)) (-3767 (($) 7 T CONST)) (-3515 (($ $) 74) (($ $ (-783)) 72)) (-3172 (($ $) 101 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ (-1 (-112) |#1|) $) 105 (|has| $ (-6 -4461))) (($ |#1| $) 102 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1776 ((|#1| $ (-576) |#1|) 87 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 89)) (-3518 (((-112) $) 85)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 51)) (-3180 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-4033 (($ (-783) |#1|) 111)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 97 (|has| (-576) (-862)))) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 96 (|has| (-576) (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 114)) (-2712 (((-112) $ (-783)) 10)) (-2942 (((-656 |#1|) $) 46)) (-1905 (((-112) $) 50)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-3923 ((|#1| $) 71) (($ $ (-783)) 69)) (-2277 (($ $ $ (-576)) 118) (($ |#1| $ (-576)) 117)) (-3321 (((-656 (-576)) $) 94)) (-2378 (((-112) (-576) $) 93)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3504 ((|#1| $) 77) (($ $ (-783)) 75)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 108)) (-2500 (($ $ |#1|) 98 (|has| $ (-6 -4462)))) (-3524 (((-112) $) 86)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#1| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) 92)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1253 (-576))) 110) ((|#1| $ (-576)) 91) ((|#1| $ (-576) |#1|) 90)) (-2972 (((-576) $ $) 45)) (-3464 (($ $ (-1253 (-576))) 116) (($ $ (-576)) 115)) (-3173 (((-112) $) 47)) (-1442 (($ $) 63)) (-1544 (($ $) 60 (|has| $ (-6 -4462)))) (-3564 (((-783) $) 64)) (-2705 (($ $) 65)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-4076 (((-548) $) 100 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 109)) (-1523 (($ $ $) 62 (|has| $ (-6 -4462))) (($ $ |#1|) 61 (|has| $ (-6 -4462)))) (-1661 (($ $ $) 79) (($ |#1| $) 78) (($ (-656 $)) 113) (($ $ |#1|) 112)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) 52)) (-4369 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-1168 |#1|) (-141) (-1236)) (T -1168)) +((-3524 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) +(-13 (-1274 |t#1|) (-663 |t#1|) (-10 -8 (-15 -3524 ((-112) $)) (-15 -3518 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1236) . T) ((-1274 |#1|) . T)) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2333 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#2| $ |#1| |#2|) NIL)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 |#2| "failed") |#1| $) NIL)) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) NIL)) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 ((|#1| $) NIL (|has| |#1| (-862)))) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-3814 ((|#1| $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3135 (((-656 |#1|) $) NIL)) (-2937 (((-112) |#1| $) NIL)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-3321 (((-656 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3504 ((|#2| $) NIL (|has| |#1| (-862)))) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-3563 (((-874) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1169 |#1| |#2| |#3|) (-1212 |#1| |#2|) (-1119) (-1119) |#2|) (T -1169)) +NIL +(-1212 |#1| |#2|) +((-3474 (((-112) $ $) NIL)) (-1348 (((-703 (-1154)) $) 27)) (-1651 (((-1154) $) 15)) (-2180 (((-1154) $) 17)) (-1927 (((-1177) $) NIL)) (-1780 (((-518) $) 13)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 37) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1170) (-13 (-1102) (-10 -8 (-15 -1780 ((-518) $)) (-15 -2180 ((-1154) $)) (-15 -1348 ((-703 (-1154)) $)) (-15 -1651 ((-1154) $))))) (T -1170)) +((-1780 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1170)))) (-2180 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-703 (-1154))) (-5 *1 (-1170)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170))))) +(-13 (-1102) (-10 -8 (-15 -1780 ((-518) $)) (-15 -2180 ((-1154) $)) (-15 -1348 ((-703 (-1154)) $)) (-15 -1651 ((-1154) $)))) +((-3474 (((-112) $ $) 7)) (-3930 (((-3 $ "failed") $) 14)) (-1927 (((-1177) $) 10)) (-1538 (($) 15 T CONST)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2988 (((-112) $ $) 6))) (((-1171) (-141)) (T -1171)) -((-3503 (*1 *1) (-4 *1 (-1171))) (-2083 (*1 *1 *1) (|partial| -4 *1 (-1171)))) -(-13 (-1119) (-10 -8 (-15 -3503 ($) -2670) (-15 -2083 ((-3 $ "failed") $)))) +((-1538 (*1 *1) (-4 *1 (-1171))) (-3930 (*1 *1 *1) (|partial| -4 *1 (-1171)))) +(-13 (-1119) (-10 -8 (-15 -1538 ($) -1398) (-15 -3930 ((-3 $ "failed") $)))) (((-102) . T) ((-625 (-874)) . T) ((-1119) . T)) -((-3755 (((-1176 |#1|) (-1176 |#1|)) 17)) (-2806 (((-1176 |#1|) (-1176 |#1|)) 13)) (-4188 (((-1176 |#1|) (-1176 |#1|) (-576) (-576)) 20)) (-1566 (((-1176 |#1|) (-1176 |#1|)) 15))) -(((-1172 |#1|) (-10 -7 (-15 -2806 ((-1176 |#1|) (-1176 |#1|))) (-15 -1566 ((-1176 |#1|) (-1176 |#1|))) (-15 -3755 ((-1176 |#1|) (-1176 |#1|))) (-15 -4188 ((-1176 |#1|) (-1176 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1172)) -((-4188 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1172 *4)))) (-3755 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1172 *3)))) (-1566 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1172 *3)))) (-2806 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1172 *3))))) -(-10 -7 (-15 -2806 ((-1176 |#1|) (-1176 |#1|))) (-15 -1566 ((-1176 |#1|) (-1176 |#1|))) (-15 -3755 ((-1176 |#1|) (-1176 |#1|))) (-15 -4188 ((-1176 |#1|) (-1176 |#1|) (-576) (-576)))) -((-2851 (((-1176 |#1|) (-1176 (-1176 |#1|))) 15))) -(((-1173 |#1|) (-10 -7 (-15 -2851 ((-1176 |#1|) (-1176 (-1176 |#1|))))) (-1237)) (T -1173)) -((-2851 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1173 *4)) (-4 *4 (-1237))))) -(-10 -7 (-15 -2851 ((-1176 |#1|) (-1176 (-1176 |#1|))))) -((-1687 (((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)) 25)) (-2359 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)) 26)) (-2477 (((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|)) 16))) -(((-1174 |#1| |#2|) (-10 -7 (-15 -2477 ((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|))) (-15 -1687 ((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|))) (-15 -2359 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)))) (-1237) (-1237)) (T -1174)) -((-2359 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1176 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-1174 *5 *2)))) (-1687 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1176 *6)) (-4 *6 (-1237)) (-4 *3 (-1237)) (-5 *2 (-1176 *3)) (-5 *1 (-1174 *6 *3)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1176 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1176 *6)) (-5 *1 (-1174 *5 *6))))) -(-10 -7 (-15 -2477 ((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|))) (-15 -1687 ((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|))) (-15 -2359 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)))) -((-2477 (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)) 21))) -(((-1175 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)))) (-1237) (-1237) (-1237)) (T -1175)) -((-2477 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-1176 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8)) (-5 *1 (-1175 *6 *7 *8))))) -(-10 -7 (-15 -2477 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) NIL)) (-3367 ((|#1| $) NIL)) (-3053 (($ $) 67)) (-2449 (((-1292) $ (-576) (-576)) 99 (|has| $ (-6 -4463)))) (-2633 (($ $ (-576)) 128 (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-1500 (((-874) $) 56 (|has| |#1| (-1119)))) (-3469 (((-112)) 55 (|has| |#1| (-1119)))) (-2597 ((|#1| $ |#1|) NIL (|has| $ (-6 -4463)))) (-3744 (($ $ $) 115 (|has| $ (-6 -4463))) (($ $ (-576) $) 141)) (-3476 ((|#1| $ |#1|) 125 (|has| $ (-6 -4463)))) (-2466 ((|#1| $ |#1|) 120 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4463))) (($ $ "rest" $) 124 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 112 (|has| $ (-6 -4463))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) 80)) (-3357 ((|#1| $) NIL)) (-3656 (($) NIL T CONST)) (-3732 (($ $) 14)) (-2712 (($ $) 40) (($ $ (-783)) 111)) (-4227 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1119)))) (-1475 (($ (-656 |#1|)) 130)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) 79)) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3235 (((-112) $) NIL)) (-4260 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3581 (((-1292) (-576) $) 140 (|has| |#1| (-1119)))) (-3648 (((-783) $) 137)) (-4303 (((-656 $) $) NIL)) (-2397 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1992 (($ (-783) |#1|) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-3103 (((-112) $ (-783)) NIL)) (-3699 (((-656 |#1|) $) NIL)) (-3781 (((-112) $) NIL)) (-2320 (($ $) 113)) (-2158 (((-112) $) 13)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2912 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-3371 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) 96)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2790 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-4355 ((|#1| $) 10)) (-2701 ((|#1| $) 39) (($ $ (-783)) 65)) (-3247 (((-2 (|:| |cycle?| (-112)) (|:| -1973 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3435 (($ (-1 (-112) |#1|) $) 145)) (-3445 (($ (-1 (-112) |#1|) $) 146)) (-2918 (($ $ |#1|) 90 (|has| $ (-6 -4463)))) (-2843 (($ $ (-576)) 45)) (-3020 (((-112) $) 94)) (-2772 (((-112) $) 12)) (-2759 (((-112) $) 136)) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 30)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) 20)) (-2643 (($) 60)) (-4367 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1254 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-3136 (((-576) $ $) 64)) (-2470 (($ $ (-1254 (-576))) NIL) (($ $ (-576)) NIL)) (-2663 (($ (-1 $)) 63)) (-2492 (((-112) $) 91)) (-1398 (($ $) 92)) (-1556 (($ $) 116 (|has| $ (-6 -4463)))) (-2212 (((-783) $) NIL)) (-2251 (($ $) NIL)) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) 59)) (-1505 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 73)) (-4037 (($ |#1| $) 114)) (-2116 (($ $ $) 118 (|has| $ (-6 -4463))) (($ $ |#1|) 119 (|has| $ (-6 -4463)))) (-2851 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-1417 (($ $) 66)) (-4092 (($ (-656 |#1|)) 129) (((-874) $) 57 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) NIL)) (-3682 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 132 (|has| |#1| (-1119)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1176 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4463) (-15 -1475 ($ (-656 |#1|))) (IF (|has| |#1| (-1119)) (-15 -4227 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3247 ((-2 (|:| |cycle?| (-112)) (|:| -1973 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -2663 ($ (-1 $))) (-15 -4037 ($ |#1| $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -3581 ((-1292) (-576) $)) (-15 -1500 ((-874) $)) (-15 -3469 ((-112)))) |%noBranch|) (-15 -3744 ($ $ (-576) $)) (-15 -2790 ($ (-1 |#1|))) (-15 -2790 ($ (-1 |#1| |#1|) |#1|)) (-15 -3435 ($ (-1 (-112) |#1|) $)) (-15 -3445 ($ (-1 (-112) |#1|) $)))) (-1237)) (T -1176)) -((-1475 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))) (-4227 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-4 *4 (-1237)) (-5 *2 (-112)) (-5 *1 (-1176 *4)))) (-3247 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1973 (-783)) (|:| |period| (-783)))) (-5 *1 (-1176 *4)) (-4 *4 (-1237)) (-5 *3 (-783)))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-1 (-1176 *3))) (-5 *1 (-1176 *3)) (-4 *3 (-1237)))) (-4037 (*1 *1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-1237)))) (-3581 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1176 *4)) (-4 *4 (-1119)) (-4 *4 (-1237)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) (-4 *3 (-1237)))) (-3469 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) (-4 *3 (-1237)))) (-3744 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1176 *3)) (-4 *3 (-1237)))) (-2790 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))) (-2790 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))) (-3435 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))) (-3445 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3))))) -(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4463) (-15 -1475 ($ (-656 |#1|))) (IF (|has| |#1| (-1119)) (-15 -4227 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -3247 ((-2 (|:| |cycle?| (-112)) (|:| -1973 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -2663 ($ (-1 $))) (-15 -4037 ($ |#1| $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -3581 ((-1292) (-576) $)) (-15 -1500 ((-874) $)) (-15 -3469 ((-112)))) |%noBranch|) (-15 -3744 ($ $ (-576) $)) (-15 -2790 ($ (-1 |#1|))) (-15 -2790 ($ (-1 |#1| |#1|) |#1|)) (-15 -3435 ($ (-1 (-112) |#1|) $)) (-15 -3445 ($ (-1 (-112) |#1|) $)))) -((-2034 (((-112) $ $) 19 (|has| (-145) (-1119)))) (-3983 (($ $) 123)) (-3402 (($ $) 124)) (-1396 (($ $ (-145)) 111) (($ $ (-142)) 110)) (-2449 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2277 (((-112) $ $) 121)) (-2249 (((-112) $ $ (-576)) 120)) (-1552 (($ (-576)) 131) (($ (-227)) 130)) (-3930 (((-656 $) $ (-145)) 113) (((-656 $) $ (-142)) 112)) (-2761 (((-112) (-1 (-112) (-145) (-145)) $) 101) (((-112) $) 95 (|has| (-145) (-862)))) (-3362 (($ (-1 (-112) (-145) (-145)) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| (-145) (-862)) (|has| $ (-6 -4463))))) (-2398 (($ (-1 (-112) (-145) (-145)) $) 102) (($ $) 96 (|has| (-145) (-862)))) (-2835 (((-112) $ (-783)) 8)) (-4248 (((-145) $ (-576) (-145)) 53 (|has| $ (-6 -4463))) (((-145) $ (-1254 (-576)) (-145)) 60 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) (-145)) $) 77 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-4425 (($ $ (-145)) 107) (($ $ (-142)) 106)) (-3129 (($ $) 93 (|has| $ (-6 -4463)))) (-4112 (($ $) 103)) (-3059 (($ $ (-1254 (-576)) $) 117)) (-1690 (($ $) 80 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ (-145) $) 79 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-145)) $) 76 (|has| $ (-6 -4462)))) (-2359 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) 78 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) 75 (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $) 74 (|has| $ (-6 -4462)))) (-3888 (((-145) $ (-576) (-145)) 54 (|has| $ (-6 -4463)))) (-3817 (((-145) $ (-576)) 52)) (-2303 (((-112) $ $) 122)) (-3433 (((-576) (-1 (-112) (-145)) $) 100) (((-576) (-145) $) 99 (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) 98 (|has| (-145) (-1119))) (((-576) $ $ (-576)) 116) (((-576) (-142) $ (-576)) 115)) (-4260 (((-656 (-145)) $) 31 (|has| $ (-6 -4462)))) (-1992 (($ (-783) (-145)) 70)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 44 (|has| (-576) (-862)))) (-3492 (($ $ $) 90 (|has| (-145) (-862)))) (-3257 (($ (-1 (-112) (-145) (-145)) $ $) 104) (($ $ $) 97 (|has| (-145) (-862)))) (-1750 (((-656 (-145)) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) (-145) $) 28 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 45 (|has| (-576) (-862)))) (-2726 (($ $ $) 89 (|has| (-145) (-862)))) (-4317 (((-112) $ $ (-145)) 118)) (-1404 (((-783) $ $ (-145)) 119)) (-3874 (($ (-1 (-145) (-145)) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-145) (-145)) $) 36) (($ (-1 (-145) (-145) (-145)) $ $) 65)) (-4262 (($ $) 125)) (-4130 (($ $) 126)) (-3103 (((-112) $ (-783)) 10)) (-4436 (($ $ (-145)) 109) (($ $ (-142)) 108)) (-3288 (((-1178) $) 22 (|has| (-145) (-1119)))) (-3371 (($ (-145) $ (-576)) 62) (($ $ $ (-576)) 61)) (-4428 (((-656 (-576)) $) 47)) (-2013 (((-112) (-576) $) 48)) (-3139 (((-1139) $) 21 (|has| (-145) (-1119)))) (-2701 (((-145) $) 43 (|has| (-576) (-862)))) (-1863 (((-3 (-145) "failed") (-1 (-112) (-145)) $) 73)) (-2918 (($ $ (-145)) 42 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) (-145)) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-145)))) 27 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) 26 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) 25 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) 24 (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) (-145) $) 46 (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3060 (((-656 (-145)) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 (((-145) $ (-576) (-145)) 51) (((-145) $ (-576)) 50) (($ $ (-1254 (-576))) 71) (($ $ $) 105)) (-2470 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-3150 (((-783) (-1 (-112) (-145)) $) 32 (|has| $ (-6 -4462))) (((-783) (-145) $) 29 (-12 (|has| (-145) (-1119)) (|has| $ (-6 -4462))))) (-3582 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-4268 (($ $) 13)) (-1505 (((-548) $) 81 (|has| (-145) (-626 (-548))))) (-4103 (($ (-656 (-145))) 72)) (-2851 (($ $ (-145)) 69) (($ (-145) $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4092 (($ (-145)) 114) (((-874) $) 18 (|has| (-145) (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| (-145) (-1119)))) (-2190 (((-112) (-1 (-112) (-145)) $) 34 (|has| $ (-6 -4462)))) (-3774 (((-1178) $) 135) (((-1178) $ (-112)) 134) (((-1292) (-834) $) 133) (((-1292) (-834) $ (-112)) 132)) (-3977 (((-112) $ $) 87 (|has| (-145) (-862)))) (-3955 (((-112) $ $) 86 (|has| (-145) (-862)))) (-3919 (((-112) $ $) 20 (|has| (-145) (-1119)))) (-3966 (((-112) $ $) 88 (|has| (-145) (-862)))) (-3944 (((-112) $ $) 85 (|has| (-145) (-862)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-1177) (-141)) (T -1177)) -((-1552 (*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1177)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-227)) (-4 *1 (-1177))))) -(-13 (-1163) (-840) (-10 -8 (-15 -1552 ($ (-576))) (-15 -1552 ($ (-227))))) -(((-34) . T) ((-102) -3765 (|has| (-145) (-1119)) (|has| (-145) (-862))) ((-625 (-874)) -3765 (|has| (-145) (-1119)) (|has| (-145) (-862)) (|has| (-145) (-625 (-874)))) ((-152 #0=(-145)) . T) ((-626 (-548)) |has| (-145) (-626 (-548))) ((-296 #1=(-576) #0#) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #1# #0#) . T) ((-319 #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-384 #0#) . T) ((-501 #0#) . T) ((-616 #1# #0#) . T) ((-526 #0# #0#) -12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))) ((-663 #0#) . T) ((-19 #0#) . T) ((-840) . T) ((-862) |has| (-145) (-862)) ((-1119) -3765 (|has| (-145) (-1119)) (|has| (-145) (-862))) ((-1163) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-3983 (($ $) NIL)) (-3402 (($ $) NIL)) (-1396 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2277 (((-112) $ $) NIL)) (-2249 (((-112) $ $ (-576)) NIL)) (-1552 (($ (-576)) 8) (($ (-227)) 10)) (-3930 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-2761 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-3362 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| (-145) (-862))))) (-2398 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4463))) (((-145) $ (-1254 (-576)) (-145)) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-4425 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-3059 (($ $ (-1254 (-576)) $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-2892 (($ (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4462))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3888 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4463)))) (-3817 (((-145) $ (-576)) NIL)) (-2303 (((-112) $ $) NIL)) (-3433 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1119))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-4260 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-1992 (($ (-783) (-145)) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| (-145) (-862)))) (-3257 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-1750 (((-656 (-145)) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-4315 (((-576) $) NIL (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| (-145) (-862)))) (-4317 (((-112) $ $ (-145)) NIL)) (-1404 (((-783) $ $ (-145)) NIL)) (-3874 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-4262 (($ $) NIL)) (-4130 (($ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-4436 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3288 (((-1178) $) NIL (|has| (-145) (-1119)))) (-3371 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| (-145) (-1119)))) (-2701 (((-145) $) NIL (|has| (-576) (-862)))) (-1863 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2918 (($ $ (-145)) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3060 (((-656 (-145)) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1254 (-576))) NIL) (($ $ $) NIL)) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-3150 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-4103 (($ (-656 (-145))) NIL)) (-2851 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4092 (($ (-145)) NIL) (((-874) $) NIL (|has| (-145) (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-2190 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4462)))) (-3774 (((-1178) $) 21) (((-1178) $ (-112)) 23) (((-1292) (-834) $) 24) (((-1292) (-834) $ (-112)) 25)) (-3977 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3955 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3919 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-3966 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3944 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1178) (-1177)) (T -1178)) -NIL -(-1177) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL)) (-2449 (((-1292) $ (-1178) (-1178)) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-1178) |#1|) NIL)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 |#1| "failed") (-1178) $) NIL)) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119))))) (-4376 (($ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#1| "failed") (-1178) $) NIL)) (-2892 (($ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-1178) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-1178)) NIL)) (-4260 (((-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-1178) $) NIL (|has| (-1178) (-862)))) (-1750 (((-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-1178) $) NIL (|has| (-1178) (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-2364 (((-656 (-1178)) $) NIL)) (-3700 (((-112) (-1178) $) NIL)) (-3576 (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL)) (-2361 (($ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL)) (-4428 (((-656 (-1178)) $) NIL)) (-2013 (((-112) (-1178) $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-2701 ((|#1| $) NIL (|has| (-1178) (-862)))) (-1863 (((-3 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) "failed") (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (($ $ (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL (-12 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-319 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-1178)) NIL) ((|#1| $ (-1178) |#1|) NIL)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL)) (-4092 (((-874) $) NIL (-3765 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-625 (-874))) (|has| |#1| (-625 (-874)))))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 (-1178)) (|:| -2900 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1179 |#1|) (-13 (-1213 (-1178) |#1|) (-10 -7 (-6 -4462))) (-1119)) (T -1179)) -NIL -(-13 (-1213 (-1178) |#1|) (-10 -7 (-6 -4462))) -((-3953 (((-1176 |#1|) (-1176 |#1|)) 83)) (-3179 (((-3 (-1176 |#1|) "failed") (-1176 |#1|)) 39)) (-2814 (((-1176 |#1|) (-419 (-576)) (-1176 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1522 (((-1176 |#1|) |#1| (-1176 |#1|)) 139 (|has| |#1| (-374)))) (-2316 (((-1176 |#1|) (-1176 |#1|)) 97)) (-1715 (((-1176 (-576)) (-576)) 63)) (-3552 (((-1176 |#1|) (-1176 (-1176 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3899 (((-1176 |#1|) (-576) (-576) (-1176 |#1|)) 102)) (-1585 (((-1176 |#1|) |#1| (-576)) 51)) (-4257 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 66)) (-3341 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 136 (|has| |#1| (-374)))) (-2167 (((-1176 |#1|) |#1| (-1 (-1176 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-1716 (((-1176 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1176 |#1|))) 137 (|has| |#1| (-374)))) (-3165 (((-1176 |#1|) (-1176 |#1|)) 96)) (-3064 (((-1176 |#1|) (-1176 |#1|)) 82)) (-2936 (((-1176 |#1|) (-576) (-576) (-1176 |#1|)) 103)) (-3597 (((-1176 |#1|) |#1| (-1176 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2067 (((-1176 (-576)) (-576)) 62)) (-2576 (((-1176 |#1|) |#1|) 65)) (-4067 (((-1176 |#1|) (-1176 |#1|) (-576) (-576)) 99)) (-4022 (((-1176 |#1|) (-1 |#1| (-576)) (-1176 |#1|)) 72)) (-2022 (((-3 (-1176 |#1|) "failed") (-1176 |#1|) (-1176 |#1|)) 37)) (-4011 (((-1176 |#1|) (-1176 |#1|)) 98)) (-2259 (((-1176 |#1|) (-1176 |#1|) |#1|) 77)) (-4377 (((-1176 |#1|) (-1176 |#1|)) 68)) (-1947 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 78)) (-4092 (((-1176 |#1|) |#1|) 73)) (-3504 (((-1176 |#1|) (-1176 (-1176 |#1|))) 88)) (-4028 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 38)) (-4018 (((-1176 |#1|) (-1176 |#1|)) 21) (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 23)) (-4007 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 17)) (* (((-1176 |#1|) (-1176 |#1|) |#1|) 29) (((-1176 |#1|) |#1| (-1176 |#1|)) 26) (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 27))) -(((-1180 |#1|) (-10 -7 (-15 -4007 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4018 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4018 ((-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -2022 ((-3 (-1176 |#1|) "failed") (-1176 |#1|) (-1176 |#1|))) (-15 -4028 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3179 ((-3 (-1176 |#1|) "failed") (-1176 |#1|))) (-15 -1585 ((-1176 |#1|) |#1| (-576))) (-15 -2067 ((-1176 (-576)) (-576))) (-15 -1715 ((-1176 (-576)) (-576))) (-15 -2576 ((-1176 |#1|) |#1|)) (-15 -4257 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4377 ((-1176 |#1|) (-1176 |#1|))) (-15 -4022 ((-1176 |#1|) (-1 |#1| (-576)) (-1176 |#1|))) (-15 -4092 ((-1176 |#1|) |#1|)) (-15 -2259 ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -1947 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3064 ((-1176 |#1|) (-1176 |#1|))) (-15 -3953 ((-1176 |#1|) (-1176 |#1|))) (-15 -3504 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -3165 ((-1176 |#1|) (-1176 |#1|))) (-15 -2316 ((-1176 |#1|) (-1176 |#1|))) (-15 -4011 ((-1176 |#1|) (-1176 |#1|))) (-15 -4067 ((-1176 |#1|) (-1176 |#1|) (-576) (-576))) (-15 -3899 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (-15 -2936 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 -2167 ((-1176 |#1|) |#1| (-1 (-1176 |#1|)))) (-15 -3552 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -2814 ((-1176 |#1|) (-419 (-576)) (-1176 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3341 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -1716 ((-1176 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1176 |#1|)))) (-15 -1522 ((-1176 |#1|) |#1| (-1176 |#1|)))) |%noBranch|)) (-1068)) (T -1180)) -((-1522 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-1716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1176 *4))) (-4 *4 (-374)) (-4 *4 (-1068)) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4)))) (-3341 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2814 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1068)) (-5 *3 (-419 (-576))) (-5 *1 (-1180 *4)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1176 *3))) (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)))) (-3597 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2936 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-3899 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-4067 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-4011 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2316 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4)) (-4 *4 (-1068)))) (-3953 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2259 (*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) (-4022 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1068)) (-5 *1 (-1180 *4)))) (-4377 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4257 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2576 (*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) (-1715 (*1 *2 *3) (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) (-5 *3 (-576)))) (-2067 (*1 *2 *3) (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) (-5 *3 (-576)))) (-1585 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) (-3179 (*1 *2 *2) (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4028 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-2022 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4018 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) (-4007 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) -(-10 -7 (-15 -4007 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4018 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4018 ((-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -2022 ((-3 (-1176 |#1|) "failed") (-1176 |#1|) (-1176 |#1|))) (-15 -4028 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3179 ((-3 (-1176 |#1|) "failed") (-1176 |#1|))) (-15 -1585 ((-1176 |#1|) |#1| (-576))) (-15 -2067 ((-1176 (-576)) (-576))) (-15 -1715 ((-1176 (-576)) (-576))) (-15 -2576 ((-1176 |#1|) |#1|)) (-15 -4257 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4377 ((-1176 |#1|) (-1176 |#1|))) (-15 -4022 ((-1176 |#1|) (-1 |#1| (-576)) (-1176 |#1|))) (-15 -4092 ((-1176 |#1|) |#1|)) (-15 -2259 ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -1947 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3064 ((-1176 |#1|) (-1176 |#1|))) (-15 -3953 ((-1176 |#1|) (-1176 |#1|))) (-15 -3504 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -3165 ((-1176 |#1|) (-1176 |#1|))) (-15 -2316 ((-1176 |#1|) (-1176 |#1|))) (-15 -4011 ((-1176 |#1|) (-1176 |#1|))) (-15 -4067 ((-1176 |#1|) (-1176 |#1|) (-576) (-576))) (-15 -3899 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (-15 -2936 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 -2167 ((-1176 |#1|) |#1| (-1 (-1176 |#1|)))) (-15 -3552 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -2814 ((-1176 |#1|) (-419 (-576)) (-1176 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -3341 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -1716 ((-1176 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1176 |#1|)))) (-15 -1522 ((-1176 |#1|) |#1| (-1176 |#1|)))) |%noBranch|)) -((-2266 (((-1176 |#1|) (-1176 |#1|)) 60)) (-2111 (((-1176 |#1|) (-1176 |#1|)) 42)) (-2236 (((-1176 |#1|) (-1176 |#1|)) 56)) (-2084 (((-1176 |#1|) (-1176 |#1|)) 38)) (-2294 (((-1176 |#1|) (-1176 |#1|)) 63)) (-2138 (((-1176 |#1|) (-1176 |#1|)) 45)) (-2703 (((-1176 |#1|) (-1176 |#1|)) 34)) (-3353 (((-1176 |#1|) (-1176 |#1|)) 29)) (-2307 (((-1176 |#1|) (-1176 |#1|)) 64)) (-2149 (((-1176 |#1|) (-1176 |#1|)) 46)) (-2281 (((-1176 |#1|) (-1176 |#1|)) 61)) (-2123 (((-1176 |#1|) (-1176 |#1|)) 43)) (-2253 (((-1176 |#1|) (-1176 |#1|)) 58)) (-2099 (((-1176 |#1|) (-1176 |#1|)) 40)) (-2340 (((-1176 |#1|) (-1176 |#1|)) 68)) (-2184 (((-1176 |#1|) (-1176 |#1|)) 50)) (-2317 (((-1176 |#1|) (-1176 |#1|)) 66)) (-2161 (((-1176 |#1|) (-1176 |#1|)) 48)) (-2368 (((-1176 |#1|) (-1176 |#1|)) 71)) (-2207 (((-1176 |#1|) (-1176 |#1|)) 53)) (-3945 (((-1176 |#1|) (-1176 |#1|)) 72)) (-2220 (((-1176 |#1|) (-1176 |#1|)) 54)) (-2352 (((-1176 |#1|) (-1176 |#1|)) 70)) (-2195 (((-1176 |#1|) (-1176 |#1|)) 52)) (-2329 (((-1176 |#1|) (-1176 |#1|)) 69)) (-2173 (((-1176 |#1|) (-1176 |#1|)) 51)) (** (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 36))) -(((-1181 |#1|) (-10 -7 (-15 -3353 ((-1176 |#1|) (-1176 |#1|))) (-15 -2703 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -2084 ((-1176 |#1|) (-1176 |#1|))) (-15 -2099 ((-1176 |#1|) (-1176 |#1|))) (-15 -2111 ((-1176 |#1|) (-1176 |#1|))) (-15 -2123 ((-1176 |#1|) (-1176 |#1|))) (-15 -2138 ((-1176 |#1|) (-1176 |#1|))) (-15 -2149 ((-1176 |#1|) (-1176 |#1|))) (-15 -2161 ((-1176 |#1|) (-1176 |#1|))) (-15 -2173 ((-1176 |#1|) (-1176 |#1|))) (-15 -2184 ((-1176 |#1|) (-1176 |#1|))) (-15 -2195 ((-1176 |#1|) (-1176 |#1|))) (-15 -2207 ((-1176 |#1|) (-1176 |#1|))) (-15 -2220 ((-1176 |#1|) (-1176 |#1|))) (-15 -2236 ((-1176 |#1|) (-1176 |#1|))) (-15 -2253 ((-1176 |#1|) (-1176 |#1|))) (-15 -2266 ((-1176 |#1|) (-1176 |#1|))) (-15 -2281 ((-1176 |#1|) (-1176 |#1|))) (-15 -2294 ((-1176 |#1|) (-1176 |#1|))) (-15 -2307 ((-1176 |#1|) (-1176 |#1|))) (-15 -2317 ((-1176 |#1|) (-1176 |#1|))) (-15 -2329 ((-1176 |#1|) (-1176 |#1|))) (-15 -2340 ((-1176 |#1|) (-1176 |#1|))) (-15 -2352 ((-1176 |#1|) (-1176 |#1|))) (-15 -2368 ((-1176 |#1|) (-1176 |#1|))) (-15 -3945 ((-1176 |#1|) (-1176 |#1|)))) (-38 (-419 (-576)))) (T -1181)) -((-3945 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2294 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2220 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2184 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2161 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2149 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2138 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2111 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3353 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3))))) -(-10 -7 (-15 -3353 ((-1176 |#1|) (-1176 |#1|))) (-15 -2703 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -2084 ((-1176 |#1|) (-1176 |#1|))) (-15 -2099 ((-1176 |#1|) (-1176 |#1|))) (-15 -2111 ((-1176 |#1|) (-1176 |#1|))) (-15 -2123 ((-1176 |#1|) (-1176 |#1|))) (-15 -2138 ((-1176 |#1|) (-1176 |#1|))) (-15 -2149 ((-1176 |#1|) (-1176 |#1|))) (-15 -2161 ((-1176 |#1|) (-1176 |#1|))) (-15 -2173 ((-1176 |#1|) (-1176 |#1|))) (-15 -2184 ((-1176 |#1|) (-1176 |#1|))) (-15 -2195 ((-1176 |#1|) (-1176 |#1|))) (-15 -2207 ((-1176 |#1|) (-1176 |#1|))) (-15 -2220 ((-1176 |#1|) (-1176 |#1|))) (-15 -2236 ((-1176 |#1|) (-1176 |#1|))) (-15 -2253 ((-1176 |#1|) (-1176 |#1|))) (-15 -2266 ((-1176 |#1|) (-1176 |#1|))) (-15 -2281 ((-1176 |#1|) (-1176 |#1|))) (-15 -2294 ((-1176 |#1|) (-1176 |#1|))) (-15 -2307 ((-1176 |#1|) (-1176 |#1|))) (-15 -2317 ((-1176 |#1|) (-1176 |#1|))) (-15 -2329 ((-1176 |#1|) (-1176 |#1|))) (-15 -2340 ((-1176 |#1|) (-1176 |#1|))) (-15 -2352 ((-1176 |#1|) (-1176 |#1|))) (-15 -2368 ((-1176 |#1|) (-1176 |#1|))) (-15 -3945 ((-1176 |#1|) (-1176 |#1|)))) -((-2266 (((-1176 |#1|) (-1176 |#1|)) 102)) (-2111 (((-1176 |#1|) (-1176 |#1|)) 61)) (-3321 (((-2 (|:| -2236 (-1176 |#1|)) (|:| -2253 (-1176 |#1|))) (-1176 |#1|)) 98)) (-2236 (((-1176 |#1|) (-1176 |#1|)) 99)) (-2505 (((-2 (|:| -2084 (-1176 |#1|)) (|:| -2099 (-1176 |#1|))) (-1176 |#1|)) 54)) (-2084 (((-1176 |#1|) (-1176 |#1|)) 55)) (-2294 (((-1176 |#1|) (-1176 |#1|)) 104)) (-2138 (((-1176 |#1|) (-1176 |#1|)) 68)) (-2703 (((-1176 |#1|) (-1176 |#1|)) 40)) (-3353 (((-1176 |#1|) (-1176 |#1|)) 37)) (-2307 (((-1176 |#1|) (-1176 |#1|)) 105)) (-2149 (((-1176 |#1|) (-1176 |#1|)) 69)) (-2281 (((-1176 |#1|) (-1176 |#1|)) 103)) (-2123 (((-1176 |#1|) (-1176 |#1|)) 64)) (-2253 (((-1176 |#1|) (-1176 |#1|)) 100)) (-2099 (((-1176 |#1|) (-1176 |#1|)) 56)) (-2340 (((-1176 |#1|) (-1176 |#1|)) 113)) (-2184 (((-1176 |#1|) (-1176 |#1|)) 88)) (-2317 (((-1176 |#1|) (-1176 |#1|)) 107)) (-2161 (((-1176 |#1|) (-1176 |#1|)) 84)) (-2368 (((-1176 |#1|) (-1176 |#1|)) 117)) (-2207 (((-1176 |#1|) (-1176 |#1|)) 92)) (-3945 (((-1176 |#1|) (-1176 |#1|)) 119)) (-2220 (((-1176 |#1|) (-1176 |#1|)) 94)) (-2352 (((-1176 |#1|) (-1176 |#1|)) 115)) (-2195 (((-1176 |#1|) (-1176 |#1|)) 90)) (-2329 (((-1176 |#1|) (-1176 |#1|)) 109)) (-2173 (((-1176 |#1|) (-1176 |#1|)) 86)) (** (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 41))) -(((-1182 |#1|) (-10 -7 (-15 -3353 ((-1176 |#1|) (-1176 |#1|))) (-15 -2703 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -2505 ((-2 (|:| -2084 (-1176 |#1|)) (|:| -2099 (-1176 |#1|))) (-1176 |#1|))) (-15 -2084 ((-1176 |#1|) (-1176 |#1|))) (-15 -2099 ((-1176 |#1|) (-1176 |#1|))) (-15 -2111 ((-1176 |#1|) (-1176 |#1|))) (-15 -2123 ((-1176 |#1|) (-1176 |#1|))) (-15 -2138 ((-1176 |#1|) (-1176 |#1|))) (-15 -2149 ((-1176 |#1|) (-1176 |#1|))) (-15 -2161 ((-1176 |#1|) (-1176 |#1|))) (-15 -2173 ((-1176 |#1|) (-1176 |#1|))) (-15 -2184 ((-1176 |#1|) (-1176 |#1|))) (-15 -2195 ((-1176 |#1|) (-1176 |#1|))) (-15 -2207 ((-1176 |#1|) (-1176 |#1|))) (-15 -2220 ((-1176 |#1|) (-1176 |#1|))) (-15 -3321 ((-2 (|:| -2236 (-1176 |#1|)) (|:| -2253 (-1176 |#1|))) (-1176 |#1|))) (-15 -2236 ((-1176 |#1|) (-1176 |#1|))) (-15 -2253 ((-1176 |#1|) (-1176 |#1|))) (-15 -2266 ((-1176 |#1|) (-1176 |#1|))) (-15 -2281 ((-1176 |#1|) (-1176 |#1|))) (-15 -2294 ((-1176 |#1|) (-1176 |#1|))) (-15 -2307 ((-1176 |#1|) (-1176 |#1|))) (-15 -2317 ((-1176 |#1|) (-1176 |#1|))) (-15 -2329 ((-1176 |#1|) (-1176 |#1|))) (-15 -2340 ((-1176 |#1|) (-1176 |#1|))) (-15 -2352 ((-1176 |#1|) (-1176 |#1|))) (-15 -2368 ((-1176 |#1|) (-1176 |#1|))) (-15 -3945 ((-1176 |#1|) (-1176 |#1|)))) (-38 (-419 (-576)))) (T -1182)) -((-3945 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2368 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2352 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2340 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2329 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2307 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2294 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3321 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -2236 (-1176 *4)) (|:| -2253 (-1176 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1176 *4)))) (-2220 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2207 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2184 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2173 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2161 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2149 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2138 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2123 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2111 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2505 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -2084 (-1176 *4)) (|:| -2099 (-1176 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1176 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3)))) (-3353 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1182 *3))))) -(-10 -7 (-15 -3353 ((-1176 |#1|) (-1176 |#1|))) (-15 -2703 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -2505 ((-2 (|:| -2084 (-1176 |#1|)) (|:| -2099 (-1176 |#1|))) (-1176 |#1|))) (-15 -2084 ((-1176 |#1|) (-1176 |#1|))) (-15 -2099 ((-1176 |#1|) (-1176 |#1|))) (-15 -2111 ((-1176 |#1|) (-1176 |#1|))) (-15 -2123 ((-1176 |#1|) (-1176 |#1|))) (-15 -2138 ((-1176 |#1|) (-1176 |#1|))) (-15 -2149 ((-1176 |#1|) (-1176 |#1|))) (-15 -2161 ((-1176 |#1|) (-1176 |#1|))) (-15 -2173 ((-1176 |#1|) (-1176 |#1|))) (-15 -2184 ((-1176 |#1|) (-1176 |#1|))) (-15 -2195 ((-1176 |#1|) (-1176 |#1|))) (-15 -2207 ((-1176 |#1|) (-1176 |#1|))) (-15 -2220 ((-1176 |#1|) (-1176 |#1|))) (-15 -3321 ((-2 (|:| -2236 (-1176 |#1|)) (|:| -2253 (-1176 |#1|))) (-1176 |#1|))) (-15 -2236 ((-1176 |#1|) (-1176 |#1|))) (-15 -2253 ((-1176 |#1|) (-1176 |#1|))) (-15 -2266 ((-1176 |#1|) (-1176 |#1|))) (-15 -2281 ((-1176 |#1|) (-1176 |#1|))) (-15 -2294 ((-1176 |#1|) (-1176 |#1|))) (-15 -2307 ((-1176 |#1|) (-1176 |#1|))) (-15 -2317 ((-1176 |#1|) (-1176 |#1|))) (-15 -2329 ((-1176 |#1|) (-1176 |#1|))) (-15 -2340 ((-1176 |#1|) (-1176 |#1|))) (-15 -2352 ((-1176 |#1|) (-1176 |#1|))) (-15 -2368 ((-1176 |#1|) (-1176 |#1|))) (-15 -3945 ((-1176 |#1|) (-1176 |#1|)))) -((-2335 (((-975 |#2|) |#2| |#2|) 50)) (-1363 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) -(((-1183 |#1| |#2|) (-10 -7 (-15 -2335 ((-975 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1363 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1263 |#1|)) (T -1183)) -((-1363 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1183 *3 *2)) (-4 *2 (-1263 *3)))) (-2335 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-975 *3)) (-5 *1 (-1183 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -2335 ((-975 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -1363 (|#2| |#2| |#1|)) |%noBranch|)) -((-2034 (((-112) $ $) NIL)) (-3084 (($ $ (-656 (-783))) 79)) (-1376 (($) 33)) (-3463 (($ $) 51)) (-3352 (((-656 $) $) 60)) (-4074 (((-112) $) 19)) (-1526 (((-656 (-960 |#2|)) $) 86)) (-3938 (($ $) 80)) (-3052 (((-783) $) 47)) (-1992 (($) 32)) (-1370 (($ $ (-656 (-783)) (-960 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-960 |#2|)) 75)) (-3257 (($ $ $) 57) (($ (-656 $)) 59)) (-2096 (((-783) $) 87)) (-3781 (((-112) $) 15)) (-3288 (((-1178) $) NIL)) (-3534 (((-112) $) 22)) (-3139 (((-1139) $) NIL)) (-4166 (((-173) $) 85)) (-4298 (((-960 |#2|) $) 81)) (-2865 (((-783) $) 82)) (-2563 (((-112) $) 84)) (-3872 (($ $ (-656 (-783)) (-173)) 78)) (-4396 (($ $) 52)) (-4092 (((-874) $) 99)) (-4282 (($ $ (-656 (-783)) (-112)) 77)) (-2043 (((-656 $) $) 11)) (-3712 (($ $ (-783)) 46)) (-2452 (($ $) 43)) (-1531 (((-112) $ $) NIL)) (-2541 (($ $ $ (-960 |#2|) (-783)) 68)) (-1735 (($ $ (-960 |#2|)) 67)) (-3679 (($ $ (-656 (-783)) (-960 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-960 |#2|)) 71)) (-3919 (((-112) $ $) 92))) -(((-1184 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -3781 ((-112) $)) (-15 -4074 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -1992 ($)) (-15 -1376 ($)) (-15 -2452 ($ $)) (-15 -3712 ($ $ (-783))) (-15 -2043 ((-656 $) $)) (-15 -3052 ((-783) $)) (-15 -3463 ($ $)) (-15 -4396 ($ $)) (-15 -3257 ($ $ $)) (-15 -3257 ($ (-656 $))) (-15 -3352 ((-656 $) $)) (-15 -3679 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -1735 ($ $ (-960 |#2|))) (-15 -2541 ($ $ $ (-960 |#2|) (-783))) (-15 -1370 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -3679 ($ $ (-656 (-783)) (-783))) (-15 -1370 ($ $ (-656 (-783)) (-783))) (-15 -3679 ((-783) $ (-960 |#2|))) (-15 -1370 ($ $ (-783) (-960 |#2|))) (-15 -4282 ($ $ (-656 (-783)) (-112))) (-15 -3872 ($ $ (-656 (-783)) (-173))) (-15 -3084 ($ $ (-656 (-783)))) (-15 -4298 ((-960 |#2|) $)) (-15 -2865 ((-783) $)) (-15 -2563 ((-112) $)) (-15 -4166 ((-173) $)) (-15 -2096 ((-783) $)) (-15 -3938 ($ $)) (-15 -1526 ((-656 (-960 |#2|)) $)))) (-938) (-1068)) (T -1184)) -((-3781 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-1992 (*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-1376 (*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-2452 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-3712 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3463 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-4396 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-3257 (*1 *1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-3257 (*1 *1 *2) (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-1735 (*1 *1 *1 *2) (-12 (-5 *2 (-960 *4)) (-4 *4 (-1068)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)))) (-2541 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-960 *5)) (-5 *3 (-783)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-1370 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-3679 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-1370 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *2 (-783)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-1370 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) (-4282 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-3872 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-3084 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-960 *4)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-1526 (*1 *2 *1) (-12 (-5 *2 (-656 (-960 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068))))) -(-13 (-1119) (-10 -8 (-15 -3781 ((-112) $)) (-15 -4074 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -1992 ($)) (-15 -1376 ($)) (-15 -2452 ($ $)) (-15 -3712 ($ $ (-783))) (-15 -2043 ((-656 $) $)) (-15 -3052 ((-783) $)) (-15 -3463 ($ $)) (-15 -4396 ($ $)) (-15 -3257 ($ $ $)) (-15 -3257 ($ (-656 $))) (-15 -3352 ((-656 $) $)) (-15 -3679 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -1735 ($ $ (-960 |#2|))) (-15 -2541 ($ $ $ (-960 |#2|) (-783))) (-15 -1370 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -3679 ($ $ (-656 (-783)) (-783))) (-15 -1370 ($ $ (-656 (-783)) (-783))) (-15 -3679 ((-783) $ (-960 |#2|))) (-15 -1370 ($ $ (-783) (-960 |#2|))) (-15 -4282 ($ $ (-656 (-783)) (-112))) (-15 -3872 ($ $ (-656 (-783)) (-173))) (-15 -3084 ($ $ (-656 (-783)))) (-15 -4298 ((-960 |#2|) $)) (-15 -2865 ((-783) $)) (-15 -2563 ((-112) $)) (-15 -4166 ((-173) $)) (-15 -2096 ((-783) $)) (-15 -3938 ($ $)) (-15 -1526 ((-656 (-960 |#2|)) $)))) -((-2034 (((-112) $ $) NIL)) (-1804 ((|#2| $) 11)) (-1790 ((|#1| $) 10)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4103 (($ |#1| |#2|) 9)) (-4092 (((-874) $) 16)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1185 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -4103 ($ |#1| |#2|)) (-15 -1790 (|#1| $)) (-15 -1804 (|#2| $)))) (-1119) (-1119)) (T -1185)) -((-4103 (*1 *1 *2 *3) (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-1790 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-1119)))) (-1804 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1119))))) -(-13 (-1119) (-10 -8 (-15 -4103 ($ |#1| |#2|)) (-15 -1790 (|#1| $)) (-15 -1804 (|#2| $)))) -((-2034 (((-112) $ $) NIL)) (-1982 (((-1154) $) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1186) (-13 (-1102) (-10 -8 (-15 -1982 ((-1154) $))))) (T -1186)) -((-1982 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1186))))) -(-13 (-1102) (-10 -8 (-15 -1982 ((-1154) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) 11)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2573 (($ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4306 (((-112) $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2255 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-1655 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-3875 (((-1194 |#1| |#2| |#3|) $) 42)) (-2577 (((-3 (-1194 |#1| |#2| |#3|) "failed") $) 32)) (-1596 (((-1194 |#1| |#2| |#3|) $) 33)) (-2266 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1587 (($ $) NIL (|has| |#1| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2236 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-3934 (((-576) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3451 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-2294 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-1194 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1196) "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-2378 (((-1194 |#1| |#2| |#3|) $) 140) (((-1196) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-1437 (($ $) 37) (($ (-576) $) 38)) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) NIL)) (-3687 (((-701 (-1194 |#1| |#2| |#3|)) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 (-1194 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1194 |#1| |#2| |#3|)))) (-1287 $) $) NIL (|has| |#1| (-374))) (((-701 (-1194 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 (-1194 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1194 |#1| |#2| |#3|)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-3179 (((-3 $ "failed") $) 54)) (-4247 (((-419 (-969 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-2446 (($) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2725 (((-112) $) NIL (|has| |#1| (-374)))) (-3567 (((-112) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3840 (((-112) $) 28)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-1538 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-374)))) (-3894 (((-1194 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2083 (((-3 $ "failed") $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))))) (-3713 (((-112) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4209 (($ $ (-938)) NIL)) (-3079 (($ (-1 |#1| (-576)) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-576)) 19) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-3492 (($ $ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2726 (($ $ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-2703 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1608 (($ (-576) (-1194 |#1| |#2| |#3|)) 36)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-3597 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-3503 (($) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1846 (($ $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3892 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1392 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2843 (($ $ (-576)) 158)) (-2022 (((-3 $ "failed") $ $) 55 (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3353 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-526 (-1196) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1194 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1194 |#1| |#2| |#3|)) (-656 (-1194 |#1| |#2| |#3|))) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-319 (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1131))) (($ $ (-1194 |#1| |#2| |#3|)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-296 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-3614 (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) 57) (($ $) 56 (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-1490 (($ $) NIL (|has| |#1| (-374)))) (-3905 (((-1194 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-2369 (((-576) $) 43)) (-2307 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-548) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1417 (($ $) NIL)) (-4092 (((-874) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1194 |#1| |#2| |#3|)) 30) (($ (-1283 |#2|)) 25) (($ (-1196)) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (($ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-2430 ((|#1| $ (-576)) 77)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-2553 ((|#1| $) 12)) (-4179 (((-1194 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2317 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4300 (($) 21 T CONST)) (-4310 (($) 16 T CONST)) (-4286 (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) NIL) (($ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-3977 (((-112) $ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3955 (((-112) $ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3944 (((-112) $ $) NIL (-3765 (-12 (|has| (-1194 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1194 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1194 |#1| |#2| |#3|) (-1194 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 23)) (** (($ $ (-938)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1194 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1194 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1187 |#1| |#2| |#3|) (-13 (-1249 |#1| (-1194 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1187)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) -(-13 (-1249 |#1| (-1194 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) -((-3255 ((|#2| |#2| (-1111 |#2|)) 26) ((|#2| |#2| (-1196)) 28))) -(((-1188 |#1| |#2|) (-10 -7 (-15 -3255 (|#2| |#2| (-1196))) (-15 -3255 (|#2| |#2| (-1111 |#2|)))) (-13 (-568) (-1057 (-576)) (-651 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1222))) (T -1188)) -((-3255 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222))) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1188 *4 *2)))) (-3255 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1188 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222)))))) -(-10 -7 (-15 -3255 (|#2| |#2| (-1196))) (-15 -3255 (|#2| |#2| (-1111 |#2|)))) -((-3255 (((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1111 (-419 (-969 |#1|)))) 31) (((-419 (-969 |#1|)) (-969 |#1|) (-1111 (-969 |#1|))) 44) (((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1196)) 33) (((-419 (-969 |#1|)) (-969 |#1|) (-1196)) 36))) -(((-1189 |#1|) (-10 -7 (-15 -3255 ((-419 (-969 |#1|)) (-969 |#1|) (-1196))) (-15 -3255 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1196))) (-15 -3255 ((-419 (-969 |#1|)) (-969 |#1|) (-1111 (-969 |#1|)))) (-15 -3255 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1111 (-419 (-969 |#1|)))))) (-13 (-568) (-1057 (-576)))) (T -1189)) -((-3255 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1189 *5)))) (-3255 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-969 *5))) (-5 *3 (-969 *5)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1189 *5)))) (-3255 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-3 (-419 (-969 *5)) (-326 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-419 (-969 *5))))) (-3255 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 (-969 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-969 *5))))) -(-10 -7 (-15 -3255 ((-419 (-969 |#1|)) (-969 |#1|) (-1196))) (-15 -3255 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1196))) (-15 -3255 ((-419 (-969 |#1|)) (-969 |#1|) (-1111 (-969 |#1|)))) (-15 -3255 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1111 (-419 (-969 |#1|)))))) -((-2477 (((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)) 13))) -(((-1190 |#1| |#2|) (-10 -7 (-15 -2477 ((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)))) (-1068) (-1068)) (T -1190)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-1192 *6)) (-5 *1 (-1190 *5 *6))))) -(-10 -7 (-15 -2477 ((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)))) -((-2100 (((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))) 51)) (-1392 (((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))) 52))) -(((-1191 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1392 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|)))) (-15 -2100 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))))) (-805) (-862) (-464) (-966 |#3| |#1| |#2|)) (T -1191)) -((-2100 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7))))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7)))))) -(-10 -7 (-15 -1392 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|)))) (-15 -2100 ((-430 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))))) -((-2034 (((-112) $ $) 171)) (-1962 (((-112) $) 43)) (-1916 (((-1287 |#1|) $ (-783)) NIL)) (-1541 (((-656 (-1101)) $) NIL)) (-1814 (($ (-1192 |#1|)) NIL)) (-1364 (((-1192 $) $ (-1101)) 82) (((-1192 |#1|) $) 71)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) 164 (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2488 (($ $ $) 158 (|has| |#1| (-568)))) (-1589 (((-430 (-1192 $)) (-1192 $)) 95 (|has| |#1| (-926)))) (-1587 (($ $) NIL (|has| |#1| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 115 (|has| |#1| (-926)))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3873 (($ $ (-783)) 61)) (-2579 (($ $ (-783)) 63)) (-3352 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL)) (-2378 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1101) $) NIL)) (-2996 (($ $ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) 80)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL) (((-701 |#1|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-2175 (($ $ $) 131)) (-2351 (($ $ $) NIL (|has| |#1| (-568)))) (-4215 (((-2 (|:| -1856 |#1|) (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-568)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1363 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#1| (-926)))) (-2291 (($ $ |#1| (-783) $) 69)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1949 (((-874) $ (-874)) 148)) (-1538 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1810 (((-112) $) 48)) (-1831 (((-783) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-1529 (($ (-1192 |#1|) (-1101)) 73) (($ (-1192 $) (-1101)) 89)) (-4209 (($ $ (-783)) 51)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-783)) 87) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-1101)) NIL) (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 153)) (-1915 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-3968 (($ (-1 (-783) (-783)) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2189 (((-1192 |#1|) $) NIL)) (-3403 (((-3 (-1101) "failed") $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) 76)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-3288 (((-1178) $) NIL)) (-2168 (((-2 (|:| -1720 $) (|:| -4400 $)) $ (-783)) 60)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-1101)) (|:| -3175 (-783))) "failed") $) NIL)) (-3597 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3503 (($) NIL (|has| |#1| (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) 50)) (-1670 ((|#1| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 103 (|has| |#1| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-3498 (($ $ (-783) |#1| $) 123)) (-4254 (((-430 (-1192 $)) (-1192 $)) 101 (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) 100 (|has| |#1| (-926)))) (-1392 (((-430 $) $) 108 (|has| |#1| (-926)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2022 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#1|) NIL) (($ $ (-656 (-1101)) (-656 |#1|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-4442 (((-3 $ "failed") $ (-783)) 54)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 172 (|has| |#1| (-374)))) (-1955 (($ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-3614 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-2369 (((-783) $) 78) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3714 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-4352 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-4092 (((-874) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1101)) NIL) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) 17 T CONST)) (-4310 (($) 19 T CONST)) (-4286 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#1| (-917 (-1196))))) (-3919 (((-112) $ $) 120)) (-4028 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 90)) (** (($ $ (-938)) 14) (($ $ (-783)) 12)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) -(((-1192 |#1|) (-13 (-1263 |#1|) (-10 -8 (-15 -1949 ((-874) $ (-874))) (-15 -3498 ($ $ (-783) |#1| $)))) (-1068)) (T -1192)) -((-1949 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1192 *3)) (-4 *3 (-1068)))) (-3498 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1192 *3)) (-4 *3 (-1068))))) -(-13 (-1263 |#1|) (-10 -8 (-15 -1949 ((-874) $ (-874))) (-15 -3498 ($ $ (-783) |#1| $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) 11)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2255 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-1655 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2266 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| |#1| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2236 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2294 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1194 |#1| |#2| |#3|) "failed") $) 36)) (-2378 (((-1187 |#1| |#2| |#3|) $) NIL) (((-1194 |#1| |#2| |#3|) $) NIL)) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2514 (((-419 (-576)) $) 59)) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-1621 (($ (-419 (-576)) (-1187 |#1| |#2| |#3|)) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2725 (((-112) $) NIL (|has| |#1| (-374)))) (-3840 (((-112) $) NIL)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-419 (-576))) 20) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3195 (((-1187 |#1| |#2| |#3|) $) 41)) (-1631 (((-3 (-1187 |#1| |#2| |#3|) "failed") $) NIL)) (-1608 (((-1187 |#1| |#2| |#3|) $) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-3597 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2843 (($ $ (-419 (-576))) NIL)) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-3614 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) 38)) (-2369 (((-419 (-576)) $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) NIL)) (-4092 (((-874) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1187 |#1| |#2| |#3|)) 30) (($ (-1194 |#1| |#2| |#3|)) 31) (($ (-1283 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2430 ((|#1| $ (-419 (-576))) NIL)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-2553 ((|#1| $) 12)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 22 T CONST)) (-4310 (($) 16 T CONST)) (-4286 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 24)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1193 |#1| |#2| |#3|) (-13 (-1270 |#1| (-1187 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1194 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1193)) -((-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) -(-13 (-1270 |#1| (-1187 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1194 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 129)) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) 119)) (-1738 (((-1260 |#2| |#1|) $ (-783)) 69)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2255 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-1655 (((-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-2266 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2236 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1176 |#1|)) 113)) (-2294 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) 25)) (-4233 (($ $) 28)) (-3928 (((-969 |#1|) $ (-783)) 81) (((-969 |#1|) $ (-783) (-783)) 83)) (-3840 (((-112) $) 124)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-783) $) 126) (((-783) $ (-783)) 128)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) NIL)) (-3079 (($ (-1 |#1| (-576)) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-783)) 13) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2703 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3597 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3139 (((-1139) $) NIL)) (-2843 (($ $ (-783)) 15)) (-2022 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-3353 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-4367 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1131)))) (-3614 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) 31)) (-2369 (((-783) $) NIL)) (-2307 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) NIL)) (-4092 (((-874) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1260 |#2| |#1|)) 55) (($ (-1283 |#2|)) 36)) (-3076 (((-1176 |#1|) $) 101)) (-2430 ((|#1| $ (-783)) 121)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-2553 ((|#1| $) 58)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 17 T CONST)) (-4310 (($) 20 T CONST)) (-4286 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) 198)) (-4007 (($ $ $) 35)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1194 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1260 |#2| |#1|))) (-15 -1738 ((-1260 |#2| |#1|) $ (-783))) (-15 -4092 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1194)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-1194 *3 *4 *5)))) (-1738 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1194 *4 *5 *6)) (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) -(-13 (-1278 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1260 |#2| |#1|))) (-15 -1738 ((-1260 |#2| |#1|) $ (-783))) (-15 -4092 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) -((-4092 (((-874) $) 33) (($ (-1196)) 35)) (-3765 (($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-3753 (($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-2850 (($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-2839 (($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-2828 (($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-2816 (($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-3091 (($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) -(((-1195) (-13 (-625 (-874)) (-10 -8 (-15 -4092 ($ (-1196))) (-15 -2850 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2828 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2839 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2816 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3765 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3091 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3753 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3753 ($ $))))) (T -1195)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1195)))) (-2850 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-2828 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-2839 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-2816 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3765 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3091 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) (-5 *1 (-1195)))) (-3753 (*1 *1 *1) (-5 *1 (-1195)))) -(-13 (-625 (-874)) (-10 -8 (-15 -4092 ($ (-1196))) (-15 -2850 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2828 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2839 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2816 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3765 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3091 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3753 ($ (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3753 ($ $)))) -((-2034 (((-112) $ $) NIL)) (-4237 (($ $ (-656 (-874))) 62)) (-1528 (($ $ (-656 (-874))) 60)) (-1552 (((-1178) $) 101)) (-1336 (((-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) (|:| |args| (-656 (-874)))) $) 108)) (-1807 (((-112) $) 23)) (-2928 (($ $ (-656 (-656 (-874)))) 59) (($ $ (-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) (|:| |args| (-656 (-874))))) 99)) (-3656 (($) 163 T CONST)) (-2090 (((-1292)) 135)) (-4375 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 69) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 76)) (-1992 (($) 122) (($ $) 131)) (-4124 (($ $) 100)) (-3492 (($ $ $) NIL)) (-2726 (($ $ $) NIL)) (-1783 (((-656 $) $) 136)) (-3288 (((-1178) $) 114)) (-3139 (((-1139) $) NIL)) (-4367 (($ $ (-656 (-874))) 61)) (-1505 (((-548) $) 48) (((-1196) $) 49) (((-905 (-576)) $) 80) (((-905 (-390)) $) 78)) (-4092 (((-874) $) 55) (($ (-1178)) 50)) (-1531 (((-112) $ $) NIL)) (-4032 (($ $ (-656 (-874))) 63)) (-3774 (((-1178) $) 34) (((-1178) $ (-112)) 35) (((-1292) (-834) $) 36) (((-1292) (-834) $ (-112)) 37)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 51)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) 52))) -(((-1196) (-13 (-862) (-626 (-548)) (-840) (-626 (-1196)) (-628 (-1178)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -1992 ($)) (-15 -1992 ($ $)) (-15 -2090 ((-1292))) (-15 -4124 ($ $)) (-15 -1807 ((-112) $)) (-15 -1336 ((-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -2928 ($ $ (-656 (-656 (-874))))) (-15 -2928 ($ $ (-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -1528 ($ $ (-656 (-874)))) (-15 -4237 ($ $ (-656 (-874)))) (-15 -4032 ($ $ (-656 (-874)))) (-15 -4367 ($ $ (-656 (-874)))) (-15 -1552 ((-1178) $)) (-15 -1783 ((-656 $) $)) (-15 -3656 ($) -2670)))) (T -1196)) -((-1992 (*1 *1) (-5 *1 (-1196))) (-1992 (*1 *1 *1) (-5 *1 (-1196))) (-2090 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1196)))) (-4124 (*1 *1 *1) (-5 *1 (-1196))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1196)))) (-2928 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1196)))) (-2928 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1196)))) (-1528 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))) (-4237 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1196)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1196)))) (-3656 (*1 *1) (-5 *1 (-1196)))) -(-13 (-862) (-626 (-548)) (-840) (-626 (-1196)) (-628 (-1178)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -1992 ($)) (-15 -1992 ($ $)) (-15 -2090 ((-1292))) (-15 -4124 ($ $)) (-15 -1807 ((-112) $)) (-15 -1336 ((-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -2928 ($ $ (-656 (-656 (-874))))) (-15 -2928 ($ $ (-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -1528 ($ $ (-656 (-874)))) (-15 -4237 ($ $ (-656 (-874)))) (-15 -4032 ($ $ (-656 (-874)))) (-15 -4367 ($ $ (-656 (-874)))) (-15 -1552 ((-1178) $)) (-15 -1783 ((-656 $) $)) (-15 -3656 ($) -2670))) -((-2885 (((-1287 |#1|) |#1| (-938)) 18) (((-1287 |#1|) (-656 |#1|)) 25))) -(((-1197 |#1|) (-10 -7 (-15 -2885 ((-1287 |#1|) (-656 |#1|))) (-15 -2885 ((-1287 |#1|) |#1| (-938)))) (-1068)) (T -1197)) -((-2885 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-1287 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1068)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-1287 *4)) (-5 *1 (-1197 *4))))) -(-10 -7 (-15 -2885 ((-1287 |#1|) (-656 |#1|))) (-15 -2885 ((-1287 |#1|) |#1| (-938)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-2378 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1363 (($ $) NIL (|has| |#1| (-464)))) (-2291 (($ $ |#1| (-990) $) NIL)) (-1810 (((-112) $) 17)) (-1831 (((-783) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-990)) NIL)) (-1915 (((-990) $) NIL)) (-3968 (($ (-1 (-990) (-990)) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#1| $) NIL)) (-3498 (($ $ (-990) |#1| $) NIL (-12 (|has| (-990) (-132)) (|has| |#1| (-568))))) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-2369 (((-990) $) NIL)) (-3714 ((|#1| $) NIL (|has| |#1| (-464)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-3765 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ (-990)) NIL)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-4300 (($) 10 T CONST)) (-4310 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 21)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1198 |#1|) (-13 (-336 |#1| (-990)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-990) (-132)) (-15 -3498 ($ $ (-990) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|))) (-1068)) (T -1198)) -((-3498 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-990)) (-4 *2 (-132)) (-5 *1 (-1198 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) -(-13 (-336 |#1| (-990)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-990) (-132)) (-15 -3498 ($ $ (-990) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|))) -((-3967 (((-1200) (-1196) $) 25)) (-1481 (($) 29)) (-2419 (((-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-1196) $) 22)) (-3844 (((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2502 "void")) $) 41) (((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) 42) (((-1292) (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) 43)) (-2053 (((-1292) (-1196)) 58)) (-2808 (((-1292) (-1196) $) 55) (((-1292) (-1196)) 56) (((-1292)) 57)) (-2739 (((-1292) (-1196)) 37)) (-3505 (((-1196)) 36)) (-2643 (($) 34)) (-1658 (((-449) (-1196) (-449) (-1196) $) 45) (((-449) (-656 (-1196)) (-449) (-1196) $) 49) (((-449) (-1196) (-449)) 46) (((-449) (-1196) (-449) (-1196)) 50)) (-3958 (((-1196)) 35)) (-4092 (((-874) $) 28)) (-4150 (((-1292)) 30) (((-1292) (-1196)) 33)) (-4224 (((-656 (-1196)) (-1196) $) 24)) (-3542 (((-1292) (-1196) (-656 (-1196)) $) 38) (((-1292) (-1196) (-656 (-1196))) 39) (((-1292) (-656 (-1196))) 40))) -(((-1199) (-13 (-625 (-874)) (-10 -8 (-15 -1481 ($)) (-15 -4150 ((-1292))) (-15 -4150 ((-1292) (-1196))) (-15 -1658 ((-449) (-1196) (-449) (-1196) $)) (-15 -1658 ((-449) (-656 (-1196)) (-449) (-1196) $)) (-15 -1658 ((-449) (-1196) (-449))) (-15 -1658 ((-449) (-1196) (-449) (-1196))) (-15 -2739 ((-1292) (-1196))) (-15 -3958 ((-1196))) (-15 -3505 ((-1196))) (-15 -3542 ((-1292) (-1196) (-656 (-1196)) $)) (-15 -3542 ((-1292) (-1196) (-656 (-1196)))) (-15 -3542 ((-1292) (-656 (-1196)))) (-15 -3844 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2502 "void")) $)) (-15 -3844 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2502 "void")))) (-15 -3844 ((-1292) (-3 (|:| |fst| (-446)) (|:| -2502 "void")))) (-15 -2808 ((-1292) (-1196) $)) (-15 -2808 ((-1292) (-1196))) (-15 -2808 ((-1292))) (-15 -2053 ((-1292) (-1196))) (-15 -2643 ($)) (-15 -2419 ((-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-1196) $)) (-15 -4224 ((-656 (-1196)) (-1196) $)) (-15 -3967 ((-1200) (-1196) $))))) (T -1199)) -((-1481 (*1 *1) (-5 *1 (-1199))) (-4150 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-1658 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-1658 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *4 (-1196)) (-5 *1 (-1199)))) (-1658 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-1658 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3958 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))) (-3505 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199)))) (-3542 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3542 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3844 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2808 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2808 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) (-2643 (*1 *1) (-5 *1 (-1199))) (-2419 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *1 (-1199)))) (-4224 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1199)) (-5 *3 (-1196)))) (-3967 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1200)) (-5 *1 (-1199))))) -(-13 (-625 (-874)) (-10 -8 (-15 -1481 ($)) (-15 -4150 ((-1292))) (-15 -4150 ((-1292) (-1196))) (-15 -1658 ((-449) (-1196) (-449) (-1196) $)) (-15 -1658 ((-449) (-656 (-1196)) (-449) (-1196) $)) (-15 -1658 ((-449) (-1196) (-449))) (-15 -1658 ((-449) (-1196) (-449) (-1196))) (-15 -2739 ((-1292) (-1196))) (-15 -3958 ((-1196))) (-15 -3505 ((-1196))) (-15 -3542 ((-1292) (-1196) (-656 (-1196)) $)) (-15 -3542 ((-1292) (-1196) (-656 (-1196)))) (-15 -3542 ((-1292) (-656 (-1196)))) (-15 -3844 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2502 "void")) $)) (-15 -3844 ((-1292) (-1196) (-3 (|:| |fst| (-446)) (|:| -2502 "void")))) (-15 -3844 ((-1292) (-3 (|:| |fst| (-446)) (|:| -2502 "void")))) (-15 -2808 ((-1292) (-1196) $)) (-15 -2808 ((-1292) (-1196))) (-15 -2808 ((-1292))) (-15 -2053 ((-1292) (-1196))) (-15 -2643 ($)) (-15 -2419 ((-3 (|:| |fst| (-446)) (|:| -2502 "void")) (-1196) $)) (-15 -4224 ((-656 (-1196)) (-1196) $)) (-15 -3967 ((-1200) (-1196) $)))) -((-3972 (((-656 (-656 (-3 (|:| -4124 (-1196)) (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))) $) 66)) (-2817 (((-656 (-3 (|:| -4124 (-1196)) (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))) (-446) $) 47)) (-2187 (($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-449))))) 17)) (-2053 (((-1292) $) 73)) (-3444 (((-656 (-1196)) $) 22)) (-4084 (((-1123) $) 60)) (-1520 (((-449) (-1196) $) 27)) (-1938 (((-656 (-1196)) $) 30)) (-2643 (($) 19)) (-1658 (((-449) (-656 (-1196)) (-449) $) 25) (((-449) (-1196) (-449) $) 24)) (-4092 (((-874) $) 9) (((-1209 (-1196) (-449)) $) 13))) -(((-1200) (-13 (-625 (-874)) (-10 -8 (-15 -4092 ((-1209 (-1196) (-449)) $)) (-15 -2643 ($)) (-15 -1658 ((-449) (-656 (-1196)) (-449) $)) (-15 -1658 ((-449) (-1196) (-449) $)) (-15 -1520 ((-449) (-1196) $)) (-15 -3444 ((-656 (-1196)) $)) (-15 -2817 ((-656 (-3 (|:| -4124 (-1196)) (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))) (-446) $)) (-15 -1938 ((-656 (-1196)) $)) (-15 -3972 ((-656 (-656 (-3 (|:| -4124 (-1196)) (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))) $)) (-15 -4084 ((-1123) $)) (-15 -2053 ((-1292) $)) (-15 -2187 ($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-449))))))))) (T -1200)) -((-4092 (*1 *2 *1) (-12 (-5 *2 (-1209 (-1196) (-449))) (-5 *1 (-1200)))) (-2643 (*1 *1) (-5 *1 (-1200))) (-1658 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *1 (-1200)))) (-1658 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1200)))) (-1520 (*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-449)) (-5 *1 (-1200)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200)))) (-2817 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -4124 (-1196)) (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))) (-5 *1 (-1200)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -4124 (-1196)) (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))))) (-5 *1 (-1200)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1200)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1200)))) (-2187 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-449))))) (-5 *1 (-1200))))) -(-13 (-625 (-874)) (-10 -8 (-15 -4092 ((-1209 (-1196) (-449)) $)) (-15 -2643 ($)) (-15 -1658 ((-449) (-656 (-1196)) (-449) $)) (-15 -1658 ((-449) (-1196) (-449) $)) (-15 -1520 ((-449) (-1196) $)) (-15 -3444 ((-656 (-1196)) $)) (-15 -2817 ((-656 (-3 (|:| -4124 (-1196)) (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))) (-446) $)) (-15 -1938 ((-656 (-1196)) $)) (-15 -3972 ((-656 (-656 (-3 (|:| -4124 (-1196)) (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))) $)) (-15 -4084 ((-1123) $)) (-15 -2053 ((-1292) $)) (-15 -2187 ($ (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-449)))))))) -((-2034 (((-112) $ $) NIL)) (-2974 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1178) "failed") $) 47)) (-2378 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1178) $) 48)) (-1996 (((-112) $) 53)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2682 (((-3 (-576) (-227) (-518) (-1178) $) $) 55)) (-2179 (((-656 $) $) 57)) (-1505 (((-1123) $) 24) (($ (-1123)) 25)) (-1965 (((-112) $) 56)) (-4092 (((-874) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1178)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1178) $) 49)) (-4291 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1178))) 16)) (-3992 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-1531 (((-112) $ $) NIL)) (-4323 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1178) $) 45)) (-3919 (((-112) $ $) 7))) -(((-1201) (-13 (-1282) (-1119) (-1057 (-576)) (-1057 (-227)) (-1057 (-518)) (-1057 (-1178)) (-625 (-548)) (-10 -8 (-15 -1505 ((-1123) $)) (-15 -1505 ($ (-1123))) (-15 -4092 ((-576) $)) (-15 -4323 ((-576) $)) (-15 -4092 ((-227) $)) (-15 -4323 ((-227) $)) (-15 -4092 ((-518) $)) (-15 -4323 ((-518) $)) (-15 -4092 ((-1178) $)) (-15 -4323 ((-1178) $)) (-15 -3992 ($ (-518) (-656 $))) (-15 -3992 ($ $ (-656 $))) (-15 -1996 ((-112) $)) (-15 -2682 ((-3 (-576) (-227) (-518) (-1178) $) $)) (-15 -2179 ((-656 $) $)) (-15 -1965 ((-112) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-576)))) (-15 -4291 ((-112) $ (|[\|\|]| (-227)))) (-15 -4291 ((-112) $ (|[\|\|]| (-518)))) (-15 -4291 ((-112) $ (|[\|\|]| (-1178))))))) (T -1201)) -((-1505 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1201)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1201)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) (-3992 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1201))) (-5 *1 (-1201)))) (-3992 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1178) (-1201))) (-5 *1 (-1201)))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1201)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1201)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1201)))) (-4291 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-1201))))) -(-13 (-1282) (-1119) (-1057 (-576)) (-1057 (-227)) (-1057 (-518)) (-1057 (-1178)) (-625 (-548)) (-10 -8 (-15 -1505 ((-1123) $)) (-15 -1505 ($ (-1123))) (-15 -4092 ((-576) $)) (-15 -4323 ((-576) $)) (-15 -4092 ((-227) $)) (-15 -4323 ((-227) $)) (-15 -4092 ((-518) $)) (-15 -4323 ((-518) $)) (-15 -4092 ((-1178) $)) (-15 -4323 ((-1178) $)) (-15 -3992 ($ (-518) (-656 $))) (-15 -3992 ($ $ (-656 $))) (-15 -1996 ((-112) $)) (-15 -2682 ((-3 (-576) (-227) (-518) (-1178) $) $)) (-15 -2179 ((-656 $) $)) (-15 -1965 ((-112) $)) (-15 -4291 ((-112) $ (|[\|\|]| (-576)))) (-15 -4291 ((-112) $ (|[\|\|]| (-227)))) (-15 -4291 ((-112) $ (|[\|\|]| (-518)))) (-15 -4291 ((-112) $ (|[\|\|]| (-1178)))))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) 22)) (-3656 (($) 12 T CONST)) (-2446 (($) 26)) (-3492 (($ $ $) NIL) (($) 19 T CONST)) (-2726 (($ $ $) NIL) (($) 20 T CONST)) (-3225 (((-938) $) 24)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) 23)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-1202 |#1|) (-13 (-856) (-10 -8 (-15 -3656 ($) -2670))) (-938)) (T -1202)) -((-3656 (*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938))))) -(-13 (-856) (-10 -8 (-15 -3656 ($) -2670))) +((-3213 (((-1176 |#1|) (-1176 |#1|)) 17)) (-2519 (((-1176 |#1|) (-1176 |#1|)) 13)) (-1710 (((-1176 |#1|) (-1176 |#1|) (-576) (-576)) 20)) (-4420 (((-1176 |#1|) (-1176 |#1|)) 15))) +(((-1172 |#1|) (-10 -7 (-15 -2519 ((-1176 |#1|) (-1176 |#1|))) (-15 -4420 ((-1176 |#1|) (-1176 |#1|))) (-15 -3213 ((-1176 |#1|) (-1176 |#1|))) (-15 -1710 ((-1176 |#1|) (-1176 |#1|) (-576) (-576)))) (-13 (-568) (-148))) (T -1172)) +((-1710 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1172 *4)))) (-3213 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1172 *3)))) (-4420 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1172 *3)))) (-2519 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1172 *3))))) +(-10 -7 (-15 -2519 ((-1176 |#1|) (-1176 |#1|))) (-15 -4420 ((-1176 |#1|) (-1176 |#1|))) (-15 -3213 ((-1176 |#1|) (-1176 |#1|))) (-15 -1710 ((-1176 |#1|) (-1176 |#1|) (-576) (-576)))) +((-1661 (((-1176 |#1|) (-1176 (-1176 |#1|))) 15))) +(((-1173 |#1|) (-10 -7 (-15 -1661 ((-1176 |#1|) (-1176 (-1176 |#1|))))) (-1236)) (T -1173)) +((-1661 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1173 *4)) (-4 *4 (-1236))))) +(-10 -7 (-15 -1661 ((-1176 |#1|) (-1176 (-1176 |#1|))))) +((-2874 (((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)) 25)) (-2521 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)) 26)) (-1632 (((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|)) 16))) +(((-1174 |#1| |#2|) (-10 -7 (-15 -1632 ((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|))) (-15 -2874 ((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|))) (-15 -2521 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)))) (-1236) (-1236)) (T -1174)) +((-2521 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1176 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-1174 *5 *2)))) (-2874 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1176 *6)) (-4 *6 (-1236)) (-4 *3 (-1236)) (-5 *2 (-1176 *3)) (-5 *1 (-1174 *6 *3)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1176 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1176 *6)) (-5 *1 (-1174 *5 *6))))) +(-10 -7 (-15 -1632 ((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|))) (-15 -2874 ((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|))) (-15 -2521 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)))) +((-1632 (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)) 21))) +(((-1175 |#1| |#2| |#3|) (-10 -7 (-15 -1632 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)))) (-1236) (-1236) (-1236)) (T -1175)) +((-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-1176 *7)) (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1176 *8)) (-5 *1 (-1175 *6 *7 *8))))) +(-10 -7 (-15 -1632 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) NIL)) (-2893 ((|#1| $) NIL)) (-2464 (($ $) 67)) (-2333 (((-1291) $ (-576) (-576)) 99 (|has| $ (-6 -4462)))) (-2938 (($ $ (-576)) 128 (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3319 (((-874) $) 56 (|has| |#1| (-1119)))) (-2161 (((-112)) 55 (|has| |#1| (-1119)))) (-3429 ((|#1| $ |#1|) NIL (|has| $ (-6 -4462)))) (-3614 (($ $ $) 115 (|has| $ (-6 -4462))) (($ $ (-576) $) 141)) (-2611 ((|#1| $ |#1|) 125 (|has| $ (-6 -4462)))) (-1438 ((|#1| $ |#1|) 120 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4462))) (($ $ "rest" $) 124 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 112 (|has| $ (-6 -4462))) ((|#1| $ (-576) |#1|) 77 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) 80)) (-2882 ((|#1| $) NIL)) (-3767 (($) NIL T CONST)) (-1658 (($ $) 14)) (-3515 (($ $) 40) (($ $ (-783)) 111)) (-3310 (((-112) (-656 |#1|) $) 134 (|has| |#1| (-1119)))) (-2796 (($ (-656 |#1|)) 130)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) 79)) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3518 (((-112) $) NIL)) (-3825 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2728 (((-1291) (-576) $) 140 (|has| |#1| (-1119)))) (-4231 (((-783) $) 137)) (-1994 (((-656 $) $) NIL)) (-3180 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-4033 (($ (-783) |#1|) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-2712 (((-112) $ (-783)) NIL)) (-2942 (((-656 |#1|) $) NIL)) (-1905 (((-112) $) NIL)) (-3696 (($ $) 113)) (-3277 (((-112) $) 13)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-3923 ((|#1| $) NIL) (($ $ (-783)) NIL)) (-2277 (($ $ $ (-576)) NIL) (($ |#1| $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) 96)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2429 (($ (-1 |#1|)) 143) (($ (-1 |#1| |#1|) |#1|) 144)) (-2328 ((|#1| $) 10)) (-3504 ((|#1| $) 39) (($ $ (-783)) 65)) (-2206 (((-2 (|:| |cycle?| (-112)) (|:| -3870 (-783)) (|:| |period| (-783))) (-783) $) 34)) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2476 (($ (-1 (-112) |#1|) $) 145)) (-2486 (($ (-1 (-112) |#1|) $) 146)) (-2500 (($ $ |#1|) 90 (|has| $ (-6 -4462)))) (-1714 (($ $ (-576)) 45)) (-3524 (((-112) $) 94)) (-3912 (((-112) $) 12)) (-2189 (((-112) $) 136)) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 30)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) 20)) (-2597 (($) 60)) (-2871 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1253 (-576))) NIL) ((|#1| $ (-576)) 75) ((|#1| $ (-576) |#1|) NIL)) (-2972 (((-576) $ $) 64)) (-3464 (($ $ (-1253 (-576))) NIL) (($ $ (-576)) NIL)) (-3152 (($ (-1 $)) 63)) (-3173 (((-112) $) 91)) (-1442 (($ $) 92)) (-1544 (($ $) 116 (|has| $ (-6 -4462)))) (-3564 (((-783) $) NIL)) (-2705 (($ $) NIL)) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) 59)) (-4076 (((-548) $) NIL (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 73)) (-2909 (($ |#1| $) 114)) (-1523 (($ $ $) 118 (|has| $ (-6 -4462))) (($ $ |#1|) 119 (|has| $ (-6 -4462)))) (-1661 (($ $ $) 101) (($ |#1| $) 61) (($ (-656 $)) 106) (($ $ |#1|) 100)) (-2869 (($ $) 66)) (-3563 (($ (-656 |#1|)) 129) (((-874) $) 57 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) NIL)) (-4369 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 132 (|has| |#1| (-1119)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1176 |#1|) (-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4462) (-15 -2796 ($ (-656 |#1|))) (IF (|has| |#1| (-1119)) (-15 -3310 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -2206 ((-2 (|:| |cycle?| (-112)) (|:| -3870 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -3152 ($ (-1 $))) (-15 -2909 ($ |#1| $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -2728 ((-1291) (-576) $)) (-15 -3319 ((-874) $)) (-15 -2161 ((-112)))) |%noBranch|) (-15 -3614 ($ $ (-576) $)) (-15 -2429 ($ (-1 |#1|))) (-15 -2429 ($ (-1 |#1| |#1|) |#1|)) (-15 -2476 ($ (-1 (-112) |#1|) $)) (-15 -2486 ($ (-1 (-112) |#1|) $)))) (-1236)) (T -1176)) +((-2796 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3)))) (-3310 (*1 *2 *3 *1) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-4 *4 (-1236)) (-5 *2 (-112)) (-5 *1 (-1176 *4)))) (-2206 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3870 (-783)) (|:| |period| (-783)))) (-5 *1 (-1176 *4)) (-4 *4 (-1236)) (-5 *3 (-783)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-1 (-1176 *3))) (-5 *1 (-1176 *3)) (-4 *3 (-1236)))) (-2909 (*1 *1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-1236)))) (-2728 (*1 *2 *3 *1) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1176 *4)) (-4 *4 (-1119)) (-4 *4 (-1236)))) (-3319 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) (-4 *3 (-1236)))) (-2161 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) (-4 *3 (-1236)))) (-3614 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1176 *3)) (-4 *3 (-1236)))) (-2429 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3)))) (-2429 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3)))) (-2476 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3)))) (-2486 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3))))) +(-13 (-686 |#1|) (-628 (-656 |#1|)) (-10 -8 (-6 -4462) (-15 -2796 ($ (-656 |#1|))) (IF (|has| |#1| (-1119)) (-15 -3310 ((-112) (-656 |#1|) $)) |%noBranch|) (-15 -2206 ((-2 (|:| |cycle?| (-112)) (|:| -3870 (-783)) (|:| |period| (-783))) (-783) $)) (-15 -3152 ($ (-1 $))) (-15 -2909 ($ |#1| $)) (IF (|has| |#1| (-1119)) (PROGN (-15 -2728 ((-1291) (-576) $)) (-15 -3319 ((-874) $)) (-15 -2161 ((-112)))) |%noBranch|) (-15 -3614 ($ $ (-576) $)) (-15 -2429 ($ (-1 |#1|))) (-15 -2429 ($ (-1 |#1| |#1|) |#1|)) (-15 -2476 ($ (-1 (-112) |#1|) $)) (-15 -2486 ($ (-1 (-112) |#1|) $)))) +((-3474 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-2968 (($ $) NIL)) (-4146 (($ $) NIL)) (-4323 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-1492 (((-112) $ $) NIL)) (-1470 (((-112) $ $ (-576)) NIL)) (-1328 (($ (-576)) 8) (($ (-227)) 10)) (-2952 (((-656 $) $ (-145)) NIL) (((-656 $) $ (-142)) NIL)) (-2373 (((-112) (-1 (-112) (-145) (-145)) $) NIL) (((-112) $) NIL (|has| (-145) (-862)))) (-2265 (($ (-1 (-112) (-145) (-145)) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-145) (-862))))) (-1758 (($ (-1 (-112) (-145) (-145)) $) NIL) (($ $) NIL (|has| (-145) (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4462))) (((-145) $ (-1253 (-576)) (-145)) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-2701 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-1842 (($ $ (-1253 (-576)) $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-3902 (($ (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119)))) (($ (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-145) (-1 (-145) (-145) (-145)) $ (-145) (-145)) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119)))) (((-145) (-1 (-145) (-145) (-145)) $ (-145)) NIL (|has| $ (-6 -4461))) (((-145) (-1 (-145) (-145) (-145)) $) NIL (|has| $ (-6 -4461)))) (-1776 (((-145) $ (-576) (-145)) NIL (|has| $ (-6 -4462)))) (-1698 (((-145) $ (-576)) NIL)) (-1514 (((-112) $ $) NIL)) (-3584 (((-576) (-1 (-112) (-145)) $) NIL) (((-576) (-145) $) NIL (|has| (-145) (-1119))) (((-576) (-145) $ (-576)) NIL (|has| (-145) (-1119))) (((-576) $ $ (-576)) NIL) (((-576) (-142) $ (-576)) NIL)) (-3825 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-4033 (($ (-783) (-145)) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| (-145) (-862)))) (-1854 (($ (-1 (-112) (-145) (-145)) $ $) NIL) (($ $ $) NIL (|has| (-145) (-862)))) (-2591 (((-656 (-145)) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-3814 (((-576) $) NIL (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| (-145) (-862)))) (-2008 (((-112) $ $ (-145)) NIL)) (-4413 (((-783) $ $ (-145)) NIL)) (-1763 (($ (-1 (-145) (-145)) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-145) (-145)) $) NIL) (($ (-1 (-145) (-145) (-145)) $ $) NIL)) (-2675 (($ $) NIL)) (-2795 (($ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-2715 (($ $ (-145)) NIL) (($ $ (-142)) NIL)) (-1927 (((-1177) $) NIL (|has| (-145) (-1119)))) (-2277 (($ (-145) $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| (-145) (-1119)))) (-3504 (((-145) $) NIL (|has| (-576) (-862)))) (-2644 (((-3 (-145) "failed") (-1 (-112) (-145)) $) NIL)) (-2500 (($ $ (-145)) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-145)))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-304 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-145) (-145)) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119)))) (($ $ (-656 (-145)) (-656 (-145))) NIL (-12 (|has| (-145) (-319 (-145))) (|has| (-145) (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-1947 (((-656 (-145)) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 (((-145) $ (-576) (-145)) NIL) (((-145) $ (-576)) NIL) (($ $ (-1253 (-576))) NIL) (($ $ $) NIL)) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-1456 (((-783) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461))) (((-783) (-145) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-145) (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-145) (-626 (-548))))) (-3573 (($ (-656 (-145))) NIL)) (-1661 (($ $ (-145)) NIL) (($ (-145) $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3563 (($ (-145)) NIL) (((-874) $) NIL (|has| (-145) (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-2043 (((-112) (-1 (-112) (-145)) $) NIL (|has| $ (-6 -4461)))) (-2584 (((-1177) $) 21) (((-1177) $ (-112)) 23) (((-1291) (-834) $) 24) (((-1291) (-834) $ (-112)) 25)) (-3049 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3024 (((-112) $ $) NIL (|has| (-145) (-862)))) (-2988 (((-112) $ $) NIL (|has| (-145) (-1119)))) (-3037 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3010 (((-112) $ $) NIL (|has| (-145) (-862)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1177) (-13 (-1163) (-840) (-10 -8 (-15 -1328 ($ (-576))) (-15 -1328 ($ (-227)))))) (T -1177)) +((-1328 (*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1177)))) (-1328 (*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1177))))) +(-13 (-1163) (-840) (-10 -8 (-15 -1328 ($ (-576))) (-15 -1328 ($ (-227))))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL)) (-2333 (((-1291) $ (-1177) (-1177)) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-1177) |#1|) NIL)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 |#1| "failed") (-1177) $) NIL)) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119))))) (-3623 (($ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#1| "failed") (-1177) $) NIL)) (-3902 (($ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-1177) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-1177)) NIL)) (-3825 (((-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-1177) $) NIL (|has| (-1177) (-862)))) (-2591 (((-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-1177) $) NIL (|has| (-1177) (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-3135 (((-656 (-1177)) $) NIL)) (-2937 (((-112) (-1177) $) NIL)) (-1409 (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL)) (-2040 (($ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL)) (-3321 (((-656 (-1177)) $) NIL)) (-2378 (((-112) (-1177) $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-3504 ((|#1| $) NIL (|has| (-1177) (-862)))) (-2644 (((-3 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) "failed") (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (($ $ (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL (-12 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-319 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-1177)) NIL) ((|#1| $ (-1177) |#1|) NIL)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL)) (-3563 (((-874) $) NIL (-2835 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-625 (-874))) (|has| |#1| (-625 (-874)))))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 (-1177)) (|:| -4353 |#1|)) (-1119)) (|has| |#1| (-1119))))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1178 |#1|) (-13 (-1212 (-1177) |#1|) (-10 -7 (-6 -4461))) (-1119)) (T -1178)) +NIL +(-13 (-1212 (-1177) |#1|) (-10 -7 (-6 -4461))) +((-4366 (((-1176 |#1|) (-1176 |#1|)) 83)) (-1551 (((-3 (-1176 |#1|) "failed") (-1176 |#1|)) 39)) (-1982 (((-1176 |#1|) (-419 (-576)) (-1176 |#1|)) 133 (|has| |#1| (-38 (-419 (-576)))))) (-2568 (((-1176 |#1|) |#1| (-1176 |#1|)) 139 (|has| |#1| (-374)))) (-2042 (((-1176 |#1|) (-1176 |#1|)) 97)) (-3424 (((-1176 (-576)) (-576)) 63)) (-2863 (((-1176 |#1|) (-1176 (-1176 |#1|))) 116 (|has| |#1| (-38 (-419 (-576)))))) (-2311 (((-1176 |#1|) (-576) (-576) (-1176 |#1|)) 102)) (-3605 (((-1176 |#1|) |#1| (-576)) 51)) (-3433 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 66)) (-2024 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 136 (|has| |#1| (-374)))) (-1633 (((-1176 |#1|) |#1| (-1 (-1176 |#1|))) 115 (|has| |#1| (-38 (-419 (-576)))))) (-3538 (((-1176 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1176 |#1|))) 137 (|has| |#1| (-374)))) (-2648 (((-1176 |#1|) (-1176 |#1|)) 96)) (-4246 (((-1176 |#1|) (-1176 |#1|)) 82)) (-3551 (((-1176 |#1|) (-576) (-576) (-1176 |#1|)) 103)) (-3848 (((-1176 |#1|) |#1| (-1176 |#1|)) 112 (|has| |#1| (-38 (-419 (-576)))))) (-1769 (((-1176 (-576)) (-576)) 62)) (-2690 (((-1176 |#1|) |#1|) 65)) (-3454 (((-1176 |#1|) (-1176 |#1|) (-576) (-576)) 99)) (-3589 (((-1176 |#1|) (-1 |#1| (-576)) (-1176 |#1|)) 72)) (-3463 (((-3 (-1176 |#1|) "failed") (-1176 |#1|) (-1176 |#1|)) 37)) (-3975 (((-1176 |#1|) (-1176 |#1|)) 98)) (-3306 (((-1176 |#1|) (-1176 |#1|) |#1|) 77)) (-3719 (((-1176 |#1|) (-1176 |#1|)) 68)) (-2320 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 78)) (-3563 (((-1176 |#1|) |#1|) 73)) (-3662 (((-1176 |#1|) (-1176 (-1176 |#1|))) 88)) (-3107 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 38)) (-3095 (((-1176 |#1|) (-1176 |#1|)) 21) (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 23)) (-3083 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 17)) (* (((-1176 |#1|) (-1176 |#1|) |#1|) 29) (((-1176 |#1|) |#1| (-1176 |#1|)) 26) (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 27))) +(((-1179 |#1|) (-10 -7 (-15 -3083 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3095 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3095 ((-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -3463 ((-3 (-1176 |#1|) "failed") (-1176 |#1|) (-1176 |#1|))) (-15 -3107 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -1551 ((-3 (-1176 |#1|) "failed") (-1176 |#1|))) (-15 -3605 ((-1176 |#1|) |#1| (-576))) (-15 -1769 ((-1176 (-576)) (-576))) (-15 -3424 ((-1176 (-576)) (-576))) (-15 -2690 ((-1176 |#1|) |#1|)) (-15 -3433 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3719 ((-1176 |#1|) (-1176 |#1|))) (-15 -3589 ((-1176 |#1|) (-1 |#1| (-576)) (-1176 |#1|))) (-15 -3563 ((-1176 |#1|) |#1|)) (-15 -3306 ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -2320 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4246 ((-1176 |#1|) (-1176 |#1|))) (-15 -4366 ((-1176 |#1|) (-1176 |#1|))) (-15 -3662 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -2648 ((-1176 |#1|) (-1176 |#1|))) (-15 -2042 ((-1176 |#1|) (-1176 |#1|))) (-15 -3975 ((-1176 |#1|) (-1176 |#1|))) (-15 -3454 ((-1176 |#1|) (-1176 |#1|) (-576) (-576))) (-15 -2311 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (-15 -3551 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 -1633 ((-1176 |#1|) |#1| (-1 (-1176 |#1|)))) (-15 -2863 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -1982 ((-1176 |#1|) (-419 (-576)) (-1176 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2024 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3538 ((-1176 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1176 |#1|)))) (-15 -2568 ((-1176 |#1|) |#1| (-1176 |#1|)))) |%noBranch|)) (-1068)) (T -1179)) +((-2568 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3538 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1176 *4))) (-4 *4 (-374)) (-4 *4 (-1068)) (-5 *2 (-1176 *4)) (-5 *1 (-1179 *4)))) (-2024 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-1982 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1068)) (-5 *3 (-419 (-576))) (-5 *1 (-1179 *4)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1179 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1176 *3))) (-5 *2 (-1176 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)))) (-3848 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3551 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-1179 *4)))) (-2311 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-1179 *4)))) (-3454 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) (-5 *1 (-1179 *4)))) (-3975 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-2648 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1179 *4)) (-4 *4 (-1068)))) (-4366 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-4246 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-2320 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3306 (*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3563 (*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1068)))) (-3589 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1068)) (-5 *1 (-1179 *4)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3433 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-2690 (*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1068)))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1068)) (-5 *3 (-576)))) (-1769 (*1 *2 *3) (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1068)) (-5 *3 (-576)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-5 *2 (-1176 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1068)))) (-1551 (*1 *2 *2) (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3107 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3463 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3095 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) (-3083 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3))))) +(-10 -7 (-15 -3083 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3095 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3095 ((-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -3463 ((-3 (-1176 |#1|) "failed") (-1176 |#1|) (-1176 |#1|))) (-15 -3107 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -1551 ((-3 (-1176 |#1|) "failed") (-1176 |#1|))) (-15 -3605 ((-1176 |#1|) |#1| (-576))) (-15 -1769 ((-1176 (-576)) (-576))) (-15 -3424 ((-1176 (-576)) (-576))) (-15 -2690 ((-1176 |#1|) |#1|)) (-15 -3433 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3719 ((-1176 |#1|) (-1176 |#1|))) (-15 -3589 ((-1176 |#1|) (-1 |#1| (-576)) (-1176 |#1|))) (-15 -3563 ((-1176 |#1|) |#1|)) (-15 -3306 ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -2320 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4246 ((-1176 |#1|) (-1176 |#1|))) (-15 -4366 ((-1176 |#1|) (-1176 |#1|))) (-15 -3662 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -2648 ((-1176 |#1|) (-1176 |#1|))) (-15 -2042 ((-1176 |#1|) (-1176 |#1|))) (-15 -3975 ((-1176 |#1|) (-1176 |#1|))) (-15 -3454 ((-1176 |#1|) (-1176 |#1|) (-576) (-576))) (-15 -2311 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (-15 -3551 ((-1176 |#1|) (-576) (-576) (-1176 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 -1633 ((-1176 |#1|) |#1| (-1 (-1176 |#1|)))) (-15 -2863 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -1982 ((-1176 |#1|) (-419 (-576)) (-1176 |#1|)))) |%noBranch|) (IF (|has| |#1| (-374)) (PROGN (-15 -2024 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3538 ((-1176 |#1|) (-1 |#1| (-576)) |#1| (-1 (-1176 |#1|)))) (-15 -2568 ((-1176 |#1|) |#1| (-1176 |#1|)))) |%noBranch|)) +((-3894 (((-1176 |#1|) (-1176 |#1|)) 60)) (-3768 (((-1176 |#1|) (-1176 |#1|)) 42)) (-3872 (((-1176 |#1|) (-1176 |#1|)) 56)) (-3747 (((-1176 |#1|) (-1176 |#1|)) 38)) (-3916 (((-1176 |#1|) (-1176 |#1|)) 63)) (-3788 (((-1176 |#1|) (-1176 |#1|)) 45)) (-3710 (((-1176 |#1|) (-1176 |#1|)) 34)) (-3984 (((-1176 |#1|) (-1176 |#1|)) 29)) (-3928 (((-1176 |#1|) (-1176 |#1|)) 64)) (-3798 (((-1176 |#1|) (-1176 |#1|)) 46)) (-3905 (((-1176 |#1|) (-1176 |#1|)) 61)) (-3778 (((-1176 |#1|) (-1176 |#1|)) 43)) (-3882 (((-1176 |#1|) (-1176 |#1|)) 58)) (-3757 (((-1176 |#1|) (-1176 |#1|)) 40)) (-3958 (((-1176 |#1|) (-1176 |#1|)) 68)) (-3831 (((-1176 |#1|) (-1176 |#1|)) 50)) (-3939 (((-1176 |#1|) (-1176 |#1|)) 66)) (-3808 (((-1176 |#1|) (-1176 |#1|)) 48)) (-3981 (((-1176 |#1|) (-1176 |#1|)) 71)) (-3852 (((-1176 |#1|) (-1176 |#1|)) 53)) (-1830 (((-1176 |#1|) (-1176 |#1|)) 72)) (-3863 (((-1176 |#1|) (-1176 |#1|)) 54)) (-3969 (((-1176 |#1|) (-1176 |#1|)) 70)) (-3841 (((-1176 |#1|) (-1176 |#1|)) 52)) (-3948 (((-1176 |#1|) (-1176 |#1|)) 69)) (-3820 (((-1176 |#1|) (-1176 |#1|)) 51)) (** (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 36))) +(((-1180 |#1|) (-10 -7 (-15 -3984 ((-1176 |#1|) (-1176 |#1|))) (-15 -3710 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3747 ((-1176 |#1|) (-1176 |#1|))) (-15 -3757 ((-1176 |#1|) (-1176 |#1|))) (-15 -3768 ((-1176 |#1|) (-1176 |#1|))) (-15 -3778 ((-1176 |#1|) (-1176 |#1|))) (-15 -3788 ((-1176 |#1|) (-1176 |#1|))) (-15 -3798 ((-1176 |#1|) (-1176 |#1|))) (-15 -3808 ((-1176 |#1|) (-1176 |#1|))) (-15 -3820 ((-1176 |#1|) (-1176 |#1|))) (-15 -3831 ((-1176 |#1|) (-1176 |#1|))) (-15 -3841 ((-1176 |#1|) (-1176 |#1|))) (-15 -3852 ((-1176 |#1|) (-1176 |#1|))) (-15 -3863 ((-1176 |#1|) (-1176 |#1|))) (-15 -3872 ((-1176 |#1|) (-1176 |#1|))) (-15 -3882 ((-1176 |#1|) (-1176 |#1|))) (-15 -3894 ((-1176 |#1|) (-1176 |#1|))) (-15 -3905 ((-1176 |#1|) (-1176 |#1|))) (-15 -3916 ((-1176 |#1|) (-1176 |#1|))) (-15 -3928 ((-1176 |#1|) (-1176 |#1|))) (-15 -3939 ((-1176 |#1|) (-1176 |#1|))) (-15 -3948 ((-1176 |#1|) (-1176 |#1|))) (-15 -3958 ((-1176 |#1|) (-1176 |#1|))) (-15 -3969 ((-1176 |#1|) (-1176 |#1|))) (-15 -3981 ((-1176 |#1|) (-1176 |#1|))) (-15 -1830 ((-1176 |#1|) (-1176 |#1|)))) (-38 (-419 (-576)))) (T -1180)) +((-1830 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3969 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3948 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3872 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3768 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3757 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1180 *3))))) +(-10 -7 (-15 -3984 ((-1176 |#1|) (-1176 |#1|))) (-15 -3710 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3747 ((-1176 |#1|) (-1176 |#1|))) (-15 -3757 ((-1176 |#1|) (-1176 |#1|))) (-15 -3768 ((-1176 |#1|) (-1176 |#1|))) (-15 -3778 ((-1176 |#1|) (-1176 |#1|))) (-15 -3788 ((-1176 |#1|) (-1176 |#1|))) (-15 -3798 ((-1176 |#1|) (-1176 |#1|))) (-15 -3808 ((-1176 |#1|) (-1176 |#1|))) (-15 -3820 ((-1176 |#1|) (-1176 |#1|))) (-15 -3831 ((-1176 |#1|) (-1176 |#1|))) (-15 -3841 ((-1176 |#1|) (-1176 |#1|))) (-15 -3852 ((-1176 |#1|) (-1176 |#1|))) (-15 -3863 ((-1176 |#1|) (-1176 |#1|))) (-15 -3872 ((-1176 |#1|) (-1176 |#1|))) (-15 -3882 ((-1176 |#1|) (-1176 |#1|))) (-15 -3894 ((-1176 |#1|) (-1176 |#1|))) (-15 -3905 ((-1176 |#1|) (-1176 |#1|))) (-15 -3916 ((-1176 |#1|) (-1176 |#1|))) (-15 -3928 ((-1176 |#1|) (-1176 |#1|))) (-15 -3939 ((-1176 |#1|) (-1176 |#1|))) (-15 -3948 ((-1176 |#1|) (-1176 |#1|))) (-15 -3958 ((-1176 |#1|) (-1176 |#1|))) (-15 -3969 ((-1176 |#1|) (-1176 |#1|))) (-15 -3981 ((-1176 |#1|) (-1176 |#1|))) (-15 -1830 ((-1176 |#1|) (-1176 |#1|)))) +((-3894 (((-1176 |#1|) (-1176 |#1|)) 102)) (-3768 (((-1176 |#1|) (-1176 |#1|)) 61)) (-2016 (((-2 (|:| -3872 (-1176 |#1|)) (|:| -3882 (-1176 |#1|))) (-1176 |#1|)) 98)) (-3872 (((-1176 |#1|) (-1176 |#1|)) 99)) (-1696 (((-2 (|:| -3747 (-1176 |#1|)) (|:| -3757 (-1176 |#1|))) (-1176 |#1|)) 54)) (-3747 (((-1176 |#1|) (-1176 |#1|)) 55)) (-3916 (((-1176 |#1|) (-1176 |#1|)) 104)) (-3788 (((-1176 |#1|) (-1176 |#1|)) 68)) (-3710 (((-1176 |#1|) (-1176 |#1|)) 40)) (-3984 (((-1176 |#1|) (-1176 |#1|)) 37)) (-3928 (((-1176 |#1|) (-1176 |#1|)) 105)) (-3798 (((-1176 |#1|) (-1176 |#1|)) 69)) (-3905 (((-1176 |#1|) (-1176 |#1|)) 103)) (-3778 (((-1176 |#1|) (-1176 |#1|)) 64)) (-3882 (((-1176 |#1|) (-1176 |#1|)) 100)) (-3757 (((-1176 |#1|) (-1176 |#1|)) 56)) (-3958 (((-1176 |#1|) (-1176 |#1|)) 113)) (-3831 (((-1176 |#1|) (-1176 |#1|)) 88)) (-3939 (((-1176 |#1|) (-1176 |#1|)) 107)) (-3808 (((-1176 |#1|) (-1176 |#1|)) 84)) (-3981 (((-1176 |#1|) (-1176 |#1|)) 117)) (-3852 (((-1176 |#1|) (-1176 |#1|)) 92)) (-1830 (((-1176 |#1|) (-1176 |#1|)) 119)) (-3863 (((-1176 |#1|) (-1176 |#1|)) 94)) (-3969 (((-1176 |#1|) (-1176 |#1|)) 115)) (-3841 (((-1176 |#1|) (-1176 |#1|)) 90)) (-3948 (((-1176 |#1|) (-1176 |#1|)) 109)) (-3820 (((-1176 |#1|) (-1176 |#1|)) 86)) (** (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 41))) +(((-1181 |#1|) (-10 -7 (-15 -3984 ((-1176 |#1|) (-1176 |#1|))) (-15 -3710 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -1696 ((-2 (|:| -3747 (-1176 |#1|)) (|:| -3757 (-1176 |#1|))) (-1176 |#1|))) (-15 -3747 ((-1176 |#1|) (-1176 |#1|))) (-15 -3757 ((-1176 |#1|) (-1176 |#1|))) (-15 -3768 ((-1176 |#1|) (-1176 |#1|))) (-15 -3778 ((-1176 |#1|) (-1176 |#1|))) (-15 -3788 ((-1176 |#1|) (-1176 |#1|))) (-15 -3798 ((-1176 |#1|) (-1176 |#1|))) (-15 -3808 ((-1176 |#1|) (-1176 |#1|))) (-15 -3820 ((-1176 |#1|) (-1176 |#1|))) (-15 -3831 ((-1176 |#1|) (-1176 |#1|))) (-15 -3841 ((-1176 |#1|) (-1176 |#1|))) (-15 -3852 ((-1176 |#1|) (-1176 |#1|))) (-15 -3863 ((-1176 |#1|) (-1176 |#1|))) (-15 -2016 ((-2 (|:| -3872 (-1176 |#1|)) (|:| -3882 (-1176 |#1|))) (-1176 |#1|))) (-15 -3872 ((-1176 |#1|) (-1176 |#1|))) (-15 -3882 ((-1176 |#1|) (-1176 |#1|))) (-15 -3894 ((-1176 |#1|) (-1176 |#1|))) (-15 -3905 ((-1176 |#1|) (-1176 |#1|))) (-15 -3916 ((-1176 |#1|) (-1176 |#1|))) (-15 -3928 ((-1176 |#1|) (-1176 |#1|))) (-15 -3939 ((-1176 |#1|) (-1176 |#1|))) (-15 -3948 ((-1176 |#1|) (-1176 |#1|))) (-15 -3958 ((-1176 |#1|) (-1176 |#1|))) (-15 -3969 ((-1176 |#1|) (-1176 |#1|))) (-15 -3981 ((-1176 |#1|) (-1176 |#1|))) (-15 -1830 ((-1176 |#1|) (-1176 |#1|)))) (-38 (-419 (-576)))) (T -1181)) +((-1830 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3969 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3948 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3939 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3894 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3882 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3872 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-2016 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3872 (-1176 *4)) (|:| -3882 (-1176 *4)))) (-5 *1 (-1181 *4)) (-5 *3 (-1176 *4)))) (-3863 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3831 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3820 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3798 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3778 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3768 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3757 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-2 (|:| -3747 (-1176 *4)) (|:| -3757 (-1176 *4)))) (-5 *1 (-1181 *4)) (-5 *3 (-1176 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3710 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1181 *3))))) +(-10 -7 (-15 -3984 ((-1176 |#1|) (-1176 |#1|))) (-15 -3710 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -1696 ((-2 (|:| -3747 (-1176 |#1|)) (|:| -3757 (-1176 |#1|))) (-1176 |#1|))) (-15 -3747 ((-1176 |#1|) (-1176 |#1|))) (-15 -3757 ((-1176 |#1|) (-1176 |#1|))) (-15 -3768 ((-1176 |#1|) (-1176 |#1|))) (-15 -3778 ((-1176 |#1|) (-1176 |#1|))) (-15 -3788 ((-1176 |#1|) (-1176 |#1|))) (-15 -3798 ((-1176 |#1|) (-1176 |#1|))) (-15 -3808 ((-1176 |#1|) (-1176 |#1|))) (-15 -3820 ((-1176 |#1|) (-1176 |#1|))) (-15 -3831 ((-1176 |#1|) (-1176 |#1|))) (-15 -3841 ((-1176 |#1|) (-1176 |#1|))) (-15 -3852 ((-1176 |#1|) (-1176 |#1|))) (-15 -3863 ((-1176 |#1|) (-1176 |#1|))) (-15 -2016 ((-2 (|:| -3872 (-1176 |#1|)) (|:| -3882 (-1176 |#1|))) (-1176 |#1|))) (-15 -3872 ((-1176 |#1|) (-1176 |#1|))) (-15 -3882 ((-1176 |#1|) (-1176 |#1|))) (-15 -3894 ((-1176 |#1|) (-1176 |#1|))) (-15 -3905 ((-1176 |#1|) (-1176 |#1|))) (-15 -3916 ((-1176 |#1|) (-1176 |#1|))) (-15 -3928 ((-1176 |#1|) (-1176 |#1|))) (-15 -3939 ((-1176 |#1|) (-1176 |#1|))) (-15 -3948 ((-1176 |#1|) (-1176 |#1|))) (-15 -3958 ((-1176 |#1|) (-1176 |#1|))) (-15 -3969 ((-1176 |#1|) (-1176 |#1|))) (-15 -3981 ((-1176 |#1|) (-1176 |#1|))) (-15 -1830 ((-1176 |#1|) (-1176 |#1|)))) +((-3597 (((-975 |#2|) |#2| |#2|) 50)) (-2985 ((|#2| |#2| |#1|) 19 (|has| |#1| (-317))))) +(((-1182 |#1| |#2|) (-10 -7 (-15 -3597 ((-975 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -2985 (|#2| |#2| |#1|)) |%noBranch|)) (-568) (-1262 |#1|)) (T -1182)) +((-2985 (*1 *2 *2 *3) (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1182 *3 *2)) (-4 *2 (-1262 *3)))) (-3597 (*1 *2 *3 *3) (-12 (-4 *4 (-568)) (-5 *2 (-975 *3)) (-5 *1 (-1182 *4 *3)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -3597 ((-975 |#2|) |#2| |#2|)) (IF (|has| |#1| (-317)) (-15 -2985 (|#2| |#2| |#1|)) |%noBranch|)) +((-3474 (((-112) $ $) NIL)) (-1790 (($ $ (-656 (-783))) 79)) (-2657 (($) 33)) (-2592 (($ $) 51)) (-3807 (((-656 $) $) 60)) (-2961 (((-112) $) 19)) (-1736 (((-656 (-960 |#2|)) $) 86)) (-2497 (($ $) 80)) (-2421 (((-783) $) 47)) (-4033 (($) 32)) (-3470 (($ $ (-656 (-783)) (-960 |#2|)) 72) (($ $ (-656 (-783)) (-783)) 73) (($ $ (-783) (-960 |#2|)) 75)) (-1854 (($ $ $) 57) (($ (-656 $)) 59)) (-3982 (((-783) $) 87)) (-1905 (((-112) $) 15)) (-1927 (((-1177) $) NIL)) (-1639 (((-112) $) 22)) (-1445 (((-1139) $) NIL)) (-4422 (((-173) $) 85)) (-2762 (((-960 |#2|) $) 81)) (-2174 (((-783) $) 82)) (-1496 (((-112) $) 84)) (-1553 (($ $ (-656 (-783)) (-173)) 78)) (-1691 (($ $) 52)) (-3563 (((-874) $) 99)) (-3670 (($ $ (-656 (-783)) (-112)) 77)) (-3281 (((-656 $) $) 11)) (-3472 (($ $ (-783)) 46)) (-2582 (($ $) 43)) (-3985 (((-112) $ $) NIL)) (-4283 (($ $ $ (-960 |#2|) (-783)) 68)) (-2744 (($ $ (-960 |#2|)) 67)) (-4164 (($ $ (-656 (-783)) (-960 |#2|)) 66) (($ $ (-656 (-783)) (-783)) 70) (((-783) $ (-960 |#2|)) 71)) (-2988 (((-112) $ $) 92))) +(((-1183 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -1905 ((-112) $)) (-15 -2961 ((-112) $)) (-15 -1639 ((-112) $)) (-15 -4033 ($)) (-15 -2657 ($)) (-15 -2582 ($ $)) (-15 -3472 ($ $ (-783))) (-15 -3281 ((-656 $) $)) (-15 -2421 ((-783) $)) (-15 -2592 ($ $)) (-15 -1691 ($ $)) (-15 -1854 ($ $ $)) (-15 -1854 ($ (-656 $))) (-15 -3807 ((-656 $) $)) (-15 -4164 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -2744 ($ $ (-960 |#2|))) (-15 -4283 ($ $ $ (-960 |#2|) (-783))) (-15 -3470 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -4164 ($ $ (-656 (-783)) (-783))) (-15 -3470 ($ $ (-656 (-783)) (-783))) (-15 -4164 ((-783) $ (-960 |#2|))) (-15 -3470 ($ $ (-783) (-960 |#2|))) (-15 -3670 ($ $ (-656 (-783)) (-112))) (-15 -1553 ($ $ (-656 (-783)) (-173))) (-15 -1790 ($ $ (-656 (-783)))) (-15 -2762 ((-960 |#2|) $)) (-15 -2174 ((-783) $)) (-15 -1496 ((-112) $)) (-15 -4422 ((-173) $)) (-15 -3982 ((-783) $)) (-15 -2497 ($ $)) (-15 -1736 ((-656 (-960 |#2|)) $)))) (-938) (-1068)) (T -1183)) +((-1905 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-4033 (*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-2657 (*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-2582 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-3472 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3281 (*1 *2 *1) (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2592 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-1691 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-1854 (*1 *1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-1854 (*1 *1 *2) (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3807 (*1 *2 *1) (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-4164 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)))) (-2744 (*1 *1 *1 *2) (-12 (-5 *2 (-960 *4)) (-4 *4 (-1068)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)))) (-4283 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-960 *5)) (-5 *3 (-783)) (-4 *5 (-1068)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)))) (-3470 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)))) (-4164 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-3470 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-4164 (*1 *2 *1 *3) (-12 (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *2 (-783)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)))) (-3470 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)))) (-3670 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-1553 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1068)))) (-1790 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-960 *4)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-4422 (*1 *2 *1) (-12 (-5 *2 (-173)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068)))) (-2497 (*1 *1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-656 (-960 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1068))))) +(-13 (-1119) (-10 -8 (-15 -1905 ((-112) $)) (-15 -2961 ((-112) $)) (-15 -1639 ((-112) $)) (-15 -4033 ($)) (-15 -2657 ($)) (-15 -2582 ($ $)) (-15 -3472 ($ $ (-783))) (-15 -3281 ((-656 $) $)) (-15 -2421 ((-783) $)) (-15 -2592 ($ $)) (-15 -1691 ($ $)) (-15 -1854 ($ $ $)) (-15 -1854 ($ (-656 $))) (-15 -3807 ((-656 $) $)) (-15 -4164 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -2744 ($ $ (-960 |#2|))) (-15 -4283 ($ $ $ (-960 |#2|) (-783))) (-15 -3470 ($ $ (-656 (-783)) (-960 |#2|))) (-15 -4164 ($ $ (-656 (-783)) (-783))) (-15 -3470 ($ $ (-656 (-783)) (-783))) (-15 -4164 ((-783) $ (-960 |#2|))) (-15 -3470 ($ $ (-783) (-960 |#2|))) (-15 -3670 ($ $ (-656 (-783)) (-112))) (-15 -1553 ($ $ (-656 (-783)) (-173))) (-15 -1790 ($ $ (-656 (-783)))) (-15 -2762 ((-960 |#2|) $)) (-15 -2174 ((-783) $)) (-15 -1496 ((-112) $)) (-15 -4422 ((-173) $)) (-15 -3982 ((-783) $)) (-15 -2497 ($ $)) (-15 -1736 ((-656 (-960 |#2|)) $)))) +((-3474 (((-112) $ $) NIL)) (-1649 ((|#2| $) 11)) (-1637 ((|#1| $) 10)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3573 (($ |#1| |#2|) 9)) (-3563 (((-874) $) 16)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1184 |#1| |#2|) (-13 (-1119) (-10 -8 (-15 -3573 ($ |#1| |#2|)) (-15 -1637 (|#1| $)) (-15 -1649 (|#2| $)))) (-1119) (-1119)) (T -1184)) +((-3573 (*1 *1 *2 *3) (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-1637 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-1119)))) (-1649 (*1 *2 *1) (-12 (-4 *2 (-1119)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1119))))) +(-13 (-1119) (-10 -8 (-15 -3573 ($ |#1| |#2|)) (-15 -1637 (|#1| $)) (-15 -1649 (|#2| $)))) +((-3474 (((-112) $ $) NIL)) (-1341 (((-1154) $) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1185) (-13 (-1102) (-10 -8 (-15 -1341 ((-1154) $))))) (T -1185)) +((-1341 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1185))))) +(-13 (-1102) (-10 -8 (-15 -1341 ((-1154) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 (((-1193 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) 11)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4412 (($ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4176 (((-112) $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1615 (($ $ (-576)) NIL) (($ $ (-576) (-576)) 75)) (-3826 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-1775 (((-1193 |#1| |#2| |#3|) $) 42)) (-3548 (((-3 (-1193 |#1| |#2| |#3|) "failed") $) 32)) (-2052 (((-1193 |#1| |#2| |#3|) $) 33)) (-3894 (($ $) 116 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 92 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1760 (($ $) NIL (|has| |#1| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3872 (($ $) 112 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 88 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (((-576) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2398 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-3916 (($ $) 120 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 96 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-1193 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1195) "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1057 (-1195))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-4056 (((-1193 |#1| |#2| |#3|) $) 140) (((-1195) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1057 (-1195))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-2092 (($ $) 37) (($ (-576) $) 38)) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) NIL)) (-3687 (((-701 (-1193 |#1| |#2| |#3|)) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 (-1193 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1193 |#1| |#2| |#3|)))) (-1286 $) $) NIL (|has| |#1| (-374))) (((-701 (-1193 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 (-1193 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1193 |#1| |#2| |#3|)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1551 (((-3 $ "failed") $) 54)) (-1747 (((-419 (-969 |#1|)) $ (-576)) 74 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 76 (|has| |#1| (-568)))) (-1803 (($) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1792 (((-112) $) NIL (|has| |#1| (-374)))) (-1910 (((-112) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1822 (((-112) $) 28)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-3333 (((-576) $) NIL) (((-576) $ (-576)) 26)) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL (|has| |#1| (-374)))) (-1536 (((-1193 |#1| |#2| |#3|) $) 44 (|has| |#1| (-374)))) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (((-3 $ "failed") $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))))) (-3566 (((-112) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2973 (($ $ (-938)) NIL)) (-1995 (($ (-1 |#1| (-576)) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-576)) 19) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-2442 (($ $ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1893 (($ $ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3710 (($ $) 81 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2065 (($ (-576) (-1193 |#1| |#2| |#3|)) 36)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-3848 (($ $) 79 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 80 (|has| |#1| (-38 (-419 (-576)))))) (-1538 (($) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1465 (($ $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3835 (((-1193 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1839 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1714 (($ $ (-576)) 158)) (-3463 (((-3 $ "failed") $ $) 55 (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3984 (($ $) 82 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) (-1193 |#1| |#2| |#3|)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-526 (-1195) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 (-1193 |#1| |#2| |#3|))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-526 (-1195) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1193 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1193 |#1| |#2| |#3|))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1193 |#1| |#2| |#3|)) (-656 (-1193 |#1| |#2| |#3|))) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-319 (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ (-576)) NIL) (($ $ $) 61 (|has| (-576) (-1131))) (($ $ (-1193 |#1| |#2| |#3|)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-296 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1282 |#2|)) 57) (($ $) 56 (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))))) (-1880 (($ $) NIL (|has| |#1| (-374)))) (-1549 (((-1193 |#1| |#2| |#3|) $) 46 (|has| |#1| (-374)))) (-1433 (((-576) $) 43)) (-3928 (($ $) 122 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 98 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 118 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 94 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 114 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 90 (|has| |#1| (-38 (-419 (-576)))))) (-4076 (((-548) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-2869 (($ $) NIL)) (-3563 (((-874) $) 162) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1193 |#1| |#2| |#3|)) 30) (($ (-1282 |#2|)) 25) (($ (-1195)) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-1057 (-1195))) (|has| |#1| (-374)))) (($ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-4333 ((|#1| $ (-576)) 77)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-2387 ((|#1| $) 12)) (-3270 (((-1193 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) 128 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 104 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3939 (($ $) 124 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 100 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 108 (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 110 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 130 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 106 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 126 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 102 (|has| |#1| (-38 (-419 (-576)))))) (-2264 (($ $) NIL (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2800 (($) 21 T CONST)) (-2810 (($) 16 T CONST)) (-2051 (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1282 |#2|)) NIL) (($ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))))) (-3049 (((-112) $ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3024 (((-112) $ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3010 (((-112) $ $) NIL (-2835 (-12 (|has| (-1193 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1193 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 49 (|has| |#1| (-374))) (($ (-1193 |#1| |#2| |#3|) (-1193 |#1| |#2| |#3|)) 50 (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 23)) (** (($ $ (-938)) NIL) (($ $ (-783)) 60) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) 83 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 137 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1193 |#1| |#2| |#3|)) 48 (|has| |#1| (-374))) (($ (-1193 |#1| |#2| |#3|) $) 47 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1186 |#1| |#2| |#3|) (-13 (-1248 |#1| (-1193 |#1| |#2| |#3|)) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) (-1068) (-1195) |#1|) (T -1186)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) +(-13 (-1248 |#1| (-1193 |#1| |#2| |#3|)) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) +((-4387 ((|#2| |#2| (-1111 |#2|)) 26) ((|#2| |#2| (-1195)) 28))) +(((-1187 |#1| |#2|) (-10 -7 (-15 -4387 (|#2| |#2| (-1195))) (-15 -4387 (|#2| |#2| (-1111 |#2|)))) (-13 (-568) (-1057 (-576)) (-651 (-576))) (-13 (-442 |#1|) (-161) (-27) (-1221))) (T -1187)) +((-4387 (*1 *2 *2 *3) (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221))) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1187 *4 *2)))) (-4387 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1187 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221)))))) +(-10 -7 (-15 -4387 (|#2| |#2| (-1195))) (-15 -4387 (|#2| |#2| (-1111 |#2|)))) +((-4387 (((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1111 (-419 (-969 |#1|)))) 31) (((-419 (-969 |#1|)) (-969 |#1|) (-1111 (-969 |#1|))) 44) (((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1195)) 33) (((-419 (-969 |#1|)) (-969 |#1|) (-1195)) 36))) +(((-1188 |#1|) (-10 -7 (-15 -4387 ((-419 (-969 |#1|)) (-969 |#1|) (-1195))) (-15 -4387 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1195))) (-15 -4387 ((-419 (-969 |#1|)) (-969 |#1|) (-1111 (-969 |#1|)))) (-15 -4387 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1111 (-419 (-969 |#1|)))))) (-13 (-568) (-1057 (-576)))) (T -1188)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1188 *5)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *4 (-1111 (-969 *5))) (-5 *3 (-969 *5)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 *3)) (-5 *1 (-1188 *5)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-3 (-419 (-969 *5)) (-326 *5))) (-5 *1 (-1188 *5)) (-5 *3 (-419 (-969 *5))))) (-4387 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 (-969 *5))) (-5 *1 (-1188 *5)) (-5 *3 (-969 *5))))) +(-10 -7 (-15 -4387 ((-419 (-969 |#1|)) (-969 |#1|) (-1195))) (-15 -4387 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1195))) (-15 -4387 ((-419 (-969 |#1|)) (-969 |#1|) (-1111 (-969 |#1|)))) (-15 -4387 ((-3 (-419 (-969 |#1|)) (-326 |#1|)) (-419 (-969 |#1|)) (-1111 (-419 (-969 |#1|)))))) +((-1632 (((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)) 13))) +(((-1189 |#1| |#2|) (-10 -7 (-15 -1632 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)))) (-1068) (-1068)) (T -1189)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-5 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6))))) +(-10 -7 (-15 -1632 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)))) +((-2732 (((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))) 51)) (-1839 (((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))) 52))) +(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1839 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|)))) (-15 -2732 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))))) (-805) (-862) (-464) (-966 |#3| |#1| |#2|)) (T -1190)) +((-2732 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7))))) (-1839 (*1 *2 *3) (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7)))))) +(-10 -7 (-15 -1839 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|)))) (-15 -2732 ((-430 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))))) +((-3474 (((-112) $ $) 171)) (-1454 (((-112) $) 43)) (-3536 (((-1286 |#1|) $ (-783)) NIL)) (-1991 (((-656 (-1101)) $) NIL)) (-1834 (($ (-1191 |#1|)) NIL)) (-3999 (((-1191 $) $ (-1101)) 82) (((-1191 |#1|) $) 71)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) 164 (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2749 (($ $ $) 158 (|has| |#1| (-568)))) (-1990 (((-430 (-1191 $)) (-1191 $)) 95 (|has| |#1| (-926)))) (-1760 (($ $) NIL (|has| |#1| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 115 (|has| |#1| (-926)))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-1659 (($ $ (-783)) 61)) (-3759 (($ $ (-783)) 63)) (-3807 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#1| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL)) (-4056 ((|#1| $) NIL) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-1101) $) NIL)) (-2861 (($ $ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $ $) 160 (|has| |#1| (-174)))) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) 80)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) NIL) (((-701 |#1|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) NIL) (((-701 |#1|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4215 (($ $ $) 131)) (-2549 (($ $ $) NIL (|has| |#1| (-568)))) (-1424 (((-2 (|:| -1706 |#1|) (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-568)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2985 (($ $) 165 (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#1| (-926)))) (-1660 (($ $ |#1| (-783) $) 69)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-2532 (((-874) $ (-874)) 148)) (-3333 (((-783) $ $) NIL (|has| |#1| (-568)))) (-1414 (((-112) $) 48)) (-3839 (((-783) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| |#1| (-1171)))) (-1980 (($ (-1191 |#1|) (-1101)) 73) (($ (-1191 $) (-1101)) 89)) (-2973 (($ $ (-783)) 51)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-783)) 87) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-1101)) NIL) (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 153)) (-3403 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-2133 (($ (-1 (-783) (-783)) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3176 (((-1191 |#1|) $) NIL)) (-4209 (((-3 (-1101) "failed") $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) 76)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) NIL (|has| |#1| (-464)))) (-1927 (((-1177) $) NIL)) (-1749 (((-2 (|:| -3824 $) (|:| -2091 $)) $ (-783)) 60)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-1101)) (|:| -4274 (-783))) "failed") $) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (($) NIL (|has| |#1| (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) 50)) (-2116 ((|#1| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 103 (|has| |#1| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-464))) (($ $ $) 167 (|has| |#1| (-464)))) (-4343 (($ $ (-783) |#1| $) 123)) (-4299 (((-430 (-1191 $)) (-1191 $)) 101 (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) 100 (|has| |#1| (-926)))) (-1839 (((-430 $) $) 108 (|has| |#1| (-926)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-3463 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#1|) NIL) (($ $ (-656 (-1101)) (-656 |#1|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-568)))) (-2210 (((-3 $ "failed") $ (-783)) 54)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 172 (|has| |#1| (-374)))) (-1960 (($ $ (-1101)) NIL (|has| |#1| (-174))) ((|#1| $) 156 (|has| |#1| (-174)))) (-2735 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1 |#1| |#1|) $) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-1433 (((-783) $) 78) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3648 ((|#1| $) 162 (|has| |#1| (-464))) (($ $ (-1101)) NIL (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#1| (-926))))) (-3251 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#1| (-568)))) (-3563 (((-874) $) 149) (($ (-576)) NIL) (($ |#1|) 77) (($ (-1101)) NIL) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) 41 (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) 17 T CONST)) (-2810 (($) 19 T CONST)) (-2051 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#1| (-917 (-1195))))) (-2988 (((-112) $ $) 120)) (-3107 (($ $ |#1|) 173 (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 90)) (** (($ $ (-938)) 14) (($ $ (-783)) 12)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 39) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 129) (($ $ |#1|) NIL))) +(((-1191 |#1|) (-13 (-1262 |#1|) (-10 -8 (-15 -2532 ((-874) $ (-874))) (-15 -4343 ($ $ (-783) |#1| $)))) (-1068)) (T -1191)) +((-2532 (*1 *2 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1191 *3)) (-4 *3 (-1068)))) (-4343 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1191 *3)) (-4 *3 (-1068))))) +(-13 (-1262 |#1|) (-10 -8 (-15 -2532 ((-874) $ (-874))) (-15 -4343 ($ $ (-783) |#1| $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) 11)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1615 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3826 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| |#1| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3872 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1193 |#1| |#2| |#3|) "failed") $) 36)) (-4056 (((-1186 |#1| |#2| |#3|) $) NIL) (((-1193 |#1| |#2| |#3|) $) NIL)) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-4345 (((-419 (-576)) $) 59)) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-2074 (($ (-419 (-576)) (-1186 |#1| |#2| |#3|)) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1792 (((-112) $) NIL (|has| |#1| (-374)))) (-1822 (((-112) $) NIL)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-419 (-576))) 20) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2718 (((-1186 |#1| |#2| |#3|) $) 41)) (-3252 (((-3 (-1186 |#1| |#2| |#3|) "failed") $) NIL)) (-2065 (((-1186 |#1| |#2| |#3|) $) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-3848 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1714 (($ $ (-419 (-576))) NIL)) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3984 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) 38)) (-1433 (((-419 (-576)) $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) NIL)) (-3563 (((-874) $) 62) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1186 |#1| |#2| |#3|)) 30) (($ (-1193 |#1| |#2| |#3|)) 31) (($ (-1282 |#2|)) 26) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4333 ((|#1| $ (-419 (-576))) NIL)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-2387 ((|#1| $) 12)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 22 T CONST)) (-2810 (($) 16 T CONST)) (-2051 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 24)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1192 |#1| |#2| |#3|) (-13 (-1269 |#1| (-1186 |#1| |#2| |#3|)) (-909 $ (-1282 |#2|)) (-1057 (-1193 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) (-1068) (-1195) |#1|) (T -1192)) +((-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) +(-13 (-1269 |#1| (-1186 |#1| |#2| |#3|)) (-909 $ (-1282 |#2|)) (-1057 (-1193 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 129)) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) 119)) (-3047 (((-1259 |#2| |#1|) $ (-783)) 69)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1615 (($ $ (-783)) 85) (($ $ (-783) (-783)) 82)) (-3826 (((-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 105)) (-3894 (($ $) 173 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3872 (($ $) 169 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 118) (($ (-1176 |#1|)) 113)) (-3916 (($ $) 177 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) 25)) (-2769 (($ $) 28)) (-1731 (((-969 |#1|) $ (-783)) 81) (((-969 |#1|) $ (-783) (-783)) 83)) (-1822 (((-112) $) 124)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-783) $) 126) (((-783) $ (-783)) 128)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) NIL)) (-1995 (($ (-1 |#1| (-576)) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-783)) 13) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3710 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-3848 (($ $) 133 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 134 (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-1139) $) NIL)) (-1714 (($ $ (-783)) 15)) (-3463 (((-3 $ "failed") $ $) 26 (|has| |#1| (-568)))) (-3984 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2871 ((|#1| $ (-783)) 122) (($ $ $) 132 (|has| (-783) (-1131)))) (-2735 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1282 |#2|)) 31)) (-1433 (((-783) $) NIL)) (-3928 (($ $) 179 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 175 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 171 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) NIL)) (-3563 (((-874) $) 206) (($ (-576)) NIL) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 130 (|has| |#1| (-174))) (($ (-1259 |#2| |#1|)) 55) (($ (-1282 |#2|)) 36)) (-2927 (((-1176 |#1|) $) 101)) (-4333 ((|#1| $ (-783)) 121)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-2387 ((|#1| $) 58)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) 185 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 161 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) 181 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 189 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 165 (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-783)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) 191 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 167 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 187 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 163 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 183 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 159 (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 17 T CONST)) (-2810 (($) 20 T CONST)) (-2051 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1282 |#2|)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) 198)) (-3083 (($ $ $) 35)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 203 (|has| |#1| (-374))) (($ $ $) 138 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 141 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 136) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1193 |#1| |#2| |#3|) (-13 (-1277 |#1|) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1259 |#2| |#1|))) (-15 -3047 ((-1259 |#2| |#1|) $ (-783))) (-15 -3563 ($ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) (-1068) (-1195) |#1|) (T -1193)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-1193 *3 *4 *5)))) (-3047 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1193 *4 *5 *6)) (-4 *4 (-1068)) (-14 *5 (-1195)) (-14 *6 *4))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) +(-13 (-1277 |#1|) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1259 |#2| |#1|))) (-15 -3047 ((-1259 |#2| |#1|) $ (-783))) (-15 -3563 ($ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) +((-3563 (((-874) $) 33) (($ (-1195)) 35)) (-2835 (($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 46)) (-2822 (($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 39) (($ $) 40)) (-3215 (($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 41)) (-3205 (($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 43)) (-3195 (($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 42)) (-3183 (($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 44)) (-2149 (($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $))) 45))) +(((-1194) (-13 (-625 (-874)) (-10 -8 (-15 -3563 ($ (-1195))) (-15 -3215 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3195 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3205 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3183 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2835 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2149 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2822 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2822 ($ $))))) (T -1194)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1194)))) (-3215 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3195 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3205 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-3183 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2835 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2149 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2822 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) (-5 *1 (-1194)))) (-2822 (*1 *1 *1) (-5 *1 (-1194)))) +(-13 (-625 (-874)) (-10 -8 (-15 -3563 ($ (-1195))) (-15 -3215 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3195 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3205 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -3183 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2835 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2149 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)) (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2822 ($ (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) (|:| CF (-326 (-171 (-390)))) (|:| |switch| $)))) (-15 -2822 ($ $)))) +((-3474 (((-112) $ $) NIL)) (-3233 (($ $ (-656 (-874))) 62)) (-1935 (($ $ (-656 (-874))) 60)) (-1328 (((-1177) $) 101)) (-4270 (((-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) (|:| |args| (-656 (-874)))) $) 108)) (-2374 (((-112) $) 23)) (-2298 (($ $ (-656 (-656 (-874)))) 59) (($ $ (-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) (|:| |args| (-656 (-874))))) 99)) (-3767 (($) 163 T CONST)) (-3297 (((-1291)) 135)) (-3526 (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 69) (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 76)) (-4033 (($) 122) (($ $) 131)) (-2706 (($ $) 100)) (-2442 (($ $ $) NIL)) (-1893 (($ $ $) NIL)) (-1628 (((-656 $) $) 136)) (-1927 (((-1177) $) 114)) (-1445 (((-1139) $) NIL)) (-2871 (($ $ (-656 (-874))) 61)) (-4076 (((-548) $) 48) (((-1195) $) 49) (((-905 (-576)) $) 80) (((-905 (-390)) $) 78)) (-3563 (((-874) $) 55) (($ (-1177)) 50)) (-3985 (((-112) $ $) NIL)) (-2088 (($ $ (-656 (-874))) 63)) (-2584 (((-1177) $) 34) (((-1177) $ (-112)) 35) (((-1291) (-834) $) 36) (((-1291) (-834) $ (-112)) 37)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 51)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) 52))) +(((-1195) (-13 (-862) (-626 (-548)) (-840) (-626 (-1195)) (-628 (-1177)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -4033 ($)) (-15 -4033 ($ $)) (-15 -3297 ((-1291))) (-15 -2706 ($ $)) (-15 -2374 ((-112) $)) (-15 -4270 ((-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -2298 ($ $ (-656 (-656 (-874))))) (-15 -2298 ($ $ (-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -1935 ($ $ (-656 (-874)))) (-15 -3233 ($ $ (-656 (-874)))) (-15 -2088 ($ $ (-656 (-874)))) (-15 -2871 ($ $ (-656 (-874)))) (-15 -1328 ((-1177) $)) (-15 -1628 ((-656 $) $)) (-15 -3767 ($) -1398)))) (T -1195)) +((-4033 (*1 *1) (-5 *1 (-1195))) (-4033 (*1 *1 *1) (-5 *1 (-1195))) (-3297 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1195)))) (-2706 (*1 *1 *1) (-5 *1 (-1195))) (-2374 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195)))) (-4270 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1195)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1195)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) (|:| |args| (-656 (-874))))) (-5 *1 (-1195)))) (-1935 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-3233 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-2088 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-2871 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1195)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1195)))) (-3767 (*1 *1) (-5 *1 (-1195)))) +(-13 (-862) (-626 (-548)) (-840) (-626 (-1195)) (-628 (-1177)) (-626 (-905 (-576))) (-626 (-905 (-390))) (-899 (-576)) (-899 (-390)) (-10 -8 (-15 -4033 ($)) (-15 -4033 ($ $)) (-15 -3297 ((-1291))) (-15 -2706 ($ $)) (-15 -2374 ((-112) $)) (-15 -4270 ((-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) (|:| |args| (-656 (-874)))) $)) (-15 -2298 ($ $ (-656 (-656 (-874))))) (-15 -2298 ($ $ (-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) (|:| |args| (-656 (-874)))))) (-15 -1935 ($ $ (-656 (-874)))) (-15 -3233 ($ $ (-656 (-874)))) (-15 -2088 ($ $ (-656 (-874)))) (-15 -2871 ($ $ (-656 (-874)))) (-15 -1328 ((-1177) $)) (-15 -1628 ((-656 $) $)) (-15 -3767 ($) -1398))) +((-3601 (((-1286 |#1|) |#1| (-938)) 18) (((-1286 |#1|) (-656 |#1|)) 25))) +(((-1196 |#1|) (-10 -7 (-15 -3601 ((-1286 |#1|) (-656 |#1|))) (-15 -3601 ((-1286 |#1|) |#1| (-938)))) (-1068)) (T -1196)) +((-3601 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-1286 *3)) (-5 *1 (-1196 *3)) (-4 *3 (-1068)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-1286 *4)) (-5 *1 (-1196 *4))))) +(-10 -7 (-15 -3601 ((-1286 |#1|) (-656 |#1|))) (-15 -3601 ((-1286 |#1|) |#1| (-938)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| |#1| (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#1| (-1057 (-419 (-576))))) (((-3 |#1| "failed") $) NIL)) (-4056 (((-576) $) NIL (|has| |#1| (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| |#1| (-1057 (-419 (-576))))) ((|#1| $) NIL)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2985 (($ $) NIL (|has| |#1| (-464)))) (-1660 (($ $ |#1| (-990) $) NIL)) (-1414 (((-112) $) 17)) (-3839 (((-783) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-990)) NIL)) (-3403 (((-990) $) NIL)) (-2133 (($ (-1 (-990) (-990)) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#1| $) NIL)) (-4343 (($ $ (-990) |#1| $) NIL (-12 (|has| (-990) (-132)) (|has| |#1| (-568))))) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-568)))) (-1433 (((-990) $) NIL)) (-3648 ((|#1| $) NIL (|has| |#1| (-464)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) NIL) (($ (-419 (-576))) NIL (-2835 (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-1057 (-419 (-576))))))) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ (-990)) NIL)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#1| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2800 (($) 10 T CONST)) (-2810 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 21)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1197 |#1|) (-13 (-336 |#1| (-990)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-990) (-132)) (-15 -4343 ($ $ (-990) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) (-1068)) (T -1197)) +((-4343 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-990)) (-4 *2 (-132)) (-5 *1 (-1197 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) +(-13 (-336 |#1| (-990)) (-10 -8 (IF (|has| |#1| (-568)) (IF (|has| (-990) (-132)) (-15 -4343 ($ $ (-990) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) +((-3264 (((-1199) (-1195) $) 25)) (-2209 (($) 29)) (-1472 (((-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-1195) $) 22)) (-3978 (((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2910 "void")) $) 41) (((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) 42) (((-1291) (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) 43)) (-2892 (((-1291) (-1195)) 58)) (-2682 (((-1291) (-1195) $) 55) (((-1291) (-1195)) 56) (((-1291)) 57)) (-1720 (((-1291) (-1195)) 37)) (-3770 (((-1195)) 36)) (-2597 (($) 34)) (-2757 (((-449) (-1195) (-449) (-1195) $) 45) (((-449) (-656 (-1195)) (-449) (-1195) $) 49) (((-449) (-1195) (-449)) 46) (((-449) (-1195) (-449) (-1195)) 50)) (-3612 (((-1195)) 35)) (-3563 (((-874) $) 28)) (-2023 (((-1291)) 30) (((-1291) (-1195)) 33)) (-4187 (((-656 (-1195)) (-1195) $) 24)) (-4306 (((-1291) (-1195) (-656 (-1195)) $) 38) (((-1291) (-1195) (-656 (-1195))) 39) (((-1291) (-656 (-1195))) 40))) +(((-1198) (-13 (-625 (-874)) (-10 -8 (-15 -2209 ($)) (-15 -2023 ((-1291))) (-15 -2023 ((-1291) (-1195))) (-15 -2757 ((-449) (-1195) (-449) (-1195) $)) (-15 -2757 ((-449) (-656 (-1195)) (-449) (-1195) $)) (-15 -2757 ((-449) (-1195) (-449))) (-15 -2757 ((-449) (-1195) (-449) (-1195))) (-15 -1720 ((-1291) (-1195))) (-15 -3612 ((-1195))) (-15 -3770 ((-1195))) (-15 -4306 ((-1291) (-1195) (-656 (-1195)) $)) (-15 -4306 ((-1291) (-1195) (-656 (-1195)))) (-15 -4306 ((-1291) (-656 (-1195)))) (-15 -3978 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2910 "void")) $)) (-15 -3978 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2910 "void")))) (-15 -3978 ((-1291) (-3 (|:| |fst| (-446)) (|:| -2910 "void")))) (-15 -2682 ((-1291) (-1195) $)) (-15 -2682 ((-1291) (-1195))) (-15 -2682 ((-1291))) (-15 -2892 ((-1291) (-1195))) (-15 -2597 ($)) (-15 -1472 ((-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-1195) $)) (-15 -4187 ((-656 (-1195)) (-1195) $)) (-15 -3264 ((-1199) (-1195) $))))) (T -1198)) +((-2209 (*1 *1) (-5 *1 (-1198))) (-2023 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2757 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) (-2757 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *4 (-1195)) (-5 *1 (-1198)))) (-2757 (*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) (-2757 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-3612 (*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198)))) (-3770 (*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198)))) (-4306 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4306 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-3978 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1195)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-3978 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2682 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2682 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) (-2597 (*1 *1) (-5 *1 (-1198))) (-1472 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *1 (-1198)))) (-4187 (*1 *2 *3 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1198)) (-5 *3 (-1195)))) (-3264 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1199)) (-5 *1 (-1198))))) +(-13 (-625 (-874)) (-10 -8 (-15 -2209 ($)) (-15 -2023 ((-1291))) (-15 -2023 ((-1291) (-1195))) (-15 -2757 ((-449) (-1195) (-449) (-1195) $)) (-15 -2757 ((-449) (-656 (-1195)) (-449) (-1195) $)) (-15 -2757 ((-449) (-1195) (-449))) (-15 -2757 ((-449) (-1195) (-449) (-1195))) (-15 -1720 ((-1291) (-1195))) (-15 -3612 ((-1195))) (-15 -3770 ((-1195))) (-15 -4306 ((-1291) (-1195) (-656 (-1195)) $)) (-15 -4306 ((-1291) (-1195) (-656 (-1195)))) (-15 -4306 ((-1291) (-656 (-1195)))) (-15 -3978 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2910 "void")) $)) (-15 -3978 ((-1291) (-1195) (-3 (|:| |fst| (-446)) (|:| -2910 "void")))) (-15 -3978 ((-1291) (-3 (|:| |fst| (-446)) (|:| -2910 "void")))) (-15 -2682 ((-1291) (-1195) $)) (-15 -2682 ((-1291) (-1195))) (-15 -2682 ((-1291))) (-15 -2892 ((-1291) (-1195))) (-15 -2597 ($)) (-15 -1472 ((-3 (|:| |fst| (-446)) (|:| -2910 "void")) (-1195) $)) (-15 -4187 ((-656 (-1195)) (-1195) $)) (-15 -3264 ((-1199) (-1195) $)))) +((-4309 (((-656 (-656 (-3 (|:| -2706 (-1195)) (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576))))))))) $) 66)) (-4021 (((-656 (-3 (|:| -2706 (-1195)) (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576)))))))) (-446) $) 47)) (-3143 (($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-449))))) 17)) (-2892 (((-1291) $) 73)) (-3560 (((-656 (-1195)) $) 22)) (-2601 (((-1123) $) 60)) (-2379 (((-449) (-1195) $) 27)) (-3746 (((-656 (-1195)) $) 30)) (-2597 (($) 19)) (-2757 (((-449) (-656 (-1195)) (-449) $) 25) (((-449) (-1195) (-449) $) 24)) (-3563 (((-874) $) 9) (((-1208 (-1195) (-449)) $) 13))) +(((-1199) (-13 (-625 (-874)) (-10 -8 (-15 -3563 ((-1208 (-1195) (-449)) $)) (-15 -2597 ($)) (-15 -2757 ((-449) (-656 (-1195)) (-449) $)) (-15 -2757 ((-449) (-1195) (-449) $)) (-15 -2379 ((-449) (-1195) $)) (-15 -3560 ((-656 (-1195)) $)) (-15 -4021 ((-656 (-3 (|:| -2706 (-1195)) (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576)))))))) (-446) $)) (-15 -3746 ((-656 (-1195)) $)) (-15 -4309 ((-656 (-656 (-3 (|:| -2706 (-1195)) (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576))))))))) $)) (-15 -2601 ((-1123) $)) (-15 -2892 ((-1291) $)) (-15 -3143 ($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-449))))))))) (T -1199)) +((-3563 (*1 *2 *1) (-12 (-5 *2 (-1208 (-1195) (-449))) (-5 *1 (-1199)))) (-2597 (*1 *1) (-5 *1 (-1199))) (-2757 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *1 (-1199)))) (-2757 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1199)))) (-2379 (*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-449)) (-5 *1 (-1199)))) (-3560 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199)))) (-4021 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-656 (-3 (|:| -2706 (-1195)) (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576))))))))) (-5 *1 (-1199)))) (-3746 (*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199)))) (-4309 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-3 (|:| -2706 (-1195)) (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576)))))))))) (-5 *1 (-1199)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1199)))) (-2892 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1199)))) (-3143 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-449))))) (-5 *1 (-1199))))) +(-13 (-625 (-874)) (-10 -8 (-15 -3563 ((-1208 (-1195) (-449)) $)) (-15 -2597 ($)) (-15 -2757 ((-449) (-656 (-1195)) (-449) $)) (-15 -2757 ((-449) (-1195) (-449) $)) (-15 -2379 ((-449) (-1195) $)) (-15 -3560 ((-656 (-1195)) $)) (-15 -4021 ((-656 (-3 (|:| -2706 (-1195)) (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576)))))))) (-446) $)) (-15 -3746 ((-656 (-1195)) $)) (-15 -4309 ((-656 (-656 (-3 (|:| -2706 (-1195)) (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576))))))))) $)) (-15 -2601 ((-1123) $)) (-15 -2892 ((-1291) $)) (-15 -3143 ($ (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-449)))))))) +((-3474 (((-112) $ $) NIL)) (-1539 (((-3 (-576) "failed") $) 29) (((-3 (-227) "failed") $) 35) (((-3 (-518) "failed") $) 43) (((-3 (-1177) "failed") $) 47)) (-4056 (((-576) $) 30) (((-227) $) 36) (((-518) $) 40) (((-1177) $) 48)) (-3542 (((-112) $) 53)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2096 (((-3 (-576) (-227) (-518) (-1177) $) $) 55)) (-3371 (((-656 $) $) 57)) (-4076 (((-1123) $) 24) (($ (-1123)) 25)) (-3675 (((-112) $) 56)) (-3563 (((-874) $) 23) (($ (-576)) 26) (($ (-227)) 32) (($ (-518)) 38) (($ (-1177)) 44) (((-548) $) 59) (((-576) $) 31) (((-227) $) 37) (((-518) $) 41) (((-1177) $) 49)) (-2787 (((-112) $ (|[\|\|]| (-576))) 10) (((-112) $ (|[\|\|]| (-227))) 13) (((-112) $ (|[\|\|]| (-518))) 19) (((-112) $ (|[\|\|]| (-1177))) 16)) (-2702 (($ (-518) (-656 $)) 51) (($ $ (-656 $)) 52)) (-3985 (((-112) $ $) NIL)) (-2014 (((-576) $) 27) (((-227) $) 33) (((-518) $) 39) (((-1177) $) 45)) (-2988 (((-112) $ $) 7))) +(((-1200) (-13 (-1281) (-1119) (-1057 (-576)) (-1057 (-227)) (-1057 (-518)) (-1057 (-1177)) (-625 (-548)) (-10 -8 (-15 -4076 ((-1123) $)) (-15 -4076 ($ (-1123))) (-15 -3563 ((-576) $)) (-15 -2014 ((-576) $)) (-15 -3563 ((-227) $)) (-15 -2014 ((-227) $)) (-15 -3563 ((-518) $)) (-15 -2014 ((-518) $)) (-15 -3563 ((-1177) $)) (-15 -2014 ((-1177) $)) (-15 -2702 ($ (-518) (-656 $))) (-15 -2702 ($ $ (-656 $))) (-15 -3542 ((-112) $)) (-15 -2096 ((-3 (-576) (-227) (-518) (-1177) $) $)) (-15 -3371 ((-656 $) $)) (-15 -3675 ((-112) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-576)))) (-15 -2787 ((-112) $ (|[\|\|]| (-227)))) (-15 -2787 ((-112) $ (|[\|\|]| (-518)))) (-15 -2787 ((-112) $ (|[\|\|]| (-1177))))))) (T -1200)) +((-4076 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1200)))) (-4076 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1200)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) (-2702 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1200))) (-5 *1 (-1200)))) (-2702 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200)))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1177) (-1200))) (-5 *1 (-1200)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1200)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1200)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1200)))) (-2787 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-1200))))) +(-13 (-1281) (-1119) (-1057 (-576)) (-1057 (-227)) (-1057 (-518)) (-1057 (-1177)) (-625 (-548)) (-10 -8 (-15 -4076 ((-1123) $)) (-15 -4076 ($ (-1123))) (-15 -3563 ((-576) $)) (-15 -2014 ((-576) $)) (-15 -3563 ((-227) $)) (-15 -2014 ((-227) $)) (-15 -3563 ((-518) $)) (-15 -2014 ((-518) $)) (-15 -3563 ((-1177) $)) (-15 -2014 ((-1177) $)) (-15 -2702 ($ (-518) (-656 $))) (-15 -2702 ($ $ (-656 $))) (-15 -3542 ((-112) $)) (-15 -2096 ((-3 (-576) (-227) (-518) (-1177) $) $)) (-15 -3371 ((-656 $) $)) (-15 -3675 ((-112) $)) (-15 -2787 ((-112) $ (|[\|\|]| (-576)))) (-15 -2787 ((-112) $ (|[\|\|]| (-227)))) (-15 -2787 ((-112) $ (|[\|\|]| (-518)))) (-15 -2787 ((-112) $ (|[\|\|]| (-1177)))))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) 22)) (-3767 (($) 12 T CONST)) (-1803 (($) 26)) (-2442 (($ $ $) NIL) (($) 19 T CONST)) (-1893 (($ $ $) NIL) (($) 20 T CONST)) (-1902 (((-938) $) 24)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) 23)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-1201 |#1|) (-13 (-856) (-10 -8 (-15 -3767 ($) -1398))) (-938)) (T -1201)) +((-3767 (*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-938))))) +(-13 (-856) (-10 -8 (-15 -3767 ($) -1398))) ((|Integer|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) 19 T CONST)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) 12 T CONST)) (-2726 (($ $ $) NIL) (($) 18 T CONST)) (-3225 (((-938) $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-3850 (($ $ $) 21)) (-3837 (($ $ $) 20)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-1203 |#1|) (-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670))) (-938)) (T -1203)) -((-3837 (*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938)))) (-3850 (*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938)))) (-3656 (*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938))))) -(-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) 19 T CONST)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) 12 T CONST)) (-1893 (($ $ $) NIL) (($) 18 T CONST)) (-1902 (((-938) $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-2447 (($ $ $) 21)) (-2436 (($ $ $) 20)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-1202 |#1|) (-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398))) (-938)) (T -1202)) +((-2436 (*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938)))) (-2447 (*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938)))) (-3767 (*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938))))) +(-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) @1))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 9)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 7))) -(((-1204) (-1119)) (T -1204)) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 9)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 7))) +(((-1203) (-1119)) (T -1203)) NIL (-1119) -((-1721 (((-656 (-656 (-969 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196))) 69)) (-1843 (((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|)))) 80) (((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|))) 76) (((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196)) 81) (((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196)) 75) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196))) 107) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))) (-656 (-1196))) 104))) -(((-1205 |#1|) (-10 -7 (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196)))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -1843 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196))) (-15 -1843 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -1843 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)))) (-15 -1843 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))))) (-15 -1721 ((-656 (-656 (-969 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196))))) (-568)) (T -1205)) -((-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-969 *5)))) (-5 *1 (-1205 *5)))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) (-5 *1 (-1205 *4)) (-5 *3 (-304 (-419 (-969 *4)))))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) (-5 *1 (-1205 *4)) (-5 *3 (-419 (-969 *4))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1205 *5)) (-5 *3 (-304 (-419 (-969 *5)))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-1196)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1205 *5)) (-5 *3 (-419 (-969 *5))))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-1205 *4)) (-5 *3 (-656 (-304 (-419 (-969 *4))))))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-1205 *4)))) (-1843 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-1205 *5)) (-5 *3 (-656 (-304 (-419 (-969 *5))))))) (-1843 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-1205 *5))))) -(-10 -7 (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))) (-656 (-1196)))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1196)))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))))) (-15 -1843 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -1843 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1196))) (-15 -1843 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))) (-1196))) (-15 -1843 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)))) (-15 -1843 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))))) (-15 -1721 ((-656 (-656 (-969 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1196))))) -((-2572 (((-1178)) 7)) (-3571 (((-1178)) 11 T CONST)) (-3950 (((-1292) (-1178)) 13)) (-2491 (((-1178)) 8 T CONST)) (-1637 (((-131)) 10 T CONST))) -(((-1206) (-13 (-1237) (-10 -7 (-15 -2572 ((-1178))) (-15 -2491 ((-1178)) -2670) (-15 -1637 ((-131)) -2670) (-15 -3571 ((-1178)) -2670) (-15 -3950 ((-1292) (-1178)))))) (T -1206)) -((-2572 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-2491 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-1637 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1206)))) (-3571 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1206))))) -(-13 (-1237) (-10 -7 (-15 -2572 ((-1178))) (-15 -2491 ((-1178)) -2670) (-15 -1637 ((-131)) -2670) (-15 -3571 ((-1178)) -2670) (-15 -3950 ((-1292) (-1178))))) -((-2957 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-4309 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-2665 (((-1208 (-656 |#1|)) (-656 |#1|)) 49)) (-3964 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-3922 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-2856 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-1707 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-2295 (((-656 |#1|) (-656 |#1|)) 46)) (-3412 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-2714 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-2975 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-4132 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-3031 (((-656 (-656 |#1|)) (-1208 (-656 |#1|))) 60))) -(((-1207 |#1|) (-10 -7 (-15 -2975 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2714 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3412 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2957 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -4132 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3031 ((-656 (-656 |#1|)) (-1208 (-656 |#1|)))) (-15 -4309 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -2665 ((-1208 (-656 |#1|)) (-656 |#1|))) (-15 -1707 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3964 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2295 ((-656 |#1|) (-656 |#1|))) (-15 -2856 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3922 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-862)) (T -1207)) -((-3922 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-2856 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1207 *6)) (-5 *4 (-656 *5)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1207 *3)))) (-3964 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)) (-5 *3 (-656 *4)))) (-1707 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1207 *3)))) (-2665 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-1208 (-656 *4))) (-5 *1 (-1207 *4)) (-5 *3 (-656 *4)))) (-4309 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 *4))))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-1208 (-656 *4))) (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)) (-4 *4 (-862)))) (-2957 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-862)) (-5 *1 (-1207 *4)))) (-3412 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *1 (-1207 *4)))) (-2714 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1207 *5)))) (-2975 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1207 *6)) (-5 *5 (-656 *4))))) -(-10 -7 (-15 -2975 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -2714 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3412 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -2957 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -4132 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3031 ((-656 (-656 |#1|)) (-1208 (-656 |#1|)))) (-15 -4309 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -2665 ((-1208 (-656 |#1|)) (-656 |#1|))) (-15 -1707 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3964 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2295 ((-656 |#1|) (-656 |#1|))) (-15 -2856 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3922 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) -((-3395 (($ (-656 (-656 |#1|))) 10)) (-2318 (((-656 (-656 |#1|)) $) 11)) (-4092 (((-874) $) 33))) -(((-1208 |#1|) (-10 -8 (-15 -3395 ($ (-656 (-656 |#1|)))) (-15 -2318 ((-656 (-656 |#1|)) $)) (-15 -4092 ((-874) $))) (-1119)) (T -1208)) -((-4092 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1208 *3)) (-4 *3 (-1119)))) (-2318 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1208 *3)) (-4 *3 (-1119)))) (-3395 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-1208 *3))))) -(-10 -8 (-15 -3395 ($ (-656 (-656 |#1|)))) (-15 -2318 ((-656 (-656 |#1|)) $)) (-15 -4092 ((-874) $))) -((-2034 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-1980 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2449 (((-1292) $ |#1| |#1|) NIL (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#2| $ |#1| |#2|) NIL)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2131 (((-3 |#2| "failed") |#1| $) NIL)) (-3656 (($) NIL T CONST)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) NIL)) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) NIL)) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) NIL)) (-2077 ((|#1| $) NIL (|has| |#1| (-862)))) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-656 |#2|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-4315 ((|#1| $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2364 (((-656 |#1|) $) NIL)) (-3700 (((-112) |#1| $) NIL)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-4428 (((-656 |#1|) $) NIL)) (-2013 (((-112) |#1| $) NIL)) (-3139 (((-1139) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2701 ((|#2| $) NIL (|has| |#1| (-862)))) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL)) (-2918 (($ $ |#2|) NIL (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1833 (($) NIL) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) NIL (-12 (|has| $ (-6 -4462)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-4092 (((-874) $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-1531 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) NIL)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) NIL (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) NIL (-3765 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1209 |#1| |#2|) (-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) (-1119) (-1119)) (T -1209)) -NIL -(-13 (-1213 |#1| |#2|) (-10 -7 (-6 -4462))) -((-2034 (((-112) $ $) NIL)) (-1344 (($ |#1| (-55)) 10)) (-4124 ((|#1| $) 12)) (-3288 (((-1178) $) NIL)) (-1412 (((-112) $ |#1|) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-1531 (((-112) $ $) NIL)) (-1666 (((-55) $) 14)) (-3919 (((-112) $ $) NIL))) -(((-1210 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -1344 ($ |#1| (-55))))) (-1119)) (T -1210)) -((-1344 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1210 *2)) (-4 *2 (-1119))))) -(-13 (-847 |#1|) (-10 -8 (-15 -1344 ($ |#1| (-55))))) -((-1444 ((|#1| (-656 |#1|)) 46)) (-2822 ((|#1| |#1| (-576)) 24)) (-1563 (((-1192 |#1|) |#1| (-938)) 20))) -(((-1211 |#1|) (-10 -7 (-15 -1444 (|#1| (-656 |#1|))) (-15 -1563 ((-1192 |#1|) |#1| (-938))) (-15 -2822 (|#1| |#1| (-576)))) (-374)) (T -1211)) -((-2822 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1211 *2)) (-4 *2 (-374)))) (-1563 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-1192 *3)) (-5 *1 (-1211 *3)) (-4 *3 (-374)))) (-1444 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1211 *2)) (-4 *2 (-374))))) -(-10 -7 (-15 -1444 (|#1| (-656 |#1|))) (-15 -1563 ((-1192 |#1|) |#1| (-938))) (-15 -2822 (|#1| |#1| (-576)))) -((-1980 (($) 10) (($ (-656 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)))) 14)) (-4376 (($ (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-4260 (((-656 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-3874 (($ (-1 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2477 (($ (-1 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3576 (((-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) $) 60)) (-2361 (($ (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) $) 16)) (-4428 (((-656 |#2|) $) 19)) (-2013 (((-112) |#2| $) 65)) (-1863 (((-3 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) "failed") (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) $) 64)) (-1679 (((-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) $) 69)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-3060 (((-656 |#3|) $) 43)) (-4367 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) $) NIL) (((-783) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-4092 (((-874) $) 27)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3919 (((-112) $ $) 51))) -(((-1212 |#1| |#2| |#3|) (-10 -8 (-15 -3919 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -2477 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1980 (|#1| (-656 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))))) (-15 -1980 (|#1|)) (-15 -2477 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3874 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3150 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -4260 ((-656 |#3|) |#1|)) (-15 -3150 ((-783) |#3| |#1|)) (-15 -4367 (|#3| |#1| |#2| |#3|)) (-15 -4367 (|#3| |#1| |#2|)) (-15 -3060 ((-656 |#3|) |#1|)) (-15 -2013 ((-112) |#2| |#1|)) (-15 -4428 ((-656 |#2|) |#1|)) (-15 -4376 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4376 (|#1| (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -4376 (|#1| (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -1863 ((-3 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) "failed") (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -3576 ((-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -2361 (|#1| (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -1679 ((-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -3150 ((-783) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -4260 ((-656 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -3150 ((-783) (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -3292 ((-112) (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -2190 ((-112) (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -3874 (|#1| (-1 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -2477 (|#1| (-1 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|))) (-1213 |#2| |#3|) (-1119) (-1119)) (T -1212)) -NIL -(-10 -8 (-15 -3919 ((-112) |#1| |#1|)) (-15 -4092 ((-874) |#1|)) (-15 -2477 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -1980 (|#1| (-656 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))))) (-15 -1980 (|#1|)) (-15 -2477 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3874 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2190 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3292 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3150 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -4260 ((-656 |#3|) |#1|)) (-15 -3150 ((-783) |#3| |#1|)) (-15 -4367 (|#3| |#1| |#2| |#3|)) (-15 -4367 (|#3| |#1| |#2|)) (-15 -3060 ((-656 |#3|) |#1|)) (-15 -2013 ((-112) |#2| |#1|)) (-15 -4428 ((-656 |#2|) |#1|)) (-15 -4376 ((-3 |#3| "failed") |#2| |#1|)) (-15 -4376 (|#1| (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -4376 (|#1| (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -1863 ((-3 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) "failed") (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -3576 ((-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -2361 (|#1| (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -1679 ((-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -3150 ((-783) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) |#1|)) (-15 -4260 ((-656 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -3150 ((-783) (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -3292 ((-112) (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -2190 ((-112) (-1 (-112) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -3874 (|#1| (-1 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|)) (-15 -2477 (|#1| (-1 (-2 (|:| -2371 |#2|) (|:| -2900 |#3|)) (-2 (|:| -2371 |#2|) (|:| -2900 |#3|))) |#1|))) -((-2034 (((-112) $ $) 19 (-3765 (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-1980 (($) 73) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 72)) (-2449 (((-1292) $ |#1| |#1|) 100 (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) 8)) (-4248 ((|#2| $ |#1| |#2|) 74)) (-3831 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 46 (|has| $ (-6 -4462)))) (-3457 (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 56 (|has| $ (-6 -4462)))) (-2131 (((-3 |#2| "failed") |#1| $) 62)) (-3656 (($) 7 T CONST)) (-1690 (($ $) 59 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462))))) (-4376 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 48 (|has| $ (-6 -4462))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 47 (|has| $ (-6 -4462))) (((-3 |#2| "failed") |#1| $) 63)) (-2892 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 55 (|has| $ (-6 -4462)))) (-2359 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 57 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 54 (|has| $ (-6 -4462))) (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 53 (|has| $ (-6 -4462)))) (-3888 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4463)))) (-3817 ((|#2| $ |#1|) 89)) (-4260 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 31 (|has| $ (-6 -4462))) (((-656 |#2|) $) 80 (|has| $ (-6 -4462)))) (-1419 (((-112) $ (-783)) 9)) (-2077 ((|#1| $) 97 (|has| |#1| (-862)))) (-1750 (((-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 30 (|has| $ (-6 -4462))) (((-656 |#2|) $) 81 (|has| $ (-6 -4462)))) (-3990 (((-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462))))) (-4315 ((|#1| $) 96 (|has| |#1| (-862)))) (-3874 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 35 (|has| $ (-6 -4463))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4463)))) (-2477 (($ (-1 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3103 (((-112) $ (-783)) 10)) (-3288 (((-1178) $) 22 (-3765 (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-2364 (((-656 |#1|) $) 64)) (-3700 (((-112) |#1| $) 65)) (-3576 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 40)) (-2361 (($ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 41)) (-4428 (((-656 |#1|) $) 94)) (-2013 (((-112) |#1| $) 93)) (-3139 (((-1139) $) 21 (-3765 (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-2701 ((|#2| $) 98 (|has| |#1| (-862)))) (-1863 (((-3 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) "failed") (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 52)) (-2918 (($ $ |#2|) 99 (|has| $ (-6 -4463)))) (-1679 (((-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 42)) (-3292 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 33 (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))))) 27 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 26 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) 25 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 24 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4462)) (|has| |#2| (-1119))))) (-3060 (((-656 |#2|) $) 92)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1833 (($) 50) (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 49)) (-3150 (((-783) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 32 (|has| $ (-6 -4462))) (((-783) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| $ (-6 -4462)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4462)))) (-4268 (($ $) 13)) (-1505 (((-548) $) 60 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))))) (-4103 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 51)) (-4092 (((-874) $) 18 (-3765 (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874)))))) (-1531 (((-112) $ $) 23 (-3765 (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-3688 (($ (-656 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) 43)) (-2190 (((-112) (-1 (-112) (-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) $) 34 (|has| $ (-6 -4462))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (-3765 (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-1213 |#1| |#2|) (-141) (-1119) (-1119)) (T -1213)) -((-4248 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-1980 (*1 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-1980 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -2371 *3) (|:| -2900 *4)))) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *1 (-1213 *3 *4)))) (-2477 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))))) -(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -4248 (|t#2| $ |t#1| |t#2|)) (-15 -1980 ($)) (-15 -1980 ($ (-656 (-2 (|:| -2371 |t#1|) (|:| -2900 |t#2|))))) (-15 -2477 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -2371 |#1|) (|:| -2900 |#2|))) . T) ((-102) -3765 (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) ((-625 (-874)) -3765 (|has| |#2| (-1119)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-319 (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)))) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-622 |#1| |#2|) . T) ((-1119) -3765 (|has| |#2| (-1119)) (|has| (-2 (|:| -2371 |#1|) (|:| -2900 |#2|)) (-1119))) ((-1237) . T)) -((-2636 (((-112)) 29)) (-1959 (((-1292) (-1178)) 31)) (-1613 (((-112)) 41)) (-4082 (((-1292)) 39)) (-2644 (((-1292) (-1178) (-1178)) 30)) (-3867 (((-112)) 42)) (-2361 (((-1292) |#1| |#2|) 53)) (-3271 (((-1292)) 26)) (-2363 (((-3 |#2| "failed") |#1|) 51)) (-3222 (((-1292)) 40))) -(((-1214 |#1| |#2|) (-10 -7 (-15 -3271 ((-1292))) (-15 -2644 ((-1292) (-1178) (-1178))) (-15 -1959 ((-1292) (-1178))) (-15 -4082 ((-1292))) (-15 -3222 ((-1292))) (-15 -2636 ((-112))) (-15 -1613 ((-112))) (-15 -3867 ((-112))) (-15 -2363 ((-3 |#2| "failed") |#1|)) (-15 -2361 ((-1292) |#1| |#2|))) (-1119) (-1119)) (T -1214)) -((-2361 (*1 *2 *3 *4) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-2363 (*1 *2 *3) (|partial| -12 (-4 *2 (-1119)) (-5 *1 (-1214 *3 *2)) (-4 *3 (-1119)))) (-3867 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-1613 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-2636 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-3222 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-4082 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)))) (-2644 (*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)))) (-3271 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))))) -(-10 -7 (-15 -3271 ((-1292))) (-15 -2644 ((-1292) (-1178) (-1178))) (-15 -1959 ((-1292) (-1178))) (-15 -4082 ((-1292))) (-15 -3222 ((-1292))) (-15 -2636 ((-112))) (-15 -1613 ((-112))) (-15 -3867 ((-112))) (-15 -2363 ((-3 |#2| "failed") |#1|)) (-15 -2361 ((-1292) |#1| |#2|))) -((-2275 (((-1178) (-1178)) 22)) (-1884 (((-52) (-1178)) 25))) -(((-1215) (-10 -7 (-15 -1884 ((-52) (-1178))) (-15 -2275 ((-1178) (-1178))))) (T -1215)) -((-2275 (*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1215)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-1215))))) -(-10 -7 (-15 -1884 ((-52) (-1178))) (-15 -2275 ((-1178) (-1178)))) -((-4092 (((-1217) |#1|) 11))) -(((-1216 |#1|) (-10 -7 (-15 -4092 ((-1217) |#1|))) (-1119)) (T -1216)) -((-4092 (*1 *2 *3) (-12 (-5 *2 (-1217)) (-5 *1 (-1216 *3)) (-4 *3 (-1119))))) -(-10 -7 (-15 -4092 ((-1217) |#1|))) -((-2034 (((-112) $ $) NIL)) (-2959 (((-656 (-1178)) $) 39)) (-2424 (((-656 (-1178)) $ (-656 (-1178))) 42)) (-2166 (((-656 (-1178)) $ (-656 (-1178))) 41)) (-1642 (((-656 (-1178)) $ (-656 (-1178))) 43)) (-1564 (((-656 (-1178)) $) 38)) (-1992 (($) 28)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1709 (((-656 (-1178)) $) 40)) (-1650 (((-1292) $ (-576)) 35) (((-1292) $) 36)) (-1505 (($ (-874) (-576)) 33) (($ (-874) (-576) (-874)) NIL)) (-4092 (((-874) $) 49) (($ (-874)) 32)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1217) (-13 (-1119) (-628 (-874)) (-10 -8 (-15 -1505 ($ (-874) (-576))) (-15 -1505 ($ (-874) (-576) (-874))) (-15 -1650 ((-1292) $ (-576))) (-15 -1650 ((-1292) $)) (-15 -1709 ((-656 (-1178)) $)) (-15 -2959 ((-656 (-1178)) $)) (-15 -1992 ($)) (-15 -1564 ((-656 (-1178)) $)) (-15 -1642 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2424 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2166 ((-656 (-1178)) $ (-656 (-1178))))))) (T -1217)) -((-1505 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1217)))) (-1505 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1217)))) (-1650 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1217)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1217)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-1992 (*1 *1) (-5 *1 (-1217))) (-1564 (*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-1642 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-2424 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217)))) (-2166 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(-13 (-1119) (-628 (-874)) (-10 -8 (-15 -1505 ($ (-874) (-576))) (-15 -1505 ($ (-874) (-576) (-874))) (-15 -1650 ((-1292) $ (-576))) (-15 -1650 ((-1292) $)) (-15 -1709 ((-656 (-1178)) $)) (-15 -2959 ((-656 (-1178)) $)) (-15 -1992 ($)) (-15 -1564 ((-656 (-1178)) $)) (-15 -1642 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2424 ((-656 (-1178)) $ (-656 (-1178)))) (-15 -2166 ((-656 (-1178)) $ (-656 (-1178)))))) -((-2034 (((-112) $ $) NIL)) (-3998 (((-1178) $ (-1178)) 17) (((-1178) $) 16)) (-3183 (((-1178) $ (-1178)) 15)) (-3490 (($ $ (-1178)) NIL)) (-1418 (((-3 (-1178) "failed") $) 11)) (-2243 (((-1178) $) 8)) (-3199 (((-3 (-1178) "failed") $) 12)) (-1422 (((-1178) $) 9)) (-3709 (($ (-400)) NIL) (($ (-400) (-1178)) NIL)) (-4124 (((-400) $) NIL)) (-3288 (((-1178) $) NIL)) (-1767 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4152 (((-112) $) 21)) (-4092 (((-874) $) NIL)) (-3603 (($ $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1218) (-13 (-375 (-400) (-1178)) (-10 -8 (-15 -3998 ((-1178) $ (-1178))) (-15 -3998 ((-1178) $)) (-15 -2243 ((-1178) $)) (-15 -1418 ((-3 (-1178) "failed") $)) (-15 -3199 ((-3 (-1178) "failed") $)) (-15 -4152 ((-112) $))))) (T -1218)) -((-3998 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-1418 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-3199 (*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218))))) -(-13 (-375 (-400) (-1178)) (-10 -8 (-15 -3998 ((-1178) $ (-1178))) (-15 -3998 ((-1178) $)) (-15 -2243 ((-1178) $)) (-15 -1418 ((-3 (-1178) "failed") $)) (-15 -3199 ((-3 (-1178) "failed") $)) (-15 -4152 ((-112) $)))) -((-3934 (((-3 (-576) "failed") |#1|) 19)) (-3736 (((-3 (-576) "failed") |#1|) 14)) (-1365 (((-576) (-1178)) 33))) -(((-1219 |#1|) (-10 -7 (-15 -3934 ((-3 (-576) "failed") |#1|)) (-15 -3736 ((-3 (-576) "failed") |#1|)) (-15 -1365 ((-576) (-1178)))) (-1068)) (T -1219)) -((-1365 (*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-1219 *4)) (-4 *4 (-1068)))) (-3736 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1068)))) (-3934 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1068))))) -(-10 -7 (-15 -3934 ((-3 (-576) "failed") |#1|)) (-15 -3736 ((-3 (-576) "failed") |#1|)) (-15 -1365 ((-576) (-1178)))) -((-3236 (((-1152 (-227))) 9))) -(((-1220) (-10 -7 (-15 -3236 ((-1152 (-227)))))) (T -1220)) -((-3236 (*1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1220))))) -(-10 -7 (-15 -3236 ((-1152 (-227))))) -((-3926 (($) 12)) (-2340 (($ $) 36)) (-2317 (($ $) 34)) (-2161 (($ $) 26)) (-2368 (($ $) 18)) (-3945 (($ $) 16)) (-2352 (($ $) 20)) (-2195 (($ $) 31)) (-2329 (($ $) 35)) (-2173 (($ $) 30))) -(((-1221 |#1|) (-10 -8 (-15 -3926 (|#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2317 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2195 (|#1| |#1|)) (-15 -2173 (|#1| |#1|))) (-1222)) (T -1221)) -NIL -(-10 -8 (-15 -3926 (|#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2317 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2195 (|#1| |#1|)) (-15 -2173 (|#1| |#1|))) -((-2266 (($ $) 26)) (-2111 (($ $) 11)) (-2236 (($ $) 27)) (-2084 (($ $) 10)) (-2294 (($ $) 28)) (-2138 (($ $) 9)) (-3926 (($) 16)) (-2703 (($ $) 19)) (-3353 (($ $) 18)) (-2307 (($ $) 29)) (-2149 (($ $) 8)) (-2281 (($ $) 30)) (-2123 (($ $) 7)) (-2253 (($ $) 31)) (-2099 (($ $) 6)) (-2340 (($ $) 20)) (-2184 (($ $) 32)) (-2317 (($ $) 21)) (-2161 (($ $) 33)) (-2368 (($ $) 22)) (-2207 (($ $) 34)) (-3945 (($ $) 23)) (-2220 (($ $) 35)) (-2352 (($ $) 24)) (-2195 (($ $) 36)) (-2329 (($ $) 25)) (-2173 (($ $) 37)) (** (($ $ $) 17))) -(((-1222) (-141)) (T -1222)) -((-3926 (*1 *1) (-4 *1 (-1222)))) -(-13 (-1225) (-95) (-505) (-35) (-294) (-10 -8 (-15 -3926 ($)))) -(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1225) . T)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1731 ((|#1| $) 19)) (-1420 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-2835 (((-112) $ (-783)) 72)) (-2597 ((|#1| $ |#1|) 14 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 13 (|has| $ (-6 -4463)))) (-3656 (($) NIL T CONST)) (-4260 (((-656 |#1|) $) 77 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 64)) (-2397 (((-112) $ $) 50 (|has| |#1| (-1119)))) (-1419 (((-112) $ (-783)) 62)) (-1750 (((-656 |#1|) $) 78 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3874 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 27)) (-3103 (((-112) $ (-783)) 60)) (-3699 (((-656 |#1|) $) 55)) (-3781 (((-112) $) 53)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3292 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 107)) (-3372 (((-112) $) 9)) (-2643 (($) 10)) (-4367 ((|#1| $ "value") NIL)) (-3136 (((-576) $ $) 48)) (-2347 (((-656 $) $) 89)) (-1576 (((-112) $ $) 110)) (-3726 (((-656 $) $) 105)) (-2045 (($ $) 106)) (-2492 (((-112) $) 84)) (-3150 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4462))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4268 (($ $) 88)) (-4092 (((-874) $) 91 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) 12)) (-3682 (((-112) $ $) 39 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 37 (|has| |#1| (-1119)))) (-2048 (((-783) $) 58 (|has| $ (-6 -4462))))) -(((-1223 |#1|) (-13 (-1029 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -1420 ($ |#1| (-656 $))) (-15 -1420 ($ (-656 |#1|))) (-15 -1420 ($ |#1|)) (-15 -2492 ((-112) $)) (-15 -2045 ($ $)) (-15 -3726 ((-656 $) $)) (-15 -1576 ((-112) $ $)) (-15 -2347 ((-656 $) $)))) (-1119)) (T -1223)) -((-2492 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))) (-1420 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1223 *2))) (-5 *1 (-1223 *2)) (-4 *2 (-1119)))) (-1420 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1223 *3)))) (-1420 (*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1119)))) (-2045 (*1 *1 *1) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1119)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))) (-1576 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1119)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1119))))) -(-13 (-1029 |#1|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -1420 ($ |#1| (-656 $))) (-15 -1420 ($ (-656 |#1|))) (-15 -1420 ($ |#1|)) (-15 -2492 ((-112) $)) (-15 -2045 ($ $)) (-15 -3726 ((-656 $) $)) (-15 -1576 ((-112) $ $)) (-15 -2347 ((-656 $) $)))) -((-2111 (($ $) 15)) (-2138 (($ $) 12)) (-2149 (($ $) 10)) (-2123 (($ $) 17))) -(((-1224 |#1|) (-10 -8 (-15 -2123 (|#1| |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -2138 (|#1| |#1|)) (-15 -2111 (|#1| |#1|))) (-1225)) (T -1224)) -NIL -(-10 -8 (-15 -2123 (|#1| |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -2138 (|#1| |#1|)) (-15 -2111 (|#1| |#1|))) -((-2111 (($ $) 11)) (-2084 (($ $) 10)) (-2138 (($ $) 9)) (-2149 (($ $) 8)) (-2123 (($ $) 7)) (-2099 (($ $) 6))) -(((-1225) (-141)) (T -1225)) -((-2111 (*1 *1 *1) (-4 *1 (-1225))) (-2084 (*1 *1 *1) (-4 *1 (-1225))) (-2138 (*1 *1 *1) (-4 *1 (-1225))) (-2149 (*1 *1 *1) (-4 *1 (-1225))) (-2123 (*1 *1 *1) (-4 *1 (-1225))) (-2099 (*1 *1 *1) (-4 *1 (-1225)))) -(-13 (-10 -8 (-15 -2099 ($ $)) (-15 -2123 ($ $)) (-15 -2149 ($ $)) (-15 -2138 ($ $)) (-15 -2084 ($ $)) (-15 -2111 ($ $)))) -((-4431 ((|#2| |#2|) 98)) (-4398 (((-112) |#2|) 29)) (-1415 ((|#2| |#2|) 33)) (-1428 ((|#2| |#2|) 35)) (-3809 ((|#2| |#2| (-1196)) 92) ((|#2| |#2|) 93)) (-3735 (((-171 |#2|) |#2|) 31)) (-3782 ((|#2| |#2| (-1196)) 94) ((|#2| |#2|) 95))) -(((-1226 |#1| |#2|) (-10 -7 (-15 -3809 (|#2| |#2|)) (-15 -3809 (|#2| |#2| (-1196))) (-15 -3782 (|#2| |#2|)) (-15 -3782 (|#2| |#2| (-1196))) (-15 -4431 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1428 (|#2| |#2|)) (-15 -4398 ((-112) |#2|)) (-15 -3735 ((-171 |#2|) |#2|))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1222) (-442 |#1|))) (T -1226)) -((-3735 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-4398 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) (-1428 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-4431 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-3782 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3782 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) (-3809 (*1 *2 *2 *3) (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(-10 -7 (-15 -3809 (|#2| |#2|)) (-15 -3809 (|#2| |#2| (-1196))) (-15 -3782 (|#2| |#2|)) (-15 -3782 (|#2| |#2| (-1196))) (-15 -4431 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1428 (|#2| |#2|)) (-15 -4398 ((-112) |#2|)) (-15 -3735 ((-171 |#2|) |#2|))) -((-3336 ((|#4| |#4| |#1|) 31)) (-3501 ((|#4| |#4| |#1|) 32))) -(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3336 (|#4| |#4| |#1|)) (-15 -3501 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1227)) -((-3501 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-3336 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(-10 -7 (-15 -3336 (|#4| |#4| |#1|)) (-15 -3501 (|#4| |#4| |#1|))) -((-2842 ((|#2| |#2|) 148)) (-1349 ((|#2| |#2|) 145)) (-4058 ((|#2| |#2|) 136)) (-4299 ((|#2| |#2|) 133)) (-3350 ((|#2| |#2|) 141)) (-2698 ((|#2| |#2|) 129)) (-1537 ((|#2| |#2|) 44)) (-2820 ((|#2| |#2|) 105)) (-4040 ((|#2| |#2|) 88)) (-2832 ((|#2| |#2|) 143)) (-2668 ((|#2| |#2|) 131)) (-2054 ((|#2| |#2|) 153)) (-1989 ((|#2| |#2|) 151)) (-2309 ((|#2| |#2|) 152)) (-2501 ((|#2| |#2|) 150)) (-3322 ((|#2| |#2|) 163)) (-3015 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-905 |#1|))) (|has| |#2| (-899 |#1|)) (|has| |#1| (-626 (-905 |#1|))) (|has| |#1| (-899 |#1|))))) (-3823 ((|#2| |#2|) 89)) (-3725 ((|#2| |#2|) 154)) (-2824 ((|#2| |#2|) 155)) (-3563 ((|#2| |#2|) 142)) (-1455 ((|#2| |#2|) 130)) (-1914 ((|#2| |#2|) 149)) (-3477 ((|#2| |#2|) 147)) (-2075 ((|#2| |#2|) 137)) (-2124 ((|#2| |#2|) 135)) (-1468 ((|#2| |#2|) 139)) (-3683 ((|#2| |#2|) 127))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -2824 (|#2| |#2|)) (-15 -4040 (|#2| |#2|)) (-15 -3322 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3725 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -1914 (|#2| |#2|)) (-15 -1455 (|#2| |#2|)) (-15 -3563 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -2698 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -2842 (|#2| |#2|)) (-15 -4299 (|#2| |#2|)) (-15 -1349 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -2501 (|#2| |#2|)) (-15 -1989 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2054 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -3015 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1222))) (T -1228)) -((-3015 (*1 *2 *2) (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2054 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2501 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2124 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-4299 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2842 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3350 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2698 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2668 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3563 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1455 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1914 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2075 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1468 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3725 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3823 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-1537 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2820 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-3322 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-4040 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222))))) (-2824 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-442 *3) (-1222)))))) -(-10 -7 (-15 -2824 (|#2| |#2|)) (-15 -4040 (|#2| |#2|)) (-15 -3322 (|#2| |#2|)) (-15 -2820 (|#2| |#2|)) (-15 -1537 (|#2| |#2|)) (-15 -3823 (|#2| |#2|)) (-15 -3725 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -1468 (|#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -1914 (|#2| |#2|)) (-15 -1455 (|#2| |#2|)) (-15 -3563 (|#2| |#2|)) (-15 -2668 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -2698 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -2842 (|#2| |#2|)) (-15 -4299 (|#2| |#2|)) (-15 -1349 (|#2| |#2|)) (-15 -2124 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -2501 (|#2| |#2|)) (-15 -1989 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2054 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -3015 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1701 (((-112) |#5| $) 68) (((-112) $) 110)) (-2919 ((|#5| |#5| $) 83)) (-3457 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-1574 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2974 (((-3 $ "failed") (-656 |#5|)) 135)) (-2712 (((-3 $ "failed") $) 120)) (-3996 ((|#5| |#5| $) 102)) (-3532 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-2948 ((|#5| |#5| $) 106)) (-2359 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-2740 (((-2 (|:| -1627 (-656 |#5|)) (|:| -3709 (-656 |#5|))) $) 63)) (-3871 (((-112) |#5| $) 66) (((-112) $) 111)) (-2565 ((|#4| $) 116)) (-2912 (((-3 |#5| "failed") $) 118)) (-2106 (((-656 |#5|) $) 55)) (-3593 (((-112) |#5| $) 75) (((-112) $) 115)) (-4395 ((|#5| |#5| $) 89)) (-3711 (((-112) $ $) 29)) (-1875 (((-112) |#5| $) 71) (((-112) $) 113)) (-3987 ((|#5| |#5| $) 86)) (-2701 (((-3 |#5| "failed") $) 117)) (-2843 (($ $ |#5|) 136)) (-2369 (((-783) $) 60)) (-4103 (($ (-656 |#5|)) 133)) (-1606 (($ $ |#4|) 131)) (-2333 (($ $ |#4|) 129)) (-2792 (($ $) 128)) (-4092 (((-874) $) NIL) (((-656 |#5|) $) 121)) (-2727 (((-783) $) 140)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2196 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-1895 (((-656 |#4|) $) 123)) (-4101 (((-112) |#4| $) 126)) (-3919 (((-112) $ $) 20))) -(((-1229 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2727 ((-783) |#1|)) (-15 -2843 (|#1| |#1| |#5|)) (-15 -3457 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4101 ((-112) |#4| |#1|)) (-15 -1895 ((-656 |#4|) |#1|)) (-15 -2712 ((-3 |#1| "failed") |#1|)) (-15 -2912 ((-3 |#5| "failed") |#1|)) (-15 -2701 ((-3 |#5| "failed") |#1|)) (-15 -2948 (|#5| |#5| |#1|)) (-15 -2792 (|#1| |#1|)) (-15 -3996 (|#5| |#5| |#1|)) (-15 -4395 (|#5| |#5| |#1|)) (-15 -3987 (|#5| |#5| |#1|)) (-15 -2919 (|#5| |#5| |#1|)) (-15 -1574 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2359 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3593 ((-112) |#1|)) (-15 -1875 ((-112) |#1|)) (-15 -1701 ((-112) |#1|)) (-15 -2196 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -3593 ((-112) |#5| |#1|)) (-15 -1875 ((-112) |#5| |#1|)) (-15 -1701 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3871 ((-112) |#1|)) (-15 -3871 ((-112) |#5| |#1|)) (-15 -2740 ((-2 (|:| -1627 (-656 |#5|)) (|:| -3709 (-656 |#5|))) |#1|)) (-15 -2369 ((-783) |#1|)) (-15 -2106 ((-656 |#5|) |#1|)) (-15 -2751 ((-3 (-2 (|:| |bas| |#1|) (|:| -3005 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2751 ((-3 (-2 (|:| |bas| |#1|) (|:| -3005 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3711 ((-112) |#1| |#1|)) (-15 -1606 (|#1| |#1| |#4|)) (-15 -2333 (|#1| |#1| |#4|)) (-15 -2565 (|#4| |#1|)) (-15 -2974 ((-3 |#1| "failed") (-656 |#5|))) (-15 -4092 ((-656 |#5|) |#1|)) (-15 -4103 (|#1| (-656 |#5|))) (-15 -2359 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2359 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3457 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2359 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) (-1230 |#2| |#3| |#4| |#5|) (-568) (-805) (-862) (-1084 |#2| |#3| |#4|)) (T -1229)) -NIL -(-10 -8 (-15 -2727 ((-783) |#1|)) (-15 -2843 (|#1| |#1| |#5|)) (-15 -3457 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4101 ((-112) |#4| |#1|)) (-15 -1895 ((-656 |#4|) |#1|)) (-15 -2712 ((-3 |#1| "failed") |#1|)) (-15 -2912 ((-3 |#5| "failed") |#1|)) (-15 -2701 ((-3 |#5| "failed") |#1|)) (-15 -2948 (|#5| |#5| |#1|)) (-15 -2792 (|#1| |#1|)) (-15 -3996 (|#5| |#5| |#1|)) (-15 -4395 (|#5| |#5| |#1|)) (-15 -3987 (|#5| |#5| |#1|)) (-15 -2919 (|#5| |#5| |#1|)) (-15 -1574 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2359 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3593 ((-112) |#1|)) (-15 -1875 ((-112) |#1|)) (-15 -1701 ((-112) |#1|)) (-15 -2196 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -3593 ((-112) |#5| |#1|)) (-15 -1875 ((-112) |#5| |#1|)) (-15 -1701 ((-112) |#5| |#1|)) (-15 -3532 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3871 ((-112) |#1|)) (-15 -3871 ((-112) |#5| |#1|)) (-15 -2740 ((-2 (|:| -1627 (-656 |#5|)) (|:| -3709 (-656 |#5|))) |#1|)) (-15 -2369 ((-783) |#1|)) (-15 -2106 ((-656 |#5|) |#1|)) (-15 -2751 ((-3 (-2 (|:| |bas| |#1|) (|:| -3005 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -2751 ((-3 (-2 (|:| |bas| |#1|) (|:| -3005 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3711 ((-112) |#1| |#1|)) (-15 -1606 (|#1| |#1| |#4|)) (-15 -2333 (|#1| |#1| |#4|)) (-15 -2565 (|#4| |#1|)) (-15 -2974 ((-3 |#1| "failed") (-656 |#5|))) (-15 -4092 ((-656 |#5|) |#1|)) (-15 -4103 (|#1| (-656 |#5|))) (-15 -2359 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2359 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3457 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2359 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4092 ((-874) |#1|)) (-15 -3919 ((-112) |#1| |#1|))) -((-2034 (((-112) $ $) 7)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |#4|)))) (-656 |#4|)) 86)) (-2567 (((-656 $) (-656 |#4|)) 87)) (-1541 (((-656 |#3|) $) 34)) (-3522 (((-112) $) 27)) (-2932 (((-112) $) 18 (|has| |#1| (-568)))) (-1701 (((-112) |#4| $) 102) (((-112) $) 98)) (-2919 ((|#4| |#4| $) 93)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) 28)) (-2835 (((-112) $ (-783)) 45)) (-3457 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) 80)) (-3656 (($) 46 T CONST)) (-3425 (((-112) $) 23 (|has| |#1| (-568)))) (-2623 (((-112) $ $) 25 (|has| |#1| (-568)))) (-1582 (((-112) $ $) 24 (|has| |#1| (-568)))) (-3347 (((-112) $) 26 (|has| |#1| (-568)))) (-1574 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4135 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) 37)) (-2378 (($ (-656 |#4|)) 36)) (-2712 (((-3 $ "failed") $) 83)) (-3996 ((|#4| |#4| $) 90)) (-1690 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-3532 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-2948 ((|#4| |#4| $) 88)) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-2740 (((-2 (|:| -1627 (-656 |#4|)) (|:| -3709 (-656 |#4|))) $) 106)) (-4260 (((-656 |#4|) $) 53 (|has| $ (-6 -4462)))) (-3871 (((-112) |#4| $) 105) (((-112) $) 104)) (-2565 ((|#3| $) 35)) (-1419 (((-112) $ (-783)) 44)) (-1750 (((-656 |#4|) $) 54 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) 48)) (-2964 (((-656 |#3|) $) 33)) (-2459 (((-112) |#3| $) 32)) (-3103 (((-112) $ (-783)) 43)) (-3288 (((-1178) $) 10)) (-2912 (((-3 |#4| "failed") $) 84)) (-2106 (((-656 |#4|) $) 108)) (-3593 (((-112) |#4| $) 100) (((-112) $) 96)) (-4395 ((|#4| |#4| $) 91)) (-3711 (((-112) $ $) 111)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1875 (((-112) |#4| $) 101) (((-112) $) 97)) (-3987 ((|#4| |#4| $) 92)) (-3139 (((-1139) $) 11)) (-2701 (((-3 |#4| "failed") $) 85)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1479 (((-3 $ "failed") $ |#4|) 79)) (-2843 (($ $ |#4|) 78)) (-3292 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) 39)) (-3372 (((-112) $) 42)) (-2643 (($) 41)) (-2369 (((-783) $) 107)) (-3150 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4462)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4462)))) (-4268 (($ $) 40)) (-1505 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) 61)) (-1606 (($ $ |#3|) 29)) (-2333 (($ $ |#3|) 31)) (-2792 (($ $) 89)) (-2875 (($ $ |#3|) 30)) (-4092 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2727 (((-783) $) 77 (|has| |#3| (-379)))) (-1531 (((-112) $ $) 9)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2196 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2190 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4462)))) (-1895 (((-656 |#3|) $) 82)) (-4101 (((-112) |#3| $) 81)) (-3919 (((-112) $ $) 6)) (-2048 (((-783) $) 47 (|has| $ (-6 -4462))))) -(((-1230 |#1| |#2| |#3| |#4|) (-141) (-568) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -1230)) -((-3711 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-2751 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3005 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1230 *5 *6 *7 *8)))) (-2751 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3005 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1230 *6 *7 *8 *9)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *6)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-783)))) (-2740 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-2 (|:| -1627 (-656 *6)) (|:| -3709 (-656 *6)))))) (-3871 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-3532 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1230 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)))) (-1701 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1875 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-3593 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1230 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1701 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-2359 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1230 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *2 (-1084 *5 *6 *7)))) (-1574 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1230 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)))) (-2919 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3987 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-4395 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3996 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2792 (*1 *1 *1) (-12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4)))) (-2948 (*1 *2 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1230 *4 *5 *6 *7)))) (-2512 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -1627 *1) (|:| -3709 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1230 *4 *5 *6 *7)))) (-2701 (*1 *2 *1) (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2912 (*1 *2 *1) (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2712 (*1 *1 *1) (|partial| -12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) (-4101 (*1 *2 *3 *1) (-12 (-4 *1 (-1230 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112)))) (-3457 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1230 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1084 *4 *5 *3)))) (-1479 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2843 (*1 *1 *1 *2) (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783))))) -(-13 (-995 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4462) (-6 -4463) (-15 -3711 ((-112) $ $)) (-15 -2751 ((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2751 ((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2106 ((-656 |t#4|) $)) (-15 -2369 ((-783) $)) (-15 -2740 ((-2 (|:| -1627 (-656 |t#4|)) (|:| -3709 (-656 |t#4|))) $)) (-15 -3871 ((-112) |t#4| $)) (-15 -3871 ((-112) $)) (-15 -3532 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1701 ((-112) |t#4| $)) (-15 -1875 ((-112) |t#4| $)) (-15 -3593 ((-112) |t#4| $)) (-15 -2196 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -1701 ((-112) $)) (-15 -1875 ((-112) $)) (-15 -3593 ((-112) $)) (-15 -2359 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1574 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2919 (|t#4| |t#4| $)) (-15 -3987 (|t#4| |t#4| $)) (-15 -4395 (|t#4| |t#4| $)) (-15 -3996 (|t#4| |t#4| $)) (-15 -2792 ($ $)) (-15 -2948 (|t#4| |t#4| $)) (-15 -2567 ((-656 $) (-656 |t#4|))) (-15 -2512 ((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |t#4|)))) (-656 |t#4|))) (-15 -2701 ((-3 |t#4| "failed") $)) (-15 -2912 ((-3 |t#4| "failed") $)) (-15 -2712 ((-3 $ "failed") $)) (-15 -1895 ((-656 |t#3|) $)) (-15 -4101 ((-112) |t#3| $)) (-15 -3457 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1479 ((-3 $ "failed") $ |t#4|)) (-15 -2843 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -2727 ((-783) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1237) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-1196)) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2266 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2294 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-3928 (((-969 |#1|) $ (-783)) 17) (((-969 |#1|) $ (-783) (-783)) NIL)) (-3840 (((-112) $) NIL)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-783) $ (-1196)) NIL) (((-783) $ (-1196) (-783)) NIL)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4331 (((-112) $) NIL)) (-1518 (($ $ (-656 (-1196)) (-656 (-543 (-1196)))) NIL) (($ $ (-1196) (-543 (-1196))) NIL) (($ |#1| (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3597 (($ $ (-1196)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3139 (((-1139) $) NIL)) (-2628 (($ (-1 $) (-1196) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2843 (($ $ (-783)) NIL)) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2259 (($ $ (-1196) $) NIL) (($ $ (-656 (-1196)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-3614 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-2369 (((-543 (-1196)) $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1196)) NIL) (($ (-969 |#1|)) NIL)) (-2430 ((|#1| $ (-543 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL) (((-969 |#1|) $ (-783)) NIL)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3945 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-4286 (($ $ (-656 (-1196)) (-656 (-783))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1231 |#1|) (-13 (-752 |#1| (-1196)) (-10 -8 (-15 -2430 ((-969 |#1|) $ (-783))) (-15 -4092 ($ (-1196))) (-15 -4092 ($ (-969 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $ (-1196) |#1|)) (-15 -2628 ($ (-1 $) (-1196) |#1|))) |%noBranch|))) (-1068)) (T -1231)) -((-2430 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-969 *4)) (-5 *1 (-1231 *4)) (-4 *4 (-1068)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-1068)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-5 *1 (-1231 *3)))) (-3597 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)))) (-2628 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1231 *4))) (-5 *3 (-1196)) (-5 *1 (-1231 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068))))) -(-13 (-752 |#1| (-1196)) (-10 -8 (-15 -2430 ((-969 |#1|) $ (-783))) (-15 -4092 ($ (-1196))) (-15 -4092 ($ (-969 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $ (-1196) |#1|)) (-15 -2628 ($ (-1 $) (-1196) |#1|))) |%noBranch|))) -((-3028 (($ |#1| (-656 (-656 (-960 (-227)))) (-112)) 19)) (-2720 (((-112) $ (-112)) 18)) (-1607 (((-112) $) 17)) (-2338 (((-656 (-656 (-960 (-227)))) $) 13)) (-1515 ((|#1| $) 8)) (-2065 (((-112) $) 15))) -(((-1232 |#1|) (-10 -8 (-15 -1515 (|#1| $)) (-15 -2338 ((-656 (-656 (-960 (-227)))) $)) (-15 -2065 ((-112) $)) (-15 -1607 ((-112) $)) (-15 -2720 ((-112) $ (-112))) (-15 -3028 ($ |#1| (-656 (-656 (-960 (-227)))) (-112)))) (-993)) (T -1232)) -((-3028 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-112)) (-5 *1 (-1232 *2)) (-4 *2 (-993)))) (-2720 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-1607 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-2065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-2338 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-1232 *3)) (-4 *3 (-993)))) (-1515 (*1 *2 *1) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-993))))) -(-10 -8 (-15 -1515 (|#1| $)) (-15 -2338 ((-656 (-656 (-960 (-227)))) $)) (-15 -2065 ((-112) $)) (-15 -1607 ((-112) $)) (-15 -2720 ((-112) $ (-112))) (-15 -3028 ($ |#1| (-656 (-656 (-960 (-227)))) (-112)))) -((-3001 (((-960 (-227)) (-960 (-227))) 31)) (-3418 (((-960 (-227)) (-227) (-227) (-227) (-227)) 10)) (-2482 (((-656 (-960 (-227))) (-960 (-227)) (-960 (-227)) (-960 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-1660 (((-227) (-960 (-227)) (-960 (-227))) 27)) (-2916 (((-960 (-227)) (-960 (-227)) (-960 (-227))) 28)) (-3265 (((-656 (-656 (-227))) (-576)) 44)) (-4018 (((-960 (-227)) (-960 (-227)) (-960 (-227))) 26)) (-4007 (((-960 (-227)) (-960 (-227)) (-960 (-227))) 24)) (* (((-960 (-227)) (-227) (-960 (-227))) 22))) -(((-1233) (-10 -7 (-15 -3418 ((-960 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-960 (-227)) (-227) (-960 (-227)))) (-15 -4007 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -4018 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -1660 ((-227) (-960 (-227)) (-960 (-227)))) (-15 -2916 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -3001 ((-960 (-227)) (-960 (-227)))) (-15 -3265 ((-656 (-656 (-227))) (-576))) (-15 -2482 ((-656 (-960 (-227))) (-960 (-227)) (-960 (-227)) (-960 (-227)) (-227) (-656 (-656 (-227))))))) (T -1233)) -((-2482 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-960 *4))) (-5 *1 (-1233)) (-5 *3 (-960 *4)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1233)))) (-3001 (*1 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) (-2916 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) (-1660 (*1 *2 *3 *3) (-12 (-5 *3 (-960 (-227))) (-5 *2 (-227)) (-5 *1 (-1233)))) (-4018 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) (-4007 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-960 (-227))) (-5 *3 (-227)) (-5 *1 (-1233)))) (-3418 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)) (-5 *3 (-227))))) -(-10 -7 (-15 -3418 ((-960 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-960 (-227)) (-227) (-960 (-227)))) (-15 -4007 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -4018 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -1660 ((-227) (-960 (-227)) (-960 (-227)))) (-15 -2916 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -3001 ((-960 (-227)) (-960 (-227)))) (-15 -3265 ((-656 (-656 (-227))) (-576))) (-15 -2482 ((-656 (-960 (-227))) (-960 (-227)) (-960 (-227)) (-960 (-227)) (-227) (-656 (-656 (-227)))))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3457 ((|#1| $ (-783)) 18)) (-1325 (((-783) $) 13)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4092 (((-975 |#1|) $) 12) (($ (-975 |#1|)) 11) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3919 (((-112) $ $) 22 (|has| |#1| (-1119))))) -(((-1234 |#1|) (-13 (-502 (-975 |#1|)) (-10 -8 (-15 -3457 (|#1| $ (-783))) (-15 -1325 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) (-1237)) (T -1234)) -((-3457 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1234 *2)) (-4 *2 (-1237)))) (-1325 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1234 *3)) (-4 *3 (-1237))))) -(-13 (-502 (-975 |#1|)) (-10 -8 (-15 -3457 (|#1| $ (-783))) (-15 -1325 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) -((-3978 (((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-576)) 94)) (-4012 (((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|))) 86)) (-4225 (((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|))) 70))) -(((-1235 |#1|) (-10 -7 (-15 -4012 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -4225 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -3978 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-576)))) (-360)) (T -1235)) -((-3978 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1192 (-1192 *5)))) (-5 *1 (-1235 *5)) (-5 *3 (-1192 (-1192 *5))))) (-4225 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4))))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4)))))) -(-10 -7 (-15 -4012 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -4225 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -3978 ((-430 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-576)))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 9) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1236) (-1102)) (T -1236)) +((-3920 (((-656 (-656 (-969 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1195))) 69)) (-2445 (((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|)))) 80) (((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|))) 76) (((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))) (-1195)) 81) (((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1195)) 75) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|))))) 106) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|)))) 105) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1195))) 107) (((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))) (-656 (-1195))) 104))) +(((-1204 |#1|) (-10 -7 (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))) (-656 (-1195)))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1195)))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -2445 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1195))) (-15 -2445 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))) (-1195))) (-15 -2445 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)))) (-15 -2445 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))))) (-15 -3920 ((-656 (-656 (-969 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1195))))) (-568)) (T -1204)) +((-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-969 *5)))) (-5 *1 (-1204 *5)))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) (-5 *1 (-1204 *4)) (-5 *3 (-304 (-419 (-969 *4)))))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) (-5 *1 (-1204 *4)) (-5 *3 (-419 (-969 *4))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1204 *5)) (-5 *3 (-304 (-419 (-969 *5)))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *4 (-1195)) (-4 *5 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1204 *5)) (-5 *3 (-419 (-969 *5))))) (-2445 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-1204 *4)) (-5 *3 (-656 (-304 (-419 (-969 *4))))))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-1204 *4)))) (-2445 (*1 *2 *3 *4) (-12 (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-1204 *5)) (-5 *3 (-656 (-304 (-419 (-969 *5))))))) (-2445 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-1204 *5))))) +(-10 -7 (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))) (-656 (-1195)))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))) (-656 (-1195)))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-419 (-969 |#1|))))) (-15 -2445 ((-656 (-656 (-304 (-419 (-969 |#1|))))) (-656 (-304 (-419 (-969 |#1|)))))) (-15 -2445 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)) (-1195))) (-15 -2445 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))) (-1195))) (-15 -2445 ((-656 (-304 (-419 (-969 |#1|)))) (-419 (-969 |#1|)))) (-15 -2445 ((-656 (-304 (-419 (-969 |#1|)))) (-304 (-419 (-969 |#1|))))) (-15 -3920 ((-656 (-656 (-969 |#1|))) (-656 (-419 (-969 |#1|))) (-656 (-1195))))) +((-4289 (((-1177)) 7)) (-4052 (((-1177)) 11 T CONST)) (-3676 (((-1291) (-1177)) 13)) (-3072 (((-1177)) 8 T CONST)) (-2662 (((-131)) 10 T CONST))) +(((-1205) (-13 (-1236) (-10 -7 (-15 -4289 ((-1177))) (-15 -3072 ((-1177)) -1398) (-15 -2662 ((-131)) -1398) (-15 -4052 ((-1177)) -1398) (-15 -3676 ((-1291) (-1177)))))) (T -1205)) +((-4289 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))) (-3072 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))) (-2662 (*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1205)))) (-4052 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205)))) (-3676 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1205))))) +(-13 (-1236) (-10 -7 (-15 -4289 ((-1177))) (-15 -3072 ((-1177)) -1398) (-15 -2662 ((-131)) -1398) (-15 -4052 ((-1177)) -1398) (-15 -3676 ((-1291) (-1177))))) +((-3087 (((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 56)) (-1381 (((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|))) 38)) (-2127 (((-1207 (-656 |#1|)) (-656 |#1|)) 49)) (-3056 (((-656 (-656 |#1|)) (-656 |#1|)) 45)) (-3349 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))) 53)) (-3585 (((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|)))) 52)) (-2028 (((-656 (-656 |#1|)) (-656 (-656 |#1|))) 43)) (-2030 (((-656 |#1|) (-656 |#1|)) 46)) (-3690 (((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 32)) (-1677 (((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|)))) 29)) (-2332 (((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|))) 24)) (-3031 (((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|)))) 58)) (-1953 (((-656 (-656 |#1|)) (-1207 (-656 |#1|))) 60))) +(((-1206 |#1|) (-10 -7 (-15 -2332 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -1677 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3690 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3087 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3031 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1953 ((-656 (-656 |#1|)) (-1207 (-656 |#1|)))) (-15 -1381 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -2127 ((-1207 (-656 |#1|)) (-656 |#1|))) (-15 -2028 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3056 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2030 ((-656 |#1|) (-656 |#1|))) (-15 -3585 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3349 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) (-862)) (T -1206)) +((-3349 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 (-656 *4)))))) (-3585 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) (|:| |f4| (-656 *5)))) (-5 *1 (-1206 *6)) (-5 *4 (-656 *5)))) (-2030 (*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1206 *3)))) (-3056 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)) (-5 *3 (-656 *4)))) (-2028 (*1 *2 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1206 *3)))) (-2127 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-1207 (-656 *4))) (-5 *1 (-1206 *4)) (-5 *3 (-656 *4)))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 *4))))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-1207 (-656 *4))) (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)))) (-3031 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)) (-4 *4 (-862)))) (-3087 (*1 *2 *2 *3) (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) (-4 *4 (-862)) (-5 *1 (-1206 *4)))) (-3690 (*1 *2 *3 *2) (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *1 (-1206 *4)))) (-1677 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1206 *5)))) (-2332 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) (-5 *1 (-1206 *6)) (-5 *5 (-656 *4))))) +(-10 -7 (-15 -2332 ((-2 (|:| |fs| (-112)) (|:| |sd| (-656 |#1|)) (|:| |td| (-656 (-656 |#1|)))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 |#1|)))) (-15 -1677 ((-656 (-656 (-656 |#1|))) (-1 (-112) |#1| |#1|) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3690 ((-656 (-656 (-656 |#1|))) (-656 |#1|) (-656 (-656 (-656 |#1|))))) (-15 -3087 ((-656 (-656 |#1|)) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -3031 ((-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))))) (-15 -1953 ((-656 (-656 |#1|)) (-1207 (-656 |#1|)))) (-15 -1381 ((-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)))) (-15 -2127 ((-1207 (-656 |#1|)) (-656 |#1|))) (-15 -2028 ((-656 (-656 |#1|)) (-656 (-656 |#1|)))) (-15 -3056 ((-656 (-656 |#1|)) (-656 |#1|))) (-15 -2030 ((-656 |#1|) (-656 |#1|))) (-15 -3585 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 |#1|) (-656 (-656 (-656 |#1|))) (-656 (-656 |#1|)) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))) (-656 (-656 (-656 |#1|))))) (-15 -3349 ((-2 (|:| |f1| (-656 |#1|)) (|:| |f2| (-656 (-656 (-656 |#1|)))) (|:| |f3| (-656 (-656 |#1|))) (|:| |f4| (-656 (-656 (-656 |#1|))))) (-656 (-656 (-656 |#1|)))))) +((-2738 (($ (-656 (-656 |#1|))) 10)) (-2156 (((-656 (-656 |#1|)) $) 11)) (-3563 (((-874) $) 33))) +(((-1207 |#1|) (-10 -8 (-15 -2738 ($ (-656 (-656 |#1|)))) (-15 -2156 ((-656 (-656 |#1|)) $)) (-15 -3563 ((-874) $))) (-1119)) (T -1207)) +((-3563 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1207 *3)) (-4 *3 (-1119)))) (-2156 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1119)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-1207 *3))))) +(-10 -8 (-15 -2738 ($ (-656 (-656 |#1|)))) (-15 -2156 ((-656 (-656 |#1|)) $)) (-15 -3563 ((-874) $))) +((-3474 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-4022 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2333 (((-1291) $ |#1| |#1|) NIL (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#2| $ |#1| |#2|) NIL)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2287 (((-3 |#2| "failed") |#1| $) NIL)) (-3767 (($) NIL T CONST)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) NIL)) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) NIL)) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) NIL)) (-1386 ((|#1| $) NIL (|has| |#1| (-862)))) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-656 |#2|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-3814 ((|#1| $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3135 (((-656 |#1|) $) NIL)) (-2937 (((-112) |#1| $) NIL)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-3321 (((-656 |#1|) $) NIL)) (-2378 (((-112) |#1| $) NIL)) (-1445 (((-1139) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3504 ((|#2| $) NIL (|has| |#1| (-862)))) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL)) (-2500 (($ $ |#2|) NIL (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2837 (($) NIL) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) NIL (-12 (|has| $ (-6 -4461)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (((-783) |#2| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119)))) (((-783) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-3563 (((-874) $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874))) (|has| |#2| (-625 (-874)))))) (-3985 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) NIL)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) NIL (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) NIL (-2835 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| |#2| (-1119))))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1208 |#1| |#2|) (-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) (-1119) (-1119)) (T -1208)) +NIL +(-13 (-1212 |#1| |#2|) (-10 -7 (-6 -4461))) +((-3474 (((-112) $ $) NIL)) (-3974 (($ |#1| (-55)) 10)) (-2706 ((|#1| $) 12)) (-1927 (((-1177) $) NIL)) (-3718 (((-112) $ |#1|) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-3985 (((-112) $ $) NIL)) (-1730 (((-55) $) 14)) (-2988 (((-112) $ $) NIL))) +(((-1209 |#1|) (-13 (-847 |#1|) (-10 -8 (-15 -3974 ($ |#1| (-55))))) (-1119)) (T -1209)) +((-3974 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1209 *2)) (-4 *2 (-1119))))) +(-13 (-847 |#1|) (-10 -8 (-15 -3974 ($ |#1| (-55))))) +((-1400 ((|#1| (-656 |#1|)) 46)) (-1391 ((|#1| |#1| (-576)) 24)) (-4087 (((-1191 |#1|) |#1| (-938)) 20))) +(((-1210 |#1|) (-10 -7 (-15 -1400 (|#1| (-656 |#1|))) (-15 -4087 ((-1191 |#1|) |#1| (-938))) (-15 -1391 (|#1| |#1| (-576)))) (-374)) (T -1210)) +((-1391 (*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1210 *2)) (-4 *2 (-374)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-1191 *3)) (-5 *1 (-1210 *3)) (-4 *3 (-374)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-374))))) +(-10 -7 (-15 -1400 (|#1| (-656 |#1|))) (-15 -4087 ((-1191 |#1|) |#1| (-938))) (-15 -1391 (|#1| |#1| (-576)))) +((-4022 (($) 10) (($ (-656 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)))) 14)) (-3623 (($ (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3825 (((-656 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) $) 39) (((-656 |#3|) $) 41)) (-1763 (($ (-1 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-1632 (($ (-1 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1409 (((-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) $) 60)) (-2040 (($ (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) $) 16)) (-3321 (((-656 |#2|) $) 19)) (-2378 (((-112) |#2| $) 65)) (-2644 (((-3 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) "failed") (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) $) 64)) (-3399 (((-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) $) 69)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-1947 (((-656 |#3|) $) 43)) (-2871 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) $) NIL) (((-783) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) $) NIL) (((-783) |#3| $) NIL) (((-783) (-1 (-112) |#3|) $) 79)) (-3563 (((-874) $) 27)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2988 (((-112) $ $) 51))) +(((-1211 |#1| |#2| |#3|) (-10 -8 (-15 -2988 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -1632 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4022 (|#1| (-656 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))))) (-15 -4022 (|#1|)) (-15 -1632 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1763 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1456 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3825 ((-656 |#3|) |#1|)) (-15 -1456 ((-783) |#3| |#1|)) (-15 -2871 (|#3| |#1| |#2| |#3|)) (-15 -2871 (|#3| |#1| |#2|)) (-15 -1947 ((-656 |#3|) |#1|)) (-15 -2378 ((-112) |#2| |#1|)) (-15 -3321 ((-656 |#2|) |#1|)) (-15 -3623 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3623 (|#1| (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -3623 (|#1| (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -2644 ((-3 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) "failed") (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -1409 ((-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -2040 (|#1| (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -3399 ((-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -1456 ((-783) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -3825 ((-656 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -1456 ((-783) (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -4207 ((-112) (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -2043 ((-112) (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -1763 (|#1| (-1 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -1632 (|#1| (-1 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|))) (-1212 |#2| |#3|) (-1119) (-1119)) (T -1211)) +NIL +(-10 -8 (-15 -2988 ((-112) |#1| |#1|)) (-15 -3563 ((-874) |#1|)) (-15 -1632 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4022 (|#1| (-656 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))))) (-15 -4022 (|#1|)) (-15 -1632 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1763 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2043 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -4207 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1456 ((-783) (-1 (-112) |#3|) |#1|)) (-15 -3825 ((-656 |#3|) |#1|)) (-15 -1456 ((-783) |#3| |#1|)) (-15 -2871 (|#3| |#1| |#2| |#3|)) (-15 -2871 (|#3| |#1| |#2|)) (-15 -1947 ((-656 |#3|) |#1|)) (-15 -2378 ((-112) |#2| |#1|)) (-15 -3321 ((-656 |#2|) |#1|)) (-15 -3623 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3623 (|#1| (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -3623 (|#1| (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -2644 ((-3 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) "failed") (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -1409 ((-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -2040 (|#1| (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -3399 ((-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -1456 ((-783) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) |#1|)) (-15 -3825 ((-656 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -1456 ((-783) (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -4207 ((-112) (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -2043 ((-112) (-1 (-112) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -1763 (|#1| (-1 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|)) (-15 -1632 (|#1| (-1 (-2 (|:| -4282 |#2|) (|:| -4353 |#3|)) (-2 (|:| -4282 |#2|) (|:| -4353 |#3|))) |#1|))) +((-3474 (((-112) $ $) 19 (-2835 (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-4022 (($) 73) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 72)) (-2333 (((-1291) $ |#1| |#1|) 100 (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) 8)) (-3731 ((|#2| $ |#1| |#2|) 74)) (-4001 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 46 (|has| $ (-6 -4461)))) (-2496 (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 56 (|has| $ (-6 -4461)))) (-2287 (((-3 |#2| "failed") |#1| $) 62)) (-3767 (($) 7 T CONST)) (-3172 (($ $) 59 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461))))) (-3623 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 48 (|has| $ (-6 -4461))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 47 (|has| $ (-6 -4461))) (((-3 |#2| "failed") |#1| $) 63)) (-3902 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 58 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 55 (|has| $ (-6 -4461)))) (-2521 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 57 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 54 (|has| $ (-6 -4461))) (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 53 (|has| $ (-6 -4461)))) (-1776 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4462)))) (-1698 ((|#2| $ |#1|) 89)) (-3825 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 31 (|has| $ (-6 -4461))) (((-656 |#2|) $) 80 (|has| $ (-6 -4461)))) (-3115 (((-112) $ (-783)) 9)) (-1386 ((|#1| $) 97 (|has| |#1| (-862)))) (-2591 (((-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 30 (|has| $ (-6 -4461))) (((-656 |#2|) $) 81 (|has| $ (-6 -4461)))) (-2511 (((-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461))))) (-3814 ((|#1| $) 96 (|has| |#1| (-862)))) (-1763 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 35 (|has| $ (-6 -4462))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4462)))) (-1632 (($ (-1 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-2712 (((-112) $ (-783)) 10)) (-1927 (((-1177) $) 22 (-2835 (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3135 (((-656 |#1|) $) 64)) (-2937 (((-112) |#1| $) 65)) (-1409 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 40)) (-2040 (($ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 41)) (-3321 (((-656 |#1|) $) 94)) (-2378 (((-112) |#1| $) 93)) (-1445 (((-1139) $) 21 (-2835 (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3504 ((|#2| $) 98 (|has| |#1| (-862)))) (-2644 (((-3 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) "failed") (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 52)) (-2500 (($ $ |#2|) 99 (|has| $ (-6 -4462)))) (-3399 (((-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 42)) (-4207 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 33 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))))) 27 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-304 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 26 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) 25 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 24 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)))) (($ $ (-656 |#2|) (-656 |#2|)) 87 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-304 |#2|)) 85 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119)))) (($ $ (-656 (-304 |#2|))) 84 (-12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4461)) (|has| |#2| (-1119))))) (-1947 (((-656 |#2|) $) 92)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2837 (($) 50) (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 49)) (-1456 (((-783) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 32 (|has| $ (-6 -4461))) (((-783) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) $) 29 (-12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| $ (-6 -4461)))) (((-783) |#2| $) 82 (-12 (|has| |#2| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4461)))) (-1954 (($ $) 13)) (-4076 (((-548) $) 60 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))))) (-3573 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 51)) (-3563 (((-874) $) 18 (-2835 (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874)))))) (-3985 (((-112) $ $) 23 (-2835 (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3773 (($ (-656 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) 43)) (-2043 (((-112) (-1 (-112) (-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) $) 34 (|has| $ (-6 -4461))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (-2835 (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-1212 |#1| |#2|) (-141) (-1119) (-1119)) (T -1212)) +((-3731 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1212 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) (-4022 (*1 *1) (-12 (-4 *1 (-1212 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-656 (-2 (|:| -4282 *3) (|:| -4353 *4)))) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *1 (-1212 *3 *4)))) (-1632 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1212 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))))) +(-13 (-622 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -3731 (|t#2| $ |t#1| |t#2|)) (-15 -4022 ($)) (-15 -4022 ($ (-656 (-2 (|:| -4282 |t#1|) (|:| -4353 |t#2|))))) (-15 -1632 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -4282 |#1|) (|:| -4353 |#2|))) . T) ((-102) -2835 (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) ((-625 (-874)) -2835 (|has| |#2| (-1119)) (|has| |#2| (-625 (-874))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-625 (-874)))) ((-152 #0#) . T) ((-626 (-548)) |has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-626 (-548))) ((-231 #0#) . T) ((-240 #0#) . T) ((-296 |#1| |#2|) . T) ((-298 |#1| |#2|) . T) ((-319 #0#) -12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) ((-319 |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-501 #0#) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 #0# #0#) -12 (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-319 (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)))) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) ((-526 |#2| |#2|) -12 (|has| |#2| (-319 |#2|)) (|has| |#2| (-1119))) ((-622 |#1| |#2|) . T) ((-1119) -2835 (|has| |#2| (-1119)) (|has| (-2 (|:| -4282 |#1|) (|:| -4353 |#2|)) (-1119))) ((-1236) . T)) +((-2007 (((-112)) 29)) (-4236 (((-1291) (-1177)) 31)) (-4263 (((-112)) 41)) (-2440 (((-1291)) 39)) (-2673 (((-1291) (-1177) (-1177)) 30)) (-2329 (((-112)) 42)) (-2040 (((-1291) |#1| |#2|) 53)) (-2855 (((-1291)) 26)) (-4128 (((-3 |#2| "failed") |#1|) 51)) (-1580 (((-1291)) 40))) +(((-1213 |#1| |#2|) (-10 -7 (-15 -2855 ((-1291))) (-15 -2673 ((-1291) (-1177) (-1177))) (-15 -4236 ((-1291) (-1177))) (-15 -2440 ((-1291))) (-15 -1580 ((-1291))) (-15 -2007 ((-112))) (-15 -4263 ((-112))) (-15 -2329 ((-112))) (-15 -4128 ((-3 |#2| "failed") |#1|)) (-15 -2040 ((-1291) |#1| |#2|))) (-1119) (-1119)) (T -1213)) +((-2040 (*1 *2 *3 *4) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-4128 (*1 *2 *3) (|partial| -12 (-4 *2 (-1119)) (-5 *1 (-1213 *3 *2)) (-4 *3 (-1119)))) (-2329 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-4263 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-2007 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-1580 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-2440 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) (-4236 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)))) (-2673 (*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)))) (-2855 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))))) +(-10 -7 (-15 -2855 ((-1291))) (-15 -2673 ((-1291) (-1177) (-1177))) (-15 -4236 ((-1291) (-1177))) (-15 -2440 ((-1291))) (-15 -1580 ((-1291))) (-15 -2007 ((-112))) (-15 -4263 ((-112))) (-15 -2329 ((-112))) (-15 -4128 ((-3 |#2| "failed") |#1|)) (-15 -2040 ((-1291) |#1| |#2|))) +((-3915 (((-1177) (-1177)) 22)) (-4271 (((-52) (-1177)) 25))) +(((-1214) (-10 -7 (-15 -4271 ((-52) (-1177))) (-15 -3915 ((-1177) (-1177))))) (T -1214)) +((-3915 (*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1214)))) (-4271 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-1214))))) +(-10 -7 (-15 -4271 ((-52) (-1177))) (-15 -3915 ((-1177) (-1177)))) +((-3563 (((-1216) |#1|) 11))) +(((-1215 |#1|) (-10 -7 (-15 -3563 ((-1216) |#1|))) (-1119)) (T -1215)) +((-3563 (*1 *2 *3) (-12 (-5 *2 (-1216)) (-5 *1 (-1215 *3)) (-4 *3 (-1119))))) +(-10 -7 (-15 -3563 ((-1216) |#1|))) +((-3474 (((-112) $ $) NIL)) (-2330 (((-656 (-1177)) $) 39)) (-1773 (((-656 (-1177)) $ (-656 (-1177))) 42)) (-1529 (((-656 (-1177)) $ (-656 (-1177))) 41)) (-2020 (((-656 (-1177)) $ (-656 (-1177))) 43)) (-4197 (((-656 (-1177)) $) 38)) (-4033 (($) 28)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4097 (((-656 (-1177)) $) 40)) (-2076 (((-1291) $ (-576)) 35) (((-1291) $) 36)) (-4076 (($ (-874) (-576)) 33) (($ (-874) (-576) (-874)) NIL)) (-3563 (((-874) $) 49) (($ (-874)) 32)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1216) (-13 (-1119) (-628 (-874)) (-10 -8 (-15 -4076 ($ (-874) (-576))) (-15 -4076 ($ (-874) (-576) (-874))) (-15 -2076 ((-1291) $ (-576))) (-15 -2076 ((-1291) $)) (-15 -4097 ((-656 (-1177)) $)) (-15 -2330 ((-656 (-1177)) $)) (-15 -4033 ($)) (-15 -4197 ((-656 (-1177)) $)) (-15 -2020 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -1773 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -1529 ((-656 (-1177)) $ (-656 (-1177))))))) (T -1216)) +((-4076 (*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) (-4076 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) (-2076 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1216)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1216)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-2330 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-4033 (*1 *1) (-5 *1 (-1216))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-2020 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-1773 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216)))) (-1529 (*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) +(-13 (-1119) (-628 (-874)) (-10 -8 (-15 -4076 ($ (-874) (-576))) (-15 -4076 ($ (-874) (-576) (-874))) (-15 -2076 ((-1291) $ (-576))) (-15 -2076 ((-1291) $)) (-15 -4097 ((-656 (-1177)) $)) (-15 -2330 ((-656 (-1177)) $)) (-15 -4033 ($)) (-15 -4197 ((-656 (-1177)) $)) (-15 -2020 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -1773 ((-656 (-1177)) $ (-656 (-1177)))) (-15 -1529 ((-656 (-1177)) $ (-656 (-1177)))))) +((-3474 (((-112) $ $) NIL)) (-2168 (((-1177) $ (-1177)) 17) (((-1177) $) 16)) (-3917 (((-1177) $ (-1177)) 15)) (-1606 (($ $ (-1177)) NIL)) (-2996 (((-3 (-1177) "failed") $) 11)) (-3465 (((-1177) $) 8)) (-3066 (((-3 (-1177) "failed") $) 12)) (-3280 (((-1177) $) 9)) (-3223 (($ (-400)) NIL) (($ (-400) (-1177)) NIL)) (-2706 (((-400) $) NIL)) (-1927 (((-1177) $) NIL)) (-1746 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-4058 (((-112) $) 21)) (-3563 (((-874) $) NIL)) (-4382 (($ $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1217) (-13 (-375 (-400) (-1177)) (-10 -8 (-15 -2168 ((-1177) $ (-1177))) (-15 -2168 ((-1177) $)) (-15 -3465 ((-1177) $)) (-15 -2996 ((-3 (-1177) "failed") $)) (-15 -3066 ((-3 (-1177) "failed") $)) (-15 -4058 ((-112) $))))) (T -1217)) +((-2168 (*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-3465 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-2996 (*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-3066 (*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217))))) +(-13 (-375 (-400) (-1177)) (-10 -8 (-15 -2168 ((-1177) $ (-1177))) (-15 -2168 ((-1177) $)) (-15 -3465 ((-1177) $)) (-15 -2996 ((-3 (-1177) "failed") $)) (-15 -3066 ((-3 (-1177) "failed") $)) (-15 -4058 ((-112) $)))) +((-2184 (((-3 (-576) "failed") |#1|) 19)) (-3952 (((-3 (-576) "failed") |#1|) 14)) (-3104 (((-576) (-1177)) 33))) +(((-1218 |#1|) (-10 -7 (-15 -2184 ((-3 (-576) "failed") |#1|)) (-15 -3952 ((-3 (-576) "failed") |#1|)) (-15 -3104 ((-576) (-1177)))) (-1068)) (T -1218)) +((-3104 (*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-1218 *4)) (-4 *4 (-1068)))) (-3952 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1068)))) (-2184 (*1 *2 *3) (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1068))))) +(-10 -7 (-15 -2184 ((-3 (-576) "failed") |#1|)) (-15 -3952 ((-3 (-576) "failed") |#1|)) (-15 -3104 ((-576) (-1177)))) +((-3618 (((-1152 (-227))) 9))) +(((-1219) (-10 -7 (-15 -3618 ((-1152 (-227)))))) (T -1219)) +((-3618 (*1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1219))))) +(-10 -7 (-15 -3618 ((-1152 (-227))))) +((-1570 (($) 12)) (-3958 (($ $) 36)) (-3939 (($ $) 34)) (-3808 (($ $) 26)) (-3981 (($ $) 18)) (-1830 (($ $) 16)) (-3969 (($ $) 20)) (-3841 (($ $) 31)) (-3948 (($ $) 35)) (-3820 (($ $) 30))) +(((-1220 |#1|) (-10 -8 (-15 -1570 (|#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3969 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3820 (|#1| |#1|))) (-1221)) (T -1220)) +NIL +(-10 -8 (-15 -1570 (|#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3969 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3820 (|#1| |#1|))) +((-3894 (($ $) 26)) (-3768 (($ $) 11)) (-3872 (($ $) 27)) (-3747 (($ $) 10)) (-3916 (($ $) 28)) (-3788 (($ $) 9)) (-1570 (($) 16)) (-3710 (($ $) 19)) (-3984 (($ $) 18)) (-3928 (($ $) 29)) (-3798 (($ $) 8)) (-3905 (($ $) 30)) (-3778 (($ $) 7)) (-3882 (($ $) 31)) (-3757 (($ $) 6)) (-3958 (($ $) 20)) (-3831 (($ $) 32)) (-3939 (($ $) 21)) (-3808 (($ $) 33)) (-3981 (($ $) 22)) (-3852 (($ $) 34)) (-1830 (($ $) 23)) (-3863 (($ $) 35)) (-3969 (($ $) 24)) (-3841 (($ $) 36)) (-3948 (($ $) 25)) (-3820 (($ $) 37)) (** (($ $ $) 17))) +(((-1221) (-141)) (T -1221)) +((-1570 (*1 *1) (-4 *1 (-1221)))) +(-13 (-1224) (-95) (-505) (-35) (-294) (-10 -8 (-15 -1570 ($)))) +(((-35) . T) ((-95) . T) ((-294) . T) ((-505) . T) ((-1224) . T)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3142 ((|#1| $) 19)) (-3232 (($ |#1| (-656 $)) 28) (($ (-656 |#1|)) 35) (($ |#1|) 30)) (-3131 (((-112) $ (-783)) 72)) (-3429 ((|#1| $ |#1|) 14 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 13 (|has| $ (-6 -4462)))) (-3767 (($) NIL T CONST)) (-3825 (((-656 |#1|) $) 77 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 64)) (-3180 (((-112) $ $) 50 (|has| |#1| (-1119)))) (-3115 (((-112) $ (-783)) 62)) (-2591 (((-656 |#1|) $) 78 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 76 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1763 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 27)) (-2712 (((-112) $ (-783)) 60)) (-2942 (((-656 |#1|) $) 55)) (-1905 (((-112) $) 53)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-4207 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 107)) (-1911 (((-112) $) 9)) (-2597 (($) 10)) (-2871 ((|#1| $ "value") NIL)) (-2972 (((-576) $ $) 48)) (-2176 (((-656 $) $) 89)) (-3138 (((-112) $ $) 110)) (-2319 (((-656 $) $) 105)) (-2270 (($ $) 106)) (-3173 (((-112) $) 84)) (-1456 (((-783) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4461))) (((-783) |#1| $) 17 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1954 (($ $) 88)) (-3563 (((-874) $) 91 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) 12)) (-4369 (((-112) $ $) 39 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 37 (|has| |#1| (-1119)))) (-3485 (((-783) $) 58 (|has| $ (-6 -4461))))) +(((-1222 |#1|) (-13 (-1029 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -3232 ($ |#1| (-656 $))) (-15 -3232 ($ (-656 |#1|))) (-15 -3232 ($ |#1|)) (-15 -3173 ((-112) $)) (-15 -2270 ($ $)) (-15 -2319 ((-656 $) $)) (-15 -3138 ((-112) $ $)) (-15 -2176 ((-656 $) $)))) (-1119)) (T -1222)) +((-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1119)))) (-3232 (*1 *1 *2 *3) (-12 (-5 *3 (-656 (-1222 *2))) (-5 *1 (-1222 *2)) (-4 *2 (-1119)))) (-3232 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1222 *3)))) (-3232 (*1 *1 *2) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1119)))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1119)))) (-2319 (*1 *2 *1) (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1119)))) (-3138 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1119)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1119))))) +(-13 (-1029 |#1|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -3232 ($ |#1| (-656 $))) (-15 -3232 ($ (-656 |#1|))) (-15 -3232 ($ |#1|)) (-15 -3173 ((-112) $)) (-15 -2270 ($ $)) (-15 -2319 ((-656 $) $)) (-15 -3138 ((-112) $ $)) (-15 -2176 ((-656 $) $)))) +((-3768 (($ $) 15)) (-3788 (($ $) 12)) (-3798 (($ $) 10)) (-3778 (($ $) 17))) +(((-1223 |#1|) (-10 -8 (-15 -3778 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3768 (|#1| |#1|))) (-1224)) (T -1223)) +NIL +(-10 -8 (-15 -3778 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3768 (|#1| |#1|))) +((-3768 (($ $) 11)) (-3747 (($ $) 10)) (-3788 (($ $) 9)) (-3798 (($ $) 8)) (-3778 (($ $) 7)) (-3757 (($ $) 6))) +(((-1224) (-141)) (T -1224)) +((-3768 (*1 *1 *1) (-4 *1 (-1224))) (-3747 (*1 *1 *1) (-4 *1 (-1224))) (-3788 (*1 *1 *1) (-4 *1 (-1224))) (-3798 (*1 *1 *1) (-4 *1 (-1224))) (-3778 (*1 *1 *1) (-4 *1 (-1224))) (-3757 (*1 *1 *1) (-4 *1 (-1224)))) +(-13 (-10 -8 (-15 -3757 ($ $)) (-15 -3778 ($ $)) (-15 -3798 ($ $)) (-15 -3788 ($ $)) (-15 -3747 ($ $)) (-15 -3768 ($ $)))) +((-3630 ((|#2| |#2|) 98)) (-1883 (((-112) |#2|) 29)) (-1864 ((|#2| |#2|) 33)) (-1876 ((|#2| |#2|) 35)) (-2971 ((|#2| |#2| (-1195)) 92) ((|#2| |#2|) 93)) (-1993 (((-171 |#2|) |#2|) 31)) (-2013 ((|#2| |#2| (-1195)) 94) ((|#2| |#2|) 95))) +(((-1225 |#1| |#2|) (-10 -7 (-15 -2971 (|#2| |#2|)) (-15 -2971 (|#2| |#2| (-1195))) (-15 -2013 (|#2| |#2|)) (-15 -2013 (|#2| |#2| (-1195))) (-15 -3630 (|#2| |#2|)) (-15 -1864 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1883 ((-112) |#2|)) (-15 -1993 ((-171 |#2|) |#2|))) (-13 (-464) (-1057 (-576)) (-651 (-576))) (-13 (-27) (-1221) (-442 |#1|))) (T -1225)) +((-1993 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-171 *3)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-1883 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-3630 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-2013 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) (-2971 (*1 *2 *2 *3) (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) (-2971 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) +(-10 -7 (-15 -2971 (|#2| |#2|)) (-15 -2971 (|#2| |#2| (-1195))) (-15 -2013 (|#2| |#2|)) (-15 -2013 (|#2| |#2| (-1195))) (-15 -3630 (|#2| |#2|)) (-15 -1864 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1883 ((-112) |#2|)) (-15 -1993 ((-171 |#2|) |#2|))) +((-2830 ((|#4| |#4| |#1|) 31)) (-3442 ((|#4| |#4| |#1|) 32))) +(((-1226 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2830 (|#4| |#4| |#1|)) (-15 -3442 (|#4| |#4| |#1|))) (-568) (-384 |#1|) (-384 |#1|) (-699 |#1| |#2| |#3|)) (T -1226)) +((-3442 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) (-2830 (*1 *2 *2 *3) (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(-10 -7 (-15 -2830 (|#4| |#4| |#1|)) (-15 -3442 (|#4| |#4| |#1|))) +((-1590 ((|#2| |#2|) 148)) (-3335 ((|#2| |#2|) 145)) (-1841 ((|#2| |#2|) 136)) (-1635 ((|#2| |#2|) 133)) (-3598 ((|#2| |#2|) 141)) (-3114 ((|#2| |#2|) 129)) (-1487 ((|#2| |#2|) 44)) (-4313 ((|#2| |#2|) 105)) (-3891 ((|#2| |#2|) 88)) (-2832 ((|#2| |#2|) 143)) (-2411 ((|#2| |#2|) 131)) (-3007 ((|#2| |#2|) 153)) (-4249 ((|#2| |#2|) 151)) (-3742 ((|#2| |#2|) 152)) (-2631 ((|#2| |#2|) 150)) (-3983 ((|#2| |#2|) 163)) (-4150 ((|#2| |#2|) 30 (-12 (|has| |#2| (-626 (-905 |#1|))) (|has| |#2| (-899 |#1|)) (|has| |#1| (-626 (-905 |#1|))) (|has| |#1| (-899 |#1|))))) (-1625 ((|#2| |#2|) 89)) (-2224 ((|#2| |#2|) 154)) (-2465 ((|#2| |#2|) 155)) (-1485 ((|#2| |#2|) 142)) (-3369 ((|#2| |#2|) 130)) (-3313 ((|#2| |#2|) 149)) (-2695 ((|#2| |#2|) 147)) (-4287 ((|#2| |#2|) 137)) (-2334 ((|#2| |#2|) 135)) (-2258 ((|#2| |#2|) 139)) (-1371 ((|#2| |#2|) 127))) +(((-1227 |#1| |#2|) (-10 -7 (-15 -2465 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -1487 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -1371 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -4287 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -3369 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -2411 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -3598 (|#2| |#2|)) (-15 -1841 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -3335 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2695 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -3007 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -4150 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-442 |#1|) (-1221))) (T -1227)) +((-4150 (*1 *2 *2) (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3007 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4249 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2631 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2695 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3335 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1841 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3598 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3114 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2411 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1485 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3369 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3313 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4287 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2258 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1371 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1625 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-1487 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-4313 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221))))) (-2465 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-442 *3) (-1221)))))) +(-10 -7 (-15 -2465 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -3983 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -1487 (|#2| |#2|)) (-15 -1625 (|#2| |#2|)) (-15 -2224 (|#2| |#2|)) (-15 -1371 (|#2| |#2|)) (-15 -2258 (|#2| |#2|)) (-15 -4287 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -3369 (|#2| |#2|)) (-15 -1485 (|#2| |#2|)) (-15 -2411 (|#2| |#2|)) (-15 -2832 (|#2| |#2|)) (-15 -3114 (|#2| |#2|)) (-15 -3598 (|#2| |#2|)) (-15 -1841 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -3335 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2695 (|#2| |#2|)) (-15 -2631 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -3742 (|#2| |#2|)) (-15 -3007 (|#2| |#2|)) (IF (|has| |#1| (-899 |#1|)) (IF (|has| |#1| (-626 (-905 |#1|))) (IF (|has| |#2| (-626 (-905 |#1|))) (IF (|has| |#2| (-899 |#1|)) (-15 -4150 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1587 (((-112) |#5| $) 68) (((-112) $) 110)) (-2596 ((|#5| |#5| $) 83)) (-2496 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2905 (((-656 |#5|) (-656 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-1539 (((-3 $ "failed") (-656 |#5|)) 135)) (-3515 (((-3 $ "failed") $) 120)) (-1937 ((|#5| |#5| $) 102)) (-1426 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-1679 ((|#5| |#5| $) 106)) (-2521 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1852 (((-2 (|:| -2055 (-656 |#5|)) (|:| -3223 (-656 |#5|))) $) 63)) (-1453 (((-112) |#5| $) 66) (((-112) $) 111)) (-1734 ((|#4| $) 116)) (-3923 (((-3 |#5| "failed") $) 118)) (-2181 (((-656 |#5|) $) 55)) (-1521 (((-112) |#5| $) 75) (((-112) $) 115)) (-1582 ((|#5| |#5| $) 89)) (-3391 (((-112) $ $) 29)) (-1393 (((-112) |#5| $) 71) (((-112) $) 113)) (-2196 ((|#5| |#5| $) 86)) (-3504 (((-3 |#5| "failed") $) 117)) (-1714 (($ $ |#5|) 136)) (-1433 (((-783) $) 60)) (-3573 (($ (-656 |#5|)) 133)) (-1813 (($ $ |#4|) 131)) (-3418 (($ $ |#4|) 129)) (-3543 (($ $) 128)) (-3563 (((-874) $) NIL) (((-656 |#5|) $) 121)) (-2025 (((-783) $) 140)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-1352 (((-112) $ (-1 (-112) |#5| (-656 |#5|))) 108)) (-3094 (((-656 |#4|) $) 123)) (-1847 (((-112) |#4| $) 126)) (-2988 (((-112) $ $) 20))) +(((-1228 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2025 ((-783) |#1|)) (-15 -1714 (|#1| |#1| |#5|)) (-15 -2496 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1847 ((-112) |#4| |#1|)) (-15 -3094 ((-656 |#4|) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1|)) (-15 -3923 ((-3 |#5| "failed") |#1|)) (-15 -3504 ((-3 |#5| "failed") |#1|)) (-15 -1679 (|#5| |#5| |#1|)) (-15 -3543 (|#1| |#1|)) (-15 -1937 (|#5| |#5| |#1|)) (-15 -1582 (|#5| |#5| |#1|)) (-15 -2196 (|#5| |#5| |#1|)) (-15 -2596 (|#5| |#5| |#1|)) (-15 -2905 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2521 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1521 ((-112) |#1|)) (-15 -1393 ((-112) |#1|)) (-15 -1587 ((-112) |#1|)) (-15 -1352 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -1521 ((-112) |#5| |#1|)) (-15 -1393 ((-112) |#5| |#1|)) (-15 -1587 ((-112) |#5| |#1|)) (-15 -1426 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1453 ((-112) |#1|)) (-15 -1453 ((-112) |#5| |#1|)) (-15 -1852 ((-2 (|:| -2055 (-656 |#5|)) (|:| -3223 (-656 |#5|))) |#1|)) (-15 -1433 ((-783) |#1|)) (-15 -2181 ((-656 |#5|) |#1|)) (-15 -3727 ((-3 (-2 (|:| |bas| |#1|) (|:| -1346 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3727 ((-3 (-2 (|:| |bas| |#1|) (|:| -1346 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3391 ((-112) |#1| |#1|)) (-15 -1813 (|#1| |#1| |#4|)) (-15 -3418 (|#1| |#1| |#4|)) (-15 -1734 (|#4| |#1|)) (-15 -1539 ((-3 |#1| "failed") (-656 |#5|))) (-15 -3563 ((-656 |#5|) |#1|)) (-15 -3573 (|#1| (-656 |#5|))) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2496 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) (-1229 |#2| |#3| |#4| |#5|) (-568) (-805) (-862) (-1084 |#2| |#3| |#4|)) (T -1228)) +NIL +(-10 -8 (-15 -2025 ((-783) |#1|)) (-15 -1714 (|#1| |#1| |#5|)) (-15 -2496 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1847 ((-112) |#4| |#1|)) (-15 -3094 ((-656 |#4|) |#1|)) (-15 -3515 ((-3 |#1| "failed") |#1|)) (-15 -3923 ((-3 |#5| "failed") |#1|)) (-15 -3504 ((-3 |#5| "failed") |#1|)) (-15 -1679 (|#5| |#5| |#1|)) (-15 -3543 (|#1| |#1|)) (-15 -1937 (|#5| |#5| |#1|)) (-15 -1582 (|#5| |#5| |#1|)) (-15 -2196 (|#5| |#5| |#1|)) (-15 -2596 (|#5| |#5| |#1|)) (-15 -2905 ((-656 |#5|) (-656 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2521 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1521 ((-112) |#1|)) (-15 -1393 ((-112) |#1|)) (-15 -1587 ((-112) |#1|)) (-15 -1352 ((-112) |#1| (-1 (-112) |#5| (-656 |#5|)))) (-15 -1521 ((-112) |#5| |#1|)) (-15 -1393 ((-112) |#5| |#1|)) (-15 -1587 ((-112) |#5| |#1|)) (-15 -1426 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1453 ((-112) |#1|)) (-15 -1453 ((-112) |#5| |#1|)) (-15 -1852 ((-2 (|:| -2055 (-656 |#5|)) (|:| -3223 (-656 |#5|))) |#1|)) (-15 -1433 ((-783) |#1|)) (-15 -2181 ((-656 |#5|) |#1|)) (-15 -3727 ((-3 (-2 (|:| |bas| |#1|) (|:| -1346 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3727 ((-3 (-2 (|:| |bas| |#1|) (|:| -1346 (-656 |#5|))) "failed") (-656 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3391 ((-112) |#1| |#1|)) (-15 -1813 (|#1| |#1| |#4|)) (-15 -3418 (|#1| |#1| |#4|)) (-15 -1734 (|#4| |#1|)) (-15 -1539 ((-3 |#1| "failed") (-656 |#5|))) (-15 -3563 ((-656 |#5|) |#1|)) (-15 -3573 (|#1| (-656 |#5|))) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2496 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2521 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3563 ((-874) |#1|)) (-15 -2988 ((-112) |#1| |#1|))) +((-3474 (((-112) $ $) 7)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |#4|)))) (-656 |#4|)) 86)) (-1968 (((-656 $) (-656 |#4|)) 87)) (-1991 (((-656 |#3|) $) 34)) (-1665 (((-112) $) 27)) (-4324 (((-112) $) 18 (|has| |#1| (-568)))) (-1587 (((-112) |#4| $) 102) (((-112) $) 98)) (-2596 ((|#4| |#4| $) 93)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) 28)) (-3131 (((-112) $ (-783)) 45)) (-2496 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) 80)) (-3767 (($) 46 T CONST)) (-2359 (((-112) $) 23 (|has| |#1| (-568)))) (-4268 (((-112) $ $) 25 (|has| |#1| (-568)))) (-2556 (((-112) $ $) 24 (|has| |#1| (-568)))) (-1376 (((-112) $) 26 (|has| |#1| (-568)))) (-2905 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2147 (((-656 |#4|) (-656 |#4|) $) 19 (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) 20 (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) 37)) (-4056 (($ (-656 |#4|)) 36)) (-3515 (((-3 $ "failed") $) 83)) (-1937 ((|#4| |#4| $) 90)) (-3172 (($ $) 69 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#4| $) 68 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-568)))) (-1426 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-1679 ((|#4| |#4| $) 88)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1852 (((-2 (|:| -2055 (-656 |#4|)) (|:| -3223 (-656 |#4|))) $) 106)) (-3825 (((-656 |#4|) $) 53 (|has| $ (-6 -4461)))) (-1453 (((-112) |#4| $) 105) (((-112) $) 104)) (-1734 ((|#3| $) 35)) (-3115 (((-112) $ (-783)) 44)) (-2591 (((-656 |#4|) $) 54 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) 48)) (-2653 (((-656 |#3|) $) 33)) (-1845 (((-112) |#3| $) 32)) (-2712 (((-112) $ (-783)) 43)) (-1927 (((-1177) $) 10)) (-3923 (((-3 |#4| "failed") $) 84)) (-2181 (((-656 |#4|) $) 108)) (-1521 (((-112) |#4| $) 100) (((-112) $) 96)) (-1582 ((|#4| |#4| $) 91)) (-3391 (((-112) $ $) 111)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-568)))) (-1393 (((-112) |#4| $) 101) (((-112) $) 97)) (-2196 ((|#4| |#4| $) 92)) (-1445 (((-1139) $) 11)) (-3504 (((-3 |#4| "failed") $) 85)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3229 (((-3 $ "failed") $ |#4|) 79)) (-1714 (($ $ |#4|) 78)) (-4207 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) 60 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) 58 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) 57 (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) 39)) (-1911 (((-112) $) 42)) (-2597 (($) 41)) (-1433 (((-783) $) 107)) (-1456 (((-783) |#4| $) 55 (-12 (|has| |#4| (-1119)) (|has| $ (-6 -4461)))) (((-783) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4461)))) (-1954 (($ $) 40)) (-4076 (((-548) $) 70 (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) 61)) (-1813 (($ $ |#3|) 29)) (-3418 (($ $ |#3|) 31)) (-3543 (($ $) 89)) (-1794 (($ $ |#3|) 30)) (-3563 (((-874) $) 12) (((-656 |#4|) $) 38)) (-2025 (((-783) $) 77 (|has| |#3| (-379)))) (-3985 (((-112) $ $) 9)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-1352 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) 99)) (-2043 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4461)))) (-3094 (((-656 |#3|) $) 82)) (-1847 (((-112) |#3| $) 81)) (-2988 (((-112) $ $) 6)) (-3485 (((-783) $) 47 (|has| $ (-6 -4461))))) +(((-1229 |#1| |#2| |#3| |#4|) (-141) (-568) (-805) (-862) (-1084 |t#1| |t#2| |t#3|)) (T -1229)) +((-3391 (*1 *2 *1 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-3727 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1346 (-656 *8)))) (-5 *3 (-656 *8)) (-4 *1 (-1229 *5 *6 *7 *8)))) (-3727 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1346 (-656 *9)))) (-5 *3 (-656 *9)) (-4 *1 (-1229 *6 *7 *8 *9)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *6)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-783)))) (-1852 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-2 (|:| -2055 (-656 *6)) (|:| -3223 (-656 *6)))))) (-1453 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1453 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-1426 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1229 *5 *6 *7 *3)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)))) (-1587 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1393 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1521 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1352 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1229 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-1393 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) (-2521 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1229 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *2 (-1084 *5 *6 *7)))) (-2905 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1229 *5 *6 *7 *8)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)))) (-2596 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2196 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-1582 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-1937 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3543 (*1 *1 *1) (-12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4)))) (-1679 (*1 *2 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1229 *4 *5 *6 *7)))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-656 (-2 (|:| -2055 *1) (|:| -3223 (-656 *7))))) (-5 *3 (-656 *7)) (-4 *1 (-1229 *4 *5 *6 *7)))) (-3504 (*1 *2 *1) (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3923 (*1 *2 *1) (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-3515 (*1 *1 *1) (|partial| -12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) (-1847 (*1 *2 *3 *1) (-12 (-4 *1 (-1229 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112)))) (-2496 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1229 *4 *5 *3 *2)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1084 *4 *5 *3)))) (-3229 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-1714 (*1 *1 *1 *2) (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) (-2025 (*1 *2 *1) (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *5 (-379)) (-5 *2 (-783))))) +(-13 (-995 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4461) (-6 -4462) (-15 -3391 ((-112) $ $)) (-15 -3727 ((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3727 ((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |t#4|))) "failed") (-656 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2181 ((-656 |t#4|) $)) (-15 -1433 ((-783) $)) (-15 -1852 ((-2 (|:| -2055 (-656 |t#4|)) (|:| -3223 (-656 |t#4|))) $)) (-15 -1453 ((-112) |t#4| $)) (-15 -1453 ((-112) $)) (-15 -1426 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1587 ((-112) |t#4| $)) (-15 -1393 ((-112) |t#4| $)) (-15 -1521 ((-112) |t#4| $)) (-15 -1352 ((-112) $ (-1 (-112) |t#4| (-656 |t#4|)))) (-15 -1587 ((-112) $)) (-15 -1393 ((-112) $)) (-15 -1521 ((-112) $)) (-15 -2521 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2905 ((-656 |t#4|) (-656 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2596 (|t#4| |t#4| $)) (-15 -2196 (|t#4| |t#4| $)) (-15 -1582 (|t#4| |t#4| $)) (-15 -1937 (|t#4| |t#4| $)) (-15 -3543 ($ $)) (-15 -1679 (|t#4| |t#4| $)) (-15 -1968 ((-656 $) (-656 |t#4|))) (-15 -4162 ((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |t#4|)))) (-656 |t#4|))) (-15 -3504 ((-3 |t#4| "failed") $)) (-15 -3923 ((-3 |t#4| "failed") $)) (-15 -3515 ((-3 $ "failed") $)) (-15 -3094 ((-656 |t#3|) $)) (-15 -1847 ((-112) |t#3| $)) (-15 -2496 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3229 ((-3 $ "failed") $ |t#4|)) (-15 -1714 ($ $ |t#4|)) (IF (|has| |t#3| (-379)) (-15 -2025 ((-783) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-625 (-656 |#4|)) . T) ((-625 (-874)) . T) ((-152 |#4|) . T) ((-626 (-548)) |has| |#4| (-626 (-548))) ((-319 |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1119) . T) ((-1236) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-1195)) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-3894 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3872 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-1731 (((-969 |#1|) $ (-783)) 17) (((-969 |#1|) $ (-783) (-783)) NIL)) (-1822 (((-112) $) NIL)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-783) $ (-1195)) NIL) (((-783) $ (-1195) (-783)) NIL)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2606 (((-112) $) NIL)) (-1970 (($ $ (-656 (-1195)) (-656 (-543 (-1195)))) NIL) (($ $ (-1195) (-543 (-1195))) NIL) (($ |#1| (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-3848 (($ $ (-1195)) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-1139) $) NIL)) (-3594 (($ (-1 $) (-1195) |#1|) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1714 (($ $ (-783)) NIL)) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3984 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (($ $ (-1195) $) NIL) (($ $ (-656 (-1195)) (-656 $)) NIL) (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL)) (-2735 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-1433 (((-543 (-1195)) $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ $) NIL (|has| |#1| (-568))) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-1195)) NIL) (($ (-969 |#1|)) NIL)) (-4333 ((|#1| $ (-543 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL) (((-969 |#1|) $ (-783)) NIL)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1830 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2051 (($ $ (-656 (-1195)) (-656 (-783))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1230 |#1|) (-13 (-752 |#1| (-1195)) (-10 -8 (-15 -4333 ((-969 |#1|) $ (-783))) (-15 -3563 ($ (-1195))) (-15 -3563 ($ (-969 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $ (-1195) |#1|)) (-15 -3594 ($ (-1 $) (-1195) |#1|))) |%noBranch|))) (-1068)) (T -1230)) +((-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-969 *4)) (-5 *1 (-1230 *4)) (-4 *4 (-1068)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-1068)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-5 *1 (-1230 *3)))) (-3848 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)))) (-3594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1230 *4))) (-5 *3 (-1195)) (-5 *1 (-1230 *4)) (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068))))) +(-13 (-752 |#1| (-1195)) (-10 -8 (-15 -4333 ((-969 |#1|) $ (-783))) (-15 -3563 ($ (-1195))) (-15 -3563 ($ (-969 |#1|))) (IF (|has| |#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $ (-1195) |#1|)) (-15 -3594 ($ (-1 $) (-1195) |#1|))) |%noBranch|))) +((-1655 (($ |#1| (-656 (-656 (-960 (-227)))) (-112)) 19)) (-2495 (((-112) $ (-112)) 18)) (-1894 (((-112) $) 17)) (-3880 (((-656 (-656 (-960 (-227)))) $) 13)) (-2186 ((|#1| $) 8)) (-1505 (((-112) $) 15))) +(((-1231 |#1|) (-10 -8 (-15 -2186 (|#1| $)) (-15 -3880 ((-656 (-656 (-960 (-227)))) $)) (-15 -1505 ((-112) $)) (-15 -1894 ((-112) $)) (-15 -2495 ((-112) $ (-112))) (-15 -1655 ($ |#1| (-656 (-656 (-960 (-227)))) (-112)))) (-993)) (T -1231)) +((-1655 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-112)) (-5 *1 (-1231 *2)) (-4 *2 (-993)))) (-2495 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-993)))) (-1894 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-993)))) (-1505 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-993)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-1231 *3)) (-4 *3 (-993)))) (-2186 (*1 *2 *1) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-993))))) +(-10 -8 (-15 -2186 (|#1| $)) (-15 -3880 ((-656 (-656 (-960 (-227)))) $)) (-15 -1505 ((-112) $)) (-15 -1894 ((-112) $)) (-15 -2495 ((-112) $ (-112))) (-15 -1655 ($ |#1| (-656 (-656 (-960 (-227)))) (-112)))) +((-2204 (((-960 (-227)) (-960 (-227))) 31)) (-2368 (((-960 (-227)) (-227) (-227) (-227) (-227)) 10)) (-3382 (((-656 (-960 (-227))) (-960 (-227)) (-960 (-227)) (-960 (-227)) (-227) (-656 (-656 (-227)))) 56)) (-2962 (((-227) (-960 (-227)) (-960 (-227))) 27)) (-2299 (((-960 (-227)) (-960 (-227)) (-960 (-227))) 28)) (-1370 (((-656 (-656 (-227))) (-576)) 44)) (-3095 (((-960 (-227)) (-960 (-227)) (-960 (-227))) 26)) (-3083 (((-960 (-227)) (-960 (-227)) (-960 (-227))) 24)) (* (((-960 (-227)) (-227) (-960 (-227))) 22))) +(((-1232) (-10 -7 (-15 -2368 ((-960 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-960 (-227)) (-227) (-960 (-227)))) (-15 -3083 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -3095 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -2962 ((-227) (-960 (-227)) (-960 (-227)))) (-15 -2299 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -2204 ((-960 (-227)) (-960 (-227)))) (-15 -1370 ((-656 (-656 (-227))) (-576))) (-15 -3382 ((-656 (-960 (-227))) (-960 (-227)) (-960 (-227)) (-960 (-227)) (-227) (-656 (-656 (-227))))))) (T -1232)) +((-3382 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 (-960 *4))) (-5 *1 (-1232)) (-5 *3 (-960 *4)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1232)))) (-2204 (*1 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232)))) (-2299 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232)))) (-2962 (*1 *2 *3 *3) (-12 (-5 *3 (-960 (-227))) (-5 *2 (-227)) (-5 *1 (-1232)))) (-3095 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232)))) (-3083 (*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-960 (-227))) (-5 *3 (-227)) (-5 *1 (-1232)))) (-2368 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232)) (-5 *3 (-227))))) +(-10 -7 (-15 -2368 ((-960 (-227)) (-227) (-227) (-227) (-227))) (-15 * ((-960 (-227)) (-227) (-960 (-227)))) (-15 -3083 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -3095 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -2962 ((-227) (-960 (-227)) (-960 (-227)))) (-15 -2299 ((-960 (-227)) (-960 (-227)) (-960 (-227)))) (-15 -2204 ((-960 (-227)) (-960 (-227)))) (-15 -1370 ((-656 (-656 (-227))) (-576))) (-15 -3382 ((-656 (-960 (-227))) (-960 (-227)) (-960 (-227)) (-960 (-227)) (-227) (-656 (-656 (-227)))))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2496 ((|#1| $ (-783)) 18)) (-4261 (((-783) $) 13)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3563 (((-975 |#1|) $) 12) (($ (-975 |#1|)) 11) (((-874) $) 29 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2988 (((-112) $ $) 22 (|has| |#1| (-1119))))) +(((-1233 |#1|) (-13 (-502 (-975 |#1|)) (-10 -8 (-15 -2496 (|#1| $ (-783))) (-15 -4261 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) (-1236)) (T -1233)) +((-2496 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-1233 *2)) (-4 *2 (-1236)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1233 *3)) (-4 *3 (-1236))))) +(-13 (-502 (-975 |#1|)) (-10 -8 (-15 -2496 (|#1| $ (-783))) (-15 -4261 ((-783) $)) (IF (|has| |#1| (-625 (-874))) (-6 (-625 (-874))) |%noBranch|) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|))) +((-3619 (((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-576)) 94)) (-2894 (((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|))) 86)) (-4293 (((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|))) 70))) +(((-1234 |#1|) (-10 -7 (-15 -2894 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -4293 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3619 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-576)))) (-360)) (T -1234)) +((-3619 (*1 *2 *3 *4) (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1191 (-1191 *5)))) (-5 *1 (-1234 *5)) (-5 *3 (-1191 (-1191 *5))))) (-4293 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4))))) (-2894 (*1 *2 *3) (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4)))))) +(-10 -7 (-15 -2894 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -4293 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -3619 ((-430 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-576)))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 9) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1235) (-1102)) (T -1235)) NIL (-1102) NIL -(((-1237) (-141)) (T -1237)) -NIL -(-13 (-10 -7 (-6 -2700))) -((-1408 (((-112)) 18)) (-3416 (((-1292) (-656 |#1|) (-656 |#1|)) 22) (((-1292) (-656 |#1|)) 23)) (-1419 (((-112) |#1| |#1|) 37 (|has| |#1| (-862)))) (-3103 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3194 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-862))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-1778 (((-2 (|:| -2877 (-656 |#1|)) (|:| -3722 (-656 |#1|)))) 20))) -(((-1238 |#1|) (-10 -7 (-15 -3416 ((-1292) (-656 |#1|))) (-15 -3416 ((-1292) (-656 |#1|) (-656 |#1|))) (-15 -1778 ((-2 (|:| -2877 (-656 |#1|)) (|:| -3722 (-656 |#1|))))) (-15 -3103 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3103 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3194 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1408 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -3194 (|#1| (-656 |#1|))) (-15 -1419 ((-112) |#1| |#1|))) |%noBranch|)) (-1119)) (T -1238)) -((-1419 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-862)) (-4 *3 (-1119)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-862)) (-5 *1 (-1238 *2)))) (-1408 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1119)))) (-3194 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1238 *2)) (-4 *2 (-1119)))) (-3103 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-1238 *3)))) (-3103 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1119)))) (-1778 (*1 *2) (-12 (-5 *2 (-2 (|:| -2877 (-656 *3)) (|:| -3722 (-656 *3)))) (-5 *1 (-1238 *3)) (-4 *3 (-1119)))) (-3416 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1292)) (-5 *1 (-1238 *4)))) (-3416 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1292)) (-5 *1 (-1238 *4))))) -(-10 -7 (-15 -3416 ((-1292) (-656 |#1|))) (-15 -3416 ((-1292) (-656 |#1|) (-656 |#1|))) (-15 -1778 ((-2 (|:| -2877 (-656 |#1|)) (|:| -3722 (-656 |#1|))))) (-15 -3103 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3103 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3194 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -1408 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -3194 (|#1| (-656 |#1|))) (-15 -1419 ((-112) |#1| |#1|))) |%noBranch|)) -((-3085 (((-1292) (-656 (-1196)) (-656 (-1196))) 14) (((-1292) (-656 (-1196))) 12)) (-3283 (((-1292)) 16)) (-3749 (((-2 (|:| -3722 (-656 (-1196))) (|:| -2877 (-656 (-1196))))) 20))) -(((-1239) (-10 -7 (-15 -3085 ((-1292) (-656 (-1196)))) (-15 -3085 ((-1292) (-656 (-1196)) (-656 (-1196)))) (-15 -3749 ((-2 (|:| -3722 (-656 (-1196))) (|:| -2877 (-656 (-1196)))))) (-15 -3283 ((-1292))))) (T -1239)) -((-3283 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1239)))) (-3749 (*1 *2) (-12 (-5 *2 (-2 (|:| -3722 (-656 (-1196))) (|:| -2877 (-656 (-1196))))) (-5 *1 (-1239)))) (-3085 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239)))) (-3085 (*1 *2 *3) (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239))))) -(-10 -7 (-15 -3085 ((-1292) (-656 (-1196)))) (-15 -3085 ((-1292) (-656 (-1196)) (-656 (-1196)))) (-15 -3749 ((-2 (|:| -3722 (-656 (-1196))) (|:| -2877 (-656 (-1196)))))) (-15 -3283 ((-1292)))) -((-1587 (($ $) 17)) (-2725 (((-112) $) 28))) -(((-1240 |#1|) (-10 -8 (-15 -1587 (|#1| |#1|)) (-15 -2725 ((-112) |#1|))) (-1241)) (T -1240)) -NIL -(-10 -8 (-15 -1587 (|#1| |#1|)) (-15 -2725 ((-112) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 57)) (-2100 (((-430 $) $) 58)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-2725 (((-112) $) 59)) (-1810 (((-112) $) 35)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1392 (((-430 $) $) 56)) (-2022 (((-3 $ "failed") $ $) 48)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) -(((-1241) (-141)) (T -1241)) -((-2725 (*1 *2 *1) (-12 (-4 *1 (-1241)) (-5 *2 (-112)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241)))) (-1587 (*1 *1 *1) (-4 *1 (-1241))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241))))) -(-13 (-464) (-10 -8 (-15 -2725 ((-112) $)) (-15 -2100 ((-430 $) $)) (-15 -1587 ($ $)) (-15 -1392 ((-430 $) $)))) +(((-1236) (-141)) (T -1236)) +NIL +(-13 (-10 -7 (-6 -4093))) +((-3353 (((-112)) 18)) (-2885 (((-1291) (-656 |#1|) (-656 |#1|)) 22) (((-1291) (-656 |#1|)) 23)) (-3115 (((-112) |#1| |#1|) 37 (|has| |#1| (-862)))) (-2712 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3811 ((|#1| (-656 |#1|)) 38 (|has| |#1| (-862))) ((|#1| (-656 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3422 (((-2 (|:| -3884 (-656 |#1|)) (|:| -3140 (-656 |#1|)))) 20))) +(((-1237 |#1|) (-10 -7 (-15 -2885 ((-1291) (-656 |#1|))) (-15 -2885 ((-1291) (-656 |#1|) (-656 |#1|))) (-15 -3422 ((-2 (|:| -3884 (-656 |#1|)) (|:| -3140 (-656 |#1|))))) (-15 -2712 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2712 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3811 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3353 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -3811 (|#1| (-656 |#1|))) (-15 -3115 ((-112) |#1| |#1|))) |%noBranch|)) (-1119)) (T -1237)) +((-3115 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-862)) (-4 *3 (-1119)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-862)) (-5 *1 (-1237 *2)))) (-3353 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1119)))) (-3811 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1237 *2)) (-4 *2 (-1119)))) (-2712 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-1237 *3)))) (-2712 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1119)))) (-3422 (*1 *2) (-12 (-5 *2 (-2 (|:| -3884 (-656 *3)) (|:| -3140 (-656 *3)))) (-5 *1 (-1237 *3)) (-4 *3 (-1119)))) (-2885 (*1 *2 *3 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1291)) (-5 *1 (-1237 *4)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1291)) (-5 *1 (-1237 *4))))) +(-10 -7 (-15 -2885 ((-1291) (-656 |#1|))) (-15 -2885 ((-1291) (-656 |#1|) (-656 |#1|))) (-15 -3422 ((-2 (|:| -3884 (-656 |#1|)) (|:| -3140 (-656 |#1|))))) (-15 -2712 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2712 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3811 (|#1| (-656 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3353 ((-112))) (IF (|has| |#1| (-862)) (PROGN (-15 -3811 (|#1| (-656 |#1|))) (-15 -3115 ((-112) |#1| |#1|))) |%noBranch|)) +((-1881 (((-1291) (-656 (-1195)) (-656 (-1195))) 14) (((-1291) (-656 (-1195))) 12)) (-1457 (((-1291)) 16)) (-2903 (((-2 (|:| -3140 (-656 (-1195))) (|:| -3884 (-656 (-1195))))) 20))) +(((-1238) (-10 -7 (-15 -1881 ((-1291) (-656 (-1195)))) (-15 -1881 ((-1291) (-656 (-1195)) (-656 (-1195)))) (-15 -2903 ((-2 (|:| -3140 (-656 (-1195))) (|:| -3884 (-656 (-1195)))))) (-15 -1457 ((-1291))))) (T -1238)) +((-1457 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1238)))) (-2903 (*1 *2) (-12 (-5 *2 (-2 (|:| -3140 (-656 (-1195))) (|:| -3884 (-656 (-1195))))) (-5 *1 (-1238)))) (-1881 (*1 *2 *3 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238)))) (-1881 (*1 *2 *3) (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238))))) +(-10 -7 (-15 -1881 ((-1291) (-656 (-1195)))) (-15 -1881 ((-1291) (-656 (-1195)) (-656 (-1195)))) (-15 -2903 ((-2 (|:| -3140 (-656 (-1195))) (|:| -3884 (-656 (-1195)))))) (-15 -1457 ((-1291)))) +((-1760 (($ $) 17)) (-1792 (((-112) $) 28))) +(((-1239 |#1|) (-10 -8 (-15 -1760 (|#1| |#1|)) (-15 -1792 ((-112) |#1|))) (-1240)) (T -1239)) +NIL +(-10 -8 (-15 -1760 (|#1| |#1|)) (-15 -1792 ((-112) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 57)) (-2732 (((-430 $) $) 58)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1792 (((-112) $) 59)) (-1414 (((-112) $) 35)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-1839 (((-430 $) $) 56)) (-3463 (((-3 $ "failed") $ $) 48)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27))) +(((-1240) (-141)) (T -1240)) +((-1792 (*1 *2 *1) (-12 (-4 *1 (-1240)) (-5 *2 (-112)))) (-2732 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240)))) (-1760 (*1 *1 *1) (-4 *1 (-1240))) (-1839 (*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240))))) +(-13 (-464) (-10 -8 (-15 -1792 ((-112) $)) (-15 -2732 ((-430 $) $)) (-15 -1760 ($ $)) (-15 -1839 ((-430 $) $)))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-300) . T) ((-464) . T) ((-568) . T) ((-658 (-576)) . T) ((-658 $) . T) ((-660 $) . T) ((-652 $) . T) ((-729 $) . T) ((-738) . T) ((-1070 $) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-3850 (($ $ $) NIL)) (-3837 (($ $ $) NIL)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-1242) (-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670)))) (T -1242)) -((-3837 (*1 *1 *1 *1) (-5 *1 (-1242))) (-3850 (*1 *1 *1 *1) (-5 *1 (-1242))) (-3656 (*1 *1) (-5 *1 (-1242)))) -(-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-2447 (($ $ $) NIL)) (-2436 (($ $ $) NIL)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-1241) (-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398)))) (T -1241)) +((-2436 (*1 *1 *1 *1) (-5 *1 (-1241))) (-2447 (*1 *1 *1 *1) (-5 *1 (-1241))) (-3767 (*1 *1) (-5 *1 (-1241)))) +(-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 16))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-3850 (($ $ $) NIL)) (-3837 (($ $ $) NIL)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-1243) (-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670)))) (T -1243)) -((-3837 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3850 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3656 (*1 *1) (-5 *1 (-1243)))) -(-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-2447 (($ $ $) NIL)) (-2436 (($ $ $) NIL)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-1242) (-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398)))) (T -1242)) +((-2436 (*1 *1 *1 *1) (-5 *1 (-1242))) (-2447 (*1 *1 *1 *1) (-5 *1 (-1242))) (-3767 (*1 *1) (-5 *1 (-1242)))) +(-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 32))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-3850 (($ $ $) NIL)) (-3837 (($ $ $) NIL)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-1244) (-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670)))) (T -1244)) -((-3837 (*1 *1 *1 *1) (-5 *1 (-1244))) (-3850 (*1 *1 *1 *1) (-5 *1 (-1244))) (-3656 (*1 *1) (-5 *1 (-1244)))) -(-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-2447 (($ $ $) NIL)) (-2436 (($ $ $) NIL)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-1243) (-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398)))) (T -1243)) +((-2436 (*1 *1 *1 *1) (-5 *1 (-1243))) (-2447 (*1 *1 *1 *1) (-5 *1 (-1243))) (-3767 (*1 *1) (-5 *1 (-1243)))) +(-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 64))) -((-2034 (((-112) $ $) NIL)) (-2247 (((-783)) NIL)) (-3656 (($) NIL T CONST)) (-2446 (($) NIL)) (-3492 (($ $ $) NIL) (($) NIL T CONST)) (-2726 (($ $ $) NIL) (($) NIL T CONST)) (-3225 (((-938) $) NIL)) (-3288 (((-1178) $) NIL)) (-2550 (($ (-938)) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) NIL)) (-3850 (($ $ $) NIL)) (-3837 (($ $ $) NIL)) (-1531 (((-112) $ $) NIL)) (-3977 (((-112) $ $) NIL)) (-3955 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL)) (-3944 (((-112) $ $) NIL))) -(((-1245) (-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670)))) (T -1245)) -((-3837 (*1 *1 *1 *1) (-5 *1 (-1245))) (-3850 (*1 *1 *1 *1) (-5 *1 (-1245))) (-3656 (*1 *1) (-5 *1 (-1245)))) -(-13 (-856) (-10 -8 (-15 -3837 ($ $ $)) (-15 -3850 ($ $ $)) (-15 -3656 ($) -2670))) +((-3474 (((-112) $ $) NIL)) (-2148 (((-783)) NIL)) (-3767 (($) NIL T CONST)) (-1803 (($) NIL)) (-2442 (($ $ $) NIL) (($) NIL T CONST)) (-1893 (($ $ $) NIL) (($) NIL T CONST)) (-1902 (((-938) $) NIL)) (-1927 (((-1177) $) NIL)) (-3257 (($ (-938)) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) NIL)) (-2447 (($ $ $) NIL)) (-2436 (($ $ $) NIL)) (-3985 (((-112) $ $) NIL)) (-3049 (((-112) $ $) NIL)) (-3024 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL)) (-3010 (((-112) $ $) NIL))) +(((-1244) (-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398)))) (T -1244)) +((-2436 (*1 *1 *1 *1) (-5 *1 (-1244))) (-2447 (*1 *1 *1 *1) (-5 *1 (-1244))) (-3767 (*1 *1) (-5 *1 (-1244)))) +(-13 (-856) (-10 -8 (-15 -2436 ($ $ $)) (-15 -2447 ($ $ $)) (-15 -3767 ($) -1398))) ((|NonNegativeInteger|) (|%not| (|%igt| (INTEGER-LENGTH |#1|) 8))) -((-2477 (((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)) 23))) -(((-1246 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2477 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)))) (-1068) (-1068) (-1196) (-1196) |#1| |#2|) (T -1246)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1246 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1196))))) -(-10 -7 (-15 -2477 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1541 (((-656 (-1101)) $) 86)) (-1615 (((-1196) $) 118)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2573 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-2255 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-1655 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-2266 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 177 (|has| |#1| (-374)))) (-2100 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1403 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4407 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2236 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-2294 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) 18 T CONST)) (-1975 (($ $ $) 172 (|has| |#1| (-374)))) (-1717 (($ $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-4247 (((-419 (-969 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-1986 (($ $ $) 171 (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2725 (((-112) $) 179 (|has| |#1| (-374)))) (-3840 (((-112) $) 85)) (-3926 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) 116)) (-3079 (($ (-1 |#1| (-576)) $) 187)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-4331 (((-112) $) 74)) (-1518 (($ |#1| (-576)) 73) (($ $ (-1101) (-576)) 88) (($ $ (-656 (-1101)) (-656 (-576))) 87)) (-2477 (($ (-1 |#1| |#1|) $) 75)) (-2703 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) 77)) (-1692 ((|#1| $) 78)) (-3117 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3288 (((-1178) $) 10)) (-1644 (($ $) 180 (|has| |#1| (-374)))) (-3597 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3765 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3149 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1392 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 173 (|has| |#1| (-374)))) (-2843 (($ $ (-576)) 110)) (-2022 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-3353 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-1787 (((-783) $) 169 (|has| |#1| (-374)))) (-4367 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1131)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 170 (|has| |#1| (-374)))) (-3614 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2369 (((-576) $) 76)) (-2307 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) 84)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2430 ((|#1| $ (-576)) 71)) (-3612 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-2553 ((|#1| $) 117)) (-1531 (((-112) $ $) 9)) (-2340 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2317 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1247 |#1|) (-141) (-1068)) (T -1247)) -((-3451 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1068)) (-4 *1 (-1247 *3)))) (-3079 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1247 *3)) (-4 *3 (-1068)))) (-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) (-5 *2 (-419 (-969 *4))))) (-4247 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) (-5 *2 (-419 (-969 *4))))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) (-3597 (*1 *1 *1 *2) (-3765 (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -1541 ((-656 *2) *3))) (|has| *3 (-15 -3597 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1265 |t#1| (-576)) (-10 -8 (-15 -3451 ($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -3079 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -4247 ((-419 (-969 |t#1|)) $ (-576))) (-15 -4247 ((-419 (-969 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $)) (IF (|has| |t#1| (-15 -3597 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -1541 ((-656 (-1196)) |t#1|))) (-15 -3597 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-29 (-576))) (-15 -3597 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1222))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1131)) ((-300) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1265 |#1| #0#) . T)) -((-1962 (((-112) $) 12)) (-2974 (((-3 |#3| "failed") $) 17) (((-3 (-1196) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-2378 ((|#3| $) 14) (((-1196) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) -(((-1248 |#1| |#2| |#3|) (-10 -8 (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-1196) "failed") |#1|)) (-15 -2378 ((-1196) |#1|)) (-15 -2974 ((-3 |#3| "failed") |#1|)) (-15 -2378 (|#3| |#1|)) (-15 -1962 ((-112) |#1|))) (-1249 |#2| |#3|) (-1068) (-1278 |#2|)) (T -1248)) -NIL -(-10 -8 (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2974 ((-3 (-1196) "failed") |#1|)) (-15 -2378 ((-1196) |#1|)) (-15 -2974 ((-3 |#3| "failed") |#1|)) (-15 -2378 (|#3| |#1|)) (-15 -1962 ((-112) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3942 ((|#2| $) 250 (-2445 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1541 (((-656 (-1101)) $) 86)) (-1615 (((-1196) $) 118)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2573 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-2255 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-1655 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-3875 ((|#2| $) 286)) (-2577 (((-3 |#2| "failed") $) 282)) (-1596 ((|#2| $) 283)) (-2266 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) 20)) (-1589 (((-430 (-1192 $)) (-1192 $)) 259 (-2445 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1587 (($ $) 177 (|has| |#1| (-374)))) (-2100 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1403 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 256 (-2445 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-4407 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2236 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3934 (((-576) $) 268 (-2445 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3451 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-2294 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#2| "failed") $) 289) (((-3 (-576) "failed") $) 279 (-2445 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 277 (-2445 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-1196) "failed") $) 261 (-2445 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374))))) (-2378 ((|#2| $) 290) (((-576) $) 278 (-2445 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 276 (-2445 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-1196) $) 260 (-2445 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374))))) (-1437 (($ $) 285) (($ (-576) $) 284)) (-1975 (($ $ $) 172 (|has| |#1| (-374)))) (-1717 (($ $) 72)) (-3687 (((-701 |#2|) (-1287 $)) 240 (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) 239 (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) 238 (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) 237 (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 236 (-2445 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 235 (-2445 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 234 (-2445 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) 233 (-2445 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-3179 (((-3 $ "failed") $) 37)) (-4247 (((-419 (-969 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-2446 (($) 252 (-2445 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1986 (($ $ $) 171 (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2725 (((-112) $) 179 (|has| |#1| (-374)))) (-3567 (((-112) $) 266 (-2445 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3840 (((-112) $) 85)) (-3926 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 244 (-2445 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 243 (-2445 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-1538 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1810 (((-112) $) 35)) (-4272 (($ $) 248 (|has| |#1| (-374)))) (-3894 ((|#2| $) 246 (|has| |#1| (-374)))) (-3355 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2083 (((-3 $ "failed") $) 280 (-2445 (|has| |#2| (-1171)) (|has| |#1| (-374))))) (-3713 (((-112) $) 267 (-2445 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4209 (($ $ (-938)) 116)) (-3079 (($ (-1 |#1| (-576)) $) 187)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-4331 (((-112) $) 74)) (-1518 (($ |#1| (-576)) 73) (($ $ (-1101) (-576)) 88) (($ $ (-656 (-1101)) (-656 (-576))) 87)) (-3492 (($ $ $) 270 (-2445 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2726 (($ $ $) 271 (-2445 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2477 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 228 (|has| |#1| (-374)))) (-2703 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) 77)) (-1692 ((|#1| $) 78)) (-3117 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1608 (($ (-576) |#2|) 287)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 180 (|has| |#1| (-374)))) (-3597 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3765 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3503 (($) 281 (-2445 (|has| |#2| (-1171)) (|has| |#1| (-374))) CONST)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3149 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1846 (($ $) 251 (-2445 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3892 ((|#2| $) 254 (-2445 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4254 (((-430 (-1192 $)) (-1192 $)) 257 (-2445 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-3282 (((-430 (-1192 $)) (-1192 $)) 258 (-2445 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1392 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 173 (|has| |#1| (-374)))) (-2843 (($ $ (-576)) 110)) (-2022 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-3353 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) |#2|) 227 (-2445 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 |#2|)) 226 (-2445 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 225 (-2445 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 224 (-2445 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 223 (-2445 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 222 (-2445 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-1787 (((-783) $) 169 (|has| |#1| (-374)))) (-4367 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1131))) (($ $ |#2|) 221 (-2445 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 170 (|has| |#1| (-374)))) (-3614 (($ $ (-1 |#2| |#2|) (-783)) 230 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-374))) (($ $) 100 (-3765 (-2445 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-3765 (-2445 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) 108 (-3765 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196))) 106 (-3765 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1196) (-783)) 105 (-3765 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-3765 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-1490 (($ $) 249 (|has| |#1| (-374)))) (-3905 ((|#2| $) 247 (|has| |#1| (-374)))) (-2369 (((-576) $) 76)) (-2307 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-227) $) 265 (-2445 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-390) $) 264 (-2445 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-548) $) 263 (-2445 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) 242 (-2445 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) 241 (-2445 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 255 (-2445 (-2445 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#1| (-374))))) (-1417 (($ $) 84)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 288) (($ (-1196)) 262 (-2445 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2430 ((|#1| $ (-576)) 71)) (-3612 (((-3 $ "failed") $) 60 (-3765 (-2445 (-3765 (|has| |#2| (-146)) (-2445 (|has| $ (-146)) (|has| |#2| (-926)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2471 (((-783)) 32 T CONST)) (-2553 ((|#1| $) 117)) (-4179 ((|#2| $) 253 (-2445 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1531 (((-112) $ $) 9)) (-2340 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2317 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) 269 (-2445 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1 |#2| |#2|) (-783)) 232 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 231 (|has| |#1| (-374))) (($ $) 99 (-3765 (-2445 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-3765 (-2445 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) 107 (-3765 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196))) 103 (-3765 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1196) (-783)) 102 (-3765 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-3765 (-2445 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3977 (((-112) $ $) 273 (-2445 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3955 (((-112) $ $) 274 (-2445 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3919 (((-112) $ $) 6)) (-3966 (((-112) $ $) 272 (-2445 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3944 (((-112) $ $) 275 (-2445 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4028 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 245 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 220 (|has| |#1| (-374))) (($ |#2| $) 219 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1249 |#1| |#2|) (-141) (-1068) (-1278 |t#1|)) (T -1249)) -((-2369 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1278 *3)) (-5 *2 (-576)))) (-1608 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1068)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1278 *4)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3)))) (-1437 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1278 *2)))) (-1437 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1278 *3)))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3)))) (-2577 (*1 *2 *1) (|partial| -12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3))))) -(-13 (-1247 |t#1|) (-1057 |t#2|) (-628 |t#2|) (-10 -8 (-15 -1608 ($ (-576) |t#2|)) (-15 -2369 ((-576) $)) (-15 -3875 (|t#2| $)) (-15 -1437 ($ $)) (-15 -1437 ($ (-576) $)) (-15 -1596 (|t#2| $)) (-15 -2577 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1011 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1196)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1196)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-576))))) ((-234 $) -3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1131)) ((-300) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1196) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1196) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-862) -3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-862))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-909 $ #4=(-1196)) -3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) ((-915 (-1196)) -3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) ((-917 #4#) -3765 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1196)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1196)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))) ((-899 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-576)))) ((-897 |#2|) |has| |#1| (-374)) ((-926) -12 (|has| |#1| (-374)) (|has| |#2| (-926))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1011 |#2|) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1041) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((-1057 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))) ((-1057 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))) ((-1057 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1196)))) ((-1057 |#2|) . T) ((-1070 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 |#2|) |has| |#1| (-374)) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 |#2|) |has| |#1| (-374)) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) -12 (|has| |#1| (-374)) (|has| |#2| (-1171))) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1247 |#1|) . T) ((-1265 |#1| #0#) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 81)) (-3942 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) 100)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2255 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-1655 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-3875 ((|#2| $) 11)) (-2577 (((-3 |#2| "failed") $) 35)) (-1596 ((|#2| $) 36)) (-2266 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1587 (($ $) NIL (|has| |#1| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2236 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-3934 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3451 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-2294 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-1196) "failed") $) NIL (-12 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374))))) (-2378 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-1196) $) NIL (-12 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374))))) (-1437 (($ $) 65) (($ (-576) $) 28)) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) NIL)) (-3687 (((-701 |#2|) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-3179 (((-3 $ "failed") $) 88)) (-4247 (((-419 (-969 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-2446 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2725 (((-112) $) NIL (|has| |#1| (-374)))) (-3567 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-3840 (((-112) $) 74)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-1538 (((-576) $) 105) (((-576) $ (-576)) 107)) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-374)))) (-3894 ((|#2| $) 165 (|has| |#1| (-374)))) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2083 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1171)) (|has| |#1| (-374))))) (-3713 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4209 (($ $ (-938)) 148)) (-3079 (($ (-1 |#1| (-576)) $) 144)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-576)) 20) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-3492 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2726 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2477 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-2703 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1608 (($ (-576) |#2|) 10)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 159 (|has| |#1| (-374)))) (-3597 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 233 (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222)))))) (-3503 (($) NIL (-12 (|has| |#2| (-1171)) (|has| |#1| (-374))) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1846 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3892 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1392 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2843 (($ $ (-576)) 138)) (-2022 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3353 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) |#2|) NIL (-12 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1196) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1131))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-3614 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-3765 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3765 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) 153 (-3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-1490 (($ $) NIL (|has| |#1| (-374)))) (-3905 ((|#2| $) 166 (|has| |#1| (-374)))) (-2369 (((-576) $) 12)) (-2307 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-227) $) NIL (-12 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1417 (($ $) 136)) (-4092 (((-874) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1196)) NIL (-12 (|has| |#2| (-1057 (-1196))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2430 ((|#1| $ (-576)) 85)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-926)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2471 (((-783)) 155 T CONST)) (-2553 ((|#1| $) 102)) (-4179 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-4300 (($) 13 T CONST)) (-4310 (($) 18 T CONST)) (-4286 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-3765 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3765 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| |#2| (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-3977 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3955 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3919 (((-112) $ $) 72)) (-3966 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3944 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-4018 (($ $) 227) (($ $ $) 78)) (-4007 (($ $ $) 76)) (** (($ $ (-938)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1250 |#1| |#2|) (-1249 |#1| |#2|) (-1068) (-1278 |#1|)) (T -1250)) -NIL -(-1249 |#1| |#2|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3942 (((-1279 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) 10)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2573 (($ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4306 (((-112) $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2255 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-1655 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-3875 (((-1279 |#1| |#2| |#3|) $) NIL)) (-2577 (((-3 (-1279 |#1| |#2| |#3|) "failed") $) NIL)) (-1596 (((-1279 |#1| |#2| |#3|) $) NIL)) (-2266 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1587 (($ $) NIL (|has| |#1| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2236 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3934 (((-576) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3451 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-2294 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-1279 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1196) "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-2378 (((-1279 |#1| |#2| |#3|) $) NIL) (((-1196) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-1437 (($ $) NIL) (($ (-576) $) NIL)) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) NIL)) (-3687 (((-701 (-1279 |#1| |#2| |#3|)) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 (-1279 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1279 |#1| |#2| |#3|)))) (-1287 $) $) NIL (|has| |#1| (-374))) (((-701 (-1279 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 (-1279 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1279 |#1| |#2| |#3|)))) (-701 $) (-1287 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1287 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-3179 (((-3 $ "failed") $) NIL)) (-4247 (((-419 (-969 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-2446 (($) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2725 (((-112) $) NIL (|has| |#1| (-374)))) (-3567 (((-112) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-3840 (((-112) $) NIL)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-1538 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-1810 (((-112) $) NIL)) (-4272 (($ $) NIL (|has| |#1| (-374)))) (-3894 (((-1279 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2083 (((-3 $ "failed") $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))))) (-3713 (((-112) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4209 (($ $ (-938)) NIL)) (-3079 (($ (-1 |#1| (-576)) $) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-576)) 18) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-3492 (($ $ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2726 (($ $ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-2703 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1608 (($ (-576) (-1279 |#1| |#2| |#3|)) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-3597 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-3503 (($) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))) CONST)) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1846 (($ $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3892 (((-1279 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1392 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2843 (($ $ (-576)) NIL)) (-2022 (((-3 $ "failed") $ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1196) (-1279 |#1| |#2| |#3|)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-526 (-1196) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1196)) (-656 (-1279 |#1| |#2| |#3|))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-526 (-1196) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1279 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1279 |#1| |#2| |#3|))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1279 |#1| |#2| |#3|)) (-656 (-1279 |#1| |#2| |#3|))) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-319 (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1131))) (($ $ (-1279 |#1| |#2| |#3|)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-296 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-3614 (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) 26) (($ $) 25 (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-1490 (($ $) NIL (|has| |#1| (-374)))) (-3905 (((-1279 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-2369 (((-576) $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1505 (((-548) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1417 (($ $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1279 |#1| |#2| |#3|)) NIL) (($ (-1283 |#2|)) 24) (($ (-1196)) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-1196))) (|has| |#1| (-374)))) (($ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-2430 ((|#1| $ (-576)) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-2471 (((-783)) NIL T CONST)) (-2553 ((|#1| $) 11)) (-4179 (((-1279 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-2317 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3423 (($ $) NIL (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-4300 (($) 20 T CONST)) (-4310 (($) 15 T CONST)) (-4286 (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1283 |#2|)) NIL) (($ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196))) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-1196) (-783)) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196)))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-915 (-1196))) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-917 (-1196))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1196))))))) (-3977 (((-112) $ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3955 (((-112) $ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3919 (((-112) $ $) NIL)) (-3966 (((-112) $ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3944 (((-112) $ $) NIL (-3765 (-12 (|has| (-1279 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1279 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1279 |#1| |#2| |#3|) (-1279 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 22)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1279 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1279 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1251 |#1| |#2| |#3|) (-13 (-1249 |#1| (-1279 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1251)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) -(-13 (-1249 |#1| (-1279 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1283 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) -((-3936 (((-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))) |#1| (-112)) 13)) (-3029 (((-430 |#1|) |#1|) 26)) (-1392 (((-430 |#1|) |#1|) 24))) -(((-1252 |#1|) (-10 -7 (-15 -1392 ((-430 |#1|) |#1|)) (-15 -3029 ((-430 |#1|) |#1|)) (-15 -3936 ((-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))) |#1| (-112)))) (-1263 (-576))) (T -1252)) -((-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| *3) (|:| -2136 (-576))))))) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))) (-3029 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576))))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576)))))) -(-10 -7 (-15 -1392 ((-430 |#1|) |#1|)) (-15 -3029 ((-430 |#1|) |#1|)) (-15 -3936 ((-2 (|:| |contp| (-576)) (|:| -3791 (-656 (-2 (|:| |irr| |#1|) (|:| -2136 (-576)))))) |#1| (-112)))) -((-2477 (((-1176 |#2|) (-1 |#2| |#1|) (-1254 |#1|)) 23 (|has| |#1| (-860))) (((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|)) 17))) -(((-1253 |#1| |#2|) (-10 -7 (-15 -2477 ((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) (IF (|has| |#1| (-860)) (-15 -2477 ((-1176 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) |%noBranch|)) (-1237) (-1237)) (T -1253)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-860)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1176 *6)) (-5 *1 (-1253 *5 *6)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1254 *6)) (-5 *1 (-1253 *5 *6))))) -(-10 -7 (-15 -2477 ((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) (IF (|has| |#1| (-860)) (-15 -2477 ((-1176 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) |%noBranch|)) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1745 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2477 (((-1176 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-2877 ((|#1| $) 15)) (-2969 ((|#1| $) 12)) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-2661 (((-576) $) 19)) (-3722 ((|#1| $) 18)) (-2672 ((|#1| $) 13)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3096 (((-112) $) 17)) (-2824 (((-1176 |#1|) $) 41 (|has| |#1| (-860))) (((-1176 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-1505 (($ |#1|) 26)) (-4092 (($ (-1113 |#1|)) 25) (((-874) $) 37 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2619 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-3676 (($ $ (-576)) 14)) (-3919 (((-112) $ $) 30 (|has| |#1| (-1119))))) -(((-1254 |#1|) (-13 (-1112 |#1|) (-10 -8 (-15 -2619 ($ |#1|)) (-15 -1745 ($ |#1|)) (-15 -4092 ($ (-1113 |#1|))) (-15 -3096 ((-112) $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-1176 |#1|))) |%noBranch|))) (-1237)) (T -1254)) -((-2619 (*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))) (-1745 (*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-1237)) (-5 *1 (-1254 *3)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1254 *3)) (-4 *3 (-1237))))) -(-13 (-1112 |#1|) (-10 -8 (-15 -2619 ($ |#1|)) (-15 -1745 ($ |#1|)) (-15 -4092 ($ (-1113 |#1|))) (-15 -3096 ((-112) $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-1176 |#1|))) |%noBranch|))) -((-2477 (((-1260 |#3| |#4|) (-1 |#4| |#2|) (-1260 |#1| |#2|)) 15))) -(((-1255 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 ((-1260 |#3| |#4|) (-1 |#4| |#2|) (-1260 |#1| |#2|)))) (-1196) (-1068) (-1196) (-1068)) (T -1255)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1260 *5 *6)) (-14 *5 (-1196)) (-4 *6 (-1068)) (-4 *8 (-1068)) (-5 *2 (-1260 *7 *8)) (-5 *1 (-1255 *5 *6 *7 *8)) (-14 *7 (-1196))))) -(-10 -7 (-15 -2477 ((-1260 |#3| |#4|) (-1 |#4| |#2|) (-1260 |#1| |#2|)))) -((-2324 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3634 ((|#1| |#3|) 13)) (-4077 ((|#3| |#3|) 19))) -(((-1256 |#1| |#2| |#3|) (-10 -7 (-15 -3634 (|#1| |#3|)) (-15 -4077 (|#3| |#3|)) (-15 -2324 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1011 |#1|) (-1263 |#2|)) (T -1256)) -((-2324 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1256 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-1256 *3 *4 *2)) (-4 *2 (-1263 *4)))) (-3634 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-1256 *2 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -3634 (|#1| |#3|)) (-15 -4077 (|#3| |#3|)) (-15 -2324 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-2353 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-1643 (((-3 |#2| "failed") |#2| (-783)) 36)) (-1449 (((-3 (-2 (|:| -2114 |#2|) (|:| -2128 |#2|)) "failed") |#2|) 50)) (-3985 (((-656 |#2|) |#2|) 52)) (-4036 (((-3 |#2| "failed") |#2| |#2|) 46))) -(((-1257 |#1| |#2|) (-10 -7 (-15 -1643 ((-3 |#2| "failed") |#2| (-783))) (-15 -2353 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -4036 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1449 ((-3 (-2 (|:| -2114 |#2|) (|:| -2128 |#2|)) "failed") |#2|)) (-15 -3985 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1263 |#1|)) (T -1257)) -((-3985 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1257 *4 *3)) (-4 *3 (-1263 *4)))) (-1449 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -2114 *3) (|:| -2128 *3))) (-5 *1 (-1257 *4 *3)) (-4 *3 (-1263 *4)))) (-4036 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1257 *3 *2)) (-4 *2 (-1263 *3)))) (-2353 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4)))) (-1643 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4))))) -(-10 -7 (-15 -1643 ((-3 |#2| "failed") |#2| (-783))) (-15 -2353 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -4036 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1449 ((-3 (-2 (|:| -2114 |#2|) (|:| -2128 |#2|)) "failed") |#2|)) (-15 -3985 ((-656 |#2|) |#2|))) -((-4090 (((-3 (-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) "failed") |#2| |#2|) 30))) -(((-1258 |#1| |#2|) (-10 -7 (-15 -4090 ((-3 (-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) "failed") |#2| |#2|))) (-568) (-1263 |#1|)) (T -1258)) -((-4090 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-1258 *4 *3)) (-4 *3 (-1263 *4))))) -(-10 -7 (-15 -4090 ((-3 (-2 (|:| -1720 |#2|) (|:| -4400 |#2|)) "failed") |#2| |#2|))) -((-3025 ((|#2| |#2| |#2|) 22)) (-4342 ((|#2| |#2| |#2|) 36)) (-2480 ((|#2| |#2| |#2| (-783) (-783)) 44))) -(((-1259 |#1| |#2|) (-10 -7 (-15 -3025 (|#2| |#2| |#2|)) (-15 -4342 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2| (-783) (-783)))) (-1068) (-1263 |#1|)) (T -1259)) -((-2480 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-1259 *4 *2)) (-4 *2 (-1263 *4)))) (-4342 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3)))) (-3025 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3))))) -(-10 -7 (-15 -3025 (|#2| |#2| |#2|)) (-15 -4342 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2| (-783) (-783)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1916 (((-1287 |#2|) $ (-783)) NIL)) (-1541 (((-656 (-1101)) $) NIL)) (-1814 (($ (-1192 |#2|)) NIL)) (-1364 (((-1192 $) $ (-1101)) NIL) (((-1192 |#2|) $) NIL)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-2573 (($ $) NIL (|has| |#2| (-568)))) (-4306 (((-112) $) NIL (|has| |#2| (-568)))) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2488 (($ $ $) NIL (|has| |#2| (-568)))) (-1589 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1587 (($ $) NIL (|has| |#2| (-464)))) (-2100 (((-430 $) $) NIL (|has| |#2| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-4407 (((-112) $ $) NIL (|has| |#2| (-374)))) (-3873 (($ $ (-783)) NIL)) (-2579 (($ $ (-783)) NIL)) (-3352 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL)) (-2378 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-1101) $) NIL)) (-2996 (($ $ $ (-1101)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-1975 (($ $ $) NIL (|has| |#2| (-374)))) (-1717 (($ $) NIL)) (-3687 (((-701 (-576)) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-701 $) (-1287 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2215 (-701 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL) (((-701 |#2|) (-1287 $)) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1986 (($ $ $) NIL (|has| |#2| (-374)))) (-2175 (($ $ $) NIL)) (-2351 (($ $ $) NIL (|has| |#2| (-568)))) (-4215 (((-2 (|:| -1856 |#2|) (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#2| (-568)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-1363 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1101)) NIL (|has| |#2| (-464)))) (-1704 (((-656 $) $) NIL)) (-2725 (((-112) $) NIL (|has| |#2| (-926)))) (-2291 (($ $ |#2| (-783) $) NIL)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-1538 (((-783) $ $) NIL (|has| |#2| (-568)))) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-2083 (((-3 $ "failed") $) NIL (|has| |#2| (-1171)))) (-1529 (($ (-1192 |#2|) (-1101)) NIL) (($ (-1192 $) (-1101)) NIL)) (-4209 (($ $ (-783)) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1518 (($ |#2| (-783)) 18) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-1101)) NIL) (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL)) (-1915 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-3968 (($ (-1 (-783) (-783)) $) NIL)) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-2189 (((-1192 |#2|) $) NIL)) (-3403 (((-3 (-1101) "failed") $) NIL)) (-1681 (($ $) NIL)) (-1692 ((|#2| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3288 (((-1178) $) NIL)) (-2168 (((-2 (|:| -1720 $) (|:| -4400 $)) $ (-783)) NIL)) (-3009 (((-3 (-656 $) "failed") $) NIL)) (-2016 (((-3 (-656 $) "failed") $) NIL)) (-3178 (((-3 (-2 (|:| |var| (-1101)) (|:| -3175 (-783))) "failed") $) NIL)) (-3597 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-3503 (($) NIL (|has| |#2| (-1171)) CONST)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 ((|#2| $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)))) (-3149 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-3498 (($ $ (-783) |#2| $) NIL)) (-4254 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-926)))) (-1392 (((-430 $) $) NIL (|has| |#2| (-926)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#2| (-374)))) (-2022 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-2259 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#2|) NIL) (($ $ (-656 (-1101)) (-656 |#2|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-1787 (((-783) $) NIL (|has| |#2| (-374)))) (-4367 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-4442 (((-3 $ "failed") $ (-783)) NIL)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#2| (-374)))) (-1955 (($ $ (-1101)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-3614 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-2369 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-1505 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3714 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1101)) NIL (|has| |#2| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-4352 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-4092 (((-874) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1101)) NIL) (($ (-1283 |#1|)) 20) (($ (-419 (-576))) NIL (-3765 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-3076 (((-656 |#2|) $) NIL)) (-2430 ((|#2| $ (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3612 (((-3 $ "failed") $) NIL (-3765 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL (|has| |#2| (-568)))) (-4300 (($) NIL T CONST)) (-4310 (($) 14 T CONST)) (-4286 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1196)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196))) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-1196) (-783)) NIL (|has| |#2| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (|has| |#2| (-917 (-1196))))) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1260 |#1| |#2|) (-13 (-1263 |#2|) (-628 (-1283 |#1|)) (-10 -8 (-15 -3498 ($ $ (-783) |#2| $)))) (-1196) (-1068)) (T -1260)) -((-3498 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1260 *4 *3)) (-14 *4 (-1196)) (-4 *3 (-1068))))) -(-13 (-1263 |#2|) (-628 (-1283 |#1|)) (-10 -8 (-15 -3498 ($ $ (-783) |#2| $)))) -((-2477 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1261 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#4| (-1 |#3| |#1|) |#2|))) (-1068) (-1263 |#1|) (-1068) (-1263 |#3|)) (T -1261)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1263 *6)) (-5 *1 (-1261 *5 *4 *6 *2)) (-4 *4 (-1263 *5))))) -(-10 -7 (-15 -2477 (|#4| (-1 |#3| |#1|) |#2|))) -((-1916 (((-1287 |#2|) $ (-783)) 129)) (-1541 (((-656 (-1101)) $) 16)) (-1814 (($ (-1192 |#2|)) 80)) (-1736 (((-783) $) NIL) (((-783) $ (-656 (-1101))) 21)) (-1589 (((-430 (-1192 $)) (-1192 $)) 204)) (-1587 (($ $) 194)) (-2100 (((-430 $) $) 192)) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 95)) (-3873 (($ $ (-783)) 84)) (-2579 (($ $ (-783)) 86)) (-3352 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2974 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1101) "failed") $) NIL)) (-2378 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1101) $) NIL)) (-2351 (($ $ $) 170)) (-4215 (((-2 (|:| -1856 |#2|) (|:| -1720 $) (|:| -4400 $)) $ $) 172)) (-1538 (((-783) $ $) 189)) (-2083 (((-3 $ "failed") $) 138)) (-1518 (($ |#2| (-783)) NIL) (($ $ (-1101) (-783)) 59) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-1915 (((-783) $) NIL) (((-783) $ (-1101)) 54) (((-656 (-783)) $ (-656 (-1101))) 55)) (-2189 (((-1192 |#2|) $) 72)) (-3403 (((-3 (-1101) "failed") $) 52)) (-2168 (((-2 (|:| -1720 $) (|:| -4400 $)) $ (-783)) 83)) (-3597 (($ $) 219)) (-3503 (($) 134)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 201)) (-4254 (((-430 (-1192 $)) (-1192 $)) 101)) (-3282 (((-430 (-1192 $)) (-1192 $)) 99)) (-1392 (((-430 $) $) 120)) (-2259 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#2|) 39) (($ $ (-656 (-1101)) (-656 |#2|)) 36) (($ $ (-1101) $) 32) (($ $ (-656 (-1101)) (-656 $)) 30)) (-1787 (((-783) $) 207)) (-4367 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 212)) (-3614 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1196)) NIL) (($ $ (-656 (-1196))) NIL) (($ $ (-1196) (-783)) NIL) (($ $ (-656 (-1196)) (-656 (-783))) NIL)) (-2369 (((-783) $) NIL) (((-783) $ (-1101)) 17) (((-656 (-783)) $ (-656 (-1101))) 23)) (-3714 ((|#2| $) NIL) (($ $ (-1101)) 140)) (-4352 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1101)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) -(((-1262 |#1| |#2|) (-10 -8 (-15 -4092 (|#1| |#1|)) (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -3503 (|#1|)) (-15 -2083 ((-3 |#1| "failed") |#1|)) (-15 -4367 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1787 ((-783) |#1|)) (-15 -2233 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -3597 (|#1| |#1|)) (-15 -4367 (|#2| (-419 |#1|) |#2|)) (-15 -3352 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4215 ((-2 (|:| -1856 |#2|) (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -4352 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -4352 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1538 ((-783) |#1| |#1|)) (-15 -4367 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1| (-783))) (-15 -3873 (|#1| |#1| (-783))) (-15 -2168 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| (-783))) (-15 -1814 (|#1| (-1192 |#2|))) (-15 -2189 ((-1192 |#2|) |#1|)) (-15 -1916 ((-1287 |#2|) |#1| (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -4367 (|#1| |#1| |#1|)) (-15 -4367 (|#2| |#1| |#2|)) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -1589 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3282 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4254 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -2074 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3714 (|#1| |#1| (-1101))) (-15 -1541 ((-656 (-1101)) |#1|)) (-15 -1736 ((-783) |#1| (-656 (-1101)))) (-15 -1736 ((-783) |#1|)) (-15 -1518 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -1518 (|#1| |#1| (-1101) (-783))) (-15 -1915 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -1915 ((-783) |#1| (-1101))) (-15 -3403 ((-3 (-1101) "failed") |#1|)) (-15 -2369 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -2369 ((-783) |#1| (-1101))) (-15 -4092 (|#1| (-1101))) (-15 -2974 ((-3 (-1101) "failed") |#1|)) (-15 -2378 ((-1101) |#1|)) (-15 -2259 (|#1| |#1| (-656 (-1101)) (-656 |#1|))) (-15 -2259 (|#1| |#1| (-1101) |#1|)) (-15 -2259 (|#1| |#1| (-656 (-1101)) (-656 |#2|))) (-15 -2259 (|#1| |#1| (-1101) |#2|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2369 ((-783) |#1|)) (-15 -1518 (|#1| |#2| (-783))) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -1915 ((-783) |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -3614 (|#1| |#1| (-1101))) (-15 -3614 (|#1| |#1| (-656 (-1101)))) (-15 -3614 (|#1| |#1| (-1101) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) (-1263 |#2|) (-1068)) (T -1262)) -NIL -(-10 -8 (-15 -4092 (|#1| |#1|)) (-15 -3142 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -3614 (|#1| |#1| (-656 (-1196)) (-656 (-783)))) (-15 -3614 (|#1| |#1| (-1196) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1196)))) (-15 -3614 (|#1| |#1| (-1196))) (-15 -2100 ((-430 |#1|) |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -3503 (|#1|)) (-15 -2083 ((-3 |#1| "failed") |#1|)) (-15 -4367 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1787 ((-783) |#1|)) (-15 -2233 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -3597 (|#1| |#1|)) (-15 -4367 (|#2| (-419 |#1|) |#2|)) (-15 -3352 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4215 ((-2 (|:| -1856 |#2|) (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -4352 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -4352 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1538 ((-783) |#1| |#1|)) (-15 -4367 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1| (-783))) (-15 -3873 (|#1| |#1| (-783))) (-15 -2168 ((-2 (|:| -1720 |#1|) (|:| -4400 |#1|)) |#1| (-783))) (-15 -1814 (|#1| (-1192 |#2|))) (-15 -2189 ((-1192 |#2|) |#1|)) (-15 -1916 ((-1287 |#2|) |#1| (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -3614 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3614 (|#1| |#1| (-783))) (-15 -3614 (|#1| |#1|)) (-15 -4367 (|#1| |#1| |#1|)) (-15 -4367 (|#2| |#1| |#2|)) (-15 -1392 ((-430 |#1|) |#1|)) (-15 -1589 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -3282 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -4254 ((-430 (-1192 |#1|)) (-1192 |#1|))) (-15 -2074 ((-3 (-656 (-1192 |#1|)) "failed") (-656 (-1192 |#1|)) (-1192 |#1|))) (-15 -3714 (|#1| |#1| (-1101))) (-15 -1541 ((-656 (-1101)) |#1|)) (-15 -1736 ((-783) |#1| (-656 (-1101)))) (-15 -1736 ((-783) |#1|)) (-15 -1518 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -1518 (|#1| |#1| (-1101) (-783))) (-15 -1915 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -1915 ((-783) |#1| (-1101))) (-15 -3403 ((-3 (-1101) "failed") |#1|)) (-15 -2369 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -2369 ((-783) |#1| (-1101))) (-15 -4092 (|#1| (-1101))) (-15 -2974 ((-3 (-1101) "failed") |#1|)) (-15 -2378 ((-1101) |#1|)) (-15 -2259 (|#1| |#1| (-656 (-1101)) (-656 |#1|))) (-15 -2259 (|#1| |#1| (-1101) |#1|)) (-15 -2259 (|#1| |#1| (-656 (-1101)) (-656 |#2|))) (-15 -2259 (|#1| |#1| (-1101) |#2|)) (-15 -2259 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -2259 (|#1| |#1| |#1| |#1|)) (-15 -2259 (|#1| |#1| (-304 |#1|))) (-15 -2259 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -2369 ((-783) |#1|)) (-15 -1518 (|#1| |#2| (-783))) (-15 -2974 ((-3 (-576) "failed") |#1|)) (-15 -2378 ((-576) |#1|)) (-15 -2974 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -2378 ((-419 (-576)) |#1|)) (-15 -2378 (|#2| |#1|)) (-15 -2974 ((-3 |#2| "failed") |#1|)) (-15 -4092 (|#1| |#2|)) (-15 -1915 ((-783) |#1|)) (-15 -3714 (|#2| |#1|)) (-15 -3614 (|#1| |#1| (-1101))) (-15 -3614 (|#1| |#1| (-656 (-1101)))) (-15 -3614 (|#1| |#1| (-1101) (-783))) (-15 -3614 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -4092 (|#1| (-576))) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1916 (((-1287 |#1|) $ (-783)) 256)) (-1541 (((-656 (-1101)) $) 113)) (-1814 (($ (-1192 |#1|)) 254)) (-1364 (((-1192 $) $ (-1101)) 128) (((-1192 |#1|) $) 127)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-2573 (($ $) 91 (|has| |#1| (-568)))) (-4306 (((-112) $) 93 (|has| |#1| (-568)))) (-1736 (((-783) $) 115) (((-783) $ (-656 (-1101))) 114)) (-3788 (((-3 $ "failed") $ $) 20)) (-2488 (($ $ $) 241 (|has| |#1| (-568)))) (-1589 (((-430 (-1192 $)) (-1192 $)) 103 (|has| |#1| (-926)))) (-1587 (($ $) 101 (|has| |#1| (-464)))) (-2100 (((-430 $) $) 100 (|has| |#1| (-464)))) (-2074 (((-3 (-656 (-1192 $)) "failed") (-656 (-1192 $)) (-1192 $)) 106 (|has| |#1| (-926)))) (-4407 (((-112) $ $) 226 (|has| |#1| (-374)))) (-3873 (($ $ (-783)) 249)) (-2579 (($ $ (-783)) 248)) (-3352 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-464)))) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) 143)) (-2378 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1057 (-576)))) (((-1101) $) 144)) (-2996 (($ $ $ (-1101)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-1975 (($ $ $) 230 (|has| |#1| (-374)))) (-1717 (($ $) 161)) (-3687 (((-701 (-576)) (-1287 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-1287 $) $) 140 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 (-576))) (|:| |vec| (-1287 (-576)))) (-701 $) (-1287 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-701 $) (-1287 $)) 137) (((-701 |#1|) (-701 $)) 136) (((-2 (|:| -2215 (-701 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 135) (((-701 |#1|) (-1287 $)) 134)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 229 (|has| |#1| (-374)))) (-2175 (($ $ $) 247)) (-2351 (($ $ $) 238 (|has| |#1| (-568)))) (-4215 (((-2 (|:| -1856 |#1|) (|:| -1720 $) (|:| -4400 $)) $ $) 237 (|has| |#1| (-568)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 224 (|has| |#1| (-374)))) (-1363 (($ $) 183 (|has| |#1| (-464))) (($ $ (-1101)) 108 (|has| |#1| (-464)))) (-1704 (((-656 $) $) 112)) (-2725 (((-112) $) 99 (|has| |#1| (-926)))) (-2291 (($ $ |#1| (-783) $) 179)) (-4375 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-1538 (((-783) $ $) 242 (|has| |#1| (-568)))) (-1810 (((-112) $) 35)) (-1831 (((-783) $) 176)) (-2083 (((-3 $ "failed") $) 222 (|has| |#1| (-1171)))) (-1529 (($ (-1192 |#1|) (-1101)) 120) (($ (-1192 $) (-1101)) 119)) (-4209 (($ $ (-783)) 253)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 233 (|has| |#1| (-374)))) (-2503 (((-656 $) $) 129)) (-4331 (((-112) $) 159)) (-1518 (($ |#1| (-783)) 160) (($ $ (-1101) (-783)) 122) (($ $ (-656 (-1101)) (-656 (-783))) 121)) (-4005 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $ (-1101)) 123) (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 251)) (-1915 (((-783) $) 177) (((-783) $ (-1101)) 125) (((-656 (-783)) $ (-656 (-1101))) 124)) (-3968 (($ (-1 (-783) (-783)) $) 178)) (-2477 (($ (-1 |#1| |#1|) $) 158)) (-2189 (((-1192 |#1|) $) 255)) (-3403 (((-3 (-1101) "failed") $) 126)) (-1681 (($ $) 156)) (-1692 ((|#1| $) 155)) (-3117 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-3288 (((-1178) $) 10)) (-2168 (((-2 (|:| -1720 $) (|:| -4400 $)) $ (-783)) 250)) (-3009 (((-3 (-656 $) "failed") $) 117)) (-2016 (((-3 (-656 $) "failed") $) 118)) (-3178 (((-3 (-2 (|:| |var| (-1101)) (|:| -3175 (-783))) "failed") $) 116)) (-3597 (($ $) 234 (|has| |#1| (-38 (-419 (-576)))))) (-3503 (($) 221 (|has| |#1| (-1171)) CONST)) (-3139 (((-1139) $) 11)) (-1657 (((-112) $) 173)) (-1670 ((|#1| $) 174)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 98 (|has| |#1| (-464)))) (-3149 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4254 (((-430 (-1192 $)) (-1192 $)) 105 (|has| |#1| (-926)))) (-3282 (((-430 (-1192 $)) (-1192 $)) 104 (|has| |#1| (-926)))) (-1392 (((-430 $) $) 102 (|has| |#1| (-926)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 231 (|has| |#1| (-374)))) (-2022 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 225 (|has| |#1| (-374)))) (-2259 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ (-1101) |#1|) 148) (($ $ (-656 (-1101)) (-656 |#1|)) 147) (($ $ (-1101) $) 146) (($ $ (-656 (-1101)) (-656 $)) 145)) (-1787 (((-783) $) 227 (|has| |#1| (-374)))) (-4367 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-419 $) (-419 $) (-419 $)) 243 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 235 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 223 (|has| |#1| (-568)))) (-4442 (((-3 $ "failed") $ (-783)) 252)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 228 (|has| |#1| (-374)))) (-1955 (($ $ (-1101)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-3614 (($ $ (-656 (-1101)) (-656 (-783))) 44) (($ $ (-1101) (-783)) 43) (($ $ (-656 (-1101))) 42) (($ $ (-1101)) 40) (($ $) 264) (($ $ (-783)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-783)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1196)) 220 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 218 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 217 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 216 (|has| |#1| (-917 (-1196))))) (-2369 (((-783) $) 157) (((-783) $ (-1101)) 133) (((-656 (-783)) $ (-656 (-1101))) 132)) (-1505 (((-905 (-390)) $) 85 (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3714 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ (-1101)) 109 (|has| |#1| (-464)))) (-1789 (((-3 (-1287 $) "failed") (-701 $)) 107 (-2445 (|has| $ (-146)) (|has| |#1| (-926))))) (-4352 (((-3 $ "failed") $ $) 240 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 239 (|has| |#1| (-568)))) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ (-1101)) 142) (($ (-419 (-576))) 81 (-3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-3076 (((-656 |#1|) $) 175)) (-2430 ((|#1| $ (-783)) 162) (($ $ (-1101) (-783)) 131) (($ $ (-656 (-1101)) (-656 (-783))) 130)) (-3612 (((-3 $ "failed") $) 82 (-3765 (-2445 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-2471 (((-783)) 32 T CONST)) (-3141 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 92 (|has| |#1| (-568)))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-656 (-1101)) (-656 (-783))) 47) (($ $ (-1101) (-783)) 46) (($ $ (-656 (-1101))) 45) (($ $ (-1101)) 41) (($ $) 263) (($ $ (-783)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-783)) 257) (($ $ (-1196)) 219 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196))) 215 (|has| |#1| (-917 (-1196)))) (($ $ (-1196) (-783)) 214 (|has| |#1| (-917 (-1196)))) (($ $ (-656 (-1196)) (-656 (-783))) 213 (|has| |#1| (-917 (-1196))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) -(((-1263 |#1|) (-141) (-1068)) (T -1263)) -((-1916 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1263 *4)) (-4 *4 (-1068)) (-5 *2 (-1287 *4)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-5 *2 (-1192 *3)))) (-1814 (*1 *1 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-1068)) (-4 *1 (-1263 *3)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-4442 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-4005 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-1263 *3)))) (-2168 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-1263 *4)))) (-3873 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-2175 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)))) (-3614 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-174)))) (-2996 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-174)))) (-4367 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-4 *3 (-568)))) (-1538 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2488 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-4352 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-4352 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-4 *3 (-568)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-4215 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -1856 *3) (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-1263 *3)))) (-3352 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1263 *3)))) (-4367 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576))))))) -(-13 (-966 |t#1| (-783) (-1101)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -1916 ((-1287 |t#1|) $ (-783))) (-15 -2189 ((-1192 |t#1|) $)) (-15 -1814 ($ (-1192 |t#1|))) (-15 -4209 ($ $ (-783))) (-15 -4442 ((-3 $ "failed") $ (-783))) (-15 -4005 ((-2 (|:| -1720 $) (|:| -4400 $)) $ $)) (-15 -2168 ((-2 (|:| -1720 $) (|:| -4400 $)) $ (-783))) (-15 -3873 ($ $ (-783))) (-15 -2579 ($ $ (-783))) (-15 -2175 ($ $ $)) (-15 -3614 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1171)) (-6 (-1171)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1955 (|t#1| $)) (-15 -2996 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -4367 ((-419 $) (-419 $) (-419 $))) (-15 -1538 ((-783) $ $)) (-15 -2488 ($ $ $)) (-15 -4352 ((-3 $ "failed") $ $)) (-15 -4352 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -2351 ($ $ $)) (-15 -4215 ((-2 (|:| -1856 |t#1|) (|:| -1720 $) (|:| -4400 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -3352 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4458) (-15 -4367 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -3597 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3765 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1101)) . T) ((-628 |#1|) . T) ((-628 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -3765 (|has| |#1| (-926)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2#) . T) ((-909 $ #4=(-1196)) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) . T) ((-915 (-1196)) |has| |#1| (-915 (-1196))) ((-917 #2#) . T) ((-917 #4#) -3765 (|has| |#1| (-917 (-1196))) (|has| |#1| (-915 (-1196)))) ((-899 (-390)) -12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390)))) ((-899 (-576)) -12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))) ((-966 |#1| #0# #2#) . T) ((-926) |has| |#1| (-926)) ((-937) |has| |#1| (-374)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #2#) . T) ((-1057 |#1|) . T) ((-1070 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-1171)) ((-1237) . T) ((-1241) |has| |#1| (-926))) -((-1541 (((-656 (-1101)) $) 34)) (-1717 (($ $) 31)) (-1518 (($ |#2| |#3|) NIL) (($ $ (-1101) |#3|) 28) (($ $ (-656 (-1101)) (-656 |#3|)) 27)) (-1681 (($ $) 14)) (-1692 ((|#2| $) 12)) (-2369 ((|#3| $) 10))) -(((-1264 |#1| |#2| |#3|) (-10 -8 (-15 -1541 ((-656 (-1101)) |#1|)) (-15 -1518 (|#1| |#1| (-656 (-1101)) (-656 |#3|))) (-15 -1518 (|#1| |#1| (-1101) |#3|)) (-15 -1717 (|#1| |#1|)) (-15 -1518 (|#1| |#2| |#3|)) (-15 -2369 (|#3| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -1692 (|#2| |#1|))) (-1265 |#2| |#3|) (-1068) (-804)) (T -1264)) -NIL -(-10 -8 (-15 -1541 ((-656 (-1101)) |#1|)) (-15 -1518 (|#1| |#1| (-656 (-1101)) (-656 |#3|))) (-15 -1518 (|#1| |#1| (-1101) |#3|)) (-15 -1717 (|#1| |#1|)) (-15 -1518 (|#1| |#2| |#3|)) (-15 -2369 (|#3| |#1|)) (-15 -1681 (|#1| |#1|)) (-15 -1692 (|#2| |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1541 (((-656 (-1101)) $) 86)) (-1615 (((-1196) $) 118)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2573 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-2255 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-1655 (((-1176 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-1717 (($ $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-3840 (((-112) $) 85)) (-1538 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-1810 (((-112) $) 35)) (-4209 (($ $ (-938)) 116)) (-4331 (((-112) $) 74)) (-1518 (($ |#1| |#2|) 73) (($ $ (-1101) |#2|) 88) (($ $ (-656 (-1101)) (-656 |#2|)) 87)) (-2477 (($ (-1 |#1| |#1|) $) 75)) (-1681 (($ $) 77)) (-1692 ((|#1| $) 78)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2843 (($ $ |#2|) 110)) (-2022 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-2259 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4367 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1131)))) (-3614 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2369 ((|#2| $) 76)) (-1417 (($ $) 84)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2430 ((|#1| $ |#2|) 71)) (-3612 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-2553 ((|#1| $) 117)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2728 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1265 |#1| |#2|) (-141) (-1068) (-804)) (T -1265)) -((-1655 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-1176 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-1196)))) (-2553 (*1 *2 *1) (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-1538 (*1 *2 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-2255 (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-2255 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-2728 (*1 *2 *1 *3) (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4092 (*2 (-1196)))) (-4 *2 (-1068)))) (-2843 (*1 *1 *1 *2) (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-2259 (*1 *2 *1 *3) (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1176 *3))))) -(-13 (-992 |t#1| |t#2| (-1101)) (-296 |t#2| |t#1|) (-10 -8 (-15 -1655 ((-1176 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1615 ((-1196) $)) (-15 -2553 (|t#1| $)) (-15 -4209 ($ $ (-938))) (-15 -1538 (|t#2| $)) (-15 -1538 (|t#2| $ |t#2|)) (-15 -2255 ($ $ |t#2|)) (-15 -2255 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4092 (|t#1| (-1196)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2728 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2843 ($ $ |t#2|)) (IF (|has| |t#2| (-1131)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-915 (-1196))) (-6 (-915 (-1196))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2259 ((-1176 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1131)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #1=(-1196)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| |#2| (-1101)) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1237) . T)) -((-1587 ((|#2| |#2|) 12)) (-2100 (((-430 |#2|) |#2|) 14)) (-3083 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) -(((-1266 |#1| |#2|) (-10 -7 (-15 -2100 ((-430 |#2|) |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -3083 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1263 |#1|) (-568) (-10 -8 (-15 -3149 ($ $ $))))) (T -1266)) -((-3083 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3149 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1266 *3 *4)))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1266 *3 *2)) (-4 *2 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3149 ($ $ $))))))) (-2100 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1266 *4 *3)) (-4 *3 (-13 (-1263 *4) (-568) (-10 -8 (-15 -3149 ($ $ $)))))))) -(-10 -7 (-15 -2100 ((-430 |#2|) |#2|)) (-15 -1587 (|#2| |#2|)) (-15 -3083 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) -((-2477 (((-1272 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1272 |#1| |#3| |#5|)) 24))) -(((-1267 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2477 ((-1272 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1272 |#1| |#3| |#5|)))) (-1068) (-1068) (-1196) (-1196) |#1| |#2|) (T -1267)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1272 *5 *7 *9)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1272 *6 *8 *10)) (-5 *1 (-1267 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1196))))) -(-10 -7 (-15 -2477 ((-1272 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1272 |#1| |#3| |#5|)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1541 (((-656 (-1101)) $) 86)) (-1615 (((-1196) $) 118)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2573 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-2255 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-1655 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-2266 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 177 (|has| |#1| (-374)))) (-2100 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1403 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4407 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2236 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-2294 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) 18 T CONST)) (-1975 (($ $ $) 172 (|has| |#1| (-374)))) (-1717 (($ $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 171 (|has| |#1| (-374)))) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2725 (((-112) $) 179 (|has| |#1| (-374)))) (-3840 (((-112) $) 85)) (-3926 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) 116) (($ $ (-419 (-576))) 185)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-4331 (((-112) $) 74)) (-1518 (($ |#1| (-419 (-576))) 73) (($ $ (-1101) (-419 (-576))) 88) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) 87)) (-2477 (($ (-1 |#1| |#1|) $) 75)) (-2703 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) 77)) (-1692 ((|#1| $) 78)) (-3117 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3288 (((-1178) $) 10)) (-1644 (($ $) 180 (|has| |#1| (-374)))) (-3597 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3765 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3149 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1392 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 173 (|has| |#1| (-374)))) (-2843 (($ $ (-419 (-576))) 110)) (-2022 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-3353 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1787 (((-783) $) 169 (|has| |#1| (-374)))) (-4367 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1131)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 170 (|has| |#1| (-374)))) (-3614 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2369 (((-419 (-576)) $) 76)) (-2307 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) 84)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2430 ((|#1| $ (-419 (-576))) 71)) (-3612 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-2553 ((|#1| $) 117)) (-1531 (((-112) $ $) 9)) (-2340 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2317 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1268 |#1|) (-141) (-1068)) (T -1268)) -((-3451 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1068)) (-4 *1 (-1268 *4)))) (-4209 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1268 *3)) (-4 *3 (-1068)))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) (-3597 (*1 *1 *1 *2) (-3765 (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -1541 ((-656 *2) *3))) (|has| *3 (-15 -3597 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1265 |t#1| (-419 (-576))) (-10 -8 (-15 -3451 ($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -4209 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $)) (IF (|has| |t#1| (-15 -3597 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -1541 ((-656 (-1196)) |t#1|))) (-15 -3597 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-29 (-576))) (-15 -3597 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1222))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1131)) ((-300) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1265 |#1| #0#) . T)) -((-1962 (((-112) $) 12)) (-2974 (((-3 |#3| "failed") $) 17)) (-2378 ((|#3| $) 14))) -(((-1269 |#1| |#2| |#3|) (-10 -8 (-15 -2974 ((-3 |#3| "failed") |#1|)) (-15 -2378 (|#3| |#1|)) (-15 -1962 ((-112) |#1|))) (-1270 |#2| |#3|) (-1068) (-1247 |#2|)) (T -1269)) -NIL -(-10 -8 (-15 -2974 ((-3 |#3| "failed") |#1|)) (-15 -2378 (|#3| |#1|)) (-15 -1962 ((-112) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1541 (((-656 (-1101)) $) 86)) (-1615 (((-1196) $) 118)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2573 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-2255 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-1655 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-2266 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 177 (|has| |#1| (-374)))) (-2100 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1403 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4407 (((-112) $ $) 168 (|has| |#1| (-374)))) (-2236 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-2294 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#2| "failed") $) 197)) (-2378 ((|#2| $) 198)) (-1975 (($ $ $) 172 (|has| |#1| (-374)))) (-1717 (($ $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-2514 (((-419 (-576)) $) 194)) (-1986 (($ $ $) 171 (|has| |#1| (-374)))) (-1621 (($ (-419 (-576)) |#2|) 195)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-2725 (((-112) $) 179 (|has| |#1| (-374)))) (-3840 (((-112) $) 85)) (-3926 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) 116) (($ $ (-419 (-576))) 185)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-4331 (((-112) $) 74)) (-1518 (($ |#1| (-419 (-576))) 73) (($ $ (-1101) (-419 (-576))) 88) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) 87)) (-2477 (($ (-1 |#1| |#1|) $) 75)) (-2703 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) 77)) (-1692 ((|#1| $) 78)) (-3117 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-3195 ((|#2| $) 193)) (-1631 (((-3 |#2| "failed") $) 191)) (-1608 ((|#2| $) 192)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 180 (|has| |#1| (-374)))) (-3597 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 183 (-3765 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 165 (|has| |#1| (-374)))) (-3149 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1392 (((-430 $) $) 176 (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 173 (|has| |#1| (-374)))) (-2843 (($ $ (-419 (-576))) 110)) (-2022 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-3353 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1787 (((-783) $) 169 (|has| |#1| (-374)))) (-4367 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1131)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 170 (|has| |#1| (-374)))) (-3614 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2369 (((-419 (-576)) $) 76)) (-2307 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) 84)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-2430 ((|#1| $ (-419 (-576))) 71)) (-3612 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-2553 ((|#1| $) 117)) (-1531 (((-112) $ $) 9)) (-2340 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2317 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1270 |#1| |#2|) (-141) (-1068) (-1247 |t#1|)) (T -1270)) -((-2369 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1247 *3)) (-5 *2 (-419 (-576))))) (-1621 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1068)) (-4 *1 (-1270 *4 *3)) (-4 *3 (-1247 *4)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1247 *3)) (-5 *2 (-419 (-576))))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3)))) (-1608 (*1 *2 *1) (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3)))) (-1631 (*1 *2 *1) (|partial| -12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3))))) -(-13 (-1268 |t#1|) (-1057 |t#2|) (-628 |t#2|) (-10 -8 (-15 -1621 ($ (-419 (-576)) |t#2|)) (-15 -2514 ((-419 (-576)) $)) (-15 -3195 (|t#2| $)) (-15 -2369 ((-419 (-576)) $)) (-15 -1608 (|t#2| $)) (-15 -1631 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1131)) ((-300) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1057 |#2|) . T) ((-1070 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -3765 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1241) |has| |#1| (-374)) ((-1265 |#1| #0#) . T) ((-1268 |#1|) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) 104)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2255 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-1655 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-2266 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| |#1| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2236 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-2294 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) NIL)) (-2378 ((|#2| $) NIL)) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) 85)) (-2514 (((-419 (-576)) $) 13)) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-1621 (($ (-419 (-576)) |#2|) 11)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2725 (((-112) $) NIL (|has| |#1| (-374)))) (-3840 (((-112) $) 74)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) 130) (($ $ (-419 (-576))) 128)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-419 (-576))) 33) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-2477 (($ (-1 |#1| |#1|) $) 125)) (-2703 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3195 ((|#2| $) 12)) (-1631 (((-3 |#2| "failed") $) 44)) (-1608 ((|#2| $) 45)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) 101 (|has| |#1| (-374)))) (-3597 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 151 (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222)))))) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2843 (($ $ (-419 (-576))) 122)) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3353 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1131)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-3614 (($ $ (-1196)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2369 (((-419 (-576)) $) 16)) (-2307 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) 120)) (-4092 (((-874) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2430 ((|#1| $ (-419 (-576))) 107)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) 127 T CONST)) (-2553 ((|#1| $) 106)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 21 T CONST)) (-4310 (($) 17 T CONST)) (-4286 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-3919 (((-112) $ $) 72)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-4018 (($ $) 142) (($ $ $) 78)) (-4007 (($ $ $) 76)) (** (($ $ (-938)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1271 |#1| |#2|) (-1270 |#1| |#2|) (-1068) (-1247 |#1|)) (T -1271)) -NIL -(-1270 |#1| |#2|) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) 11)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) NIL (|has| |#1| (-568)))) (-2255 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-1655 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-2266 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1587 (($ $) NIL (|has| |#1| (-374)))) (-2100 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4407 (((-112) $ $) NIL (|has| |#1| (-374)))) (-2236 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-2294 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1279 |#1| |#2| |#3|) "failed") $) 22)) (-2378 (((-1251 |#1| |#2| |#3|) $) NIL) (((-1279 |#1| |#2| |#3|) $) NIL)) (-1975 (($ $ $) NIL (|has| |#1| (-374)))) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-2514 (((-419 (-576)) $) 69)) (-1986 (($ $ $) NIL (|has| |#1| (-374)))) (-1621 (($ (-419 (-576)) (-1251 |#1| |#2| |#3|)) NIL)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-2725 (((-112) $) NIL (|has| |#1| (-374)))) (-3840 (((-112) $) NIL)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1810 (((-112) $) NIL)) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-419 (-576))) 30) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2703 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3117 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3195 (((-1251 |#1| |#2| |#3|) $) 72)) (-1631 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL)) (-1608 (((-1251 |#1| |#2| |#3|) $) NIL)) (-3288 (((-1178) $) NIL)) (-1644 (($ $) NIL (|has| |#1| (-374)))) (-3597 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) NIL (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-3139 (((-1139) $) NIL)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-374)))) (-3149 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1392 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1331 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) NIL (|has| |#1| (-374)))) (-2843 (($ $ (-419 (-576))) NIL)) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1407 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-1787 (((-783) $) NIL (|has| |#1| (-374)))) (-4367 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) NIL (|has| |#1| (-374)))) (-3614 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) 38)) (-2369 (((-419 (-576)) $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) NIL)) (-4092 (((-874) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1251 |#1| |#2| |#3|)) 16) (($ (-1279 |#1| |#2| |#3|)) 17) (($ (-1283 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-2430 ((|#1| $ (-419 (-576))) NIL)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-2553 ((|#1| $) 12)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 32 T CONST)) (-4310 (($) 26 T CONST)) (-4286 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 34)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1272 |#1| |#2| |#3|) (-13 (-1270 |#1| (-1251 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1279 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1272)) -((-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1272 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) -(-13 (-1270 |#1| (-1251 |#1| |#2| |#3|)) (-909 $ (-1283 |#2|)) (-1057 (-1279 |#1| |#2| |#3|)) (-628 (-1283 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 37)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL)) (-2573 (($ $) NIL)) (-4306 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 (-576) "failed") $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1057 (-419 (-576))))) (((-3 (-1272 |#2| |#3| |#4|) "failed") $) 22)) (-2378 (((-576) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-1057 (-419 (-576))))) (((-1272 |#2| |#3| |#4|) $) NIL)) (-1717 (($ $) 41)) (-3179 (((-3 $ "failed") $) 27)) (-1363 (($ $) NIL (|has| (-1272 |#2| |#3| |#4|) (-464)))) (-2291 (($ $ (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) 11)) (-4331 (((-112) $) NIL)) (-1518 (($ (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-1915 (((-329 |#2| |#3| |#4|) $) NIL)) (-3968 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-2477 (($ (-1 (-1272 |#2| |#3| |#4|) (-1272 |#2| |#3| |#4|)) $) NIL)) (-3177 (((-3 (-855 |#2|) "failed") $) 90)) (-1681 (($ $) NIL)) (-1692 (((-1272 |#2| |#3| |#4|) $) 20)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-1657 (((-112) $) NIL)) (-1670 (((-1272 |#2| |#3| |#4|) $) NIL)) (-2022 (((-3 $ "failed") $ (-1272 |#2| |#3| |#4|)) NIL (|has| (-1272 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-1595 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) "failed") $) 74)) (-2369 (((-329 |#2| |#3| |#4|) $) 17)) (-3714 (((-1272 |#2| |#3| |#4|) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-464)))) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ (-1272 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-3765 (|has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1272 |#2| |#3| |#4|) (-1057 (-419 (-576))))))) (-3076 (((-656 (-1272 |#2| |#3| |#4|)) $) NIL)) (-2430 (((-1272 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-3612 (((-3 $ "failed") $) NIL (|has| (-1272 |#2| |#3| |#4|) (-146)))) (-2471 (((-783)) NIL T CONST)) (-3141 (($ $ $ (-783)) NIL (|has| (-1272 |#2| |#3| |#4|) (-174)))) (-1531 (((-112) $ $) NIL)) (-2947 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-4310 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ (-1272 |#2| |#3| |#4|)) NIL (|has| (-1272 |#2| |#3| |#4|) (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1272 |#2| |#3| |#4|)) NIL) (($ (-1272 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1272 |#2| |#3| |#4|) (-38 (-419 (-576))))))) -(((-1273 |#1| |#2| |#3| |#4|) (-13 (-336 (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -3177 ((-3 (-855 |#2|) "failed") $)) (-15 -1595 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) "failed") $)))) (-13 (-1057 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1222) (-442 |#1|)) (-1196) |#2|) (T -1273)) -((-3177 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4))) (-1595 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1178)))) (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) (-14 *6 *4)))) -(-13 (-336 (-1272 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -3177 ((-3 (-855 |#2|) "failed") $)) (-15 -1595 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1272 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1178))) "failed") $)))) -((-1731 ((|#2| $) 34)) (-3367 ((|#2| $) 18)) (-3053 (($ $) 53)) (-2633 (($ $ (-576)) 85)) (-2835 (((-112) $ (-783)) 46)) (-2597 ((|#2| $ |#2|) 82)) (-3476 ((|#2| $ |#2|) 78)) (-4248 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3032 (($ $ (-656 $)) 81)) (-3357 ((|#2| $) 17)) (-2712 (($ $) NIL) (($ $ (-783)) 59)) (-4303 (((-656 $) $) 31)) (-2397 (((-112) $ $) 69)) (-1419 (((-112) $ (-783)) 45)) (-3103 (((-112) $ (-783)) 43)) (-3781 (((-112) $) 33)) (-2912 ((|#2| $) 25) (($ $ (-783)) 64)) (-4367 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2492 (((-112) $) 23)) (-1398 (($ $) 56)) (-1556 (($ $) 86)) (-2212 (((-783) $) 58)) (-2251 (($ $) 57)) (-2851 (($ $ $) 77) (($ |#2| $) NIL)) (-2043 (((-656 $) $) 32)) (-3919 (((-112) $ $) 67)) (-2048 (((-783) $) 52))) -(((-1274 |#1| |#2|) (-10 -8 (-15 -2633 (|#1| |#1| (-576))) (-15 -4248 (|#2| |#1| "last" |#2|)) (-15 -3476 (|#2| |#1| |#2|)) (-15 -4248 (|#1| |#1| "rest" |#1|)) (-15 -4248 (|#2| |#1| "first" |#2|)) (-15 -1556 (|#1| |#1|)) (-15 -1398 (|#1| |#1|)) (-15 -2212 ((-783) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -3357 (|#2| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -2912 (|#1| |#1| (-783))) (-15 -4367 (|#2| |#1| "last")) (-15 -2912 (|#2| |#1|)) (-15 -2712 (|#1| |#1| (-783))) (-15 -4367 (|#1| |#1| "rest")) (-15 -2712 (|#1| |#1|)) (-15 -4367 (|#2| |#1| "first")) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2597 (|#2| |#1| |#2|)) (-15 -4248 (|#2| |#1| "value" |#2|)) (-15 -3032 (|#1| |#1| (-656 |#1|))) (-15 -2397 ((-112) |#1| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -4367 (|#2| |#1| "value")) (-15 -1731 (|#2| |#1|)) (-15 -3781 ((-112) |#1|)) (-15 -4303 ((-656 |#1|) |#1|)) (-15 -2043 ((-656 |#1|) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -2048 ((-783) |#1|)) (-15 -2835 ((-112) |#1| (-783))) (-15 -1419 ((-112) |#1| (-783))) (-15 -3103 ((-112) |#1| (-783)))) (-1275 |#2|) (-1237)) (T -1274)) -NIL -(-10 -8 (-15 -2633 (|#1| |#1| (-576))) (-15 -4248 (|#2| |#1| "last" |#2|)) (-15 -3476 (|#2| |#1| |#2|)) (-15 -4248 (|#1| |#1| "rest" |#1|)) (-15 -4248 (|#2| |#1| "first" |#2|)) (-15 -1556 (|#1| |#1|)) (-15 -1398 (|#1| |#1|)) (-15 -2212 ((-783) |#1|)) (-15 -2251 (|#1| |#1|)) (-15 -3367 (|#2| |#1|)) (-15 -3357 (|#2| |#1|)) (-15 -3053 (|#1| |#1|)) (-15 -2912 (|#1| |#1| (-783))) (-15 -4367 (|#2| |#1| "last")) (-15 -2912 (|#2| |#1|)) (-15 -2712 (|#1| |#1| (-783))) (-15 -4367 (|#1| |#1| "rest")) (-15 -2712 (|#1| |#1|)) (-15 -4367 (|#2| |#1| "first")) (-15 -2851 (|#1| |#2| |#1|)) (-15 -2851 (|#1| |#1| |#1|)) (-15 -2597 (|#2| |#1| |#2|)) (-15 -4248 (|#2| |#1| "value" |#2|)) (-15 -3032 (|#1| |#1| (-656 |#1|))) (-15 -2397 ((-112) |#1| |#1|)) (-15 -2492 ((-112) |#1|)) (-15 -4367 (|#2| |#1| "value")) (-15 -1731 (|#2| |#1|)) (-15 -3781 ((-112) |#1|)) (-15 -4303 ((-656 |#1|) |#1|)) (-15 -2043 ((-656 |#1|) |#1|)) (-15 -3919 ((-112) |#1| |#1|)) (-15 -2048 ((-783) |#1|)) (-15 -2835 ((-112) |#1| (-783))) (-15 -1419 ((-112) |#1| (-783))) (-15 -3103 ((-112) |#1| (-783)))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1731 ((|#1| $) 49)) (-3367 ((|#1| $) 66)) (-3053 (($ $) 68)) (-2633 (($ $ (-576)) 53 (|has| $ (-6 -4463)))) (-2835 (((-112) $ (-783)) 8)) (-2597 ((|#1| $ |#1|) 40 (|has| $ (-6 -4463)))) (-3744 (($ $ $) 57 (|has| $ (-6 -4463)))) (-3476 ((|#1| $ |#1|) 55 (|has| $ (-6 -4463)))) (-2466 ((|#1| $ |#1|) 59 (|has| $ (-6 -4463)))) (-4248 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4463))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4463))) (($ $ "rest" $) 56 (|has| $ (-6 -4463))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4463)))) (-3032 (($ $ (-656 $)) 42 (|has| $ (-6 -4463)))) (-3357 ((|#1| $) 67)) (-3656 (($) 7 T CONST)) (-2712 (($ $) 74) (($ $ (-783)) 72)) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-4303 (((-656 $) $) 51)) (-2397 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-1419 (((-112) $ (-783)) 9)) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36)) (-3103 (((-112) $ (-783)) 10)) (-3699 (((-656 |#1|) $) 46)) (-3781 (((-112) $) 50)) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-2912 ((|#1| $) 71) (($ $ (-783)) 69)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2701 ((|#1| $) 77) (($ $ (-783)) 75)) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-3136 (((-576) $ $) 45)) (-2492 (((-112) $) 47)) (-1398 (($ $) 63)) (-1556 (($ $) 60 (|has| $ (-6 -4463)))) (-2212 (((-783) $) 64)) (-2251 (($ $) 65)) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4268 (($ $) 13)) (-2116 (($ $ $) 62 (|has| $ (-6 -4463))) (($ $ |#1|) 61 (|has| $ (-6 -4463)))) (-2851 (($ $ $) 79) (($ |#1| $) 78)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-2043 (((-656 $) $) 52)) (-3682 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-1275 |#1|) (-141) (-1237)) (T -1275)) -((-2851 (*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2851 (*1 *1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4367 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-2712 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4367 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2912 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-3053 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3357 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2251 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) (-1398 (*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2116 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2116 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-1556 (*1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2466 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4248 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-3744 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4248 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) (-3476 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-4248 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) (-2633 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4463)) (-4 *1 (-1275 *3)) (-4 *3 (-1237))))) -(-13 (-1029 |t#1|) (-10 -8 (-15 -2851 ($ $ $)) (-15 -2851 ($ |t#1| $)) (-15 -2701 (|t#1| $)) (-15 -4367 (|t#1| $ "first")) (-15 -2701 ($ $ (-783))) (-15 -2712 ($ $)) (-15 -4367 ($ $ "rest")) (-15 -2712 ($ $ (-783))) (-15 -2912 (|t#1| $)) (-15 -4367 (|t#1| $ "last")) (-15 -2912 ($ $ (-783))) (-15 -3053 ($ $)) (-15 -3357 (|t#1| $)) (-15 -3367 (|t#1| $)) (-15 -2251 ($ $)) (-15 -2212 ((-783) $)) (-15 -1398 ($ $)) (IF (|has| $ (-6 -4463)) (PROGN (-15 -2116 ($ $ $)) (-15 -2116 ($ $ |t#1|)) (-15 -1556 ($ $)) (-15 -2466 (|t#1| $ |t#1|)) (-15 -4248 (|t#1| $ "first" |t#1|)) (-15 -3744 ($ $ $)) (-15 -4248 ($ $ "rest" $)) (-15 -3476 (|t#1| $ |t#1|)) (-15 -4248 (|t#1| $ "last" |t#1|)) (-15 -2633 ($ $ (-576)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1237) . T)) -((-2477 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1276 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2477 (|#4| (-1 |#2| |#1|) |#3|))) (-1068) (-1068) (-1278 |#1|) (-1278 |#2|)) (T -1276)) -((-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1278 *6)) (-5 *1 (-1276 *5 *6 *4 *2)) (-4 *4 (-1278 *5))))) -(-10 -7 (-15 -2477 (|#4| (-1 |#2| |#1|) |#3|))) -((-1962 (((-112) $) 17)) (-2266 (($ $) 105)) (-2111 (($ $) 81)) (-2236 (($ $) 101)) (-2084 (($ $) 77)) (-2294 (($ $) 109)) (-2138 (($ $) 85)) (-2703 (($ $) 75)) (-3353 (($ $) 73)) (-2307 (($ $) 111)) (-2149 (($ $) 87)) (-2281 (($ $) 107)) (-2123 (($ $) 83)) (-2253 (($ $) 103)) (-2099 (($ $) 79)) (-4092 (((-874) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2340 (($ $) 117)) (-2184 (($ $) 93)) (-2317 (($ $) 113)) (-2161 (($ $) 89)) (-2368 (($ $) 121)) (-2207 (($ $) 97)) (-3945 (($ $) 123)) (-2220 (($ $) 99)) (-2352 (($ $) 119)) (-2195 (($ $) 95)) (-2329 (($ $) 115)) (-2173 (($ $) 91)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) -(((-1277 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2111 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2138 (|#1| |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -2123 (|#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2195 (|#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2317 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3353 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -1962 ((-112) |#1|)) (-15 -4092 ((-874) |#1|))) (-1278 |#2|) (-1068)) (T -1277)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -2111 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -2138 (|#1| |#1|)) (-15 -2149 (|#1| |#1|)) (-15 -2123 (|#1| |#1|)) (-15 -2099 (|#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2195 (|#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2161 (|#1| |#1|)) (-15 -2184 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2307 (|#1| |#1|)) (-15 -2294 (|#1| |#1|)) (-15 -2236 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2329 (|#1| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -2368 (|#1| |#1|)) (-15 -2317 (|#1| |#1|)) (-15 -2340 (|#1| |#1|)) (-15 -2703 (|#1| |#1|)) (-15 -3353 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4092 (|#1| |#2|)) (-15 -4092 (|#1| |#1|)) (-15 -4092 (|#1| (-419 (-576)))) (-15 -4092 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -1962 ((-112) |#1|)) (-15 -4092 ((-874) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-1541 (((-656 (-1101)) $) 86)) (-1615 (((-1196) $) 118)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-2573 (($ $) 64 (|has| |#1| (-568)))) (-4306 (((-112) $) 66 (|has| |#1| (-568)))) (-2255 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-1655 (((-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-2266 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) 20)) (-1403 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-2236 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1176 |#1|)) 168)) (-2294 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) 18 T CONST)) (-1717 (($ $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-4233 (($ $) 167)) (-3928 (((-969 |#1|) $ (-783)) 165) (((-969 |#1|) $ (-783) (-783)) 164)) (-3840 (((-112) $) 85)) (-3926 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-783) $) 115) (((-783) $ (-783)) 114)) (-1810 (((-112) $) 35)) (-3355 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-4209 (($ $ (-938)) 116)) (-3079 (($ (-1 |#1| (-576)) $) 166)) (-4331 (((-112) $) 74)) (-1518 (($ |#1| (-783)) 73) (($ $ (-1101) (-783)) 88) (($ $ (-656 (-1101)) (-656 (-783))) 87)) (-2477 (($ (-1 |#1| |#1|) $) 75)) (-2703 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) 77)) (-1692 ((|#1| $) 78)) (-3288 (((-1178) $) 10)) (-3597 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 161 (-3765 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1222)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-38 (-419 (-576)))))))) (-3139 (((-1139) $) 11)) (-2843 (($ $ (-783)) 110)) (-2022 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3353 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-2259 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-4367 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1131)))) (-3614 (($ $ (-1196)) 108 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196))) 106 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1196) (-783)) 105 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2369 (((-783) $) 76)) (-2307 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) 84)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-3076 (((-1176 |#1|) $) 169)) (-2430 ((|#1| $ (-783)) 71)) (-3612 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-2471 (((-783)) 32 T CONST)) (-2553 ((|#1| $) 117)) (-1531 (((-112) $ $) 9)) (-2340 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) 65 (|has| |#1| (-568)))) (-2317 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-4286 (($ $ (-1196)) 107 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196))) 103 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1196) (-783)) 102 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1196)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1196))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) -(((-1278 |#1|) (-141) (-1068)) (T -1278)) -((-3451 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1068)) (-4 *1 (-1278 *3)))) (-3076 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1068)) (-5 *2 (-1176 *3)))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-4 *1 (-1278 *3)))) (-4233 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)))) (-3079 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1278 *3)) (-4 *3 (-1068)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1068)) (-5 *2 (-969 *4)))) (-3928 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1068)) (-5 *2 (-969 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) (-3597 (*1 *1 *1 *2) (-3765 (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -1541 ((-656 *2) *3))) (|has| *3 (-15 -3597 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) -(-13 (-1265 |t#1| (-783)) (-10 -8 (-15 -3451 ($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -3076 ((-1176 |t#1|) $)) (-15 -3451 ($ (-1176 |t#1|))) (-15 -4233 ($ $)) (-15 -3079 ($ (-1 |t#1| (-576)) $)) (-15 -3928 ((-969 |t#1|) $ (-783))) (-15 -3928 ((-969 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3597 ($ $)) (IF (|has| |t#1| (-15 -3597 (|t#1| |t#1| (-1196)))) (IF (|has| |t#1| (-15 -1541 ((-656 (-1196)) |t#1|))) (-15 -3597 ($ $ (-1196))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1222)) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-29 (-576))) (-15 -3597 ($ $ (-1196))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1222))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1131)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #2=(-1196)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196)))) ((-992 |#1| #0# (-1101)) . T) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -3765 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1222) |has| |#1| (-38 (-419 (-576)))) ((-1225) |has| |#1| (-38 (-419 (-576)))) ((-1237) . T) ((-1265 |#1| #0#) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-1541 (((-656 (-1101)) $) NIL)) (-1615 (((-1196) $) 90)) (-1738 (((-1260 |#2| |#1|) $ (-783)) 73)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-2573 (($ $) NIL (|has| |#1| (-568)))) (-4306 (((-112) $) 142 (|has| |#1| (-568)))) (-2255 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-1655 (((-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-2266 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2111 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (((-3 $ "failed") $ $) NIL)) (-1403 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2236 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2084 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3451 (($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1176 |#1|)) NIL)) (-2294 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2138 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3656 (($) NIL T CONST)) (-3953 (($ $) 134)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-4233 (($ $) 140)) (-3928 (((-969 |#1|) $ (-783)) 63) (((-969 |#1|) $ (-783) (-783)) 65)) (-3840 (((-112) $) NIL)) (-3926 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1538 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-1810 (((-112) $) NIL)) (-2316 (($ $) 117)) (-3355 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3899 (($ (-576) (-576) $) 136)) (-4209 (($ $ (-938)) 139)) (-3079 (($ (-1 |#1| (-576)) $) 111)) (-4331 (((-112) $) NIL)) (-1518 (($ |#1| (-783)) 16) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2477 (($ (-1 |#1| |#1|) $) 98)) (-2703 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1681 (($ $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3165 (($ $) 115)) (-3064 (($ $) 113)) (-2936 (($ (-576) (-576) $) 138)) (-3597 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1196)) 156 (-3765 (-12 (|has| |#1| (-15 -3597 (|#1| |#1| (-1196)))) (|has| |#1| (-15 -1541 ((-656 (-1196)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1222))))) (($ $ (-1283 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3139 (((-1139) $) NIL)) (-4067 (($ $ (-576) (-576)) 121)) (-2843 (($ $ (-783)) 123)) (-2022 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3353 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4011 (($ $) 119)) (-2259 (((-1176 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-4367 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1131)))) (-3614 (($ $ (-1196)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) 103)) (-2369 (((-783) $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2149 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2281 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2123 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2253 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2099 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1417 (($ $) 125)) (-4092 (((-874) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1260 |#2| |#1|)) 81) (($ (-1283 |#2|)) 22)) (-3076 (((-1176 |#1|) $) NIL)) (-2430 ((|#1| $ (-783)) 94)) (-3612 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-2471 (((-783)) NIL T CONST)) (-2553 ((|#1| $) 91)) (-1531 (((-112) $ $) NIL)) (-2340 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2184 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2947 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2317 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2161 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2368 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2207 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2728 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -4092 (|#1| (-1196))))))) (-3945 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2220 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2352 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2195 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2329 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2173 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4300 (($) 18 T CONST)) (-4310 (($) 13 T CONST)) (-4286 (($ $ (-1196)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-1196) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $ (-656 (-1196)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1196))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1283 |#2|)) NIL)) (-3919 (((-112) $ $) NIL)) (-4028 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) 107)) (-4007 (($ $ $) 20)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) -(((-1279 |#1| |#2| |#3|) (-13 (-1278 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1260 |#2| |#1|))) (-15 -1738 ((-1260 |#2| |#1|) $ (-783))) (-15 -4092 ($ (-1283 |#2|))) (-15 -3064 ($ $)) (-15 -3165 ($ $)) (-15 -2316 ($ $)) (-15 -4011 ($ $)) (-15 -4067 ($ $ (-576) (-576))) (-15 -3953 ($ $)) (-15 -3899 ($ (-576) (-576) $)) (-15 -2936 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) (-1068) (-1196) |#1|) (T -1279)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3) (-5 *1 (-1279 *3 *4 *5)))) (-1738 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1279 *4 *5 *6)) (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4))) (-4092 (*1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-3064 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-3165 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-2316 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-4011 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-4067 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3))) (-3953 (*1 *1 *1) (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) (-14 *4 *2))) (-3899 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3))) (-2936 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) (-14 *5 *3))) (-3597 (*1 *1 *1 *2) (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) -(-13 (-1278 |#1|) (-909 $ (-1283 |#2|)) (-10 -8 (-15 -4092 ($ (-1260 |#2| |#1|))) (-15 -1738 ((-1260 |#2| |#1|) $ (-783))) (-15 -4092 ($ (-1283 |#2|))) (-15 -3064 ($ $)) (-15 -3165 ($ $)) (-15 -2316 ($ $)) (-15 -4011 ($ $)) (-15 -4067 ($ $ (-576) (-576))) (-15 -3953 ($ $)) (-15 -3899 ($ (-576) (-576) $)) (-15 -2936 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3597 ($ $ (-1283 |#2|))) |%noBranch|))) -((-2358 (((-1 (-1176 |#1|) (-656 (-1176 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-2322 (((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2509 (((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|)) 13)) (-3539 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1788 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2748 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-3982 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-2958 ((|#2| |#2| |#2|) 43))) -(((-1280 |#1| |#2|) (-10 -7 (-15 -2509 ((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|))) (-15 -2322 ((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2358 ((-1 (-1176 |#1|) (-656 (-1176 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -2958 (|#2| |#2| |#2|)) (-15 -1788 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3539 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2748 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -3982 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1278 |#1|)) (T -1280)) -((-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1278 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1280 *5 *6)))) (-2748 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1278 *5)) (-5 *1 (-1280 *5 *2)))) (-3539 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-2958 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1280 *3 *2)) (-4 *2 (-1278 *3)))) (-2358 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1278 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-656 (-1176 *4)))) (-5 *1 (-1280 *4 *5)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1278 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-1176 *4) (-1176 *4))) (-5 *1 (-1280 *4 *5)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1278 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1280 *4 *5))))) -(-10 -7 (-15 -2509 ((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|))) (-15 -2322 ((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2358 ((-1 (-1176 |#1|) (-656 (-1176 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -2958 (|#2| |#2| |#2|)) (-15 -1788 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3539 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2748 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -3982 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) -((-1920 ((|#2| |#4| (-783)) 31)) (-2841 ((|#4| |#2|) 26)) (-2693 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-1347 (((-1 |#4| (-656 |#4|)) |#3|) 43))) -(((-1281 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2841 (|#4| |#2|)) (-15 -1920 (|#2| |#4| (-783))) (-15 -1347 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2693 (|#4| (-419 |#2|))) |%noBranch|)) (-1068) (-1263 |#1|) (-668 |#2|) (-1278 |#1|)) (T -1281)) -((-2693 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-568)) (-4 *4 (-1068)) (-4 *2 (-1278 *4)) (-5 *1 (-1281 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-1347 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-1263 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1281 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1278 *4)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-4 *2 (-1263 *5)) (-5 *1 (-1281 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1278 *5)))) (-2841 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *3 (-1263 *4)) (-4 *2 (-1278 *4)) (-5 *1 (-1281 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) -(-10 -7 (-15 -2841 (|#4| |#2|)) (-15 -1920 (|#2| |#4| (-783))) (-15 -1347 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -2693 (|#4| (-419 |#2|))) |%noBranch|)) -NIL -(((-1282) (-141)) (T -1282)) -NIL -(-13 (-10 -7 (-6 -2700))) -((-2034 (((-112) $ $) NIL)) (-1615 (((-1196)) 12)) (-3288 (((-1178) $) 18)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 11) (((-1196) $) 8)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 15))) -(((-1283 |#1|) (-13 (-1119) (-625 (-1196)) (-10 -8 (-15 -4092 ((-1196) $)) (-15 -1615 ((-1196))))) (-1196)) (T -1283)) -((-4092 (*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2))) (-1615 (*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2)))) -(-13 (-1119) (-625 (-1196)) (-10 -8 (-15 -4092 ((-1196) $)) (-15 -1615 ((-1196))))) -((-1705 (($ (-783)) 19)) (-1602 (((-701 |#2|) $ $) 41)) (-1899 ((|#2| $) 51)) (-1325 ((|#2| $) 50)) (-1660 ((|#2| $ $) 36)) (-2916 (($ $ $) 47)) (-4018 (($ $) 23) (($ $ $) 29)) (-4007 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1284 |#1| |#2|) (-10 -8 (-15 -1899 (|#2| |#1|)) (-15 -1325 (|#2| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -1602 ((-701 |#2|) |#1| |#1|)) (-15 -1660 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -1705 (|#1| (-783))) (-15 -4007 (|#1| |#1| |#1|))) (-1285 |#2|) (-1237)) (T -1284)) -NIL -(-10 -8 (-15 -1899 (|#2| |#1|)) (-15 -1325 (|#2| |#1|)) (-15 -2916 (|#1| |#1| |#1|)) (-15 -1602 ((-701 |#2|) |#1| |#1|)) (-15 -1660 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -4018 (|#1| |#1| |#1|)) (-15 -4018 (|#1| |#1|)) (-15 -1705 (|#1| (-783))) (-15 -4007 (|#1| |#1| |#1|))) -((-2034 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-1705 (($ (-783)) 115 (|has| |#1| (-23)))) (-2449 (((-1292) $ (-576) (-576)) 41 (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4463))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4463))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) 8)) (-4248 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) 60 (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4462)))) (-3656 (($) 7 T CONST)) (-3129 (($ $) 93 (|has| $ (-6 -4463)))) (-4112 (($ $) 103)) (-1690 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-2892 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) 52)) (-3433 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-4260 (((-656 |#1|) $) 31 (|has| $ (-6 -4462)))) (-1602 (((-701 |#1|) $ $) 108 (|has| |#1| (-1068)))) (-1992 (($ (-783) |#1|) 70)) (-1419 (((-112) $ (-783)) 9)) (-2077 (((-576) $) 44 (|has| (-576) (-862)))) (-3492 (($ $ $) 90 (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) 30 (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-4315 (((-576) $) 45 (|has| (-576) (-862)))) (-2726 (($ $ $) 89 (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1899 ((|#1| $) 105 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-3103 (((-112) $ (-783)) 10)) (-1325 ((|#1| $) 106 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-3288 (((-1178) $) 22 (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-4428 (((-656 (-576)) $) 47)) (-2013 (((-112) (-576) $) 48)) (-3139 (((-1139) $) 21 (|has| |#1| (-1119)))) (-2701 ((|#1| $) 43 (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2918 (($ $ |#1|) 42 (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) 14)) (-4156 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) 49)) (-3372 (((-112) $) 11)) (-2643 (($) 12)) (-4367 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1254 (-576))) 71)) (-1660 ((|#1| $ $) 109 (|has| |#1| (-1068)))) (-2470 (($ $ (-576)) 64) (($ $ (-1254 (-576))) 63)) (-2916 (($ $ $) 107 (|has| |#1| (-1068)))) (-3150 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4462))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4462))))) (-3582 (($ $ $ (-576)) 94 (|has| $ (-6 -4463)))) (-4268 (($ $) 13)) (-1505 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 72)) (-2851 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-4092 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3955 (((-112) $ $) 86 (|has| |#1| (-862)))) (-3919 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3966 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3944 (((-112) $ $) 85 (|has| |#1| (-862)))) (-4018 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-4007 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-2048 (((-783) $) 6 (|has| $ (-6 -4462))))) -(((-1285 |#1|) (-141) (-1237)) (T -1285)) -((-4007 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-25)))) (-1705 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1285 *3)) (-4 *3 (-23)) (-4 *3 (-1237)))) (-4018 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) (-4018 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) (-1660 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1068)))) (-1602 (*1 *2 *1 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-1068)) (-5 *2 (-701 *3)))) (-2916 (*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1068)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1021)) (-4 *2 (-1068)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1021)) (-4 *2 (-1068))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4007 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1705 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4018 ($ $)) (-15 -4018 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1068)) (PROGN (-15 -1660 (|t#1| $ $)) (-15 -1602 ((-701 |t#1|) $ $)) (-15 -2916 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1021)) (IF (|has| |t#1| (-1068)) (PROGN (-15 -1325 (|t#1| $)) (-15 -1899 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1254 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -3765 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1237) . T)) -((-1687 (((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|) 13)) (-2359 ((|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|) 15)) (-2477 (((-3 (-1287 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1287 |#1|)) 30) (((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|)) 18))) -(((-1286 |#1| |#2|) (-10 -7 (-15 -1687 ((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2359 (|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2477 ((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|))) (-15 -2477 ((-3 (-1287 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1287 |#1|)))) (-1237) (-1237)) (T -1286)) -((-2477 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1286 *5 *6)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1286 *5 *6)))) (-2359 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-1286 *5 *2)))) (-1687 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1287 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-1287 *5)) (-5 *1 (-1286 *6 *5))))) -(-10 -7 (-15 -1687 ((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2359 (|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -2477 ((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|))) (-15 -2477 ((-3 (-1287 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1287 |#1|)))) -((-2034 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1705 (($ (-783)) NIL (|has| |#1| (-23)))) (-3602 (($ (-656 |#1|)) 11)) (-2449 (((-1292) $ (-576) (-576)) NIL (|has| $ (-6 -4463)))) (-2761 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-3362 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4463))) (($ $) NIL (-12 (|has| $ (-6 -4463)) (|has| |#1| (-862))))) (-2398 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-2835 (((-112) $ (-783)) NIL)) (-4248 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463))) ((|#1| $ (-1254 (-576)) |#1|) NIL (|has| $ (-6 -4463)))) (-3457 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3656 (($) NIL T CONST)) (-3129 (($ $) NIL (|has| $ (-6 -4463)))) (-4112 (($ $) NIL)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-2892 (($ |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2359 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4462))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-3888 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4463)))) (-3817 ((|#1| $ (-576)) NIL)) (-3433 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-4260 (((-656 |#1|) $) 16 (|has| $ (-6 -4462)))) (-1602 (((-701 |#1|) $ $) NIL (|has| |#1| (-1068)))) (-1992 (($ (-783) |#1|) NIL)) (-1419 (((-112) $ (-783)) NIL)) (-2077 (((-576) $) NIL (|has| (-576) (-862)))) (-3492 (($ $ $) NIL (|has| |#1| (-862)))) (-3257 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-1750 (((-656 |#1|) $) NIL (|has| $ (-6 -4462)))) (-3990 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-4315 (((-576) $) 12 (|has| (-576) (-862)))) (-2726 (($ $ $) NIL (|has| |#1| (-862)))) (-3874 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1899 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-3103 (((-112) $ (-783)) NIL)) (-1325 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-3288 (((-1178) $) NIL (|has| |#1| (-1119)))) (-3371 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-4428 (((-656 (-576)) $) NIL)) (-2013 (((-112) (-576) $) NIL)) (-3139 (((-1139) $) NIL (|has| |#1| (-1119)))) (-2701 ((|#1| $) NIL (|has| (-576) (-862)))) (-1863 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2918 (($ $ |#1|) NIL (|has| $ (-6 -4463)))) (-3292 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1905 (((-112) $ $) NIL)) (-4156 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3060 (((-656 |#1|) $) NIL)) (-3372 (((-112) $) NIL)) (-2643 (($) NIL)) (-4367 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-1660 ((|#1| $ $) NIL (|has| |#1| (-1068)))) (-2470 (($ $ (-576)) NIL) (($ $ (-1254 (-576))) NIL)) (-2916 (($ $ $) NIL (|has| |#1| (-1068)))) (-3150 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-1119))))) (-3582 (($ $ $ (-576)) NIL (|has| $ (-6 -4463)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-4103 (($ (-656 |#1|)) 10)) (-2851 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-4092 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-1531 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2190 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4462)))) (-3977 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3955 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3919 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3966 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3944 (((-112) $ $) NIL (|has| |#1| (-862)))) (-4018 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4007 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1287 |#1|) (-13 (-1285 |#1|) (-10 -8 (-15 -3602 ($ (-656 |#1|))))) (-1237)) (T -1287)) -((-3602 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1287 *3))))) -(-13 (-1285 |#1|) (-10 -8 (-15 -3602 ($ (-656 |#1|))))) -((-2034 (((-112) $ $) NIL)) (-2570 (((-1178) $ (-1178)) 107) (((-1178) $ (-1178) (-1178)) 105) (((-1178) $ (-1178) (-656 (-1178))) 104)) (-3123 (($) 69)) (-3382 (((-1292) $ (-480) (-938)) 54)) (-3374 (((-1292) $ (-938) (-1178)) 89) (((-1292) $ (-938) (-886)) 90)) (-3681 (((-1292) $ (-938) (-390) (-390)) 57)) (-3715 (((-1292) $ (-1178)) 84)) (-3779 (((-1292) $ (-938) (-1178)) 94)) (-1372 (((-1292) $ (-938) (-390) (-390)) 58)) (-2464 (((-1292) $ (-938) (-938)) 55)) (-2551 (((-1292) $) 85)) (-3189 (((-1292) $ (-938) (-1178)) 93)) (-3090 (((-1292) $ (-480) (-938)) 41)) (-2085 (((-1292) $ (-938) (-1178)) 92)) (-1517 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-2587 (((-1292) $ (-783) (-783)) 52)) (-2463 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-3288 (((-1178) $) NIL)) (-2371 (((-576) $) 48)) (-3139 (((-1139) $) NIL)) (-4336 (((-1287 (-3 (-480) "undefined")) $) 47)) (-2763 (((-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2085 (-576)) (|:| -3361 (-576)) (|:| |spline| (-576)) (|:| -4330 (-576)) (|:| |axesColor| (-886)) (|:| -3374 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $) 46)) (-3405 (((-1292) $ (-938) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576)) 83)) (-2079 (((-656 (-960 (-227))) $) NIL)) (-2056 (((-480) $ (-938)) 43)) (-3200 (((-1292) $ (-783) (-783) (-938) (-938)) 50)) (-3387 (((-1292) $ (-1178)) 95)) (-3361 (((-1292) $ (-938) (-1178)) 91)) (-4092 (((-874) $) 102)) (-1627 (((-1292) $) 96)) (-1531 (((-112) $ $) NIL)) (-4330 (((-1292) $ (-938) (-1178)) 87) (((-1292) $ (-938) (-886)) 88)) (-3919 (((-112) $ $) NIL))) -(((-1288) (-13 (-1119) (-10 -8 (-15 -2079 ((-656 (-960 (-227))) $)) (-15 -3123 ($)) (-15 -2463 ($ $)) (-15 -1517 ((-656 (-270)) $)) (-15 -1517 ($ $ (-656 (-270)))) (-15 -2463 ($ (-480) (-656 (-270)))) (-15 -3405 ((-1292) $ (-938) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -2763 ((-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2085 (-576)) (|:| -3361 (-576)) (|:| |spline| (-576)) (|:| -4330 (-576)) (|:| |axesColor| (-886)) (|:| -3374 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -4336 ((-1287 (-3 (-480) "undefined")) $)) (-15 -3715 ((-1292) $ (-1178))) (-15 -3090 ((-1292) $ (-480) (-938))) (-15 -2056 ((-480) $ (-938))) (-15 -4330 ((-1292) $ (-938) (-1178))) (-15 -4330 ((-1292) $ (-938) (-886))) (-15 -3374 ((-1292) $ (-938) (-1178))) (-15 -3374 ((-1292) $ (-938) (-886))) (-15 -2085 ((-1292) $ (-938) (-1178))) (-15 -3189 ((-1292) $ (-938) (-1178))) (-15 -3361 ((-1292) $ (-938) (-1178))) (-15 -3387 ((-1292) $ (-1178))) (-15 -1627 ((-1292) $)) (-15 -3200 ((-1292) $ (-783) (-783) (-938) (-938))) (-15 -1372 ((-1292) $ (-938) (-390) (-390))) (-15 -3681 ((-1292) $ (-938) (-390) (-390))) (-15 -3779 ((-1292) $ (-938) (-1178))) (-15 -2587 ((-1292) $ (-783) (-783))) (-15 -3382 ((-1292) $ (-480) (-938))) (-15 -2464 ((-1292) $ (-938) (-938))) (-15 -2570 ((-1178) $ (-1178))) (-15 -2570 ((-1178) $ (-1178) (-1178))) (-15 -2570 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -2551 ((-1292) $)) (-15 -2371 ((-576) $)) (-15 -4092 ((-874) $))))) (T -1288)) -((-4092 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1288)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-656 (-960 (-227)))) (-5 *1 (-1288)))) (-3123 (*1 *1) (-5 *1 (-1288))) (-2463 (*1 *1 *1) (-5 *1 (-1288))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-1517 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-2463 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) (-3405 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-938)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2085 (-576)) (|:| -3361 (-576)) (|:| |spline| (-576)) (|:| -4330 (-576)) (|:| |axesColor| (-886)) (|:| -3374 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576))))) (-5 *1 (-1288)))) (-4336 (*1 *2 *1) (-12 (-5 *2 (-1287 (-3 (-480) "undefined"))) (-5 *1 (-1288)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3090 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2056 (*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-5 *2 (-480)) (-5 *1 (-1288)))) (-4330 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-4330 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3374 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3374 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2085 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3189 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3361 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3387 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3200 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-1372 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3681 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3779 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2587 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-3382 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2464 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2570 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) (-2570 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) (-2570 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1288)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288))))) -(-13 (-1119) (-10 -8 (-15 -2079 ((-656 (-960 (-227))) $)) (-15 -3123 ($)) (-15 -2463 ($ $)) (-15 -1517 ((-656 (-270)) $)) (-15 -1517 ($ $ (-656 (-270)))) (-15 -2463 ($ (-480) (-656 (-270)))) (-15 -3405 ((-1292) $ (-938) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -2763 ((-1287 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2085 (-576)) (|:| -3361 (-576)) (|:| |spline| (-576)) (|:| -4330 (-576)) (|:| |axesColor| (-886)) (|:| -3374 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -4336 ((-1287 (-3 (-480) "undefined")) $)) (-15 -3715 ((-1292) $ (-1178))) (-15 -3090 ((-1292) $ (-480) (-938))) (-15 -2056 ((-480) $ (-938))) (-15 -4330 ((-1292) $ (-938) (-1178))) (-15 -4330 ((-1292) $ (-938) (-886))) (-15 -3374 ((-1292) $ (-938) (-1178))) (-15 -3374 ((-1292) $ (-938) (-886))) (-15 -2085 ((-1292) $ (-938) (-1178))) (-15 -3189 ((-1292) $ (-938) (-1178))) (-15 -3361 ((-1292) $ (-938) (-1178))) (-15 -3387 ((-1292) $ (-1178))) (-15 -1627 ((-1292) $)) (-15 -3200 ((-1292) $ (-783) (-783) (-938) (-938))) (-15 -1372 ((-1292) $ (-938) (-390) (-390))) (-15 -3681 ((-1292) $ (-938) (-390) (-390))) (-15 -3779 ((-1292) $ (-938) (-1178))) (-15 -2587 ((-1292) $ (-783) (-783))) (-15 -3382 ((-1292) $ (-480) (-938))) (-15 -2464 ((-1292) $ (-938) (-938))) (-15 -2570 ((-1178) $ (-1178))) (-15 -2570 ((-1178) $ (-1178) (-1178))) (-15 -2570 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -2551 ((-1292) $)) (-15 -2371 ((-576) $)) (-15 -4092 ((-874) $)))) -((-2034 (((-112) $ $) NIL)) (-2951 (((-1292) $ (-390)) 169) (((-1292) $ (-390) (-390) (-390)) 170)) (-2570 (((-1178) $ (-1178)) 179) (((-1178) $ (-1178) (-1178)) 177) (((-1178) $ (-1178) (-656 (-1178))) 176)) (-4246 (($) 67)) (-2313 (((-1292) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1292) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1292) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1292) $ (-390) (-390)) 145) (((-1292) $ (-390) (-390) (-390)) 152)) (-3118 (((-390)) 122) (((-390) (-390)) 123)) (-1882 (((-390)) 117) (((-390) (-390)) 119)) (-2355 (((-390)) 120) (((-390) (-390)) 121)) (-2906 (((-390)) 126) (((-390) (-390)) 127)) (-1369 (((-390)) 124) (((-390) (-390)) 125)) (-3681 (((-1292) $ (-390) (-390)) 171)) (-3715 (((-1292) $ (-1178)) 153)) (-1376 (((-1152 (-227)) $) 68) (($ $ (-1152 (-227))) 69)) (-3886 (((-1292) $ (-1178)) 187)) (-4171 (((-1292) $ (-1178)) 188)) (-2666 (((-1292) $ (-390) (-390)) 151) (((-1292) $ (-576) (-576)) 168)) (-2464 (((-1292) $ (-938) (-938)) 160)) (-2551 (((-1292) $) 137)) (-4115 (((-1292) $ (-1178)) 186)) (-3147 (((-1292) $ (-1178)) 134)) (-1517 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-2587 (((-1292) $ (-783) (-783)) 159)) (-4157 (((-1292) $ (-783) (-960 (-227))) 193)) (-4038 (($ $) 73) (($ (-1152 (-227)) (-1178)) 74) (($ (-1152 (-227)) (-656 (-270))) 75)) (-3037 (((-1292) $ (-390) (-390) (-390)) 131)) (-3288 (((-1178) $) NIL)) (-2371 (((-576) $) 128)) (-2020 (((-1292) $ (-390)) 174)) (-2260 (((-1292) $ (-390)) 191)) (-3139 (((-1139) $) NIL)) (-2926 (((-1292) $ (-390)) 190)) (-2473 (((-1292) $ (-1178)) 136)) (-3200 (((-1292) $ (-783) (-783) (-938) (-938)) 158)) (-2028 (((-1292) $ (-1178)) 133)) (-3387 (((-1292) $ (-1178)) 135)) (-3453 (((-1292) $ (-158) (-158)) 157)) (-4092 (((-874) $) 166)) (-1627 (((-1292) $) 138)) (-1620 (((-1292) $ (-1178)) 189)) (-1531 (((-112) $ $) NIL)) (-4330 (((-1292) $ (-1178)) 132)) (-3919 (((-112) $ $) NIL))) -(((-1289) (-13 (-1119) (-10 -8 (-15 -1882 ((-390))) (-15 -1882 ((-390) (-390))) (-15 -2355 ((-390))) (-15 -2355 ((-390) (-390))) (-15 -3118 ((-390))) (-15 -3118 ((-390) (-390))) (-15 -1369 ((-390))) (-15 -1369 ((-390) (-390))) (-15 -2906 ((-390))) (-15 -2906 ((-390) (-390))) (-15 -4246 ($)) (-15 -4038 ($ $)) (-15 -4038 ($ (-1152 (-227)) (-1178))) (-15 -4038 ($ (-1152 (-227)) (-656 (-270)))) (-15 -1376 ((-1152 (-227)) $)) (-15 -1376 ($ $ (-1152 (-227)))) (-15 -4157 ((-1292) $ (-783) (-960 (-227)))) (-15 -1517 ((-656 (-270)) $)) (-15 -1517 ($ $ (-656 (-270)))) (-15 -2587 ((-1292) $ (-783) (-783))) (-15 -2464 ((-1292) $ (-938) (-938))) (-15 -3715 ((-1292) $ (-1178))) (-15 -3200 ((-1292) $ (-783) (-783) (-938) (-938))) (-15 -2313 ((-1292) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2313 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2313 ((-1292) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2313 ((-1292) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2313 ((-1292) $ (-390) (-390))) (-15 -2313 ((-1292) $ (-390) (-390) (-390))) (-15 -3387 ((-1292) $ (-1178))) (-15 -4330 ((-1292) $ (-1178))) (-15 -2028 ((-1292) $ (-1178))) (-15 -3147 ((-1292) $ (-1178))) (-15 -2473 ((-1292) $ (-1178))) (-15 -2666 ((-1292) $ (-390) (-390))) (-15 -2666 ((-1292) $ (-576) (-576))) (-15 -2951 ((-1292) $ (-390))) (-15 -2951 ((-1292) $ (-390) (-390) (-390))) (-15 -3681 ((-1292) $ (-390) (-390))) (-15 -4115 ((-1292) $ (-1178))) (-15 -2926 ((-1292) $ (-390))) (-15 -2260 ((-1292) $ (-390))) (-15 -3886 ((-1292) $ (-1178))) (-15 -4171 ((-1292) $ (-1178))) (-15 -1620 ((-1292) $ (-1178))) (-15 -3037 ((-1292) $ (-390) (-390) (-390))) (-15 -2020 ((-1292) $ (-390))) (-15 -2551 ((-1292) $)) (-15 -3453 ((-1292) $ (-158) (-158))) (-15 -2570 ((-1178) $ (-1178))) (-15 -2570 ((-1178) $ (-1178) (-1178))) (-15 -2570 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -1627 ((-1292) $)) (-15 -2371 ((-576) $))))) (T -1289)) -((-1882 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2355 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2355 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-3118 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-1369 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-1369 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2906 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-2906 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) (-4246 (*1 *1) (-5 *1 (-1289))) (-4038 (*1 *1 *1) (-5 *1 (-1289))) (-4038 (*1 *1 *2 *3) (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1178)) (-5 *1 (-1289)))) (-4038 (*1 *1 *2 *3) (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) (-1376 (*1 *2 *1) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1289)))) (-1376 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1289)))) (-4157 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-1517 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) (-2587 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2464 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3200 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2313 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1289)))) (-2313 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2313 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2313 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2313 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3387 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4330 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2028 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3147 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2473 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2666 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2666 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2951 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2951 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3681 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4115 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2926 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2260 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3886 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-1620 (*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3037 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2020 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) (-3453 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2570 (*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) (-2570 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) (-2570 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1289)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289)))) (-2371 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289))))) -(-13 (-1119) (-10 -8 (-15 -1882 ((-390))) (-15 -1882 ((-390) (-390))) (-15 -2355 ((-390))) (-15 -2355 ((-390) (-390))) (-15 -3118 ((-390))) (-15 -3118 ((-390) (-390))) (-15 -1369 ((-390))) (-15 -1369 ((-390) (-390))) (-15 -2906 ((-390))) (-15 -2906 ((-390) (-390))) (-15 -4246 ($)) (-15 -4038 ($ $)) (-15 -4038 ($ (-1152 (-227)) (-1178))) (-15 -4038 ($ (-1152 (-227)) (-656 (-270)))) (-15 -1376 ((-1152 (-227)) $)) (-15 -1376 ($ $ (-1152 (-227)))) (-15 -4157 ((-1292) $ (-783) (-960 (-227)))) (-15 -1517 ((-656 (-270)) $)) (-15 -1517 ($ $ (-656 (-270)))) (-15 -2587 ((-1292) $ (-783) (-783))) (-15 -2464 ((-1292) $ (-938) (-938))) (-15 -3715 ((-1292) $ (-1178))) (-15 -3200 ((-1292) $ (-783) (-783) (-938) (-938))) (-15 -2313 ((-1292) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2313 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2313 ((-1292) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2313 ((-1292) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2313 ((-1292) $ (-390) (-390))) (-15 -2313 ((-1292) $ (-390) (-390) (-390))) (-15 -3387 ((-1292) $ (-1178))) (-15 -4330 ((-1292) $ (-1178))) (-15 -2028 ((-1292) $ (-1178))) (-15 -3147 ((-1292) $ (-1178))) (-15 -2473 ((-1292) $ (-1178))) (-15 -2666 ((-1292) $ (-390) (-390))) (-15 -2666 ((-1292) $ (-576) (-576))) (-15 -2951 ((-1292) $ (-390))) (-15 -2951 ((-1292) $ (-390) (-390) (-390))) (-15 -3681 ((-1292) $ (-390) (-390))) (-15 -4115 ((-1292) $ (-1178))) (-15 -2926 ((-1292) $ (-390))) (-15 -2260 ((-1292) $ (-390))) (-15 -3886 ((-1292) $ (-1178))) (-15 -4171 ((-1292) $ (-1178))) (-15 -1620 ((-1292) $ (-1178))) (-15 -3037 ((-1292) $ (-390) (-390) (-390))) (-15 -2020 ((-1292) $ (-390))) (-15 -2551 ((-1292) $)) (-15 -3453 ((-1292) $ (-158) (-158))) (-15 -2570 ((-1178) $ (-1178))) (-15 -2570 ((-1178) $ (-1178) (-1178))) (-15 -2570 ((-1178) $ (-1178) (-656 (-1178)))) (-15 -1627 ((-1292) $)) (-15 -2371 ((-576) $)))) -((-3652 (((-656 (-1178)) (-656 (-1178))) 104) (((-656 (-1178))) 96)) (-3436 (((-656 (-1178))) 94)) (-1430 (((-656 (-938)) (-656 (-938))) 69) (((-656 (-938))) 64)) (-1997 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-1549 (((-1292)) 71)) (-2934 (((-938) (-938)) 87) (((-938)) 86)) (-3842 (((-938) (-938)) 85) (((-938)) 84)) (-3223 (((-886) (-886)) 81) (((-886)) 80)) (-3496 (((-227)) 91) (((-227) (-390)) 93)) (-2741 (((-938)) 88) (((-938) (-938)) 89)) (-4341 (((-938) (-938)) 83) (((-938)) 82)) (-2909 (((-886) (-886)) 75) (((-886)) 73)) (-4337 (((-886) (-886)) 77) (((-886)) 76)) (-2930 (((-886) (-886)) 79) (((-886)) 78))) -(((-1290) (-10 -7 (-15 -2909 ((-886))) (-15 -2909 ((-886) (-886))) (-15 -4337 ((-886))) (-15 -4337 ((-886) (-886))) (-15 -2930 ((-886))) (-15 -2930 ((-886) (-886))) (-15 -3223 ((-886))) (-15 -3223 ((-886) (-886))) (-15 -4341 ((-938))) (-15 -4341 ((-938) (-938))) (-15 -1997 ((-656 (-783)))) (-15 -1997 ((-656 (-783)) (-656 (-783)))) (-15 -1430 ((-656 (-938)))) (-15 -1430 ((-656 (-938)) (-656 (-938)))) (-15 -1549 ((-1292))) (-15 -3652 ((-656 (-1178)))) (-15 -3652 ((-656 (-1178)) (-656 (-1178)))) (-15 -3436 ((-656 (-1178)))) (-15 -3842 ((-938))) (-15 -2934 ((-938))) (-15 -3842 ((-938) (-938))) (-15 -2934 ((-938) (-938))) (-15 -2741 ((-938) (-938))) (-15 -2741 ((-938))) (-15 -3496 ((-227) (-390))) (-15 -3496 ((-227))))) (T -1290)) -((-3496 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1290)))) (-3496 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1290)))) (-2741 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-2741 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-2934 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-2934 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-3842 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-3436 (*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) (-3652 (*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) (-3652 (*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) (-1549 (*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1290)))) (-1430 (*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1290)))) (-1430 (*1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1290)))) (-1997 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290)))) (-1997 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290)))) (-4341 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-4341 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-3223 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-2930 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-4337 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-4337 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-2909 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) (-2909 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290))))) -(-10 -7 (-15 -2909 ((-886))) (-15 -2909 ((-886) (-886))) (-15 -4337 ((-886))) (-15 -4337 ((-886) (-886))) (-15 -2930 ((-886))) (-15 -2930 ((-886) (-886))) (-15 -3223 ((-886))) (-15 -3223 ((-886) (-886))) (-15 -4341 ((-938))) (-15 -4341 ((-938) (-938))) (-15 -1997 ((-656 (-783)))) (-15 -1997 ((-656 (-783)) (-656 (-783)))) (-15 -1430 ((-656 (-938)))) (-15 -1430 ((-656 (-938)) (-656 (-938)))) (-15 -1549 ((-1292))) (-15 -3652 ((-656 (-1178)))) (-15 -3652 ((-656 (-1178)) (-656 (-1178)))) (-15 -3436 ((-656 (-1178)))) (-15 -3842 ((-938))) (-15 -2934 ((-938))) (-15 -3842 ((-938) (-938))) (-15 -2934 ((-938) (-938))) (-15 -2741 ((-938) (-938))) (-15 -2741 ((-938))) (-15 -3496 ((-227) (-390))) (-15 -3496 ((-227)))) -((-3946 (((-480) (-656 (-656 (-960 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-960 (-227))))) 21) (((-480) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270))) 20)) (-1393 (((-1288) (-656 (-656 (-960 (-227)))) (-656 (-270))) 30) (((-1288) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270))) 29)) (-4092 (((-1288) (-480)) 46))) -(((-1291) (-10 -7 (-15 -3946 ((-480) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -3946 ((-480) (-656 (-656 (-960 (-227)))))) (-15 -3946 ((-480) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -1393 ((-1288) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -1393 ((-1288) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -4092 ((-1288) (-480))))) (T -1291)) -((-4092 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1288)) (-5 *1 (-1291)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-1291)))) (-1393 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-1291)))) (-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1291)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-480)) (-5 *1 (-1291)))) (-3946 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1291))))) -(-10 -7 (-15 -3946 ((-480) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -3946 ((-480) (-656 (-656 (-960 (-227)))))) (-15 -3946 ((-480) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -1393 ((-1288) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -1393 ((-1288) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -4092 ((-1288) (-480)))) -((-2502 (($) 6)) (-4092 (((-874) $) 9))) -(((-1292) (-13 (-625 (-874)) (-10 -8 (-15 -2502 ($))))) (T -1292)) -((-2502 (*1 *1) (-5 *1 (-1292)))) -(-13 (-625 (-874)) (-10 -8 (-15 -2502 ($)))) -((-4028 (($ $ |#2|) 10))) -(((-1293 |#1| |#2|) (-10 -8 (-15 -4028 (|#1| |#1| |#2|))) (-1294 |#2|) (-374)) (T -1293)) -NIL -(-10 -8 (-15 -4028 (|#1| |#1| |#2|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3667 (((-135)) 33)) (-4092 (((-874) $) 12)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-3919 (((-112) $ $) 6)) (-4028 (($ $ |#1|) 34)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) -(((-1294 |#1|) (-141) (-374)) (T -1294)) -((-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-374)))) (-3667 (*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(-13 (-729 |t#1|) (-10 -8 (-15 -4028 ($ $ |t#1|)) (-15 -3667 ((-135))))) +((-1632 (((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)) 23))) +(((-1245 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1632 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) (-1068) (-1068) (-1195) (-1195) |#1| |#2|) (T -1245)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1245 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1195))))) +(-10 -7 (-15 -1632 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1991 (((-656 (-1101)) $) 86)) (-3022 (((-1195) $) 118)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4412 (($ $) 64 (|has| |#1| (-568)))) (-4176 (((-112) $) 66 (|has| |#1| (-568)))) (-1615 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3826 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-3894 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 177 (|has| |#1| (-374)))) (-2732 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1853 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3872 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-3916 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) 18 T CONST)) (-3420 (($ $ $) 172 (|has| |#1| (-374)))) (-2166 (($ $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-1747 (((-419 (-969 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-3431 (($ $ $) 171 (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-1792 (((-112) $) 179 (|has| |#1| (-374)))) (-1822 (((-112) $) 85)) (-1570 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) 116)) (-1995 (($ (-1 |#1| (-576)) $) 187)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-2606 (((-112) $) 74)) (-1970 (($ |#1| (-576)) 73) (($ $ (-1101) (-576)) 88) (($ $ (-656 (-1101)) (-656 (-576))) 87)) (-1632 (($ (-1 |#1| |#1|) $) 75)) (-3710 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 77)) (-2142 ((|#1| $) 78)) (-3459 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1927 (((-1177) $) 10)) (-2095 (($ $) 180 (|has| |#1| (-374)))) (-3848 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-2835 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-3495 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1839 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 173 (|has| |#1| (-374)))) (-1714 (($ $ (-576)) 110)) (-3463 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-3984 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576)))))) (-3112 (((-783) $) 169 (|has| |#1| (-374)))) (-2871 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1131)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 170 (|has| |#1| (-374)))) (-2735 (($ $ (-1195)) 108 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-1433 (((-576) $) 76)) (-3928 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) 84)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4333 ((|#1| $ (-576)) 71)) (-2883 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-2387 ((|#1| $) 117)) (-3985 (((-112) $ $) 9)) (-3958 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3939 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1195)) 107 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-576) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1246 |#1|) (-141) (-1068)) (T -1246)) +((-2398 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) (-4 *3 (-1068)) (-4 *1 (-1246 *3)))) (-1995 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1246 *3)) (-4 *3 (-1068)))) (-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) (-5 *2 (-419 (-969 *4))))) (-1747 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) (-5 *2 (-419 (-969 *4))))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) (-3848 (*1 *1 *1 *2) (-2835 (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1221)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -1991 ((-656 *2) *3))) (|has| *3 (-15 -3848 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1264 |t#1| (-576)) (-10 -8 (-15 -2398 ($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |t#1|))))) (-15 -1995 ($ (-1 |t#1| (-576)) $)) (IF (|has| |t#1| (-568)) (PROGN (-15 -1747 ((-419 (-969 |t#1|)) $ (-576))) (-15 -1747 ((-419 (-969 |t#1|)) $ (-576) (-576)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $)) (IF (|has| |t#1| (-15 -3848 (|t#1| |t#1| (-1195)))) (IF (|has| |t#1| (-15 -1991 ((-656 (-1195)) |t#1|))) (-15 -3848 ($ $ (-1195))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1221)) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-29 (-576))) (-15 -3848 ($ $ (-1195))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1221))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-576) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-576) (-1131)) ((-300) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1264 |#1| #0#) . T)) +((-1454 (((-112) $) 12)) (-1539 (((-3 |#3| "failed") $) 17) (((-3 (-1195) "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL)) (-4056 ((|#3| $) 14) (((-1195) $) NIL) (((-419 (-576)) $) NIL) (((-576) $) NIL))) +(((-1247 |#1| |#2| |#3|) (-10 -8 (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-1195) "failed") |#1|)) (-15 -4056 ((-1195) |#1|)) (-15 -1539 ((-3 |#3| "failed") |#1|)) (-15 -4056 (|#3| |#1|)) (-15 -1454 ((-112) |#1|))) (-1248 |#2| |#3|) (-1068) (-1277 |#2|)) (T -1247)) +NIL +(-10 -8 (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -1539 ((-3 (-1195) "failed") |#1|)) (-15 -4056 ((-1195) |#1|)) (-15 -1539 ((-3 |#3| "failed") |#1|)) (-15 -4056 (|#3| |#1|)) (-15 -1454 ((-112) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1560 ((|#2| $) 250 (-2758 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1991 (((-656 (-1101)) $) 86)) (-3022 (((-1195) $) 118)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4412 (($ $) 64 (|has| |#1| (-568)))) (-4176 (((-112) $) 66 (|has| |#1| (-568)))) (-1615 (($ $ (-576)) 113) (($ $ (-576) (-576)) 112)) (-3826 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 119)) (-1775 ((|#2| $) 286)) (-3548 (((-3 |#2| "failed") $) 282)) (-2052 ((|#2| $) 283)) (-3894 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) 20)) (-1990 (((-430 (-1191 $)) (-1191 $)) 259 (-2758 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1760 (($ $) 177 (|has| |#1| (-374)))) (-2732 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1853 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 256 (-2758 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1727 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3872 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (((-576) $) 268 (-2758 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2398 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 188)) (-3916 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#2| "failed") $) 289) (((-3 (-576) "failed") $) 279 (-2758 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) 277 (-2758 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-1195) "failed") $) 261 (-2758 (|has| |#2| (-1057 (-1195))) (|has| |#1| (-374))))) (-4056 ((|#2| $) 290) (((-576) $) 278 (-2758 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) 276 (-2758 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-1195) $) 260 (-2758 (|has| |#2| (-1057 (-1195))) (|has| |#1| (-374))))) (-2092 (($ $) 285) (($ (-576) $) 284)) (-3420 (($ $ $) 172 (|has| |#1| (-374)))) (-2166 (($ $) 72)) (-3687 (((-701 |#2|) (-1286 $)) 240 (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) 239 (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) 238 (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) 237 (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 236 (-2758 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) 235 (-2758 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 234 (-2758 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) 233 (-2758 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1551 (((-3 $ "failed") $) 37)) (-1747 (((-419 (-969 |#1|)) $ (-576)) 186 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 185 (|has| |#1| (-568)))) (-1803 (($) 252 (-2758 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3431 (($ $ $) 171 (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-1792 (((-112) $) 179 (|has| |#1| (-374)))) (-1910 (((-112) $) 266 (-2758 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1822 (((-112) $) 85)) (-1570 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 244 (-2758 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 243 (-2758 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-3333 (((-576) $) 115) (((-576) $ (-576)) 114)) (-1414 (((-112) $) 35)) (-2302 (($ $) 248 (|has| |#1| (-374)))) (-1536 ((|#2| $) 246 (|has| |#1| (-374)))) (-2826 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-3930 (((-3 $ "failed") $) 280 (-2758 (|has| |#2| (-1171)) (|has| |#1| (-374))))) (-3566 (((-112) $) 267 (-2758 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2973 (($ $ (-938)) 116)) (-1995 (($ (-1 |#1| (-576)) $) 187)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-2606 (((-112) $) 74)) (-1970 (($ |#1| (-576)) 73) (($ $ (-1101) (-576)) 88) (($ $ (-656 (-1101)) (-656 (-576))) 87)) (-2442 (($ $ $) 270 (-2758 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1893 (($ $ $) 271 (-2758 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1632 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 228 (|has| |#1| (-374)))) (-3710 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 77)) (-2142 ((|#1| $) 78)) (-3459 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2065 (($ (-576) |#2|) 287)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 180 (|has| |#1| (-374)))) (-3848 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-2835 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1538 (($) 281 (-2758 (|has| |#2| (-1171)) (|has| |#1| (-374))) CONST)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-3495 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1465 (($ $) 251 (-2758 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3835 ((|#2| $) 254 (-2758 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4299 (((-430 (-1191 $)) (-1191 $)) 257 (-2758 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1340 (((-430 (-1191 $)) (-1191 $)) 258 (-2758 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1839 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 173 (|has| |#1| (-374)))) (-1714 (($ $ (-576)) 110)) (-3463 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-3984 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) |#2|) 227 (-2758 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 |#2|)) 226 (-2758 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) 225 (-2758 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) 224 (-2758 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) 223 (-2758 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) 222 (-2758 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-3112 (((-783) $) 169 (|has| |#1| (-374)))) (-2871 ((|#1| $ (-576)) 120) (($ $ $) 96 (|has| (-576) (-1131))) (($ $ |#2|) 221 (-2758 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 170 (|has| |#1| (-374)))) (-2735 (($ $ (-1 |#2| |#2|) (-783)) 230 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 229 (|has| |#1| (-374))) (($ $) 100 (-2835 (-2758 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 98 (-2835 (-2758 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) 108 (-2835 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195))) 106 (-2835 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1195) (-783)) 105 (-2835 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-2835 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-1880 (($ $) 249 (|has| |#1| (-374)))) (-1549 ((|#2| $) 247 (|has| |#1| (-374)))) (-1433 (((-576) $) 76)) (-3928 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-4076 (((-227) $) 265 (-2758 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-390) $) 264 (-2758 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-548) $) 263 (-2758 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) 242 (-2758 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) 241 (-2758 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 255 (-2758 (-2758 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#1| (-374))))) (-2869 (($ $) 84)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 288) (($ (-1195)) 262 (-2758 (|has| |#2| (-1057 (-1195))) (|has| |#1| (-374)))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4333 ((|#1| $ (-576)) 71)) (-2883 (((-3 $ "failed") $) 60 (-2835 (-2758 (-2835 (|has| |#2| (-146)) (-2758 (|has| $ (-146)) (|has| |#2| (-926)))) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1858 (((-783)) 32 T CONST)) (-2387 ((|#1| $) 117)) (-3270 ((|#2| $) 253 (-2758 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3985 (((-112) $ $) 9)) (-3958 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3939 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-576)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2264 (($ $) 269 (-2758 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1 |#2| |#2|) (-783)) 232 (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) 231 (|has| |#1| (-374))) (($ $) 99 (-2835 (-2758 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) 97 (-2835 (-2758 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) 107 (-2835 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195))) 103 (-2835 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-1195) (-783)) 102 (-2835 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-2835 (-2758 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))))) (-3049 (((-112) $ $) 273 (-2758 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3024 (((-112) $ $) 274 (-2758 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2988 (((-112) $ $) 6)) (-3037 (((-112) $ $) 272 (-2758 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3010 (((-112) $ $) 275 (-2758 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3107 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374))) (($ |#2| |#2|) 245 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 220 (|has| |#1| (-374))) (($ |#2| $) 219 (|has| |#1| (-374))) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1248 |#1| |#2|) (-141) (-1068) (-1277 |t#1|)) (T -1248)) +((-1433 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1277 *3)) (-5 *2 (-576)))) (-2065 (*1 *1 *2 *3) (-12 (-5 *2 (-576)) (-4 *4 (-1068)) (-4 *1 (-1248 *4 *3)) (-4 *3 (-1277 *4)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1277 *3)))) (-2092 (*1 *1 *1) (-12 (-4 *1 (-1248 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1277 *2)))) (-2092 (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1277 *3)))) (-2052 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1277 *3)))) (-3548 (*1 *2 *1) (|partial| -12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1277 *3))))) +(-13 (-1246 |t#1|) (-1057 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2065 ($ (-576) |t#2|)) (-15 -1433 ((-576) $)) (-15 -1775 (|t#2| $)) (-15 -2092 ($ $)) (-15 -2092 ($ (-576) $)) (-15 -2052 (|t#2| $)) (-15 -3548 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-374)) (-6 (-1011 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-576)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 |#2|) |has| |#1| (-374)) ((-38 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-374)) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) -2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-146))) (|has| |#1| (-146))) ((-148) -2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-148))) (|has| |#1| (-148))) ((-628 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1195)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1195)))) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-227)) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((-626 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((-626 (-548)) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-626 (-905 (-576))))) ((-234 $) -2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-232 |#2|) |has| |#1| (-374)) ((-238) -2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-237) -2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-237))) (-12 (|has| |#1| (-374)) (|has| |#2| (-238))) (|has| |#1| (-15 * (|#1| (-576) |#1|)))) ((-272 |#2|) |has| |#1| (-374)) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 |#2| $) -12 (|has| |#1| (-374)) (|has| |#2| (-296 |#2| |#2|))) ((-296 $ $) |has| (-576) (-1131)) ((-300) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-374) |has| |#1| (-374)) ((-349 |#2|) |has| |#1| (-374)) ((-388 |#2|) |has| |#1| (-374)) ((-412 |#2|) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-526 (-1195) |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-526 (-1195) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-374)) (|has| |#2| (-319 |#2|))) ((-568) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 |#2|) |has| |#1| (-374)) ((-658 $) . T) ((-660 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 #3=(-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-660 |#1|) . T) ((-660 |#2|) |has| |#1| (-374)) ((-660 $) . T) ((-652 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 |#2|) |has| |#1| (-374)) ((-652 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-651 #3#) -12 (|has| |#1| (-374)) (|has| |#2| (-651 (-576)))) ((-651 |#2|) |has| |#1| (-374)) ((-729 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 |#2|) |has| |#1| (-374)) ((-729 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-803) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-804) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-806) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-807) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-832) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-860) -12 (|has| |#1| (-374)) (|has| |#2| (-832))) ((-862) -2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-862))) (-12 (|has| |#1| (-374)) (|has| |#2| (-832)))) ((-909 $ #4=(-1195)) -2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1195)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) ((-915 (-1195)) -2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1195)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) ((-917 #4#) -2835 (-12 (|has| |#1| (-374)) (|has| |#2| (-917 (-1195)))) (-12 (|has| |#1| (-374)) (|has| |#2| (-915 (-1195)))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))) ((-899 (-390)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-390)))) ((-899 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-899 (-576)))) ((-897 |#2|) |has| |#1| (-374)) ((-926) -12 (|has| |#1| (-374)) (|has| |#2| (-926))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1011 |#2|) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1041) -12 (|has| |#1| (-374)) (|has| |#2| (-1041))) ((-1057 (-419 (-576))) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))) ((-1057 (-576)) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-576)))) ((-1057 #2#) -12 (|has| |#1| (-374)) (|has| |#2| (-1057 (-1195)))) ((-1057 |#2|) . T) ((-1070 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 |#2|) |has| |#1| (-374)) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 |#2|) |has| |#1| (-374)) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) -12 (|has| |#1| (-374)) (|has| |#2| (-1171))) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1246 |#1|) . T) ((-1264 |#1| #0#) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 81)) (-1560 ((|#2| $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) 100)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1615 (($ $ (-576)) 109) (($ $ (-576) (-576)) 111)) (-3826 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) 51)) (-1775 ((|#2| $) 11)) (-3548 (((-3 |#2| "failed") $) 35)) (-2052 ((|#2| $) 36)) (-3894 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1760 (($ $) NIL (|has| |#1| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3872 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2184 (((-576) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2398 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) 59)) (-3916 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) 157) (((-3 (-576) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-1195) "failed") $) NIL (-12 (|has| |#2| (-1057 (-1195))) (|has| |#1| (-374))))) (-4056 ((|#2| $) 156) (((-576) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| |#2| (-1057 (-576))) (|has| |#1| (-374)))) (((-1195) $) NIL (-12 (|has| |#2| (-1057 (-1195))) (|has| |#1| (-374))))) (-2092 (($ $) 65) (($ (-576) $) 28)) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) NIL)) (-3687 (((-701 |#2|) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL (|has| |#1| (-374))) (((-701 |#2|) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| |#2| (-651 (-576))) (|has| |#1| (-374))))) (-1551 (((-3 $ "failed") $) 88)) (-1747 (((-419 (-969 |#1|)) $ (-576)) 124 (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) 126 (|has| |#1| (-568)))) (-1803 (($) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1792 (((-112) $) NIL (|has| |#1| (-374)))) (-1910 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-1822 (((-112) $) 74)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| |#2| (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| |#2| (-899 (-576))) (|has| |#1| (-374))))) (-3333 (((-576) $) 105) (((-576) $ (-576)) 107)) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL (|has| |#1| (-374)))) (-1536 ((|#2| $) 165 (|has| |#1| (-374)))) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1171)) (|has| |#1| (-374))))) (-3566 (((-112) $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2973 (($ $ (-938)) 148)) (-1995 (($ (-1 |#1| (-576)) $) 144)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-576)) 20) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-2442 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1893 (($ $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-1632 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-374)))) (-3710 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2065 (($ (-576) |#2|) 10)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 159 (|has| |#1| (-374)))) (-3848 (($ $) 228 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 233 (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221)))))) (-1538 (($) NIL (-12 (|has| |#2| (-1171)) (|has| |#1| (-374))) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1465 (($ $) NIL (-12 (|has| |#2| (-317)) (|has| |#1| (-374))))) (-3835 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#2| (-926)) (|has| |#1| (-374))))) (-1839 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1714 (($ $ (-576)) 138)) (-3463 (((-3 $ "failed") $ $) 128 (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3984 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) |#2|) NIL (-12 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 |#2|)) NIL (-12 (|has| |#2| (-526 (-1195) |#2|)) (|has| |#1| (-374)))) (($ $ (-656 (-304 |#2|))) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-304 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374)))) (($ $ (-656 |#2|) (-656 |#2|)) NIL (-12 (|has| |#2| (-319 |#2|)) (|has| |#1| (-374))))) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ (-576)) 103) (($ $ $) 90 (|has| (-576) (-1131))) (($ $ |#2|) NIL (-12 (|has| |#2| (-296 |#2| |#2|)) (|has| |#1| (-374))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) 149 (-2835 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2835 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) 153 (-2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))))) (-1880 (($ $) NIL (|has| |#1| (-374)))) (-1549 ((|#2| $) 166 (|has| |#1| (-374)))) (-1433 (((-576) $) 12)) (-3928 (($ $) 212 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-4076 (((-227) $) NIL (-12 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| |#2| (-1041)) (|has| |#1| (-374)))) (((-548) $) NIL (-12 (|has| |#2| (-626 (-548))) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| |#2| (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| |#2| (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926)) (|has| |#1| (-374))))) (-2869 (($ $) 136)) (-3563 (((-874) $) 266) (($ (-576)) 24) (($ |#1|) 22 (|has| |#1| (-174))) (($ |#2|) 21) (($ (-1195)) NIL (-12 (|has| |#2| (-1057 (-1195))) (|has| |#1| (-374)))) (($ (-419 (-576))) 169 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4333 ((|#1| $ (-576)) 85)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#2| (-926)) (|has| |#1| (-374))) (-12 (|has| |#2| (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1858 (((-783)) 155 T CONST)) (-2387 ((|#1| $) 102)) (-3270 ((|#2| $) NIL (-12 (|has| |#2| (-557)) (|has| |#1| (-374))))) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) 218 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) 214 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 222 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-576)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) 224 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 220 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 216 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-2264 (($ $) NIL (-12 (|has| |#2| (-832)) (|has| |#1| (-374))))) (-2800 (($) 13 T CONST)) (-2810 (($) 18 T CONST)) (-2051 (($ $ (-1 |#2| |#2|) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-374))) (($ $) NIL (-2835 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2835 (-12 (|has| |#2| (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| |#2| (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))))) (-3049 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3024 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-2988 (((-112) $ $) 72)) (-3037 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3010 (((-112) $ $) NIL (-12 (|has| |#2| (-862)) (|has| |#1| (-374))))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374))) (($ |#2| |#2|) 164 (|has| |#1| (-374)))) (-3095 (($ $) 227) (($ $ $) 78)) (-3083 (($ $ $) 76)) (** (($ $ (-938)) NIL) (($ $ (-783)) 84) (($ $ (-576)) 160 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 172 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-374))) (($ |#2| $) 161 (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1249 |#1| |#2|) (-1248 |#1| |#2|) (-1068) (-1277 |#1|)) (T -1249)) +NIL +(-1248 |#1| |#2|) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1560 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) 10)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4412 (($ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-4176 (((-112) $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1615 (($ $ (-576)) NIL) (($ $ (-576) (-576)) NIL)) (-3826 (((-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|))) $) NIL)) (-1775 (((-1278 |#1| |#2| |#3|) $) NIL)) (-3548 (((-3 (-1278 |#1| |#2| |#3|) "failed") $) NIL)) (-2052 (((-1278 |#1| |#2| |#3|) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1760 (($ $) NIL (|has| |#1| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3872 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2184 (((-576) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2398 (($ (-1176 (-2 (|:| |k| (-576)) (|:| |c| |#1|)))) NIL)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-1278 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1195) "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1057 (-1195))) (|has| |#1| (-374)))) (((-3 (-419 (-576)) "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-3 (-576) "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-4056 (((-1278 |#1| |#2| |#3|) $) NIL) (((-1195) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1057 (-1195))) (|has| |#1| (-374)))) (((-419 (-576)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374)))) (((-576) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))))) (-2092 (($ $) NIL) (($ (-576) $) NIL)) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) NIL)) (-3687 (((-701 (-1278 |#1| |#2| |#3|)) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 (-1278 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1278 |#1| |#2| |#3|)))) (-1286 $) $) NIL (|has| |#1| (-374))) (((-701 (-1278 |#1| |#2| |#3|)) (-701 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 (-1278 |#1| |#2| |#3|))) (|:| |vec| (-1286 (-1278 |#1| |#2| |#3|)))) (-701 $) (-1286 $)) NIL (|has| |#1| (-374))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-701 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374)))) (((-701 (-576)) (-1286 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-651 (-576))) (|has| |#1| (-374))))) (-1551 (((-3 $ "failed") $) NIL)) (-1747 (((-419 (-969 |#1|)) $ (-576)) NIL (|has| |#1| (-568))) (((-419 (-969 |#1|)) $ (-576) (-576)) NIL (|has| |#1| (-568)))) (-1803 (($) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1792 (((-112) $) NIL (|has| |#1| (-374)))) (-1910 (((-112) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-1822 (((-112) $) NIL)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-899 (-390))) (|has| |#1| (-374)))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-899 (-576))) (|has| |#1| (-374))))) (-3333 (((-576) $) NIL) (((-576) $ (-576)) NIL)) (-1414 (((-112) $) NIL)) (-2302 (($ $) NIL (|has| |#1| (-374)))) (-1536 (((-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3930 (((-3 $ "failed") $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))))) (-3566 (((-112) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2973 (($ $ (-938)) NIL)) (-1995 (($ (-1 |#1| (-576)) $) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-576)) 18) (($ $ (-1101) (-576)) NIL) (($ $ (-656 (-1101)) (-656 (-576))) NIL)) (-2442 (($ $ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1893 (($ $ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-374)))) (-3710 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2065 (($ (-576) (-1278 |#1| |#2| |#3|)) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-3848 (($ $) 27 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 28 (|has| |#1| (-38 (-419 (-576)))))) (-1538 (($) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1171)) (|has| |#1| (-374))) CONST)) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1465 (($ $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-317)) (|has| |#1| (-374))))) (-3835 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-1839 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1714 (($ $ (-576)) NIL)) (-3463 (((-3 $ "failed") $ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3984 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-576))))) (($ $ (-1195) (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1195) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1195)) (-656 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1195) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-304 (-1278 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-304 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374)))) (($ $ (-656 (-1278 |#1| |#2| |#3|)) (-656 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ (-576)) NIL) (($ $ $) NIL (|has| (-576) (-1131))) (($ $ (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-296 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-374))))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1282 |#2|)) 26) (($ $) 25 (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))))) (-1880 (($ $) NIL (|has| |#1| (-374)))) (-1549 (((-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374)))) (-1433 (((-576) $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4076 (((-548) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-626 (-548))) (|has| |#1| (-374)))) (((-390) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-227) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-374)))) (((-905 (-390)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-626 (-905 (-390)))) (|has| |#1| (-374)))) (((-905 (-576)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-626 (-905 (-576)))) (|has| |#1| (-374))))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))))) (-2869 (($ $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1278 |#1| |#2| |#3|)) NIL) (($ (-1282 |#2|)) 24) (($ (-1195)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1057 (-1195))) (|has| |#1| (-374)))) (($ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568)))) (($ (-419 (-576))) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-1057 (-576))) (|has| |#1| (-374))) (|has| |#1| (-38 (-419 (-576))))))) (-4333 ((|#1| $ (-576)) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-146)) (|has| |#1| (-374))) (|has| |#1| (-146))))) (-1858 (((-783)) NIL T CONST)) (-2387 ((|#1| $) 11)) (-3270 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-374))))) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-926)) (|has| |#1| (-374))) (|has| |#1| (-568))))) (-3939 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-576)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-576)))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2264 (($ $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))))) (-2800 (($) 20 T CONST)) (-2810 (($) 15 T CONST)) (-2051 (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) (-783)) NIL (|has| |#1| (-374))) (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) NIL (|has| |#1| (-374))) (($ $ (-1282 |#2|)) NIL) (($ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-783)) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-238)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-237)) (|has| |#1| (-374))) (|has| |#1| (-15 * (|#1| (-576) |#1|))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195))) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-1195) (-783)) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195)))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-915 (-1195))) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1195))) (|has| |#1| (-374))) (-12 (|has| |#1| (-15 * (|#1| (-576) |#1|))) (|has| |#1| (-915 (-1195))))))) (-3049 (((-112) $ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3024 (((-112) $ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-2988 (((-112) $ $) NIL)) (-3037 (((-112) $ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3010 (((-112) $ $) NIL (-2835 (-12 (|has| (-1278 |#1| |#2| |#3|) (-832)) (|has| |#1| (-374))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-862)) (|has| |#1| (-374)))))) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374))) (($ (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 22)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1278 |#1| |#2| |#3|)) NIL (|has| |#1| (-374))) (($ (-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-374))) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1250 |#1| |#2| |#3|) (-13 (-1248 |#1| (-1278 |#1| |#2| |#3|)) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) (-1068) (-1195) |#1|) (T -1250)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) +(-13 (-1248 |#1| (-1278 |#1| |#2| |#3|)) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1282 |#2|))) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) +((-2388 (((-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))) |#1| (-112)) 13)) (-1770 (((-430 |#1|) |#1|) 26)) (-1839 (((-430 |#1|) |#1|) 24))) +(((-1251 |#1|) (-10 -7 (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -2388 ((-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))) |#1| (-112)))) (-1262 (-576))) (T -1251)) +((-2388 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| *3) (|:| -2011 (-576))))))) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))) (-1770 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576))))) (-1839 (*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576)))))) +(-10 -7 (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1770 ((-430 |#1|) |#1|)) (-15 -2388 ((-2 (|:| |contp| (-576)) (|:| -1707 (-656 (-2 (|:| |irr| |#1|) (|:| -2011 (-576)))))) |#1| (-112)))) +((-1632 (((-1176 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 23 (|has| |#1| (-860))) (((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|)) 17))) +(((-1252 |#1| |#2|) (-10 -7 (-15 -1632 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (IF (|has| |#1| (-860)) (-15 -1632 ((-1176 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) |%noBranch|)) (-1236) (-1236)) (T -1252)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-860)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1176 *6)) (-5 *1 (-1252 *5 *6)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1253 *6)) (-5 *1 (-1252 *5 *6))))) +(-10 -7 (-15 -1632 ((-1253 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) (IF (|has| |#1| (-860)) (-15 -1632 ((-1176 |#2|) (-1 |#2| |#1|) (-1253 |#1|))) |%noBranch|)) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2834 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-1632 (((-1176 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)))) (-3884 ((|#1| $) 15)) (-3093 ((|#1| $) 12)) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2294 (((-576) $) 19)) (-3140 ((|#1| $) 18)) (-2305 ((|#1| $) 13)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-1384 (((-112) $) 17)) (-2465 (((-1176 |#1|) $) 41 (|has| |#1| (-860))) (((-1176 |#1|) (-656 $)) 40 (|has| |#1| (-860)))) (-4076 (($ |#1|) 26)) (-3563 (($ (-1113 |#1|)) 25) (((-874) $) 37 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-1850 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2751 (($ $ (-576)) 14)) (-2988 (((-112) $ $) 30 (|has| |#1| (-1119))))) +(((-1253 |#1|) (-13 (-1112 |#1|) (-10 -8 (-15 -1850 ($ |#1|)) (-15 -2834 ($ |#1|)) (-15 -3563 ($ (-1113 |#1|))) (-15 -1384 ((-112) $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-1176 |#1|))) |%noBranch|))) (-1236)) (T -1253)) +((-1850 (*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))) (-2834 (*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1113 *3)) (-4 *3 (-1236)) (-5 *1 (-1253 *3)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3)) (-4 *3 (-1236))))) +(-13 (-1112 |#1|) (-10 -8 (-15 -1850 ($ |#1|)) (-15 -2834 ($ |#1|)) (-15 -3563 ($ (-1113 |#1|))) (-15 -1384 ((-112) $)) (IF (|has| |#1| (-1119)) (-6 (-1119)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1114 |#1| (-1176 |#1|))) |%noBranch|))) +((-1632 (((-1259 |#3| |#4|) (-1 |#4| |#2|) (-1259 |#1| |#2|)) 15))) +(((-1254 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 ((-1259 |#3| |#4|) (-1 |#4| |#2|) (-1259 |#1| |#2|)))) (-1195) (-1068) (-1195) (-1068)) (T -1254)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1259 *5 *6)) (-14 *5 (-1195)) (-4 *6 (-1068)) (-4 *8 (-1068)) (-5 *2 (-1259 *7 *8)) (-5 *1 (-1254 *5 *6 *7 *8)) (-14 *7 (-1195))))) +(-10 -7 (-15 -1632 ((-1259 |#3| |#4|) (-1 |#4| |#2|) (-1259 |#1| |#2|)))) +((-3956 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3412 ((|#1| |#3|) 13)) (-3266 ((|#3| |#3|) 19))) +(((-1255 |#1| |#2| |#3|) (-10 -7 (-15 -3412 (|#1| |#3|)) (-15 -3266 (|#3| |#3|)) (-15 -3956 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-568) (-1011 |#1|) (-1262 |#2|)) (T -1255)) +((-3956 (*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1255 *4 *5 *3)) (-4 *3 (-1262 *5)))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-1255 *3 *4 *2)) (-4 *2 (-1262 *4)))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-1255 *2 *4 *3)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -3412 (|#1| |#3|)) (-15 -3266 (|#3| |#3|)) (-15 -3956 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2632 (((-3 |#2| "failed") |#2| (-783) |#1|) 35)) (-2131 (((-3 |#2| "failed") |#2| (-783)) 36)) (-3907 (((-3 (-2 (|:| -4143 |#2|) (|:| -4154 |#2|)) "failed") |#2|) 50)) (-3198 (((-656 |#2|) |#2|) 52)) (-3609 (((-3 |#2| "failed") |#2| |#2|) 46))) +(((-1256 |#1| |#2|) (-10 -7 (-15 -2131 ((-3 |#2| "failed") |#2| (-783))) (-15 -2632 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -3609 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3907 ((-3 (-2 (|:| -4143 |#2|) (|:| -4154 |#2|)) "failed") |#2|)) (-15 -3198 ((-656 |#2|) |#2|))) (-13 (-568) (-148)) (-1262 |#1|)) (T -1256)) +((-3198 (*1 *2 *3) (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) (-5 *1 (-1256 *4 *3)) (-4 *3 (-1262 *4)))) (-3907 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-2 (|:| -4143 *3) (|:| -4154 *3))) (-5 *1 (-1256 *4 *3)) (-4 *3 (-1262 *4)))) (-3609 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1256 *3 *2)) (-4 *2 (-1262 *3)))) (-2632 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4)))) (-2131 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4))))) +(-10 -7 (-15 -2131 ((-3 |#2| "failed") |#2| (-783))) (-15 -2632 ((-3 |#2| "failed") |#2| (-783) |#1|)) (-15 -3609 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3907 ((-3 (-2 (|:| -4143 |#2|) (|:| -4154 |#2|)) "failed") |#2|)) (-15 -3198 ((-656 |#2|) |#2|))) +((-1931 (((-3 (-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) "failed") |#2| |#2|) 30))) +(((-1257 |#1| |#2|) (-10 -7 (-15 -1931 ((-3 (-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) "failed") |#2| |#2|))) (-568) (-1262 |#1|)) (T -1257)) +((-1931 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-1257 *4 *3)) (-4 *3 (-1262 *4))))) +(-10 -7 (-15 -1931 ((-3 (-2 (|:| -3824 |#2|) (|:| -2091 |#2|)) "failed") |#2| |#2|))) +((-2696 ((|#2| |#2| |#2|) 22)) (-2481 ((|#2| |#2| |#2|) 36)) (-4408 ((|#2| |#2| |#2| (-783) (-783)) 44))) +(((-1258 |#1| |#2|) (-10 -7 (-15 -2696 (|#2| |#2| |#2|)) (-15 -2481 (|#2| |#2| |#2|)) (-15 -4408 (|#2| |#2| |#2| (-783) (-783)))) (-1068) (-1262 |#1|)) (T -1258)) +((-4408 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-1258 *4 *2)) (-4 *2 (-1262 *4)))) (-2481 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3)))) (-2696 (*1 *2 *2 *2) (-12 (-4 *3 (-1068)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3))))) +(-10 -7 (-15 -2696 (|#2| |#2| |#2|)) (-15 -2481 (|#2| |#2| |#2|)) (-15 -4408 (|#2| |#2| |#2| (-783) (-783)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3536 (((-1286 |#2|) $ (-783)) NIL)) (-1991 (((-656 (-1101)) $) NIL)) (-1834 (($ (-1191 |#2|)) NIL)) (-3999 (((-1191 $) $ (-1101)) NIL) (((-1191 |#2|) $) NIL)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#2| (-568)))) (-4412 (($ $) NIL (|has| |#2| (-568)))) (-4176 (((-112) $) NIL (|has| |#2| (-568)))) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-1101))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2749 (($ $ $) NIL (|has| |#2| (-568)))) (-1990 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1760 (($ $) NIL (|has| |#2| (-464)))) (-2732 (((-430 $) $) NIL (|has| |#2| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1727 (((-112) $ $) NIL (|has| |#2| (-374)))) (-1659 (($ $ (-783)) NIL)) (-3759 (($ $ (-783)) NIL)) (-3807 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) NIL) (((-3 (-419 (-576)) "failed") $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) NIL (|has| |#2| (-1057 (-576)))) (((-3 (-1101) "failed") $) NIL)) (-4056 ((|#2| $) NIL) (((-419 (-576)) $) NIL (|has| |#2| (-1057 (-419 (-576))))) (((-576) $) NIL (|has| |#2| (-1057 (-576)))) (((-1101) $) NIL)) (-2861 (($ $ $ (-1101)) NIL (|has| |#2| (-174))) ((|#2| $ $) NIL (|has| |#2| (-174)))) (-3420 (($ $ $) NIL (|has| |#2| (-374)))) (-2166 (($ $) NIL)) (-3687 (((-701 (-576)) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) NIL (|has| |#2| (-651 (-576)))) (((-701 (-576)) (-701 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) NIL (|has| |#2| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-701 $) (-1286 $)) NIL) (((-701 |#2|) (-701 $)) NIL) (((-2 (|:| -2689 (-701 |#2|)) (|:| |vec| (-1286 |#2|))) (-1286 $) $) NIL) (((-701 |#2|) (-1286 $)) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-3431 (($ $ $) NIL (|has| |#2| (-374)))) (-4215 (($ $ $) NIL)) (-2549 (($ $ $) NIL (|has| |#2| (-568)))) (-1424 (((-2 (|:| -1706 |#2|) (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#2| (-568)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#2| (-374)))) (-2985 (($ $) NIL (|has| |#2| (-464))) (($ $ (-1101)) NIL (|has| |#2| (-464)))) (-2153 (((-656 $) $) NIL)) (-1792 (((-112) $) NIL (|has| |#2| (-926)))) (-1660 (($ $ |#2| (-783) $) NIL)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) NIL (-12 (|has| (-1101) (-899 (-390))) (|has| |#2| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) NIL (-12 (|has| (-1101) (-899 (-576))) (|has| |#2| (-899 (-576)))))) (-3333 (((-783) $ $) NIL (|has| |#2| (-568)))) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-3930 (((-3 $ "failed") $) NIL (|has| |#2| (-1171)))) (-1980 (($ (-1191 |#2|) (-1101)) NIL) (($ (-1191 $) (-1101)) NIL)) (-2973 (($ $ (-783)) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-1970 (($ |#2| (-783)) 18) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-1101)) NIL) (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL)) (-3403 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-2133 (($ (-1 (-783) (-783)) $) NIL)) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-3176 (((-1191 |#2|) $) NIL)) (-4209 (((-3 (-1101) "failed") $) NIL)) (-2129 (($ $) NIL)) (-2142 ((|#2| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-1927 (((-1177) $) NIL)) (-1749 (((-2 (|:| -3824 $) (|:| -2091 $)) $ (-783)) NIL)) (-1708 (((-3 (-656 $) "failed") $) NIL)) (-2567 (((-3 (-656 $) "failed") $) NIL)) (-1419 (((-3 (-2 (|:| |var| (-1101)) (|:| -4274 (-783))) "failed") $) NIL)) (-3848 (($ $) NIL (|has| |#2| (-38 (-419 (-576)))))) (-1538 (($) NIL (|has| |#2| (-1171)) CONST)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 ((|#2| $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)))) (-3495 (($ (-656 $)) NIL (|has| |#2| (-464))) (($ $ $) NIL (|has| |#2| (-464)))) (-4343 (($ $ (-783) |#2| $) NIL)) (-4299 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-926)))) (-1839 (((-430 $) $) NIL (|has| |#2| (-926)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#2| (-374)))) (-3463 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-568))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#2| (-374)))) (-3306 (($ $ (-656 (-304 $))) NIL) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#2|) NIL) (($ $ (-656 (-1101)) (-656 |#2|)) NIL) (($ $ (-1101) $) NIL) (($ $ (-656 (-1101)) (-656 $)) NIL)) (-3112 (((-783) $) NIL (|has| |#2| (-374)))) (-2871 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-568))) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-374))) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-568)))) (-2210 (((-3 $ "failed") $ (-783)) NIL)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#2| (-374)))) (-1960 (($ $ (-1101)) NIL (|has| |#2| (-174))) ((|#2| $) NIL (|has| |#2| (-174)))) (-2735 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) NIL) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195))))) (-1433 (((-783) $) NIL) (((-783) $ (-1101)) NIL) (((-656 (-783)) $ (-656 (-1101))) NIL)) (-4076 (((-905 (-390)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#2| (-626 (-905 (-390)))))) (((-905 (-576)) $) NIL (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#2| (-626 (-905 (-576)))))) (((-548) $) NIL (-12 (|has| (-1101) (-626 (-548))) (|has| |#2| (-626 (-548)))))) (-3648 ((|#2| $) NIL (|has| |#2| (-464))) (($ $ (-1101)) NIL (|has| |#2| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) NIL (-12 (|has| $ (-146)) (|has| |#2| (-926))))) (-3251 (((-3 $ "failed") $ $) NIL (|has| |#2| (-568))) (((-3 (-419 $) "failed") (-419 $) $) NIL (|has| |#2| (-568)))) (-3563 (((-874) $) 13) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1101)) NIL) (($ (-1282 |#1|)) 20) (($ (-419 (-576))) NIL (-2835 (|has| |#2| (-38 (-419 (-576)))) (|has| |#2| (-1057 (-419 (-576)))))) (($ $) NIL (|has| |#2| (-568)))) (-2927 (((-656 |#2|) $) NIL)) (-4333 ((|#2| $ (-783)) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-2883 (((-3 $ "failed") $) NIL (-2835 (-12 (|has| $ (-146)) (|has| |#2| (-926))) (|has| |#2| (-146))))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| |#2| (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL (|has| |#2| (-568)))) (-2800 (($) NIL T CONST)) (-2810 (($) 14 T CONST)) (-2051 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) NIL) (($ $) NIL) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1195)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195))) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-1195) (-783)) NIL (|has| |#2| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (|has| |#2| (-917 (-1195))))) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#2|) NIL (|has| |#2| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-419 (-576))) NIL (|has| |#2| (-38 (-419 (-576))))) (($ (-419 (-576)) $) NIL (|has| |#2| (-38 (-419 (-576))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1259 |#1| |#2|) (-13 (-1262 |#2|) (-628 (-1282 |#1|)) (-10 -8 (-15 -4343 ($ $ (-783) |#2| $)))) (-1195) (-1068)) (T -1259)) +((-4343 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1259 *4 *3)) (-14 *4 (-1195)) (-4 *3 (-1068))))) +(-13 (-1262 |#2|) (-628 (-1282 |#1|)) (-10 -8 (-15 -4343 ($ $ (-783) |#2| $)))) +((-1632 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1260 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#4| (-1 |#3| |#1|) |#2|))) (-1068) (-1262 |#1|) (-1068) (-1262 |#3|)) (T -1260)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1262 *6)) (-5 *1 (-1260 *5 *4 *6 *2)) (-4 *4 (-1262 *5))))) +(-10 -7 (-15 -1632 (|#4| (-1 |#3| |#1|) |#2|))) +((-3536 (((-1286 |#2|) $ (-783)) 129)) (-1991 (((-656 (-1101)) $) 16)) (-1834 (($ (-1191 |#2|)) 80)) (-2846 (((-783) $) NIL) (((-783) $ (-656 (-1101))) 21)) (-1990 (((-430 (-1191 $)) (-1191 $)) 204)) (-1760 (($ $) 194)) (-2732 (((-430 $) $) 192)) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 95)) (-1659 (($ $ (-783)) 84)) (-3759 (($ $ (-783)) 86)) (-3807 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-1539 (((-3 |#2| "failed") $) 132) (((-3 (-419 (-576)) "failed") $) NIL) (((-3 (-576) "failed") $) NIL) (((-3 (-1101) "failed") $) NIL)) (-4056 ((|#2| $) 130) (((-419 (-576)) $) NIL) (((-576) $) NIL) (((-1101) $) NIL)) (-2549 (($ $ $) 170)) (-1424 (((-2 (|:| -1706 |#2|) (|:| -3824 $) (|:| -2091 $)) $ $) 172)) (-3333 (((-783) $ $) 189)) (-3930 (((-3 $ "failed") $) 138)) (-1970 (($ |#2| (-783)) NIL) (($ $ (-1101) (-783)) 59) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-3403 (((-783) $) NIL) (((-783) $ (-1101)) 54) (((-656 (-783)) $ (-656 (-1101))) 55)) (-3176 (((-1191 |#2|) $) 72)) (-4209 (((-3 (-1101) "failed") $) 52)) (-1749 (((-2 (|:| -3824 $) (|:| -2091 $)) $ (-783)) 83)) (-3848 (($ $) 219)) (-1538 (($) 134)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 201)) (-4299 (((-430 (-1191 $)) (-1191 $)) 101)) (-1340 (((-430 (-1191 $)) (-1191 $)) 99)) (-1839 (((-430 $) $) 120)) (-3306 (($ $ (-656 (-304 $))) 51) (($ $ (-304 $)) NIL) (($ $ $ $) NIL) (($ $ (-656 $) (-656 $)) NIL) (($ $ (-1101) |#2|) 39) (($ $ (-656 (-1101)) (-656 |#2|)) 36) (($ $ (-1101) $) 32) (($ $ (-656 (-1101)) (-656 $)) 30)) (-3112 (((-783) $) 207)) (-2871 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-419 $) (-419 $) (-419 $)) 164) ((|#2| (-419 $) |#2|) 206) (((-419 $) $ (-419 $)) 188)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 212)) (-2735 (($ $ (-656 (-1101)) (-656 (-783))) NIL) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101))) NIL) (($ $ (-1101)) 157) (($ $) 155) (($ $ (-783)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) (-783)) NIL) (($ $ (-1 |#2| |#2|) $) 149) (($ $ (-1195)) NIL) (($ $ (-656 (-1195))) NIL) (($ $ (-1195) (-783)) NIL) (($ $ (-656 (-1195)) (-656 (-783))) NIL)) (-1433 (((-783) $) NIL) (((-783) $ (-1101)) 17) (((-656 (-783)) $ (-656 (-1101))) 23)) (-3648 ((|#2| $) NIL) (($ $ (-1101)) 140)) (-3251 (((-3 $ "failed") $ $) 180) (((-3 (-419 $) "failed") (-419 $) $) 176)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#2|) NIL) (($ (-1101)) 64) (($ (-419 (-576))) NIL) (($ $) NIL))) +(((-1261 |#1| |#2|) (-10 -8 (-15 -3563 (|#1| |#1|)) (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -1760 (|#1| |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -1538 (|#1|)) (-15 -3930 ((-3 |#1| "failed") |#1|)) (-15 -2871 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -3112 ((-783) |#1|)) (-15 -1784 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -2871 (|#2| (-419 |#1|) |#2|)) (-15 -3807 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1424 ((-2 (|:| -1706 |#2|) (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -2549 (|#1| |#1| |#1|)) (-15 -3251 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3333 ((-783) |#1| |#1|)) (-15 -2871 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-783))) (-15 -1659 (|#1| |#1| (-783))) (-15 -1749 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| (-783))) (-15 -1834 (|#1| (-1191 |#2|))) (-15 -3176 ((-1191 |#2|) |#1|)) (-15 -3536 ((-1286 |#2|) |#1| (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#2| |#1| |#2|)) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1990 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -1340 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4299 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4168 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3648 (|#1| |#1| (-1101))) (-15 -1991 ((-656 (-1101)) |#1|)) (-15 -2846 ((-783) |#1| (-656 (-1101)))) (-15 -2846 ((-783) |#1|)) (-15 -1970 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -1970 (|#1| |#1| (-1101) (-783))) (-15 -3403 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -3403 ((-783) |#1| (-1101))) (-15 -4209 ((-3 (-1101) "failed") |#1|)) (-15 -1433 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -1433 ((-783) |#1| (-1101))) (-15 -3563 (|#1| (-1101))) (-15 -1539 ((-3 (-1101) "failed") |#1|)) (-15 -4056 ((-1101) |#1|)) (-15 -3306 (|#1| |#1| (-656 (-1101)) (-656 |#1|))) (-15 -3306 (|#1| |#1| (-1101) |#1|)) (-15 -3306 (|#1| |#1| (-656 (-1101)) (-656 |#2|))) (-15 -3306 (|#1| |#1| (-1101) |#2|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1433 ((-783) |#1|)) (-15 -1970 (|#1| |#2| (-783))) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -3403 ((-783) |#1|)) (-15 -3648 (|#2| |#1|)) (-15 -2735 (|#1| |#1| (-1101))) (-15 -2735 (|#1| |#1| (-656 (-1101)))) (-15 -2735 (|#1| |#1| (-1101) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) (-1262 |#2|) (-1068)) (T -1261)) +NIL +(-10 -8 (-15 -3563 (|#1| |#1|)) (-15 -2183 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -2735 (|#1| |#1| (-656 (-1195)) (-656 (-783)))) (-15 -2735 (|#1| |#1| (-1195) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1195)))) (-15 -2735 (|#1| |#1| (-1195))) (-15 -2732 ((-430 |#1|) |#1|)) (-15 -1760 (|#1| |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -1538 (|#1|)) (-15 -3930 ((-3 |#1| "failed") |#1|)) (-15 -2871 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -3112 ((-783) |#1|)) (-15 -1784 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -2871 (|#2| (-419 |#1|) |#2|)) (-15 -3807 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1424 ((-2 (|:| -1706 |#2|) (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| |#1|)) (-15 -2549 (|#1| |#1| |#1|)) (-15 -3251 ((-3 (-419 |#1|) "failed") (-419 |#1|) |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3333 ((-783) |#1| |#1|)) (-15 -2871 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1| (-783))) (-15 -1659 (|#1| |#1| (-783))) (-15 -1749 ((-2 (|:| -3824 |#1|) (|:| -2091 |#1|)) |#1| (-783))) (-15 -1834 (|#1| (-1191 |#2|))) (-15 -3176 ((-1191 |#2|) |#1|)) (-15 -3536 ((-1286 |#2|) |#1| (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|) (-783))) (-15 -2735 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2735 (|#1| |#1| (-783))) (-15 -2735 (|#1| |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2871 (|#2| |#1| |#2|)) (-15 -1839 ((-430 |#1|) |#1|)) (-15 -1990 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -1340 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4299 ((-430 (-1191 |#1|)) (-1191 |#1|))) (-15 -4168 ((-3 (-656 (-1191 |#1|)) "failed") (-656 (-1191 |#1|)) (-1191 |#1|))) (-15 -3648 (|#1| |#1| (-1101))) (-15 -1991 ((-656 (-1101)) |#1|)) (-15 -2846 ((-783) |#1| (-656 (-1101)))) (-15 -2846 ((-783) |#1|)) (-15 -1970 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -1970 (|#1| |#1| (-1101) (-783))) (-15 -3403 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -3403 ((-783) |#1| (-1101))) (-15 -4209 ((-3 (-1101) "failed") |#1|)) (-15 -1433 ((-656 (-783)) |#1| (-656 (-1101)))) (-15 -1433 ((-783) |#1| (-1101))) (-15 -3563 (|#1| (-1101))) (-15 -1539 ((-3 (-1101) "failed") |#1|)) (-15 -4056 ((-1101) |#1|)) (-15 -3306 (|#1| |#1| (-656 (-1101)) (-656 |#1|))) (-15 -3306 (|#1| |#1| (-1101) |#1|)) (-15 -3306 (|#1| |#1| (-656 (-1101)) (-656 |#2|))) (-15 -3306 (|#1| |#1| (-1101) |#2|)) (-15 -3306 (|#1| |#1| (-656 |#1|) (-656 |#1|))) (-15 -3306 (|#1| |#1| |#1| |#1|)) (-15 -3306 (|#1| |#1| (-304 |#1|))) (-15 -3306 (|#1| |#1| (-656 (-304 |#1|)))) (-15 -1433 ((-783) |#1|)) (-15 -1970 (|#1| |#2| (-783))) (-15 -1539 ((-3 (-576) "failed") |#1|)) (-15 -4056 ((-576) |#1|)) (-15 -1539 ((-3 (-419 (-576)) "failed") |#1|)) (-15 -4056 ((-419 (-576)) |#1|)) (-15 -4056 (|#2| |#1|)) (-15 -1539 ((-3 |#2| "failed") |#1|)) (-15 -3563 (|#1| |#2|)) (-15 -3403 ((-783) |#1|)) (-15 -3648 (|#2| |#1|)) (-15 -2735 (|#1| |#1| (-1101))) (-15 -2735 (|#1| |#1| (-656 (-1101)))) (-15 -2735 (|#1| |#1| (-1101) (-783))) (-15 -2735 (|#1| |#1| (-656 (-1101)) (-656 (-783)))) (-15 -3563 (|#1| (-576))) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3536 (((-1286 |#1|) $ (-783)) 256)) (-1991 (((-656 (-1101)) $) 113)) (-1834 (($ (-1191 |#1|)) 254)) (-3999 (((-1191 $) $ (-1101)) 128) (((-1191 |#1|) $) 127)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 90 (|has| |#1| (-568)))) (-4412 (($ $) 91 (|has| |#1| (-568)))) (-4176 (((-112) $) 93 (|has| |#1| (-568)))) (-2846 (((-783) $) 115) (((-783) $ (-656 (-1101))) 114)) (-1367 (((-3 $ "failed") $ $) 20)) (-2749 (($ $ $) 241 (|has| |#1| (-568)))) (-1990 (((-430 (-1191 $)) (-1191 $)) 103 (|has| |#1| (-926)))) (-1760 (($ $) 101 (|has| |#1| (-464)))) (-2732 (((-430 $) $) 100 (|has| |#1| (-464)))) (-4168 (((-3 (-656 (-1191 $)) "failed") (-656 (-1191 $)) (-1191 $)) 106 (|has| |#1| (-926)))) (-1727 (((-112) $ $) 226 (|has| |#1| (-374)))) (-1659 (($ $ (-783)) 249)) (-3759 (($ $ (-783)) 248)) (-3807 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-464)))) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#1| "failed") $) 171) (((-3 (-419 (-576)) "failed") $) 168 (|has| |#1| (-1057 (-419 (-576))))) (((-3 (-576) "failed") $) 166 (|has| |#1| (-1057 (-576)))) (((-3 (-1101) "failed") $) 143)) (-4056 ((|#1| $) 170) (((-419 (-576)) $) 169 (|has| |#1| (-1057 (-419 (-576))))) (((-576) $) 167 (|has| |#1| (-1057 (-576)))) (((-1101) $) 144)) (-2861 (($ $ $ (-1101)) 111 (|has| |#1| (-174))) ((|#1| $ $) 244 (|has| |#1| (-174)))) (-3420 (($ $ $) 230 (|has| |#1| (-374)))) (-2166 (($ $) 161)) (-3687 (((-701 (-576)) (-1286 $)) 141 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-1286 $) $) 140 (|has| |#1| (-651 (-576)))) (((-701 (-576)) (-701 $)) 139 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 (-576))) (|:| |vec| (-1286 (-576)))) (-701 $) (-1286 $)) 138 (|has| |#1| (-651 (-576)))) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-701 $) (-1286 $)) 137) (((-701 |#1|) (-701 $)) 136) (((-2 (|:| -2689 (-701 |#1|)) (|:| |vec| (-1286 |#1|))) (-1286 $) $) 135) (((-701 |#1|) (-1286 $)) 134)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 229 (|has| |#1| (-374)))) (-4215 (($ $ $) 247)) (-2549 (($ $ $) 238 (|has| |#1| (-568)))) (-1424 (((-2 (|:| -1706 |#1|) (|:| -3824 $) (|:| -2091 $)) $ $) 237 (|has| |#1| (-568)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 224 (|has| |#1| (-374)))) (-2985 (($ $) 183 (|has| |#1| (-464))) (($ $ (-1101)) 108 (|has| |#1| (-464)))) (-2153 (((-656 $) $) 112)) (-1792 (((-112) $) 99 (|has| |#1| (-926)))) (-1660 (($ $ |#1| (-783) $) 179)) (-3526 (((-902 (-390) $) $ (-905 (-390)) (-902 (-390) $)) 87 (-12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390))))) (((-902 (-576) $) $ (-905 (-576)) (-902 (-576) $)) 86 (-12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))))) (-3333 (((-783) $ $) 242 (|has| |#1| (-568)))) (-1414 (((-112) $) 35)) (-3839 (((-783) $) 176)) (-3930 (((-3 $ "failed") $) 222 (|has| |#1| (-1171)))) (-1980 (($ (-1191 |#1|) (-1101)) 120) (($ (-1191 $) (-1101)) 119)) (-2973 (($ $ (-783)) 253)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 233 (|has| |#1| (-374)))) (-1475 (((-656 $) $) 129)) (-2606 (((-112) $) 159)) (-1970 (($ |#1| (-783)) 160) (($ $ (-1101) (-783)) 122) (($ $ (-656 (-1101)) (-656 (-783))) 121)) (-3539 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $ (-1101)) 123) (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 251)) (-3403 (((-783) $) 177) (((-783) $ (-1101)) 125) (((-656 (-783)) $ (-656 (-1101))) 124)) (-2133 (($ (-1 (-783) (-783)) $) 178)) (-1632 (($ (-1 |#1| |#1|) $) 158)) (-3176 (((-1191 |#1|) $) 255)) (-4209 (((-3 (-1101) "failed") $) 126)) (-2129 (($ $) 156)) (-2142 ((|#1| $) 155)) (-3459 (($ (-656 $)) 97 (|has| |#1| (-464))) (($ $ $) 96 (|has| |#1| (-464)))) (-1927 (((-1177) $) 10)) (-1749 (((-2 (|:| -3824 $) (|:| -2091 $)) $ (-783)) 250)) (-1708 (((-3 (-656 $) "failed") $) 117)) (-2567 (((-3 (-656 $) "failed") $) 118)) (-1419 (((-3 (-2 (|:| |var| (-1101)) (|:| -4274 (-783))) "failed") $) 116)) (-3848 (($ $) 234 (|has| |#1| (-38 (-419 (-576)))))) (-1538 (($) 221 (|has| |#1| (-1171)) CONST)) (-1445 (((-1139) $) 11)) (-2105 (((-112) $) 173)) (-2116 ((|#1| $) 174)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 98 (|has| |#1| (-464)))) (-3495 (($ (-656 $)) 95 (|has| |#1| (-464))) (($ $ $) 94 (|has| |#1| (-464)))) (-4299 (((-430 (-1191 $)) (-1191 $)) 105 (|has| |#1| (-926)))) (-1340 (((-430 (-1191 $)) (-1191 $)) 104 (|has| |#1| (-926)))) (-1839 (((-430 $) $) 102 (|has| |#1| (-926)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 231 (|has| |#1| (-374)))) (-3463 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-568))) (((-3 $ "failed") $ $) 89 (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 225 (|has| |#1| (-374)))) (-3306 (($ $ (-656 (-304 $))) 152) (($ $ (-304 $)) 151) (($ $ $ $) 150) (($ $ (-656 $) (-656 $)) 149) (($ $ (-1101) |#1|) 148) (($ $ (-656 (-1101)) (-656 |#1|)) 147) (($ $ (-1101) $) 146) (($ $ (-656 (-1101)) (-656 $)) 145)) (-3112 (((-783) $) 227 (|has| |#1| (-374)))) (-2871 ((|#1| $ |#1|) 266) (($ $ $) 265) (((-419 $) (-419 $) (-419 $)) 243 (|has| |#1| (-568))) ((|#1| (-419 $) |#1|) 235 (|has| |#1| (-374))) (((-419 $) $ (-419 $)) 223 (|has| |#1| (-568)))) (-2210 (((-3 $ "failed") $ (-783)) 252)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 228 (|has| |#1| (-374)))) (-1960 (($ $ (-1101)) 110 (|has| |#1| (-174))) ((|#1| $) 245 (|has| |#1| (-174)))) (-2735 (($ $ (-656 (-1101)) (-656 (-783))) 44) (($ $ (-1101) (-783)) 43) (($ $ (-656 (-1101))) 42) (($ $ (-1101)) 40) (($ $) 264) (($ $ (-783)) 262) (($ $ (-1 |#1| |#1|)) 260) (($ $ (-1 |#1| |#1|) (-783)) 259) (($ $ (-1 |#1| |#1|) $) 246) (($ $ (-1195)) 220 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 218 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 217 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 216 (|has| |#1| (-917 (-1195))))) (-1433 (((-783) $) 157) (((-783) $ (-1101)) 133) (((-656 (-783)) $ (-656 (-1101))) 132)) (-4076 (((-905 (-390)) $) 85 (-12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390)))))) (((-905 (-576)) $) 84 (-12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576)))))) (((-548) $) 83 (-12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))))) (-3648 ((|#1| $) 182 (|has| |#1| (-464))) (($ $ (-1101)) 109 (|has| |#1| (-464)))) (-2110 (((-3 (-1286 $) "failed") (-701 $)) 107 (-2758 (|has| $ (-146)) (|has| |#1| (-926))))) (-3251 (((-3 $ "failed") $ $) 240 (|has| |#1| (-568))) (((-3 (-419 $) "failed") (-419 $) $) 239 (|has| |#1| (-568)))) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 172) (($ (-1101)) 142) (($ (-419 (-576))) 81 (-2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576)))))) (($ $) 88 (|has| |#1| (-568)))) (-2927 (((-656 |#1|) $) 175)) (-4333 ((|#1| $ (-783)) 162) (($ $ (-1101) (-783)) 131) (($ $ (-656 (-1101)) (-656 (-783))) 130)) (-2883 (((-3 $ "failed") $) 82 (-2835 (-2758 (|has| $ (-146)) (|has| |#1| (-926))) (|has| |#1| (-146))))) (-1858 (((-783)) 32 T CONST)) (-3274 (($ $ $ (-783)) 180 (|has| |#1| (-174)))) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 92 (|has| |#1| (-568)))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-656 (-1101)) (-656 (-783))) 47) (($ $ (-1101) (-783)) 46) (($ $ (-656 (-1101))) 45) (($ $ (-1101)) 41) (($ $) 263) (($ $ (-783)) 261) (($ $ (-1 |#1| |#1|)) 258) (($ $ (-1 |#1| |#1|) (-783)) 257) (($ $ (-1195)) 219 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195))) 215 (|has| |#1| (-917 (-1195)))) (($ $ (-1195) (-783)) 214 (|has| |#1| (-917 (-1195)))) (($ $ (-656 (-1195)) (-656 (-783))) 213 (|has| |#1| (-917 (-1195))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 163 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 165 (|has| |#1| (-38 (-419 (-576))))) (($ (-419 (-576)) $) 164 (|has| |#1| (-38 (-419 (-576))))) (($ |#1| $) 154) (($ $ |#1|) 153))) +(((-1262 |#1|) (-141) (-1068)) (T -1262)) +((-3536 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1262 *4)) (-4 *4 (-1068)) (-5 *2 (-1286 *4)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-5 *2 (-1191 *3)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-1068)) (-4 *1 (-1262 *3)))) (-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-2210 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-3539 (*1 *2 *1 *1) (-12 (-4 *3 (-1068)) (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-1262 *3)))) (-1749 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-1262 *4)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-4215 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)))) (-2735 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) (-1960 (*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-174)))) (-2861 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-174)))) (-2871 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-4 *3 (-568)))) (-3333 (*1 *2 *1 *1) (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-4 *3 (-568)) (-5 *2 (-783)))) (-2749 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-3251 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-3251 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-4 *3 (-568)))) (-2549 (*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) (-1424 (*1 *2 *1 *1) (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| -1706 *3) (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-1262 *3)))) (-3807 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1262 *3)))) (-2871 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576))))))) +(-13 (-966 |t#1| (-783) (-1101)) (-296 |t#1| |t#1|) (-296 $ $) (-238) (-232 |t#1|) (-10 -8 (-15 -3536 ((-1286 |t#1|) $ (-783))) (-15 -3176 ((-1191 |t#1|) $)) (-15 -1834 ($ (-1191 |t#1|))) (-15 -2973 ($ $ (-783))) (-15 -2210 ((-3 $ "failed") $ (-783))) (-15 -3539 ((-2 (|:| -3824 $) (|:| -2091 $)) $ $)) (-15 -1749 ((-2 (|:| -3824 $) (|:| -2091 $)) $ (-783))) (-15 -1659 ($ $ (-783))) (-15 -3759 ($ $ (-783))) (-15 -4215 ($ $ $)) (-15 -2735 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1171)) (-6 (-1171)) |%noBranch|) (IF (|has| |t#1| (-174)) (PROGN (-15 -1960 (|t#1| $)) (-15 -2861 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-568)) (PROGN (-6 (-296 (-419 $) (-419 $))) (-15 -2871 ((-419 $) (-419 $) (-419 $))) (-15 -3333 ((-783) $ $)) (-15 -2749 ($ $ $)) (-15 -3251 ((-3 $ "failed") $ $)) (-15 -3251 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -2549 ($ $ $)) (-15 -1424 ((-2 (|:| -1706 |t#1|) (|:| -3824 $) (|:| -2091 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -3807 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-374)) (PROGN (-6 (-317)) (-6 -4457) (-15 -2871 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (-15 -3848 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2835 (|has| |#1| (-1057 (-419 (-576)))) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 #2=(-1101)) . T) ((-628 |#1|) . T) ((-628 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-626 (-548)) -12 (|has| (-1101) (-626 (-548))) (|has| |#1| (-626 (-548)))) ((-626 (-905 (-390))) -12 (|has| (-1101) (-626 (-905 (-390)))) (|has| |#1| (-626 (-905 (-390))))) ((-626 (-905 (-576))) -12 (|has| (-1101) (-626 (-905 (-576)))) (|has| |#1| (-626 (-905 (-576))))) ((-234 $) . T) ((-232 |#1|) . T) ((-238) . T) ((-237) . T) ((-272 |#1|) . T) ((-296 (-419 $) (-419 $)) |has| |#1| (-568)) ((-296 |#1| |#1|) . T) ((-296 $ $) . T) ((-300) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-319 $) . T) ((-336 |#1| #0#) . T) ((-388 |#1|) . T) ((-423 |#1|) . T) ((-464) -2835 (|has| |#1| (-926)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-526 #2# |#1|) . T) ((-526 #2# $) . T) ((-526 $ $) . T) ((-568) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 #3=(-576)) |has| |#1| (-651 (-576))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-651 #3#) |has| |#1| (-651 (-576))) ((-651 |#1|) . T) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2#) . T) ((-909 $ #4=(-1195)) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-915 #2#) . T) ((-915 (-1195)) |has| |#1| (-915 (-1195))) ((-917 #2#) . T) ((-917 #4#) -2835 (|has| |#1| (-917 (-1195))) (|has| |#1| (-915 (-1195)))) ((-899 (-390)) -12 (|has| (-1101) (-899 (-390))) (|has| |#1| (-899 (-390)))) ((-899 (-576)) -12 (|has| (-1101) (-899 (-576))) (|has| |#1| (-899 (-576)))) ((-966 |#1| #0# #2#) . T) ((-926) |has| |#1| (-926)) ((-937) |has| |#1| (-374)) ((-1057 (-419 (-576))) |has| |#1| (-1057 (-419 (-576)))) ((-1057 (-576)) |has| |#1| (-1057 (-576))) ((-1057 #2#) . T) ((-1057 |#1|) . T) ((-1070 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-926)) (|has| |#1| (-568)) (|has| |#1| (-464)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1171) |has| |#1| (-1171)) ((-1236) . T) ((-1240) |has| |#1| (-926))) +((-1991 (((-656 (-1101)) $) 34)) (-2166 (($ $) 31)) (-1970 (($ |#2| |#3|) NIL) (($ $ (-1101) |#3|) 28) (($ $ (-656 (-1101)) (-656 |#3|)) 27)) (-2129 (($ $) 14)) (-2142 ((|#2| $) 12)) (-1433 ((|#3| $) 10))) +(((-1263 |#1| |#2| |#3|) (-10 -8 (-15 -1991 ((-656 (-1101)) |#1|)) (-15 -1970 (|#1| |#1| (-656 (-1101)) (-656 |#3|))) (-15 -1970 (|#1| |#1| (-1101) |#3|)) (-15 -2166 (|#1| |#1|)) (-15 -1970 (|#1| |#2| |#3|)) (-15 -1433 (|#3| |#1|)) (-15 -2129 (|#1| |#1|)) (-15 -2142 (|#2| |#1|))) (-1264 |#2| |#3|) (-1068) (-804)) (T -1263)) +NIL +(-10 -8 (-15 -1991 ((-656 (-1101)) |#1|)) (-15 -1970 (|#1| |#1| (-656 (-1101)) (-656 |#3|))) (-15 -1970 (|#1| |#1| (-1101) |#3|)) (-15 -2166 (|#1| |#1|)) (-15 -1970 (|#1| |#2| |#3|)) (-15 -1433 (|#3| |#1|)) (-15 -2129 (|#1| |#1|)) (-15 -2142 (|#2| |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1991 (((-656 (-1101)) $) 86)) (-3022 (((-1195) $) 118)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4412 (($ $) 64 (|has| |#1| (-568)))) (-4176 (((-112) $) 66 (|has| |#1| (-568)))) (-1615 (($ $ |#2|) 113) (($ $ |#2| |#2|) 112)) (-3826 (((-1176 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-2166 (($ $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-1822 (((-112) $) 85)) (-3333 ((|#2| $) 115) ((|#2| $ |#2|) 114)) (-1414 (((-112) $) 35)) (-2973 (($ $ (-938)) 116)) (-2606 (((-112) $) 74)) (-1970 (($ |#1| |#2|) 73) (($ $ (-1101) |#2|) 88) (($ $ (-656 (-1101)) (-656 |#2|)) 87)) (-1632 (($ (-1 |#1| |#1|) $) 75)) (-2129 (($ $) 77)) (-2142 ((|#1| $) 78)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-1714 (($ $ |#2|) 110)) (-3463 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3306 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2871 ((|#1| $ |#2|) 120) (($ $ $) 96 (|has| |#2| (-1131)))) (-2735 (($ $ (-1195)) 108 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1433 ((|#2| $) 76)) (-2869 (($ $) 84)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-4333 ((|#1| $ |#2|) 71)) (-2883 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-2387 ((|#1| $) 117)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 65 (|has| |#1| (-568)))) (-4125 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1195)) 107 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1264 |#1| |#2|) (-141) (-1068) (-804)) (T -1264)) +((-3826 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-1176 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3022 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (-5 *2 (-1195)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) (-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-1264 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-3333 (*1 *2 *1 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-1615 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-1615 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-4125 (*1 *2 *1 *3) (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3563 (*2 (-1195)))) (-4 *2 (-1068)))) (-1714 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) (-3306 (*1 *2 *1 *3) (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1176 *3))))) +(-13 (-992 |t#1| |t#2| (-1101)) (-296 |t#2| |t#1|) (-10 -8 (-15 -3826 ((-1176 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3022 ((-1195) $)) (-15 -2387 (|t#1| $)) (-15 -2973 ($ $ (-938))) (-15 -3333 (|t#2| $)) (-15 -3333 (|t#2| $ |t#2|)) (-15 -1615 ($ $ |t#2|)) (-15 -1615 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3563 (|t#1| (-1195)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4125 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1714 ($ $ |t#2|)) (IF (|has| |t#2| (-1131)) (-6 (-296 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-238)) (IF (|has| |t#1| (-915 (-1195))) (-6 (-915 (-1195))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3306 ((-1176 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #0#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-238) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-237) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-296 |#2| |#1|) . T) ((-296 $ $) |has| |#2| (-1131)) ((-300) |has| |#1| (-568)) ((-568) |has| |#1| (-568)) ((-658 #0#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #0#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #1=(-1195)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-915 (-1195)))) ((-915 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-915 (-1195)))) ((-917 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-915 (-1195)))) ((-992 |#1| |#2| (-1101)) . T) ((-1070 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #0#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1236) . T)) +((-1760 ((|#2| |#2|) 12)) (-2732 (((-430 |#2|) |#2|) 14)) (-3717 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))) 30))) +(((-1265 |#1| |#2|) (-10 -7 (-15 -2732 ((-430 |#2|) |#2|)) (-15 -1760 (|#2| |#2|)) (-15 -3717 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) (-568) (-13 (-1262 |#1|) (-568) (-10 -8 (-15 -3495 ($ $ $))))) (T -1265)) +((-3717 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-576)))) (-4 *4 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3495 ($ $ $))))) (-4 *3 (-568)) (-5 *1 (-1265 *3 *4)))) (-1760 (*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-1265 *3 *2)) (-4 *2 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3495 ($ $ $))))))) (-2732 (*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1265 *4 *3)) (-4 *3 (-13 (-1262 *4) (-568) (-10 -8 (-15 -3495 ($ $ $)))))))) +(-10 -7 (-15 -2732 ((-430 |#2|) |#2|)) (-15 -1760 (|#2| |#2|)) (-15 -3717 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-576)))))) +((-1632 (((-1271 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1271 |#1| |#3| |#5|)) 24))) +(((-1266 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1632 ((-1271 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1271 |#1| |#3| |#5|)))) (-1068) (-1068) (-1195) (-1195) |#1| |#2|) (T -1266)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1271 *5 *7 *9)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1271 *6 *8 *10)) (-5 *1 (-1266 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1195))))) +(-10 -7 (-15 -1632 ((-1271 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1271 |#1| |#3| |#5|)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1991 (((-656 (-1101)) $) 86)) (-3022 (((-1195) $) 118)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4412 (($ $) 64 (|has| |#1| (-568)))) (-4176 (((-112) $) 66 (|has| |#1| (-568)))) (-1615 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3826 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3894 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 177 (|has| |#1| (-374)))) (-2732 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1853 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3872 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-3916 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) 18 T CONST)) (-3420 (($ $ $) 172 (|has| |#1| (-374)))) (-2166 (($ $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 171 (|has| |#1| (-374)))) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-1792 (((-112) $) 179 (|has| |#1| (-374)))) (-1822 (((-112) $) 85)) (-1570 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) 116) (($ $ (-419 (-576))) 185)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-2606 (((-112) $) 74)) (-1970 (($ |#1| (-419 (-576))) 73) (($ $ (-1101) (-419 (-576))) 88) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) 87)) (-1632 (($ (-1 |#1| |#1|) $) 75)) (-3710 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 77)) (-2142 ((|#1| $) 78)) (-3459 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-1927 (((-1177) $) 10)) (-2095 (($ $) 180 (|has| |#1| (-374)))) (-3848 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-2835 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-3495 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1839 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 173 (|has| |#1| (-374)))) (-1714 (($ $ (-419 (-576))) 110)) (-3463 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-3984 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3112 (((-783) $) 169 (|has| |#1| (-374)))) (-2871 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1131)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 170 (|has| |#1| (-374)))) (-2735 (($ $ (-1195)) 108 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1433 (((-419 (-576)) $) 76)) (-3928 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) 84)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4333 ((|#1| $ (-419 (-576))) 71)) (-2883 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-2387 ((|#1| $) 117)) (-3985 (((-112) $ $) 9)) (-3958 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3939 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1195)) 107 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1267 |#1|) (-141) (-1068)) (T -1267)) +((-2398 (*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) (-4 *4 (-1068)) (-4 *1 (-1267 *4)))) (-2973 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1267 *3)) (-4 *3 (-1068)))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) (-3848 (*1 *1 *1 *2) (-2835 (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1221)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -1991 ((-656 *2) *3))) (|has| *3 (-15 -3848 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1264 |t#1| (-419 (-576))) (-10 -8 (-15 -2398 ($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |t#1|))))) (-15 -2973 ($ $ (-419 (-576)))) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $)) (IF (|has| |t#1| (-15 -3848 (|t#1| |t#1| (-1195)))) (IF (|has| |t#1| (-15 -1991 ((-656 (-1195)) |t#1|))) (-15 -3848 ($ $ (-1195))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1221)) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-29 (-576))) (-15 -3848 ($ $ (-1195))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1221))) |%noBranch|) (IF (|has| |t#1| (-374)) (-6 (-374)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1131)) ((-300) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195)))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1264 |#1| #0#) . T)) +((-1454 (((-112) $) 12)) (-1539 (((-3 |#3| "failed") $) 17)) (-4056 ((|#3| $) 14))) +(((-1268 |#1| |#2| |#3|) (-10 -8 (-15 -1539 ((-3 |#3| "failed") |#1|)) (-15 -4056 (|#3| |#1|)) (-15 -1454 ((-112) |#1|))) (-1269 |#2| |#3|) (-1068) (-1246 |#2|)) (T -1268)) +NIL +(-10 -8 (-15 -1539 ((-3 |#3| "failed") |#1|)) (-15 -4056 (|#3| |#1|)) (-15 -1454 ((-112) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1991 (((-656 (-1101)) $) 86)) (-3022 (((-1195) $) 118)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4412 (($ $) 64 (|has| |#1| (-568)))) (-4176 (((-112) $) 66 (|has| |#1| (-568)))) (-1615 (($ $ (-419 (-576))) 113) (($ $ (-419 (-576)) (-419 (-576))) 112)) (-3826 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 119)) (-3894 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 177 (|has| |#1| (-374)))) (-2732 (((-430 $) $) 178 (|has| |#1| (-374)))) (-1853 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-112) $ $) 168 (|has| |#1| (-374)))) (-3872 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 186)) (-3916 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#2| "failed") $) 197)) (-4056 ((|#2| $) 198)) (-3420 (($ $ $) 172 (|has| |#1| (-374)))) (-2166 (($ $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-4345 (((-419 (-576)) $) 194)) (-3431 (($ $ $) 171 (|has| |#1| (-374)))) (-2074 (($ (-419 (-576)) |#2|) 195)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 166 (|has| |#1| (-374)))) (-1792 (((-112) $) 179 (|has| |#1| (-374)))) (-1822 (((-112) $) 85)) (-1570 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-419 (-576)) $) 115) (((-419 (-576)) $ (-419 (-576))) 114)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) 116) (($ $ (-419 (-576))) 185)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 175 (|has| |#1| (-374)))) (-2606 (((-112) $) 74)) (-1970 (($ |#1| (-419 (-576))) 73) (($ $ (-1101) (-419 (-576))) 88) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) 87)) (-1632 (($ (-1 |#1| |#1|) $) 75)) (-3710 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 77)) (-2142 ((|#1| $) 78)) (-3459 (($ (-656 $)) 164 (|has| |#1| (-374))) (($ $ $) 163 (|has| |#1| (-374)))) (-2718 ((|#2| $) 193)) (-3252 (((-3 |#2| "failed") $) 191)) (-2065 ((|#2| $) 192)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 180 (|has| |#1| (-374)))) (-3848 (($ $) 184 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 183 (-2835 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 165 (|has| |#1| (-374)))) (-3495 (($ (-656 $)) 162 (|has| |#1| (-374))) (($ $ $) 161 (|has| |#1| (-374)))) (-1839 (((-430 $) $) 176 (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 173 (|has| |#1| (-374)))) (-1714 (($ $ (-419 (-576))) 110)) (-3463 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 167 (|has| |#1| (-374)))) (-3984 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3112 (((-783) $) 169 (|has| |#1| (-374)))) (-2871 ((|#1| $ (-419 (-576))) 120) (($ $ $) 96 (|has| (-419 (-576)) (-1131)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 170 (|has| |#1| (-374)))) (-2735 (($ $ (-1195)) 108 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1433 (((-419 (-576)) $) 76)) (-3928 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) 84)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 59 (|has| |#1| (-174))) (($ |#2|) 196) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568)))) (-4333 ((|#1| $ (-419 (-576))) 71)) (-2883 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-2387 ((|#1| $) 117)) (-3985 (((-112) $ $) 9)) (-3958 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3939 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-419 (-576))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1195)) 107 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-374))) (($ $ $) 182 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 181 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1269 |#1| |#2|) (-141) (-1068) (-1246 |t#1|)) (T -1269)) +((-1433 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1246 *3)) (-5 *2 (-419 (-576))))) (-2074 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1068)) (-4 *1 (-1269 *4 *3)) (-4 *3 (-1246 *4)))) (-4345 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1246 *3)) (-5 *2 (-419 (-576))))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1246 *3)))) (-2065 (*1 *2 *1) (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1246 *3)))) (-3252 (*1 *2 *1) (|partial| -12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1246 *3))))) +(-13 (-1267 |t#1|) (-1057 |t#2|) (-628 |t#2|) (-10 -8 (-15 -2074 ($ (-419 (-576)) |t#2|)) (-15 -4345 ((-419 (-576)) $)) (-15 -2718 (|t#2| $)) (-15 -1433 ((-419 (-576)) $)) (-15 -2065 (|t#2| $)) (-15 -3252 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-419 (-576))) . T) ((-25) . T) ((-38 #1=(-419 (-576))) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 |#2|) . T) ((-628 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) ((-248) |has| |#1| (-374)) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-419 (-576)) (-1131)) ((-300) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-317) |has| |#1| (-374)) ((-374) |has| |#1| (-374)) ((-464) |has| |#1| (-374)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-658 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-729 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374))) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195)))) ((-992 |#1| #0# (-1101)) . T) ((-937) |has| |#1| (-374)) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1057 |#2|) . T) ((-1070 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1075 #1#) -2835 (|has| |#1| (-374)) (|has| |#1| (-38 (-419 (-576))))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-374)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1240) |has| |#1| (-374)) ((-1264 |#1| #0#) . T) ((-1267 |#1|) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) 104)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1615 (($ $ (-419 (-576))) 116) (($ $ (-419 (-576)) (-419 (-576))) 118)) (-3826 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) 54)) (-3894 (($ $) 192 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 168 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| |#1| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3872 (($ $) 188 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 164 (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) 65)) (-3916 (($ $) 196 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 172 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) NIL)) (-4056 ((|#2| $) NIL)) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) 85)) (-4345 (((-419 (-576)) $) 13)) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-2074 (($ (-419 (-576)) |#2|) 11)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1792 (((-112) $) NIL (|has| |#1| (-374)))) (-1822 (((-112) $) 74)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-419 (-576)) $) 113) (((-419 (-576)) $ (-419 (-576))) 114)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) 130) (($ $ (-419 (-576))) 128)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-419 (-576))) 33) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-1632 (($ (-1 |#1| |#1|) $) 125)) (-3710 (($ $) 162 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2718 ((|#2| $) 12)) (-3252 (((-3 |#2| "failed") $) 44)) (-2065 ((|#2| $) 45)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) 101 (|has| |#1| (-374)))) (-3848 (($ $) 146 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 151 (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221)))))) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1714 (($ $ (-419 (-576))) 122)) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3984 (($ $) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ (-419 (-576))) 108) (($ $ $) 94 (|has| (-419 (-576)) (-1131)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ (-1195)) 138 (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-1433 (((-419 (-576)) $) 16)) (-3928 (($ $) 198 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 174 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 194 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 170 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 190 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 166 (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) 120)) (-3563 (((-874) $) NIL) (($ (-576)) 37) (($ |#1|) 27 (|has| |#1| (-174))) (($ |#2|) 34) (($ (-419 (-576))) 139 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4333 ((|#1| $ (-419 (-576))) 107)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) 127 T CONST)) (-2387 ((|#1| $) 106)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) 204 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 180 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) 200 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 176 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 208 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 184 (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-419 (-576))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) 210 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 186 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 206 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 182 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 202 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 178 (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 21 T CONST)) (-2810 (($) 17 T CONST)) (-2051 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))))) (-2988 (((-112) $ $) 72)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) 100 (|has| |#1| (-374)))) (-3095 (($ $) 142) (($ $ $) 78)) (-3083 (($ $ $) 76)) (** (($ $ (-938)) NIL) (($ $ (-783)) 82) (($ $ (-576)) 157 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 158 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1270 |#1| |#2|) (-1269 |#1| |#2|) (-1068) (-1246 |#1|)) (T -1270)) +NIL +(-1269 |#1| |#2|) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) 11)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) NIL (|has| |#1| (-568)))) (-1615 (($ $ (-419 (-576))) NIL) (($ $ (-419 (-576)) (-419 (-576))) NIL)) (-3826 (((-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|))) $) NIL)) (-3894 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1760 (($ $) NIL (|has| |#1| (-374)))) (-2732 (((-430 $) $) NIL (|has| |#1| (-374)))) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1727 (((-112) $ $) NIL (|has| |#1| (-374)))) (-3872 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-783) (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#1|)))) NIL)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-1250 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1278 |#1| |#2| |#3|) "failed") $) 22)) (-4056 (((-1250 |#1| |#2| |#3|) $) NIL) (((-1278 |#1| |#2| |#3|) $) NIL)) (-3420 (($ $ $) NIL (|has| |#1| (-374)))) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-4345 (((-419 (-576)) $) 69)) (-3431 (($ $ $) NIL (|has| |#1| (-374)))) (-2074 (($ (-419 (-576)) (-1250 |#1| |#2| |#3|)) NIL)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) NIL (|has| |#1| (-374)))) (-1792 (((-112) $) NIL (|has| |#1| (-374)))) (-1822 (((-112) $) NIL)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-419 (-576)) $) NIL) (((-419 (-576)) $ (-419 (-576))) NIL)) (-1414 (((-112) $) NIL)) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) NIL) (($ $ (-419 (-576))) NIL)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-419 (-576))) 30) (($ $ (-1101) (-419 (-576))) NIL) (($ $ (-656 (-1101)) (-656 (-419 (-576)))) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-3459 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-2718 (((-1250 |#1| |#2| |#3|) $) 72)) (-3252 (((-3 (-1250 |#1| |#2| |#3|) "failed") $) NIL)) (-2065 (((-1250 |#1| |#2| |#3|) $) NIL)) (-1927 (((-1177) $) NIL)) (-2095 (($ $) NIL (|has| |#1| (-374)))) (-3848 (($ $) 39 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) NIL (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 40 (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-1139) $) NIL)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-374)))) (-3495 (($ (-656 $)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-1839 (((-430 $) $) NIL (|has| |#1| (-374)))) (-3738 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-374))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) NIL (|has| |#1| (-374)))) (-1714 (($ $ (-419 (-576))) NIL)) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-1350 (((-3 (-656 $) "failed") (-656 $) $) NIL (|has| |#1| (-374)))) (-3984 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))))) (-3112 (((-783) $) NIL (|has| |#1| (-374)))) (-2871 ((|#1| $ (-419 (-576))) NIL) (($ $ $) NIL (|has| (-419 (-576)) (-1131)))) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) NIL (|has| |#1| (-374)))) (-2735 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) 38)) (-1433 (((-419 (-576)) $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) NIL)) (-3563 (((-874) $) 107) (($ (-576)) NIL) (($ |#1|) NIL (|has| |#1| (-174))) (($ (-1250 |#1| |#2| |#3|)) 16) (($ (-1278 |#1| |#2| |#3|)) 17) (($ (-1282 |#2|)) 36) (($ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568)))) (-4333 ((|#1| $ (-419 (-576))) NIL)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-2387 ((|#1| $) 12)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-419 (-576))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-576))))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 32 T CONST)) (-2810 (($) 26 T CONST)) (-2051 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-419 (-576)) |#1|)))) (($ $ (-1282 |#2|)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 34)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ (-576)) NIL (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1271 |#1| |#2| |#3|) (-13 (-1269 |#1| (-1250 |#1| |#2| |#3|)) (-909 $ (-1282 |#2|)) (-1057 (-1278 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) (-1068) (-1195) |#1|) (T -1271)) +((-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) +(-13 (-1269 |#1| (-1250 |#1| |#2| |#3|)) (-909 $ (-1282 |#2|)) (-1057 (-1278 |#1| |#2| |#3|)) (-628 (-1282 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 37)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL)) (-4412 (($ $) NIL)) (-4176 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 (-576) "failed") $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1057 (-576)))) (((-3 (-419 (-576)) "failed") $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1057 (-419 (-576))))) (((-3 (-1271 |#2| |#3| |#4|) "failed") $) 22)) (-4056 (((-576) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1057 (-576)))) (((-419 (-576)) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-1057 (-419 (-576))))) (((-1271 |#2| |#3| |#4|) $) NIL)) (-2166 (($ $) 41)) (-1551 (((-3 $ "failed") $) 27)) (-2985 (($ $) NIL (|has| (-1271 |#2| |#3| |#4|) (-464)))) (-1660 (($ $ (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|) $) NIL)) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) 11)) (-2606 (((-112) $) NIL)) (-1970 (($ (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) 25)) (-3403 (((-329 |#2| |#3| |#4|) $) NIL)) (-2133 (($ (-1 (-329 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) $) NIL)) (-1632 (($ (-1 (-1271 |#2| |#3| |#4|) (-1271 |#2| |#3| |#4|)) $) NIL)) (-1397 (((-3 (-855 |#2|) "failed") $) 90)) (-2129 (($ $) NIL)) (-2142 (((-1271 |#2| |#3| |#4|) $) 20)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2105 (((-112) $) NIL)) (-2116 (((-1271 |#2| |#3| |#4|) $) NIL)) (-3463 (((-3 $ "failed") $ (-1271 |#2| |#3| |#4|)) NIL (|has| (-1271 |#2| |#3| |#4|) (-568))) (((-3 $ "failed") $ $) NIL)) (-2221 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1177))) "failed") $) 74)) (-1433 (((-329 |#2| |#3| |#4|) $) 17)) (-3648 (((-1271 |#2| |#3| |#4|) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-464)))) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ (-1271 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-419 (-576))) NIL (-2835 (|has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576)))) (|has| (-1271 |#2| |#3| |#4|) (-1057 (-419 (-576))))))) (-2927 (((-656 (-1271 |#2| |#3| |#4|)) $) NIL)) (-4333 (((-1271 |#2| |#3| |#4|) $ (-329 |#2| |#3| |#4|)) NIL)) (-2883 (((-3 $ "failed") $) NIL (|has| (-1271 |#2| |#3| |#4|) (-146)))) (-1858 (((-783)) NIL T CONST)) (-3274 (($ $ $ (-783)) NIL (|has| (-1271 |#2| |#3| |#4|) (-174)))) (-3985 (((-112) $ $) NIL)) (-3040 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-2810 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ (-1271 |#2| |#3| |#4|)) NIL (|has| (-1271 |#2| |#3| |#4|) (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ (-1271 |#2| |#3| |#4|)) NIL) (($ (-1271 |#2| |#3| |#4|) $) NIL) (($ (-419 (-576)) $) NIL (|has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| (-1271 |#2| |#3| |#4|) (-38 (-419 (-576))))))) +(((-1272 |#1| |#2| |#3| |#4|) (-13 (-336 (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -1397 ((-3 (-855 |#2|) "failed") $)) (-15 -2221 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1177))) "failed") $)))) (-13 (-1057 (-576)) (-651 (-576)) (-464)) (-13 (-27) (-1221) (-442 |#1|)) (-1195) |#2|) (T -1272)) +((-1397 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1272 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4))) (-2221 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 *4 *5 *6)) (|:| |%expon| (-329 *4 *5 *6)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) (|:| |%type| (-1177)))) (-5 *1 (-1272 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) (-14 *6 *4)))) +(-13 (-336 (-1271 |#2| |#3| |#4|) (-329 |#2| |#3| |#4|)) (-568) (-10 -8 (-15 -1397 ((-3 (-855 |#2|) "failed") $)) (-15 -2221 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1271 |#2| |#3| |#4|)) (|:| |%expon| (-329 |#2| |#3| |#4|)) (|:| |%expTerms| (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| |#2|)))))) (|:| |%type| (-1177))) "failed") $)))) +((-3142 ((|#2| $) 34)) (-2893 ((|#2| $) 18)) (-2464 (($ $) 53)) (-2938 (($ $ (-576)) 85)) (-3131 (((-112) $ (-783)) 46)) (-3429 ((|#2| $ |#2|) 82)) (-2611 ((|#2| $ |#2|) 78)) (-3731 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-2047 (($ $ (-656 $)) 81)) (-2882 ((|#2| $) 17)) (-3515 (($ $) NIL) (($ $ (-783)) 59)) (-1994 (((-656 $) $) 31)) (-3180 (((-112) $ $) 69)) (-3115 (((-112) $ (-783)) 45)) (-2712 (((-112) $ (-783)) 43)) (-1905 (((-112) $) 33)) (-3923 ((|#2| $) 25) (($ $ (-783)) 64)) (-2871 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3173 (((-112) $) 23)) (-1442 (($ $) 56)) (-1544 (($ $) 86)) (-3564 (((-783) $) 58)) (-2705 (($ $) 57)) (-1661 (($ $ $) 77) (($ |#2| $) NIL)) (-3281 (((-656 $) $) 32)) (-2988 (((-112) $ $) 67)) (-3485 (((-783) $) 52))) +(((-1273 |#1| |#2|) (-10 -8 (-15 -2938 (|#1| |#1| (-576))) (-15 -3731 (|#2| |#1| "last" |#2|)) (-15 -2611 (|#2| |#1| |#2|)) (-15 -3731 (|#1| |#1| "rest" |#1|)) (-15 -3731 (|#2| |#1| "first" |#2|)) (-15 -1544 (|#1| |#1|)) (-15 -1442 (|#1| |#1|)) (-15 -3564 ((-783) |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2893 (|#2| |#1|)) (-15 -2882 (|#2| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -3923 (|#1| |#1| (-783))) (-15 -2871 (|#2| |#1| "last")) (-15 -3923 (|#2| |#1|)) (-15 -3515 (|#1| |#1| (-783))) (-15 -2871 (|#1| |#1| "rest")) (-15 -3515 (|#1| |#1|)) (-15 -2871 (|#2| |#1| "first")) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3429 (|#2| |#1| |#2|)) (-15 -3731 (|#2| |#1| "value" |#2|)) (-15 -2047 (|#1| |#1| (-656 |#1|))) (-15 -3180 ((-112) |#1| |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -2871 (|#2| |#1| "value")) (-15 -3142 (|#2| |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -1994 ((-656 |#1|) |#1|)) (-15 -3281 ((-656 |#1|) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -3485 ((-783) |#1|)) (-15 -3131 ((-112) |#1| (-783))) (-15 -3115 ((-112) |#1| (-783))) (-15 -2712 ((-112) |#1| (-783)))) (-1274 |#2|) (-1236)) (T -1273)) +NIL +(-10 -8 (-15 -2938 (|#1| |#1| (-576))) (-15 -3731 (|#2| |#1| "last" |#2|)) (-15 -2611 (|#2| |#1| |#2|)) (-15 -3731 (|#1| |#1| "rest" |#1|)) (-15 -3731 (|#2| |#1| "first" |#2|)) (-15 -1544 (|#1| |#1|)) (-15 -1442 (|#1| |#1|)) (-15 -3564 ((-783) |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -2893 (|#2| |#1|)) (-15 -2882 (|#2| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -3923 (|#1| |#1| (-783))) (-15 -2871 (|#2| |#1| "last")) (-15 -3923 (|#2| |#1|)) (-15 -3515 (|#1| |#1| (-783))) (-15 -2871 (|#1| |#1| "rest")) (-15 -3515 (|#1| |#1|)) (-15 -2871 (|#2| |#1| "first")) (-15 -1661 (|#1| |#2| |#1|)) (-15 -1661 (|#1| |#1| |#1|)) (-15 -3429 (|#2| |#1| |#2|)) (-15 -3731 (|#2| |#1| "value" |#2|)) (-15 -2047 (|#1| |#1| (-656 |#1|))) (-15 -3180 ((-112) |#1| |#1|)) (-15 -3173 ((-112) |#1|)) (-15 -2871 (|#2| |#1| "value")) (-15 -3142 (|#2| |#1|)) (-15 -1905 ((-112) |#1|)) (-15 -1994 ((-656 |#1|) |#1|)) (-15 -3281 ((-656 |#1|) |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -3485 ((-783) |#1|)) (-15 -3131 ((-112) |#1| (-783))) (-15 -3115 ((-112) |#1| (-783))) (-15 -2712 ((-112) |#1| (-783)))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3142 ((|#1| $) 49)) (-2893 ((|#1| $) 66)) (-2464 (($ $) 68)) (-2938 (($ $ (-576)) 53 (|has| $ (-6 -4462)))) (-3131 (((-112) $ (-783)) 8)) (-3429 ((|#1| $ |#1|) 40 (|has| $ (-6 -4462)))) (-3614 (($ $ $) 57 (|has| $ (-6 -4462)))) (-2611 ((|#1| $ |#1|) 55 (|has| $ (-6 -4462)))) (-1438 ((|#1| $ |#1|) 59 (|has| $ (-6 -4462)))) (-3731 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4462))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4462))) (($ $ "rest" $) 56 (|has| $ (-6 -4462))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4462)))) (-2047 (($ $ (-656 $)) 42 (|has| $ (-6 -4462)))) (-2882 ((|#1| $) 67)) (-3767 (($) 7 T CONST)) (-3515 (($ $) 74) (($ $ (-783)) 72)) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-1994 (((-656 $) $) 51)) (-3180 (((-112) $ $) 43 (|has| |#1| (-1119)))) (-3115 (((-112) $ (-783)) 9)) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36)) (-2712 (((-112) $ (-783)) 10)) (-2942 (((-656 |#1|) $) 46)) (-1905 (((-112) $) 50)) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-3923 ((|#1| $) 71) (($ $ (-783)) 69)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3504 ((|#1| $) 77) (($ $ (-783)) 75)) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-2972 (((-576) $ $) 45)) (-3173 (((-112) $) 47)) (-1442 (($ $) 63)) (-1544 (($ $) 60 (|has| $ (-6 -4462)))) (-3564 (((-783) $) 64)) (-2705 (($ $) 65)) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-1954 (($ $) 13)) (-1523 (($ $ $) 62 (|has| $ (-6 -4462))) (($ $ |#1|) 61 (|has| $ (-6 -4462)))) (-1661 (($ $ $) 79) (($ |#1| $) 78)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3281 (((-656 $) $) 52)) (-4369 (((-112) $ $) 44 (|has| |#1| (-1119)))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-1274 |#1|) (-141) (-1236)) (T -1274)) +((-1661 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1661 (*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2871 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3504 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-3515 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2871 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-3515 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2871 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-2464 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2893 (*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) (-1442 (*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1523 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1523 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1544 (*1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-1438 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3731 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3614 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3731 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) (-2611 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-3731 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) (-2938 (*1 *1 *1 *2) (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) (-4 *3 (-1236))))) +(-13 (-1029 |t#1|) (-10 -8 (-15 -1661 ($ $ $)) (-15 -1661 ($ |t#1| $)) (-15 -3504 (|t#1| $)) (-15 -2871 (|t#1| $ "first")) (-15 -3504 ($ $ (-783))) (-15 -3515 ($ $)) (-15 -2871 ($ $ "rest")) (-15 -3515 ($ $ (-783))) (-15 -3923 (|t#1| $)) (-15 -2871 (|t#1| $ "last")) (-15 -3923 ($ $ (-783))) (-15 -2464 ($ $)) (-15 -2882 (|t#1| $)) (-15 -2893 (|t#1| $)) (-15 -2705 ($ $)) (-15 -3564 ((-783) $)) (-15 -1442 ($ $)) (IF (|has| $ (-6 -4462)) (PROGN (-15 -1523 ($ $ $)) (-15 -1523 ($ $ |t#1|)) (-15 -1544 ($ $)) (-15 -1438 (|t#1| $ |t#1|)) (-15 -3731 (|t#1| $ "first" |t#1|)) (-15 -3614 ($ $ $)) (-15 -3731 ($ $ "rest" $)) (-15 -2611 (|t#1| $ |t#1|)) (-15 -3731 (|t#1| $ "last" |t#1|)) (-15 -2938 ($ $ (-576)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1119)) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-625 (-874)))) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-1029 |#1|) . T) ((-1119) |has| |#1| (-1119)) ((-1236) . T)) +((-1632 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1275 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1632 (|#4| (-1 |#2| |#1|) |#3|))) (-1068) (-1068) (-1277 |#1|) (-1277 |#2|)) (T -1275)) +((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) (-4 *2 (-1277 *6)) (-5 *1 (-1275 *5 *6 *4 *2)) (-4 *4 (-1277 *5))))) +(-10 -7 (-15 -1632 (|#4| (-1 |#2| |#1|) |#3|))) +((-1454 (((-112) $) 17)) (-3894 (($ $) 105)) (-3768 (($ $) 81)) (-3872 (($ $) 101)) (-3747 (($ $) 77)) (-3916 (($ $) 109)) (-3788 (($ $) 85)) (-3710 (($ $) 75)) (-3984 (($ $) 73)) (-3928 (($ $) 111)) (-3798 (($ $) 87)) (-3905 (($ $) 107)) (-3778 (($ $) 83)) (-3882 (($ $) 103)) (-3757 (($ $) 79)) (-3563 (((-874) $) 61) (($ (-576)) NIL) (($ (-419 (-576))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3958 (($ $) 117)) (-3831 (($ $) 93)) (-3939 (($ $) 113)) (-3808 (($ $) 89)) (-3981 (($ $) 121)) (-3852 (($ $) 97)) (-1830 (($ $) 123)) (-3863 (($ $) 99)) (-3969 (($ $) 119)) (-3841 (($ $) 95)) (-3948 (($ $) 115)) (-3820 (($ $) 91)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-419 (-576))) 71))) +(((-1276 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3768 (|#1| |#1|)) (-15 -3747 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3969 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -1454 ((-112) |#1|)) (-15 -3563 ((-874) |#1|))) (-1277 |#2|) (-1068)) (T -1276)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-419 (-576)))) (-15 -3768 (|#1| |#1|)) (-15 -3747 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3798 (|#1| |#1|)) (-15 -3778 (|#1| |#1|)) (-15 -3757 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3863 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3808 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -3882 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3928 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3872 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3969 (|#1| |#1|)) (-15 -1830 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3939 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3563 (|#1| |#2|)) (-15 -3563 (|#1| |#1|)) (-15 -3563 (|#1| (-419 (-576)))) (-15 -3563 (|#1| (-576))) (-15 ** (|#1| |#1| (-783))) (-15 ** (|#1| |#1| (-938))) (-15 -1454 ((-112) |#1|)) (-15 -3563 ((-874) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1991 (((-656 (-1101)) $) 86)) (-3022 (((-1195) $) 118)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 63 (|has| |#1| (-568)))) (-4412 (($ $) 64 (|has| |#1| (-568)))) (-4176 (((-112) $) 66 (|has| |#1| (-568)))) (-1615 (($ $ (-783)) 113) (($ $ (-783) (-783)) 112)) (-3826 (((-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 119)) (-3894 (($ $) 150 (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) 133 (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) 20)) (-1853 (($ $) 132 (|has| |#1| (-38 (-419 (-576)))))) (-3872 (($ $) 149 (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) 134 (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 170) (($ (-1176 |#1|)) 168)) (-3916 (($ $) 148 (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) 135 (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) 18 T CONST)) (-2166 (($ $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-2769 (($ $) 167)) (-1731 (((-969 |#1|) $ (-783)) 165) (((-969 |#1|) $ (-783) (-783)) 164)) (-1822 (((-112) $) 85)) (-1570 (($) 160 (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-783) $) 115) (((-783) $ (-783)) 114)) (-1414 (((-112) $) 35)) (-2826 (($ $ (-576)) 131 (|has| |#1| (-38 (-419 (-576)))))) (-2973 (($ $ (-938)) 116)) (-1995 (($ (-1 |#1| (-576)) $) 166)) (-2606 (((-112) $) 74)) (-1970 (($ |#1| (-783)) 73) (($ $ (-1101) (-783)) 88) (($ $ (-656 (-1101)) (-656 (-783))) 87)) (-1632 (($ (-1 |#1| |#1|) $) 75)) (-3710 (($ $) 157 (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) 77)) (-2142 ((|#1| $) 78)) (-1927 (((-1177) $) 10)) (-3848 (($ $) 162 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 161 (-2835 (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-976)) (|has| |#1| (-1221)) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-38 (-419 (-576)))))))) (-1445 (((-1139) $) 11)) (-1714 (($ $ (-783)) 110)) (-3463 (((-3 $ "failed") $ $) 62 (|has| |#1| (-568)))) (-3984 (($ $) 158 (|has| |#1| (-38 (-419 (-576)))))) (-3306 (((-1176 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2871 ((|#1| $ (-783)) 120) (($ $ $) 96 (|has| (-783) (-1131)))) (-2735 (($ $ (-1195)) 108 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195))) 106 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1195) (-783)) 105 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 104 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 100 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 98 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-1433 (((-783) $) 76)) (-3928 (($ $) 147 (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) 136 (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) 146 (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) 137 (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) 145 (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) 138 (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) 84)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ (-419 (-576))) 69 (|has| |#1| (-38 (-419 (-576))))) (($ $) 61 (|has| |#1| (-568))) (($ |#1|) 59 (|has| |#1| (-174)))) (-2927 (((-1176 |#1|) $) 169)) (-4333 ((|#1| $ (-783)) 71)) (-2883 (((-3 $ "failed") $) 60 (|has| |#1| (-146)))) (-1858 (((-783)) 32 T CONST)) (-2387 ((|#1| $) 117)) (-3985 (((-112) $ $) 9)) (-3958 (($ $) 156 (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) 144 (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) 65 (|has| |#1| (-568)))) (-3939 (($ $) 155 (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) 143 (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) 154 (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) 142 (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-783)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) 153 (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) 141 (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) 152 (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) 140 (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) 151 (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) 139 (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2051 (($ $ (-1195)) 107 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195))) 103 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-1195) (-783)) 102 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $ (-656 (-1195)) (-656 (-783))) 101 (-12 (|has| |#1| (-915 (-1195))) (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (($ $) 99 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) 97 (|has| |#1| (-15 * (|#1| (-783) |#1|))))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 70 (|has| |#1| (-374)))) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ |#1|) 163 (|has| |#1| (-374))) (($ $ $) 159 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 130 (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-419 (-576)) $) 68 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) 67 (|has| |#1| (-38 (-419 (-576))))))) +(((-1277 |#1|) (-141) (-1068)) (T -1277)) +((-2398 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-783)) (|:| |c| *3)))) (-4 *3 (-1068)) (-4 *1 (-1277 *3)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1068)) (-5 *2 (-1176 *3)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-4 *1 (-1277 *3)))) (-2769 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1068)))) (-1995 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1277 *3)) (-4 *3 (-1068)))) (-1731 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1068)) (-5 *2 (-969 *4)))) (-1731 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1068)) (-5 *2 (-969 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) (-3848 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) (-3848 (*1 *1 *1 *2) (-2835 (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1068)) (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1221)) (-4 *3 (-38 (-419 (-576)))))) (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1068)) (-12 (|has| *3 (-15 -1991 ((-656 *2) *3))) (|has| *3 (-15 -3848 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576))))))))) +(-13 (-1264 |t#1| (-783)) (-10 -8 (-15 -2398 ($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |t#1|))))) (-15 -2927 ((-1176 |t#1|) $)) (-15 -2398 ($ (-1176 |t#1|))) (-15 -2769 ($ $)) (-15 -1995 ($ (-1 |t#1| (-576)) $)) (-15 -1731 ((-969 |t#1|) $ (-783))) (-15 -1731 ((-969 |t#1|) $ (-783) (-783))) (IF (|has| |t#1| (-374)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-576)))) (PROGN (-15 -3848 ($ $)) (IF (|has| |t#1| (-15 -3848 (|t#1| |t#1| (-1195)))) (IF (|has| |t#1| (-15 -1991 ((-656 (-1195)) |t#1|))) (-15 -3848 ($ $ (-1195))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1221)) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-29 (-576))) (-15 -3848 ($ $ (-1195))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1021)) (-6 (-1221))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-783)) . T) ((-25) . T) ((-38 #1=(-419 (-576))) |has| |#1| (-38 (-419 (-576)))) ((-38 |#1|) |has| |#1| (-174)) ((-38 $) |has| |#1| (-568)) ((-35) |has| |#1| (-38 (-419 (-576)))) ((-95) |has| |#1| (-38 (-419 (-576)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-419 (-576)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-132) . T) ((-146) |has| |#1| (-146)) ((-148) |has| |#1| (-148)) ((-628 #1#) |has| |#1| (-38 (-419 (-576)))) ((-628 (-576)) . T) ((-628 |#1|) |has| |#1| (-174)) ((-628 $) |has| |#1| (-568)) ((-625 (-874)) . T) ((-174) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-234 $) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-238) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-237) |has| |#1| (-15 * (|#1| (-783) |#1|))) ((-294) |has| |#1| (-38 (-419 (-576)))) ((-296 #0# |#1|) . T) ((-296 $ $) |has| (-783) (-1131)) ((-300) |has| |#1| (-568)) ((-505) |has| |#1| (-38 (-419 (-576)))) ((-568) |has| |#1| (-568)) ((-658 #1#) |has| |#1| (-38 (-419 (-576)))) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #1#) |has| |#1| (-38 (-419 (-576)))) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #1#) |has| |#1| (-38 (-419 (-576)))) ((-652 |#1|) |has| |#1| (-174)) ((-652 $) |has| |#1| (-568)) ((-729 #1#) |has| |#1| (-38 (-419 (-576)))) ((-729 |#1|) |has| |#1| (-174)) ((-729 $) |has| |#1| (-568)) ((-738) . T) ((-909 $ #2=(-1195)) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195)))) ((-915 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195)))) ((-917 #2#) -12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195)))) ((-992 |#1| #0# (-1101)) . T) ((-1021) |has| |#1| (-38 (-419 (-576)))) ((-1070 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1070 |#1|) . T) ((-1070 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1075 #1#) |has| |#1| (-38 (-419 (-576)))) ((-1075 |#1|) . T) ((-1075 $) -2835 (|has| |#1| (-568)) (|has| |#1| (-174))) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1221) |has| |#1| (-38 (-419 (-576)))) ((-1224) |has| |#1| (-38 (-419 (-576)))) ((-1236) . T) ((-1264 |#1| #0#) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1991 (((-656 (-1101)) $) NIL)) (-3022 (((-1195) $) 90)) (-3047 (((-1259 |#2| |#1|) $ (-783)) 73)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) NIL (|has| |#1| (-568)))) (-4412 (($ $) NIL (|has| |#1| (-568)))) (-4176 (((-112) $) 142 (|has| |#1| (-568)))) (-1615 (($ $ (-783)) 127) (($ $ (-783) (-783)) 130)) (-3826 (((-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|))) $) 43)) (-3894 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3768 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1853 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3872 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3747 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2398 (($ (-1176 (-2 (|:| |k| (-783)) (|:| |c| |#1|)))) 52) (($ (-1176 |#1|)) NIL)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3788 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3767 (($) NIL T CONST)) (-4366 (($ $) 134)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2769 (($ $) 140)) (-1731 (((-969 |#1|) $ (-783)) 63) (((-969 |#1|) $ (-783) (-783)) 65)) (-1822 (((-112) $) NIL)) (-1570 (($) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3333 (((-783) $) NIL) (((-783) $ (-783)) NIL)) (-1414 (((-112) $) NIL)) (-2042 (($ $) 117)) (-2826 (($ $ (-576)) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2311 (($ (-576) (-576) $) 136)) (-2973 (($ $ (-938)) 139)) (-1995 (($ (-1 |#1| (-576)) $) 111)) (-2606 (((-112) $) NIL)) (-1970 (($ |#1| (-783)) 16) (($ $ (-1101) (-783)) NIL) (($ $ (-656 (-1101)) (-656 (-783))) NIL)) (-1632 (($ (-1 |#1| |#1|) $) 98)) (-3710 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2129 (($ $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-2648 (($ $) 115)) (-4246 (($ $) 113)) (-3551 (($ (-576) (-576) $) 138)) (-3848 (($ $) 150 (|has| |#1| (-38 (-419 (-576))))) (($ $ (-1195)) 156 (-2835 (-12 (|has| |#1| (-15 -3848 (|#1| |#1| (-1195)))) (|has| |#1| (-15 -1991 ((-656 (-1195)) |#1|))) (|has| |#1| (-38 (-419 (-576))))) (-12 (|has| |#1| (-29 (-576))) (|has| |#1| (-38 (-419 (-576)))) (|has| |#1| (-976)) (|has| |#1| (-1221))))) (($ $ (-1282 |#2|)) 151 (|has| |#1| (-38 (-419 (-576)))))) (-1445 (((-1139) $) NIL)) (-3454 (($ $ (-576) (-576)) 121)) (-1714 (($ $ (-783)) 123)) (-3463 (((-3 $ "failed") $ $) NIL (|has| |#1| (-568)))) (-3984 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3975 (($ $) 119)) (-3306 (((-1176 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-783)))))) (-2871 ((|#1| $ (-783)) 95) (($ $ $) 132 (|has| (-783) (-1131)))) (-2735 (($ $ (-1195)) 108 (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) 102 (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1282 |#2|)) 103)) (-1433 (((-783) $) NIL)) (-3928 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3798 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3778 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3882 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3757 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2869 (($ $) 125)) (-3563 (((-874) $) NIL) (($ (-576)) 26) (($ (-419 (-576))) 148 (|has| |#1| (-38 (-419 (-576))))) (($ $) NIL (|has| |#1| (-568))) (($ |#1|) 25 (|has| |#1| (-174))) (($ (-1259 |#2| |#1|)) 81) (($ (-1282 |#2|)) 22)) (-2927 (((-1176 |#1|) $) NIL)) (-4333 ((|#1| $ (-783)) 94)) (-2883 (((-3 $ "failed") $) NIL (|has| |#1| (-146)))) (-1858 (((-783)) NIL T CONST)) (-2387 ((|#1| $) 91)) (-3985 (((-112) $ $) NIL)) (-3958 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3831 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3040 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3939 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3808 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3981 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-4125 ((|#1| $ (-783)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-783)))) (|has| |#1| (-15 -3563 (|#1| (-1195))))))) (-1830 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3863 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3969 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3948 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-3820 (($ $) NIL (|has| |#1| (-38 (-419 (-576)))))) (-2800 (($) 18 T CONST)) (-2810 (($) 13 T CONST)) (-2051 (($ $ (-1195)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-1195) (-783)) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $ (-656 (-1195)) (-656 (-783))) NIL (-12 (|has| |#1| (-15 * (|#1| (-783) |#1|))) (|has| |#1| (-915 (-1195))))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-783)) NIL (|has| |#1| (-15 * (|#1| (-783) |#1|)))) (($ $ (-1282 |#2|)) NIL)) (-2988 (((-112) $ $) NIL)) (-3107 (($ $ |#1|) NIL (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) 107)) (-3083 (($ $ $) 20)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL) (($ $ |#1|) 145 (|has| |#1| (-374))) (($ $ $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576)))))) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 106) (($ (-419 (-576)) $) NIL (|has| |#1| (-38 (-419 (-576))))) (($ $ (-419 (-576))) NIL (|has| |#1| (-38 (-419 (-576))))))) +(((-1278 |#1| |#2| |#3|) (-13 (-1277 |#1|) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1259 |#2| |#1|))) (-15 -3047 ((-1259 |#2| |#1|) $ (-783))) (-15 -3563 ($ (-1282 |#2|))) (-15 -4246 ($ $)) (-15 -2648 ($ $)) (-15 -2042 ($ $)) (-15 -3975 ($ $)) (-15 -3454 ($ $ (-576) (-576))) (-15 -4366 ($ $)) (-15 -2311 ($ (-576) (-576) $)) (-15 -3551 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) (-1068) (-1195) |#1|) (T -1278)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-1278 *3 *4 *5)))) (-3047 (*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1278 *4 *5 *6)) (-4 *4 (-1068)) (-14 *5 (-1195)) (-14 *6 *4))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) (-4246 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) (-14 *4 *2))) (-2648 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) (-14 *4 *2))) (-2042 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) (-14 *4 *2))) (-3975 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) (-14 *4 *2))) (-3454 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1195)) (-14 *5 *3))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) (-14 *4 *2))) (-2311 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1195)) (-14 *5 *3))) (-3551 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1195)) (-14 *5 *3))) (-3848 (*1 *1 *1 *2) (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) +(-13 (-1277 |#1|) (-909 $ (-1282 |#2|)) (-10 -8 (-15 -3563 ($ (-1259 |#2| |#1|))) (-15 -3047 ((-1259 |#2| |#1|) $ (-783))) (-15 -3563 ($ (-1282 |#2|))) (-15 -4246 ($ $)) (-15 -2648 ($ $)) (-15 -2042 ($ $)) (-15 -3975 ($ $)) (-15 -3454 ($ $ (-576) (-576))) (-15 -4366 ($ $)) (-15 -2311 ($ (-576) (-576) $)) (-15 -3551 ($ (-576) (-576) $)) (IF (|has| |#1| (-38 (-419 (-576)))) (-15 -3848 ($ $ (-1282 |#2|))) |%noBranch|))) +((-1828 (((-1 (-1176 |#1|) (-656 (-1176 |#1|))) (-1 |#2| (-656 |#2|))) 24)) (-1489 (((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3962 (((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|)) 13)) (-4013 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3220 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3404 ((|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|)) 60)) (-2839 (((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))) 66)) (-3199 ((|#2| |#2| |#2|) 43))) +(((-1279 |#1| |#2|) (-10 -7 (-15 -3962 ((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|))) (-15 -1489 ((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1828 ((-1 (-1176 |#1|) (-656 (-1176 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -3199 (|#2| |#2| |#2|)) (-15 -3220 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4013 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3404 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2839 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) (-38 (-419 (-576))) (-1277 |#1|)) (T -1279)) +((-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1277 *5)) (-5 *2 (-656 *6)) (-5 *1 (-1279 *5 *6)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1277 *5)) (-5 *1 (-1279 *5 *2)))) (-4013 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) (-4 *4 (-38 (-419 (-576)))))) (-3199 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1279 *3 *2)) (-4 *2 (-1277 *3)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1277 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-656 (-1176 *4)))) (-5 *1 (-1279 *4 *5)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1277 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-1176 *4) (-1176 *4))) (-5 *1 (-1279 *4 *5)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1277 *4)) (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1279 *4 *5))))) +(-10 -7 (-15 -3962 ((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|))) (-15 -1489 ((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1828 ((-1 (-1176 |#1|) (-656 (-1176 |#1|))) (-1 |#2| (-656 |#2|)))) (-15 -3199 (|#2| |#2| |#2|)) (-15 -3220 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4013 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3404 (|#2| (-1 |#2| (-656 |#2|)) (-656 |#1|))) (-15 -2839 ((-656 |#2|) (-656 |#1|) (-656 (-1 |#2| (-656 |#2|)))))) +((-2709 ((|#2| |#4| (-783)) 31)) (-1479 ((|#4| |#2|) 26)) (-3802 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-568)))) (-1459 (((-1 |#4| (-656 |#4|)) |#3|) 43))) +(((-1280 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1479 (|#4| |#2|)) (-15 -2709 (|#2| |#4| (-783))) (-15 -1459 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -3802 (|#4| (-419 |#2|))) |%noBranch|)) (-1068) (-1262 |#1|) (-668 |#2|) (-1277 |#1|)) (T -1280)) +((-3802 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-568)) (-4 *4 (-1068)) (-4 *2 (-1277 *4)) (-5 *1 (-1280 *4 *5 *6 *2)) (-4 *6 (-668 *5)))) (-1459 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-1262 *4)) (-5 *2 (-1 *6 (-656 *6))) (-5 *1 (-1280 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1277 *4)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-4 *2 (-1262 *5)) (-5 *1 (-1280 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1277 *5)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-1068)) (-4 *3 (-1262 *4)) (-4 *2 (-1277 *4)) (-5 *1 (-1280 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) +(-10 -7 (-15 -1479 (|#4| |#2|)) (-15 -2709 (|#2| |#4| (-783))) (-15 -1459 ((-1 |#4| (-656 |#4|)) |#3|)) (IF (|has| |#1| (-568)) (-15 -3802 (|#4| (-419 |#2|))) |%noBranch|)) +NIL +(((-1281) (-141)) (T -1281)) +NIL +(-13 (-10 -7 (-6 -4093))) +((-3474 (((-112) $ $) NIL)) (-3022 (((-1195)) 12)) (-1927 (((-1177) $) 18)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 11) (((-1195) $) 8)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 15))) +(((-1282 |#1|) (-13 (-1119) (-625 (-1195)) (-10 -8 (-15 -3563 ((-1195) $)) (-15 -3022 ((-1195))))) (-1195)) (T -1282)) +((-3563 (*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2))) (-3022 (*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2)))) +(-13 (-1119) (-625 (-1195)) (-10 -8 (-15 -3563 ((-1195) $)) (-15 -3022 ((-1195))))) +((-3497 (($ (-783)) 19)) (-2351 (((-701 |#2|) $ $) 41)) (-2306 ((|#2| $) 51)) (-4261 ((|#2| $) 50)) (-2962 ((|#2| $ $) 36)) (-2299 (($ $ $) 47)) (-3095 (($ $) 23) (($ $ $) 29)) (-3083 (($ $ $) 15)) (* (($ (-576) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1283 |#1| |#2|) (-10 -8 (-15 -2306 (|#2| |#1|)) (-15 -4261 (|#2| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2351 ((-701 |#2|) |#1| |#1|)) (-15 -2962 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3497 (|#1| (-783))) (-15 -3083 (|#1| |#1| |#1|))) (-1284 |#2|) (-1236)) (T -1283)) +NIL +(-10 -8 (-15 -2306 (|#2| |#1|)) (-15 -4261 (|#2| |#1|)) (-15 -2299 (|#1| |#1| |#1|)) (-15 -2351 ((-701 |#2|) |#1| |#1|)) (-15 -2962 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-576) |#1|)) (-15 -3095 (|#1| |#1| |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3497 (|#1| (-783))) (-15 -3083 (|#1| |#1| |#1|))) +((-3474 (((-112) $ $) 19 (|has| |#1| (-1119)))) (-3497 (($ (-783)) 115 (|has| |#1| (-23)))) (-2333 (((-1291) $ (-576) (-576)) 41 (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) 101) (((-112) $) 95 (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) 92 (|has| $ (-6 -4462))) (($ $) 91 (-12 (|has| |#1| (-862)) (|has| $ (-6 -4462))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) 102) (($ $) 96 (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) 8)) (-3731 ((|#1| $ (-576) |#1|) 53 (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) 60 (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4461)))) (-3767 (($) 7 T CONST)) (-3478 (($ $) 93 (|has| $ (-6 -4462)))) (-3733 (($ $) 103)) (-3172 (($ $) 80 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3902 (($ |#1| $) 79 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) 54 (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) 52)) (-3584 (((-576) (-1 (-112) |#1|) $) 100) (((-576) |#1| $) 99 (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) 98 (|has| |#1| (-1119)))) (-3825 (((-656 |#1|) $) 31 (|has| $ (-6 -4461)))) (-2351 (((-701 |#1|) $ $) 108 (|has| |#1| (-1068)))) (-4033 (($ (-783) |#1|) 70)) (-3115 (((-112) $ (-783)) 9)) (-1386 (((-576) $) 44 (|has| (-576) (-862)))) (-2442 (($ $ $) 90 (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) 104) (($ $ $) 97 (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) 30 (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3814 (((-576) $) 45 (|has| (-576) (-862)))) (-1893 (($ $ $) 89 (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2306 ((|#1| $) 105 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-2712 (((-112) $ (-783)) 10)) (-4261 ((|#1| $) 106 (-12 (|has| |#1| (-1068)) (|has| |#1| (-1021))))) (-1927 (((-1177) $) 22 (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) 62) (($ $ $ (-576)) 61)) (-3321 (((-656 (-576)) $) 47)) (-2378 (((-112) (-576) $) 48)) (-1445 (((-1139) $) 21 (|has| |#1| (-1119)))) (-3504 ((|#1| $) 43 (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 73)) (-2500 (($ $ |#1|) 42 (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) 27 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) 26 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) 24 (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) 14)) (-4407 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) 49)) (-1911 (((-112) $) 11)) (-2597 (($) 12)) (-2871 ((|#1| $ (-576) |#1|) 51) ((|#1| $ (-576)) 50) (($ $ (-1253 (-576))) 71)) (-2962 ((|#1| $ $) 109 (|has| |#1| (-1068)))) (-3464 (($ $ (-576)) 64) (($ $ (-1253 (-576))) 63)) (-2299 (($ $ $) 107 (|has| |#1| (-1068)))) (-1456 (((-783) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4461))) (((-783) |#1| $) 29 (-12 (|has| |#1| (-1119)) (|has| $ (-6 -4461))))) (-3760 (($ $ $ (-576)) 94 (|has| $ (-6 -4462)))) (-1954 (($ $) 13)) (-4076 (((-548) $) 81 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 72)) (-1661 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-656 $)) 66)) (-3563 (((-874) $) 18 (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) 23 (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) 87 (|has| |#1| (-862)))) (-3024 (((-112) $ $) 86 (|has| |#1| (-862)))) (-2988 (((-112) $ $) 20 (|has| |#1| (-1119)))) (-3037 (((-112) $ $) 88 (|has| |#1| (-862)))) (-3010 (((-112) $ $) 85 (|has| |#1| (-862)))) (-3095 (($ $) 114 (|has| |#1| (-21))) (($ $ $) 113 (|has| |#1| (-21)))) (-3083 (($ $ $) 116 (|has| |#1| (-25)))) (* (($ (-576) $) 112 (|has| |#1| (-21))) (($ |#1| $) 111 (|has| |#1| (-738))) (($ $ |#1|) 110 (|has| |#1| (-738)))) (-3485 (((-783) $) 6 (|has| $ (-6 -4461))))) +(((-1284 |#1|) (-141) (-1236)) (T -1284)) +((-3083 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-25)))) (-3497 (*1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1284 *3)) (-4 *3 (-23)) (-4 *3 (-1236)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) (-3095 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) (-2962 (*1 *2 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1068)))) (-2351 (*1 *2 *1 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-1068)) (-5 *2 (-701 *3)))) (-2299 (*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1068)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1021)) (-4 *2 (-1068)))) (-2306 (*1 *2 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1021)) (-4 *2 (-1068))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3083 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3497 ($ (-783))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3095 ($ $)) (-15 -3095 ($ $ $)) (-15 * ($ (-576) $))) |%noBranch|) (IF (|has| |t#1| (-738)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1068)) (PROGN (-15 -2962 (|t#1| $ $)) (-15 -2351 ((-701 |t#1|) $ $)) (-15 -2299 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1021)) (IF (|has| |t#1| (-1068)) (PROGN (-15 -4261 (|t#1| $)) (-15 -2306 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-625 (-874)) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862)) (|has| |#1| (-625 (-874)))) ((-152 |#1|) . T) ((-626 (-548)) |has| |#1| (-626 (-548))) ((-296 #0=(-576) |#1|) . T) ((-296 (-1253 (-576)) $) . T) ((-298 #0# |#1|) . T) ((-319 |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-384 |#1|) . T) ((-501 |#1|) . T) ((-616 #0# |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))) ((-663 |#1|) . T) ((-19 |#1|) . T) ((-862) |has| |#1| (-862)) ((-1119) -2835 (|has| |#1| (-1119)) (|has| |#1| (-862))) ((-1236) . T)) +((-2874 (((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|) 13)) (-2521 ((|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|) 15)) (-1632 (((-3 (-1286 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1286 |#1|)) 30) (((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|)) 18))) +(((-1285 |#1| |#2|) (-10 -7 (-15 -2874 ((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -1632 ((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|))) (-15 -1632 ((-3 (-1286 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1286 |#1|)))) (-1236) (-1236)) (T -1285)) +((-1632 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1285 *5 *6)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1285 *5 *6)))) (-2521 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) (-4 *2 (-1236)) (-5 *1 (-1285 *5 *2)))) (-2874 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1286 *6)) (-4 *6 (-1236)) (-4 *5 (-1236)) (-5 *2 (-1286 *5)) (-5 *1 (-1285 *6 *5))))) +(-10 -7 (-15 -2874 ((-1286 |#2|) (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -2521 (|#2| (-1 |#2| |#1| |#2|) (-1286 |#1|) |#2|)) (-15 -1632 ((-1286 |#2|) (-1 |#2| |#1|) (-1286 |#1|))) (-15 -1632 ((-3 (-1286 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1286 |#1|)))) +((-3474 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3497 (($ (-783)) NIL (|has| |#1| (-23)))) (-2724 (($ (-656 |#1|)) 11)) (-2333 (((-1291) $ (-576) (-576)) NIL (|has| $ (-6 -4462)))) (-2373 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-862)))) (-2265 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4462))) (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#1| (-862))))) (-1758 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-862)))) (-3131 (((-112) $ (-783)) NIL)) (-3731 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462))) ((|#1| $ (-1253 (-576)) |#1|) NIL (|has| $ (-6 -4462)))) (-2496 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3767 (($) NIL T CONST)) (-3478 (($ $) NIL (|has| $ (-6 -4462)))) (-3733 (($ $) NIL)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3902 (($ |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-2521 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4461))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4461)))) (-1776 ((|#1| $ (-576) |#1|) NIL (|has| $ (-6 -4462)))) (-1698 ((|#1| $ (-576)) NIL)) (-3584 (((-576) (-1 (-112) |#1|) $) NIL) (((-576) |#1| $) NIL (|has| |#1| (-1119))) (((-576) |#1| $ (-576)) NIL (|has| |#1| (-1119)))) (-3825 (((-656 |#1|) $) 16 (|has| $ (-6 -4461)))) (-2351 (((-701 |#1|) $ $) NIL (|has| |#1| (-1068)))) (-4033 (($ (-783) |#1|) NIL)) (-3115 (((-112) $ (-783)) NIL)) (-1386 (((-576) $) NIL (|has| (-576) (-862)))) (-2442 (($ $ $) NIL (|has| |#1| (-862)))) (-1854 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-862)))) (-2591 (((-656 |#1|) $) NIL (|has| $ (-6 -4461)))) (-2511 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3814 (((-576) $) 12 (|has| (-576) (-862)))) (-1893 (($ $ $) NIL (|has| |#1| (-862)))) (-1763 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2306 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-2712 (((-112) $ (-783)) NIL)) (-4261 ((|#1| $) NIL (-12 (|has| |#1| (-1021)) (|has| |#1| (-1068))))) (-1927 (((-1177) $) NIL (|has| |#1| (-1119)))) (-2277 (($ |#1| $ (-576)) NIL) (($ $ $ (-576)) NIL)) (-3321 (((-656 (-576)) $) NIL)) (-2378 (((-112) (-576) $) NIL)) (-1445 (((-1139) $) NIL (|has| |#1| (-1119)))) (-3504 ((|#1| $) NIL (|has| (-576) (-862)))) (-2644 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2500 (($ $ |#1|) NIL (|has| $ (-6 -4462)))) (-4207 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 (-304 |#1|))) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-304 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119)))) (($ $ (-656 |#1|) (-656 |#1|)) NIL (-12 (|has| |#1| (-319 |#1|)) (|has| |#1| (-1119))))) (-1693 (((-112) $ $) NIL)) (-4407 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-1947 (((-656 |#1|) $) NIL)) (-1911 (((-112) $) NIL)) (-2597 (($) NIL)) (-2871 ((|#1| $ (-576) |#1|) NIL) ((|#1| $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2962 ((|#1| $ $) NIL (|has| |#1| (-1068)))) (-3464 (($ $ (-576)) NIL) (($ $ (-1253 (-576))) NIL)) (-2299 (($ $ $) NIL (|has| |#1| (-1068)))) (-1456 (((-783) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461))) (((-783) |#1| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#1| (-1119))))) (-3760 (($ $ $ (-576)) NIL (|has| $ (-6 -4462)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) 20 (|has| |#1| (-626 (-548))))) (-3573 (($ (-656 |#1|)) 10)) (-1661 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-656 $)) NIL)) (-3563 (((-874) $) NIL (|has| |#1| (-625 (-874))))) (-3985 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-2043 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4461)))) (-3049 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3024 (((-112) $ $) NIL (|has| |#1| (-862)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-1119)))) (-3037 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3010 (((-112) $ $) NIL (|has| |#1| (-862)))) (-3095 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3083 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-576) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-738))) (($ $ |#1|) NIL (|has| |#1| (-738)))) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1286 |#1|) (-13 (-1284 |#1|) (-10 -8 (-15 -2724 ($ (-656 |#1|))))) (-1236)) (T -1286)) +((-2724 (*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1286 *3))))) +(-13 (-1284 |#1|) (-10 -8 (-15 -2724 ($ (-656 |#1|))))) +((-3474 (((-112) $ $) NIL)) (-4404 (((-1177) $ (-1177)) 107) (((-1177) $ (-1177) (-1177)) 105) (((-1177) $ (-1177) (-656 (-1177))) 104)) (-4053 (($) 69)) (-3528 (((-1291) $ (-480) (-938)) 54)) (-2350 (((-1291) $ (-938) (-1177)) 89) (((-1291) $ (-938) (-886)) 90)) (-2520 (((-1291) $ (-938) (-390) (-390)) 57)) (-1357 (((-1291) $ (-1177)) 84)) (-2288 (((-1291) $ (-938) (-1177)) 94)) (-2816 (((-1291) $ (-938) (-390) (-390)) 58)) (-2483 (((-1291) $ (-938) (-938)) 55)) (-4379 (((-1291) $) 85)) (-3385 (((-1291) $ (-938) (-1177)) 93)) (-4079 (((-1291) $ (-480) (-938)) 41)) (-4040 (((-1291) $ (-938) (-1177)) 92)) (-4417 (((-656 (-270)) $) 29) (($ $ (-656 (-270))) 30)) (-3089 (((-1291) $ (-783) (-783)) 52)) (-2394 (($ $) 70) (($ (-480) (-656 (-270))) 71)) (-1927 (((-1177) $) NIL)) (-4282 (((-576) $) 48)) (-1445 (((-1139) $) NIL)) (-3144 (((-1286 (-3 (-480) "undefined")) $) 47)) (-2553 (((-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4040 (-576)) (|:| -3347 (-576)) (|:| |spline| (-576)) (|:| -3679 (-576)) (|:| |axesColor| (-886)) (|:| -2350 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $) 46)) (-4307 (((-1291) $ (-938) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576)) 83)) (-1561 (((-656 (-960 (-227))) $) NIL)) (-3231 (((-480) $ (-938)) 43)) (-3178 (((-1291) $ (-783) (-783) (-938) (-938)) 50)) (-3953 (((-1291) $ (-1177)) 95)) (-3347 (((-1291) $ (-938) (-1177)) 91)) (-3563 (((-874) $) 102)) (-2055 (((-1291) $) 96)) (-3985 (((-112) $ $) NIL)) (-3679 (((-1291) $ (-938) (-1177)) 87) (((-1291) $ (-938) (-886)) 88)) (-2988 (((-112) $ $) NIL))) +(((-1287) (-13 (-1119) (-10 -8 (-15 -1561 ((-656 (-960 (-227))) $)) (-15 -4053 ($)) (-15 -2394 ($ $)) (-15 -4417 ((-656 (-270)) $)) (-15 -4417 ($ $ (-656 (-270)))) (-15 -2394 ($ (-480) (-656 (-270)))) (-15 -4307 ((-1291) $ (-938) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -2553 ((-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4040 (-576)) (|:| -3347 (-576)) (|:| |spline| (-576)) (|:| -3679 (-576)) (|:| |axesColor| (-886)) (|:| -2350 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -3144 ((-1286 (-3 (-480) "undefined")) $)) (-15 -1357 ((-1291) $ (-1177))) (-15 -4079 ((-1291) $ (-480) (-938))) (-15 -3231 ((-480) $ (-938))) (-15 -3679 ((-1291) $ (-938) (-1177))) (-15 -3679 ((-1291) $ (-938) (-886))) (-15 -2350 ((-1291) $ (-938) (-1177))) (-15 -2350 ((-1291) $ (-938) (-886))) (-15 -4040 ((-1291) $ (-938) (-1177))) (-15 -3385 ((-1291) $ (-938) (-1177))) (-15 -3347 ((-1291) $ (-938) (-1177))) (-15 -3953 ((-1291) $ (-1177))) (-15 -2055 ((-1291) $)) (-15 -3178 ((-1291) $ (-783) (-783) (-938) (-938))) (-15 -2816 ((-1291) $ (-938) (-390) (-390))) (-15 -2520 ((-1291) $ (-938) (-390) (-390))) (-15 -2288 ((-1291) $ (-938) (-1177))) (-15 -3089 ((-1291) $ (-783) (-783))) (-15 -3528 ((-1291) $ (-480) (-938))) (-15 -2483 ((-1291) $ (-938) (-938))) (-15 -4404 ((-1177) $ (-1177))) (-15 -4404 ((-1177) $ (-1177) (-1177))) (-15 -4404 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -4379 ((-1291) $)) (-15 -4282 ((-576) $)) (-15 -3563 ((-874) $))))) (T -1287)) +((-3563 (*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1287)))) (-1561 (*1 *2 *1) (-12 (-5 *2 (-656 (-960 (-227)))) (-5 *1 (-1287)))) (-4053 (*1 *1) (-5 *1 (-1287))) (-2394 (*1 *1 *1) (-5 *1 (-1287))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) (-4417 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) (-2394 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1287)))) (-4307 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-938)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4040 (-576)) (|:| -3347 (-576)) (|:| |spline| (-576)) (|:| -3679 (-576)) (|:| |axesColor| (-886)) (|:| -2350 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576))))) (-5 *1 (-1287)))) (-3144 (*1 *2 *1) (-12 (-5 *2 (-1286 (-3 (-480) "undefined"))) (-5 *1 (-1287)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4079 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3231 (*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-5 *2 (-480)) (-5 *1 (-1287)))) (-3679 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3679 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2350 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2350 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4040 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3385 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3347 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3953 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3178 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2816 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2520 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2288 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3089 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-3528 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-2483 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4404 (*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) (-4404 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) (-4404 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1287)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1287))))) +(-13 (-1119) (-10 -8 (-15 -1561 ((-656 (-960 (-227))) $)) (-15 -4053 ($)) (-15 -2394 ($ $)) (-15 -4417 ((-656 (-270)) $)) (-15 -4417 ($ $ (-656 (-270)))) (-15 -2394 ($ (-480) (-656 (-270)))) (-15 -4307 ((-1291) $ (-938) (-227) (-227) (-227) (-227) (-576) (-576) (-576) (-576) (-886) (-576) (-886) (-576))) (-15 -2553 ((-1286 (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4040 (-576)) (|:| -3347 (-576)) (|:| |spline| (-576)) (|:| -3679 (-576)) (|:| |axesColor| (-886)) (|:| -2350 (-576)) (|:| |unitsColor| (-886)) (|:| |showing| (-576)))) $)) (-15 -3144 ((-1286 (-3 (-480) "undefined")) $)) (-15 -1357 ((-1291) $ (-1177))) (-15 -4079 ((-1291) $ (-480) (-938))) (-15 -3231 ((-480) $ (-938))) (-15 -3679 ((-1291) $ (-938) (-1177))) (-15 -3679 ((-1291) $ (-938) (-886))) (-15 -2350 ((-1291) $ (-938) (-1177))) (-15 -2350 ((-1291) $ (-938) (-886))) (-15 -4040 ((-1291) $ (-938) (-1177))) (-15 -3385 ((-1291) $ (-938) (-1177))) (-15 -3347 ((-1291) $ (-938) (-1177))) (-15 -3953 ((-1291) $ (-1177))) (-15 -2055 ((-1291) $)) (-15 -3178 ((-1291) $ (-783) (-783) (-938) (-938))) (-15 -2816 ((-1291) $ (-938) (-390) (-390))) (-15 -2520 ((-1291) $ (-938) (-390) (-390))) (-15 -2288 ((-1291) $ (-938) (-1177))) (-15 -3089 ((-1291) $ (-783) (-783))) (-15 -3528 ((-1291) $ (-480) (-938))) (-15 -2483 ((-1291) $ (-938) (-938))) (-15 -4404 ((-1177) $ (-1177))) (-15 -4404 ((-1177) $ (-1177) (-1177))) (-15 -4404 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -4379 ((-1291) $)) (-15 -4282 ((-576) $)) (-15 -3563 ((-874) $)))) +((-3474 (((-112) $ $) NIL)) (-1732 (((-1291) $ (-390)) 169) (((-1291) $ (-390) (-390) (-390)) 170)) (-4404 (((-1177) $ (-1177)) 179) (((-1177) $ (-1177) (-1177)) 177) (((-1177) $ (-1177) (-656 (-1177))) 176)) (-1618 (($) 67)) (-2986 (((-1291) $ (-390) (-390) (-390) (-390) (-390)) 141) (((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $) 139) (((-1291) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) 140) (((-1291) $ (-576) (-576) (-390) (-390) (-390)) 144) (((-1291) $ (-390) (-390)) 145) (((-1291) $ (-390) (-390) (-390)) 152)) (-1647 (((-390)) 122) (((-390) (-390)) 123)) (-4044 (((-390)) 117) (((-390) (-390)) 119)) (-1609 (((-390)) 120) (((-390) (-390)) 121)) (-3725 (((-390)) 126) (((-390) (-390)) 127)) (-3364 (((-390)) 124) (((-390) (-390)) 125)) (-2520 (((-1291) $ (-390) (-390)) 171)) (-1357 (((-1291) $ (-1177)) 153)) (-2657 (((-1152 (-227)) $) 68) (($ $ (-1152 (-227))) 69)) (-3387 (((-1291) $ (-1177)) 187)) (-3681 (((-1291) $ (-1177)) 188)) (-2233 (((-1291) $ (-390) (-390)) 151) (((-1291) $ (-576) (-576)) 168)) (-2483 (((-1291) $ (-938) (-938)) 160)) (-4379 (((-1291) $) 137)) (-1908 (((-1291) $ (-1177)) 186)) (-3909 (((-1291) $ (-1177)) 134)) (-4417 (((-656 (-270)) $) 70) (($ $ (-656 (-270))) 71)) (-3089 (((-1291) $ (-783) (-783)) 159)) (-1653 (((-1291) $ (-783) (-960 (-227))) 193)) (-3700 (($ $) 73) (($ (-1152 (-227)) (-1177)) 74) (($ (-1152 (-227)) (-656 (-270))) 75)) (-1323 (((-1291) $ (-390) (-390) (-390)) 131)) (-1927 (((-1177) $) NIL)) (-4282 (((-576) $) 128)) (-1762 (((-1291) $ (-390)) 174)) (-1918 (((-1291) $ (-390)) 191)) (-1445 (((-1139) $) NIL)) (-2054 (((-1291) $ (-390)) 190)) (-3913 (((-1291) $ (-1177)) 136)) (-3178 (((-1291) $ (-783) (-783) (-938) (-938)) 158)) (-4380 (((-1291) $ (-1177)) 133)) (-3953 (((-1291) $ (-1177)) 135)) (-2948 (((-1291) $ (-158) (-158)) 157)) (-3563 (((-874) $) 166)) (-2055 (((-1291) $) 138)) (-3577 (((-1291) $ (-1177)) 189)) (-3985 (((-112) $ $) NIL)) (-3679 (((-1291) $ (-1177)) 132)) (-2988 (((-112) $ $) NIL))) +(((-1288) (-13 (-1119) (-10 -8 (-15 -4044 ((-390))) (-15 -4044 ((-390) (-390))) (-15 -1609 ((-390))) (-15 -1609 ((-390) (-390))) (-15 -1647 ((-390))) (-15 -1647 ((-390) (-390))) (-15 -3364 ((-390))) (-15 -3364 ((-390) (-390))) (-15 -3725 ((-390))) (-15 -3725 ((-390) (-390))) (-15 -1618 ($)) (-15 -3700 ($ $)) (-15 -3700 ($ (-1152 (-227)) (-1177))) (-15 -3700 ($ (-1152 (-227)) (-656 (-270)))) (-15 -2657 ((-1152 (-227)) $)) (-15 -2657 ($ $ (-1152 (-227)))) (-15 -1653 ((-1291) $ (-783) (-960 (-227)))) (-15 -4417 ((-656 (-270)) $)) (-15 -4417 ($ $ (-656 (-270)))) (-15 -3089 ((-1291) $ (-783) (-783))) (-15 -2483 ((-1291) $ (-938) (-938))) (-15 -1357 ((-1291) $ (-1177))) (-15 -3178 ((-1291) $ (-783) (-783) (-938) (-938))) (-15 -2986 ((-1291) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2986 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2986 ((-1291) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2986 ((-1291) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2986 ((-1291) $ (-390) (-390))) (-15 -2986 ((-1291) $ (-390) (-390) (-390))) (-15 -3953 ((-1291) $ (-1177))) (-15 -3679 ((-1291) $ (-1177))) (-15 -4380 ((-1291) $ (-1177))) (-15 -3909 ((-1291) $ (-1177))) (-15 -3913 ((-1291) $ (-1177))) (-15 -2233 ((-1291) $ (-390) (-390))) (-15 -2233 ((-1291) $ (-576) (-576))) (-15 -1732 ((-1291) $ (-390))) (-15 -1732 ((-1291) $ (-390) (-390) (-390))) (-15 -2520 ((-1291) $ (-390) (-390))) (-15 -1908 ((-1291) $ (-1177))) (-15 -2054 ((-1291) $ (-390))) (-15 -1918 ((-1291) $ (-390))) (-15 -3387 ((-1291) $ (-1177))) (-15 -3681 ((-1291) $ (-1177))) (-15 -3577 ((-1291) $ (-1177))) (-15 -1323 ((-1291) $ (-390) (-390) (-390))) (-15 -1762 ((-1291) $ (-390))) (-15 -4379 ((-1291) $)) (-15 -2948 ((-1291) $ (-158) (-158))) (-15 -4404 ((-1177) $ (-1177))) (-15 -4404 ((-1177) $ (-1177) (-1177))) (-15 -4404 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -2055 ((-1291) $)) (-15 -4282 ((-576) $))))) (T -1288)) +((-4044 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1609 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1609 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1647 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-3364 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-3364 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-3725 (*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-3725 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) (-1618 (*1 *1) (-5 *1 (-1288))) (-3700 (*1 *1 *1) (-5 *1 (-1288))) (-3700 (*1 *1 *2 *3) (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1177)) (-5 *1 (-1288)))) (-3700 (*1 *1 *2 *3) (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1288)))) (-2657 (*1 *1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1288)))) (-1653 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-783)) (-5 *4 (-960 (-227))) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4417 (*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-4417 (*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) (-3089 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2483 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1357 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3178 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2986 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *1 (-1288)))) (-2986 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2986 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2986 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2986 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3953 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3679 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4380 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3909 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3913 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2233 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2233 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1732 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1732 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1908 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2054 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1918 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3387 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3681 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-3577 (*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1323 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288)))) (-2948 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-158)) (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4404 (*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288)))) (-4404 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288)))) (-4404 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1288)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288))))) +(-13 (-1119) (-10 -8 (-15 -4044 ((-390))) (-15 -4044 ((-390) (-390))) (-15 -1609 ((-390))) (-15 -1609 ((-390) (-390))) (-15 -1647 ((-390))) (-15 -1647 ((-390) (-390))) (-15 -3364 ((-390))) (-15 -3364 ((-390) (-390))) (-15 -3725 ((-390))) (-15 -3725 ((-390) (-390))) (-15 -1618 ($)) (-15 -3700 ($ $)) (-15 -3700 ($ (-1152 (-227)) (-1177))) (-15 -3700 ($ (-1152 (-227)) (-656 (-270)))) (-15 -2657 ((-1152 (-227)) $)) (-15 -2657 ($ $ (-1152 (-227)))) (-15 -1653 ((-1291) $ (-783) (-960 (-227)))) (-15 -4417 ((-656 (-270)) $)) (-15 -4417 ($ $ (-656 (-270)))) (-15 -3089 ((-1291) $ (-783) (-783))) (-15 -2483 ((-1291) $ (-938) (-938))) (-15 -1357 ((-1291) $ (-1177))) (-15 -3178 ((-1291) $ (-783) (-783) (-938) (-938))) (-15 -2986 ((-1291) $ (-390) (-390) (-390) (-390) (-390))) (-15 -2986 ((-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))) $)) (-15 -2986 ((-1291) $ (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) (|:| |deltaX| (-227)) (|:| |deltaY| (-227))))) (-15 -2986 ((-1291) $ (-576) (-576) (-390) (-390) (-390))) (-15 -2986 ((-1291) $ (-390) (-390))) (-15 -2986 ((-1291) $ (-390) (-390) (-390))) (-15 -3953 ((-1291) $ (-1177))) (-15 -3679 ((-1291) $ (-1177))) (-15 -4380 ((-1291) $ (-1177))) (-15 -3909 ((-1291) $ (-1177))) (-15 -3913 ((-1291) $ (-1177))) (-15 -2233 ((-1291) $ (-390) (-390))) (-15 -2233 ((-1291) $ (-576) (-576))) (-15 -1732 ((-1291) $ (-390))) (-15 -1732 ((-1291) $ (-390) (-390) (-390))) (-15 -2520 ((-1291) $ (-390) (-390))) (-15 -1908 ((-1291) $ (-1177))) (-15 -2054 ((-1291) $ (-390))) (-15 -1918 ((-1291) $ (-390))) (-15 -3387 ((-1291) $ (-1177))) (-15 -3681 ((-1291) $ (-1177))) (-15 -3577 ((-1291) $ (-1177))) (-15 -1323 ((-1291) $ (-390) (-390) (-390))) (-15 -1762 ((-1291) $ (-390))) (-15 -4379 ((-1291) $)) (-15 -2948 ((-1291) $ (-158) (-158))) (-15 -4404 ((-1177) $ (-1177))) (-15 -4404 ((-1177) $ (-1177) (-1177))) (-15 -4404 ((-1177) $ (-1177) (-656 (-1177)))) (-15 -2055 ((-1291) $)) (-15 -4282 ((-576) $)))) +((-3440 (((-656 (-1177)) (-656 (-1177))) 104) (((-656 (-1177))) 96)) (-2053 (((-656 (-1177))) 94)) (-2629 (((-656 (-938)) (-656 (-938))) 69) (((-656 (-938))) 64)) (-3627 (((-656 (-783)) (-656 (-783))) 61) (((-656 (-783))) 55)) (-2169 (((-1291)) 71)) (-1434 (((-938) (-938)) 87) (((-938)) 86)) (-1929 (((-938) (-938)) 85) (((-938)) 84)) (-1689 (((-886) (-886)) 81) (((-886)) 80)) (-4106 (((-227)) 91) (((-227) (-390)) 93)) (-1979 (((-938)) 88) (((-938) (-938)) 89)) (-2361 (((-938) (-938)) 83) (((-938)) 82)) (-2854 (((-886) (-886)) 75) (((-886)) 73)) (-2031 (((-886) (-886)) 77) (((-886)) 76)) (-4119 (((-886) (-886)) 79) (((-886)) 78))) +(((-1289) (-10 -7 (-15 -2854 ((-886))) (-15 -2854 ((-886) (-886))) (-15 -2031 ((-886))) (-15 -2031 ((-886) (-886))) (-15 -4119 ((-886))) (-15 -4119 ((-886) (-886))) (-15 -1689 ((-886))) (-15 -1689 ((-886) (-886))) (-15 -2361 ((-938))) (-15 -2361 ((-938) (-938))) (-15 -3627 ((-656 (-783)))) (-15 -3627 ((-656 (-783)) (-656 (-783)))) (-15 -2629 ((-656 (-938)))) (-15 -2629 ((-656 (-938)) (-656 (-938)))) (-15 -2169 ((-1291))) (-15 -3440 ((-656 (-1177)))) (-15 -3440 ((-656 (-1177)) (-656 (-1177)))) (-15 -2053 ((-656 (-1177)))) (-15 -1929 ((-938))) (-15 -1434 ((-938))) (-15 -1929 ((-938) (-938))) (-15 -1434 ((-938) (-938))) (-15 -1979 ((-938) (-938))) (-15 -1979 ((-938))) (-15 -4106 ((-227) (-390))) (-15 -4106 ((-227))))) (T -1289)) +((-4106 (*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1289)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1289)))) (-1979 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) (-1979 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) (-1434 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) (-1929 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) (-1434 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) (-1929 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) (-2053 (*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) (-3440 (*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) (-2169 (*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1289)))) (-2629 (*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1289)))) (-2629 (*1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1289)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289)))) (-3627 (*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289)))) (-2361 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) (-2361 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) (-1689 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-1689 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-4119 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-4119 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-2031 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-2854 (*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) (-2854 (*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) +(-10 -7 (-15 -2854 ((-886))) (-15 -2854 ((-886) (-886))) (-15 -2031 ((-886))) (-15 -2031 ((-886) (-886))) (-15 -4119 ((-886))) (-15 -4119 ((-886) (-886))) (-15 -1689 ((-886))) (-15 -1689 ((-886) (-886))) (-15 -2361 ((-938))) (-15 -2361 ((-938) (-938))) (-15 -3627 ((-656 (-783)))) (-15 -3627 ((-656 (-783)) (-656 (-783)))) (-15 -2629 ((-656 (-938)))) (-15 -2629 ((-656 (-938)) (-656 (-938)))) (-15 -2169 ((-1291))) (-15 -3440 ((-656 (-1177)))) (-15 -3440 ((-656 (-1177)) (-656 (-1177)))) (-15 -2053 ((-656 (-1177)))) (-15 -1929 ((-938))) (-15 -1434 ((-938))) (-15 -1929 ((-938) (-938))) (-15 -1434 ((-938) (-938))) (-15 -1979 ((-938) (-938))) (-15 -1979 ((-938))) (-15 -4106 ((-227) (-390))) (-15 -4106 ((-227)))) +((-1805 (((-480) (-656 (-656 (-960 (-227)))) (-656 (-270))) 22) (((-480) (-656 (-656 (-960 (-227))))) 21) (((-480) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270))) 20)) (-4108 (((-1287) (-656 (-656 (-960 (-227)))) (-656 (-270))) 30) (((-1287) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270))) 29)) (-3563 (((-1287) (-480)) 46))) +(((-1290) (-10 -7 (-15 -1805 ((-480) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -1805 ((-480) (-656 (-656 (-960 (-227)))))) (-15 -1805 ((-480) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -4108 ((-1287) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -4108 ((-1287) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -3563 ((-1287) (-480))))) (T -1290)) +((-3563 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1287)) (-5 *1 (-1290)))) (-4108 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-1290)))) (-4108 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-1290)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1290)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-480)) (-5 *1 (-1290)))) (-1805 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1290))))) +(-10 -7 (-15 -1805 ((-480) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -1805 ((-480) (-656 (-656 (-960 (-227)))))) (-15 -1805 ((-480) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -4108 ((-1287) (-656 (-656 (-960 (-227)))) (-886) (-886) (-938) (-656 (-270)))) (-15 -4108 ((-1287) (-656 (-656 (-960 (-227)))) (-656 (-270)))) (-15 -3563 ((-1287) (-480)))) +((-2910 (($) 6)) (-3563 (((-874) $) 9))) +(((-1291) (-13 (-625 (-874)) (-10 -8 (-15 -2910 ($))))) (T -1291)) +((-2910 (*1 *1) (-5 *1 (-1291)))) +(-13 (-625 (-874)) (-10 -8 (-15 -2910 ($)))) +((-3107 (($ $ |#2|) 10))) +(((-1292 |#1| |#2|) (-10 -8 (-15 -3107 (|#1| |#1| |#2|))) (-1293 |#2|) (-374)) (T -1292)) +NIL +(-10 -8 (-15 -3107 (|#1| |#1| |#2|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-2446 (((-135)) 33)) (-3563 (((-874) $) 12)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2988 (((-112) $ $) 6)) (-3107 (($ $ |#1|) 34)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31))) +(((-1293 |#1|) (-141) (-374)) (T -1293)) +((-3107 (*1 *1 *1 *2) (-12 (-4 *1 (-1293 *2)) (-4 *2 (-374)))) (-2446 (*1 *2) (-12 (-4 *1 (-1293 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) +(-13 (-729 |t#1|) (-10 -8 (-15 -3107 ($ $ |t#1|)) (-15 -2446 ((-135))))) (((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-660 |#1|) . T) ((-652 |#1|) . T) ((-729 |#1|) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1119) . T)) -((-2299 (((-656 (-1231 |#1|)) (-1196) (-1231 |#1|)) 83)) (-3706 (((-1176 (-1176 (-969 |#1|))) (-1196) (-1176 (-969 |#1|))) 63)) (-4339 (((-1 (-1176 (-1231 |#1|)) (-1176 (-1231 |#1|))) (-783) (-1231 |#1|) (-1176 (-1231 |#1|))) 74)) (-4125 (((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783)) 65)) (-2511 (((-1 (-1192 (-969 |#1|)) (-969 |#1|)) (-1196)) 32)) (-3160 (((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783)) 64))) -(((-1295 |#1|) (-10 -7 (-15 -4125 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -3160 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -3706 ((-1176 (-1176 (-969 |#1|))) (-1196) (-1176 (-969 |#1|)))) (-15 -2511 ((-1 (-1192 (-969 |#1|)) (-969 |#1|)) (-1196))) (-15 -2299 ((-656 (-1231 |#1|)) (-1196) (-1231 |#1|))) (-15 -4339 ((-1 (-1176 (-1231 |#1|)) (-1176 (-1231 |#1|))) (-783) (-1231 |#1|) (-1176 (-1231 |#1|))))) (-374)) (T -1295)) -((-4339 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1231 *6)) (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1295 *6)) (-5 *5 (-1176 *4)))) (-2299 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-656 (-1231 *5))) (-5 *1 (-1295 *5)) (-5 *4 (-1231 *5)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1 (-1192 (-969 *4)) (-969 *4))) (-5 *1 (-1295 *4)) (-4 *4 (-374)))) (-3706 (*1 *2 *3 *4) (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-1176 (-1176 (-969 *5)))) (-5 *1 (-1295 *5)) (-5 *4 (-1176 (-969 *5))))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) (-5 *1 (-1295 *4)) (-4 *4 (-374)))) (-4125 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) (-5 *1 (-1295 *4)) (-4 *4 (-374))))) -(-10 -7 (-15 -4125 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -3160 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -3706 ((-1176 (-1176 (-969 |#1|))) (-1196) (-1176 (-969 |#1|)))) (-15 -2511 ((-1 (-1192 (-969 |#1|)) (-969 |#1|)) (-1196))) (-15 -2299 ((-656 (-1231 |#1|)) (-1196) (-1231 |#1|))) (-15 -4339 ((-1 (-1176 (-1231 |#1|)) (-1176 (-1231 |#1|))) (-783) (-1231 |#1|) (-1176 (-1231 |#1|))))) -((-1483 (((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-2186 (((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79))) -(((-1296 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2186 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1483 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1263 |#1|) (-1263 |#2|) (-421 |#2| |#3|)) (T -1296)) -((-1483 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1296 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-2186 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -1999 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1296 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(-10 -7 (-15 -2186 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -1483 ((-2 (|:| -1999 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) -((-2034 (((-112) $ $) NIL)) (-2439 (((-1154) $) 11)) (-1523 (((-1154) $) 9)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 17) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1297) (-13 (-1102) (-10 -8 (-15 -1523 ((-1154) $)) (-15 -2439 ((-1154) $))))) (T -1297)) -((-1523 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297))))) -(-13 (-1102) (-10 -8 (-15 -1523 ((-1154) $)) (-15 -2439 ((-1154) $)))) -((-2034 (((-112) $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3193 (((-1154) $) 9)) (-4092 (((-874) $) 15) (($ (-1201)) NIL) (((-1201) $) NIL)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) NIL))) -(((-1298) (-13 (-1102) (-10 -8 (-15 -3193 ((-1154) $))))) (T -1298)) -((-3193 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1298))))) -(-13 (-1102) (-10 -8 (-15 -3193 ((-1154) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 58)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) NIL)) (-1810 (((-112) $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-2471 (((-783)) NIL T CONST)) (-2177 (((-1292) (-783)) 16)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 37 T CONST)) (-4310 (($) 84 T CONST)) (-3919 (((-112) $ $) 87)) (-4028 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-4018 (($ $) 89) (($ $ $) NIL)) (-4007 (($ $ $) 63)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) -(((-1299 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1068) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4028 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2177 ((-1292) (-783))))) (-1068) (-862) (-805) (-966 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1299)) -((-4028 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1299 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-966 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-2177 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1292)) (-5 *1 (-1299 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-966 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3)))) -(-13 (-1068) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -4028 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2177 ((-1292) (-783))))) -((-2034 (((-112) $ $) NIL)) (-2512 (((-656 (-2 (|:| -1627 $) (|:| -3709 (-656 |#4|)))) (-656 |#4|)) NIL)) (-2567 (((-656 $) (-656 |#4|)) 96)) (-1541 (((-656 |#3|) $) NIL)) (-3522 (((-112) $) NIL)) (-2932 (((-112) $) NIL (|has| |#1| (-568)))) (-1701 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2919 ((|#4| |#4| $) NIL)) (-2398 (((-2 (|:| |under| $) (|:| -3892 $) (|:| |upper| $)) $ |#3|) NIL)) (-2835 (((-112) $ (-783)) NIL)) (-3457 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3656 (($) NIL T CONST)) (-3425 (((-112) $) NIL (|has| |#1| (-568)))) (-2623 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1582 (((-112) $ $) NIL (|has| |#1| (-568)))) (-3347 (((-112) $) NIL (|has| |#1| (-568)))) (-1574 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-4135 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-1639 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-2974 (((-3 $ "failed") (-656 |#4|)) NIL)) (-2378 (($ (-656 |#4|)) NIL)) (-2712 (((-3 $ "failed") $) 78)) (-3996 ((|#4| |#4| $) 83)) (-1690 (($ $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-2892 (($ |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4400 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-3532 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2948 ((|#4| |#4| $) NIL)) (-2359 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4462))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4462))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2740 (((-2 (|:| -1627 (-656 |#4|)) (|:| -3709 (-656 |#4|))) $) NIL)) (-4260 (((-656 |#4|) $) NIL (|has| $ (-6 -4462)))) (-3871 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2565 ((|#3| $) 84)) (-1419 (((-112) $ (-783)) NIL)) (-1750 (((-656 |#4|) $) 32 (|has| $ (-6 -4462)))) (-3990 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119))))) (-3378 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-3874 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4463)))) (-2477 (($ (-1 |#4| |#4|) $) NIL)) (-2964 (((-656 |#3|) $) NIL)) (-2459 (((-112) |#3| $) NIL)) (-3103 (((-112) $ (-783)) NIL)) (-3288 (((-1178) $) NIL)) (-2912 (((-3 |#4| "failed") $) NIL)) (-2106 (((-656 |#4|) $) 54)) (-3593 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4395 ((|#4| |#4| $) 82)) (-3711 (((-112) $ $) 93)) (-1617 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1875 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3987 ((|#4| |#4| $) NIL)) (-3139 (((-1139) $) NIL)) (-2701 (((-3 |#4| "failed") $) 77)) (-1863 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1479 (((-3 $ "failed") $ |#4|) NIL)) (-2843 (($ $ |#4|) NIL)) (-3292 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-2259 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1905 (((-112) $ $) NIL)) (-3372 (((-112) $) 75)) (-2643 (($) 46)) (-2369 (((-783) $) NIL)) (-3150 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4462)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-4268 (($ $) NIL)) (-1505 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-4103 (($ (-656 |#4|)) NIL)) (-1606 (($ $ |#3|) NIL)) (-2333 (($ $ |#3|) NIL)) (-2792 (($ $) NIL)) (-2875 (($ $ |#3|) NIL)) (-4092 (((-874) $) NIL) (((-656 |#4|) $) 63)) (-2727 (((-783) $) NIL (|has| |#3| (-379)))) (-3991 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-3305 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-1531 (((-112) $ $) NIL)) (-2751 (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3005 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2196 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2190 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4462)))) (-1895 (((-656 |#3|) $) NIL)) (-4101 (((-112) |#3| $) NIL)) (-3919 (((-112) $ $) NIL)) (-2048 (((-783) $) NIL (|has| $ (-6 -4462))))) -(((-1300 |#1| |#2| |#3| |#4|) (-13 (-1230 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3378 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3378 ((-3 $ "failed") (-656 |#4|))) (-15 -3991 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3991 ((-3 $ "failed") (-656 |#4|))) (-15 -3305 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3305 ((-656 $) (-656 |#4|))))) (-568) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -1300)) -((-3378 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1300 *5 *6 *7 *8)))) (-3378 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1300 *3 *4 *5 *6)))) (-3991 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1300 *5 *6 *7 *8)))) (-3991 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1300 *3 *4 *5 *6)))) (-3305 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1300 *6 *7 *8 *9))) (-5 *1 (-1300 *6 *7 *8 *9)))) (-3305 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1300 *4 *5 *6 *7))) (-5 *1 (-1300 *4 *5 *6 *7))))) -(-13 (-1230 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3378 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3378 ((-3 $ "failed") (-656 |#4|))) (-15 -3991 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3991 ((-3 $ "failed") (-656 |#4|))) (-15 -3305 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3305 ((-656 $) (-656 |#4|))))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3788 (((-3 $ "failed") $ $) 20)) (-3656 (($) 18 T CONST)) (-3179 (((-3 $ "failed") $) 37)) (-1810 (((-112) $) 35)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-1301 |#1|) (-141) (-1068)) (T -1301)) +((-4098 (((-656 (-1230 |#1|)) (-1195) (-1230 |#1|)) 83)) (-4272 (((-1176 (-1176 (-969 |#1|))) (-1195) (-1176 (-969 |#1|))) 63)) (-2157 (((-1 (-1176 (-1230 |#1|)) (-1176 (-1230 |#1|))) (-783) (-1230 |#1|) (-1176 (-1230 |#1|))) 74)) (-3452 (((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783)) 65)) (-4064 (((-1 (-1191 (-969 |#1|)) (-969 |#1|)) (-1195)) 32)) (-2376 (((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783)) 64))) +(((-1294 |#1|) (-10 -7 (-15 -3452 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -2376 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -4272 ((-1176 (-1176 (-969 |#1|))) (-1195) (-1176 (-969 |#1|)))) (-15 -4064 ((-1 (-1191 (-969 |#1|)) (-969 |#1|)) (-1195))) (-15 -4098 ((-656 (-1230 |#1|)) (-1195) (-1230 |#1|))) (-15 -2157 ((-1 (-1176 (-1230 |#1|)) (-1176 (-1230 |#1|))) (-783) (-1230 |#1|) (-1176 (-1230 |#1|))))) (-374)) (T -1294)) +((-2157 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1230 *6)) (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1294 *6)) (-5 *5 (-1176 *4)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-656 (-1230 *5))) (-5 *1 (-1294 *5)) (-5 *4 (-1230 *5)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1 (-1191 (-969 *4)) (-969 *4))) (-5 *1 (-1294 *4)) (-4 *4 (-374)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-1176 (-1176 (-969 *5)))) (-5 *1 (-1294 *5)) (-5 *4 (-1176 (-969 *5))))) (-2376 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) (-5 *1 (-1294 *4)) (-4 *4 (-374)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) (-5 *1 (-1294 *4)) (-4 *4 (-374))))) +(-10 -7 (-15 -3452 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -2376 ((-1 (-1176 (-969 |#1|)) (-1176 (-969 |#1|))) (-783))) (-15 -4272 ((-1176 (-1176 (-969 |#1|))) (-1195) (-1176 (-969 |#1|)))) (-15 -4064 ((-1 (-1191 (-969 |#1|)) (-969 |#1|)) (-1195))) (-15 -4098 ((-656 (-1230 |#1|)) (-1195) (-1230 |#1|))) (-15 -2157 ((-1 (-1176 (-1230 |#1|)) (-1176 (-1230 |#1|))) (-783) (-1230 |#1|) (-1176 (-1230 |#1|))))) +((-2426 (((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|) 80)) (-2969 (((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|)))) 79))) +(((-1295 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2969 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2426 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) (-360) (-1262 |#1|) (-1262 |#2|) (-421 |#2| |#3|)) (T -1295)) +((-2426 (*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) (-5 *2 (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-701 *3)))) (-5 *1 (-1295 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5)))) (-2969 (*1 *2) (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) (-5 *2 (-2 (|:| -3713 (-701 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-701 *4)))) (-5 *1 (-1295 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) +(-10 -7 (-15 -2969 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))))) (-15 -2426 ((-2 (|:| -3713 (-701 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-701 |#2|))) |#2|))) +((-3474 (((-112) $ $) NIL)) (-2784 (((-1154) $) 11)) (-2651 (((-1154) $) 9)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 17) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1296) (-13 (-1102) (-10 -8 (-15 -2651 ((-1154) $)) (-15 -2784 ((-1154) $))))) (T -1296)) +((-2651 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1296)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1296))))) +(-13 (-1102) (-10 -8 (-15 -2651 ((-1154) $)) (-15 -2784 ((-1154) $)))) +((-3474 (((-112) $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2006 (((-1154) $) 9)) (-3563 (((-874) $) 15) (($ (-1200)) NIL) (((-1200) $) NIL)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL))) +(((-1297) (-13 (-1102) (-10 -8 (-15 -2006 ((-1154) $))))) (T -1297)) +((-2006 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297))))) +(-13 (-1102) (-10 -8 (-15 -2006 ((-1154) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 58)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) NIL)) (-1414 (((-112) $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 81) (($ (-576)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-174)))) (-1858 (((-783)) NIL T CONST)) (-4391 (((-1291) (-783)) 16)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 37 T CONST)) (-2810 (($) 84 T CONST)) (-2988 (((-112) $ $) 87)) (-3107 (((-3 $ "failed") $ $) NIL (|has| |#1| (-374)))) (-3095 (($ $) 89) (($ $ $) NIL)) (-3083 (($ $ $) 63)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-174))) (($ $ |#1|) NIL (|has| |#1| (-174))))) +(((-1298 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1068) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3107 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4391 ((-1291) (-783))))) (-1068) (-862) (-805) (-966 |#1| |#3| |#2|) (-656 |#2|) (-656 (-783)) (-783)) (T -1298)) +((-3107 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-805)) (-14 *6 (-656 *3)) (-5 *1 (-1298 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-966 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-14 *8 (-656 *5)) (-5 *2 (-1291)) (-5 *1 (-1298 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-966 *4 *6 *5)) (-14 *9 (-656 *3)) (-14 *10 *3)))) +(-13 (-1068) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-174)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-374)) (-15 -3107 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4391 ((-1291) (-783))))) +((-3474 (((-112) $ $) NIL)) (-4162 (((-656 (-2 (|:| -2055 $) (|:| -3223 (-656 |#4|)))) (-656 |#4|)) NIL)) (-1968 (((-656 $) (-656 |#4|)) 96)) (-1991 (((-656 |#3|) $) NIL)) (-1665 (((-112) $) NIL)) (-4324 (((-112) $) NIL (|has| |#1| (-568)))) (-1587 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2596 ((|#4| |#4| $) NIL)) (-1758 (((-2 (|:| |under| $) (|:| -3835 $) (|:| |upper| $)) $ |#3|) NIL)) (-3131 (((-112) $ (-783)) NIL)) (-2496 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3767 (($) NIL T CONST)) (-2359 (((-112) $) NIL (|has| |#1| (-568)))) (-4268 (((-112) $ $) NIL (|has| |#1| (-568)))) (-2556 (((-112) $ $) NIL (|has| |#1| (-568)))) (-1376 (((-112) $) NIL (|has| |#1| (-568)))) (-2905 (((-656 |#4|) (-656 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2147 (((-656 |#4|) (-656 |#4|) $) 28 (|has| |#1| (-568)))) (-1648 (((-656 |#4|) (-656 |#4|) $) NIL (|has| |#1| (-568)))) (-1539 (((-3 $ "failed") (-656 |#4|)) NIL)) (-4056 (($ (-656 |#4|)) NIL)) (-3515 (((-3 $ "failed") $) 78)) (-1937 ((|#4| |#4| $) 83)) (-3172 (($ $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-3902 (($ |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-2091 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1426 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1679 ((|#4| |#4| $) NIL)) (-2521 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4461))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4461))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1852 (((-2 (|:| -2055 (-656 |#4|)) (|:| -3223 (-656 |#4|))) $) NIL)) (-3825 (((-656 |#4|) $) NIL (|has| $ (-6 -4461)))) (-1453 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1734 ((|#3| $) 84)) (-3115 (((-112) $ (-783)) NIL)) (-2591 (((-656 |#4|) $) 32 (|has| $ (-6 -4461)))) (-2511 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119))))) (-4314 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-656 |#4|)) 38)) (-1763 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4462)))) (-1632 (($ (-1 |#4| |#4|) $) NIL)) (-2653 (((-656 |#3|) $) NIL)) (-1845 (((-112) |#3| $) NIL)) (-2712 (((-112) $ (-783)) NIL)) (-1927 (((-1177) $) NIL)) (-3923 (((-3 |#4| "failed") $) NIL)) (-2181 (((-656 |#4|) $) 54)) (-1521 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1582 ((|#4| |#4| $) 82)) (-3391 (((-112) $ $) 93)) (-1461 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-568)))) (-1393 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2196 ((|#4| |#4| $) NIL)) (-1445 (((-1139) $) NIL)) (-3504 (((-3 |#4| "failed") $) 77)) (-2644 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3229 (((-3 $ "failed") $ |#4|) NIL)) (-1714 (($ $ |#4|) NIL)) (-4207 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3306 (($ $ (-656 |#4|) (-656 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-304 |#4|)) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119)))) (($ $ (-656 (-304 |#4|))) NIL (-12 (|has| |#4| (-319 |#4|)) (|has| |#4| (-1119))))) (-1693 (((-112) $ $) NIL)) (-1911 (((-112) $) 75)) (-2597 (($) 46)) (-1433 (((-783) $) NIL)) (-1456 (((-783) |#4| $) NIL (-12 (|has| $ (-6 -4461)) (|has| |#4| (-1119)))) (((-783) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-1954 (($ $) NIL)) (-4076 (((-548) $) NIL (|has| |#4| (-626 (-548))))) (-3573 (($ (-656 |#4|)) NIL)) (-1813 (($ $ |#3|) NIL)) (-3418 (($ $ |#3|) NIL)) (-3543 (($ $) NIL)) (-1794 (($ $ |#3|) NIL)) (-3563 (((-874) $) NIL) (((-656 |#4|) $) 63)) (-2025 (((-783) $) NIL (|has| |#3| (-379)))) (-2605 (((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-656 |#4|)) 45)) (-2928 (((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-656 $) (-656 |#4|)) 74)) (-3985 (((-112) $ $) NIL)) (-3727 (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -1346 (-656 |#4|))) "failed") (-656 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1352 (((-112) $ (-1 (-112) |#4| (-656 |#4|))) NIL)) (-2043 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4461)))) (-3094 (((-656 |#3|) $) NIL)) (-1847 (((-112) |#3| $) NIL)) (-2988 (((-112) $ $) NIL)) (-3485 (((-783) $) NIL (|has| $ (-6 -4461))))) +(((-1299 |#1| |#2| |#3| |#4|) (-13 (-1229 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4314 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4314 ((-3 $ "failed") (-656 |#4|))) (-15 -2605 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2605 ((-3 $ "failed") (-656 |#4|))) (-15 -2928 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2928 ((-656 $) (-656 |#4|))))) (-568) (-805) (-862) (-1084 |#1| |#2| |#3|)) (T -1299)) +((-4314 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8)))) (-4314 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1299 *3 *4 *5 *6)))) (-2605 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8)))) (-2605 (*1 *1 *2) (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1299 *3 *4 *5 *6)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1299 *6 *7 *8 *9))) (-5 *1 (-1299 *6 *7 *8 *9)))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1299 *4 *5 *6 *7))) (-5 *1 (-1299 *4 *5 *6 *7))))) +(-13 (-1229 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4314 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4314 ((-3 $ "failed") (-656 |#4|))) (-15 -2605 ((-3 $ "failed") (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2605 ((-3 $ "failed") (-656 |#4|))) (-15 -2928 ((-656 $) (-656 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2928 ((-656 $) (-656 |#4|))))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-1367 (((-3 $ "failed") $ $) 20)) (-3767 (($) 18 T CONST)) (-1551 (((-3 $ "failed") $) 37)) (-1414 (((-112) $) 35)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#1|) 45)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-1300 |#1|) (-141) (-1068)) (T -1300)) NIL (-13 (-1068) (-111 |t#1| |t#1|) (-628 |t#1|) (-10 -7 (IF (|has| |t#1| (-174)) (-6 (-38 |t#1|)) |%noBranch|))) (((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-174)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 |#1|) |has| |#1| (-174)) ((-729 |#1|) |has| |#1| (-174)) ((-738) . T) ((-1070 |#1|) . T) ((-1075 |#1|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T)) -((-2034 (((-112) $ $) 67)) (-1962 (((-112) $) NIL)) (-2677 (((-656 |#1|) $) 52)) (-1936 (($ $ (-783)) 46)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2026 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3656 (($) NIL T CONST)) (-4065 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-2974 (((-3 (-831 |#1|) "failed") $) NIL)) (-2378 (((-831 |#1|) $) NIL)) (-1717 (($ $) 39)) (-3179 (((-3 $ "failed") $) NIL)) (-1462 (((-112) $) NIL)) (-3252 (($ $) NIL)) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1585 (($ (-831 |#1|) |#2|) 38)) (-3313 (($ $) 40)) (-2264 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-4301 (((-831 |#1|) $) NIL)) (-2580 (((-831 |#1|) $) 41)) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-2267 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-3010 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1681 (((-831 |#1|) $) 35)) (-1692 ((|#2| $) 37)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2369 (((-783) $) 43)) (-3636 (((-112) $) 47)) (-2670 ((|#2| $) NIL)) (-4092 (((-874) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-3076 (((-656 |#2|) $) NIL)) (-2430 ((|#2| $ (-831 |#1|)) NIL)) (-1856 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 13 T CONST)) (-4310 (($) 19 T CONST)) (-2994 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3919 (((-112) $ $) 44)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1302 |#1| |#2|) (-13 (-393 |#2| (-831 |#1|)) (-1308 |#1| |#2|)) (-862) (-1068)) (T -1302)) -NIL -(-13 (-393 |#2| (-831 |#1|)) (-1308 |#1| |#2|)) -((-2703 ((|#3| |#3| (-783)) 28)) (-3353 ((|#3| |#3| (-783)) 34)) (-3879 ((|#3| |#3| |#3| (-783)) 35))) -(((-1303 |#1| |#2| |#3|) (-10 -7 (-15 -3353 (|#3| |#3| (-783))) (-15 -2703 (|#3| |#3| (-783))) (-15 -3879 (|#3| |#3| |#3| (-783)))) (-13 (-1068) (-729 (-419 (-576)))) (-862) (-1308 |#2| |#1|)) (T -1303)) -((-3879 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) (-2703 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) (-3353 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4))))) -(-10 -7 (-15 -3353 (|#3| |#3| (-783))) (-15 -2703 (|#3| |#3| (-783))) (-15 -3879 (|#3| |#3| |#3| (-783)))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-2677 (((-656 |#1|) $) 47)) (-3788 (((-3 $ "failed") $ $) 20)) (-2026 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3656 (($) 18 T CONST)) (-4065 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2974 (((-3 (-831 |#1|) "failed") $) 71)) (-2378 (((-831 |#1|) $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-1462 (((-112) $) 52)) (-3252 (($ $) 51)) (-1810 (((-112) $) 35)) (-4331 (((-112) $) 57)) (-1585 (($ (-831 |#1|) |#2|) 58)) (-3313 (($ $) 56)) (-2264 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-4301 (((-831 |#1|) $) 68)) (-2477 (($ (-1 |#2| |#2|) $) 48)) (-2267 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-3636 (((-112) $) 54)) (-2670 ((|#2| $) 53)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1856 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1304 |#1| |#2|) (-141) (-862) (-1068)) (T -1304)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-831 *3)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-1856 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1304 *4 *2)) (-4 *4 (-862)) (-4 *2 (-1068)))) (-1856 (*1 *2 *1 *1) (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) (-2267 (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-2267 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-2267 (*1 *1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-4065 (*1 *1 *1 *2) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-4065 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-4065 (*1 *1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-1585 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1304 *4 *3)) (-4 *3 (-1068)))) (-4331 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-3313 (*1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-4092 (*1 *1 *2) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-3636 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) (-1462 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-3252 (*1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-2026 (*1 *1 *1 *1) (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)) (-4 *3 (-174)))) (-2026 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-4 *4 (-174)))) (-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-2677 (*1 *2 *1) (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-656 *3))))) -(-13 (-1068) (-1301 |t#2|) (-1057 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4301 ((-831 |t#1|) $)) (-15 -2264 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1856 (|t#2| $ (-831 |t#1|))) (-15 -1856 (|t#2| $ $)) (-15 -2267 ($ $ |t#1|)) (-15 -2267 ($ $ (-831 |t#1|))) (-15 -2267 ($ $ $)) (-15 -4065 ($ $ |t#1|)) (-15 -4065 ($ $ (-831 |t#1|))) (-15 -4065 ($ $ $)) (-15 -1585 ($ (-831 |t#1|) |t#2|)) (-15 -4331 ((-112) $)) (-15 -3313 ($ $)) (-15 -4092 ($ |t#1|)) (-15 -3636 ((-112) $)) (-15 -2670 (|t#2| $)) (-15 -1462 ((-112) $)) (-15 -3252 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -2026 ($ $ $)) (-15 -2026 ($ $ (-783)))) |%noBranch|) (-15 -2477 ($ (-1 |t#2| |t#2|) $)) (-15 -2677 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4455)) (-6 -4455) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1057 #0#) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1301 |#2|) . T)) -((-4273 (((-112) $) 15)) (-4101 (((-112) $) 14)) (-3847 (($ $) 19) (($ $ (-783)) 21))) -(((-1305 |#1| |#2|) (-10 -8 (-15 -3847 (|#1| |#1| (-783))) (-15 -3847 (|#1| |#1|)) (-15 -4273 ((-112) |#1|)) (-15 -4101 ((-112) |#1|))) (-1306 |#2|) (-374)) (T -1305)) -NIL -(-10 -8 (-15 -3847 (|#1| |#1| (-783))) (-15 -3847 (|#1| |#1|)) (-15 -4273 ((-112) |#1|)) (-15 -4101 ((-112) |#1|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-3528 (((-2 (|:| -3500 $) (|:| -4449 $) (|:| |associate| $)) $) 47)) (-2573 (($ $) 46)) (-4306 (((-112) $) 44)) (-4273 (((-112) $) 104)) (-3062 (((-783)) 100)) (-3788 (((-3 $ "failed") $ $) 20)) (-1587 (($ $) 81)) (-2100 (((-430 $) $) 80)) (-4407 (((-112) $ $) 65)) (-3656 (($) 18 T CONST)) (-2974 (((-3 |#1| "failed") $) 111)) (-2378 ((|#1| $) 112)) (-1975 (($ $ $) 61)) (-3179 (((-3 $ "failed") $) 37)) (-1986 (($ $ $) 62)) (-4064 (((-2 (|:| -1856 (-656 $)) (|:| -2582 $)) (-656 $)) 57)) (-1329 (($ $ (-783)) 97 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2725 (((-112) $) 79)) (-1538 (((-845 (-938)) $) 94 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1810 (((-112) $) 35)) (-2651 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3117 (($ $ $) 52) (($ (-656 $)) 51)) (-3288 (((-1178) $) 10)) (-1644 (($ $) 78)) (-3377 (((-112) $) 103)) (-3139 (((-1139) $) 11)) (-3142 (((-1192 $) (-1192 $) (-1192 $)) 50)) (-3149 (($ $ $) 54) (($ (-656 $)) 53)) (-1392 (((-430 $) $) 82)) (-2588 (((-845 (-938))) 101)) (-1331 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2582 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2022 (((-3 $ "failed") $ $) 48)) (-1407 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-1787 (((-783) $) 64)) (-2233 (((-2 (|:| -1720 $) (|:| -4400 $)) $ $) 63)) (-2547 (((-3 (-783) "failed") $ $) 95 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-3667 (((-135)) 109)) (-2369 (((-845 (-938)) $) 102)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-3612 (((-3 $ "failed") $) 93 (-3765 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-2947 (((-112) $ $) 45)) (-4101 (((-112) $) 105)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3847 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-3919 (((-112) $ $) 6)) (-4028 (($ $ $) 73) (($ $ |#1|) 108)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) -(((-1306 |#1|) (-141) (-374)) (T -1306)) -((-4101 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-3377 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938))))) (-2588 (*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938))))) (-3062 (*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-3847 (*1 *1 *1) (-12 (-4 *1 (-1306 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-3847 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) -(-13 (-374) (-1057 |t#1|) (-1294 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -4101 ((-112) $)) (-15 -4273 ((-112) $)) (-15 -3377 ((-112) $)) (-15 -2369 ((-845 (-938)) $)) (-15 -2588 ((-845 (-938)))) (-15 -3062 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -3847 ($ $)) (-15 -3847 ($ $ (-783)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -3765 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -3765 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1241) . T) ((-1294 |#1|) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2677 (((-656 |#1|) $) 98)) (-1936 (($ $ (-783)) 102)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2026 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-3656 (($) NIL T CONST)) (-4065 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-2974 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-906 |#1|) "failed") $) NIL)) (-2378 (((-831 |#1|) $) NIL) (((-906 |#1|) $) NIL)) (-1717 (($ $) 101)) (-3179 (((-3 $ "failed") $) NIL)) (-1462 (((-112) $) 90)) (-3252 (($ $) 93)) (-3390 (($ $ $ (-783)) 103)) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1585 (($ (-831 |#1|) |#2|) NIL) (($ (-906 |#1|) |#2|) 29)) (-3313 (($ $) 119)) (-2264 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4301 (((-831 |#1|) $) NIL)) (-2580 (((-831 |#1|) $) NIL)) (-2477 (($ (-1 |#2| |#2|) $) NIL)) (-2267 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-2703 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-3010 (((-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1681 (((-906 |#1|) $) 83)) (-1692 ((|#2| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3353 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-2369 (((-783) $) 99)) (-3636 (((-112) $) 84)) (-2670 ((|#2| $) 88)) (-4092 (((-874) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-906 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1302 |#1| |#2|) $) 76) (((-1311 |#1| |#2|) $) 81)) (-3076 (((-656 |#2|) $) NIL)) (-2430 ((|#2| $ (-906 |#1|)) NIL)) (-1856 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 21 T CONST)) (-4310 (($) 28 T CONST)) (-2994 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3880 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-3919 (((-112) $ $) 77)) (-4018 (($ $) 111) (($ $ $) 110)) (-4007 (($ $ $) 20)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-906 |#1|)) NIL))) -(((-1307 |#1| |#2|) (-13 (-1308 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -4092 ($ (-676 |#1| |#2|))) (-15 -4092 ((-1302 |#1| |#2|) $)) (-15 -4092 ((-1311 |#1| |#2|) $)) (-15 -3880 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -3390 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -3353 ($ $ (-783))) (-15 -2703 ($ $ (-783)))) |%noBranch|))) (-862) (-174)) (T -1307)) -((-4092 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-1307 *3 *4)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-1311 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3880 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3390 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3353 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))) (-2703 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) -(-13 (-1308 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -4092 ($ (-676 |#1| |#2|))) (-15 -4092 ((-1302 |#1| |#2|) $)) (-15 -4092 ((-1311 |#1| |#2|) $)) (-15 -3880 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -3390 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -3353 ($ $ (-783))) (-15 -2703 ($ $ (-783)))) |%noBranch|))) -((-2034 (((-112) $ $) 7)) (-1962 (((-112) $) 17)) (-2677 (((-656 |#1|) $) 47)) (-1936 (($ $ (-783)) 80)) (-3788 (((-3 $ "failed") $ $) 20)) (-2026 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3656 (($) 18 T CONST)) (-4065 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-2974 (((-3 (-831 |#1|) "failed") $) 71)) (-2378 (((-831 |#1|) $) 72)) (-3179 (((-3 $ "failed") $) 37)) (-1462 (((-112) $) 52)) (-3252 (($ $) 51)) (-1810 (((-112) $) 35)) (-4331 (((-112) $) 57)) (-1585 (($ (-831 |#1|) |#2|) 58)) (-3313 (($ $) 56)) (-2264 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-4301 (((-831 |#1|) $) 68)) (-2580 (((-831 |#1|) $) 82)) (-2477 (($ (-1 |#2| |#2|) $) 48)) (-2267 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-3288 (((-1178) $) 10)) (-3139 (((-1139) $) 11)) (-2369 (((-783) $) 81)) (-3636 (((-112) $) 54)) (-2670 ((|#2| $) 53)) (-4092 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1856 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-2471 (((-783)) 32 T CONST)) (-1531 (((-112) $ $) 9)) (-4300 (($) 19 T CONST)) (-4310 (($) 34 T CONST)) (-3919 (((-112) $ $) 6)) (-4018 (($ $) 23) (($ $ $) 22)) (-4007 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) -(((-1308 |#1| |#2|) (-141) (-862) (-1068)) (T -1308)) -((-2580 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-831 *3)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-783)))) (-1936 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))))) -(-13 (-1304 |t#1| |t#2|) (-10 -8 (-15 -2580 ((-831 |t#1|) $)) (-15 -2369 ((-783) $)) (-15 -1936 ($ $ (-783))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1057 #0#) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1301 |#2|) . T) ((-1304 |#1| |#2|) . T)) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-2677 (((-656 (-1196)) $) NIL)) (-3901 (($ (-1302 (-1196) |#1|)) NIL)) (-1936 (($ $ (-783)) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2026 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-3656 (($) NIL T CONST)) (-4065 (($ $ (-1196)) NIL) (($ $ (-831 (-1196))) NIL) (($ $ $) NIL)) (-2974 (((-3 (-831 (-1196)) "failed") $) NIL)) (-2378 (((-831 (-1196)) $) NIL)) (-3179 (((-3 $ "failed") $) NIL)) (-1462 (((-112) $) NIL)) (-3252 (($ $) NIL)) (-1810 (((-112) $) NIL)) (-4331 (((-112) $) NIL)) (-1585 (($ (-831 (-1196)) |#1|) NIL)) (-3313 (($ $) NIL)) (-2264 (((-2 (|:| |k| (-831 (-1196))) (|:| |c| |#1|)) $) NIL)) (-4301 (((-831 (-1196)) $) NIL)) (-2580 (((-831 (-1196)) $) NIL)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-2267 (($ $ (-1196)) NIL) (($ $ (-831 (-1196))) NIL) (($ $ $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2824 (((-1302 (-1196) |#1|) $) NIL)) (-2369 (((-783) $) NIL)) (-3636 (((-112) $) NIL)) (-2670 ((|#1| $) NIL)) (-4092 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1196))) NIL) (($ (-1196)) NIL)) (-1856 ((|#1| $ (-831 (-1196))) NIL) ((|#1| $ $) NIL)) (-2471 (((-783)) NIL T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) NIL T CONST)) (-4126 (((-656 (-2 (|:| |k| (-1196)) (|:| |c| $))) $) NIL)) (-4310 (($) NIL T CONST)) (-3919 (((-112) $ $) NIL)) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1196) $) NIL))) -(((-1309 |#1|) (-13 (-1308 (-1196) |#1|) (-10 -8 (-15 -2824 ((-1302 (-1196) |#1|) $)) (-15 -3901 ($ (-1302 (-1196) |#1|))) (-15 -4126 ((-656 (-2 (|:| |k| (-1196)) (|:| |c| $))) $)))) (-1068)) (T -1309)) -((-2824 (*1 *2 *1) (-12 (-5 *2 (-1302 (-1196) *3)) (-5 *1 (-1309 *3)) (-4 *3 (-1068)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-1302 (-1196) *3)) (-4 *3 (-1068)) (-5 *1 (-1309 *3)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1196)) (|:| |c| (-1309 *3))))) (-5 *1 (-1309 *3)) (-4 *3 (-1068))))) -(-13 (-1308 (-1196) |#1|) (-10 -8 (-15 -2824 ((-1302 (-1196) |#1|) $)) (-15 -3901 ($ (-1302 (-1196) |#1|))) (-15 -4126 ((-656 (-2 (|:| |k| (-1196)) (|:| |c| $))) $)))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) NIL)) (-3788 (((-3 $ "failed") $ $) NIL)) (-3656 (($) NIL T CONST)) (-2974 (((-3 |#2| "failed") $) NIL)) (-2378 ((|#2| $) NIL)) (-1717 (($ $) NIL)) (-3179 (((-3 $ "failed") $) 42)) (-1462 (((-112) $) 35)) (-3252 (($ $) 37)) (-1810 (((-112) $) NIL)) (-1831 (((-783) $) NIL)) (-2503 (((-656 $) $) NIL)) (-4331 (((-112) $) NIL)) (-1585 (($ |#2| |#1|) NIL)) (-4301 ((|#2| $) 24)) (-2580 ((|#2| $) 22)) (-2477 (($ (-1 |#1| |#1|) $) NIL)) (-3010 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1681 ((|#2| $) NIL)) (-1692 ((|#1| $) NIL)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-3636 (((-112) $) 32)) (-2670 ((|#1| $) 33)) (-4092 (((-874) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3076 (((-656 |#1|) $) NIL)) (-2430 ((|#1| $ |#2|) NIL)) (-1856 ((|#1| $ |#2|) 28)) (-2471 (((-783)) 14 T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 29 T CONST)) (-4310 (($) 11 T CONST)) (-2994 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3919 (((-112) $ $) 30)) (-4028 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-4018 (($ $) NIL) (($ $ $) NIL)) (-4007 (($ $ $) 50)) (** (($ $ (-938)) NIL) (($ $ (-783)) 52)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2048 (((-783) $) 16))) -(((-1310 |#1| |#2|) (-13 (-1068) (-1301 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2048 ((-783) $)) (-15 -2580 (|#2| $)) (-15 -4301 (|#2| $)) (-15 -1717 ($ $)) (-15 -1856 (|#1| $ |#2|)) (-15 -3636 ((-112) $)) (-15 -2670 (|#1| $)) (-15 -1462 ((-112) $)) (-15 -3252 ($ $)) (-15 -2477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4028 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|))) (-1068) (-858)) (T -1310)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))) (-1717 (*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))) (-2477 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-1310 *3 *4)) (-4 *4 (-858)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-858)))) (-2580 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068)))) (-4301 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068)))) (-1856 (*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858)))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-858)))) (-2670 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-858)))) (-3252 (*1 *1 *1) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))) (-4028 (*1 *1 *1 *2) (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1068)) (-4 *3 (-858))))) -(-13 (-1068) (-1301 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2048 ((-783) $)) (-15 -2580 (|#2| $)) (-15 -4301 (|#2| $)) (-15 -1717 ($ $)) (-15 -1856 (|#1| $ |#2|)) (-15 -3636 ((-112) $)) (-15 -2670 (|#1| $)) (-15 -1462 ((-112) $)) (-15 -3252 ($ $)) (-15 -2477 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -4028 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4455)) (-6 -4455) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|) (IF (|has| |#1| (-6 -4460)) (-6 -4460) |%noBranch|))) -((-2034 (((-112) $ $) 27)) (-1962 (((-112) $) NIL)) (-2677 (((-656 |#1|) $) 132)) (-3901 (($ (-1302 |#1| |#2|)) 50)) (-1936 (($ $ (-783)) 38)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2026 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-3656 (($) NIL T CONST)) (-4065 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-2974 (((-3 (-831 |#1|) "failed") $) NIL)) (-2378 (((-831 |#1|) $) NIL)) (-3179 (((-3 $ "failed") $) 122)) (-1462 (((-112) $) 117)) (-3252 (($ $) 118)) (-1810 (((-112) $) NIL)) (-4331 (((-112) $) NIL)) (-1585 (($ (-831 |#1|) |#2|) 20)) (-3313 (($ $) NIL)) (-2264 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4301 (((-831 |#1|) $) 123)) (-2580 (((-831 |#1|) $) 126)) (-2477 (($ (-1 |#2| |#2|) $) 131)) (-2267 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-2824 (((-1302 |#1| |#2|) $) 94)) (-2369 (((-783) $) 129)) (-3636 (((-112) $) 81)) (-2670 ((|#2| $) 32)) (-4092 (((-874) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-1856 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-2471 (((-783)) 120 T CONST)) (-1531 (((-112) $ $) NIL)) (-4300 (($) 15 T CONST)) (-4126 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-4310 (($) 33 T CONST)) (-3919 (((-112) $ $) 14)) (-4018 (($ $) 98) (($ $ $) 101)) (-4007 (($ $ $) 61)) (** (($ $ (-938)) NIL) (($ $ (-783)) 55)) (* (($ (-938) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) -(((-1311 |#1| |#2|) (-13 (-1308 |#1| |#2|) (-10 -8 (-15 -2824 ((-1302 |#1| |#2|) $)) (-15 -3901 ($ (-1302 |#1| |#2|))) (-15 -4126 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-862) (-1068)) (T -1311)) -((-2824 (*1 *2 *1) (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *1 (-1311 *3 *4)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1311 *3 *4))))) (-5 *1 (-1311 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))))) -(-13 (-1308 |#1| |#2|) (-10 -8 (-15 -2824 ((-1302 |#1| |#2|) $)) (-15 -3901 ($ (-1302 |#1| |#2|))) (-15 -4126 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-2034 (((-112) $ $) NIL)) (-3551 (($ (-656 (-938))) 10)) (-2283 (((-990) $) 12)) (-3288 (((-1178) $) NIL)) (-3139 (((-1139) $) NIL)) (-4092 (((-874) $) 25) (($ (-990)) 14) (((-990) $) 13)) (-1531 (((-112) $ $) NIL)) (-3919 (((-112) $ $) 17))) -(((-1312) (-13 (-1119) (-502 (-990)) (-10 -8 (-15 -3551 ($ (-656 (-938)))) (-15 -2283 ((-990) $))))) (T -1312)) -((-3551 (*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1312)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-1312))))) -(-13 (-1119) (-502 (-990)) (-10 -8 (-15 -3551 ($ (-656 (-938)))) (-15 -2283 ((-990) $)))) -((-1435 (((-656 (-1176 |#1|)) (-1 (-656 (-1176 |#1|)) (-656 (-1176 |#1|))) (-576)) 16) (((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|))) 13))) -(((-1313 |#1|) (-10 -7 (-15 -1435 ((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|)))) (-15 -1435 ((-656 (-1176 |#1|)) (-1 (-656 (-1176 |#1|)) (-656 (-1176 |#1|))) (-576)))) (-1237)) (T -1313)) -((-1435 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1176 *5)) (-656 (-1176 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1176 *5))) (-5 *1 (-1313 *5)) (-4 *5 (-1237)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-1 (-1176 *4) (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1313 *4)) (-4 *4 (-1237))))) -(-10 -7 (-15 -1435 ((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|)))) (-15 -1435 ((-656 (-1176 |#1|)) (-1 (-656 (-1176 |#1|)) (-656 (-1176 |#1|))) (-576)))) -((-4305 (((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|))) 174) (((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112)) 173) (((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-1065 |#1| |#2|)) 156)) (-1734 (((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|))) 85) (((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112)) 84) (((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112) (-112)) 83)) (-2100 (((-656 (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1065 |#1| |#2|)) 73)) (-1854 (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|))) 140) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112)) 139) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|)) 132)) (-2599 (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|))) 145) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112)) 144) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|)) 142)) (-1505 (((-656 (-792 |#1| (-876 |#3|))) (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) 111) (((-1192 (-1043 (-419 |#1|))) (-1192 |#1|)) 102) (((-969 (-1043 (-419 |#1|))) (-792 |#1| (-876 |#3|))) 109) (((-969 (-1043 (-419 |#1|))) (-969 |#1|)) 107) (((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|))) 33))) -(((-1314 |#1| |#2| |#3|) (-10 -7 (-15 -1734 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112) (-112))) (-15 -1734 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112))) (-15 -1734 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-1065 |#1| |#2|))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2599 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -2599 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -2599 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -2599 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2100 ((-656 (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1065 |#1| |#2|))) (-15 -1505 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -1505 ((-969 (-1043 (-419 |#1|))) (-969 |#1|))) (-15 -1505 ((-969 (-1043 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -1505 ((-1192 (-1043 (-419 |#1|))) (-1192 |#1|))) (-15 -1505 ((-656 (-792 |#1| (-876 |#3|))) (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))))) (-13 (-860) (-317) (-148) (-1041)) (-656 (-1196)) (-656 (-1196))) (T -1314)) -((-1505 (*1 *2 *3) (-12 (-5 *3 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-1192 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1196))) (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-1505 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-2599 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-1854 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-1854 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-4305 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -2210 (-1192 *4)) (|:| -3287 (-656 (-969 *4)))))) (-5 *1 (-1314 *4 *5 *6)) (-5 *3 (-656 (-969 *4))) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-4305 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-4305 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-4305 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-4305 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-2 (|:| -2210 (-1192 *4)) (|:| -3287 (-656 (-969 *4)))))) (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-1065 *4 *5))) (-5 *1 (-1314 *4 *5 *6)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) (-1734 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) (-1734 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196)))))) -(-10 -7 (-15 -1734 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112) (-112))) (-15 -1734 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112))) (-15 -1734 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-1065 |#1| |#2|))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -4305 ((-656 (-2 (|:| -2210 (-1192 |#1|)) (|:| -3287 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -1854 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2599 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -2599 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -2599 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -2599 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2100 ((-656 (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1065 |#1| |#2|))) (-15 -1505 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -1505 ((-969 (-1043 (-419 |#1|))) (-969 |#1|))) (-15 -1505 ((-969 (-1043 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -1505 ((-1192 (-1043 (-419 |#1|))) (-1192 |#1|))) (-15 -1505 ((-656 (-792 |#1| (-876 |#3|))) (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))))) -((-4353 (((-3 (-1287 (-419 (-576))) "failed") (-1287 |#1|) |#1|) 21)) (-2767 (((-112) (-1287 |#1|)) 12)) (-3616 (((-3 (-1287 (-576)) "failed") (-1287 |#1|)) 16))) -(((-1315 |#1|) (-10 -7 (-15 -2767 ((-112) (-1287 |#1|))) (-15 -3616 ((-3 (-1287 (-576)) "failed") (-1287 |#1|))) (-15 -4353 ((-3 (-1287 (-419 (-576))) "failed") (-1287 |#1|) |#1|))) (-13 (-1068) (-651 (-576)))) (T -1315)) -((-4353 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) (-5 *2 (-1287 (-419 (-576)))) (-5 *1 (-1315 *4)))) (-3616 (*1 *2 *3) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) (-5 *2 (-1287 (-576))) (-5 *1 (-1315 *4)))) (-2767 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1315 *4))))) -(-10 -7 (-15 -2767 ((-112) (-1287 |#1|))) (-15 -3616 ((-3 (-1287 (-576)) "failed") (-1287 |#1|))) (-15 -4353 ((-3 (-1287 (-419 (-576))) "failed") (-1287 |#1|) |#1|))) -((-2034 (((-112) $ $) NIL)) (-1962 (((-112) $) 11)) (-3788 (((-3 $ "failed") $ $) NIL)) (-2247 (((-783)) 8)) (-3656 (($) NIL T CONST)) (-3179 (((-3 $ "failed") $) 58)) (-2446 (($) 49)) (-1810 (((-112) $) 57)) (-2083 (((-3 $ "failed") $) 40)) (-3225 (((-938) $) 15)) (-3288 (((-1178) $) NIL)) (-3503 (($) 32 T CONST)) (-2550 (($ (-938)) 50)) (-3139 (((-1139) $) NIL)) (-1505 (((-576) $) 13)) (-4092 (((-874) $) 27) (($ (-576)) 24)) (-2471 (((-783)) 9 T CONST)) (-1531 (((-112) $ $) 60)) (-4300 (($) 29 T CONST)) (-4310 (($) 31 T CONST)) (-3919 (((-112) $ $) 38)) (-4018 (($ $) 52) (($ $ $) 47)) (-4007 (($ $ $) 35)) (** (($ $ (-938)) NIL) (($ $ (-783)) 54)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) -(((-1316 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1171)) (-938)) (T -1316)) +((-3474 (((-112) $ $) 67)) (-1454 (((-112) $) NIL)) (-3388 (((-656 |#1|) $) 52)) (-3639 (($ $ (-783)) 46)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4163 (($ $ (-783)) 24 (|has| |#2| (-174))) (($ $ $) 25 (|has| |#2| (-174)))) (-3767 (($) NIL T CONST)) (-1338 (($ $ $) 70) (($ $ (-831 |#1|)) 56) (($ $ |#1|) 60)) (-1539 (((-3 (-831 |#1|) "failed") $) NIL)) (-4056 (((-831 |#1|) $) NIL)) (-2166 (($ $) 39)) (-1551 (((-3 $ "failed") $) NIL)) (-2807 (((-112) $) NIL)) (-2670 (($ $) NIL)) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-3605 (($ (-831 |#1|) |#2|) 38)) (-2575 (($ $) 40)) (-4169 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 12)) (-1764 (((-831 |#1|) $) NIL)) (-3854 (((-831 |#1|) $) 41)) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-4398 (($ $ $) 69) (($ $ (-831 |#1|)) 58) (($ $ |#1|) 62)) (-1814 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2129 (((-831 |#1|) $) 35)) (-2142 ((|#2| $) 37)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-1433 (((-783) $) 43)) (-3652 (((-112) $) 47)) (-1398 ((|#2| $) NIL)) (-3563 (((-874) $) NIL) (($ (-831 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-576)) NIL)) (-2927 (((-656 |#2|) $) NIL)) (-4333 ((|#2| $ (-831 |#1|)) NIL)) (-1706 ((|#2| $ $) 76) ((|#2| $ (-831 |#1|)) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 13 T CONST)) (-2810 (($) 19 T CONST)) (-3816 (((-656 (-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2988 (((-112) $ $) 44)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 28)) (** (($ $ (-783)) NIL) (($ $ (-938)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-831 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1301 |#1| |#2|) (-13 (-393 |#2| (-831 |#1|)) (-1307 |#1| |#2|)) (-862) (-1068)) (T -1301)) +NIL +(-13 (-393 |#2| (-831 |#1|)) (-1307 |#1| |#2|)) +((-3710 ((|#3| |#3| (-783)) 28)) (-3984 ((|#3| |#3| (-783)) 34)) (-4031 ((|#3| |#3| |#3| (-783)) 35))) +(((-1302 |#1| |#2| |#3|) (-10 -7 (-15 -3984 (|#3| |#3| (-783))) (-15 -3710 (|#3| |#3| (-783))) (-15 -4031 (|#3| |#3| |#3| (-783)))) (-13 (-1068) (-729 (-419 (-576)))) (-862) (-1307 |#2| |#1|)) (T -1302)) +((-4031 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) (-3710 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) (-3984 (*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4))))) +(-10 -7 (-15 -3984 (|#3| |#3| (-783))) (-15 -3710 (|#3| |#3| (-783))) (-15 -4031 (|#3| |#3| |#3| (-783)))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3388 (((-656 |#1|) $) 47)) (-1367 (((-3 $ "failed") $ $) 20)) (-4163 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3767 (($) 18 T CONST)) (-1338 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1539 (((-3 (-831 |#1|) "failed") $) 71)) (-4056 (((-831 |#1|) $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-2807 (((-112) $) 52)) (-2670 (($ $) 51)) (-1414 (((-112) $) 35)) (-2606 (((-112) $) 57)) (-3605 (($ (-831 |#1|) |#2|) 58)) (-2575 (($ $) 56)) (-4169 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-1764 (((-831 |#1|) $) 68)) (-1632 (($ (-1 |#2| |#2|) $) 48)) (-4398 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-3652 (((-112) $) 54)) (-1398 ((|#2| $) 53)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1706 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1303 |#1| |#2|) (-141) (-862) (-1068)) (T -1303)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-831 *3)))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4))))) (-1706 (*1 *2 *1 *3) (-12 (-5 *3 (-831 *4)) (-4 *1 (-1303 *4 *2)) (-4 *4 (-862)) (-4 *2 (-1068)))) (-1706 (*1 *2 *1 *1) (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) (-4398 (*1 *1 *1 *2) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-4398 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-4398 (*1 *1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-1338 (*1 *1 *1 *2) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-1338 (*1 *1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-1338 (*1 *1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-3605 (*1 *1 *2 *3) (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1303 *4 *3)) (-4 *3 (-1068)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-2575 (*1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-3563 (*1 *1 *2) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-3652 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-1398 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-112)))) (-2670 (*1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) (-4163 (*1 *1 *1 *1) (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)) (-4 *3 (-174)))) (-4163 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-4 *4 (-174)))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-656 *3))))) +(-13 (-1068) (-1300 |t#2|) (-1057 (-831 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1764 ((-831 |t#1|) $)) (-15 -4169 ((-2 (|:| |k| (-831 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1706 (|t#2| $ (-831 |t#1|))) (-15 -1706 (|t#2| $ $)) (-15 -4398 ($ $ |t#1|)) (-15 -4398 ($ $ (-831 |t#1|))) (-15 -4398 ($ $ $)) (-15 -1338 ($ $ |t#1|)) (-15 -1338 ($ $ (-831 |t#1|))) (-15 -1338 ($ $ $)) (-15 -3605 ($ (-831 |t#1|) |t#2|)) (-15 -2606 ((-112) $)) (-15 -2575 ($ $)) (-15 -3563 ($ |t#1|)) (-15 -3652 ((-112) $)) (-15 -1398 (|t#2| $)) (-15 -2807 ((-112) $)) (-15 -2670 ($ $)) (IF (|has| |t#2| (-174)) (PROGN (-15 -4163 ($ $ $)) (-15 -4163 ($ $ (-783)))) |%noBranch|) (-15 -1632 ($ (-1 |t#2| |t#2|) $)) (-15 -3388 ((-656 |t#1|) $)) (IF (|has| |t#2| (-6 -4454)) (-6 -4454) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1057 #0#) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1300 |#2|) . T)) +((-2415 (((-112) $) 15)) (-1847 (((-112) $) 14)) (-4273 (($ $) 19) (($ $ (-783)) 21))) +(((-1304 |#1| |#2|) (-10 -8 (-15 -4273 (|#1| |#1| (-783))) (-15 -4273 (|#1| |#1|)) (-15 -2415 ((-112) |#1|)) (-15 -1847 ((-112) |#1|))) (-1305 |#2|) (-374)) (T -1304)) +NIL +(-10 -8 (-15 -4273 (|#1| |#1| (-783))) (-15 -4273 (|#1| |#1|)) (-15 -2415 ((-112) |#1|)) (-15 -1847 ((-112) |#1|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-2362 (((-2 (|:| -3341 $) (|:| -4448 $) (|:| |associate| $)) $) 47)) (-4412 (($ $) 46)) (-4176 (((-112) $) 44)) (-2415 (((-112) $) 104)) (-4032 (((-783)) 100)) (-1367 (((-3 $ "failed") $ $) 20)) (-1760 (($ $) 81)) (-2732 (((-430 $) $) 80)) (-1727 (((-112) $ $) 65)) (-3767 (($) 18 T CONST)) (-1539 (((-3 |#1| "failed") $) 111)) (-4056 ((|#1| $) 112)) (-3420 (($ $ $) 61)) (-1551 (((-3 $ "failed") $) 37)) (-3431 (($ $ $) 62)) (-4356 (((-2 (|:| -1706 (-656 $)) (|:| -2202 $)) (-656 $)) 57)) (-3499 (($ $ (-783)) 97 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379)))) (($ $) 96 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1792 (((-112) $) 79)) (-3333 (((-845 (-938)) $) 94 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1414 (((-112) $) 35)) (-3381 (((-3 (-656 $) "failed") (-656 $) $) 58)) (-3459 (($ $ $) 52) (($ (-656 $)) 51)) (-1927 (((-1177) $) 10)) (-2095 (($ $) 78)) (-4206 (((-112) $) 103)) (-1445 (((-1139) $) 11)) (-2183 (((-1191 $) (-1191 $) (-1191 $)) 50)) (-3495 (($ $ $) 54) (($ (-656 $)) 53)) (-1839 (((-430 $) $) 82)) (-3201 (((-845 (-938))) 101)) (-3738 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2202 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3463 (((-3 $ "failed") $ $) 48)) (-1350 (((-3 (-656 $) "failed") (-656 $) $) 56)) (-3112 (((-783) $) 64)) (-1784 (((-2 (|:| -3824 $) (|:| -2091 $)) $ $) 63)) (-3721 (((-3 (-783) "failed") $ $) 95 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-2446 (((-135)) 109)) (-1433 (((-845 (-938)) $) 102)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ $) 49) (($ (-419 (-576))) 74) (($ |#1|) 110)) (-2883 (((-3 $ "failed") $) 93 (-2835 (|has| |#1| (-146)) (|has| |#1| (-379))))) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-3040 (((-112) $ $) 45)) (-1847 (((-112) $) 105)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-4273 (($ $) 99 (|has| |#1| (-379))) (($ $ (-783)) 98 (|has| |#1| (-379)))) (-2988 (((-112) $ $) 6)) (-3107 (($ $ $) 73) (($ $ |#1|) 108)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36) (($ $ (-576)) 77)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ $ (-419 (-576))) 76) (($ (-419 (-576)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106))) +(((-1305 |#1|) (-141) (-374)) (T -1305)) +((-1847 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938))))) (-3201 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938))))) (-4032 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-783)))) (-4273 (*1 *1 *1) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-374)) (-4 *2 (-379)))) (-4273 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-4 *3 (-379))))) +(-13 (-374) (-1057 |t#1|) (-1293 |t#1|) (-10 -8 (IF (|has| |t#1| (-148)) (-6 (-148)) |%noBranch|) (IF (|has| |t#1| (-146)) (-6 (-414)) |%noBranch|) (-15 -1847 ((-112) $)) (-15 -2415 ((-112) $)) (-15 -4206 ((-112) $)) (-15 -1433 ((-845 (-938)) $)) (-15 -3201 ((-845 (-938)))) (-15 -4032 ((-783))) (IF (|has| |t#1| (-379)) (PROGN (-6 (-414)) (-15 -4273 ($ $)) (-15 -4273 ($ $ (-783)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-419 (-576))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-132) . T) ((-146) -2835 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-148) |has| |#1| (-148)) ((-628 #0#) . T) ((-628 (-576)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-625 (-874)) . T) ((-174) . T) ((-248) . T) ((-300) . T) ((-317) . T) ((-374) . T) ((-414) -2835 (|has| |#1| (-379)) (|has| |#1| (-146))) ((-464) . T) ((-568) . T) ((-658 #0#) . T) ((-658 (-576)) . T) ((-658 |#1|) . T) ((-658 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-652 #0#) . T) ((-652 |#1|) . T) ((-652 $) . T) ((-729 #0#) . T) ((-729 |#1|) . T) ((-729 $) . T) ((-738) . T) ((-937) . T) ((-1057 |#1|) . T) ((-1070 #0#) . T) ((-1070 |#1|) . T) ((-1070 $) . T) ((-1075 #0#) . T) ((-1075 |#1|) . T) ((-1075 $) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1240) . T) ((-1293 |#1|) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3388 (((-656 |#1|) $) 98)) (-3639 (($ $ (-783)) 102)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4163 (($ $ $) NIL (|has| |#2| (-174))) (($ $ (-783)) NIL (|has| |#2| (-174)))) (-3767 (($) NIL T CONST)) (-1338 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-1539 (((-3 (-831 |#1|) "failed") $) NIL) (((-3 (-906 |#1|) "failed") $) NIL)) (-4056 (((-831 |#1|) $) NIL) (((-906 |#1|) $) NIL)) (-2166 (($ $) 101)) (-1551 (((-3 $ "failed") $) NIL)) (-2807 (((-112) $) 90)) (-2670 (($ $) 93)) (-3105 (($ $ $ (-783)) 103)) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-3605 (($ (-831 |#1|) |#2|) NIL) (($ (-906 |#1|) |#2|) 29)) (-2575 (($ $) 119)) (-4169 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1764 (((-831 |#1|) $) NIL)) (-3854 (((-831 |#1|) $) NIL)) (-1632 (($ (-1 |#2| |#2|) $) NIL)) (-4398 (($ $ |#1|) NIL) (($ $ (-831 |#1|)) NIL) (($ $ $) NIL)) (-3710 (($ $ (-783)) 112 (|has| |#2| (-729 (-419 (-576)))))) (-1814 (((-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2129 (((-906 |#1|) $) 83)) (-2142 ((|#2| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3984 (($ $ (-783)) 109 (|has| |#2| (-729 (-419 (-576)))))) (-1433 (((-783) $) 99)) (-3652 (((-112) $) 84)) (-1398 ((|#2| $) 88)) (-3563 (((-874) $) 69) (($ (-576)) NIL) (($ |#2|) 60) (($ (-831 |#1|)) NIL) (($ |#1|) 71) (($ (-906 |#1|)) NIL) (($ (-676 |#1| |#2|)) 48) (((-1301 |#1| |#2|) $) 76) (((-1310 |#1| |#2|) $) 81)) (-2927 (((-656 |#2|) $) NIL)) (-4333 ((|#2| $ (-906 |#1|)) NIL)) (-1706 ((|#2| $ (-831 |#1|)) NIL) ((|#2| $ $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 21 T CONST)) (-2810 (($) 28 T CONST)) (-3816 (((-656 (-2 (|:| |k| (-906 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4129 (((-3 (-676 |#1| |#2|) "failed") $) 118)) (-2988 (((-112) $ $) 77)) (-3095 (($ $) 111) (($ $ $) 110)) (-3083 (($ $ $) 20)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-906 |#1|)) NIL))) +(((-1306 |#1| |#2|) (-13 (-1307 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -3563 ($ (-676 |#1| |#2|))) (-15 -3563 ((-1301 |#1| |#2|) $)) (-15 -3563 ((-1310 |#1| |#2|) $)) (-15 -4129 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -3105 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -3984 ($ $ (-783))) (-15 -3710 ($ $ (-783)))) |%noBranch|))) (-862) (-174)) (T -1306)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) (-5 *1 (-1306 *3 *4)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1310 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-4129 (*1 *2 *1) (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3105 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) (-3984 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174)))) (-3710 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) +(-13 (-1307 |#1| |#2|) (-393 |#2| (-906 |#1|)) (-10 -8 (-15 -3563 ($ (-676 |#1| |#2|))) (-15 -3563 ((-1301 |#1| |#2|) $)) (-15 -3563 ((-1310 |#1| |#2|) $)) (-15 -4129 ((-3 (-676 |#1| |#2|) "failed") $)) (-15 -3105 ($ $ $ (-783))) (IF (|has| |#2| (-729 (-419 (-576)))) (PROGN (-15 -3984 ($ $ (-783))) (-15 -3710 ($ $ (-783)))) |%noBranch|))) +((-3474 (((-112) $ $) 7)) (-1454 (((-112) $) 17)) (-3388 (((-656 |#1|) $) 47)) (-3639 (($ $ (-783)) 80)) (-1367 (((-3 $ "failed") $ $) 20)) (-4163 (($ $ $) 50 (|has| |#2| (-174))) (($ $ (-783)) 49 (|has| |#2| (-174)))) (-3767 (($) 18 T CONST)) (-1338 (($ $ |#1|) 61) (($ $ (-831 |#1|)) 60) (($ $ $) 59)) (-1539 (((-3 (-831 |#1|) "failed") $) 71)) (-4056 (((-831 |#1|) $) 72)) (-1551 (((-3 $ "failed") $) 37)) (-2807 (((-112) $) 52)) (-2670 (($ $) 51)) (-1414 (((-112) $) 35)) (-2606 (((-112) $) 57)) (-3605 (($ (-831 |#1|) |#2|) 58)) (-2575 (($ $) 56)) (-4169 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) 67)) (-1764 (((-831 |#1|) $) 68)) (-3854 (((-831 |#1|) $) 82)) (-1632 (($ (-1 |#2| |#2|) $) 48)) (-4398 (($ $ |#1|) 64) (($ $ (-831 |#1|)) 63) (($ $ $) 62)) (-1927 (((-1177) $) 10)) (-1445 (((-1139) $) 11)) (-1433 (((-783) $) 81)) (-3652 (((-112) $) 54)) (-1398 ((|#2| $) 53)) (-3563 (((-874) $) 12) (($ (-576)) 33) (($ |#2|) 75) (($ (-831 |#1|)) 70) (($ |#1|) 55)) (-1706 ((|#2| $ (-831 |#1|)) 66) ((|#2| $ $) 65)) (-1858 (((-783)) 32 T CONST)) (-3985 (((-112) $ $) 9)) (-2800 (($) 19 T CONST)) (-2810 (($) 34 T CONST)) (-2988 (((-112) $ $) 6)) (-3095 (($ $) 23) (($ $ $) 22)) (-3083 (($ $ $) 15)) (** (($ $ (-938)) 28) (($ $ (-783)) 36)) (* (($ (-938) $) 14) (($ (-783) $) 16) (($ (-576) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69))) +(((-1307 |#1| |#2|) (-141) (-862) (-1068)) (T -1307)) +((-3854 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-831 *3)))) (-1433 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *2 (-783)))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))))) +(-13 (-1303 |t#1| |t#2|) (-10 -8 (-15 -3854 ((-831 |t#1|) $)) (-15 -1433 ((-783) $)) (-15 -3639 ($ $ (-783))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-174)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-132) . T) ((-628 (-576)) . T) ((-628 #0=(-831 |#1|)) . T) ((-628 |#2|) . T) ((-625 (-874)) . T) ((-658 (-576)) . T) ((-658 |#2|) . T) ((-658 $) . T) ((-660 |#2|) . T) ((-660 $) . T) ((-652 |#2|) |has| |#2| (-174)) ((-729 |#2|) |has| |#2| (-174)) ((-738) . T) ((-1057 #0#) . T) ((-1070 |#2|) . T) ((-1075 |#2|) . T) ((-1068) . T) ((-1077) . T) ((-1131) . T) ((-1119) . T) ((-1300 |#2|) . T) ((-1303 |#1| |#2|) . T)) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-3388 (((-656 (-1195)) $) NIL)) (-2424 (($ (-1301 (-1195) |#1|)) NIL)) (-3639 (($ $ (-783)) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4163 (($ $ $) NIL (|has| |#1| (-174))) (($ $ (-783)) NIL (|has| |#1| (-174)))) (-3767 (($) NIL T CONST)) (-1338 (($ $ (-1195)) NIL) (($ $ (-831 (-1195))) NIL) (($ $ $) NIL)) (-1539 (((-3 (-831 (-1195)) "failed") $) NIL)) (-4056 (((-831 (-1195)) $) NIL)) (-1551 (((-3 $ "failed") $) NIL)) (-2807 (((-112) $) NIL)) (-2670 (($ $) NIL)) (-1414 (((-112) $) NIL)) (-2606 (((-112) $) NIL)) (-3605 (($ (-831 (-1195)) |#1|) NIL)) (-2575 (($ $) NIL)) (-4169 (((-2 (|:| |k| (-831 (-1195))) (|:| |c| |#1|)) $) NIL)) (-1764 (((-831 (-1195)) $) NIL)) (-3854 (((-831 (-1195)) $) NIL)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-4398 (($ $ (-1195)) NIL) (($ $ (-831 (-1195))) NIL) (($ $ $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2465 (((-1301 (-1195) |#1|) $) NIL)) (-1433 (((-783) $) NIL)) (-3652 (((-112) $) NIL)) (-1398 ((|#1| $) NIL)) (-3563 (((-874) $) NIL) (($ (-576)) NIL) (($ |#1|) NIL) (($ (-831 (-1195))) NIL) (($ (-1195)) NIL)) (-1706 ((|#1| $ (-831 (-1195))) NIL) ((|#1| $ $) NIL)) (-1858 (((-783)) NIL T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) NIL T CONST)) (-3569 (((-656 (-2 (|:| |k| (-1195)) (|:| |c| $))) $) NIL)) (-2810 (($) NIL T CONST)) (-2988 (((-112) $ $) NIL)) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) NIL)) (** (($ $ (-938)) NIL) (($ $ (-783)) NIL)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1195) $) NIL))) +(((-1308 |#1|) (-13 (-1307 (-1195) |#1|) (-10 -8 (-15 -2465 ((-1301 (-1195) |#1|) $)) (-15 -2424 ($ (-1301 (-1195) |#1|))) (-15 -3569 ((-656 (-2 (|:| |k| (-1195)) (|:| |c| $))) $)))) (-1068)) (T -1308)) +((-2465 (*1 *2 *1) (-12 (-5 *2 (-1301 (-1195) *3)) (-5 *1 (-1308 *3)) (-4 *3 (-1068)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-1301 (-1195) *3)) (-4 *3 (-1068)) (-5 *1 (-1308 *3)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| (-1195)) (|:| |c| (-1308 *3))))) (-5 *1 (-1308 *3)) (-4 *3 (-1068))))) +(-13 (-1307 (-1195) |#1|) (-10 -8 (-15 -2465 ((-1301 (-1195) |#1|) $)) (-15 -2424 ($ (-1301 (-1195) |#1|))) (-15 -3569 ((-656 (-2 (|:| |k| (-1195)) (|:| |c| $))) $)))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($) NIL T CONST)) (-1539 (((-3 |#2| "failed") $) NIL)) (-4056 ((|#2| $) NIL)) (-2166 (($ $) NIL)) (-1551 (((-3 $ "failed") $) 42)) (-2807 (((-112) $) 35)) (-2670 (($ $) 37)) (-1414 (((-112) $) NIL)) (-3839 (((-783) $) NIL)) (-1475 (((-656 $) $) NIL)) (-2606 (((-112) $) NIL)) (-3605 (($ |#2| |#1|) NIL)) (-1764 ((|#2| $) 24)) (-3854 ((|#2| $) 22)) (-1632 (($ (-1 |#1| |#1|) $) NIL)) (-1814 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2129 ((|#2| $) NIL)) (-2142 ((|#1| $) NIL)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3652 (((-112) $) 32)) (-1398 ((|#1| $) 33)) (-3563 (((-874) $) 65) (($ (-576)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2927 (((-656 |#1|) $) NIL)) (-4333 ((|#1| $ |#2|) NIL)) (-1706 ((|#1| $ |#2|) 28)) (-1858 (((-783)) 14 T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 29 T CONST)) (-2810 (($) 11 T CONST)) (-3816 (((-656 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2988 (((-112) $ $) 30)) (-3107 (($ $ |#1|) 67 (|has| |#1| (-374)))) (-3095 (($ $) NIL) (($ $ $) NIL)) (-3083 (($ $ $) 50)) (** (($ $ (-938)) NIL) (($ $ (-783)) 52)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3485 (((-783) $) 16))) +(((-1309 |#1| |#2|) (-13 (-1068) (-1300 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3485 ((-783) $)) (-15 -3854 (|#2| $)) (-15 -1764 (|#2| $)) (-15 -2166 ($ $)) (-15 -1706 (|#1| $ |#2|)) (-15 -3652 ((-112) $)) (-15 -1398 (|#1| $)) (-15 -2807 ((-112) $)) (-15 -2670 ($ $)) (-15 -1632 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3107 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) (-1068) (-858)) (T -1309)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))) (-2166 (*1 *1 *1) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))) (-1632 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-858)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-858)))) (-3854 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1068)))) (-1764 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1068)))) (-1706 (*1 *2 *1 *3) (-12 (-4 *2 (-1068)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858)))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-858)))) (-1398 (*1 *2 *1) (-12 (-4 *2 (-1068)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-858)))) (-2670 (*1 *1 *1) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858)))) (-3107 (*1 *1 *1 *2) (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1068)) (-4 *3 (-858))))) +(-13 (-1068) (-1300 |#1|) (-393 |#1| |#2|) (-628 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3485 ((-783) $)) (-15 -3854 (|#2| $)) (-15 -1764 (|#2| $)) (-15 -2166 ($ $)) (-15 -1706 (|#1| $ |#2|)) (-15 -3652 ((-112) $)) (-15 -1398 (|#1| $)) (-15 -2807 ((-112) $)) (-15 -2670 ($ $)) (-15 -1632 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-374)) (-15 -3107 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4454)) (-6 -4454) |%noBranch|) (IF (|has| |#1| (-6 -4458)) (-6 -4458) |%noBranch|) (IF (|has| |#1| (-6 -4459)) (-6 -4459) |%noBranch|))) +((-3474 (((-112) $ $) 27)) (-1454 (((-112) $) NIL)) (-3388 (((-656 |#1|) $) 132)) (-2424 (($ (-1301 |#1| |#2|)) 50)) (-3639 (($ $ (-783)) 38)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4163 (($ $ $) 54 (|has| |#2| (-174))) (($ $ (-783)) 52 (|has| |#2| (-174)))) (-3767 (($) NIL T CONST)) (-1338 (($ $ |#1|) 114) (($ $ (-831 |#1|)) 115) (($ $ $) 26)) (-1539 (((-3 (-831 |#1|) "failed") $) NIL)) (-4056 (((-831 |#1|) $) NIL)) (-1551 (((-3 $ "failed") $) 122)) (-2807 (((-112) $) 117)) (-2670 (($ $) 118)) (-1414 (((-112) $) NIL)) (-2606 (((-112) $) NIL)) (-3605 (($ (-831 |#1|) |#2|) 20)) (-2575 (($ $) NIL)) (-4169 (((-2 (|:| |k| (-831 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1764 (((-831 |#1|) $) 123)) (-3854 (((-831 |#1|) $) 126)) (-1632 (($ (-1 |#2| |#2|) $) 131)) (-4398 (($ $ |#1|) 112) (($ $ (-831 |#1|)) 113) (($ $ $) 62)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-2465 (((-1301 |#1| |#2|) $) 94)) (-1433 (((-783) $) 129)) (-3652 (((-112) $) 81)) (-1398 ((|#2| $) 32)) (-3563 (((-874) $) 73) (($ (-576)) 87) (($ |#2|) 85) (($ (-831 |#1|)) 18) (($ |#1|) 84)) (-1706 ((|#2| $ (-831 |#1|)) 116) ((|#2| $ $) 28)) (-1858 (((-783)) 120 T CONST)) (-3985 (((-112) $ $) NIL)) (-2800 (($) 15 T CONST)) (-3569 (((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-2810 (($) 33 T CONST)) (-2988 (((-112) $ $) 14)) (-3095 (($ $) 98) (($ $ $) 101)) (-3083 (($ $ $) 61)) (** (($ $ (-938)) NIL) (($ $ (-783)) 55)) (* (($ (-938) $) NIL) (($ (-783) $) 53) (($ (-576) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92))) +(((-1310 |#1| |#2|) (-13 (-1307 |#1| |#2|) (-10 -8 (-15 -2465 ((-1301 |#1| |#2|) $)) (-15 -2424 ($ (-1301 |#1| |#2|))) (-15 -3569 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-862) (-1068)) (T -1310)) +((-2465 (*1 *2 *1) (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) (-5 *1 (-1310 *3 *4)))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1310 *3 *4))))) (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))))) +(-13 (-1307 |#1| |#2|) (-10 -8 (-15 -2465 ((-1301 |#1| |#2|) $)) (-15 -2424 ($ (-1301 |#1| |#2|))) (-15 -3569 ((-656 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-3474 (((-112) $ $) NIL)) (-2761 (($ (-656 (-938))) 10)) (-3358 (((-990) $) 12)) (-1927 (((-1177) $) NIL)) (-1445 (((-1139) $) NIL)) (-3563 (((-874) $) 25) (($ (-990)) 14) (((-990) $) 13)) (-3985 (((-112) $ $) NIL)) (-2988 (((-112) $ $) 17))) +(((-1311) (-13 (-1119) (-502 (-990)) (-10 -8 (-15 -2761 ($ (-656 (-938)))) (-15 -3358 ((-990) $))))) (T -1311)) +((-2761 (*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1311)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-1311))))) +(-13 (-1119) (-502 (-990)) (-10 -8 (-15 -2761 ($ (-656 (-938)))) (-15 -3358 ((-990) $)))) +((-2565 (((-656 (-1176 |#1|)) (-1 (-656 (-1176 |#1|)) (-656 (-1176 |#1|))) (-576)) 16) (((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|))) 13))) +(((-1312 |#1|) (-10 -7 (-15 -2565 ((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|)))) (-15 -2565 ((-656 (-1176 |#1|)) (-1 (-656 (-1176 |#1|)) (-656 (-1176 |#1|))) (-576)))) (-1236)) (T -1312)) +((-2565 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-656 (-1176 *5)) (-656 (-1176 *5)))) (-5 *4 (-576)) (-5 *2 (-656 (-1176 *5))) (-5 *1 (-1312 *5)) (-4 *5 (-1236)))) (-2565 (*1 *2 *3) (-12 (-5 *3 (-1 (-1176 *4) (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1312 *4)) (-4 *4 (-1236))))) +(-10 -7 (-15 -2565 ((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|)))) (-15 -2565 ((-656 (-1176 |#1|)) (-1 (-656 (-1176 |#1|)) (-656 (-1176 |#1|))) (-576)))) +((-4065 (((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|))) 174) (((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112)) 173) (((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112)) 172) (((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112) (-112)) 171) (((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-1065 |#1| |#2|)) 156)) (-3846 (((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|))) 85) (((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112)) 84) (((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112) (-112)) 83)) (-2732 (((-656 (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1065 |#1| |#2|)) 73)) (-4141 (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|))) 140) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112)) 139) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112)) 138) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112) (-112)) 137) (((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|)) 132)) (-3660 (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|))) 145) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112)) 144) (((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112)) 143) (((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|)) 142)) (-4076 (((-656 (-792 |#1| (-876 |#3|))) (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) 111) (((-1191 (-1043 (-419 |#1|))) (-1191 |#1|)) 102) (((-969 (-1043 (-419 |#1|))) (-792 |#1| (-876 |#3|))) 109) (((-969 (-1043 (-419 |#1|))) (-969 |#1|)) 107) (((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|))) 33))) +(((-1313 |#1| |#2| |#3|) (-10 -7 (-15 -3846 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112) (-112))) (-15 -3846 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112))) (-15 -3846 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-1065 |#1| |#2|))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -3660 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -3660 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -3660 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -3660 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2732 ((-656 (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1065 |#1| |#2|))) (-15 -4076 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -4076 ((-969 (-1043 (-419 |#1|))) (-969 |#1|))) (-15 -4076 ((-969 (-1043 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -4076 ((-1191 (-1043 (-419 |#1|))) (-1191 |#1|))) (-15 -4076 ((-656 (-792 |#1| (-876 |#3|))) (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))))) (-13 (-860) (-317) (-148) (-1041)) (-656 (-1195)) (-656 (-1195))) (T -1313)) +((-4076 (*1 *2 *3) (-12 (-5 *3 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-1191 (-1043 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *6))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1195))) (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-792 *4 (-876 *5))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1195))) (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-3660 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3660 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-4141 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-4141 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-4065 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -3416 (-1191 *4)) (|:| -1809 (-656 (-969 *4)))))) (-5 *1 (-1313 *4 *5 *6)) (-5 *3 (-656 (-969 *4))) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-4065 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-4065 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-4065 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-2 (|:| -3416 (-1191 *4)) (|:| -1809 (-656 (-969 *4)))))) (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-1065 *4 *5))) (-5 *1 (-1313 *4 *5 *6)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) (-3846 (*1 *2 *3 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) (-3846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195)))))) +(-10 -7 (-15 -3846 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112) (-112))) (-15 -3846 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)) (-112))) (-15 -3846 ((-656 (-1065 |#1| |#2|)) (-656 (-969 |#1|)))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-1065 |#1| |#2|))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)) (-112))) (-15 -4065 ((-656 (-2 (|:| -3416 (-1191 |#1|)) (|:| -1809 (-656 (-969 |#1|))))) (-656 (-969 |#1|)))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112) (-112))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -4141 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -3660 ((-656 (-656 (-1043 (-419 |#1|)))) (-1065 |#1| |#2|))) (-15 -3660 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112) (-112))) (-15 -3660 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)) (-112))) (-15 -3660 ((-656 (-656 (-1043 (-419 |#1|)))) (-656 (-969 |#1|)))) (-15 -2732 ((-656 (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))) (-1065 |#1| |#2|))) (-15 -4076 ((-792 |#1| (-876 |#3|)) (-792 |#1| (-876 |#2|)))) (-15 -4076 ((-969 (-1043 (-419 |#1|))) (-969 |#1|))) (-15 -4076 ((-969 (-1043 (-419 |#1|))) (-792 |#1| (-876 |#3|)))) (-15 -4076 ((-1191 (-1043 (-419 |#1|))) (-1191 |#1|))) (-15 -4076 ((-656 (-792 |#1| (-876 |#3|))) (-1165 |#1| (-543 (-876 |#3|)) (-876 |#3|) (-792 |#1| (-876 |#3|)))))) +((-2140 (((-3 (-1286 (-419 (-576))) "failed") (-1286 |#1|) |#1|) 21)) (-1640 (((-112) (-1286 |#1|)) 12)) (-3224 (((-3 (-1286 (-576)) "failed") (-1286 |#1|)) 16))) +(((-1314 |#1|) (-10 -7 (-15 -1640 ((-112) (-1286 |#1|))) (-15 -3224 ((-3 (-1286 (-576)) "failed") (-1286 |#1|))) (-15 -2140 ((-3 (-1286 (-419 (-576))) "failed") (-1286 |#1|) |#1|))) (-13 (-1068) (-651 (-576)))) (T -1314)) +((-2140 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) (-5 *2 (-1286 (-419 (-576)))) (-5 *1 (-1314 *4)))) (-3224 (*1 *2 *3) (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) (-5 *2 (-1286 (-576))) (-5 *1 (-1314 *4)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) (-5 *2 (-112)) (-5 *1 (-1314 *4))))) +(-10 -7 (-15 -1640 ((-112) (-1286 |#1|))) (-15 -3224 ((-3 (-1286 (-576)) "failed") (-1286 |#1|))) (-15 -2140 ((-3 (-1286 (-419 (-576))) "failed") (-1286 |#1|) |#1|))) +((-3474 (((-112) $ $) NIL)) (-1454 (((-112) $) 11)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2148 (((-783)) 8)) (-3767 (($) NIL T CONST)) (-1551 (((-3 $ "failed") $) 58)) (-1803 (($) 49)) (-1414 (((-112) $) 57)) (-3930 (((-3 $ "failed") $) 40)) (-1902 (((-938) $) 15)) (-1927 (((-1177) $) NIL)) (-1538 (($) 32 T CONST)) (-3257 (($ (-938)) 50)) (-1445 (((-1139) $) NIL)) (-4076 (((-576) $) 13)) (-3563 (((-874) $) 27) (($ (-576)) 24)) (-1858 (((-783)) 9 T CONST)) (-3985 (((-112) $ $) 60)) (-2800 (($) 29 T CONST)) (-2810 (($) 31 T CONST)) (-2988 (((-112) $ $) 38)) (-3095 (($ $) 52) (($ $ $) 47)) (-3083 (($ $ $) 35)) (** (($ $ (-938)) NIL) (($ $ (-783)) 54)) (* (($ (-938) $) NIL) (($ (-783) $) NIL) (($ (-576) $) 44) (($ $ $) 43))) +(((-1315 |#1|) (-13 (-174) (-379) (-626 (-576)) (-1171)) (-938)) (T -1315)) NIL (-13 (-174) (-379) (-626 (-576)) (-1171)) NIL @@ -5436,4 +5431,4 @@ NIL NIL NIL NIL -((-3 3266697 3266702 3266707 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3266682 3266687 3266692 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3266667 3266672 3266677 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3266652 3266657 3266662 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1316 3265795 3266527 3266604 "ZMOD" 3266609 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1315 3264849 3265013 3265236 "ZLINDEP" 3265627 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1314 3254149 3255917 3257889 "ZDSOLVE" 3262979 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1313 3253395 3253536 3253725 "YSTREAM" 3253995 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1312 3252823 3253069 3253182 "YDIAGRAM" 3253304 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1311 3250597 3252124 3252328 "XRPOLY" 3252666 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1310 3247150 3248468 3249043 "XPR" 3250069 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1309 3244871 3246481 3246685 "XPOLY" 3246981 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1308 3242524 3243892 3243947 "XPOLYC" 3244235 NIL XPOLYC (NIL T T) -9 NIL 3244348 NIL) (-1307 3238900 3241041 3241429 "XPBWPOLY" 3242182 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1306 3234595 3236890 3236932 "XF" 3237553 NIL XF (NIL T) -9 NIL 3237953 NIL) (-1305 3234216 3234304 3234473 "XF-" 3234478 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1304 3229412 3230701 3230756 "XFALG" 3232928 NIL XFALG (NIL T T) -9 NIL 3233717 NIL) (-1303 3228545 3228649 3228854 "XEXPPKG" 3229304 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1302 3226654 3228395 3228491 "XDPOLY" 3228496 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1301 3225461 3226061 3226104 "XALG" 3226109 NIL XALG (NIL T) -9 NIL 3226220 NIL) (-1300 3218903 3223438 3223932 "WUTSET" 3225053 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1299 3217159 3217955 3218278 "WP" 3218714 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1298 3216761 3216981 3217051 "WHILEAST" 3217111 T WHILEAST (NIL) -8 NIL NIL NIL) (-1297 3216233 3216478 3216572 "WHEREAST" 3216689 T WHEREAST (NIL) -8 NIL NIL NIL) (-1296 3215119 3215317 3215612 "WFFINTBS" 3216030 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1295 3213023 3213450 3213912 "WEIER" 3214691 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1294 3212069 3212519 3212561 "VSPACE" 3212697 NIL VSPACE (NIL T) -9 NIL 3212771 NIL) (-1293 3211907 3211934 3212025 "VSPACE-" 3212030 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1292 3211716 3211758 3211826 "VOID" 3211861 T VOID (NIL) -8 NIL NIL NIL) (-1291 3209852 3210211 3210617 "VIEW" 3211332 T VIEW (NIL) -7 NIL NIL NIL) (-1290 3206276 3206915 3207652 "VIEWDEF" 3209137 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1289 3195580 3197824 3199997 "VIEW3D" 3204125 T VIEW3D (NIL) -8 NIL NIL NIL) (-1288 3187831 3189491 3191070 "VIEW2D" 3194023 T VIEW2D (NIL) -8 NIL NIL NIL) (-1287 3183184 3187601 3187693 "VECTOR" 3187774 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1286 3181761 3182020 3182338 "VECTOR2" 3182914 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1285 3175203 3179512 3179555 "VECTCAT" 3180550 NIL VECTCAT (NIL T) -9 NIL 3181137 NIL) (-1284 3174217 3174471 3174861 "VECTCAT-" 3174866 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1283 3173671 3173868 3173988 "VARIABLE" 3174132 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1282 3173604 3173609 3173639 "UTYPE" 3173644 T UTYPE (NIL) -9 NIL NIL NIL) (-1281 3172434 3172588 3172850 "UTSODETL" 3173430 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1280 3169874 3170334 3170858 "UTSODE" 3171975 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1279 3161822 3167635 3168115 "UTS" 3169452 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1278 3152386 3157756 3157799 "UTSCAT" 3158911 NIL UTSCAT (NIL T) -9 NIL 3159669 NIL) (-1277 3149734 3150456 3151445 "UTSCAT-" 3151450 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1276 3149361 3149404 3149537 "UTS2" 3149685 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1275 3143587 3146199 3146242 "URAGG" 3148312 NIL URAGG (NIL T) -9 NIL 3149035 NIL) (-1274 3140526 3141389 3142512 "URAGG-" 3142517 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1273 3136235 3139161 3139626 "UPXSSING" 3140190 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1272 3128411 3135617 3135881 "UPXS" 3136029 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1271 3121484 3128315 3128387 "UPXSCONS" 3128392 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1270 3110891 3117687 3117749 "UPXSCCA" 3118323 NIL UPXSCCA (NIL T T) -9 NIL 3118556 NIL) (-1269 3110529 3110614 3110788 "UPXSCCA-" 3110793 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1268 3099788 3106357 3106400 "UPXSCAT" 3107048 NIL UPXSCAT (NIL T) -9 NIL 3107657 NIL) (-1267 3099218 3099297 3099476 "UPXS2" 3099703 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1266 3097872 3098125 3098476 "UPSQFREE" 3098961 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1265 3091080 3094140 3094195 "UPSCAT" 3095275 NIL UPSCAT (NIL T T) -9 NIL 3096040 NIL) (-1264 3090284 3090491 3090818 "UPSCAT-" 3090823 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1263 3075374 3083411 3083454 "UPOLYC" 3085555 NIL UPOLYC (NIL T) -9 NIL 3086776 NIL) (-1262 3066702 3069128 3072275 "UPOLYC-" 3072280 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1261 3066329 3066372 3066505 "UPOLYC2" 3066653 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1260 3057872 3066012 3066141 "UP" 3066248 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1259 3057211 3057318 3057482 "UPMP" 3057761 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1258 3056764 3056845 3056984 "UPDIVP" 3057124 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1257 3055332 3055581 3055897 "UPDECOMP" 3056513 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1256 3054563 3054675 3054861 "UPCDEN" 3055216 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1255 3054082 3054151 3054300 "UP2" 3054488 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1254 3052549 3053286 3053563 "UNISEG" 3053840 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1253 3051764 3051891 3052096 "UNISEG2" 3052392 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1252 3050824 3051004 3051230 "UNIFACT" 3051580 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1251 3033584 3050136 3050378 "ULS" 3050640 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3021222 3033488 3033560 "ULSCONS" 3033565 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1249 3002058 3014410 3014472 "ULSCCAT" 3015110 NIL ULSCCAT (NIL T T) -9 NIL 3015399 NIL) (-1248 3001108 3001353 3001741 "ULSCCAT-" 3001746 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1247 2990172 2996655 2996698 "ULSCAT" 2997561 NIL ULSCAT (NIL T) -9 NIL 2998292 NIL) (-1246 2989602 2989681 2989860 "ULS2" 2990087 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1245 2988721 2989231 2989338 "UINT8" 2989449 T UINT8 (NIL) -8 NIL NIL 2989534) (-1244 2987839 2988349 2988456 "UINT64" 2988567 T UINT64 (NIL) -8 NIL NIL 2988652) (-1243 2986957 2987467 2987574 "UINT32" 2987685 T UINT32 (NIL) -8 NIL NIL 2987770) (-1242 2986075 2986585 2986692 "UINT16" 2986803 T UINT16 (NIL) -8 NIL NIL 2986888) (-1241 2984378 2985335 2985365 "UFD" 2985577 T UFD (NIL) -9 NIL 2985691 NIL) (-1240 2984172 2984218 2984313 "UFD-" 2984318 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1239 2983254 2983437 2983653 "UDVO" 2983978 T UDVO (NIL) -7 NIL NIL NIL) (-1238 2981070 2981479 2981950 "UDPO" 2982818 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1237 2981003 2981008 2981038 "TYPE" 2981043 T TYPE (NIL) -9 NIL NIL NIL) (-1236 2980763 2980958 2980989 "TYPEAST" 2980994 T TYPEAST (NIL) -8 NIL NIL NIL) (-1235 2979734 2979936 2980176 "TWOFACT" 2980557 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1234 2978757 2979143 2979378 "TUPLE" 2979534 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1233 2976448 2976967 2977506 "TUBETOOL" 2978240 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1232 2975297 2975502 2975743 "TUBE" 2976241 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1231 2970026 2974269 2974552 "TS" 2975049 NIL TS (NIL T) -8 NIL NIL NIL) (-1230 2958666 2962785 2962882 "TSETCAT" 2968151 NIL TSETCAT (NIL T T T T) -9 NIL 2969682 NIL) (-1229 2953398 2954998 2956889 "TSETCAT-" 2956894 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1228 2948037 2948884 2949813 "TRMANIP" 2952534 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1227 2947478 2947541 2947704 "TRIMAT" 2947969 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1226 2945344 2945581 2945938 "TRIGMNIP" 2947227 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1225 2944864 2944977 2945007 "TRIGCAT" 2945220 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1224 2944533 2944612 2944753 "TRIGCAT-" 2944758 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1223 2941378 2943391 2943672 "TREE" 2944287 NIL TREE (NIL T) -8 NIL NIL NIL) (-1222 2940652 2941180 2941210 "TRANFUN" 2941245 T TRANFUN (NIL) -9 NIL 2941311 NIL) (-1221 2939931 2940122 2940402 "TRANFUN-" 2940407 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1220 2939735 2939767 2939828 "TOPSP" 2939892 T TOPSP (NIL) -7 NIL NIL NIL) (-1219 2939083 2939198 2939352 "TOOLSIGN" 2939616 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1218 2937717 2938260 2938499 "TEXTFILE" 2938866 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1217 2935629 2936170 2936599 "TEX" 2937310 T TEX (NIL) -8 NIL NIL NIL) (-1216 2935410 2935441 2935513 "TEX1" 2935592 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1215 2935058 2935121 2935211 "TEMUTL" 2935342 T TEMUTL (NIL) -7 NIL NIL NIL) (-1214 2933212 2933492 2933817 "TBCMPPK" 2934781 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1213 2924989 2931372 2931428 "TBAGG" 2931828 NIL TBAGG (NIL T T) -9 NIL 2932039 NIL) (-1212 2920059 2921547 2923301 "TBAGG-" 2923306 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1211 2919443 2919550 2919695 "TANEXP" 2919948 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1210 2918954 2919218 2919308 "TALGOP" 2919388 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1209 2912344 2918811 2918904 "TABLE" 2918909 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1208 2911756 2911855 2911993 "TABLEAU" 2912241 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1207 2906364 2907584 2908832 "TABLBUMP" 2910542 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1206 2905586 2905733 2905914 "SYSTEM" 2906205 T SYSTEM (NIL) -8 NIL NIL NIL) (-1205 2902045 2902744 2903527 "SYSSOLP" 2904837 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1204 2901843 2902000 2902031 "SYSPTR" 2902036 T SYSPTR (NIL) -8 NIL NIL NIL) (-1203 2900879 2901384 2901503 "SYSNNI" 2901689 NIL SYSNNI (NIL NIL) -8 NIL NIL 2901774) (-1202 2900178 2900637 2900716 "SYSINT" 2900776 NIL SYSINT (NIL NIL) -8 NIL NIL 2900821) (-1201 2896510 2897456 2898166 "SYNTAX" 2899490 T SYNTAX (NIL) -8 NIL NIL NIL) (-1200 2893668 2894270 2894902 "SYMTAB" 2895900 T SYMTAB (NIL) -8 NIL NIL NIL) (-1199 2888917 2889819 2890802 "SYMS" 2892707 T SYMS (NIL) -8 NIL NIL NIL) (-1198 2886152 2888375 2888605 "SYMPOLY" 2888722 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1197 2885669 2885744 2885867 "SYMFUNC" 2886064 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1196 2881689 2882981 2883794 "SYMBOL" 2884878 T SYMBOL (NIL) -8 NIL NIL NIL) (-1195 2875228 2876917 2878637 "SWITCH" 2879991 T SWITCH (NIL) -8 NIL NIL NIL) (-1194 2868572 2874184 2874478 "SUTS" 2874992 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1193 2860748 2867954 2868218 "SUPXS" 2868366 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1192 2852239 2860366 2860492 "SUP" 2860657 NIL SUP (NIL T) -8 NIL NIL NIL) (-1191 2851398 2851525 2851742 "SUPFRACF" 2852107 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1190 2851019 2851078 2851191 "SUP2" 2851333 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1189 2849467 2849741 2850097 "SUMRF" 2850718 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1188 2848802 2848868 2849060 "SUMFS" 2849388 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1187 2831597 2848114 2848356 "SULS" 2848618 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1186 2831199 2831419 2831489 "SUCHTAST" 2831549 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1185 2830494 2830724 2830864 "SUCH" 2831107 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1184 2824361 2825400 2826359 "SUBSPACE" 2829582 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1183 2823791 2823881 2824045 "SUBRESP" 2824249 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1182 2817159 2818456 2819767 "STTF" 2822527 NIL STTF (NIL T) -7 NIL NIL NIL) (-1181 2811332 2812452 2813599 "STTFNC" 2816059 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1180 2802645 2804514 2806308 "STTAYLOR" 2809573 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1179 2795775 2802509 2802592 "STRTBL" 2802597 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1178 2790979 2795730 2795761 "STRING" 2795766 T STRING (NIL) -8 NIL NIL NIL) (-1177 2785406 2790081 2790111 "STRICAT" 2790226 T STRICAT (NIL) -9 NIL 2790303 NIL) (-1176 2778159 2783025 2783636 "STREAM" 2784830 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1175 2777669 2777746 2777890 "STREAM3" 2778076 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1174 2776651 2776834 2777069 "STREAM2" 2777482 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1173 2776339 2776391 2776484 "STREAM1" 2776593 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1172 2775355 2775536 2775767 "STINPROD" 2776155 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1171 2774907 2775117 2775147 "STEP" 2775227 T STEP (NIL) -9 NIL 2775305 NIL) (-1170 2774094 2774396 2774544 "STEPAST" 2774781 T STEPAST (NIL) -8 NIL NIL NIL) (-1169 2767526 2773993 2774070 "STBL" 2774075 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1168 2762621 2766717 2766760 "STAGG" 2766913 NIL STAGG (NIL T) -9 NIL 2767002 NIL) (-1167 2760323 2760925 2761797 "STAGG-" 2761802 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1166 2758470 2760093 2760185 "STACK" 2760266 NIL STACK (NIL T) -8 NIL NIL NIL) (-1165 2751165 2756611 2757067 "SREGSET" 2758100 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1164 2743590 2744959 2746472 "SRDCMPK" 2749771 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1163 2736475 2741000 2741030 "SRAGG" 2742333 T SRAGG (NIL) -9 NIL 2742941 NIL) (-1162 2735492 2735747 2736126 "SRAGG-" 2736131 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1161 2729684 2734439 2734860 "SQMATRIX" 2735118 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1160 2723369 2726402 2727129 "SPLTREE" 2729029 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1159 2719332 2720025 2720671 "SPLNODE" 2722795 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1158 2718379 2718612 2718642 "SPFCAT" 2719086 T SPFCAT (NIL) -9 NIL NIL NIL) (-1157 2717116 2717326 2717590 "SPECOUT" 2718137 T SPECOUT (NIL) -7 NIL NIL NIL) (-1156 2708226 2710098 2710128 "SPADXPT" 2714804 T SPADXPT (NIL) -9 NIL 2716968 NIL) (-1155 2707987 2708027 2708096 "SPADPRSR" 2708179 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1154 2706036 2707942 2707973 "SPADAST" 2707978 T SPADAST (NIL) -8 NIL NIL NIL) (-1153 2697981 2699754 2699797 "SPACEC" 2704170 NIL SPACEC (NIL T) -9 NIL 2705986 NIL) (-1152 2696111 2697913 2697962 "SPACE3" 2697967 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1151 2694863 2695034 2695325 "SORTPAK" 2695916 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1150 2692955 2693258 2693670 "SOLVETRA" 2694527 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1149 2692005 2692227 2692488 "SOLVESER" 2692728 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1148 2687309 2688197 2689192 "SOLVERAD" 2691057 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1147 2683124 2683733 2684462 "SOLVEFOR" 2686676 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1146 2677394 2682473 2682570 "SNTSCAT" 2682575 NIL SNTSCAT (NIL T T T T) -9 NIL 2682645 NIL) (-1145 2671500 2675717 2676108 "SMTS" 2677084 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1144 2665917 2671388 2671465 "SMP" 2671470 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1143 2664076 2664377 2664775 "SMITH" 2665614 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1142 2656188 2660655 2660758 "SMATCAT" 2662109 NIL SMATCAT (NIL NIL T T T) -9 NIL 2662659 NIL) (-1141 2652402 2653439 2654873 "SMATCAT-" 2654878 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1140 2650068 2651638 2651681 "SKAGG" 2651942 NIL SKAGG (NIL T) -9 NIL 2652077 NIL) (-1139 2646266 2649541 2649725 "SINT" 2649877 T SINT (NIL) -8 NIL NIL 2650039) (-1138 2646038 2646076 2646142 "SIMPAN" 2646222 T SIMPAN (NIL) -7 NIL NIL NIL) (-1137 2645317 2645573 2645713 "SIG" 2645920 T SIG (NIL) -8 NIL NIL NIL) (-1136 2644155 2644376 2644651 "SIGNRF" 2645076 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1135 2642988 2643139 2643423 "SIGNEF" 2643984 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1134 2642294 2642571 2642695 "SIGAST" 2642886 T SIGAST (NIL) -8 NIL NIL NIL) (-1133 2639984 2640438 2640944 "SHP" 2641835 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1132 2633818 2639885 2639961 "SHDP" 2639966 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1131 2633391 2633583 2633613 "SGROUP" 2633706 T SGROUP (NIL) -9 NIL 2633768 NIL) (-1130 2633249 2633275 2633348 "SGROUP-" 2633353 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1129 2630040 2630738 2631461 "SGCF" 2632548 T SGCF (NIL) -7 NIL NIL NIL) (-1128 2624408 2629487 2629584 "SFRTCAT" 2629589 NIL SFRTCAT (NIL T T T T) -9 NIL 2629628 NIL) (-1127 2617829 2618847 2619983 "SFRGCD" 2623391 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1126 2610955 2612028 2613214 "SFQCMPK" 2616762 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1125 2610575 2610664 2610775 "SFORT" 2610896 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1124 2609693 2610415 2610536 "SEXOF" 2610541 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1123 2608800 2609574 2609642 "SEX" 2609647 T SEX (NIL) -8 NIL NIL NIL) (-1122 2604581 2605296 2605391 "SEXCAT" 2608013 NIL SEXCAT (NIL T T T T T) -9 NIL 2608573 NIL) (-1121 2601734 2604515 2604563 "SET" 2604568 NIL SET (NIL T) -8 NIL NIL NIL) (-1120 2599958 2600447 2600752 "SETMN" 2601475 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1119 2599454 2599606 2599636 "SETCAT" 2599812 T SETCAT (NIL) -9 NIL 2599922 NIL) (-1118 2599146 2599224 2599354 "SETCAT-" 2599359 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1117 2595507 2597607 2597650 "SETAGG" 2598520 NIL SETAGG (NIL T) -9 NIL 2598860 NIL) (-1116 2594965 2595081 2595318 "SETAGG-" 2595323 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1115 2594408 2594661 2594762 "SEQAST" 2594886 T SEQAST (NIL) -8 NIL NIL NIL) (-1114 2593607 2593901 2593962 "SEGXCAT" 2594248 NIL SEGXCAT (NIL T T) -9 NIL 2594368 NIL) (-1113 2592613 2593273 2593455 "SEG" 2593460 NIL SEG (NIL T) -8 NIL NIL NIL) (-1112 2591592 2591806 2591849 "SEGCAT" 2592371 NIL SEGCAT (NIL T) -9 NIL 2592592 NIL) (-1111 2590524 2590955 2591163 "SEGBIND" 2591419 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1110 2590145 2590204 2590317 "SEGBIND2" 2590459 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1109 2589718 2589946 2590023 "SEGAST" 2590090 T SEGAST (NIL) -8 NIL NIL NIL) (-1108 2588937 2589063 2589267 "SEG2" 2589562 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1107 2588308 2588872 2588919 "SDVAR" 2588924 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1106 2580567 2588078 2588208 "SDPOL" 2588213 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1105 2579160 2579426 2579745 "SCPKG" 2580282 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1104 2578324 2578496 2578688 "SCOPE" 2578990 T SCOPE (NIL) -8 NIL NIL NIL) (-1103 2577544 2577678 2577857 "SCACHE" 2578179 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1102 2577190 2577376 2577406 "SASTCAT" 2577411 T SASTCAT (NIL) -9 NIL 2577424 NIL) (-1101 2576677 2577025 2577101 "SAOS" 2577136 T SAOS (NIL) -8 NIL NIL NIL) (-1100 2576242 2576277 2576450 "SAERFFC" 2576636 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1099 2569913 2576139 2576219 "SAE" 2576224 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1098 2569506 2569541 2569700 "SAEFACT" 2569872 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1097 2567827 2568141 2568542 "RURPK" 2569172 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1096 2566464 2566770 2567075 "RULESET" 2567661 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1095 2563687 2564217 2564675 "RULE" 2566145 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1094 2563299 2563481 2563564 "RULECOLD" 2563639 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1093 2563089 2563117 2563188 "RTVALUE" 2563250 T RTVALUE (NIL) -8 NIL NIL NIL) (-1092 2562560 2562806 2562900 "RSTRCAST" 2563017 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1091 2557408 2558203 2559123 "RSETGCD" 2561759 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1090 2546638 2551717 2551814 "RSETCAT" 2555933 NIL RSETCAT (NIL T T T T) -9 NIL 2557030 NIL) (-1089 2544565 2545104 2545928 "RSETCAT-" 2545933 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1088 2536951 2538327 2539847 "RSDCMPK" 2543164 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1087 2534930 2535397 2535471 "RRCC" 2536557 NIL RRCC (NIL T T) -9 NIL 2536901 NIL) (-1086 2534281 2534455 2534734 "RRCC-" 2534739 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1085 2533724 2533977 2534078 "RPTAST" 2534202 T RPTAST (NIL) -8 NIL NIL NIL) (-1084 2507208 2516836 2516903 "RPOLCAT" 2527569 NIL RPOLCAT (NIL T T T) -9 NIL 2530729 NIL) (-1083 2498706 2501046 2504168 "RPOLCAT-" 2504173 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1082 2489637 2496917 2497399 "ROUTINE" 2498246 T ROUTINE (NIL) -8 NIL NIL NIL) (-1081 2486306 2489263 2489403 "ROMAN" 2489519 T ROMAN (NIL) -8 NIL NIL NIL) (-1080 2484550 2485166 2485426 "ROIRC" 2486111 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1079 2480782 2483066 2483096 "RNS" 2483400 T RNS (NIL) -9 NIL 2483674 NIL) (-1078 2479291 2479674 2480208 "RNS-" 2480283 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1077 2478694 2479102 2479132 "RNG" 2479137 T RNG (NIL) -9 NIL 2479158 NIL) (-1076 2477697 2478059 2478261 "RNGBIND" 2478545 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1075 2477096 2477484 2477527 "RMODULE" 2477532 NIL RMODULE (NIL T) -9 NIL 2477559 NIL) (-1074 2475932 2476026 2476362 "RMCAT2" 2476997 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1073 2472782 2475278 2475575 "RMATRIX" 2475694 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1072 2465609 2467869 2467984 "RMATCAT" 2471343 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2472325 NIL) (-1071 2464984 2465131 2465438 "RMATCAT-" 2465443 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1070 2464613 2464785 2464828 "RLINSET" 2464890 NIL RLINSET (NIL T) -9 NIL 2464934 NIL) (-1069 2464180 2464255 2464383 "RINTERP" 2464532 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1068 2463238 2463792 2463822 "RING" 2463878 T RING (NIL) -9 NIL 2463970 NIL) (-1067 2463030 2463074 2463171 "RING-" 2463176 NIL RING- (NIL T) -8 NIL NIL NIL) (-1066 2461871 2462108 2462366 "RIDIST" 2462794 T RIDIST (NIL) -7 NIL NIL NIL) (-1065 2453160 2461339 2461545 "RGCHAIN" 2461719 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1064 2452510 2452916 2452957 "RGBCSPC" 2453015 NIL RGBCSPC (NIL T) -9 NIL 2453067 NIL) (-1063 2451668 2452049 2452090 "RGBCMDL" 2452322 NIL RGBCMDL (NIL T) -9 NIL 2452436 NIL) (-1062 2448662 2449276 2449946 "RF" 2451032 NIL RF (NIL T) -7 NIL NIL NIL) (-1061 2448308 2448371 2448474 "RFFACTOR" 2448593 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1060 2448033 2448068 2448165 "RFFACT" 2448267 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1059 2446150 2446514 2446896 "RFDIST" 2447673 T RFDIST (NIL) -7 NIL NIL NIL) (-1058 2445603 2445695 2445858 "RETSOL" 2446052 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1057 2445239 2445319 2445362 "RETRACT" 2445495 NIL RETRACT (NIL T) -9 NIL 2445582 NIL) (-1056 2445088 2445113 2445200 "RETRACT-" 2445205 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1055 2444690 2444910 2444980 "RETAST" 2445040 T RETAST (NIL) -8 NIL NIL NIL) (-1054 2437428 2444343 2444470 "RESULT" 2444585 T RESULT (NIL) -8 NIL NIL NIL) (-1053 2436019 2436697 2436896 "RESRING" 2437331 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1052 2435655 2435704 2435802 "RESLATC" 2435956 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1051 2435360 2435395 2435502 "REPSQ" 2435614 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1050 2432782 2433362 2433964 "REP" 2434780 T REP (NIL) -7 NIL NIL NIL) (-1049 2432479 2432514 2432625 "REPDB" 2432741 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1048 2426379 2427768 2428991 "REP2" 2431291 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1047 2422756 2423437 2424245 "REP1" 2425606 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1046 2415452 2420897 2421353 "REGSET" 2422386 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1045 2414217 2414600 2414850 "REF" 2415237 NIL REF (NIL T) -8 NIL NIL NIL) (-1044 2413594 2413697 2413864 "REDORDER" 2414101 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1043 2409562 2412807 2413034 "RECLOS" 2413422 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1042 2408614 2408795 2409010 "REALSOLV" 2409369 T REALSOLV (NIL) -7 NIL NIL NIL) (-1041 2408460 2408501 2408531 "REAL" 2408536 T REAL (NIL) -9 NIL 2408571 NIL) (-1040 2404943 2405745 2406629 "REAL0Q" 2407625 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1039 2400544 2401532 2402593 "REAL0" 2403924 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1038 2400015 2400261 2400355 "RDUCEAST" 2400472 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1037 2399420 2399492 2399699 "RDIV" 2399937 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1036 2398488 2398662 2398875 "RDIST" 2399242 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1035 2397085 2397372 2397744 "RDETRS" 2398196 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1034 2394897 2395351 2395889 "RDETR" 2396627 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1033 2393522 2393800 2394197 "RDEEFS" 2394613 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1032 2392031 2392337 2392762 "RDEEF" 2393210 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1031 2386092 2389012 2389042 "RCFIELD" 2390337 T RCFIELD (NIL) -9 NIL 2391068 NIL) (-1030 2384156 2384660 2385356 "RCFIELD-" 2385431 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1029 2380425 2382257 2382300 "RCAGG" 2383384 NIL RCAGG (NIL T) -9 NIL 2383849 NIL) (-1028 2380053 2380147 2380310 "RCAGG-" 2380315 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1027 2379388 2379500 2379665 "RATRET" 2379937 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1026 2378941 2379008 2379129 "RATFACT" 2379316 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1025 2378249 2378369 2378521 "RANDSRC" 2378811 T RANDSRC (NIL) -7 NIL NIL NIL) (-1024 2377983 2378027 2378100 "RADUTIL" 2378198 T RADUTIL (NIL) -7 NIL NIL NIL) (-1023 2370819 2376814 2377125 "RADIX" 2377706 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1022 2361287 2370661 2370791 "RADFF" 2370796 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1021 2360934 2361009 2361039 "RADCAT" 2361199 T RADCAT (NIL) -9 NIL NIL NIL) (-1020 2360716 2360764 2360864 "RADCAT-" 2360869 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1019 2358814 2360486 2360578 "QUEUE" 2360659 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1018 2355083 2358747 2358795 "QUAT" 2358800 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1017 2354714 2354757 2354888 "QUATCT2" 2355034 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1016 2347548 2351164 2351206 "QUATCAT" 2351997 NIL QUATCAT (NIL T) -9 NIL 2352763 NIL) (-1015 2343687 2344724 2346114 "QUATCAT-" 2346210 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1014 2341152 2342763 2342806 "QUAGG" 2343187 NIL QUAGG (NIL T) -9 NIL 2343362 NIL) (-1013 2340754 2340974 2341044 "QQUTAST" 2341104 T QQUTAST (NIL) -8 NIL NIL NIL) (-1012 2339767 2340267 2340432 "QFORM" 2340635 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1011 2330162 2335669 2335711 "QFCAT" 2336379 NIL QFCAT (NIL T) -9 NIL 2337380 NIL) (-1010 2325003 2326418 2328268 "QFCAT-" 2328364 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1009 2324634 2324677 2324808 "QFCAT2" 2324954 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1008 2324089 2324199 2324331 "QEQUAT" 2324524 T QEQUAT (NIL) -8 NIL NIL NIL) (-1007 2317215 2318288 2319474 "QCMPACK" 2323022 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1006 2314753 2315201 2315631 "QALGSET" 2316870 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1005 2313988 2314164 2314400 "QALGSET2" 2314571 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1004 2312673 2312897 2313216 "PWFFINTB" 2313761 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1003 2310848 2311016 2311372 "PUSHVAR" 2312487 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1002 2306737 2307791 2307834 "PTRANFN" 2309745 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1001 2305128 2305419 2305743 "PTPACK" 2306448 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1000 2304757 2304814 2304925 "PTFUNC2" 2305065 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-999 2299202 2303599 2303640 "PTCAT" 2303936 NIL PTCAT (NIL T) -9 NIL 2304089 NIL) (-998 2298860 2298895 2299019 "PSQFR" 2299161 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-997 2297455 2297753 2298087 "PSEUDLIN" 2298558 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-996 2284218 2286589 2288913 "PSETPK" 2295215 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-995 2277236 2279976 2280072 "PSETCAT" 2283093 NIL PSETCAT (NIL T T T T) -9 NIL 2283907 NIL) (-994 2275072 2275706 2276527 "PSETCAT-" 2276532 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-993 2274421 2274586 2274614 "PSCURVE" 2274882 T PSCURVE (NIL) -9 NIL 2275049 NIL) (-992 2270419 2271935 2272000 "PSCAT" 2272844 NIL PSCAT (NIL T T T) -9 NIL 2273084 NIL) (-991 2269482 2269698 2270098 "PSCAT-" 2270103 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-990 2267841 2268551 2268814 "PRTITION" 2269239 T PRTITION (NIL) -8 NIL NIL NIL) (-989 2267316 2267562 2267654 "PRTDAST" 2267769 T PRTDAST (NIL) -8 NIL NIL NIL) (-988 2256406 2258620 2260808 "PRS" 2265178 NIL PRS (NIL T T) -7 NIL NIL NIL) (-987 2254217 2255756 2255796 "PRQAGG" 2255979 NIL PRQAGG (NIL T) -9 NIL 2256081 NIL) (-986 2253553 2253858 2253886 "PROPLOG" 2254025 T PROPLOG (NIL) -9 NIL 2254140 NIL) (-985 2253157 2253214 2253337 "PROPFUN2" 2253476 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-984 2252472 2252593 2252765 "PROPFUN1" 2253018 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-983 2250653 2251219 2251516 "PROPFRML" 2252208 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-982 2250122 2250229 2250357 "PROPERTY" 2250545 T PROPERTY (NIL) -8 NIL NIL NIL) (-981 2244180 2248288 2249108 "PRODUCT" 2249348 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-980 2241458 2243638 2243872 "PR" 2243991 NIL PR (NIL T T) -8 NIL NIL NIL) (-979 2241254 2241286 2241345 "PRINT" 2241419 T PRINT (NIL) -7 NIL NIL NIL) (-978 2240594 2240711 2240863 "PRIMES" 2241134 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-977 2238659 2239060 2239526 "PRIMELT" 2240173 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-976 2238388 2238437 2238465 "PRIMCAT" 2238589 T PRIMCAT (NIL) -9 NIL NIL NIL) (-975 2234503 2238326 2238371 "PRIMARR" 2238376 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-974 2233510 2233688 2233916 "PRIMARR2" 2234321 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-973 2233153 2233209 2233320 "PREASSOC" 2233448 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-972 2232628 2232761 2232789 "PPCURVE" 2232994 T PPCURVE (NIL) -9 NIL 2233130 NIL) (-971 2232223 2232423 2232506 "PORTNUM" 2232565 T PORTNUM (NIL) -8 NIL NIL NIL) (-970 2229582 2229981 2230573 "POLYROOT" 2231804 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-969 2223496 2229186 2229346 "POLY" 2229455 NIL POLY (NIL T) -8 NIL NIL NIL) (-968 2222879 2222937 2223171 "POLYLIFT" 2223432 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-967 2219154 2219603 2220232 "POLYCATQ" 2222424 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-966 2205504 2210901 2210966 "POLYCAT" 2214480 NIL POLYCAT (NIL T T T) -9 NIL 2216358 NIL) (-965 2198227 2200303 2202943 "POLYCAT-" 2202948 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-964 2197814 2197882 2198002 "POLY2UP" 2198153 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-963 2197446 2197503 2197612 "POLY2" 2197751 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-962 2196131 2196370 2196646 "POLUTIL" 2197220 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-961 2194486 2194763 2195094 "POLTOPOL" 2195853 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-960 2189951 2194422 2194468 "POINT" 2194473 NIL POINT (NIL T) -8 NIL NIL NIL) (-959 2188138 2188495 2188870 "PNTHEORY" 2189596 T PNTHEORY (NIL) -7 NIL NIL NIL) (-958 2186596 2186893 2187292 "PMTOOLS" 2187836 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-957 2186189 2186267 2186384 "PMSYM" 2186512 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-956 2185697 2185766 2185941 "PMQFCAT" 2186114 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-955 2185052 2185162 2185318 "PMPRED" 2185574 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-954 2184445 2184531 2184693 "PMPREDFS" 2184953 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-953 2183109 2183317 2183695 "PMPLCAT" 2184207 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-952 2182641 2182720 2182872 "PMLSAGG" 2183024 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-951 2182114 2182190 2182372 "PMKERNEL" 2182559 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-950 2181731 2181806 2181919 "PMINS" 2182033 NIL PMINS (NIL T) -7 NIL NIL NIL) (-949 2181173 2181242 2181451 "PMFS" 2181656 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-948 2180401 2180519 2180724 "PMDOWN" 2181050 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-947 2179568 2179726 2179907 "PMASS" 2180240 T PMASS (NIL) -7 NIL NIL NIL) (-946 2178841 2178951 2179114 "PMASSFS" 2179455 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-945 2178496 2178564 2178658 "PLOTTOOL" 2178767 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-944 2173103 2174307 2175455 "PLOT" 2177368 T PLOT (NIL) -8 NIL NIL NIL) (-943 2168907 2169951 2170872 "PLOT3D" 2172202 T PLOT3D (NIL) -8 NIL NIL NIL) (-942 2167819 2167996 2168231 "PLOT1" 2168711 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-941 2143210 2147885 2152736 "PLEQN" 2163085 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-940 2142528 2142650 2142830 "PINTERP" 2143075 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-939 2142221 2142268 2142371 "PINTERPA" 2142475 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-938 2141437 2141985 2142072 "PI" 2142112 T PI (NIL) -8 NIL NIL 2142179) (-937 2139734 2140709 2140737 "PID" 2140919 T PID (NIL) -9 NIL 2141053 NIL) (-936 2139485 2139522 2139597 "PICOERCE" 2139691 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-935 2138805 2138944 2139120 "PGROEB" 2139341 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-934 2134392 2135206 2136111 "PGE" 2137920 T PGE (NIL) -7 NIL NIL NIL) (-933 2132515 2132762 2133128 "PGCD" 2134109 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-932 2131853 2131956 2132117 "PFRPAC" 2132399 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-931 2128493 2130401 2130754 "PFR" 2131532 NIL PFR (NIL T) -8 NIL NIL NIL) (-930 2126882 2127126 2127451 "PFOTOOLS" 2128240 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-929 2125415 2125654 2126005 "PFOQ" 2126639 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-928 2123916 2124128 2124484 "PFO" 2125199 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-927 2120469 2123805 2123874 "PF" 2123879 NIL PF (NIL NIL) -8 NIL NIL NIL) (-926 2117803 2119074 2119102 "PFECAT" 2119687 T PFECAT (NIL) -9 NIL 2120071 NIL) (-925 2117248 2117402 2117616 "PFECAT-" 2117621 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-924 2115851 2116103 2116404 "PFBRU" 2116997 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-923 2113717 2114069 2114501 "PFBR" 2115502 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-922 2109763 2111229 2111876 "PERM" 2113103 NIL PERM (NIL T) -8 NIL NIL NIL) (-921 2104997 2105970 2106840 "PERMGRP" 2108926 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-920 2103116 2104076 2104117 "PERMCAT" 2104517 NIL PERMCAT (NIL T) -9 NIL 2104815 NIL) (-919 2102769 2102810 2102934 "PERMAN" 2103069 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-918 2100257 2102434 2102556 "PENDTREE" 2102680 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-917 2099186 2099401 2099442 "PDSPC" 2099975 NIL PDSPC (NIL T) -9 NIL 2100220 NIL) (-916 2098289 2098507 2098869 "PDSPC-" 2098874 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-915 2097171 2097939 2097980 "PDRING" 2097985 NIL PDRING (NIL T) -9 NIL 2098013 NIL) (-914 2096058 2096676 2096730 "PDMOD" 2096735 NIL PDMOD (NIL T T) -9 NIL 2096839 NIL) (-913 2093273 2094051 2094719 "PDEPROB" 2095410 T PDEPROB (NIL) -8 NIL NIL NIL) (-912 2090818 2091322 2091877 "PDEPACK" 2092738 T PDEPACK (NIL) -7 NIL NIL NIL) (-911 2089730 2089920 2090171 "PDECOMP" 2090617 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-910 2087309 2088152 2088180 "PDECAT" 2088967 T PDECAT (NIL) -9 NIL 2089680 NIL) (-909 2086938 2086993 2087047 "PDDOM" 2087212 NIL PDDOM (NIL T T) -9 NIL 2087292 NIL) (-908 2086757 2086787 2086894 "PDDOM-" 2086899 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-907 2086508 2086541 2086631 "PCOMP" 2086718 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-906 2084686 2085309 2085606 "PBWLB" 2086237 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-905 2077159 2078759 2080097 "PATTERN" 2083369 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-904 2076791 2076848 2076957 "PATTERN2" 2077096 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-903 2074548 2074936 2075393 "PATTERN1" 2076380 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-902 2071916 2072497 2072978 "PATRES" 2074113 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-901 2071480 2071547 2071679 "PATRES2" 2071843 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-900 2069363 2069768 2070175 "PATMATCH" 2071147 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-899 2068873 2069082 2069123 "PATMAB" 2069230 NIL PATMAB (NIL T) -9 NIL 2069313 NIL) (-898 2067391 2067727 2067985 "PATLRES" 2068678 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-897 2066937 2067060 2067101 "PATAB" 2067106 NIL PATAB (NIL T) -9 NIL 2067278 NIL) (-896 2065119 2065514 2065937 "PARTPERM" 2066534 T PARTPERM (NIL) -7 NIL NIL NIL) (-895 2064740 2064803 2064905 "PARSURF" 2065050 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-894 2064372 2064429 2064538 "PARSU2" 2064677 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-893 2064136 2064176 2064243 "PARSER" 2064325 T PARSER (NIL) -7 NIL NIL NIL) (-892 2063757 2063820 2063922 "PARSCURV" 2064067 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-891 2063389 2063446 2063555 "PARSC2" 2063694 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-890 2063028 2063086 2063183 "PARPCURV" 2063325 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-889 2062660 2062717 2062826 "PARPC2" 2062965 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-888 2061721 2062033 2062215 "PARAMAST" 2062498 T PARAMAST (NIL) -8 NIL NIL NIL) (-887 2061241 2061327 2061446 "PAN2EXPR" 2061622 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-886 2060018 2060362 2060590 "PALETTE" 2061033 T PALETTE (NIL) -8 NIL NIL NIL) (-885 2058411 2059023 2059383 "PAIR" 2059704 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-884 2052011 2057668 2057863 "PADICRC" 2058265 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-883 2044935 2051355 2051540 "PADICRAT" 2051858 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-882 2043250 2044872 2044917 "PADIC" 2044922 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-881 2040360 2041924 2041964 "PADICCT" 2042545 NIL PADICCT (NIL NIL) -9 NIL 2042827 NIL) (-880 2039317 2039517 2039785 "PADEPAC" 2040147 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-879 2038529 2038662 2038868 "PADE" 2039179 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-878 2036916 2037737 2038017 "OWP" 2038333 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-877 2036409 2036622 2036719 "OVERSET" 2036839 T OVERSET (NIL) -8 NIL NIL NIL) (-876 2035455 2036014 2036186 "OVAR" 2036277 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-875 2034719 2034840 2035001 "OUT" 2035314 T OUT (NIL) -7 NIL NIL NIL) (-874 2023591 2025828 2028028 "OUTFORM" 2032539 T OUTFORM (NIL) -8 NIL NIL NIL) (-873 2022927 2023188 2023315 "OUTBFILE" 2023484 T OUTBFILE (NIL) -8 NIL NIL NIL) (-872 2022234 2022399 2022427 "OUTBCON" 2022745 T OUTBCON (NIL) -9 NIL 2022911 NIL) (-871 2021835 2021947 2022104 "OUTBCON-" 2022109 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-870 2021215 2021564 2021653 "OSI" 2021766 T OSI (NIL) -8 NIL NIL NIL) (-869 2020745 2021083 2021111 "OSGROUP" 2021116 T OSGROUP (NIL) -9 NIL 2021138 NIL) (-868 2019490 2019717 2020002 "ORTHPOL" 2020492 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-867 2017041 2019325 2019446 "OREUP" 2019451 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-866 2014444 2016732 2016859 "ORESUP" 2016983 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-865 2011972 2012472 2013033 "OREPCTO" 2013933 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-864 2005658 2007859 2007900 "OREPCAT" 2010248 NIL OREPCAT (NIL T) -9 NIL 2011352 NIL) (-863 2002805 2003587 2004645 "OREPCAT-" 2004650 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-862 2001956 2002254 2002282 "ORDSET" 2002591 T ORDSET (NIL) -9 NIL 2002755 NIL) (-861 2001387 2001535 2001759 "ORDSET-" 2001764 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-860 1999952 2000743 2000771 "ORDRING" 2000973 T ORDRING (NIL) -9 NIL 2001098 NIL) (-859 1999597 1999691 1999835 "ORDRING-" 1999840 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 1998977 1999440 1999468 "ORDMON" 1999473 T ORDMON (NIL) -9 NIL 1999494 NIL) (-857 1998139 1998286 1998481 "ORDFUNS" 1998826 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1997477 1997896 1997924 "ORDFIN" 1997989 T ORDFIN (NIL) -9 NIL 1998063 NIL) (-855 1994036 1996063 1996472 "ORDCOMP" 1997101 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1993302 1993429 1993615 "ORDCOMP2" 1993896 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1989883 1990793 1991607 "OPTPROB" 1992508 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1986685 1987324 1988028 "OPTPACK" 1989199 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1984372 1985138 1985166 "OPTCAT" 1985985 T OPTCAT (NIL) -9 NIL 1986635 NIL) (-850 1983756 1984049 1984154 "OPSIG" 1984287 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1983524 1983563 1983629 "OPQUERY" 1983710 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1980655 1981835 1982339 "OP" 1983053 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1980029 1980255 1980296 "OPERCAT" 1980508 NIL OPERCAT (NIL T) -9 NIL 1980605 NIL) (-846 1979784 1979840 1979957 "OPERCAT-" 1979962 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1976597 1978581 1978950 "ONECOMP" 1979448 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1975902 1976017 1976191 "ONECOMP2" 1976469 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1975321 1975427 1975557 "OMSERVER" 1975792 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1972183 1974761 1974801 "OMSAGG" 1974862 NIL OMSAGG (NIL T) -9 NIL 1974926 NIL) (-841 1970806 1971069 1971351 "OMPKG" 1971921 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1970236 1970339 1970367 "OM" 1970666 T OM (NIL) -9 NIL NIL NIL) (-839 1968783 1969785 1969954 "OMLO" 1970117 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1967743 1967890 1968110 "OMEXPR" 1968609 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1967034 1967289 1967425 "OMERR" 1967627 T OMERR (NIL) -8 NIL NIL NIL) (-836 1966185 1966455 1966615 "OMERRK" 1966894 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1965636 1965862 1965970 "OMENC" 1966097 T OMENC (NIL) -8 NIL NIL NIL) (-834 1959531 1960716 1961887 "OMDEV" 1964485 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1958600 1958771 1958965 "OMCONN" 1959357 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1957121 1958097 1958125 "OINTDOM" 1958130 T OINTDOM (NIL) -9 NIL 1958151 NIL) (-831 1954459 1955809 1956146 "OFMONOID" 1956816 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1953831 1954396 1954441 "ODVAR" 1954446 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1951254 1953576 1953731 "ODR" 1953736 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1943567 1951030 1951156 "ODPOL" 1951161 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1937371 1943439 1943544 "ODP" 1943549 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1936137 1936352 1936627 "ODETOOLS" 1937145 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1933104 1933762 1934478 "ODESYS" 1935470 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1927986 1928894 1929919 "ODERTRIC" 1932179 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1927412 1927494 1927688 "ODERED" 1927898 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1924300 1924848 1925525 "ODERAT" 1926835 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1921259 1921724 1922321 "ODEPRRIC" 1923829 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1919202 1919798 1920284 "ODEPROB" 1920793 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1915722 1916207 1916854 "ODEPRIM" 1918681 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1914971 1915073 1915333 "ODEPAL" 1915614 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1911133 1911924 1912788 "ODEPACK" 1914127 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1910194 1910301 1910523 "ODEINT" 1911022 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1904295 1905720 1907167 "ODEIFTBL" 1908767 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1899693 1900479 1901431 "ODEEF" 1903454 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1899042 1899131 1899354 "ODECONST" 1899598 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1897167 1897828 1897856 "ODECAT" 1898461 T ODECAT (NIL) -9 NIL 1898992 NIL) (-811 1894022 1896872 1896994 "OCT" 1897077 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1893660 1893703 1893830 "OCTCT2" 1893973 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1888271 1890706 1890746 "OC" 1891843 NIL OC (NIL T) -9 NIL 1892701 NIL) (-808 1885498 1886246 1887236 "OC-" 1887330 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1884850 1885318 1885346 "OCAMON" 1885351 T OCAMON (NIL) -9 NIL 1885372 NIL) (-806 1884381 1884722 1884750 "OASGP" 1884755 T OASGP (NIL) -9 NIL 1884775 NIL) (-805 1883642 1884131 1884159 "OAMONS" 1884199 T OAMONS (NIL) -9 NIL 1884242 NIL) (-804 1883056 1883489 1883517 "OAMON" 1883522 T OAMON (NIL) -9 NIL 1883542 NIL) (-803 1882314 1882832 1882860 "OAGROUP" 1882865 T OAGROUP (NIL) -9 NIL 1882885 NIL) (-802 1882004 1882054 1882142 "NUMTUBE" 1882258 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1875577 1877095 1878631 "NUMQUAD" 1880488 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1871333 1872321 1873346 "NUMODE" 1874572 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1868688 1869568 1869596 "NUMINT" 1870519 T NUMINT (NIL) -9 NIL 1871283 NIL) (-798 1867636 1867833 1868051 "NUMFMT" 1868490 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1853995 1856940 1859472 "NUMERIC" 1865143 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1848365 1853444 1853539 "NTSCAT" 1853544 NIL NTSCAT (NIL T T T T) -9 NIL 1853583 NIL) (-795 1847559 1847724 1847917 "NTPOLFN" 1848204 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1835368 1844384 1845196 "NSUP" 1846780 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1835000 1835057 1835166 "NSUP2" 1835305 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1824958 1834774 1834907 "NSMP" 1834912 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1823390 1823691 1824048 "NREP" 1824646 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1821981 1822233 1822591 "NPCOEF" 1823133 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1821047 1821162 1821378 "NORMRETR" 1821862 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1819088 1819378 1819787 "NORMPK" 1820755 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1818773 1818801 1818925 "NORMMA" 1819054 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1818573 1818730 1818759 "NONE" 1818764 T NONE (NIL) -8 NIL NIL NIL) (-785 1818362 1818391 1818460 "NONE1" 1818537 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1817859 1817921 1818100 "NODE1" 1818294 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1816140 1816991 1817246 "NNI" 1817593 T NNI (NIL) -8 NIL NIL 1817828) (-782 1814560 1814873 1815237 "NLINSOL" 1815808 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1810801 1811796 1812695 "NIPROB" 1813681 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1809558 1809792 1810094 "NFINTBAS" 1810563 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1808732 1809208 1809249 "NETCLT" 1809421 NIL NETCLT (NIL T) -9 NIL 1809503 NIL) (-778 1807440 1807671 1807952 "NCODIV" 1808500 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1807202 1807239 1807314 "NCNTFRAC" 1807397 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1805382 1805746 1806166 "NCEP" 1806827 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1804233 1805006 1805034 "NASRING" 1805144 T NASRING (NIL) -9 NIL 1805224 NIL) (-774 1804028 1804072 1804166 "NASRING-" 1804171 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1803135 1803660 1803688 "NARNG" 1803805 T NARNG (NIL) -9 NIL 1803896 NIL) (-772 1802827 1802894 1803028 "NARNG-" 1803033 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1801706 1801913 1802148 "NAGSP" 1802612 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1792978 1794662 1796335 "NAGS" 1800053 T NAGS (NIL) -7 NIL NIL NIL) (-769 1791526 1791834 1792165 "NAGF07" 1792667 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1786064 1787355 1788662 "NAGF04" 1790239 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1779032 1780646 1782279 "NAGF02" 1784451 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1774256 1775356 1776473 "NAGF01" 1777935 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1767884 1769450 1771035 "NAGE04" 1772691 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1759053 1761174 1763304 "NAGE02" 1765774 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1755006 1755953 1756917 "NAGE01" 1758109 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1752801 1753335 1753893 "NAGD03" 1754468 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1744551 1746479 1748433 "NAGD02" 1750867 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1738362 1739787 1741227 "NAGD01" 1743131 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1734571 1735393 1736230 "NAGC06" 1737545 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1733036 1733368 1733724 "NAGC05" 1734235 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1732412 1732531 1732675 "NAGC02" 1732912 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1731371 1731954 1731994 "NAALG" 1732073 NIL NAALG (NIL T) -9 NIL 1732134 NIL) (-755 1731206 1731235 1731325 "NAALG-" 1731330 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1725156 1726264 1727451 "MULTSQFR" 1730102 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1724475 1724550 1724734 "MULTFACT" 1725068 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1717146 1721060 1721113 "MTSCAT" 1722183 NIL MTSCAT (NIL T T) -9 NIL 1722698 NIL) (-751 1716858 1716912 1717004 "MTHING" 1717086 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1716650 1716683 1716743 "MSYSCMD" 1716818 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1712732 1715405 1715725 "MSET" 1716363 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1709801 1712293 1712334 "MSETAGG" 1712339 NIL MSETAGG (NIL T) -9 NIL 1712373 NIL) (-747 1705643 1707180 1707925 "MRING" 1709101 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1705209 1705276 1705407 "MRF2" 1705570 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1704827 1704862 1705006 "MRATFAC" 1705168 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1702439 1702734 1703165 "MPRFF" 1704532 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1696468 1702293 1702390 "MPOLY" 1702395 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1695958 1695993 1696201 "MPCPF" 1696427 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1695472 1695515 1695699 "MPC3" 1695909 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1694667 1694748 1694969 "MPC2" 1695387 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1692968 1693305 1693695 "MONOTOOL" 1694327 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1692193 1692510 1692538 "MONOID" 1692757 T MONOID (NIL) -9 NIL 1692904 NIL) (-737 1691739 1691858 1692039 "MONOID-" 1692044 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1681295 1687517 1687576 "MONOGEN" 1688250 NIL MONOGEN (NIL T T) -9 NIL 1688706 NIL) (-735 1678513 1679248 1680248 "MONOGEN-" 1680367 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1677346 1677792 1677820 "MONADWU" 1678212 T MONADWU (NIL) -9 NIL 1678450 NIL) (-733 1676718 1676877 1677125 "MONADWU-" 1677130 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1676077 1676321 1676349 "MONAD" 1676556 T MONAD (NIL) -9 NIL 1676668 NIL) (-731 1675762 1675840 1675972 "MONAD-" 1675977 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1674051 1674675 1674954 "MOEBIUS" 1675515 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1673329 1673733 1673773 "MODULE" 1673778 NIL MODULE (NIL T) -9 NIL 1673817 NIL) (-728 1672897 1672993 1673183 "MODULE-" 1673188 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1670577 1671261 1671588 "MODRING" 1672721 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1667521 1668682 1669203 "MODOP" 1670106 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1666109 1666588 1666865 "MODMONOM" 1667384 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1655885 1664400 1664814 "MODMON" 1665746 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1653041 1654729 1655005 "MODFIELD" 1655760 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1652018 1652322 1652512 "MMLFORM" 1652871 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1651544 1651587 1651766 "MMAP" 1651969 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1649623 1650390 1650431 "MLO" 1650854 NIL MLO (NIL T) -9 NIL 1651096 NIL) (-719 1646989 1647505 1648107 "MLIFT" 1649104 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1646380 1646464 1646618 "MKUCFUNC" 1646900 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1645979 1646049 1646172 "MKRECORD" 1646303 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1645026 1645188 1645416 "MKFUNC" 1645790 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1644414 1644518 1644674 "MKFLCFN" 1644909 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1643691 1643793 1643978 "MKBCFUNC" 1644307 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1640288 1643245 1643381 "MINT" 1643575 T MINT (NIL) -8 NIL NIL NIL) (-712 1639100 1639343 1639620 "MHROWRED" 1640043 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1634480 1637635 1638040 "MFLOAT" 1638715 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1633837 1633913 1634084 "MFINFACT" 1634392 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1630152 1631000 1631884 "MESH" 1632973 T MESH (NIL) -7 NIL NIL NIL) (-708 1628542 1628854 1629207 "MDDFACT" 1629839 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1625337 1627701 1627742 "MDAGG" 1627997 NIL MDAGG (NIL T) -9 NIL 1628140 NIL) (-706 1614039 1624630 1624837 "MCMPLX" 1625150 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1613176 1613322 1613523 "MCDEN" 1613888 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1611066 1611336 1611716 "MCALCFN" 1612906 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1609991 1610231 1610464 "MAYBE" 1610872 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1607603 1608126 1608688 "MATSTOR" 1609462 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1603560 1606975 1607223 "MATRIX" 1607388 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1599326 1600033 1600769 "MATLIN" 1602917 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1589432 1592618 1592695 "MATCAT" 1597575 NIL MATCAT (NIL T T T) -9 NIL 1598992 NIL) (-698 1585788 1586809 1588165 "MATCAT-" 1588170 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1584382 1584535 1584868 "MATCAT2" 1585623 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1582494 1582818 1583202 "MAPPKG3" 1584057 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1581475 1581648 1581870 "MAPPKG2" 1582318 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1579974 1580258 1580585 "MAPPKG1" 1581181 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1579053 1579380 1579557 "MAPPAST" 1579817 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1578664 1578722 1578845 "MAPHACK3" 1578989 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1578256 1578317 1578431 "MAPHACK2" 1578596 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1577694 1577797 1577939 "MAPHACK1" 1578147 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1575773 1576394 1576698 "MAGMA" 1577422 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1575252 1575497 1575588 "MACROAST" 1575702 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1571670 1573491 1573952 "M3D" 1574824 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1565745 1570009 1570050 "LZSTAGG" 1570832 NIL LZSTAGG (NIL T) -9 NIL 1571127 NIL) (-685 1561703 1562876 1564333 "LZSTAGG-" 1564338 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1558790 1559594 1560081 "LWORD" 1561248 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1558366 1558594 1558669 "LSTAST" 1558735 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1551264 1558137 1558271 "LSQM" 1558276 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1550488 1550627 1550855 "LSPP" 1551119 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1548300 1548601 1549057 "LSMP" 1550177 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1545079 1545753 1546483 "LSMP1" 1547602 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1538925 1544216 1544257 "LSAGG" 1544319 NIL LSAGG (NIL T) -9 NIL 1544397 NIL) (-677 1535620 1536544 1537757 "LSAGG-" 1537762 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1533219 1534764 1535013 "LPOLY" 1535415 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1532801 1532886 1533009 "LPEFRAC" 1533128 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1531122 1531895 1532148 "LO" 1532633 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1530774 1530886 1530914 "LOGIC" 1531025 T LOGIC (NIL) -9 NIL 1531106 NIL) (-672 1530636 1530659 1530730 "LOGIC-" 1530735 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1529829 1529969 1530162 "LODOOPS" 1530492 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1527252 1529745 1529811 "LODO" 1529816 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1525790 1526025 1526378 "LODOF" 1526999 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1521994 1524425 1524466 "LODOCAT" 1524904 NIL LODOCAT (NIL T) -9 NIL 1525115 NIL) (-667 1521727 1521785 1521912 "LODOCAT-" 1521917 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1519047 1521568 1521686 "LODO2" 1521691 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1516482 1518984 1519029 "LODO1" 1519034 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1515363 1515528 1515833 "LODEEF" 1516305 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1510666 1513557 1513598 "LNAGG" 1514460 NIL LNAGG (NIL T) -9 NIL 1514895 NIL) (-662 1509813 1510027 1510369 "LNAGG-" 1510374 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1505949 1506738 1507377 "LMOPS" 1509228 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1505352 1505740 1505781 "LMODULE" 1505786 NIL LMODULE (NIL T) -9 NIL 1505812 NIL) (-659 1502550 1504997 1505120 "LMDICT" 1505262 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1502182 1502354 1502395 "LLINSET" 1502456 NIL LLINSET (NIL T) -9 NIL 1502500 NIL) (-657 1501881 1502090 1502150 "LITERAL" 1502155 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1495044 1500815 1501119 "LIST" 1501610 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1494569 1494643 1494782 "LIST3" 1494964 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1493576 1493754 1493982 "LIST2" 1494387 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1491710 1492022 1492421 "LIST2MAP" 1493223 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1491355 1491543 1491584 "LINSET" 1491589 NIL LINSET (NIL T) -9 NIL 1491623 NIL) (-651 1489790 1490396 1490437 "LINEXP" 1490927 NIL LINEXP (NIL T) -9 NIL 1491200 NIL) (-650 1488367 1488627 1488938 "LINDEP" 1489542 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1485134 1485853 1486630 "LIMITRF" 1487622 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1483437 1483733 1484142 "LIMITPS" 1484829 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1477865 1482948 1483176 "LIE" 1483258 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1476813 1477282 1477322 "LIECAT" 1477462 NIL LIECAT (NIL T) -9 NIL 1477613 NIL) (-645 1476654 1476681 1476769 "LIECAT-" 1476774 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1469241 1476194 1476350 "LIB" 1476518 T LIB (NIL) -8 NIL NIL NIL) (-643 1464876 1465759 1466694 "LGROBP" 1468358 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1462874 1463148 1463498 "LF" 1464597 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1461714 1462406 1462434 "LFCAT" 1462641 T LFCAT (NIL) -9 NIL 1462780 NIL) (-640 1458616 1459246 1459934 "LEXTRIPK" 1461078 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1455360 1456186 1456689 "LEXP" 1458196 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1454836 1455081 1455173 "LETAST" 1455288 T LETAST (NIL) -8 NIL NIL NIL) (-637 1453234 1453547 1453948 "LEADCDET" 1454518 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1452424 1452498 1452727 "LAZM3PK" 1453155 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1447341 1450501 1451039 "LAUPOL" 1451936 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1446920 1446964 1447125 "LAPLACE" 1447291 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1444859 1446021 1446272 "LA" 1446753 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1443853 1444437 1444478 "LALG" 1444540 NIL LALG (NIL T) -9 NIL 1444599 NIL) (-631 1443567 1443626 1443762 "LALG-" 1443767 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1443402 1443426 1443467 "KVTFROM" 1443529 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1442325 1442769 1442954 "KTVLOGIC" 1443237 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1442160 1442184 1442225 "KRCFROM" 1442287 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1441064 1441251 1441550 "KOVACIC" 1441960 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1440899 1440923 1440964 "KONVERT" 1441026 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1440734 1440758 1440799 "KOERCE" 1440861 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1438565 1439327 1439704 "KERNEL" 1440390 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1438061 1438142 1438274 "KERNEL2" 1438479 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1431831 1436600 1436654 "KDAGG" 1437031 NIL KDAGG (NIL T T) -9 NIL 1437237 NIL) (-621 1431360 1431484 1431689 "KDAGG-" 1431694 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1424508 1431021 1431176 "KAFILE" 1431238 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1418936 1424019 1424247 "JORDAN" 1424329 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1418315 1418585 1418706 "JOINAST" 1418835 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1418161 1418220 1418275 "JAVACODE" 1418280 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1414413 1416366 1416420 "IXAGG" 1417349 NIL IXAGG (NIL T T) -9 NIL 1417808 NIL) (-615 1413332 1413638 1414057 "IXAGG-" 1414062 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1408862 1413254 1413313 "IVECTOR" 1413318 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1407628 1407865 1408131 "ITUPLE" 1408629 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1406130 1406307 1406602 "ITRIGMNP" 1407450 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1404875 1405079 1405362 "ITFUN3" 1405906 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1404507 1404564 1404673 "ITFUN2" 1404812 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1403666 1403987 1404161 "ITFORM" 1404353 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1401627 1402686 1402964 "ITAYLOR" 1403421 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1390572 1395764 1396927 "ISUPS" 1400497 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1389676 1389816 1390052 "ISUMP" 1390419 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1385051 1389621 1389662 "ISTRING" 1389667 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1384527 1384772 1384864 "ISAST" 1384979 T ISAST (NIL) -8 NIL NIL NIL) (-603 1383736 1383818 1384034 "IRURPK" 1384441 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1382672 1382873 1383113 "IRSN" 1383516 T IRSN (NIL) -7 NIL NIL NIL) (-601 1380743 1381098 1381527 "IRRF2F" 1382310 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1380490 1380528 1380604 "IRREDFFX" 1380699 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1379105 1379364 1379663 "IROOT" 1380223 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1375709 1376789 1377481 "IR" 1378445 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1374914 1375202 1375353 "IRFORM" 1375578 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1372527 1373022 1373588 "IR2" 1374392 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1371627 1371740 1371954 "IR2F" 1372410 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1371418 1371452 1371512 "IPRNTPK" 1371587 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1367999 1371307 1371376 "IPF" 1371381 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1366326 1367924 1367981 "IPADIC" 1367986 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1365638 1365886 1366016 "IP4ADDR" 1366216 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1365012 1365267 1365399 "IOMODE" 1365526 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1364085 1364609 1364736 "IOBFILE" 1364905 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1363573 1363989 1364017 "IOBCON" 1364022 T IOBCON (NIL) -9 NIL 1364043 NIL) (-587 1363084 1363142 1363325 "INVLAPLA" 1363509 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1352732 1355086 1357472 "INTTR" 1360748 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1349067 1349809 1350674 "INTTOOLS" 1351917 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1348653 1348744 1348861 "INTSLPE" 1348970 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1346606 1348576 1348635 "INTRVL" 1348640 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1344208 1344720 1345295 "INTRF" 1346091 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1343619 1343716 1343858 "INTRET" 1344106 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1341616 1342005 1342475 "INTRAT" 1343227 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1338879 1339462 1340081 "INTPM" 1341101 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1335624 1336223 1336961 "INTPAF" 1338265 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1330803 1331765 1332816 "INTPACK" 1334593 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1327623 1330600 1330709 "INT" 1330714 T INT (NIL) -8 NIL NIL NIL) (-575 1326875 1327027 1327235 "INTHERTR" 1327465 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1326314 1326394 1326582 "INTHERAL" 1326789 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1324160 1324603 1325060 "INTHEORY" 1325877 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1315566 1317187 1318959 "INTG0" 1322512 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1296139 1300929 1305739 "INTFTBL" 1310776 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1295388 1295526 1295699 "INTFACT" 1295998 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1292815 1293261 1293818 "INTEF" 1294942 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1291182 1291921 1291949 "INTDOM" 1292250 T INTDOM (NIL) -9 NIL 1292457 NIL) (-567 1290551 1290725 1290967 "INTDOM-" 1290972 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1286939 1288867 1288921 "INTCAT" 1289720 NIL INTCAT (NIL T) -9 NIL 1290041 NIL) (-565 1286411 1286514 1286642 "INTBIT" 1286831 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1285110 1285264 1285571 "INTALG" 1286256 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1284593 1284683 1284840 "INTAF" 1285014 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1277936 1284403 1284543 "INTABL" 1284548 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1277269 1277735 1277800 "INT8" 1277834 T INT8 (NIL) -8 NIL NIL 1277879) (-560 1276601 1277067 1277132 "INT64" 1277166 T INT64 (NIL) -8 NIL NIL 1277211) (-559 1275933 1276399 1276464 "INT32" 1276498 T INT32 (NIL) -8 NIL NIL 1276543) (-558 1275265 1275731 1275796 "INT16" 1275830 T INT16 (NIL) -8 NIL NIL 1275875) (-557 1269982 1272826 1272854 "INS" 1273788 T INS (NIL) -9 NIL 1274453 NIL) (-556 1267222 1267993 1268967 "INS-" 1269040 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1265997 1266224 1266522 "INPSIGN" 1266975 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1265115 1265232 1265429 "INPRODPF" 1265877 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1264009 1264126 1264363 "INPRODFF" 1264995 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1263009 1263161 1263421 "INNMFACT" 1263845 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1262206 1262303 1262491 "INMODGCD" 1262908 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1260714 1260959 1261283 "INFSP" 1261951 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1259898 1260015 1260198 "INFPROD0" 1260594 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1256753 1257963 1258478 "INFORM" 1259391 T INFORM (NIL) -8 NIL NIL NIL) (-547 1256363 1256423 1256521 "INFORM1" 1256688 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1255886 1255975 1256089 "INFINITY" 1256269 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1255062 1255606 1255707 "INETCLTS" 1255805 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1253678 1253928 1254249 "INEP" 1254810 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1252927 1253575 1253640 "INDE" 1253645 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1252491 1252559 1252676 "INCRMAPS" 1252854 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1251309 1251760 1251966 "INBFILE" 1252305 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1246608 1247545 1248489 "INBFF" 1250397 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1245516 1245785 1245813 "INBCON" 1246326 T INBCON (NIL) -9 NIL 1246592 NIL) (-538 1244768 1244991 1245267 "INBCON-" 1245272 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1244247 1244492 1244583 "INAST" 1244697 T INAST (NIL) -8 NIL NIL NIL) (-536 1243674 1243926 1244032 "IMPTAST" 1244161 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1240120 1243518 1243622 "IMATRIX" 1243627 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1238828 1238951 1239267 "IMATQF" 1239976 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1237048 1237275 1237612 "IMATLIN" 1238584 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1231626 1236972 1237030 "ILIST" 1237035 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1229531 1231486 1231599 "IIARRAY2" 1231604 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1224929 1229442 1229506 "IFF" 1229511 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1224276 1224546 1224662 "IFAST" 1224833 T IFAST (NIL) -8 NIL NIL NIL) (-528 1219271 1223568 1223756 "IFARRAY" 1224133 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1218451 1219175 1219248 "IFAMON" 1219253 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1218035 1218100 1218154 "IEVALAB" 1218361 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1217710 1217778 1217938 "IEVALAB-" 1217943 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1217341 1217624 1217687 "IDPO" 1217692 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1216591 1217230 1217305 "IDPOAMS" 1217310 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1215898 1216480 1216555 "IDPOAM" 1216560 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1214957 1215233 1215286 "IDPC" 1215699 NIL IDPC (NIL T T) -9 NIL 1215848 NIL) (-520 1214426 1214849 1214922 "IDPAM" 1214927 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1213802 1214318 1214391 "IDPAG" 1214396 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1213447 1213638 1213713 "IDENT" 1213747 T IDENT (NIL) -8 NIL NIL NIL) (-517 1209702 1210550 1211445 "IDECOMP" 1212604 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1202539 1203625 1204672 "IDEAL" 1208738 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1201699 1201811 1202011 "ICDEN" 1202423 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1200770 1201179 1201326 "ICARD" 1201572 T ICARD (NIL) -8 NIL NIL NIL) (-513 1198830 1199143 1199548 "IBPTOOLS" 1200447 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1194437 1198450 1198563 "IBITS" 1198749 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1191160 1191736 1192431 "IBATOOL" 1193854 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1188939 1189401 1189934 "IBACHIN" 1190695 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1186768 1188785 1188888 "IARRAY2" 1188893 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1182874 1186694 1186751 "IARRAY1" 1186756 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1176742 1181286 1181767 "IAN" 1182413 T IAN (NIL) -8 NIL NIL NIL) (-506 1176253 1176310 1176483 "IALGFACT" 1176679 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1175781 1175894 1175922 "HYPCAT" 1176129 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1175319 1175436 1175622 "HYPCAT-" 1175627 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1174914 1175114 1175197 "HOSTNAME" 1175256 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1174759 1174796 1174837 "HOMOTOP" 1174842 NIL HOMOTOP (NIL T) -9 NIL 1174875 NIL) (-501 1171391 1172769 1172810 "HOAGG" 1173791 NIL HOAGG (NIL T) -9 NIL 1174470 NIL) (-500 1169985 1170384 1170910 "HOAGG-" 1170915 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1163709 1169578 1169728 "HEXADEC" 1169855 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1162457 1162679 1162942 "HEUGCD" 1163486 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1161533 1162294 1162424 "HELLFDIV" 1162429 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1159712 1161310 1161398 "HEAP" 1161477 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1158975 1159264 1159398 "HEADAST" 1159598 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1152823 1158890 1158952 "HDP" 1158957 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1146543 1152458 1152610 "HDMP" 1152724 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1145867 1146007 1146171 "HB" 1146399 T HB (NIL) -7 NIL NIL NIL) (-491 1139253 1145713 1145817 "HASHTBL" 1145822 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1138729 1138974 1139066 "HASAST" 1139181 T HASAST (NIL) -8 NIL NIL NIL) (-489 1136507 1138351 1138533 "HACKPI" 1138567 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1132175 1136360 1136473 "GTSET" 1136478 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1125590 1132053 1132151 "GSTBL" 1132156 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1117977 1124755 1125011 "GSERIES" 1125390 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1117118 1117535 1117563 "GROUP" 1117766 T GROUP (NIL) -9 NIL 1117900 NIL) (-484 1116484 1116643 1116894 "GROUP-" 1116899 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1114851 1115172 1115559 "GROEBSOL" 1116161 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1113765 1114053 1114104 "GRMOD" 1114633 NIL GRMOD (NIL T T) -9 NIL 1114801 NIL) (-481 1113533 1113569 1113697 "GRMOD-" 1113702 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1108823 1109887 1110887 "GRIMAGE" 1112553 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1107289 1107550 1107874 "GRDEF" 1108519 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1106733 1106849 1106990 "GRAY" 1107168 T GRAY (NIL) -7 NIL NIL NIL) (-477 1105920 1106326 1106377 "GRALG" 1106530 NIL GRALG (NIL T T) -9 NIL 1106623 NIL) (-476 1105581 1105654 1105817 "GRALG-" 1105822 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1102358 1105166 1105344 "GPOLSET" 1105488 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1101712 1101769 1102027 "GOSPER" 1102295 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1097444 1098150 1098676 "GMODPOL" 1101411 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1096449 1096633 1096871 "GHENSEL" 1097256 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1090605 1091448 1092468 "GENUPS" 1095533 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1090302 1090353 1090442 "GENUFACT" 1090548 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1089714 1089791 1089956 "GENPGCD" 1090220 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1089188 1089223 1089436 "GENMFACT" 1089673 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1087754 1088011 1088318 "GENEEZ" 1088931 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1081634 1087365 1087527 "GDMP" 1087677 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1070977 1075405 1076511 "GCNAALG" 1080617 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1069304 1070166 1070194 "GCDDOM" 1070449 T GCDDOM (NIL) -9 NIL 1070606 NIL) (-463 1068774 1068901 1069116 "GCDDOM-" 1069121 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1067446 1067631 1067935 "GB" 1068553 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1056062 1058392 1060784 "GBINTERN" 1065137 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1053899 1054191 1054612 "GBF" 1055737 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1052680 1052845 1053112 "GBEUCLID" 1053715 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1052029 1052154 1052303 "GAUSSFAC" 1052551 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1050396 1050698 1051012 "GALUTIL" 1051748 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1048704 1048978 1049302 "GALPOLYU" 1050123 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1046069 1046359 1046766 "GALFACTU" 1048401 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1037875 1039374 1040982 "GALFACT" 1044501 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1035263 1035921 1035949 "FVFUN" 1037105 T FVFUN (NIL) -9 NIL 1037825 NIL) (-452 1034529 1034711 1034739 "FVC" 1035030 T FVC (NIL) -9 NIL 1035213 NIL) (-451 1034172 1034354 1034422 "FUNDESC" 1034481 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1033787 1033969 1034050 "FUNCTION" 1034124 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1031531 1032109 1032575 "FT" 1033341 T FT (NIL) -8 NIL NIL NIL) (-448 1030322 1030832 1031035 "FTEM" 1031348 T FTEM (NIL) -8 NIL NIL NIL) (-447 1028613 1028902 1029299 "FSUPFACT" 1030013 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1027010 1027299 1027631 "FST" 1028301 T FST (NIL) -8 NIL NIL NIL) (-445 1026209 1026315 1026503 "FSRED" 1026892 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1024908 1025164 1025511 "FSPRMELT" 1025924 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1022214 1022652 1023138 "FSPECF" 1024471 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1003287 1011988 1012029 "FS" 1015913 NIL FS (NIL T) -9 NIL 1018202 NIL) (-441 991930 994923 998980 "FS-" 999280 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 991458 991512 991682 "FSINT" 991871 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 989750 990451 990754 "FSERIES" 991237 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 988792 988908 989132 "FSCINT" 989630 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 985000 987736 987777 "FSAGG" 988147 NIL FSAGG (NIL T) -9 NIL 988406 NIL) (-436 982762 983363 984159 "FSAGG-" 984254 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 981804 981947 982174 "FSAGG2" 982615 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 979482 979762 980310 "FS2UPS" 981522 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 979116 979159 979288 "FS2" 979433 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 977994 978165 978467 "FS2EXPXP" 978941 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 977420 977535 977687 "FRUTIL" 977874 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 968833 972915 974273 "FR" 976094 NIL FR (NIL T) -8 NIL NIL NIL) (-429 963847 966522 966562 "FRNAALG" 967882 NIL FRNAALG (NIL T) -9 NIL 968480 NIL) (-428 959520 960596 961871 "FRNAALG-" 962621 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 959158 959201 959328 "FRNAAF2" 959471 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 957533 958007 958303 "FRMOD" 958970 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 955276 955908 956226 "FRIDEAL" 957324 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 954467 954554 954845 "FRIDEAL2" 955183 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 953600 954014 954055 "FRETRCT" 954060 NIL FRETRCT (NIL T) -9 NIL 954236 NIL) (-422 952712 952943 953294 "FRETRCT-" 953299 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 949800 951010 951069 "FRAMALG" 951951 NIL FRAMALG (NIL T T) -9 NIL 952243 NIL) (-420 947934 948389 949019 "FRAMALG-" 949242 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 941585 947407 947684 "FRAC" 947689 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 941221 941278 941385 "FRAC2" 941522 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 940857 940914 941021 "FR2" 941158 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 935370 938263 938291 "FPS" 939410 T FPS (NIL) -9 NIL 939967 NIL) (-415 934819 934928 935092 "FPS-" 935238 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 932121 933790 933818 "FPC" 934043 T FPC (NIL) -9 NIL 934185 NIL) (-413 931914 931954 932051 "FPC-" 932056 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 930704 931402 931443 "FPATMAB" 931448 NIL FPATMAB (NIL T) -9 NIL 931600 NIL) (-411 928943 929446 929793 "FPARFRAC" 930420 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 924337 924835 925517 "FORTRAN" 928375 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 922053 922553 923092 "FORT" 923818 T FORT (NIL) -7 NIL NIL NIL) (-408 919729 920291 920319 "FORTFN" 921379 T FORTFN (NIL) -9 NIL 922003 NIL) (-407 919493 919543 919571 "FORTCAT" 919630 T FORTCAT (NIL) -9 NIL 919692 NIL) (-406 917599 918109 918499 "FORMULA" 919123 T FORMULA (NIL) -8 NIL NIL NIL) (-405 917387 917417 917486 "FORMULA1" 917563 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 916910 916962 917135 "FORDER" 917329 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 916006 916170 916363 "FOP" 916737 T FOP (NIL) -7 NIL NIL NIL) (-402 914587 915286 915460 "FNLA" 915888 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 913316 913731 913759 "FNCAT" 914219 T FNCAT (NIL) -9 NIL 914479 NIL) (-400 912855 913275 913303 "FNAME" 913308 T FNAME (NIL) -8 NIL NIL NIL) (-399 911418 912381 912409 "FMTC" 912414 T FMTC (NIL) -9 NIL 912450 NIL) (-398 910164 911354 911400 "FMONOID" 911405 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 906992 908160 908201 "FMONCAT" 909418 NIL FMONCAT (NIL T) -9 NIL 910023 NIL) (-396 906184 906734 906883 "FM" 906888 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 903608 904254 904282 "FMFUN" 905426 T FMFUN (NIL) -9 NIL 906134 NIL) (-394 902877 903058 903086 "FMC" 903376 T FMC (NIL) -9 NIL 903558 NIL) (-393 899956 900816 900870 "FMCAT" 902065 NIL FMCAT (NIL T T) -9 NIL 902560 NIL) (-392 898822 899722 899822 "FM1" 899901 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 896596 897012 897506 "FLOATRP" 898373 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 890174 894325 894946 "FLOAT" 895995 T FLOAT (NIL) -8 NIL NIL NIL) (-389 887612 888112 888690 "FLOATCP" 889641 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 886282 887218 887259 "FLINEXP" 887264 NIL FLINEXP (NIL T) -9 NIL 887357 NIL) (-387 884710 885159 885743 "FLINEXP-" 885748 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 883786 883930 884154 "FLASORT" 884562 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 880902 881770 881822 "FLALG" 883049 NIL FLALG (NIL T T) -9 NIL 883516 NIL) (-384 874606 878358 878399 "FLAGG" 879661 NIL FLAGG (NIL T) -9 NIL 880313 NIL) (-383 873332 873671 874161 "FLAGG-" 874166 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 872374 872517 872744 "FLAGG2" 873185 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 869225 870233 870292 "FINRALG" 871420 NIL FINRALG (NIL T T) -9 NIL 871928 NIL) (-380 868385 868614 868953 "FINRALG-" 868958 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 867765 868004 868032 "FINITE" 868228 T FINITE (NIL) -9 NIL 868335 NIL) (-378 860122 862309 862349 "FINAALG" 866016 NIL FINAALG (NIL T) -9 NIL 867469 NIL) (-377 855454 856504 857648 "FINAALG-" 859027 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 854822 855209 855312 "FILE" 855384 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 853480 853818 853872 "FILECAT" 854556 NIL FILECAT (NIL T T) -9 NIL 854772 NIL) (-374 851196 852724 852752 "FIELD" 852792 T FIELD (NIL) -9 NIL 852872 NIL) (-373 849816 850201 850712 "FIELD-" 850717 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 847666 848451 848798 "FGROUP" 849502 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 846756 846920 847140 "FGLMICPK" 847498 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 842588 846681 846738 "FFX" 846743 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 842189 842250 842385 "FFSLPE" 842521 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 838179 838961 839757 "FFPOLY" 841425 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 837683 837719 837928 "FFPOLY2" 838137 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 833529 837602 837665 "FFP" 837670 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 828927 833440 833504 "FF" 833509 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 824053 828270 828460 "FFNBX" 828781 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 818981 823188 823446 "FFNBP" 823907 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 813614 818265 818476 "FFNB" 818814 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 812446 812644 812959 "FFINTBAS" 813411 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 808472 810693 810721 "FFIELDC" 811341 T FFIELDC (NIL) -9 NIL 811717 NIL) (-359 807134 807505 808002 "FFIELDC-" 808007 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 806703 806749 806873 "FFHOM" 807076 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 804398 804885 805402 "FFF" 806218 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 800016 804140 804241 "FFCGX" 804341 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 795638 799748 799855 "FFCGP" 799959 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 790821 795365 795473 "FFCG" 795574 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 770302 780497 780583 "FFCAT" 785748 NIL FFCAT (NIL T T T) -9 NIL 787199 NIL) (-352 765499 766547 767861 "FFCAT-" 769091 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 764910 764953 765188 "FFCAT2" 765450 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 754233 757882 759102 "FEXPR" 763762 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 753195 753630 753671 "FEVALAB" 753755 NIL FEVALAB (NIL T) -9 NIL 754016 NIL) (-348 752354 752564 752902 "FEVALAB-" 752907 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 750920 751737 751940 "FDIV" 752253 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 747940 748681 748796 "FDIVCAT" 750364 NIL FDIVCAT (NIL T T T T) -9 NIL 750801 NIL) (-345 747702 747729 747899 "FDIVCAT-" 747904 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 746922 747009 747286 "FDIV2" 747609 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 745896 746217 746419 "FCTRDATA" 746740 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 744582 744841 745130 "FCPAK1" 745627 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 743681 744082 744223 "FCOMP" 744473 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 727386 730831 734369 "FC" 740163 T FC (NIL) -8 NIL NIL NIL) (-339 719665 723693 723733 "FAXF" 725535 NIL FAXF (NIL T) -9 NIL 726227 NIL) (-338 716942 717599 718424 "FAXF-" 718889 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 711994 716318 716494 "FARRAY" 716799 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 706888 708955 709008 "FAMR" 710031 NIL FAMR (NIL T T) -9 NIL 710491 NIL) (-335 705778 706080 706515 "FAMR-" 706520 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 704947 705700 705753 "FAMONOID" 705758 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 702733 703443 703496 "FAMONC" 704437 NIL FAMONC (NIL T T) -9 NIL 704823 NIL) (-332 701397 702487 702624 "FAGROUP" 702629 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 699192 699511 699914 "FACUTIL" 701078 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 698291 698476 698698 "FACTFUNC" 699002 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 690713 697594 697793 "EXPUPXS" 698147 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 688196 688736 689322 "EXPRTUBE" 690147 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 684467 685059 685789 "EXPRODE" 687535 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 669959 683116 683545 "EXPR" 684071 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 664513 665100 665906 "EXPR2UPS" 669257 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 664145 664202 664311 "EXPR2" 664450 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 655150 663296 663587 "EXPEXPAN" 663981 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 654950 655107 655136 "EXIT" 655141 T EXIT (NIL) -8 NIL NIL NIL) (-321 654430 654674 654765 "EXITAST" 654879 T EXITAST (NIL) -8 NIL NIL NIL) (-320 654057 654119 654232 "EVALCYC" 654362 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 653598 653716 653757 "EVALAB" 653927 NIL EVALAB (NIL T) -9 NIL 654031 NIL) (-318 653079 653201 653422 "EVALAB-" 653427 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 650447 651749 651777 "EUCDOM" 652332 T EUCDOM (NIL) -9 NIL 652682 NIL) (-316 648852 649294 649884 "EUCDOM-" 649889 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 636391 639150 641900 "ESTOOLS" 646122 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 636023 636080 636189 "ESTOOLS2" 636328 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 635774 635816 635896 "ESTOOLS1" 635975 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 629811 631419 631447 "ES" 634215 T ES (NIL) -9 NIL 635625 NIL) (-311 624758 626045 627862 "ES-" 628026 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 621132 621893 622673 "ESCONT" 623998 T ESCONT (NIL) -7 NIL NIL NIL) (-309 620877 620909 620991 "ESCONT1" 621094 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 620552 620602 620702 "ES2" 620821 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 620182 620240 620349 "ES1" 620488 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 619398 619527 619703 "ERROR" 620026 T ERROR (NIL) -7 NIL NIL NIL) (-305 612790 619257 619348 "EQTBL" 619353 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 605293 608104 609553 "EQ" 611374 NIL -3091 (NIL T) -8 NIL NIL NIL) (-303 604925 604982 605091 "EQ2" 605230 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 600216 601263 602356 "EP" 603864 NIL EP (NIL T) -7 NIL NIL NIL) (-301 598816 599107 599413 "ENV" 599930 T ENV (NIL) -8 NIL NIL NIL) (-300 597910 598464 598492 "ENTIRER" 598497 T ENTIRER (NIL) -9 NIL 598543 NIL) (-299 594604 596092 596453 "EMR" 597718 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 593734 593919 593973 "ELTAGG" 594353 NIL ELTAGG (NIL T T) -9 NIL 594564 NIL) (-297 593453 593515 593656 "ELTAGG-" 593661 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 593217 593246 593300 "ELTAB" 593384 NIL ELTAB (NIL T T) -9 NIL 593436 NIL) (-295 592343 592489 592688 "ELFUTS" 593068 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 592085 592141 592169 "ELEMFUN" 592274 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 591955 591976 592044 "ELEMFUN-" 592049 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 586769 590025 590066 "ELAGG" 591006 NIL ELAGG (NIL T) -9 NIL 591469 NIL) (-291 585054 585488 586151 "ELAGG-" 586156 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 584366 584503 584659 "ELABOR" 584918 T ELABOR (NIL) -8 NIL NIL NIL) (-289 583027 583306 583600 "ELABEXPR" 584092 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 575861 577664 578493 "EFUPXS" 582302 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 569309 571110 571921 "EFULS" 575136 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 566794 567152 567624 "EFSTRUC" 568941 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 556585 558151 559699 "EF" 565309 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 555659 556070 556219 "EAB" 556456 T EAB (NIL) -8 NIL NIL NIL) (-283 554841 555618 555646 "E04UCFA" 555651 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 554023 554800 554828 "E04NAFA" 554833 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 553205 553982 554010 "E04MBFA" 554015 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 552387 553164 553192 "E04JAFA" 553197 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 551571 552346 552374 "E04GCFA" 552379 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 550755 551530 551558 "E04FDFA" 551563 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 549937 550714 550742 "E04DGFA" 550747 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 544110 545462 546826 "E04AGNT" 548593 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 542881 543424 543464 "DVARCAT" 543805 NIL DVARCAT (NIL T) -9 NIL 543968 NIL) (-274 542085 542297 542611 "DVARCAT-" 542616 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 534954 541884 542013 "DSMP" 542018 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 533377 534096 534137 "DSEXT" 534500 NIL DSEXT (NIL T) -9 NIL 534794 NIL) (-271 531662 532090 532756 "DSEXT-" 532761 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 526443 527607 528675 "DROPT" 530614 T DROPT (NIL) -8 NIL NIL NIL) (-269 526108 526167 526265 "DROPT1" 526378 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 521223 522349 523486 "DROPT0" 524991 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 519568 519893 520279 "DRAWPT" 520857 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 514155 515078 516157 "DRAW" 518542 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 513788 513841 513959 "DRAWHACK" 514096 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 512519 512788 513079 "DRAWCX" 513517 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 512034 512103 512254 "DRAWCURV" 512445 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 502502 504464 506579 "DRAWCFUN" 509939 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 499266 501195 501236 "DQAGG" 501865 NIL DQAGG (NIL T) -9 NIL 502139 NIL) (-260 486739 493477 493560 "DPOLCAT" 495412 NIL DPOLCAT (NIL T T T T) -9 NIL 495957 NIL) (-259 481576 482924 484882 "DPOLCAT-" 484887 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 474931 481437 481535 "DPMO" 481540 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 468189 474711 474878 "DPMM" 474883 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 467759 467973 468062 "DOMTMPLT" 468120 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 467192 467561 467641 "DOMCTOR" 467699 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 466404 466672 466823 "DOMAIN" 467061 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 460124 466039 466191 "DMP" 466305 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 458069 459191 459232 "DMEXT" 459237 NIL DMEXT (NIL T) -9 NIL 459413 NIL) (-251 457669 457725 457869 "DLP" 458007 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 451491 456996 457186 "DLIST" 457511 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 448288 450344 450385 "DLAGG" 450935 NIL DLAGG (NIL T) -9 NIL 451165 NIL) (-248 446964 447628 447656 "DIVRING" 447748 T DIVRING (NIL) -9 NIL 447831 NIL) (-247 446201 446391 446691 "DIVRING-" 446696 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 444303 444660 445066 "DISPLAY" 445815 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 438171 444217 444280 "DIRPROD" 444285 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 437019 437222 437487 "DIRPROD2" 437964 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 425774 431805 431858 "DIRPCAT" 432116 NIL DIRPCAT (NIL NIL T) -9 NIL 432991 NIL) (-242 422374 423230 424367 "DIRPCAT-" 424704 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 421661 421821 422007 "DIOSP" 422208 T DIOSP (NIL) -7 NIL NIL NIL) (-240 418316 420573 420614 "DIOPS" 421048 NIL DIOPS (NIL T) -9 NIL 421277 NIL) (-239 417865 417979 418170 "DIOPS-" 418175 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 416916 417544 417572 "DIFRING" 417577 T DIFRING (NIL) -9 NIL 417599 NIL) (-237 416588 416662 416690 "DIFFSPC" 416809 T DIFFSPC (NIL) -9 NIL 416884 NIL) (-236 416233 416311 416463 "DIFFSPC-" 416468 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 415289 415767 415808 "DIFFMOD" 415813 NIL DIFFMOD (NIL T) -9 NIL 415911 NIL) (-234 414997 415042 415083 "DIFFDOM" 415204 NIL DIFFDOM (NIL T) -9 NIL 415272 NIL) (-233 414850 414874 414958 "DIFFDOM-" 414963 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 412782 414054 414095 "DIFEXT" 414100 NIL DIFEXT (NIL T) -9 NIL 414253 NIL) (-231 410057 412314 412355 "DIAGG" 412360 NIL DIAGG (NIL T) -9 NIL 412380 NIL) (-230 409441 409598 409850 "DIAGG-" 409855 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 404858 408400 408677 "DHMATRIX" 409210 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 400470 401379 402389 "DFSFUN" 403868 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 395548 399401 399713 "DFLOAT" 400178 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 393811 394092 394481 "DFINTTLS" 395256 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 390840 391832 392232 "DERHAM" 393477 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 388641 390615 390704 "DEQUEUE" 390784 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 387895 388028 388211 "DEGRED" 388503 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 384325 385070 385916 "DEFINTRF" 387123 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 381880 382349 382941 "DEFINTEF" 383844 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 381230 381500 381615 "DEFAST" 381785 T DEFAST (NIL) -8 NIL NIL NIL) (-219 374954 380823 380973 "DECIMAL" 381100 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 372466 372924 373430 "DDFACT" 374498 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 372062 372105 372256 "DBLRESP" 372417 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 369930 370292 370653 "DBASE" 371828 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369172 369410 369556 "DATAARY" 369829 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368278 369131 369159 "D03FAFA" 369164 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367385 368237 368265 "D03EEFA" 368270 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365335 365801 366290 "D03AGNT" 366916 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364624 365294 365322 "D02EJFA" 365327 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 363913 364583 364611 "D02CJFA" 364616 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363202 363872 363900 "D02BHFA" 363905 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362491 363161 363189 "D02BBFA" 363194 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355688 357277 358883 "D02AGNT" 360905 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353456 353979 354525 "D01WGTS" 355162 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352523 353415 353443 "D01TRNS" 353448 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351591 352482 352510 "D01GBFA" 352515 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350659 351550 351578 "D01FCFA" 351583 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349727 350618 350646 "D01ASFA" 350651 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348795 349686 349714 "D01AQFA" 349719 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347863 348754 348782 "D01APFA" 348787 T D01APFA (NIL) -8 NIL NIL NIL) (-199 346931 347822 347850 "D01ANFA" 347855 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 345999 346890 346918 "D01AMFA" 346923 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345067 345958 345986 "D01ALFA" 345991 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344135 345026 345054 "D01AKFA" 345059 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343203 344094 344122 "D01AJFA" 344127 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336498 338051 339612 "D01AGNT" 341662 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335835 335963 336115 "CYCLOTOM" 336366 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332568 333283 334010 "CYCLES" 335128 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331880 332014 332185 "CVMP" 332429 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329721 329979 330348 "CTRIGMNP" 331608 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329157 329515 329588 "CTOR" 329668 T CTOR (NIL) -8 NIL NIL NIL) (-188 328666 328888 328989 "CTORKIND" 329076 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 327957 328273 328301 "CTORCAT" 328483 T CTORCAT (NIL) -9 NIL 328596 NIL) (-186 327555 327666 327825 "CTORCAT-" 327830 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327017 327229 327337 "CTORCALL" 327479 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326391 326490 326643 "CSTTOOLS" 326914 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322190 322847 323605 "CRFP" 325703 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321665 321911 322003 "CRCEAST" 322118 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320712 320897 321125 "CRAPACK" 321469 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320096 320197 320401 "CPMATCH" 320588 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319821 319849 319955 "CPIMA" 320062 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316169 316841 317560 "COORDSYS" 319156 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315581 315702 315844 "CONTOUR" 316047 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311472 313584 314076 "CONTFRAC" 315121 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311352 311373 311401 "CONDUIT" 311438 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310440 310994 311022 "COMRING" 311027 T COMRING (NIL) -9 NIL 311079 NIL) (-173 309494 309798 309982 "COMPPROP" 310276 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309155 309190 309318 "COMPLPAT" 309453 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298466 308964 309073 "COMPLEX" 309078 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298102 298159 298266 "COMPLEX2" 298403 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297441 297562 297722 "COMPILER" 297962 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297159 297194 297292 "COMPFACT" 297400 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279446 290863 290903 "COMPCAT" 291907 NIL COMPCAT (NIL T) -9 NIL 293255 NIL) (-166 268232 271373 275256 "COMPCAT-" 275612 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 267961 267989 268092 "COMMUPC" 268198 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 267755 267789 267848 "COMMONOP" 267922 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 267311 267506 267593 "COMM" 267688 T COMM (NIL) -8 NIL NIL NIL) (-162 266887 267115 267190 "COMMAAST" 267256 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266136 266330 266358 "COMBOPC" 266696 T COMBOPC (NIL) -9 NIL 266871 NIL) (-160 265032 265242 265484 "COMBINAT" 265926 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 261489 262063 262690 "COMBF" 264454 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 260247 260605 260840 "COLOR" 261274 T COLOR (NIL) -8 NIL NIL NIL) (-157 259723 259968 260060 "COLONAST" 260175 T COLONAST (NIL) -8 NIL NIL NIL) (-156 259363 259410 259535 "CMPLXRT" 259670 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 258811 259063 259162 "CLLCTAST" 259284 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 254313 255341 256421 "CLIP" 257751 T CLIP (NIL) -7 NIL NIL NIL) (-153 252654 253414 253654 "CLIF" 254140 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 248829 250800 250841 "CLAGG" 251770 NIL CLAGG (NIL T) -9 NIL 252306 NIL) (-151 247251 247708 248291 "CLAGG-" 248296 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 246795 246880 247020 "CINTSLPE" 247160 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 244296 244767 245315 "CHVAR" 246323 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 243470 244024 244052 "CHARZ" 244057 T CHARZ (NIL) -9 NIL 244072 NIL) (-147 243224 243264 243342 "CHARPOL" 243424 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 242282 242869 242897 "CHARNZ" 242944 T CHARNZ (NIL) -9 NIL 243000 NIL) (-145 240188 240936 241289 "CHAR" 241949 T CHAR (NIL) -8 NIL NIL NIL) (-144 239914 239975 240003 "CFCAT" 240114 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239155 239266 239449 "CDEN" 239798 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235120 238308 238588 "CCLASS" 238895 T CCLASS (NIL) -8 NIL NIL NIL) (-141 234371 234528 234705 "CATEGORY" 234963 T -10 (NIL) -8 NIL NIL NIL) (-140 233944 234290 234338 "CATCTOR" 234343 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 233395 233647 233745 "CATAST" 233866 T CATAST (NIL) -8 NIL NIL NIL) (-138 232871 233116 233208 "CASEAST" 233323 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228009 229028 229772 "CARTEN" 232183 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227117 227265 227486 "CARTEN2" 227856 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 225433 226267 226524 "CARD" 226880 T CARD (NIL) -8 NIL NIL NIL) (-134 225009 225237 225312 "CAPSLAST" 225378 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 224513 224721 224749 "CACHSET" 224881 T CACHSET (NIL) -9 NIL 224959 NIL) (-132 223983 224305 224333 "CABMON" 224383 T CABMON (NIL) -9 NIL 224439 NIL) (-131 223456 223687 223797 "BYTEORD" 223893 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 222433 222985 223127 "BYTE" 223290 T BYTE (NIL) -8 NIL NIL 223412) (-129 217783 221938 222110 "BYTEBUF" 222281 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 215292 217475 217582 "BTREE" 217709 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 212741 214940 215062 "BTOURN" 215202 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210111 212211 212252 "BTCAT" 212320 NIL BTCAT (NIL T) -9 NIL 212397 NIL) (-125 209778 209858 210007 "BTCAT-" 210012 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205157 209037 209065 "BTAGG" 209179 T BTAGG (NIL) -9 NIL 209289 NIL) (-123 204647 204772 204978 "BTAGG-" 204983 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 201642 203925 204140 "BSTREE" 204464 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 200780 200906 201090 "BRILL" 201498 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 197432 199506 199547 "BRAGG" 200196 NIL BRAGG (NIL T) -9 NIL 200454 NIL) (-119 195961 196367 196922 "BRAGG-" 196927 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 188885 195305 195490 "BPADICRT" 195808 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187200 188822 188867 "BPADIC" 188872 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 186898 186928 187042 "BOUNDZRO" 187164 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182126 183324 184236 "BOP" 186006 T BOP (NIL) -8 NIL NIL NIL) (-114 179907 180311 180786 "BOP1" 181684 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 179608 179669 179697 "BOOLE" 179808 T BOOLE (NIL) -9 NIL 179890 NIL) (-112 178433 179182 179331 "BOOLEAN" 179479 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 177712 178116 178170 "BMODULE" 178175 NIL BMODULE (NIL T T) -9 NIL 178240 NIL) (-110 173513 177510 177583 "BITS" 177659 T BITS (NIL) -8 NIL NIL NIL) (-109 172934 173053 173193 "BINDING" 173393 T BINDING (NIL) -8 NIL NIL NIL) (-108 166661 172529 172678 "BINARY" 172805 T BINARY (NIL) -8 NIL NIL NIL) (-107 164441 165916 165957 "BGAGG" 166217 NIL BGAGG (NIL T) -9 NIL 166354 NIL) (-106 164272 164304 164395 "BGAGG-" 164400 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163343 163656 163861 "BFUNCT" 164087 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162033 162211 162499 "BEZOUT" 163167 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 158502 160885 161215 "BBTREE" 161736 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158236 158289 158317 "BASTYPE" 158436 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 158088 158117 158190 "BASTYPE-" 158195 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157522 157598 157750 "BALFACT" 157999 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156378 156937 157123 "AUTOMOR" 157367 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156104 156109 156135 "ATTREG" 156140 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154356 154801 155153 "ATTRBUT" 155770 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 153964 154184 154250 "ATTRAST" 154308 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153500 153613 153639 "ATRIG" 153840 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153309 153350 153437 "ATRIG-" 153442 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 152954 153140 153166 "ASTCAT" 153171 T ASTCAT (NIL) -9 NIL 153201 NIL) (-92 152681 152740 152859 "ASTCAT-" 152864 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 150830 152457 152545 "ASTACK" 152624 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149335 149632 149997 "ASSOCEQ" 150512 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148367 148994 149118 "ASP9" 149242 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148130 148315 148354 "ASP8" 148359 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 146998 147735 147877 "ASP80" 148019 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 145896 146633 146765 "ASP7" 146897 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 144850 145573 145691 "ASP78" 145809 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 143819 144530 144647 "ASP77" 144764 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 142731 143457 143588 "ASP74" 143719 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141631 142366 142498 "ASP73" 142630 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 140735 141457 141557 "ASP6" 141562 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139682 140412 140530 "ASP55" 140648 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138631 139356 139475 "ASP50" 139594 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 137719 138332 138442 "ASP4" 138552 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 136807 137420 137530 "ASP49" 137640 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135591 136346 136514 "ASP42" 136696 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134368 135124 135294 "ASP41" 135478 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133318 134045 134163 "ASP35" 134281 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133083 133266 133305 "ASP34" 133310 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 132820 132887 132963 "ASP33" 133038 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 131714 132455 132587 "ASP31" 132719 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131479 131662 131701 "ASP30" 131706 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131214 131283 131359 "ASP29" 131434 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 130979 131162 131201 "ASP28" 131206 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 130744 130927 130966 "ASP27" 130971 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 129828 130442 130553 "ASP24" 130664 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 128905 129630 129742 "ASP20" 129747 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 127993 128606 128716 "ASP1" 128826 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 126936 127667 127786 "ASP19" 127905 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126673 126740 126816 "ASP12" 126891 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125525 126272 126416 "ASP10" 126560 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123376 125369 125460 "ARRAY2" 125465 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119141 123024 123138 "ARRAY1" 123293 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118173 118346 118567 "ARRAY12" 118964 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112485 114403 114478 "ARR2CAT" 117108 NIL ARR2CAT (NIL T T T) -9 NIL 117866 NIL) (-56 109919 110663 111617 "ARR2CAT-" 111622 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109236 109546 109671 "ARITY" 109812 T ARITY (NIL) -8 NIL NIL NIL) (-54 108012 108164 108463 "APPRULE" 109072 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107663 107711 107830 "APPLYORE" 107958 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107017 107256 107376 "ANY" 107561 T ANY (NIL) -8 NIL NIL NIL) (-51 106295 106418 106575 "ANY1" 106891 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 103825 104732 105059 "ANTISYM" 106019 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103317 103532 103628 "ANON" 103747 T ANON (NIL) -8 NIL NIL NIL) (-48 97325 101856 102310 "AN" 102881 T AN (NIL) -8 NIL NIL NIL) (-47 93223 94611 94662 "AMR" 95410 NIL AMR (NIL T T) -9 NIL 96010 NIL) (-46 92335 92556 92919 "AMR-" 92924 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 76774 92252 92313 "ALIST" 92318 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73579 76368 76537 "ALGSC" 76692 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70135 70689 71296 "ALGPKG" 73019 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69412 69513 69697 "ALGMFACT" 70021 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65447 66026 66620 "ALGMANIP" 68996 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55666 65073 65223 "ALGFF" 65380 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54862 54993 55172 "ALGFACT" 55524 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53803 54403 54441 "ALGEBRA" 54446 NIL ALGEBRA (NIL T) -9 NIL 54487 NIL) (-37 53521 53580 53712 "ALGEBRA-" 53717 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35584 51493 51545 "ALAGG" 51681 NIL ALAGG (NIL T T) -9 NIL 51842 NIL) (-35 35120 35233 35259 "AHYP" 35460 T AHYP (NIL) -9 NIL NIL NIL) (-34 34051 34299 34325 "AGG" 34824 T AGG (NIL) -9 NIL 35103 NIL) (-33 33485 33647 33861 "AGG-" 33866 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31291 31714 32119 "AF" 33127 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30771 31016 31106 "ADDAST" 31219 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30039 30298 30454 "ACPLOT" 30633 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26971 27009 "ACFS" 27616 NIL ACFS (NIL T) -9 NIL 27855 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-3 3261370 3261375 3261380 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3261355 3261360 3261365 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3261340 3261345 3261350 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3261325 3261330 3261335 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1315 3260468 3261200 3261277 "ZMOD" 3261282 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1314 3259522 3259686 3259909 "ZLINDEP" 3260300 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1313 3248822 3250590 3252562 "ZDSOLVE" 3257652 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1312 3248068 3248209 3248398 "YSTREAM" 3248668 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1311 3247496 3247742 3247855 "YDIAGRAM" 3247977 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1310 3245270 3246797 3247001 "XRPOLY" 3247339 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1309 3241823 3243141 3243716 "XPR" 3244742 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1308 3239544 3241154 3241358 "XPOLY" 3241654 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1307 3237197 3238565 3238620 "XPOLYC" 3238908 NIL XPOLYC (NIL T T) -9 NIL 3239021 NIL) (-1306 3233573 3235714 3236102 "XPBWPOLY" 3236855 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1305 3229268 3231563 3231605 "XF" 3232226 NIL XF (NIL T) -9 NIL 3232626 NIL) (-1304 3228889 3228977 3229146 "XF-" 3229151 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1303 3224085 3225374 3225429 "XFALG" 3227601 NIL XFALG (NIL T T) -9 NIL 3228390 NIL) (-1302 3223218 3223322 3223527 "XEXPPKG" 3223977 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1301 3221327 3223068 3223164 "XDPOLY" 3223169 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1300 3220134 3220734 3220777 "XALG" 3220782 NIL XALG (NIL T) -9 NIL 3220893 NIL) (-1299 3213576 3218111 3218605 "WUTSET" 3219726 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1298 3211832 3212628 3212951 "WP" 3213387 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1297 3211434 3211654 3211724 "WHILEAST" 3211784 T WHILEAST (NIL) -8 NIL NIL NIL) (-1296 3210906 3211151 3211245 "WHEREAST" 3211362 T WHEREAST (NIL) -8 NIL NIL NIL) (-1295 3209792 3209990 3210285 "WFFINTBS" 3210703 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1294 3207696 3208123 3208585 "WEIER" 3209364 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1293 3206742 3207192 3207234 "VSPACE" 3207370 NIL VSPACE (NIL T) -9 NIL 3207444 NIL) (-1292 3206580 3206607 3206698 "VSPACE-" 3206703 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1291 3206389 3206431 3206499 "VOID" 3206534 T VOID (NIL) -8 NIL NIL NIL) (-1290 3204525 3204884 3205290 "VIEW" 3206005 T VIEW (NIL) -7 NIL NIL NIL) (-1289 3200949 3201588 3202325 "VIEWDEF" 3203810 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1288 3190253 3192497 3194670 "VIEW3D" 3198798 T VIEW3D (NIL) -8 NIL NIL NIL) (-1287 3182504 3184164 3185743 "VIEW2D" 3188696 T VIEW2D (NIL) -8 NIL NIL NIL) (-1286 3177857 3182274 3182366 "VECTOR" 3182447 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1285 3176434 3176693 3177011 "VECTOR2" 3177587 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1284 3169876 3174185 3174228 "VECTCAT" 3175223 NIL VECTCAT (NIL T) -9 NIL 3175810 NIL) (-1283 3168890 3169144 3169534 "VECTCAT-" 3169539 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1282 3168344 3168541 3168661 "VARIABLE" 3168805 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1281 3168277 3168282 3168312 "UTYPE" 3168317 T UTYPE (NIL) -9 NIL NIL NIL) (-1280 3167107 3167261 3167523 "UTSODETL" 3168103 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1279 3164547 3165007 3165531 "UTSODE" 3166648 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1278 3156495 3162308 3162788 "UTS" 3164125 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1277 3147059 3152429 3152472 "UTSCAT" 3153584 NIL UTSCAT (NIL T) -9 NIL 3154342 NIL) (-1276 3144407 3145129 3146118 "UTSCAT-" 3146123 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1275 3144034 3144077 3144210 "UTS2" 3144358 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1274 3138260 3140872 3140915 "URAGG" 3142985 NIL URAGG (NIL T) -9 NIL 3143708 NIL) (-1273 3135199 3136062 3137185 "URAGG-" 3137190 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1272 3130908 3133834 3134299 "UPXSSING" 3134863 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1271 3123084 3130290 3130554 "UPXS" 3130702 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1270 3116157 3122988 3123060 "UPXSCONS" 3123065 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1269 3105564 3112360 3112422 "UPXSCCA" 3112996 NIL UPXSCCA (NIL T T) -9 NIL 3113229 NIL) (-1268 3105202 3105287 3105461 "UPXSCCA-" 3105466 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1267 3094461 3101030 3101073 "UPXSCAT" 3101721 NIL UPXSCAT (NIL T) -9 NIL 3102330 NIL) (-1266 3093891 3093970 3094149 "UPXS2" 3094376 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1265 3092545 3092798 3093149 "UPSQFREE" 3093634 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1264 3085753 3088813 3088868 "UPSCAT" 3089948 NIL UPSCAT (NIL T T) -9 NIL 3090713 NIL) (-1263 3084957 3085164 3085491 "UPSCAT-" 3085496 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1262 3070047 3078084 3078127 "UPOLYC" 3080228 NIL UPOLYC (NIL T) -9 NIL 3081449 NIL) (-1261 3061375 3063801 3066948 "UPOLYC-" 3066953 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1260 3061002 3061045 3061178 "UPOLYC2" 3061326 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1259 3052545 3060685 3060814 "UP" 3060921 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1258 3051884 3051991 3052155 "UPMP" 3052434 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1257 3051437 3051518 3051657 "UPDIVP" 3051797 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1256 3050005 3050254 3050570 "UPDECOMP" 3051186 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1255 3049236 3049348 3049534 "UPCDEN" 3049889 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1254 3048755 3048824 3048973 "UP2" 3049161 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1253 3047222 3047959 3048236 "UNISEG" 3048513 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1252 3046437 3046564 3046769 "UNISEG2" 3047065 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1251 3045497 3045677 3045903 "UNIFACT" 3046253 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1250 3028257 3044809 3045051 "ULS" 3045313 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1249 3015895 3028161 3028233 "ULSCONS" 3028238 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1248 2996731 3009083 3009145 "ULSCCAT" 3009783 NIL ULSCCAT (NIL T T) -9 NIL 3010072 NIL) (-1247 2995781 2996026 2996414 "ULSCCAT-" 2996419 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1246 2984845 2991328 2991371 "ULSCAT" 2992234 NIL ULSCAT (NIL T) -9 NIL 2992965 NIL) (-1245 2984275 2984354 2984533 "ULS2" 2984760 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1244 2983394 2983904 2984011 "UINT8" 2984122 T UINT8 (NIL) -8 NIL NIL 2984207) (-1243 2982512 2983022 2983129 "UINT64" 2983240 T UINT64 (NIL) -8 NIL NIL 2983325) (-1242 2981630 2982140 2982247 "UINT32" 2982358 T UINT32 (NIL) -8 NIL NIL 2982443) (-1241 2980748 2981258 2981365 "UINT16" 2981476 T UINT16 (NIL) -8 NIL NIL 2981561) (-1240 2979051 2980008 2980038 "UFD" 2980250 T UFD (NIL) -9 NIL 2980364 NIL) (-1239 2978845 2978891 2978986 "UFD-" 2978991 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1238 2977927 2978110 2978326 "UDVO" 2978651 T UDVO (NIL) -7 NIL NIL NIL) (-1237 2975743 2976152 2976623 "UDPO" 2977491 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1236 2975676 2975681 2975711 "TYPE" 2975716 T TYPE (NIL) -9 NIL NIL NIL) (-1235 2975436 2975631 2975662 "TYPEAST" 2975667 T TYPEAST (NIL) -8 NIL NIL NIL) (-1234 2974407 2974609 2974849 "TWOFACT" 2975230 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1233 2973430 2973816 2974051 "TUPLE" 2974207 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1232 2971121 2971640 2972179 "TUBETOOL" 2972913 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1231 2969970 2970175 2970416 "TUBE" 2970914 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1230 2964699 2968942 2969225 "TS" 2969722 NIL TS (NIL T) -8 NIL NIL NIL) (-1229 2953339 2957458 2957555 "TSETCAT" 2962824 NIL TSETCAT (NIL T T T T) -9 NIL 2964355 NIL) (-1228 2948071 2949671 2951562 "TSETCAT-" 2951567 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1227 2942710 2943557 2944486 "TRMANIP" 2947207 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1226 2942151 2942214 2942377 "TRIMAT" 2942642 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1225 2940017 2940254 2940611 "TRIGMNIP" 2941900 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1224 2939537 2939650 2939680 "TRIGCAT" 2939893 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1223 2939206 2939285 2939426 "TRIGCAT-" 2939431 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1222 2936051 2938064 2938345 "TREE" 2938960 NIL TREE (NIL T) -8 NIL NIL NIL) (-1221 2935325 2935853 2935883 "TRANFUN" 2935918 T TRANFUN (NIL) -9 NIL 2935984 NIL) (-1220 2934604 2934795 2935075 "TRANFUN-" 2935080 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1219 2934408 2934440 2934501 "TOPSP" 2934565 T TOPSP (NIL) -7 NIL NIL NIL) (-1218 2933756 2933871 2934025 "TOOLSIGN" 2934289 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1217 2932390 2932933 2933172 "TEXTFILE" 2933539 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1216 2930302 2930843 2931272 "TEX" 2931983 T TEX (NIL) -8 NIL NIL NIL) (-1215 2930083 2930114 2930186 "TEX1" 2930265 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1214 2929731 2929794 2929884 "TEMUTL" 2930015 T TEMUTL (NIL) -7 NIL NIL NIL) (-1213 2927885 2928165 2928490 "TBCMPPK" 2929454 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1212 2919662 2926045 2926101 "TBAGG" 2926501 NIL TBAGG (NIL T T) -9 NIL 2926712 NIL) (-1211 2914732 2916220 2917974 "TBAGG-" 2917979 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1210 2914116 2914223 2914368 "TANEXP" 2914621 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1209 2913627 2913891 2913981 "TALGOP" 2914061 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1208 2907017 2913484 2913577 "TABLE" 2913582 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1207 2906429 2906528 2906666 "TABLEAU" 2906914 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1206 2901037 2902257 2903505 "TABLBUMP" 2905215 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1205 2900259 2900406 2900587 "SYSTEM" 2900878 T SYSTEM (NIL) -8 NIL NIL NIL) (-1204 2896718 2897417 2898200 "SYSSOLP" 2899510 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1203 2896516 2896673 2896704 "SYSPTR" 2896709 T SYSPTR (NIL) -8 NIL NIL NIL) (-1202 2895552 2896057 2896176 "SYSNNI" 2896362 NIL SYSNNI (NIL NIL) -8 NIL NIL 2896447) (-1201 2894851 2895310 2895389 "SYSINT" 2895449 NIL SYSINT (NIL NIL) -8 NIL NIL 2895494) (-1200 2891183 2892129 2892839 "SYNTAX" 2894163 T SYNTAX (NIL) -8 NIL NIL NIL) (-1199 2888341 2888943 2889575 "SYMTAB" 2890573 T SYMTAB (NIL) -8 NIL NIL NIL) (-1198 2883590 2884492 2885475 "SYMS" 2887380 T SYMS (NIL) -8 NIL NIL NIL) (-1197 2880825 2883048 2883278 "SYMPOLY" 2883395 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1196 2880342 2880417 2880540 "SYMFUNC" 2880737 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1195 2876362 2877654 2878467 "SYMBOL" 2879551 T SYMBOL (NIL) -8 NIL NIL NIL) (-1194 2869901 2871590 2873310 "SWITCH" 2874664 T SWITCH (NIL) -8 NIL NIL NIL) (-1193 2863245 2868857 2869151 "SUTS" 2869665 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1192 2855421 2862627 2862891 "SUPXS" 2863039 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1191 2846912 2855039 2855165 "SUP" 2855330 NIL SUP (NIL T) -8 NIL NIL NIL) (-1190 2846071 2846198 2846415 "SUPFRACF" 2846780 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1189 2845692 2845751 2845864 "SUP2" 2846006 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1188 2844140 2844414 2844770 "SUMRF" 2845391 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1187 2843475 2843541 2843733 "SUMFS" 2844061 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1186 2826270 2842787 2843029 "SULS" 2843291 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1185 2825872 2826092 2826162 "SUCHTAST" 2826222 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1184 2825167 2825397 2825537 "SUCH" 2825780 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1183 2819034 2820073 2821032 "SUBSPACE" 2824255 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1182 2818464 2818554 2818718 "SUBRESP" 2818922 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1181 2811832 2813129 2814440 "STTF" 2817200 NIL STTF (NIL T) -7 NIL NIL NIL) (-1180 2806005 2807125 2808272 "STTFNC" 2810732 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1179 2797318 2799187 2800981 "STTAYLOR" 2804246 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1178 2790448 2797182 2797265 "STRTBL" 2797270 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1177 2785406 2790157 2790256 "STRING" 2790371 T STRING (NIL) -8 NIL NIL NIL) (-1176 2778159 2783025 2783636 "STREAM" 2784830 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1175 2777669 2777746 2777890 "STREAM3" 2778076 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1174 2776651 2776834 2777069 "STREAM2" 2777482 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1173 2776339 2776391 2776484 "STREAM1" 2776593 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1172 2775355 2775536 2775767 "STINPROD" 2776155 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1171 2774907 2775117 2775147 "STEP" 2775227 T STEP (NIL) -9 NIL 2775305 NIL) (-1170 2774094 2774396 2774544 "STEPAST" 2774781 T STEPAST (NIL) -8 NIL NIL NIL) (-1169 2767526 2773993 2774070 "STBL" 2774075 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1168 2762621 2766717 2766760 "STAGG" 2766913 NIL STAGG (NIL T) -9 NIL 2767002 NIL) (-1167 2760323 2760925 2761797 "STAGG-" 2761802 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1166 2758470 2760093 2760185 "STACK" 2760266 NIL STACK (NIL T) -8 NIL NIL NIL) (-1165 2751165 2756611 2757067 "SREGSET" 2758100 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1164 2743590 2744959 2746472 "SRDCMPK" 2749771 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1163 2736475 2741000 2741030 "SRAGG" 2742333 T SRAGG (NIL) -9 NIL 2742941 NIL) (-1162 2735492 2735747 2736126 "SRAGG-" 2736131 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1161 2729684 2734439 2734860 "SQMATRIX" 2735118 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1160 2723369 2726402 2727129 "SPLTREE" 2729029 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1159 2719332 2720025 2720671 "SPLNODE" 2722795 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1158 2718379 2718612 2718642 "SPFCAT" 2719086 T SPFCAT (NIL) -9 NIL NIL NIL) (-1157 2717116 2717326 2717590 "SPECOUT" 2718137 T SPECOUT (NIL) -7 NIL NIL NIL) (-1156 2708226 2710098 2710128 "SPADXPT" 2714804 T SPADXPT (NIL) -9 NIL 2716968 NIL) (-1155 2707987 2708027 2708096 "SPADPRSR" 2708179 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1154 2706036 2707942 2707973 "SPADAST" 2707978 T SPADAST (NIL) -8 NIL NIL NIL) (-1153 2697981 2699754 2699797 "SPACEC" 2704170 NIL SPACEC (NIL T) -9 NIL 2705986 NIL) (-1152 2696111 2697913 2697962 "SPACE3" 2697967 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1151 2694863 2695034 2695325 "SORTPAK" 2695916 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1150 2692955 2693258 2693670 "SOLVETRA" 2694527 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1149 2692005 2692227 2692488 "SOLVESER" 2692728 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1148 2687309 2688197 2689192 "SOLVERAD" 2691057 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1147 2683124 2683733 2684462 "SOLVEFOR" 2686676 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1146 2677394 2682473 2682570 "SNTSCAT" 2682575 NIL SNTSCAT (NIL T T T T) -9 NIL 2682645 NIL) (-1145 2671500 2675717 2676108 "SMTS" 2677084 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1144 2665917 2671388 2671465 "SMP" 2671470 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1143 2664076 2664377 2664775 "SMITH" 2665614 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1142 2656188 2660655 2660758 "SMATCAT" 2662109 NIL SMATCAT (NIL NIL T T T) -9 NIL 2662659 NIL) (-1141 2652402 2653439 2654873 "SMATCAT-" 2654878 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1140 2650068 2651638 2651681 "SKAGG" 2651942 NIL SKAGG (NIL T) -9 NIL 2652077 NIL) (-1139 2646266 2649541 2649725 "SINT" 2649877 T SINT (NIL) -8 NIL NIL 2650039) (-1138 2646038 2646076 2646142 "SIMPAN" 2646222 T SIMPAN (NIL) -7 NIL NIL NIL) (-1137 2645317 2645573 2645713 "SIG" 2645920 T SIG (NIL) -8 NIL NIL NIL) (-1136 2644155 2644376 2644651 "SIGNRF" 2645076 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1135 2642988 2643139 2643423 "SIGNEF" 2643984 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1134 2642294 2642571 2642695 "SIGAST" 2642886 T SIGAST (NIL) -8 NIL NIL NIL) (-1133 2639984 2640438 2640944 "SHP" 2641835 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1132 2633818 2639885 2639961 "SHDP" 2639966 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1131 2633391 2633583 2633613 "SGROUP" 2633706 T SGROUP (NIL) -9 NIL 2633768 NIL) (-1130 2633249 2633275 2633348 "SGROUP-" 2633353 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1129 2630040 2630738 2631461 "SGCF" 2632548 T SGCF (NIL) -7 NIL NIL NIL) (-1128 2624408 2629487 2629584 "SFRTCAT" 2629589 NIL SFRTCAT (NIL T T T T) -9 NIL 2629628 NIL) (-1127 2617829 2618847 2619983 "SFRGCD" 2623391 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1126 2610955 2612028 2613214 "SFQCMPK" 2616762 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1125 2610575 2610664 2610775 "SFORT" 2610896 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1124 2609693 2610415 2610536 "SEXOF" 2610541 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1123 2608800 2609574 2609642 "SEX" 2609647 T SEX (NIL) -8 NIL NIL NIL) (-1122 2604581 2605296 2605391 "SEXCAT" 2608013 NIL SEXCAT (NIL T T T T T) -9 NIL 2608573 NIL) (-1121 2601734 2604515 2604563 "SET" 2604568 NIL SET (NIL T) -8 NIL NIL NIL) (-1120 2599958 2600447 2600752 "SETMN" 2601475 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1119 2599454 2599606 2599636 "SETCAT" 2599812 T SETCAT (NIL) -9 NIL 2599922 NIL) (-1118 2599146 2599224 2599354 "SETCAT-" 2599359 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1117 2595507 2597607 2597650 "SETAGG" 2598520 NIL SETAGG (NIL T) -9 NIL 2598860 NIL) (-1116 2594965 2595081 2595318 "SETAGG-" 2595323 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1115 2594408 2594661 2594762 "SEQAST" 2594886 T SEQAST (NIL) -8 NIL NIL NIL) (-1114 2593607 2593901 2593962 "SEGXCAT" 2594248 NIL SEGXCAT (NIL T T) -9 NIL 2594368 NIL) (-1113 2592613 2593273 2593455 "SEG" 2593460 NIL SEG (NIL T) -8 NIL NIL NIL) (-1112 2591592 2591806 2591849 "SEGCAT" 2592371 NIL SEGCAT (NIL T) -9 NIL 2592592 NIL) (-1111 2590524 2590955 2591163 "SEGBIND" 2591419 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1110 2590145 2590204 2590317 "SEGBIND2" 2590459 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1109 2589718 2589946 2590023 "SEGAST" 2590090 T SEGAST (NIL) -8 NIL NIL NIL) (-1108 2588937 2589063 2589267 "SEG2" 2589562 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1107 2588308 2588872 2588919 "SDVAR" 2588924 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1106 2580567 2588078 2588208 "SDPOL" 2588213 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1105 2579160 2579426 2579745 "SCPKG" 2580282 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1104 2578324 2578496 2578688 "SCOPE" 2578990 T SCOPE (NIL) -8 NIL NIL NIL) (-1103 2577544 2577678 2577857 "SCACHE" 2578179 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1102 2577190 2577376 2577406 "SASTCAT" 2577411 T SASTCAT (NIL) -9 NIL 2577424 NIL) (-1101 2576677 2577025 2577101 "SAOS" 2577136 T SAOS (NIL) -8 NIL NIL NIL) (-1100 2576242 2576277 2576450 "SAERFFC" 2576636 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1099 2569913 2576139 2576219 "SAE" 2576224 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1098 2569506 2569541 2569700 "SAEFACT" 2569872 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1097 2567827 2568141 2568542 "RURPK" 2569172 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1096 2566464 2566770 2567075 "RULESET" 2567661 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1095 2563687 2564217 2564675 "RULE" 2566145 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1094 2563299 2563481 2563564 "RULECOLD" 2563639 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1093 2563089 2563117 2563188 "RTVALUE" 2563250 T RTVALUE (NIL) -8 NIL NIL NIL) (-1092 2562560 2562806 2562900 "RSTRCAST" 2563017 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1091 2557408 2558203 2559123 "RSETGCD" 2561759 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1090 2546638 2551717 2551814 "RSETCAT" 2555933 NIL RSETCAT (NIL T T T T) -9 NIL 2557030 NIL) (-1089 2544565 2545104 2545928 "RSETCAT-" 2545933 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1088 2536951 2538327 2539847 "RSDCMPK" 2543164 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1087 2534930 2535397 2535471 "RRCC" 2536557 NIL RRCC (NIL T T) -9 NIL 2536901 NIL) (-1086 2534281 2534455 2534734 "RRCC-" 2534739 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1085 2533724 2533977 2534078 "RPTAST" 2534202 T RPTAST (NIL) -8 NIL NIL NIL) (-1084 2507208 2516836 2516903 "RPOLCAT" 2527569 NIL RPOLCAT (NIL T T T) -9 NIL 2530729 NIL) (-1083 2498706 2501046 2504168 "RPOLCAT-" 2504173 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1082 2489637 2496917 2497399 "ROUTINE" 2498246 T ROUTINE (NIL) -8 NIL NIL NIL) (-1081 2486306 2489263 2489403 "ROMAN" 2489519 T ROMAN (NIL) -8 NIL NIL NIL) (-1080 2484550 2485166 2485426 "ROIRC" 2486111 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1079 2480782 2483066 2483096 "RNS" 2483400 T RNS (NIL) -9 NIL 2483674 NIL) (-1078 2479291 2479674 2480208 "RNS-" 2480283 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1077 2478694 2479102 2479132 "RNG" 2479137 T RNG (NIL) -9 NIL 2479158 NIL) (-1076 2477697 2478059 2478261 "RNGBIND" 2478545 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1075 2477096 2477484 2477527 "RMODULE" 2477532 NIL RMODULE (NIL T) -9 NIL 2477559 NIL) (-1074 2475932 2476026 2476362 "RMCAT2" 2476997 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1073 2472782 2475278 2475575 "RMATRIX" 2475694 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1072 2465609 2467869 2467984 "RMATCAT" 2471343 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2472325 NIL) (-1071 2464984 2465131 2465438 "RMATCAT-" 2465443 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1070 2464613 2464785 2464828 "RLINSET" 2464890 NIL RLINSET (NIL T) -9 NIL 2464934 NIL) (-1069 2464180 2464255 2464383 "RINTERP" 2464532 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1068 2463238 2463792 2463822 "RING" 2463878 T RING (NIL) -9 NIL 2463970 NIL) (-1067 2463030 2463074 2463171 "RING-" 2463176 NIL RING- (NIL T) -8 NIL NIL NIL) (-1066 2461871 2462108 2462366 "RIDIST" 2462794 T RIDIST (NIL) -7 NIL NIL NIL) (-1065 2453160 2461339 2461545 "RGCHAIN" 2461719 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1064 2452510 2452916 2452957 "RGBCSPC" 2453015 NIL RGBCSPC (NIL T) -9 NIL 2453067 NIL) (-1063 2451668 2452049 2452090 "RGBCMDL" 2452322 NIL RGBCMDL (NIL T) -9 NIL 2452436 NIL) (-1062 2448662 2449276 2449946 "RF" 2451032 NIL RF (NIL T) -7 NIL NIL NIL) (-1061 2448308 2448371 2448474 "RFFACTOR" 2448593 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1060 2448033 2448068 2448165 "RFFACT" 2448267 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1059 2446150 2446514 2446896 "RFDIST" 2447673 T RFDIST (NIL) -7 NIL NIL NIL) (-1058 2445603 2445695 2445858 "RETSOL" 2446052 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1057 2445239 2445319 2445362 "RETRACT" 2445495 NIL RETRACT (NIL T) -9 NIL 2445582 NIL) (-1056 2445088 2445113 2445200 "RETRACT-" 2445205 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1055 2444690 2444910 2444980 "RETAST" 2445040 T RETAST (NIL) -8 NIL NIL NIL) (-1054 2437428 2444343 2444470 "RESULT" 2444585 T RESULT (NIL) -8 NIL NIL NIL) (-1053 2436019 2436697 2436896 "RESRING" 2437331 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1052 2435655 2435704 2435802 "RESLATC" 2435956 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1051 2435360 2435395 2435502 "REPSQ" 2435614 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1050 2432782 2433362 2433964 "REP" 2434780 T REP (NIL) -7 NIL NIL NIL) (-1049 2432479 2432514 2432625 "REPDB" 2432741 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1048 2426379 2427768 2428991 "REP2" 2431291 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1047 2422756 2423437 2424245 "REP1" 2425606 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1046 2415452 2420897 2421353 "REGSET" 2422386 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1045 2414217 2414600 2414850 "REF" 2415237 NIL REF (NIL T) -8 NIL NIL NIL) (-1044 2413594 2413697 2413864 "REDORDER" 2414101 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1043 2409562 2412807 2413034 "RECLOS" 2413422 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1042 2408614 2408795 2409010 "REALSOLV" 2409369 T REALSOLV (NIL) -7 NIL NIL NIL) (-1041 2408460 2408501 2408531 "REAL" 2408536 T REAL (NIL) -9 NIL 2408571 NIL) (-1040 2404943 2405745 2406629 "REAL0Q" 2407625 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1039 2400544 2401532 2402593 "REAL0" 2403924 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1038 2400015 2400261 2400355 "RDUCEAST" 2400472 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1037 2399420 2399492 2399699 "RDIV" 2399937 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1036 2398488 2398662 2398875 "RDIST" 2399242 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1035 2397085 2397372 2397744 "RDETRS" 2398196 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1034 2394897 2395351 2395889 "RDETR" 2396627 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1033 2393522 2393800 2394197 "RDEEFS" 2394613 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1032 2392031 2392337 2392762 "RDEEF" 2393210 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1031 2386092 2389012 2389042 "RCFIELD" 2390337 T RCFIELD (NIL) -9 NIL 2391068 NIL) (-1030 2384156 2384660 2385356 "RCFIELD-" 2385431 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1029 2380425 2382257 2382300 "RCAGG" 2383384 NIL RCAGG (NIL T) -9 NIL 2383849 NIL) (-1028 2380053 2380147 2380310 "RCAGG-" 2380315 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1027 2379388 2379500 2379665 "RATRET" 2379937 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1026 2378941 2379008 2379129 "RATFACT" 2379316 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1025 2378249 2378369 2378521 "RANDSRC" 2378811 T RANDSRC (NIL) -7 NIL NIL NIL) (-1024 2377983 2378027 2378100 "RADUTIL" 2378198 T RADUTIL (NIL) -7 NIL NIL NIL) (-1023 2370819 2376814 2377125 "RADIX" 2377706 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1022 2361287 2370661 2370791 "RADFF" 2370796 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1021 2360934 2361009 2361039 "RADCAT" 2361199 T RADCAT (NIL) -9 NIL NIL NIL) (-1020 2360716 2360764 2360864 "RADCAT-" 2360869 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1019 2358814 2360486 2360578 "QUEUE" 2360659 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1018 2355083 2358747 2358795 "QUAT" 2358800 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1017 2354714 2354757 2354888 "QUATCT2" 2355034 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1016 2347548 2351164 2351206 "QUATCAT" 2351997 NIL QUATCAT (NIL T) -9 NIL 2352763 NIL) (-1015 2343687 2344724 2346114 "QUATCAT-" 2346210 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1014 2341152 2342763 2342806 "QUAGG" 2343187 NIL QUAGG (NIL T) -9 NIL 2343362 NIL) (-1013 2340754 2340974 2341044 "QQUTAST" 2341104 T QQUTAST (NIL) -8 NIL NIL NIL) (-1012 2339767 2340267 2340432 "QFORM" 2340635 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1011 2330162 2335669 2335711 "QFCAT" 2336379 NIL QFCAT (NIL T) -9 NIL 2337380 NIL) (-1010 2325003 2326418 2328268 "QFCAT-" 2328364 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1009 2324634 2324677 2324808 "QFCAT2" 2324954 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1008 2324089 2324199 2324331 "QEQUAT" 2324524 T QEQUAT (NIL) -8 NIL NIL NIL) (-1007 2317215 2318288 2319474 "QCMPACK" 2323022 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1006 2314753 2315201 2315631 "QALGSET" 2316870 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1005 2313988 2314164 2314400 "QALGSET2" 2314571 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1004 2312673 2312897 2313216 "PWFFINTB" 2313761 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1003 2310848 2311016 2311372 "PUSHVAR" 2312487 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1002 2306737 2307791 2307834 "PTRANFN" 2309745 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1001 2305128 2305419 2305743 "PTPACK" 2306448 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1000 2304757 2304814 2304925 "PTFUNC2" 2305065 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-999 2299202 2303599 2303640 "PTCAT" 2303936 NIL PTCAT (NIL T) -9 NIL 2304089 NIL) (-998 2298860 2298895 2299019 "PSQFR" 2299161 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-997 2297455 2297753 2298087 "PSEUDLIN" 2298558 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-996 2284218 2286589 2288913 "PSETPK" 2295215 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-995 2277236 2279976 2280072 "PSETCAT" 2283093 NIL PSETCAT (NIL T T T T) -9 NIL 2283907 NIL) (-994 2275072 2275706 2276527 "PSETCAT-" 2276532 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-993 2274421 2274586 2274614 "PSCURVE" 2274882 T PSCURVE (NIL) -9 NIL 2275049 NIL) (-992 2270419 2271935 2272000 "PSCAT" 2272844 NIL PSCAT (NIL T T T) -9 NIL 2273084 NIL) (-991 2269482 2269698 2270098 "PSCAT-" 2270103 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-990 2267841 2268551 2268814 "PRTITION" 2269239 T PRTITION (NIL) -8 NIL NIL NIL) (-989 2267316 2267562 2267654 "PRTDAST" 2267769 T PRTDAST (NIL) -8 NIL NIL NIL) (-988 2256406 2258620 2260808 "PRS" 2265178 NIL PRS (NIL T T) -7 NIL NIL NIL) (-987 2254217 2255756 2255796 "PRQAGG" 2255979 NIL PRQAGG (NIL T) -9 NIL 2256081 NIL) (-986 2253553 2253858 2253886 "PROPLOG" 2254025 T PROPLOG (NIL) -9 NIL 2254140 NIL) (-985 2253157 2253214 2253337 "PROPFUN2" 2253476 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-984 2252472 2252593 2252765 "PROPFUN1" 2253018 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-983 2250653 2251219 2251516 "PROPFRML" 2252208 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-982 2250122 2250229 2250357 "PROPERTY" 2250545 T PROPERTY (NIL) -8 NIL NIL NIL) (-981 2244180 2248288 2249108 "PRODUCT" 2249348 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-980 2241458 2243638 2243872 "PR" 2243991 NIL PR (NIL T T) -8 NIL NIL NIL) (-979 2241254 2241286 2241345 "PRINT" 2241419 T PRINT (NIL) -7 NIL NIL NIL) (-978 2240594 2240711 2240863 "PRIMES" 2241134 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-977 2238659 2239060 2239526 "PRIMELT" 2240173 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-976 2238388 2238437 2238465 "PRIMCAT" 2238589 T PRIMCAT (NIL) -9 NIL NIL NIL) (-975 2234503 2238326 2238371 "PRIMARR" 2238376 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-974 2233510 2233688 2233916 "PRIMARR2" 2234321 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-973 2233153 2233209 2233320 "PREASSOC" 2233448 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-972 2232628 2232761 2232789 "PPCURVE" 2232994 T PPCURVE (NIL) -9 NIL 2233130 NIL) (-971 2232223 2232423 2232506 "PORTNUM" 2232565 T PORTNUM (NIL) -8 NIL NIL NIL) (-970 2229582 2229981 2230573 "POLYROOT" 2231804 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-969 2223496 2229186 2229346 "POLY" 2229455 NIL POLY (NIL T) -8 NIL NIL NIL) (-968 2222879 2222937 2223171 "POLYLIFT" 2223432 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-967 2219154 2219603 2220232 "POLYCATQ" 2222424 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-966 2205504 2210901 2210966 "POLYCAT" 2214480 NIL POLYCAT (NIL T T T) -9 NIL 2216358 NIL) (-965 2198227 2200303 2202943 "POLYCAT-" 2202948 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-964 2197814 2197882 2198002 "POLY2UP" 2198153 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-963 2197446 2197503 2197612 "POLY2" 2197751 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-962 2196131 2196370 2196646 "POLUTIL" 2197220 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-961 2194486 2194763 2195094 "POLTOPOL" 2195853 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-960 2189951 2194422 2194468 "POINT" 2194473 NIL POINT (NIL T) -8 NIL NIL NIL) (-959 2188138 2188495 2188870 "PNTHEORY" 2189596 T PNTHEORY (NIL) -7 NIL NIL NIL) (-958 2186596 2186893 2187292 "PMTOOLS" 2187836 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-957 2186189 2186267 2186384 "PMSYM" 2186512 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-956 2185697 2185766 2185941 "PMQFCAT" 2186114 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-955 2185052 2185162 2185318 "PMPRED" 2185574 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-954 2184445 2184531 2184693 "PMPREDFS" 2184953 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-953 2183109 2183317 2183695 "PMPLCAT" 2184207 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-952 2182641 2182720 2182872 "PMLSAGG" 2183024 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-951 2182114 2182190 2182372 "PMKERNEL" 2182559 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-950 2181731 2181806 2181919 "PMINS" 2182033 NIL PMINS (NIL T) -7 NIL NIL NIL) (-949 2181173 2181242 2181451 "PMFS" 2181656 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-948 2180401 2180519 2180724 "PMDOWN" 2181050 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-947 2179568 2179726 2179907 "PMASS" 2180240 T PMASS (NIL) -7 NIL NIL NIL) (-946 2178841 2178951 2179114 "PMASSFS" 2179455 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-945 2178496 2178564 2178658 "PLOTTOOL" 2178767 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-944 2173103 2174307 2175455 "PLOT" 2177368 T PLOT (NIL) -8 NIL NIL NIL) (-943 2168907 2169951 2170872 "PLOT3D" 2172202 T PLOT3D (NIL) -8 NIL NIL NIL) (-942 2167819 2167996 2168231 "PLOT1" 2168711 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-941 2143210 2147885 2152736 "PLEQN" 2163085 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-940 2142528 2142650 2142830 "PINTERP" 2143075 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-939 2142221 2142268 2142371 "PINTERPA" 2142475 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-938 2141437 2141985 2142072 "PI" 2142112 T PI (NIL) -8 NIL NIL 2142179) (-937 2139734 2140709 2140737 "PID" 2140919 T PID (NIL) -9 NIL 2141053 NIL) (-936 2139485 2139522 2139597 "PICOERCE" 2139691 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-935 2138805 2138944 2139120 "PGROEB" 2139341 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-934 2134392 2135206 2136111 "PGE" 2137920 T PGE (NIL) -7 NIL NIL NIL) (-933 2132515 2132762 2133128 "PGCD" 2134109 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-932 2131853 2131956 2132117 "PFRPAC" 2132399 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-931 2128493 2130401 2130754 "PFR" 2131532 NIL PFR (NIL T) -8 NIL NIL NIL) (-930 2126882 2127126 2127451 "PFOTOOLS" 2128240 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-929 2125415 2125654 2126005 "PFOQ" 2126639 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-928 2123916 2124128 2124484 "PFO" 2125199 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-927 2120469 2123805 2123874 "PF" 2123879 NIL PF (NIL NIL) -8 NIL NIL NIL) (-926 2117803 2119074 2119102 "PFECAT" 2119687 T PFECAT (NIL) -9 NIL 2120071 NIL) (-925 2117248 2117402 2117616 "PFECAT-" 2117621 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-924 2115851 2116103 2116404 "PFBRU" 2116997 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-923 2113717 2114069 2114501 "PFBR" 2115502 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-922 2109763 2111229 2111876 "PERM" 2113103 NIL PERM (NIL T) -8 NIL NIL NIL) (-921 2104997 2105970 2106840 "PERMGRP" 2108926 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-920 2103116 2104076 2104117 "PERMCAT" 2104517 NIL PERMCAT (NIL T) -9 NIL 2104815 NIL) (-919 2102769 2102810 2102934 "PERMAN" 2103069 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-918 2100257 2102434 2102556 "PENDTREE" 2102680 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-917 2099186 2099401 2099442 "PDSPC" 2099975 NIL PDSPC (NIL T) -9 NIL 2100220 NIL) (-916 2098289 2098507 2098869 "PDSPC-" 2098874 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-915 2097171 2097939 2097980 "PDRING" 2097985 NIL PDRING (NIL T) -9 NIL 2098013 NIL) (-914 2096058 2096676 2096730 "PDMOD" 2096735 NIL PDMOD (NIL T T) -9 NIL 2096839 NIL) (-913 2093273 2094051 2094719 "PDEPROB" 2095410 T PDEPROB (NIL) -8 NIL NIL NIL) (-912 2090818 2091322 2091877 "PDEPACK" 2092738 T PDEPACK (NIL) -7 NIL NIL NIL) (-911 2089730 2089920 2090171 "PDECOMP" 2090617 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-910 2087309 2088152 2088180 "PDECAT" 2088967 T PDECAT (NIL) -9 NIL 2089680 NIL) (-909 2086938 2086993 2087047 "PDDOM" 2087212 NIL PDDOM (NIL T T) -9 NIL 2087292 NIL) (-908 2086757 2086787 2086894 "PDDOM-" 2086899 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-907 2086508 2086541 2086631 "PCOMP" 2086718 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-906 2084686 2085309 2085606 "PBWLB" 2086237 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-905 2077159 2078759 2080097 "PATTERN" 2083369 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-904 2076791 2076848 2076957 "PATTERN2" 2077096 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-903 2074548 2074936 2075393 "PATTERN1" 2076380 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-902 2071916 2072497 2072978 "PATRES" 2074113 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-901 2071480 2071547 2071679 "PATRES2" 2071843 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-900 2069363 2069768 2070175 "PATMATCH" 2071147 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-899 2068873 2069082 2069123 "PATMAB" 2069230 NIL PATMAB (NIL T) -9 NIL 2069313 NIL) (-898 2067391 2067727 2067985 "PATLRES" 2068678 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-897 2066937 2067060 2067101 "PATAB" 2067106 NIL PATAB (NIL T) -9 NIL 2067278 NIL) (-896 2065119 2065514 2065937 "PARTPERM" 2066534 T PARTPERM (NIL) -7 NIL NIL NIL) (-895 2064740 2064803 2064905 "PARSURF" 2065050 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-894 2064372 2064429 2064538 "PARSU2" 2064677 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-893 2064136 2064176 2064243 "PARSER" 2064325 T PARSER (NIL) -7 NIL NIL NIL) (-892 2063757 2063820 2063922 "PARSCURV" 2064067 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-891 2063389 2063446 2063555 "PARSC2" 2063694 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-890 2063028 2063086 2063183 "PARPCURV" 2063325 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-889 2062660 2062717 2062826 "PARPC2" 2062965 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-888 2061721 2062033 2062215 "PARAMAST" 2062498 T PARAMAST (NIL) -8 NIL NIL NIL) (-887 2061241 2061327 2061446 "PAN2EXPR" 2061622 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-886 2060018 2060362 2060590 "PALETTE" 2061033 T PALETTE (NIL) -8 NIL NIL NIL) (-885 2058411 2059023 2059383 "PAIR" 2059704 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-884 2052011 2057668 2057863 "PADICRC" 2058265 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-883 2044935 2051355 2051540 "PADICRAT" 2051858 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-882 2043250 2044872 2044917 "PADIC" 2044922 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-881 2040360 2041924 2041964 "PADICCT" 2042545 NIL PADICCT (NIL NIL) -9 NIL 2042827 NIL) (-880 2039317 2039517 2039785 "PADEPAC" 2040147 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-879 2038529 2038662 2038868 "PADE" 2039179 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-878 2036916 2037737 2038017 "OWP" 2038333 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-877 2036409 2036622 2036719 "OVERSET" 2036839 T OVERSET (NIL) -8 NIL NIL NIL) (-876 2035455 2036014 2036186 "OVAR" 2036277 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-875 2034719 2034840 2035001 "OUT" 2035314 T OUT (NIL) -7 NIL NIL NIL) (-874 2023591 2025828 2028028 "OUTFORM" 2032539 T OUTFORM (NIL) -8 NIL NIL NIL) (-873 2022927 2023188 2023315 "OUTBFILE" 2023484 T OUTBFILE (NIL) -8 NIL NIL NIL) (-872 2022234 2022399 2022427 "OUTBCON" 2022745 T OUTBCON (NIL) -9 NIL 2022911 NIL) (-871 2021835 2021947 2022104 "OUTBCON-" 2022109 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-870 2021215 2021564 2021653 "OSI" 2021766 T OSI (NIL) -8 NIL NIL NIL) (-869 2020745 2021083 2021111 "OSGROUP" 2021116 T OSGROUP (NIL) -9 NIL 2021138 NIL) (-868 2019490 2019717 2020002 "ORTHPOL" 2020492 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-867 2017041 2019325 2019446 "OREUP" 2019451 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-866 2014444 2016732 2016859 "ORESUP" 2016983 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-865 2011972 2012472 2013033 "OREPCTO" 2013933 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-864 2005658 2007859 2007900 "OREPCAT" 2010248 NIL OREPCAT (NIL T) -9 NIL 2011352 NIL) (-863 2002805 2003587 2004645 "OREPCAT-" 2004650 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-862 2001956 2002254 2002282 "ORDSET" 2002591 T ORDSET (NIL) -9 NIL 2002755 NIL) (-861 2001387 2001535 2001759 "ORDSET-" 2001764 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-860 1999952 2000743 2000771 "ORDRING" 2000973 T ORDRING (NIL) -9 NIL 2001098 NIL) (-859 1999597 1999691 1999835 "ORDRING-" 1999840 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-858 1998977 1999440 1999468 "ORDMON" 1999473 T ORDMON (NIL) -9 NIL 1999494 NIL) (-857 1998139 1998286 1998481 "ORDFUNS" 1998826 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1997477 1997896 1997924 "ORDFIN" 1997989 T ORDFIN (NIL) -9 NIL 1998063 NIL) (-855 1994036 1996063 1996472 "ORDCOMP" 1997101 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1993302 1993429 1993615 "ORDCOMP2" 1993896 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-853 1989883 1990793 1991607 "OPTPROB" 1992508 T OPTPROB (NIL) -8 NIL NIL NIL) (-852 1986685 1987324 1988028 "OPTPACK" 1989199 T OPTPACK (NIL) -7 NIL NIL NIL) (-851 1984372 1985138 1985166 "OPTCAT" 1985985 T OPTCAT (NIL) -9 NIL 1986635 NIL) (-850 1983756 1984049 1984154 "OPSIG" 1984287 T OPSIG (NIL) -8 NIL NIL NIL) (-849 1983524 1983563 1983629 "OPQUERY" 1983710 T OPQUERY (NIL) -7 NIL NIL NIL) (-848 1980655 1981835 1982339 "OP" 1983053 NIL OP (NIL T) -8 NIL NIL NIL) (-847 1980029 1980255 1980296 "OPERCAT" 1980508 NIL OPERCAT (NIL T) -9 NIL 1980605 NIL) (-846 1979784 1979840 1979957 "OPERCAT-" 1979962 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-845 1976597 1978581 1978950 "ONECOMP" 1979448 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1975902 1976017 1976191 "ONECOMP2" 1976469 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-843 1975321 1975427 1975557 "OMSERVER" 1975792 T OMSERVER (NIL) -7 NIL NIL NIL) (-842 1972183 1974761 1974801 "OMSAGG" 1974862 NIL OMSAGG (NIL T) -9 NIL 1974926 NIL) (-841 1970806 1971069 1971351 "OMPKG" 1971921 T OMPKG (NIL) -7 NIL NIL NIL) (-840 1970236 1970339 1970367 "OM" 1970666 T OM (NIL) -9 NIL NIL NIL) (-839 1968783 1969785 1969954 "OMLO" 1970117 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-838 1967743 1967890 1968110 "OMEXPR" 1968609 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-837 1967034 1967289 1967425 "OMERR" 1967627 T OMERR (NIL) -8 NIL NIL NIL) (-836 1966185 1966455 1966615 "OMERRK" 1966894 T OMERRK (NIL) -8 NIL NIL NIL) (-835 1965636 1965862 1965970 "OMENC" 1966097 T OMENC (NIL) -8 NIL NIL NIL) (-834 1959531 1960716 1961887 "OMDEV" 1964485 T OMDEV (NIL) -8 NIL NIL NIL) (-833 1958600 1958771 1958965 "OMCONN" 1959357 T OMCONN (NIL) -8 NIL NIL NIL) (-832 1957121 1958097 1958125 "OINTDOM" 1958130 T OINTDOM (NIL) -9 NIL 1958151 NIL) (-831 1954459 1955809 1956146 "OFMONOID" 1956816 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-830 1953831 1954396 1954441 "ODVAR" 1954446 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-829 1951254 1953576 1953731 "ODR" 1953736 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-828 1943567 1951030 1951156 "ODPOL" 1951161 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-827 1937371 1943439 1943544 "ODP" 1943549 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-826 1936137 1936352 1936627 "ODETOOLS" 1937145 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-825 1933104 1933762 1934478 "ODESYS" 1935470 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-824 1927986 1928894 1929919 "ODERTRIC" 1932179 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-823 1927412 1927494 1927688 "ODERED" 1927898 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-822 1924300 1924848 1925525 "ODERAT" 1926835 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-821 1921259 1921724 1922321 "ODEPRRIC" 1923829 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-820 1919202 1919798 1920284 "ODEPROB" 1920793 T ODEPROB (NIL) -8 NIL NIL NIL) (-819 1915722 1916207 1916854 "ODEPRIM" 1918681 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-818 1914971 1915073 1915333 "ODEPAL" 1915614 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-817 1911133 1911924 1912788 "ODEPACK" 1914127 T ODEPACK (NIL) -7 NIL NIL NIL) (-816 1910194 1910301 1910523 "ODEINT" 1911022 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-815 1904295 1905720 1907167 "ODEIFTBL" 1908767 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-814 1899693 1900479 1901431 "ODEEF" 1903454 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-813 1899042 1899131 1899354 "ODECONST" 1899598 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-812 1897167 1897828 1897856 "ODECAT" 1898461 T ODECAT (NIL) -9 NIL 1898992 NIL) (-811 1894022 1896872 1896994 "OCT" 1897077 NIL OCT (NIL T) -8 NIL NIL NIL) (-810 1893660 1893703 1893830 "OCTCT2" 1893973 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-809 1888271 1890706 1890746 "OC" 1891843 NIL OC (NIL T) -9 NIL 1892701 NIL) (-808 1885498 1886246 1887236 "OC-" 1887330 NIL OC- (NIL T T) -8 NIL NIL NIL) (-807 1884850 1885318 1885346 "OCAMON" 1885351 T OCAMON (NIL) -9 NIL 1885372 NIL) (-806 1884381 1884722 1884750 "OASGP" 1884755 T OASGP (NIL) -9 NIL 1884775 NIL) (-805 1883642 1884131 1884159 "OAMONS" 1884199 T OAMONS (NIL) -9 NIL 1884242 NIL) (-804 1883056 1883489 1883517 "OAMON" 1883522 T OAMON (NIL) -9 NIL 1883542 NIL) (-803 1882314 1882832 1882860 "OAGROUP" 1882865 T OAGROUP (NIL) -9 NIL 1882885 NIL) (-802 1882004 1882054 1882142 "NUMTUBE" 1882258 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-801 1875577 1877095 1878631 "NUMQUAD" 1880488 T NUMQUAD (NIL) -7 NIL NIL NIL) (-800 1871333 1872321 1873346 "NUMODE" 1874572 T NUMODE (NIL) -7 NIL NIL NIL) (-799 1868688 1869568 1869596 "NUMINT" 1870519 T NUMINT (NIL) -9 NIL 1871283 NIL) (-798 1867636 1867833 1868051 "NUMFMT" 1868490 T NUMFMT (NIL) -7 NIL NIL NIL) (-797 1853995 1856940 1859472 "NUMERIC" 1865143 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-796 1848365 1853444 1853539 "NTSCAT" 1853544 NIL NTSCAT (NIL T T T T) -9 NIL 1853583 NIL) (-795 1847559 1847724 1847917 "NTPOLFN" 1848204 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-794 1835368 1844384 1845196 "NSUP" 1846780 NIL NSUP (NIL T) -8 NIL NIL NIL) (-793 1835000 1835057 1835166 "NSUP2" 1835305 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-792 1824958 1834774 1834907 "NSMP" 1834912 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-791 1823390 1823691 1824048 "NREP" 1824646 NIL NREP (NIL T) -7 NIL NIL NIL) (-790 1821981 1822233 1822591 "NPCOEF" 1823133 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-789 1821047 1821162 1821378 "NORMRETR" 1821862 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-788 1819088 1819378 1819787 "NORMPK" 1820755 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-787 1818773 1818801 1818925 "NORMMA" 1819054 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-786 1818573 1818730 1818759 "NONE" 1818764 T NONE (NIL) -8 NIL NIL NIL) (-785 1818362 1818391 1818460 "NONE1" 1818537 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-784 1817859 1817921 1818100 "NODE1" 1818294 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-783 1816140 1816991 1817246 "NNI" 1817593 T NNI (NIL) -8 NIL NIL 1817828) (-782 1814560 1814873 1815237 "NLINSOL" 1815808 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-781 1810801 1811796 1812695 "NIPROB" 1813681 T NIPROB (NIL) -8 NIL NIL NIL) (-780 1809558 1809792 1810094 "NFINTBAS" 1810563 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-779 1808732 1809208 1809249 "NETCLT" 1809421 NIL NETCLT (NIL T) -9 NIL 1809503 NIL) (-778 1807440 1807671 1807952 "NCODIV" 1808500 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-777 1807202 1807239 1807314 "NCNTFRAC" 1807397 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-776 1805382 1805746 1806166 "NCEP" 1806827 NIL NCEP (NIL T) -7 NIL NIL NIL) (-775 1804233 1805006 1805034 "NASRING" 1805144 T NASRING (NIL) -9 NIL 1805224 NIL) (-774 1804028 1804072 1804166 "NASRING-" 1804171 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-773 1803135 1803660 1803688 "NARNG" 1803805 T NARNG (NIL) -9 NIL 1803896 NIL) (-772 1802827 1802894 1803028 "NARNG-" 1803033 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-771 1801706 1801913 1802148 "NAGSP" 1802612 T NAGSP (NIL) -7 NIL NIL NIL) (-770 1792978 1794662 1796335 "NAGS" 1800053 T NAGS (NIL) -7 NIL NIL NIL) (-769 1791526 1791834 1792165 "NAGF07" 1792667 T NAGF07 (NIL) -7 NIL NIL NIL) (-768 1786064 1787355 1788662 "NAGF04" 1790239 T NAGF04 (NIL) -7 NIL NIL NIL) (-767 1779032 1780646 1782279 "NAGF02" 1784451 T NAGF02 (NIL) -7 NIL NIL NIL) (-766 1774256 1775356 1776473 "NAGF01" 1777935 T NAGF01 (NIL) -7 NIL NIL NIL) (-765 1767884 1769450 1771035 "NAGE04" 1772691 T NAGE04 (NIL) -7 NIL NIL NIL) (-764 1759053 1761174 1763304 "NAGE02" 1765774 T NAGE02 (NIL) -7 NIL NIL NIL) (-763 1755006 1755953 1756917 "NAGE01" 1758109 T NAGE01 (NIL) -7 NIL NIL NIL) (-762 1752801 1753335 1753893 "NAGD03" 1754468 T NAGD03 (NIL) -7 NIL NIL NIL) (-761 1744551 1746479 1748433 "NAGD02" 1750867 T NAGD02 (NIL) -7 NIL NIL NIL) (-760 1738362 1739787 1741227 "NAGD01" 1743131 T NAGD01 (NIL) -7 NIL NIL NIL) (-759 1734571 1735393 1736230 "NAGC06" 1737545 T NAGC06 (NIL) -7 NIL NIL NIL) (-758 1733036 1733368 1733724 "NAGC05" 1734235 T NAGC05 (NIL) -7 NIL NIL NIL) (-757 1732412 1732531 1732675 "NAGC02" 1732912 T NAGC02 (NIL) -7 NIL NIL NIL) (-756 1731371 1731954 1731994 "NAALG" 1732073 NIL NAALG (NIL T) -9 NIL 1732134 NIL) (-755 1731206 1731235 1731325 "NAALG-" 1731330 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-754 1725156 1726264 1727451 "MULTSQFR" 1730102 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-753 1724475 1724550 1724734 "MULTFACT" 1725068 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-752 1717146 1721060 1721113 "MTSCAT" 1722183 NIL MTSCAT (NIL T T) -9 NIL 1722698 NIL) (-751 1716858 1716912 1717004 "MTHING" 1717086 NIL MTHING (NIL T) -7 NIL NIL NIL) (-750 1716650 1716683 1716743 "MSYSCMD" 1716818 T MSYSCMD (NIL) -7 NIL NIL NIL) (-749 1712732 1715405 1715725 "MSET" 1716363 NIL MSET (NIL T) -8 NIL NIL NIL) (-748 1709801 1712293 1712334 "MSETAGG" 1712339 NIL MSETAGG (NIL T) -9 NIL 1712373 NIL) (-747 1705643 1707180 1707925 "MRING" 1709101 NIL MRING (NIL T T) -8 NIL NIL NIL) (-746 1705209 1705276 1705407 "MRF2" 1705570 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-745 1704827 1704862 1705006 "MRATFAC" 1705168 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-744 1702439 1702734 1703165 "MPRFF" 1704532 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-743 1696468 1702293 1702390 "MPOLY" 1702395 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-742 1695958 1695993 1696201 "MPCPF" 1696427 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-741 1695472 1695515 1695699 "MPC3" 1695909 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-740 1694667 1694748 1694969 "MPC2" 1695387 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-739 1692968 1693305 1693695 "MONOTOOL" 1694327 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-738 1692193 1692510 1692538 "MONOID" 1692757 T MONOID (NIL) -9 NIL 1692904 NIL) (-737 1691739 1691858 1692039 "MONOID-" 1692044 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-736 1681295 1687517 1687576 "MONOGEN" 1688250 NIL MONOGEN (NIL T T) -9 NIL 1688706 NIL) (-735 1678513 1679248 1680248 "MONOGEN-" 1680367 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-734 1677346 1677792 1677820 "MONADWU" 1678212 T MONADWU (NIL) -9 NIL 1678450 NIL) (-733 1676718 1676877 1677125 "MONADWU-" 1677130 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-732 1676077 1676321 1676349 "MONAD" 1676556 T MONAD (NIL) -9 NIL 1676668 NIL) (-731 1675762 1675840 1675972 "MONAD-" 1675977 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-730 1674051 1674675 1674954 "MOEBIUS" 1675515 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-729 1673329 1673733 1673773 "MODULE" 1673778 NIL MODULE (NIL T) -9 NIL 1673817 NIL) (-728 1672897 1672993 1673183 "MODULE-" 1673188 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-727 1670577 1671261 1671588 "MODRING" 1672721 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-726 1667521 1668682 1669203 "MODOP" 1670106 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-725 1666109 1666588 1666865 "MODMONOM" 1667384 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-724 1655885 1664400 1664814 "MODMON" 1665746 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-723 1653041 1654729 1655005 "MODFIELD" 1655760 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-722 1652018 1652322 1652512 "MMLFORM" 1652871 T MMLFORM (NIL) -8 NIL NIL NIL) (-721 1651544 1651587 1651766 "MMAP" 1651969 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-720 1649623 1650390 1650431 "MLO" 1650854 NIL MLO (NIL T) -9 NIL 1651096 NIL) (-719 1646989 1647505 1648107 "MLIFT" 1649104 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-718 1646380 1646464 1646618 "MKUCFUNC" 1646900 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-717 1645979 1646049 1646172 "MKRECORD" 1646303 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-716 1645026 1645188 1645416 "MKFUNC" 1645790 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-715 1644414 1644518 1644674 "MKFLCFN" 1644909 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-714 1643691 1643793 1643978 "MKBCFUNC" 1644307 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-713 1640288 1643245 1643381 "MINT" 1643575 T MINT (NIL) -8 NIL NIL NIL) (-712 1639100 1639343 1639620 "MHROWRED" 1640043 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-711 1634480 1637635 1638040 "MFLOAT" 1638715 T MFLOAT (NIL) -8 NIL NIL NIL) (-710 1633837 1633913 1634084 "MFINFACT" 1634392 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-709 1630152 1631000 1631884 "MESH" 1632973 T MESH (NIL) -7 NIL NIL NIL) (-708 1628542 1628854 1629207 "MDDFACT" 1629839 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-707 1625337 1627701 1627742 "MDAGG" 1627997 NIL MDAGG (NIL T) -9 NIL 1628140 NIL) (-706 1614039 1624630 1624837 "MCMPLX" 1625150 T MCMPLX (NIL) -8 NIL NIL NIL) (-705 1613176 1613322 1613523 "MCDEN" 1613888 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-704 1611066 1611336 1611716 "MCALCFN" 1612906 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-703 1609991 1610231 1610464 "MAYBE" 1610872 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-702 1607603 1608126 1608688 "MATSTOR" 1609462 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-701 1603560 1606975 1607223 "MATRIX" 1607388 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-700 1599326 1600033 1600769 "MATLIN" 1602917 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-699 1589432 1592618 1592695 "MATCAT" 1597575 NIL MATCAT (NIL T T T) -9 NIL 1598992 NIL) (-698 1585788 1586809 1588165 "MATCAT-" 1588170 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-697 1584382 1584535 1584868 "MATCAT2" 1585623 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-696 1582494 1582818 1583202 "MAPPKG3" 1584057 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-695 1581475 1581648 1581870 "MAPPKG2" 1582318 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-694 1579974 1580258 1580585 "MAPPKG1" 1581181 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-693 1579053 1579380 1579557 "MAPPAST" 1579817 T MAPPAST (NIL) -8 NIL NIL NIL) (-692 1578664 1578722 1578845 "MAPHACK3" 1578989 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-691 1578256 1578317 1578431 "MAPHACK2" 1578596 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-690 1577694 1577797 1577939 "MAPHACK1" 1578147 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-689 1575773 1576394 1576698 "MAGMA" 1577422 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-688 1575252 1575497 1575588 "MACROAST" 1575702 T MACROAST (NIL) -8 NIL NIL NIL) (-687 1571670 1573491 1573952 "M3D" 1574824 NIL M3D (NIL T) -8 NIL NIL NIL) (-686 1565745 1570009 1570050 "LZSTAGG" 1570832 NIL LZSTAGG (NIL T) -9 NIL 1571127 NIL) (-685 1561703 1562876 1564333 "LZSTAGG-" 1564338 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-684 1558790 1559594 1560081 "LWORD" 1561248 NIL LWORD (NIL T) -8 NIL NIL NIL) (-683 1558366 1558594 1558669 "LSTAST" 1558735 T LSTAST (NIL) -8 NIL NIL NIL) (-682 1551264 1558137 1558271 "LSQM" 1558276 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-681 1550488 1550627 1550855 "LSPP" 1551119 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-680 1548300 1548601 1549057 "LSMP" 1550177 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-679 1545079 1545753 1546483 "LSMP1" 1547602 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-678 1538925 1544216 1544257 "LSAGG" 1544319 NIL LSAGG (NIL T) -9 NIL 1544397 NIL) (-677 1535620 1536544 1537757 "LSAGG-" 1537762 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-676 1533219 1534764 1535013 "LPOLY" 1535415 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-675 1532801 1532886 1533009 "LPEFRAC" 1533128 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-674 1531122 1531895 1532148 "LO" 1532633 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1530774 1530886 1530914 "LOGIC" 1531025 T LOGIC (NIL) -9 NIL 1531106 NIL) (-672 1530636 1530659 1530730 "LOGIC-" 1530735 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-671 1529829 1529969 1530162 "LODOOPS" 1530492 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-670 1527252 1529745 1529811 "LODO" 1529816 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-669 1525790 1526025 1526378 "LODOF" 1526999 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-668 1521994 1524425 1524466 "LODOCAT" 1524904 NIL LODOCAT (NIL T) -9 NIL 1525115 NIL) (-667 1521727 1521785 1521912 "LODOCAT-" 1521917 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-666 1519047 1521568 1521686 "LODO2" 1521691 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-665 1516482 1518984 1519029 "LODO1" 1519034 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-664 1515363 1515528 1515833 "LODEEF" 1516305 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-663 1510666 1513557 1513598 "LNAGG" 1514460 NIL LNAGG (NIL T) -9 NIL 1514895 NIL) (-662 1509813 1510027 1510369 "LNAGG-" 1510374 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-661 1505949 1506738 1507377 "LMOPS" 1509228 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-660 1505352 1505740 1505781 "LMODULE" 1505786 NIL LMODULE (NIL T) -9 NIL 1505812 NIL) (-659 1502550 1504997 1505120 "LMDICT" 1505262 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-658 1502182 1502354 1502395 "LLINSET" 1502456 NIL LLINSET (NIL T) -9 NIL 1502500 NIL) (-657 1501881 1502090 1502150 "LITERAL" 1502155 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-656 1495044 1500815 1501119 "LIST" 1501610 NIL LIST (NIL T) -8 NIL NIL NIL) (-655 1494569 1494643 1494782 "LIST3" 1494964 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-654 1493576 1493754 1493982 "LIST2" 1494387 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-653 1491710 1492022 1492421 "LIST2MAP" 1493223 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-652 1491355 1491543 1491584 "LINSET" 1491589 NIL LINSET (NIL T) -9 NIL 1491623 NIL) (-651 1489790 1490396 1490437 "LINEXP" 1490927 NIL LINEXP (NIL T) -9 NIL 1491200 NIL) (-650 1488367 1488627 1488938 "LINDEP" 1489542 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-649 1485134 1485853 1486630 "LIMITRF" 1487622 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-648 1483437 1483733 1484142 "LIMITPS" 1484829 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-647 1477865 1482948 1483176 "LIE" 1483258 NIL LIE (NIL T T) -8 NIL NIL NIL) (-646 1476813 1477282 1477322 "LIECAT" 1477462 NIL LIECAT (NIL T) -9 NIL 1477613 NIL) (-645 1476654 1476681 1476769 "LIECAT-" 1476774 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-644 1469241 1476194 1476350 "LIB" 1476518 T LIB (NIL) -8 NIL NIL NIL) (-643 1464876 1465759 1466694 "LGROBP" 1468358 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-642 1462874 1463148 1463498 "LF" 1464597 NIL LF (NIL T T) -7 NIL NIL NIL) (-641 1461714 1462406 1462434 "LFCAT" 1462641 T LFCAT (NIL) -9 NIL 1462780 NIL) (-640 1458616 1459246 1459934 "LEXTRIPK" 1461078 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-639 1455360 1456186 1456689 "LEXP" 1458196 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-638 1454836 1455081 1455173 "LETAST" 1455288 T LETAST (NIL) -8 NIL NIL NIL) (-637 1453234 1453547 1453948 "LEADCDET" 1454518 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-636 1452424 1452498 1452727 "LAZM3PK" 1453155 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-635 1447341 1450501 1451039 "LAUPOL" 1451936 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-634 1446920 1446964 1447125 "LAPLACE" 1447291 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-633 1444859 1446021 1446272 "LA" 1446753 NIL LA (NIL T T T) -8 NIL NIL NIL) (-632 1443853 1444437 1444478 "LALG" 1444540 NIL LALG (NIL T) -9 NIL 1444599 NIL) (-631 1443567 1443626 1443762 "LALG-" 1443767 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-630 1443402 1443426 1443467 "KVTFROM" 1443529 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-629 1442325 1442769 1442954 "KTVLOGIC" 1443237 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-628 1442160 1442184 1442225 "KRCFROM" 1442287 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-627 1441064 1441251 1441550 "KOVACIC" 1441960 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-626 1440899 1440923 1440964 "KONVERT" 1441026 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-625 1440734 1440758 1440799 "KOERCE" 1440861 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-624 1438565 1439327 1439704 "KERNEL" 1440390 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-623 1438061 1438142 1438274 "KERNEL2" 1438479 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-622 1431831 1436600 1436654 "KDAGG" 1437031 NIL KDAGG (NIL T T) -9 NIL 1437237 NIL) (-621 1431360 1431484 1431689 "KDAGG-" 1431694 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-620 1424508 1431021 1431176 "KAFILE" 1431238 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-619 1418936 1424019 1424247 "JORDAN" 1424329 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-618 1418315 1418585 1418706 "JOINAST" 1418835 T JOINAST (NIL) -8 NIL NIL NIL) (-617 1418161 1418220 1418275 "JAVACODE" 1418280 T JAVACODE (NIL) -8 NIL NIL NIL) (-616 1414413 1416366 1416420 "IXAGG" 1417349 NIL IXAGG (NIL T T) -9 NIL 1417808 NIL) (-615 1413332 1413638 1414057 "IXAGG-" 1414062 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-614 1408862 1413254 1413313 "IVECTOR" 1413318 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1407628 1407865 1408131 "ITUPLE" 1408629 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1406130 1406307 1406602 "ITRIGMNP" 1407450 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1404875 1405079 1405362 "ITFUN3" 1405906 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1404507 1404564 1404673 "ITFUN2" 1404812 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1403666 1403987 1404161 "ITFORM" 1404353 T ITFORM (NIL) -8 NIL NIL NIL) (-608 1401627 1402686 1402964 "ITAYLOR" 1403421 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1390572 1395764 1396927 "ISUPS" 1400497 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1389676 1389816 1390052 "ISUMP" 1390419 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1385051 1389621 1389662 "ISTRING" 1389667 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1384527 1384772 1384864 "ISAST" 1384979 T ISAST (NIL) -8 NIL NIL NIL) (-603 1383736 1383818 1384034 "IRURPK" 1384441 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1382672 1382873 1383113 "IRSN" 1383516 T IRSN (NIL) -7 NIL NIL NIL) (-601 1380743 1381098 1381527 "IRRF2F" 1382310 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1380490 1380528 1380604 "IRREDFFX" 1380699 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1379105 1379364 1379663 "IROOT" 1380223 NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1375709 1376789 1377481 "IR" 1378445 NIL IR (NIL T) -8 NIL NIL NIL) (-597 1374914 1375202 1375353 "IRFORM" 1375578 T IRFORM (NIL) -8 NIL NIL NIL) (-596 1372527 1373022 1373588 "IR2" 1374392 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1371627 1371740 1371954 "IR2F" 1372410 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-594 1371418 1371452 1371512 "IPRNTPK" 1371587 T IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1367999 1371307 1371376 "IPF" 1371381 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1366326 1367924 1367981 "IPADIC" 1367986 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1365638 1365886 1366016 "IP4ADDR" 1366216 T IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1365012 1365267 1365399 "IOMODE" 1365526 T IOMODE (NIL) -8 NIL NIL NIL) (-589 1364085 1364609 1364736 "IOBFILE" 1364905 T IOBFILE (NIL) -8 NIL NIL NIL) (-588 1363573 1363989 1364017 "IOBCON" 1364022 T IOBCON (NIL) -9 NIL 1364043 NIL) (-587 1363084 1363142 1363325 "INVLAPLA" 1363509 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1352732 1355086 1357472 "INTTR" 1360748 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1349067 1349809 1350674 "INTTOOLS" 1351917 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1348653 1348744 1348861 "INTSLPE" 1348970 T INTSLPE (NIL) -7 NIL NIL NIL) (-583 1346606 1348576 1348635 "INTRVL" 1348640 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1344208 1344720 1345295 "INTRF" 1346091 NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1343619 1343716 1343858 "INTRET" 1344106 NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1341616 1342005 1342475 "INTRAT" 1343227 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1338879 1339462 1340081 "INTPM" 1341101 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1335624 1336223 1336961 "INTPAF" 1338265 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1330803 1331765 1332816 "INTPACK" 1334593 T INTPACK (NIL) -7 NIL NIL NIL) (-576 1327623 1330600 1330709 "INT" 1330714 T INT (NIL) -8 NIL NIL NIL) (-575 1326875 1327027 1327235 "INTHERTR" 1327465 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-574 1326314 1326394 1326582 "INTHERAL" 1326789 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-573 1324160 1324603 1325060 "INTHEORY" 1325877 T INTHEORY (NIL) -7 NIL NIL NIL) (-572 1315566 1317187 1318959 "INTG0" 1322512 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-571 1296139 1300929 1305739 "INTFTBL" 1310776 T INTFTBL (NIL) -8 NIL NIL NIL) (-570 1295388 1295526 1295699 "INTFACT" 1295998 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-569 1292815 1293261 1293818 "INTEF" 1294942 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-568 1291182 1291921 1291949 "INTDOM" 1292250 T INTDOM (NIL) -9 NIL 1292457 NIL) (-567 1290551 1290725 1290967 "INTDOM-" 1290972 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-566 1286939 1288867 1288921 "INTCAT" 1289720 NIL INTCAT (NIL T) -9 NIL 1290041 NIL) (-565 1286411 1286514 1286642 "INTBIT" 1286831 T INTBIT (NIL) -7 NIL NIL NIL) (-564 1285110 1285264 1285571 "INTALG" 1286256 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-563 1284593 1284683 1284840 "INTAF" 1285014 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-562 1277936 1284403 1284543 "INTABL" 1284548 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-561 1277269 1277735 1277800 "INT8" 1277834 T INT8 (NIL) -8 NIL NIL 1277879) (-560 1276601 1277067 1277132 "INT64" 1277166 T INT64 (NIL) -8 NIL NIL 1277211) (-559 1275933 1276399 1276464 "INT32" 1276498 T INT32 (NIL) -8 NIL NIL 1276543) (-558 1275265 1275731 1275796 "INT16" 1275830 T INT16 (NIL) -8 NIL NIL 1275875) (-557 1269982 1272826 1272854 "INS" 1273788 T INS (NIL) -9 NIL 1274453 NIL) (-556 1267222 1267993 1268967 "INS-" 1269040 NIL INS- (NIL T) -8 NIL NIL NIL) (-555 1265997 1266224 1266522 "INPSIGN" 1266975 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1265115 1265232 1265429 "INPRODPF" 1265877 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1264009 1264126 1264363 "INPRODFF" 1264995 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1263009 1263161 1263421 "INNMFACT" 1263845 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1262206 1262303 1262491 "INMODGCD" 1262908 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1260714 1260959 1261283 "INFSP" 1261951 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1259898 1260015 1260198 "INFPROD0" 1260594 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1256753 1257963 1258478 "INFORM" 1259391 T INFORM (NIL) -8 NIL NIL NIL) (-547 1256363 1256423 1256521 "INFORM1" 1256688 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-546 1255886 1255975 1256089 "INFINITY" 1256269 T INFINITY (NIL) -7 NIL NIL NIL) (-545 1255062 1255606 1255707 "INETCLTS" 1255805 T INETCLTS (NIL) -8 NIL NIL NIL) (-544 1253678 1253928 1254249 "INEP" 1254810 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1252927 1253575 1253640 "INDE" 1253645 NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1252491 1252559 1252676 "INCRMAPS" 1252854 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1251309 1251760 1251966 "INBFILE" 1252305 T INBFILE (NIL) -8 NIL NIL NIL) (-540 1246608 1247545 1248489 "INBFF" 1250397 NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1245516 1245785 1245813 "INBCON" 1246326 T INBCON (NIL) -9 NIL 1246592 NIL) (-538 1244768 1244991 1245267 "INBCON-" 1245272 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-537 1244247 1244492 1244583 "INAST" 1244697 T INAST (NIL) -8 NIL NIL NIL) (-536 1243674 1243926 1244032 "IMPTAST" 1244161 T IMPTAST (NIL) -8 NIL NIL NIL) (-535 1240120 1243518 1243622 "IMATRIX" 1243627 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1238828 1238951 1239267 "IMATQF" 1239976 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1237048 1237275 1237612 "IMATLIN" 1238584 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1231626 1236972 1237030 "ILIST" 1237035 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1229531 1231486 1231599 "IIARRAY2" 1231604 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1224929 1229442 1229506 "IFF" 1229511 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1224276 1224546 1224662 "IFAST" 1224833 T IFAST (NIL) -8 NIL NIL NIL) (-528 1219271 1223568 1223756 "IFARRAY" 1224133 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1218451 1219175 1219248 "IFAMON" 1219253 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1218035 1218100 1218154 "IEVALAB" 1218361 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1217710 1217778 1217938 "IEVALAB-" 1217943 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-524 1217341 1217624 1217687 "IDPO" 1217692 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1216591 1217230 1217305 "IDPOAMS" 1217310 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-522 1215898 1216480 1216555 "IDPOAM" 1216560 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-521 1214957 1215233 1215286 "IDPC" 1215699 NIL IDPC (NIL T T) -9 NIL 1215848 NIL) (-520 1214426 1214849 1214922 "IDPAM" 1214927 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1213802 1214318 1214391 "IDPAG" 1214396 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1213447 1213638 1213713 "IDENT" 1213747 T IDENT (NIL) -8 NIL NIL NIL) (-517 1209702 1210550 1211445 "IDECOMP" 1212604 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1202539 1203625 1204672 "IDEAL" 1208738 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1201699 1201811 1202011 "ICDEN" 1202423 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1200770 1201179 1201326 "ICARD" 1201572 T ICARD (NIL) -8 NIL NIL NIL) (-513 1198830 1199143 1199548 "IBPTOOLS" 1200447 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1194437 1198450 1198563 "IBITS" 1198749 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1191160 1191736 1192431 "IBATOOL" 1193854 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1188939 1189401 1189934 "IBACHIN" 1190695 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1186768 1188785 1188888 "IARRAY2" 1188893 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1182874 1186694 1186751 "IARRAY1" 1186756 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1176742 1181286 1181767 "IAN" 1182413 T IAN (NIL) -8 NIL NIL NIL) (-506 1176253 1176310 1176483 "IALGFACT" 1176679 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1175781 1175894 1175922 "HYPCAT" 1176129 T HYPCAT (NIL) -9 NIL NIL NIL) (-504 1175319 1175436 1175622 "HYPCAT-" 1175627 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-503 1174914 1175114 1175197 "HOSTNAME" 1175256 T HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1174759 1174796 1174837 "HOMOTOP" 1174842 NIL HOMOTOP (NIL T) -9 NIL 1174875 NIL) (-501 1171391 1172769 1172810 "HOAGG" 1173791 NIL HOAGG (NIL T) -9 NIL 1174470 NIL) (-500 1169985 1170384 1170910 "HOAGG-" 1170915 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-499 1163709 1169578 1169728 "HEXADEC" 1169855 T HEXADEC (NIL) -8 NIL NIL NIL) (-498 1162457 1162679 1162942 "HEUGCD" 1163486 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1161533 1162294 1162424 "HELLFDIV" 1162429 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1159712 1161310 1161398 "HEAP" 1161477 NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1158975 1159264 1159398 "HEADAST" 1159598 T HEADAST (NIL) -8 NIL NIL NIL) (-494 1152823 1158890 1158952 "HDP" 1158957 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1146543 1152458 1152610 "HDMP" 1152724 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1145867 1146007 1146171 "HB" 1146399 T HB (NIL) -7 NIL NIL NIL) (-491 1139253 1145713 1145817 "HASHTBL" 1145822 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1138729 1138974 1139066 "HASAST" 1139181 T HASAST (NIL) -8 NIL NIL NIL) (-489 1136507 1138351 1138533 "HACKPI" 1138567 T HACKPI (NIL) -8 NIL NIL NIL) (-488 1132175 1136360 1136473 "GTSET" 1136478 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1125590 1132053 1132151 "GSTBL" 1132156 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1117977 1124755 1125011 "GSERIES" 1125390 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1117118 1117535 1117563 "GROUP" 1117766 T GROUP (NIL) -9 NIL 1117900 NIL) (-484 1116484 1116643 1116894 "GROUP-" 1116899 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-483 1114851 1115172 1115559 "GROEBSOL" 1116161 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1113765 1114053 1114104 "GRMOD" 1114633 NIL GRMOD (NIL T T) -9 NIL 1114801 NIL) (-481 1113533 1113569 1113697 "GRMOD-" 1113702 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-480 1108823 1109887 1110887 "GRIMAGE" 1112553 T GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1107289 1107550 1107874 "GRDEF" 1108519 T GRDEF (NIL) -7 NIL NIL NIL) (-478 1106733 1106849 1106990 "GRAY" 1107168 T GRAY (NIL) -7 NIL NIL NIL) (-477 1105920 1106326 1106377 "GRALG" 1106530 NIL GRALG (NIL T T) -9 NIL 1106623 NIL) (-476 1105581 1105654 1105817 "GRALG-" 1105822 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-475 1102358 1105166 1105344 "GPOLSET" 1105488 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1101712 1101769 1102027 "GOSPER" 1102295 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1097444 1098150 1098676 "GMODPOL" 1101411 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1096449 1096633 1096871 "GHENSEL" 1097256 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1090605 1091448 1092468 "GENUPS" 1095533 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1090302 1090353 1090442 "GENUFACT" 1090548 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1089714 1089791 1089956 "GENPGCD" 1090220 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1089188 1089223 1089436 "GENMFACT" 1089673 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1087754 1088011 1088318 "GENEEZ" 1088931 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1081634 1087365 1087527 "GDMP" 1087677 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1070977 1075405 1076511 "GCNAALG" 1080617 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1069304 1070166 1070194 "GCDDOM" 1070449 T GCDDOM (NIL) -9 NIL 1070606 NIL) (-463 1068774 1068901 1069116 "GCDDOM-" 1069121 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-462 1067446 1067631 1067935 "GB" 1068553 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-461 1056062 1058392 1060784 "GBINTERN" 1065137 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-460 1053899 1054191 1054612 "GBF" 1055737 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-459 1052680 1052845 1053112 "GBEUCLID" 1053715 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-458 1052029 1052154 1052303 "GAUSSFAC" 1052551 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1050396 1050698 1051012 "GALUTIL" 1051748 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1048704 1048978 1049302 "GALPOLYU" 1050123 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1046069 1046359 1046766 "GALFACTU" 1048401 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 1037875 1039374 1040982 "GALFACT" 1044501 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 1035263 1035921 1035949 "FVFUN" 1037105 T FVFUN (NIL) -9 NIL 1037825 NIL) (-452 1034529 1034711 1034739 "FVC" 1035030 T FVC (NIL) -9 NIL 1035213 NIL) (-451 1034172 1034354 1034422 "FUNDESC" 1034481 T FUNDESC (NIL) -8 NIL NIL NIL) (-450 1033787 1033969 1034050 "FUNCTION" 1034124 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 1031531 1032109 1032575 "FT" 1033341 T FT (NIL) -8 NIL NIL NIL) (-448 1030322 1030832 1031035 "FTEM" 1031348 T FTEM (NIL) -8 NIL NIL NIL) (-447 1028613 1028902 1029299 "FSUPFACT" 1030013 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 1027010 1027299 1027631 "FST" 1028301 T FST (NIL) -8 NIL NIL NIL) (-445 1026209 1026315 1026503 "FSRED" 1026892 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 1024908 1025164 1025511 "FSPRMELT" 1025924 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 1022214 1022652 1023138 "FSPECF" 1024471 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 1003287 1011988 1012029 "FS" 1015913 NIL FS (NIL T) -9 NIL 1018202 NIL) (-441 991930 994923 998980 "FS-" 999280 NIL FS- (NIL T T) -8 NIL NIL NIL) (-440 991458 991512 991682 "FSINT" 991871 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-439 989750 990451 990754 "FSERIES" 991237 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-438 988792 988908 989132 "FSCINT" 989630 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-437 985000 987736 987777 "FSAGG" 988147 NIL FSAGG (NIL T) -9 NIL 988406 NIL) (-436 982762 983363 984159 "FSAGG-" 984254 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-435 981804 981947 982174 "FSAGG2" 982615 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-434 979482 979762 980310 "FS2UPS" 981522 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-433 979116 979159 979288 "FS2" 979433 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-432 977994 978165 978467 "FS2EXPXP" 978941 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-431 977420 977535 977687 "FRUTIL" 977874 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 968833 972915 974273 "FR" 976094 NIL FR (NIL T) -8 NIL NIL NIL) (-429 963847 966522 966562 "FRNAALG" 967882 NIL FRNAALG (NIL T) -9 NIL 968480 NIL) (-428 959520 960596 961871 "FRNAALG-" 962621 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-427 959158 959201 959328 "FRNAAF2" 959471 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-426 957533 958007 958303 "FRMOD" 958970 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-425 955276 955908 956226 "FRIDEAL" 957324 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 954467 954554 954845 "FRIDEAL2" 955183 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-423 953600 954014 954055 "FRETRCT" 954060 NIL FRETRCT (NIL T) -9 NIL 954236 NIL) (-422 952712 952943 953294 "FRETRCT-" 953299 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-421 949800 951010 951069 "FRAMALG" 951951 NIL FRAMALG (NIL T T) -9 NIL 952243 NIL) (-420 947934 948389 949019 "FRAMALG-" 949242 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-419 941585 947407 947684 "FRAC" 947689 NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 941221 941278 941385 "FRAC2" 941522 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-417 940857 940914 941021 "FR2" 941158 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-416 935370 938263 938291 "FPS" 939410 T FPS (NIL) -9 NIL 939967 NIL) (-415 934819 934928 935092 "FPS-" 935238 NIL FPS- (NIL T) -8 NIL NIL NIL) (-414 932121 933790 933818 "FPC" 934043 T FPC (NIL) -9 NIL 934185 NIL) (-413 931914 931954 932051 "FPC-" 932056 NIL FPC- (NIL T) -8 NIL NIL NIL) (-412 930704 931402 931443 "FPATMAB" 931448 NIL FPATMAB (NIL T) -9 NIL 931600 NIL) (-411 928943 929446 929793 "FPARFRAC" 930420 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 924337 924835 925517 "FORTRAN" 928375 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 922053 922553 923092 "FORT" 923818 T FORT (NIL) -7 NIL NIL NIL) (-408 919729 920291 920319 "FORTFN" 921379 T FORTFN (NIL) -9 NIL 922003 NIL) (-407 919493 919543 919571 "FORTCAT" 919630 T FORTCAT (NIL) -9 NIL 919692 NIL) (-406 917599 918109 918499 "FORMULA" 919123 T FORMULA (NIL) -8 NIL NIL NIL) (-405 917387 917417 917486 "FORMULA1" 917563 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-404 916910 916962 917135 "FORDER" 917329 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-403 916006 916170 916363 "FOP" 916737 T FOP (NIL) -7 NIL NIL NIL) (-402 914587 915286 915460 "FNLA" 915888 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-401 913316 913731 913759 "FNCAT" 914219 T FNCAT (NIL) -9 NIL 914479 NIL) (-400 912855 913275 913303 "FNAME" 913308 T FNAME (NIL) -8 NIL NIL NIL) (-399 911418 912381 912409 "FMTC" 912414 T FMTC (NIL) -9 NIL 912450 NIL) (-398 910164 911354 911400 "FMONOID" 911405 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-397 906992 908160 908201 "FMONCAT" 909418 NIL FMONCAT (NIL T) -9 NIL 910023 NIL) (-396 906184 906734 906883 "FM" 906888 NIL FM (NIL T T) -8 NIL NIL NIL) (-395 903608 904254 904282 "FMFUN" 905426 T FMFUN (NIL) -9 NIL 906134 NIL) (-394 902877 903058 903086 "FMC" 903376 T FMC (NIL) -9 NIL 903558 NIL) (-393 899956 900816 900870 "FMCAT" 902065 NIL FMCAT (NIL T T) -9 NIL 902560 NIL) (-392 898822 899722 899822 "FM1" 899901 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-391 896596 897012 897506 "FLOATRP" 898373 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-390 890174 894325 894946 "FLOAT" 895995 T FLOAT (NIL) -8 NIL NIL NIL) (-389 887612 888112 888690 "FLOATCP" 889641 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-388 886282 887218 887259 "FLINEXP" 887264 NIL FLINEXP (NIL T) -9 NIL 887357 NIL) (-387 884710 885159 885743 "FLINEXP-" 885748 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-386 883786 883930 884154 "FLASORT" 884562 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-385 880902 881770 881822 "FLALG" 883049 NIL FLALG (NIL T T) -9 NIL 883516 NIL) (-384 874606 878358 878399 "FLAGG" 879661 NIL FLAGG (NIL T) -9 NIL 880313 NIL) (-383 873332 873671 874161 "FLAGG-" 874166 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-382 872374 872517 872744 "FLAGG2" 873185 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-381 869225 870233 870292 "FINRALG" 871420 NIL FINRALG (NIL T T) -9 NIL 871928 NIL) (-380 868385 868614 868953 "FINRALG-" 868958 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-379 867765 868004 868032 "FINITE" 868228 T FINITE (NIL) -9 NIL 868335 NIL) (-378 860122 862309 862349 "FINAALG" 866016 NIL FINAALG (NIL T) -9 NIL 867469 NIL) (-377 855454 856504 857648 "FINAALG-" 859027 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-376 854822 855209 855312 "FILE" 855384 NIL FILE (NIL T) -8 NIL NIL NIL) (-375 853480 853818 853872 "FILECAT" 854556 NIL FILECAT (NIL T T) -9 NIL 854772 NIL) (-374 851196 852724 852752 "FIELD" 852792 T FIELD (NIL) -9 NIL 852872 NIL) (-373 849816 850201 850712 "FIELD-" 850717 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-372 847666 848451 848798 "FGROUP" 849502 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-371 846756 846920 847140 "FGLMICPK" 847498 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-370 842588 846681 846738 "FFX" 846743 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-369 842189 842250 842385 "FFSLPE" 842521 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-368 838179 838961 839757 "FFPOLY" 841425 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-367 837683 837719 837928 "FFPOLY2" 838137 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-366 833529 837602 837665 "FFP" 837670 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-365 828927 833440 833504 "FF" 833509 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-364 824053 828270 828460 "FFNBX" 828781 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-363 818981 823188 823446 "FFNBP" 823907 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-362 813614 818265 818476 "FFNB" 818814 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-361 812446 812644 812959 "FFINTBAS" 813411 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-360 808472 810693 810721 "FFIELDC" 811341 T FFIELDC (NIL) -9 NIL 811717 NIL) (-359 807134 807505 808002 "FFIELDC-" 808007 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-358 806703 806749 806873 "FFHOM" 807076 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-357 804398 804885 805402 "FFF" 806218 NIL FFF (NIL T) -7 NIL NIL NIL) (-356 800016 804140 804241 "FFCGX" 804341 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-355 795638 799748 799855 "FFCGP" 799959 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-354 790821 795365 795473 "FFCG" 795574 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-353 770302 780497 780583 "FFCAT" 785748 NIL FFCAT (NIL T T T) -9 NIL 787199 NIL) (-352 765499 766547 767861 "FFCAT-" 769091 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-351 764910 764953 765188 "FFCAT2" 765450 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-350 754233 757882 759102 "FEXPR" 763762 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-349 753195 753630 753671 "FEVALAB" 753755 NIL FEVALAB (NIL T) -9 NIL 754016 NIL) (-348 752354 752564 752902 "FEVALAB-" 752907 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-347 750920 751737 751940 "FDIV" 752253 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-346 747940 748681 748796 "FDIVCAT" 750364 NIL FDIVCAT (NIL T T T T) -9 NIL 750801 NIL) (-345 747702 747729 747899 "FDIVCAT-" 747904 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-344 746922 747009 747286 "FDIV2" 747609 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-343 745896 746217 746419 "FCTRDATA" 746740 T FCTRDATA (NIL) -8 NIL NIL NIL) (-342 744582 744841 745130 "FCPAK1" 745627 T FCPAK1 (NIL) -7 NIL NIL NIL) (-341 743681 744082 744223 "FCOMP" 744473 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-340 727386 730831 734369 "FC" 740163 T FC (NIL) -8 NIL NIL NIL) (-339 719665 723693 723733 "FAXF" 725535 NIL FAXF (NIL T) -9 NIL 726227 NIL) (-338 716942 717599 718424 "FAXF-" 718889 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-337 711994 716318 716494 "FARRAY" 716799 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-336 706888 708955 709008 "FAMR" 710031 NIL FAMR (NIL T T) -9 NIL 710491 NIL) (-335 705778 706080 706515 "FAMR-" 706520 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-334 704947 705700 705753 "FAMONOID" 705758 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-333 702733 703443 703496 "FAMONC" 704437 NIL FAMONC (NIL T T) -9 NIL 704823 NIL) (-332 701397 702487 702624 "FAGROUP" 702629 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-331 699192 699511 699914 "FACUTIL" 701078 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-330 698291 698476 698698 "FACTFUNC" 699002 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-329 690713 697594 697793 "EXPUPXS" 698147 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-328 688196 688736 689322 "EXPRTUBE" 690147 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-327 684467 685059 685789 "EXPRODE" 687535 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-326 669959 683116 683545 "EXPR" 684071 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 664513 665100 665906 "EXPR2UPS" 669257 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-324 664145 664202 664311 "EXPR2" 664450 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-323 655150 663296 663587 "EXPEXPAN" 663981 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-322 654950 655107 655136 "EXIT" 655141 T EXIT (NIL) -8 NIL NIL NIL) (-321 654430 654674 654765 "EXITAST" 654879 T EXITAST (NIL) -8 NIL NIL NIL) (-320 654057 654119 654232 "EVALCYC" 654362 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-319 653598 653716 653757 "EVALAB" 653927 NIL EVALAB (NIL T) -9 NIL 654031 NIL) (-318 653079 653201 653422 "EVALAB-" 653427 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-317 650447 651749 651777 "EUCDOM" 652332 T EUCDOM (NIL) -9 NIL 652682 NIL) (-316 648852 649294 649884 "EUCDOM-" 649889 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-315 636391 639150 641900 "ESTOOLS" 646122 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 636023 636080 636189 "ESTOOLS2" 636328 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-313 635774 635816 635896 "ESTOOLS1" 635975 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-312 629811 631419 631447 "ES" 634215 T ES (NIL) -9 NIL 635625 NIL) (-311 624758 626045 627862 "ES-" 628026 NIL ES- (NIL T) -8 NIL NIL NIL) (-310 621132 621893 622673 "ESCONT" 623998 T ESCONT (NIL) -7 NIL NIL NIL) (-309 620877 620909 620991 "ESCONT1" 621094 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-308 620552 620602 620702 "ES2" 620821 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-307 620182 620240 620349 "ES1" 620488 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-306 619398 619527 619703 "ERROR" 620026 T ERROR (NIL) -7 NIL NIL NIL) (-305 612790 619257 619348 "EQTBL" 619353 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-304 605293 608104 609553 "EQ" 611374 NIL -2149 (NIL T) -8 NIL NIL NIL) (-303 604925 604982 605091 "EQ2" 605230 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-302 600216 601263 602356 "EP" 603864 NIL EP (NIL T) -7 NIL NIL NIL) (-301 598816 599107 599413 "ENV" 599930 T ENV (NIL) -8 NIL NIL NIL) (-300 597910 598464 598492 "ENTIRER" 598497 T ENTIRER (NIL) -9 NIL 598543 NIL) (-299 594604 596092 596453 "EMR" 597718 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-298 593734 593919 593973 "ELTAGG" 594353 NIL ELTAGG (NIL T T) -9 NIL 594564 NIL) (-297 593453 593515 593656 "ELTAGG-" 593661 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-296 593217 593246 593300 "ELTAB" 593384 NIL ELTAB (NIL T T) -9 NIL 593436 NIL) (-295 592343 592489 592688 "ELFUTS" 593068 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-294 592085 592141 592169 "ELEMFUN" 592274 T ELEMFUN (NIL) -9 NIL NIL NIL) (-293 591955 591976 592044 "ELEMFUN-" 592049 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-292 586769 590025 590066 "ELAGG" 591006 NIL ELAGG (NIL T) -9 NIL 591469 NIL) (-291 585054 585488 586151 "ELAGG-" 586156 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-290 584366 584503 584659 "ELABOR" 584918 T ELABOR (NIL) -8 NIL NIL NIL) (-289 583027 583306 583600 "ELABEXPR" 584092 T ELABEXPR (NIL) -8 NIL NIL NIL) (-288 575861 577664 578493 "EFUPXS" 582302 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-287 569309 571110 571921 "EFULS" 575136 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-286 566794 567152 567624 "EFSTRUC" 568941 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-285 556585 558151 559699 "EF" 565309 NIL EF (NIL T T) -7 NIL NIL NIL) (-284 555659 556070 556219 "EAB" 556456 T EAB (NIL) -8 NIL NIL NIL) (-283 554841 555618 555646 "E04UCFA" 555651 T E04UCFA (NIL) -8 NIL NIL NIL) (-282 554023 554800 554828 "E04NAFA" 554833 T E04NAFA (NIL) -8 NIL NIL NIL) (-281 553205 553982 554010 "E04MBFA" 554015 T E04MBFA (NIL) -8 NIL NIL NIL) (-280 552387 553164 553192 "E04JAFA" 553197 T E04JAFA (NIL) -8 NIL NIL NIL) (-279 551571 552346 552374 "E04GCFA" 552379 T E04GCFA (NIL) -8 NIL NIL NIL) (-278 550755 551530 551558 "E04FDFA" 551563 T E04FDFA (NIL) -8 NIL NIL NIL) (-277 549937 550714 550742 "E04DGFA" 550747 T E04DGFA (NIL) -8 NIL NIL NIL) (-276 544110 545462 546826 "E04AGNT" 548593 T E04AGNT (NIL) -7 NIL NIL NIL) (-275 542881 543424 543464 "DVARCAT" 543805 NIL DVARCAT (NIL T) -9 NIL 543968 NIL) (-274 542085 542297 542611 "DVARCAT-" 542616 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-273 534954 541884 542013 "DSMP" 542018 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-272 533377 534096 534137 "DSEXT" 534500 NIL DSEXT (NIL T) -9 NIL 534794 NIL) (-271 531662 532090 532756 "DSEXT-" 532761 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-270 526443 527607 528675 "DROPT" 530614 T DROPT (NIL) -8 NIL NIL NIL) (-269 526108 526167 526265 "DROPT1" 526378 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-268 521223 522349 523486 "DROPT0" 524991 T DROPT0 (NIL) -7 NIL NIL NIL) (-267 519568 519893 520279 "DRAWPT" 520857 T DRAWPT (NIL) -7 NIL NIL NIL) (-266 514155 515078 516157 "DRAW" 518542 NIL DRAW (NIL T) -7 NIL NIL NIL) (-265 513788 513841 513959 "DRAWHACK" 514096 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-264 512519 512788 513079 "DRAWCX" 513517 T DRAWCX (NIL) -7 NIL NIL NIL) (-263 512034 512103 512254 "DRAWCURV" 512445 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-262 502502 504464 506579 "DRAWCFUN" 509939 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-261 499266 501195 501236 "DQAGG" 501865 NIL DQAGG (NIL T) -9 NIL 502139 NIL) (-260 486739 493477 493560 "DPOLCAT" 495412 NIL DPOLCAT (NIL T T T T) -9 NIL 495957 NIL) (-259 481576 482924 484882 "DPOLCAT-" 484887 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-258 474931 481437 481535 "DPMO" 481540 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-257 468189 474711 474878 "DPMM" 474883 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-256 467759 467973 468062 "DOMTMPLT" 468120 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-255 467192 467561 467641 "DOMCTOR" 467699 T DOMCTOR (NIL) -8 NIL NIL NIL) (-254 466404 466672 466823 "DOMAIN" 467061 T DOMAIN (NIL) -8 NIL NIL NIL) (-253 460124 466039 466191 "DMP" 466305 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-252 458069 459191 459232 "DMEXT" 459237 NIL DMEXT (NIL T) -9 NIL 459413 NIL) (-251 457669 457725 457869 "DLP" 458007 NIL DLP (NIL T) -7 NIL NIL NIL) (-250 451491 456996 457186 "DLIST" 457511 NIL DLIST (NIL T) -8 NIL NIL NIL) (-249 448288 450344 450385 "DLAGG" 450935 NIL DLAGG (NIL T) -9 NIL 451165 NIL) (-248 446964 447628 447656 "DIVRING" 447748 T DIVRING (NIL) -9 NIL 447831 NIL) (-247 446201 446391 446691 "DIVRING-" 446696 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-246 444303 444660 445066 "DISPLAY" 445815 T DISPLAY (NIL) -7 NIL NIL NIL) (-245 438171 444217 444280 "DIRPROD" 444285 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-244 437019 437222 437487 "DIRPROD2" 437964 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-243 425774 431805 431858 "DIRPCAT" 432116 NIL DIRPCAT (NIL NIL T) -9 NIL 432991 NIL) (-242 422374 423230 424367 "DIRPCAT-" 424704 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-241 421661 421821 422007 "DIOSP" 422208 T DIOSP (NIL) -7 NIL NIL NIL) (-240 418316 420573 420614 "DIOPS" 421048 NIL DIOPS (NIL T) -9 NIL 421277 NIL) (-239 417865 417979 418170 "DIOPS-" 418175 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-238 416916 417544 417572 "DIFRING" 417577 T DIFRING (NIL) -9 NIL 417599 NIL) (-237 416588 416662 416690 "DIFFSPC" 416809 T DIFFSPC (NIL) -9 NIL 416884 NIL) (-236 416233 416311 416463 "DIFFSPC-" 416468 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-235 415289 415767 415808 "DIFFMOD" 415813 NIL DIFFMOD (NIL T) -9 NIL 415911 NIL) (-234 414997 415042 415083 "DIFFDOM" 415204 NIL DIFFDOM (NIL T) -9 NIL 415272 NIL) (-233 414850 414874 414958 "DIFFDOM-" 414963 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-232 412782 414054 414095 "DIFEXT" 414100 NIL DIFEXT (NIL T) -9 NIL 414253 NIL) (-231 410057 412314 412355 "DIAGG" 412360 NIL DIAGG (NIL T) -9 NIL 412380 NIL) (-230 409441 409598 409850 "DIAGG-" 409855 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-229 404858 408400 408677 "DHMATRIX" 409210 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-228 400470 401379 402389 "DFSFUN" 403868 T DFSFUN (NIL) -7 NIL NIL NIL) (-227 395548 399401 399713 "DFLOAT" 400178 T DFLOAT (NIL) -8 NIL NIL NIL) (-226 393811 394092 394481 "DFINTTLS" 395256 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-225 390840 391832 392232 "DERHAM" 393477 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-224 388641 390615 390704 "DEQUEUE" 390784 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-223 387895 388028 388211 "DEGRED" 388503 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-222 384325 385070 385916 "DEFINTRF" 387123 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-221 381880 382349 382941 "DEFINTEF" 383844 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-220 381230 381500 381615 "DEFAST" 381785 T DEFAST (NIL) -8 NIL NIL NIL) (-219 374954 380823 380973 "DECIMAL" 381100 T DECIMAL (NIL) -8 NIL NIL NIL) (-218 372466 372924 373430 "DDFACT" 374498 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-217 372062 372105 372256 "DBLRESP" 372417 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-216 369930 370292 370653 "DBASE" 371828 NIL DBASE (NIL T) -8 NIL NIL NIL) (-215 369172 369410 369556 "DATAARY" 369829 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-214 368278 369131 369159 "D03FAFA" 369164 T D03FAFA (NIL) -8 NIL NIL NIL) (-213 367385 368237 368265 "D03EEFA" 368270 T D03EEFA (NIL) -8 NIL NIL NIL) (-212 365335 365801 366290 "D03AGNT" 366916 T D03AGNT (NIL) -7 NIL NIL NIL) (-211 364624 365294 365322 "D02EJFA" 365327 T D02EJFA (NIL) -8 NIL NIL NIL) (-210 363913 364583 364611 "D02CJFA" 364616 T D02CJFA (NIL) -8 NIL NIL NIL) (-209 363202 363872 363900 "D02BHFA" 363905 T D02BHFA (NIL) -8 NIL NIL NIL) (-208 362491 363161 363189 "D02BBFA" 363194 T D02BBFA (NIL) -8 NIL NIL NIL) (-207 355688 357277 358883 "D02AGNT" 360905 T D02AGNT (NIL) -7 NIL NIL NIL) (-206 353456 353979 354525 "D01WGTS" 355162 T D01WGTS (NIL) -7 NIL NIL NIL) (-205 352523 353415 353443 "D01TRNS" 353448 T D01TRNS (NIL) -8 NIL NIL NIL) (-204 351591 352482 352510 "D01GBFA" 352515 T D01GBFA (NIL) -8 NIL NIL NIL) (-203 350659 351550 351578 "D01FCFA" 351583 T D01FCFA (NIL) -8 NIL NIL NIL) (-202 349727 350618 350646 "D01ASFA" 350651 T D01ASFA (NIL) -8 NIL NIL NIL) (-201 348795 349686 349714 "D01AQFA" 349719 T D01AQFA (NIL) -8 NIL NIL NIL) (-200 347863 348754 348782 "D01APFA" 348787 T D01APFA (NIL) -8 NIL NIL NIL) (-199 346931 347822 347850 "D01ANFA" 347855 T D01ANFA (NIL) -8 NIL NIL NIL) (-198 345999 346890 346918 "D01AMFA" 346923 T D01AMFA (NIL) -8 NIL NIL NIL) (-197 345067 345958 345986 "D01ALFA" 345991 T D01ALFA (NIL) -8 NIL NIL NIL) (-196 344135 345026 345054 "D01AKFA" 345059 T D01AKFA (NIL) -8 NIL NIL NIL) (-195 343203 344094 344122 "D01AJFA" 344127 T D01AJFA (NIL) -8 NIL NIL NIL) (-194 336498 338051 339612 "D01AGNT" 341662 T D01AGNT (NIL) -7 NIL NIL NIL) (-193 335835 335963 336115 "CYCLOTOM" 336366 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-192 332568 333283 334010 "CYCLES" 335128 T CYCLES (NIL) -7 NIL NIL NIL) (-191 331880 332014 332185 "CVMP" 332429 NIL CVMP (NIL T) -7 NIL NIL NIL) (-190 329721 329979 330348 "CTRIGMNP" 331608 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-189 329157 329515 329588 "CTOR" 329668 T CTOR (NIL) -8 NIL NIL NIL) (-188 328666 328888 328989 "CTORKIND" 329076 T CTORKIND (NIL) -8 NIL NIL NIL) (-187 327957 328273 328301 "CTORCAT" 328483 T CTORCAT (NIL) -9 NIL 328596 NIL) (-186 327555 327666 327825 "CTORCAT-" 327830 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-185 327017 327229 327337 "CTORCALL" 327479 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-184 326391 326490 326643 "CSTTOOLS" 326914 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-183 322190 322847 323605 "CRFP" 325703 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-182 321665 321911 322003 "CRCEAST" 322118 T CRCEAST (NIL) -8 NIL NIL NIL) (-181 320712 320897 321125 "CRAPACK" 321469 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-180 320096 320197 320401 "CPMATCH" 320588 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-179 319821 319849 319955 "CPIMA" 320062 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-178 316169 316841 317560 "COORDSYS" 319156 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-177 315581 315702 315844 "CONTOUR" 316047 T CONTOUR (NIL) -8 NIL NIL NIL) (-176 311472 313584 314076 "CONTFRAC" 315121 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-175 311352 311373 311401 "CONDUIT" 311438 T CONDUIT (NIL) -9 NIL NIL NIL) (-174 310440 310994 311022 "COMRING" 311027 T COMRING (NIL) -9 NIL 311079 NIL) (-173 309494 309798 309982 "COMPPROP" 310276 T COMPPROP (NIL) -8 NIL NIL NIL) (-172 309155 309190 309318 "COMPLPAT" 309453 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-171 298466 308964 309073 "COMPLEX" 309078 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 298102 298159 298266 "COMPLEX2" 298403 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-169 297441 297562 297722 "COMPILER" 297962 T COMPILER (NIL) -8 NIL NIL NIL) (-168 297159 297194 297292 "COMPFACT" 297400 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-167 279446 290863 290903 "COMPCAT" 291907 NIL COMPCAT (NIL T) -9 NIL 293255 NIL) (-166 268232 271373 275256 "COMPCAT-" 275612 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-165 267961 267989 268092 "COMMUPC" 268198 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-164 267755 267789 267848 "COMMONOP" 267922 T COMMONOP (NIL) -7 NIL NIL NIL) (-163 267311 267506 267593 "COMM" 267688 T COMM (NIL) -8 NIL NIL NIL) (-162 266887 267115 267190 "COMMAAST" 267256 T COMMAAST (NIL) -8 NIL NIL NIL) (-161 266136 266330 266358 "COMBOPC" 266696 T COMBOPC (NIL) -9 NIL 266871 NIL) (-160 265032 265242 265484 "COMBINAT" 265926 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-159 261489 262063 262690 "COMBF" 264454 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-158 260247 260605 260840 "COLOR" 261274 T COLOR (NIL) -8 NIL NIL NIL) (-157 259723 259968 260060 "COLONAST" 260175 T COLONAST (NIL) -8 NIL NIL NIL) (-156 259363 259410 259535 "CMPLXRT" 259670 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-155 258811 259063 259162 "CLLCTAST" 259284 T CLLCTAST (NIL) -8 NIL NIL NIL) (-154 254313 255341 256421 "CLIP" 257751 T CLIP (NIL) -7 NIL NIL NIL) (-153 252654 253414 253654 "CLIF" 254140 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-152 248829 250800 250841 "CLAGG" 251770 NIL CLAGG (NIL T) -9 NIL 252306 NIL) (-151 247251 247708 248291 "CLAGG-" 248296 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-150 246795 246880 247020 "CINTSLPE" 247160 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-149 244296 244767 245315 "CHVAR" 246323 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-148 243470 244024 244052 "CHARZ" 244057 T CHARZ (NIL) -9 NIL 244072 NIL) (-147 243224 243264 243342 "CHARPOL" 243424 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-146 242282 242869 242897 "CHARNZ" 242944 T CHARNZ (NIL) -9 NIL 243000 NIL) (-145 240188 240936 241289 "CHAR" 241949 T CHAR (NIL) -8 NIL NIL NIL) (-144 239914 239975 240003 "CFCAT" 240114 T CFCAT (NIL) -9 NIL NIL NIL) (-143 239155 239266 239449 "CDEN" 239798 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-142 235120 238308 238588 "CCLASS" 238895 T CCLASS (NIL) -8 NIL NIL NIL) (-141 234371 234528 234705 "CATEGORY" 234963 T -10 (NIL) -8 NIL NIL NIL) (-140 233944 234290 234338 "CATCTOR" 234343 T CATCTOR (NIL) -8 NIL NIL NIL) (-139 233395 233647 233745 "CATAST" 233866 T CATAST (NIL) -8 NIL NIL NIL) (-138 232871 233116 233208 "CASEAST" 233323 T CASEAST (NIL) -8 NIL NIL NIL) (-137 228009 229028 229772 "CARTEN" 232183 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 227117 227265 227486 "CARTEN2" 227856 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-135 225433 226267 226524 "CARD" 226880 T CARD (NIL) -8 NIL NIL NIL) (-134 225009 225237 225312 "CAPSLAST" 225378 T CAPSLAST (NIL) -8 NIL NIL NIL) (-133 224513 224721 224749 "CACHSET" 224881 T CACHSET (NIL) -9 NIL 224959 NIL) (-132 223983 224305 224333 "CABMON" 224383 T CABMON (NIL) -9 NIL 224439 NIL) (-131 223456 223687 223797 "BYTEORD" 223893 T BYTEORD (NIL) -8 NIL NIL NIL) (-130 222433 222985 223127 "BYTE" 223290 T BYTE (NIL) -8 NIL NIL 223412) (-129 217783 221938 222110 "BYTEBUF" 222281 T BYTEBUF (NIL) -8 NIL NIL NIL) (-128 215292 217475 217582 "BTREE" 217709 NIL BTREE (NIL T) -8 NIL NIL NIL) (-127 212741 214940 215062 "BTOURN" 215202 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-126 210111 212211 212252 "BTCAT" 212320 NIL BTCAT (NIL T) -9 NIL 212397 NIL) (-125 209778 209858 210007 "BTCAT-" 210012 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-124 205157 209037 209065 "BTAGG" 209179 T BTAGG (NIL) -9 NIL 209289 NIL) (-123 204647 204772 204978 "BTAGG-" 204983 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-122 201642 203925 204140 "BSTREE" 204464 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-121 200780 200906 201090 "BRILL" 201498 NIL BRILL (NIL T) -7 NIL NIL NIL) (-120 197432 199506 199547 "BRAGG" 200196 NIL BRAGG (NIL T) -9 NIL 200454 NIL) (-119 195961 196367 196922 "BRAGG-" 196927 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-118 188885 195305 195490 "BPADICRT" 195808 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-117 187200 188822 188867 "BPADIC" 188872 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-116 186898 186928 187042 "BOUNDZRO" 187164 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-115 182126 183324 184236 "BOP" 186006 T BOP (NIL) -8 NIL NIL NIL) (-114 179907 180311 180786 "BOP1" 181684 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-113 179608 179669 179697 "BOOLE" 179808 T BOOLE (NIL) -9 NIL 179890 NIL) (-112 178433 179182 179331 "BOOLEAN" 179479 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 177712 178116 178170 "BMODULE" 178175 NIL BMODULE (NIL T T) -9 NIL 178240 NIL) (-110 173513 177510 177583 "BITS" 177659 T BITS (NIL) -8 NIL NIL NIL) (-109 172934 173053 173193 "BINDING" 173393 T BINDING (NIL) -8 NIL NIL NIL) (-108 166661 172529 172678 "BINARY" 172805 T BINARY (NIL) -8 NIL NIL NIL) (-107 164441 165916 165957 "BGAGG" 166217 NIL BGAGG (NIL T) -9 NIL 166354 NIL) (-106 164272 164304 164395 "BGAGG-" 164400 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 163343 163656 163861 "BFUNCT" 164087 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 162033 162211 162499 "BEZOUT" 163167 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 158502 160885 161215 "BBTREE" 161736 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158236 158289 158317 "BASTYPE" 158436 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 158088 158117 158190 "BASTYPE-" 158195 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 157522 157598 157750 "BALFACT" 157999 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156378 156937 157123 "AUTOMOR" 157367 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156104 156109 156135 "ATTREG" 156140 T ATTREG (NIL) -9 NIL NIL NIL) (-97 154356 154801 155153 "ATTRBUT" 155770 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 153964 154184 154250 "ATTRAST" 154308 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 153500 153613 153639 "ATRIG" 153840 T ATRIG (NIL) -9 NIL NIL NIL) (-94 153309 153350 153437 "ATRIG-" 153442 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 152954 153140 153166 "ASTCAT" 153171 T ASTCAT (NIL) -9 NIL 153201 NIL) (-92 152681 152740 152859 "ASTCAT-" 152864 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 150830 152457 152545 "ASTACK" 152624 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149335 149632 149997 "ASSOCEQ" 150512 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148367 148994 149118 "ASP9" 149242 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 148130 148315 148354 "ASP8" 148359 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 146998 147735 147877 "ASP80" 148019 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 145896 146633 146765 "ASP7" 146897 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 144850 145573 145691 "ASP78" 145809 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 143819 144530 144647 "ASP77" 144764 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 142731 143457 143588 "ASP74" 143719 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 141631 142366 142498 "ASP73" 142630 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 140735 141457 141557 "ASP6" 141562 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 139682 140412 140530 "ASP55" 140648 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 138631 139356 139475 "ASP50" 139594 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 137719 138332 138442 "ASP4" 138552 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 136807 137420 137530 "ASP49" 137640 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 135591 136346 136514 "ASP42" 136696 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134368 135124 135294 "ASP41" 135478 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 133318 134045 134163 "ASP35" 134281 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133083 133266 133305 "ASP34" 133310 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 132820 132887 132963 "ASP33" 133038 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 131714 132455 132587 "ASP31" 132719 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 131479 131662 131701 "ASP30" 131706 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131214 131283 131359 "ASP29" 131434 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 130979 131162 131201 "ASP28" 131206 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 130744 130927 130966 "ASP27" 130971 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 129828 130442 130553 "ASP24" 130664 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 128905 129630 129742 "ASP20" 129747 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 127993 128606 128716 "ASP1" 128826 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 126936 127667 127786 "ASP19" 127905 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 126673 126740 126816 "ASP12" 126891 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 125525 126272 126416 "ASP10" 126560 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 123376 125369 125460 "ARRAY2" 125465 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 119141 123024 123138 "ARRAY1" 123293 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 118173 118346 118567 "ARRAY12" 118964 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 112485 114403 114478 "ARR2CAT" 117108 NIL ARR2CAT (NIL T T T) -9 NIL 117866 NIL) (-56 109919 110663 111617 "ARR2CAT-" 111622 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 109236 109546 109671 "ARITY" 109812 T ARITY (NIL) -8 NIL NIL NIL) (-54 108012 108164 108463 "APPRULE" 109072 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 107663 107711 107830 "APPLYORE" 107958 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 107017 107256 107376 "ANY" 107561 T ANY (NIL) -8 NIL NIL NIL) (-51 106295 106418 106575 "ANY1" 106891 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 103825 104732 105059 "ANTISYM" 106019 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 103317 103532 103628 "ANON" 103747 T ANON (NIL) -8 NIL NIL NIL) (-48 97325 101856 102310 "AN" 102881 T AN (NIL) -8 NIL NIL NIL) (-47 93223 94611 94662 "AMR" 95410 NIL AMR (NIL T T) -9 NIL 96010 NIL) (-46 92335 92556 92919 "AMR-" 92924 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 76774 92252 92313 "ALIST" 92318 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73579 76368 76537 "ALGSC" 76692 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70135 70689 71296 "ALGPKG" 73019 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69412 69513 69697 "ALGMFACT" 70021 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 65447 66026 66620 "ALGMANIP" 68996 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55666 65073 65223 "ALGFF" 65380 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54862 54993 55172 "ALGFACT" 55524 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53803 54403 54441 "ALGEBRA" 54446 NIL ALGEBRA (NIL T) -9 NIL 54487 NIL) (-37 53521 53580 53712 "ALGEBRA-" 53717 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 35584 51493 51545 "ALAGG" 51681 NIL ALAGG (NIL T T) -9 NIL 51842 NIL) (-35 35120 35233 35259 "AHYP" 35460 T AHYP (NIL) -9 NIL NIL NIL) (-34 34051 34299 34325 "AGG" 34824 T AGG (NIL) -9 NIL 35103 NIL) (-33 33485 33647 33861 "AGG-" 33866 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 31291 31714 32119 "AF" 33127 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30771 31016 31106 "ADDAST" 31219 T ADDAST (NIL) -8 NIL NIL NIL) (-30 30039 30298 30454 "ACPLOT" 30633 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18670 26971 27009 "ACFS" 27616 NIL ACFS (NIL T) -9 NIL 27855 NIL) (-28 16697 17187 17949 "ACFS-" 17954 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12815 14744 14770 "ACF" 15649 T ACF (NIL) -9 NIL 16062 NIL) (-26 11519 11853 12346 "ACF-" 12351 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11091 11286 11312 "ABELSG" 11404 T ABELSG (NIL) -9 NIL 11469 NIL) (-24 10958 10983 11049 "ABELSG-" 11054 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10301 10588 10614 "ABELMON" 10784 T ABELMON (NIL) -9 NIL 10896 NIL) (-22 9965 10049 10187 "ABELMON-" 10192 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9313 9685 9711 "ABELGRP" 9783 T ABELGRP (NIL) -9 NIL 9858 NIL) (-20 8776 8905 9121 "ABELGRP-" 9126 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8085 8124 "A1AGG" 8129 NIL A1AGG (NIL T) -9 NIL 8169 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 93b1c53f..b6fa87c0 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,1509 +1,2316 @@ -(731276 . 3486501425) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1021)))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1054)) (-5 *1 (-760))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145))))) +(731276 . 3486517513) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-132))))) +(((*1 *2) + (-12 (-4 *1 (-360)) + (-5 *2 (-656 (-2 (|:| -1839 (-576)) (|:| -4274 (-576)))))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-656 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-805)) (-4 *3 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) + (-5 *1 (-461 *4 *5 *6 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-1291)) (-5 *1 (-843))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-1006 *3 *4 *5 *6)) - (-4 *6 (-966 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) - (-4 *4 (-13 (-1119) (-34)))))) + (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) + (-5 *1 (-607 *3)) (-4 *3 (-1068))))) (((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576))))) + (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) + (-5 *2 (-874)) (-5 *1 (-32 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) + (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) + (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) + (-5 *1 (-276))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-576)) (-5 *1 (-1129)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1286 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) + (-5 *1 (-1129))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-430 *2)) (-4 *2 (-568))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) - (-4 *3 (-626 (-390))))) + (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) + (-4 *3 (-1262 *4))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-227)) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-960 *4)))) + (|:| |xValues| (-1113 *4)) (|:| |yValues| (-1113 *4)))) + (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-52))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *5 (-1262 *4)) (-5 *2 (-1191 (-419 *5))) (-5 *1 (-627 *4 *5)) + (-5 *3 (-419 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) + (-4 *5 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 (-1191 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270))))) +(((*1 *2 *1) + (-12 (-5 *2 (-173)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1195)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) + (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1195)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) + (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) + (-5 *1 (-943)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) + (-5 *1 (-943)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) + (-5 *1 (-944)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) + (-5 *1 (-944)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) + (-5 *1 (-944)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) + (-5 *1 (-944)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) + (-5 *1 (-944)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) + (-5 *1 (-944))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1277 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) + (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1277 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3)))))) +(((*1 *2) + (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) + (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1287)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) + ((*1 *1 *1 *1) (-4 *1 (-805)))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1119)) + (-4 *6 (-1236)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) + (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1119)) + (-4 *5 (-1236)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) + (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) + (-4 *5 (-1119)) (-4 *6 (-1236)) (-5 *1 (-653 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1119)) (-4 *2 (-1236)) (-5 *1 (-653 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-783))))) +(((*1 *1 *1) (-4 *1 (-568)))) +(((*1 *1) (-5 *1 (-340)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1286 (-1286 (-576)))) (-5 *3 (-938)) (-5 *1 (-478))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3))))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-1258 *4 *2)) + (-4 *2 (-1262 *4))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1119)) + (-4 *3 (-1236)) (-4 *3 (-1119)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-938)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576))))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1287)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1287)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-1288)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1288))))) +(((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 *4)) (-5 *1 (-1160 *3 *4)) + (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) + (-5 *2 (-1286 (-701 (-969 *4)))) (-5 *1 (-191 *4))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -3563 ($ *7))))) + (-4 *7 (-860)) + (-4 *8 + (-13 (-1264 *3 *7) (-374) (-1221) + (-10 -8 (-15 -2735 ($ $)) (-15 -3848 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) + (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1002 *8)) + (-14 *10 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1119))))) +(((*1 *1 *2) + (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) + (-4 *4 (-174))))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-878 *4 *5 *6 *7)) + (-4 *4 (-1068)) (-14 *5 (-656 (-1195))) (-14 *6 (-656 *3)) + (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) + (-14 *8 (-656 *5)) (-5 *2 (-1291)) + (-5 *1 (-1298 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-966 *4 *6 *5)) + (-14 *9 (-656 *3)) (-14 *10 *3)))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) + (-14 *4 (-656 (-1195))))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-966 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *1 (-462 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-966 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *1 (-462 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) + (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) + (-5 *2 (-1054)) (-5 *1 (-757))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1113 *3)) (-4 *3 (-966 *7 *6 *4)) (-4 *6 (-805)) + (-4 *4 (-862)) (-4 *7 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) + (-5 *1 (-606 *6 *4 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) + (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *1) (-5 *1 (-874))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-1187 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1221))) + (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-1187 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) - (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1057 (-576)))) + (-5 *2 (-419 (-969 *5))) (-5 *1 (-1188 *5)) (-5 *3 (-969 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1057 (-576)))) + (-5 *2 (-3 (-419 (-969 *5)) (-326 *5))) (-5 *1 (-1188 *5)) + (-5 *3 (-419 (-969 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *4 (-1111 (-969 *5))) (-5 *3 (-969 *5)) + (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 *3)) + (-5 *1 (-1188 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + (-12 (-5 *4 (-1111 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) + (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-3 *3 (-326 *5))) + (-5 *1 (-1188 *5))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1129))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-656 + (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *3)) + (|:| |logand| (-1191 *3))))) + (-5 *1 (-598 *3)) (-4 *3 (-374))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) + (-5 *1 (-1148 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5))))) + (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1195))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) + (-5 *1 (-1148 *5))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-1195)) + (-4 *4 (-13 (-442 *7) (-27) (-1221))) + (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) + (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119))))) +(((*1 *1 *1) (-4 *1 (-175))) + ((*1 *1 *1) + (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1158)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-763))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-448))))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1054)) (-5 *1 (-768))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132)) + (-4 *3 (-804))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-4 *3 (-1119)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) + (-4 *3 (-966 *7 *5 *6)) + (-5 *2 + (-2 (|:| -4274 (-783)) (|:| -1706 *3) (|:| |radicand| (-656 *3)))) + (-5 *1 (-970 *5 *6 *7 *3 *8)) (-5 *4 (-783)) + (-4 *8 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *3)) (-15 -1536 (*3 $)) (-15 -1549 (*3 $)))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) + (-14 *4 *2)))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) +(((*1 *1 *1 *1) (-4 *1 (-986)))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-771))))) +(((*1 *1 *1) (-4 *1 (-641))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021) (-1221)))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-656 (-227))) (-5 *1 (-206))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) + (-4 *5 (-899 (-576))) + (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) + (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-246)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1291)) (-5 *1 (-246))))) +(((*1 *2 *3) + (-12 (-4 *1 (-937)) (-5 *2 (-2 (|:| -1706 (-656 *1)) (|:| -2202 *1))) + (-5 *3 (-656 *1))))) +(((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *1) + (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6)) + (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1176 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2691 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-571))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1191 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4)) + (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) +(((*1 *1) (-5 *1 (-835)))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-767))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1246 *3)) + (-5 *2 (-419 (-576)))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-980 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) + (-4 *3 (-1068)) (-4 *2 (-804)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1191 *3)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-990)) (-4 *2 (-132)) (-5 *1 (-1197 *3)) (-4 *3 (-568)) + (-4 *3 (-1068)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1259 *4 *3)) (-14 *4 (-1195)) + (-4 *3 (-1068))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) +(((*1 *2 *3) + (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841)) (-5 *3 (-1177))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-594))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1104))) (-5 *1 (-301))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) + (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-763))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) + (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) (((*1 *2) (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) (-4 *3 (-378 *4)))) ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 (-938))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) + (-14 *4 (-938)) (-14 *5 (-1012 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1195))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) + (-4 *4 (-1262 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) + (-4 *4 (-1068)) (-4 *5 (-862)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) + (-4 *2 (-862)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) + (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) + (-4 *5 (-805)) (-4 *2 (-862)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *2 (-966 *4 (-543 *5) *5)) + (-5 *1 (-1145 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-862)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-969 *4)) (-5 *1 (-1230 *4)) + (-4 *4 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1221) (-1021)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1236)) + (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *7 *2)) (-4 *6 (-1068)) + (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) - (-5 *2 (-656 *3))))) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) + (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1068)))) + ((*1 *2 *3) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) + (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) + (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-1155))))) +(((*1 *2 *1) + (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) (((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1) (-5 *1 (-644)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) - (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-769))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) - (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-97))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-783)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-5 *1 (-607 *3)) (-4 *3 (-1068))))) + (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) + (-4 *3 (-1262 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) + (-5 *2 (-112)) (-5 *1 (-679 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-112)) + (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-112)) (-5 *1 (-996 *5 *6 *7 *8))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-768))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1245))) (-5 *3 (-1245))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) - (-5 *1 (-962 *4 *5)) (-4 *5 (-1263 *4))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) + (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1221) (-1021)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) + ((*1 *1 *1) (-5 *1 (-874)))) +(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) + ((*1 *1) (-5 *1 (-340)))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-1299 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1286 *6)) (-5 *4 (-1286 (-576))) (-5 *5 (-576)) + (-4 *6 (-1119)) (-5 *2 (-1 *6)) (-5 *1 (-1036 *6))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1263 *5)) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-786)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-982))))) +(((*1 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-400)) (-5 *1 (-448))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 - (-2 (|:| -1999 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6))))) - (-5 *1 (-510 *5 *6 *7)) - (-5 *3 - (-2 (|:| -1999 (-701 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-701 *6)))) - (-4 *7 (-1263 *6))))) + (-656 + (-3 (|:| -2706 (-1195)) + (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576)))))))))) + (-5 *1 (-1199))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + (-12 (-5 *3 (-1286 (-1286 *4))) (-4 *4 (-1068)) (-5 *2 (-701 *4)) + (-5 *1 (-1048 *4))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-938)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886)) + (-5 *2 (-1291)) (-5 *1 (-1287))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1198)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) + (-5 *1 (-1198)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1291)) + (-5 *1 (-1198))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-1226 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *2 (-2 (|:| -3402 *3) (|:| -4274 (-783)))) (-5 *1 (-599 *3)) + (-4 *3 (-557))))) (((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *1) (-5 *1 (-340)))) -(((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-464)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) - (-4 *2 (-243 *3 *4))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *7 (-1263 *5)) (-4 *4 (-736 *5 *7)) - (-5 *2 (-2 (|:| -2215 (-701 *6)) (|:| |vec| (-1287 *5)))) - (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3)))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1287 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) - (-5 *1 (-679 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-374)) - (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4463)))) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463)))) - (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) - (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-862) (-21)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1192 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-240 *3)) - (-4 *3 (-1119)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-240 *2)) (-4 *2 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) - (-5 *1 (-749 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) - (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) - (-4 *3 (-167 *6)) (-4 (-969 *6) (-899 *5)) - (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4)) - (-4 *4 (-1119)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) - (-4 *6 (-13 (-1119) (-1057 *3))) (-4 *3 (-899 *5)) - (-5 *1 (-948 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) - (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1057 (-624 $)))) - (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5))) - (-5 *1 (-949 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557)) - (-5 *1 (-950 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1119)) - (-4 *6 (-13 (-1119) (-1057 (-624 $)) (-626 *4) (-899 *5))) - (-5 *4 (-905 *5)) (-5 *1 (-951 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) - (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-952 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3))) - (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6)) - (-4 *6 (-1119)) (-4 *3 (-13 (-966 *9 *7 *8) (-626 *4))) - (-4 *7 (-805)) (-4 *9 (-13 (-1068) (-899 *6))) - (-5 *1 (-953 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) - (-4 *3 (-13 (-966 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5)) - (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *8 (-13 (-1068) (-899 *5))) (-5 *1 (-953 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-1011 *6)) - (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5)) - (-5 *1 (-956 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-902 *5 (-1196))) (-5 *3 (-1196)) (-5 *4 (-905 *5)) - (-4 *5 (-1119)) (-5 *1 (-957 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9))) - (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1119)) - (-4 *9 (-13 (-1068) (-626 (-905 *7)) (-1057 *8))) - (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1068)) - (-5 *1 (-958 *7 *8 *9))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340))))) + (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-756 *3)) (-4 *3 (-174))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) +(((*1 *2 *3) + (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-576)) (-14 *5 (-783)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-783)))) + (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) + (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) + (-5 *2 (-1054)) (-5 *1 (-759))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-938)) (-5 *1 (-454 *2)) + (-4 *2 (-1262 (-576))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-938)) (-5 *4 (-783)) (-5 *1 (-454 *2)) + (-4 *2 (-1262 (-576))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) + (-4 *2 (-1262 (-576))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) + (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) + (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1262 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-430 *2)) (-4 *2 (-1262 *5)) + (-5 *1 (-456 *5 *2)) (-4 *5 (-1068))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-568))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) - (-14 *4 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-250 (-1178))) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-862) - (-10 -8 (-15 -4367 ((-1178) $ *3)) (-15 -1650 ((-1292) $)) - (-15 -3237 ((-1292) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1008)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 ((-1292) $)) - (-15 -3237 ((-1292) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-862)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1237)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) - (-4 *4 (-1263 (-419 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1178)) (-5 *1 (-514)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4)) - (-4 *4 (-1119)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) - (-4 *4 (-1119)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1029 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *2 (-1068)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-938)) (-4 *4 (-1119)) - (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-1095 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-938)) (-4 *4 (-1119)) - (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-1096 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1163))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-419 *1)) (-4 *1 (-1263 *2)) (-4 *2 (-1068)) - (-4 *2 (-374)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)) - (-4 *3 (-568)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1151 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4462) (-6 -4463)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-862)) (-4 *3 (-1237)) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4462) (-6 -4463))))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) - (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 *2)))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3))))) + (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) + (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-783)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) - (-4 *3 (-1237))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-969 *8)))) + (-5 *5 (-783)) (-5 *6 (-1177)) (-4 *8 (-13 (-317) (-148))) + (-4 *11 (-966 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1195)))) + (-4 *10 (-805)) + (-5 *2 + (-2 + (|:| |rgl| + (-656 + (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) + (|:| |wcond| (-656 (-969 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *8)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *8)))))))))) + (|:| |rgsz| (-576)))) + (-5 *1 (-941 *8 *9 *10 *11)) (-5 *7 (-576))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1031)) (-5 *2 (-874))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3503 (-656 (-227))))))) - (-5 *2 (-656 (-1178))) (-5 *1 (-276))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) + (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1021) (-1221))) + (-5 *1 (-612 *4 *2 *3)) + (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1221)))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -3789 *3)))) + (-5 *4 (-783)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-960 *5)) (-5 *3 (-783)) (-4 *5 (-1068)) + (-5 *1 (-1183 *4 *5)) (-14 *4 (-938))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1287)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288))))) +(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *2 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068))))) +(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1196)) - (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) + (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886)))) + ((*1 *2 *3) + (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1177)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-4 *4 (-1084 *6 *7 *8)) (-5 *2 (-1291)) + (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1090 *6 *7 *8 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-4 *4 (-464)) - (-5 *2 (-656 (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4))))) - (-5 *1 (-302 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) + (|partial| -12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) + (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) + (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) + (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1271 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) + (-14 *4 (-1195)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1119)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862)) + (-14 *4 + (-1 (-112) (-2 (|:| -3257 *3) (|:| -4274 *2)) + (-2 (|:| -3257 *3) (|:| -4274 *2))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1262 *4)) + (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1262 *5)) (-14 *6 (-938)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *1 *1) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) - (-5 *2 (-1287 (-419 (-576)))) (-5 *1 (-1315 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)) - (-4 *3 (-568)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))) -(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1054)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-624 *3)) - (-4 *3 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) - (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1241)) (-4 *5 (-1263 *3)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) + (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-1176 (-1176 (-969 *5)))) + (-5 *1 (-1294 *5)) (-5 *4 (-1176 (-969 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-1214))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) + (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) + (|:| |args| (-656 (-874))))) + (-5 *1 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-321)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-989)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1013)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1055)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1092))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1148 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) - (-5 *2 (-1185 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) - (-5 *1 (-1148 *5))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1068)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-701 *3)) + (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1231 *6)) - (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1295 *6)) - (-5 *5 (-1176 *4))))) -(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) + (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) + (-5 *2 + (-2 (|:| |upol| (-1191 *8)) (|:| |Lval| (-656 *8)) + (|:| |Lfact| + (-656 (-2 (|:| -1839 (-1191 *8)) (|:| -4274 (-576))))) + (|:| |ctpol| *8))) + (-5 *1 (-754 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) + (-4 *6 (-1119)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1119))))) +(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1068)) + (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) + ((*1 *1 *1) (-4 *1 (-557))) + ((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1233 *3)) (-4 *3 (-1236)))) ((*1 *2 *1) - (-12 (-5 *2 (-1287 (-3 (-480) "undefined"))) (-5 *1 (-1288))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4385 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4385 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) - (-4 *11 (-1090 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-862)) (-5 *1 (-1088 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-656 *11)) - (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -4385 *11)))))) - (-5 *6 (-783)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -4385 *11)))) - (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) - (-4 *11 (-1128 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-862)) (-5 *1 (-1164 *7 *8 *9 *10 *11))))) + (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1021)) + (-4 *2 (-1068))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1236))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4))))) + (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) + (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1263 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) - (-5 *2 (-112))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-1119)))) - ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1119))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1) (-4 *1 (-1079)))) + (-12 (-4 *1 (-1122 *3 *2 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6))) + (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1119)) + (-4 *8 (-13 (-1068) (-626 (-905 *6)) (-1057 *7))) + (-5 *2 (-902 *6 *8)) (-4 *7 (-1068)) (-5 *1 (-958 *6 *7 *8))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4464 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) - (-4 *4 (-699 *2 *5 *6))))) + (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-112)) + (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1195))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464)) + (-14 *5 (-656 (-1195))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-969 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *4)))))))))) - (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5))))) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119))))) (((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) - (-5 *1 (-178 *3))))) -(((*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-518)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-604)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-490)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-157)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1186)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-638)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1115)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1109)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1092)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-989)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-182)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1055)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-321)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-683)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-155)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1170)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1298)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1085)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-693)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-134)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-618)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1297)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-688)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-220)))) - ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1119)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) + (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1119))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) - (-4 *2 (-686 *3))))) -(((*1 *1 *1) (-5 *1 (-1082)))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) + (-14 *4 *2)))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1154)) (-5 *2 (-703 (-290))) (-5 *1 (-169))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) + (-4 *3 (-13 (-1119) (-34)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) + (-14 *4 (-938))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-132)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-372 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-661 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) + (-4 *4 (-1119)) (-4 *5 (-1119))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) - (-4 *8 (-966 *7 *5 *6)) - (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *3) (|:| |radicand| *3))) - (-5 *1 (-970 *5 *6 *7 *8 *3)) (-5 *4 (-783)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *8)) (-15 -3894 (*8 $)) (-15 -3905 (*8 $)))))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *1) (-5 *1 (-590)))) +(((*1 *1) (-5 *1 (-142)))) (((*1 *2 *3) - (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112)) - (-5 *1 (-684 *4))))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-112))))) -(((*1 *1) (-4 *1 (-986)))) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3713 (-656 *1)))) + (-4 *1 (-378 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -3713 (-656 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1043 *3)) + (-4 *3 (-13 (-860) (-374) (-1041))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) + (-4 *3 (-1262 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) + (-4 *3 (-1262 *2))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1195)) (-5 *6 (-112)) + (-4 *7 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-4 *3 (-13 (-1221) (-976) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1119)) - (-4 *2 (-862))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) + (-12 (-4 *3 (-13 (-374) (-148))) + (-5 *2 (-656 (-2 (|:| -4274 (-783)) (|:| -2387 *4) (|:| |num| *4)))) + (-5 *1 (-411 *3 *4)) (-4 *4 (-1262 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3495 *3))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1221)))) + ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1195)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) + (-5 *1 (-902 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) + (|partial| -12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1119))))) + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1221))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) + (-4 *3 (-13 (-442 *6) (-27) (-1221))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| -1839 (-1191 *6)) (|:| -4274 (-576))))) + (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) + (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-253 *4 *5)) + (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1195)))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-656 (-1191 *11))) (-5 *3 (-1191 *11)) + (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) + (-5 *7 (-1286 (-656 (-1191 *8)))) (-4 *10 (-862)) + (-4 *8 (-317)) (-4 *11 (-966 *8 *9 *10)) (-4 *9 (-805)) + (-5 *1 (-719 *9 *10 *8 *11))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1068)) (-4 *6 (-966 *5 *4 *2)) + (-4 *2 (-862)) (-5 *1 (-967 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *6)) (-15 -1536 (*6 $)) + (-15 -1549 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) + (-5 *2 (-1195)) (-5 *1 (-1062 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) + (-4 *3 (-1119))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) + (-4 *4 (-1236)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) + (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1236)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-59 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-576))) + (-5 *2 (-701 (-576))) (-5 *1 (-1129))))) +(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) + (-4 *3 (-1119))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) (((*1 *2 *3) (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-734))) - ((*1 *1) (-4 *1 (-738))) - ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) - ((*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-701 (-1191 *8))) (-4 *5 (-1068)) (-4 *8 (-1068)) + (-4 *6 (-1262 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) + (-4 *7 (-1262 *6))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1198)) (-5 *3 (-1195))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1057 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4)))) - (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 *4)))))) + (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) + (-5 *2 (-938))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-537))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068))))) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) + (-5 *2 (-656 (-656 (-656 (-960 *3)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) + (-4 *4 (-360)) (-5 *2 (-1291)) (-5 *1 (-540 *4))))) +(((*1 *2 *1) + (|partial| -12 + (-5 *2 (-2 (|:| -1832 (-115)) (|:| |arg| (-656 (-905 *3))))) + (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4))) + (-5 *1 (-905 *4)) (-4 *4 (-1119))))) (((*1 *2 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) + (-4 *4 (-275 *3)) (-4 *5 (-805))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1286 *5))) (-5 *4 (-576)) (-5 *2 (-1286 *5)) + (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-14 *5 (-656 (-1196))) - (-5 *2 - (-656 (-2 (|:| -2210 (-1192 *4)) (|:| -3287 (-656 (-969 *4)))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 - (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) - (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 - (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) - (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 - (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) - (-5 *1 (-1314 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 - (-656 (-2 (|:| -2210 (-1192 *4)) (|:| -3287 (-656 (-969 *4)))))) - (-5 *1 (-1314 *4 *5 *6)) (-5 *3 (-656 (-969 *4))) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-192))))) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) + (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862))))) +(((*1 *1) + (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) + (-4 *4 (-678 *3)))) + ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) (((*1 *2 *1) - (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3))))) + (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) + (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) + (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1262 *5)) + (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1191 (-576)))) (-5 *3 (-1191 (-576))) + (-5 *1 (-584)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1191 *1))) (-5 *3 (-1191 *1)) + (-4 *1 (-926))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-1286 *3)) + (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) + (-5 *2 (-1288)) (-5 *1 (-264))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *2 (-783)) + (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) + (-14 *4 (-938)) (-4 *5 (-1068)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) + (-5 *1 (-1183 *4 *5)) (-14 *4 (-938))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1068)) (-4 *4 (-174)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)) + (-4 *3 (-174))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| -2055 *1) (|:| -3223 (-656 *7))))) + (-5 *3 (-656 *7)) (-4 *1 (-1229 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) +(((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-966 *4 *5 *6)))) + (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1236)) + (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-568)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5))))) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-568))))) (((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) - (-5 *2 (-831 *3)))) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) + ((*1 *2 *3) (-12 (-5 *3 (-990)) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-548))) - ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) + (-4 *3 (-1262 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-834))))) +(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) + (-5 *2 (-1054)) (-5 *1 (-852))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-960 *4)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) + (-5 *1 (-1227 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) + (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-767))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-990))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390))))) -(((*1 *1) (-5 *1 (-145)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -4316)) (-5 *2 (-112)) (-5 *1 (-629)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2046)) (-5 *2 (-112)) (-5 *1 (-629)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3159)) (-5 *2 (-112)) (-5 *1 (-629)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -3609)) (-5 *2 (-112)) (-5 *1 (-703 *4)) - (-4 *4 (-625 (-874))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112)) - (-5 *1 (-703 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-888)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1186))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1055))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1178))) (-5 *2 (-112)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1201)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1201))))) + (-5 *1 (-764))))) (((*1 *1) (-5 *1 (-131)))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1119) (-34))) - (-4 *2 (-13 (-1119) (-34)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) - (-5 *1 (-1133 *4 *5)) (-5 *3 (-1260 *5 *4))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1163)))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1119))))) -(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) - (-4 *4 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) - ((*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) - (-4 *4 (-1119)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + (-12 (-5 *3 (-1191 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-1191 *6)) + (-5 *1 (-331 *4 *5 *6 *7))))) +(((*1 *2) + (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) + (-4 *3 (-1262 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) + (-12 (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-656 (-1195))) + (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1042)) (-5 *5 (-390)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) + (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-938)) (-4 *5 (-1068))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) - (-4 *2 (-1263 *3))))) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-969 *4))) + (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) + (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))) +(((*1 *1) (-5 *1 (-340)))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) + (-4 *3 (-1119))))) (((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) - (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) - ((*1 *1 *1 *1) (-5 *1 (-1139)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1191 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) + (-4 *4 (-862))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -3713 (-656 *1)))) + (-4 *1 (-378 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-465 *3 *4 *5 *6)) + (|:| -3713 (-656 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) + (-5 *1 (-676 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1306 *3 *4)) + (-4 *3 (-862)) (-4 *4 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1287 (-1287 (-576)))) (-5 *1 (-478))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-1068)))) - ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568))))) + (|partial| -12 (-4 *2 (-1119)) (-5 *1 (-1213 *3 *2)) (-4 *3 (-1119))))) (((*1 *2 *3) - (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) + (-12 (-5 *3 (-656 (-2 (|:| -3142 *4) (|:| -3457 (-576))))) + (-4 *4 (-1119)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-841))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) + (-5 *3 (-576)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3) + (-5 *3 (-576)))) + ((*1 *2 *1 *3) + (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5)) + (-5 *3 (-576)) (-4 *5 (-881 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1031)) (-5 *2 (-419 (-576))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) + (-4 *3 (-1262 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3563 (*2 (-1195)))) + (-4 *2 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) + (-5 *2 (-576)) (-5 *1 (-1133 *4 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1079)) (-4 *3 (-1221)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) + ((*1 *2 *2) + (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-860))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1707 (-430 *3)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-749 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119)))) + ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) + ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)) + (-5 *3 (-576))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-668 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3896 *3) (|:| -1832 (-656 *5)))) + (-5 *1 (-1044 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) + (-5 *1 (-760))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1068)) + (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -3116 (-419 *6)) (|:| |coeff| (-419 *6)))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) + (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-1287)) + (-5 *1 (-1290)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) + (-5 *2 (-1287)) (-5 *1 (-1290))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-786)) (-5 *1 (-52))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) - ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) - (-4 *3 (-13 (-1119) (-34)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1260 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1196)) - (-4 *5 (-374)) (-5 *1 (-940 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1192 *5)) - (-5 *1 (-940 *4 *5)) (-14 *4 (-1196)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) - (-5 *2 (-419 (-969 *6))) (-5 *1 (-1069 *5 *6)) (-14 *5 (-1196))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1119)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1119)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1289)))) + ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1289))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) + (-5 *1 (-921 *4))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-872)) (-5 *2 (-703 (-1244))) (-5 *3 (-1244))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-409))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1195)) (-4 *5 (-374)) (-5 *2 (-656 (-1230 *5))) + (-5 *1 (-1294 *5)) (-5 *4 (-1230 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) +(((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1054)) (-5 *1 (-769))))) +(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) + (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-1048 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) + (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1068)) + (-5 *2 (-112)) (-5 *1 (-1048 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-301))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-938)) (-5 *2 (-1191 *3)) (-5 *1 (-1210 *3)) + (-4 *3 (-374))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) + (-4 *3 (-13 (-1119) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) + (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)) + (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) + (-5 *2 (-701 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1221) (-1021))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) + (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) + (-4 *3 (-353 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) + (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) - (-5 *2 (-390)) (-5 *1 (-276)))) + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-1176 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) + (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) + (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310))))) +(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773)))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1291)) (-5 *1 (-1287))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-768))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4)) + (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1119)) (-4 *3 (-167 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) -(((*1 *1 *1) (-4 *1 (-1163)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) + (-12 (-5 *3 (-656 (-1113 (-855 (-390))))) + (-5 *2 (-656 (-1113 (-855 (-227))))) (-5 *1 (-315)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) + (-4 *4 (-1262 *3)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1031))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-227)) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) + (-5 *2 (-1286 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) + (-4 *3 (-1119)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-548)))) + ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2) + (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) + (-4 *5 (-626 (-1195))) (-4 *4 (-805)) (-4 *5 (-862)))) + ((*1 *1 *2) + (-2835 + (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) + (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) + (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) + (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) + ((*1 *1 *2) + (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1068)) + (-4 *4 (-805)) (-4 *5 (-862)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3887 *8))) + (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) + (-5 *1 (-1088 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3887 *8))) + (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1128 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1177)) + (-5 *1 (-1164 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1200)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1216)))) + ((*1 *2 *3) + (-12 (-5 *3 (-792 *4 (-876 *5))) + (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1195))) + (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1313 *4 *5 *6)) + (-14 *6 (-656 (-1195))))) + ((*1 *2 *3) + (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) + (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) + ((*1 *2 *3) + (-12 (-5 *3 (-792 *4 (-876 *6))) + (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1195))) + (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) + (-14 *5 (-656 (-1195))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-1191 (-1043 (-419 *4)))) (-5 *1 (-1313 *4 *5 *6)) + (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195))))) + ((*1 *2 *3) + (-12 + (-5 *3 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))) + (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1195))) + (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1313 *4 *5 *6)) + (-14 *5 (-656 (-1195)))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -3789 *4))) (-5 *5 (-783)) + (-4 *4 (-966 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-960 *4)))) - (|:| |xValues| (-1113 *4)) (|:| |yValues| (-1113 *4)))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 *4))))))) -(((*1 *2 *3) - (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-461 *6 *7 *8 *4))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-48)))) (-5 *1 (-48)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-656 (-624 (-48)))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-624 (-48))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1263 (-171 *2))))) + (-4 *3 (-1262 (-171 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) + (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) ((*1 *2 *1) - (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-425 *3 *2 *4 *5)) + (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-317)) (-4 *5 (-13 (-421 *2 *4) (-1057 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) + (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-426 *3 *2 *4 *5 *6)) (-4 *3 (-317)) (-4 *5 (-421 *2 *4)) - (-14 *6 (-1287 *5)))) + (-14 *6 (-1286 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-1068)) - (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1222) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) + (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1221) (-294))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-624 (-507)))) (-5 *1 (-507)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-624 (-507))) (-5 *1 (-507)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-656 (-624 (-507)))) + (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-656 (-624 (-507)))) (-5 *1 (-507)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) + (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-624 (-507))) (-5 *1 (-507)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-938)) (-4 *4 (-360)) + (-12 (-5 *2 (-1286 *4)) (-5 *3 (-938)) (-4 *4 (-360)) (-5 *1 (-540 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1263 *4)) - (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1263 *5)))) + (-12 (-4 *4 (-464)) (-4 *5 (-736 *4 *2)) (-4 *2 (-1262 *4)) + (-5 *1 (-787 *4 *2 *5 *3)) (-4 *3 (-1262 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *3 (-969 (-576))) - (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *1 (-340))))) +(((*1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1) (-5 *1 (-644)))) +(((*1 *1) (-5 *1 (-1101)))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) + ((*1 *1 *1) (-5 *1 (-874)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1241)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) - (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-301))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4463)) (-4 *1 (-120 *3)) - (-4 *3 (-1237)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4463)) (-4 *1 (-120 *3)) - (-4 *3 (-1237)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) - (-4 *2 (-1237)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1196)) (-5 *1 (-644)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1254 (-576))) (|has| *1 (-6 -4463)) (-4 *1 (-663 *2)) - (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4463)) (-4 *1 (-1029 *2)) - (-4 *2 (-1237)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1213 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) - (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *3)) - (-4 *3 (-1237)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) - (-4 *2 (-1237))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) - (-5 *2 (-419 (-969 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1247 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) - (-5 *2 (-419 (-969 *4)))))) -(((*1 *1) (-5 *1 (-1289)))) -(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-301)) (-5 *1 (-169))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-988 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1025))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-969 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1192 (-969 *3))))) - ((*1 *2) - (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1196)) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1222) (-976))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1999 (-656 *4)))) - (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) - (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1088 *7 *8 *9 *3 *4)) (-4 *4 (-1090 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1084 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) + (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *4 (-656 (-1195))) + (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) + (-12 (-4 *5 (-1119)) (-4 *6 (-915 *5)) (-5 *2 (-701 *6)) + (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-14 *5 (-656 (-1195))) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) - (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) + (-656 (-2 (|:| -3416 (-1191 *4)) (|:| -1809 (-656 (-969 *4)))))) + (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1164 *7 *8 *9 *3 *4)) (-4 *4 (-1128 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1084 *6 *7 *8)) + (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) + (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) + (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) + (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-860) (-317) (-148) (-1041))) (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-4 *4 (-1237)) (-5 *2 (-112)) - (-5 *1 (-1176 *4))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765))))) + (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) + (-5 *1 (-1313 *5 *6 *7)) (-5 *3 (-656 (-969 *5))) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 + (-656 (-2 (|:| -3416 (-1191 *4)) (|:| -1809 (-656 (-969 *4)))))) + (-5 *1 (-1313 *4 *5 *6)) (-5 *3 (-656 (-969 *4))) + (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) - (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4)))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1199)) (-5 *3 (-1196))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1176 *7))) (-4 *6 (-862)) - (-4 *7 (-966 *5 (-543 *6) *6)) (-4 *5 (-1068)) - (-5 *2 (-1 (-1176 *7) *7)) (-5 *1 (-1145 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) + (-12 (-5 *3 (-1195)) (-5 *2 (-1 (-1191 (-969 *4)) (-969 *4))) + (-5 *1 (-1294 *4)) (-4 *4 (-374))))) +(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-379))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-5 *2 (-576)))) ((*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1192 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) - (-4 *3 (-374))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -1856 *4) (|:| -1720 *3) (|:| -4400 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-1084 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -1856 *3) (|:| -1720 *1) (|:| -4400 *1))) - (-4 *1 (-1263 *3))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1066))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) + (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-656 (-1196))) (-4 *5 (-464)) + (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) + (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1191 (-419 (-576)))) + (-5 *1 (-445 *5 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1217))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) + (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2) + (-12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) + (-14 *4 (-656 *2)) (-4 *5 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) + (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-969 (-576))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1286 (-419 (-969 (-390))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1286 (-969 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1286 (-969 (-390)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) + ((*1 *2 *1) + (-12 (-5 *2 - (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) - (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5)))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1192 *3)))) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| |mdnia| + (-2 (|:| |fn| (-326 (-227))) + (|:| -2691 (-656 (-1113 (-855 (-227))))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) + (-5 *1 (-781)))) ((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1192 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) - (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-938)) (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-804)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1268 *3)) (-4 *3 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) - (-4 *1 (-1090 *4 *5 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-971))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-194))))) + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *1 (-820)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) + (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-656 (-326 (-227)))) + (|:| -1538 (-656 (-227))))))) + (-5 *1 (-853)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) + (|:| |tol| (-227)))) + (-5 *1 (-913)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-995 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2) + (-2835 + (-12 (-5 *2 (-969 *3)) + (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) + (-2746 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-862))) + (-12 (-5 *2 (-969 *3)) + (-12 (-2746 (-4 *3 (-557))) (-2746 (-4 *3 (-38 (-419 (-576))))) + (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-862))) + (-12 (-5 *2 (-969 *3)) + (-12 (-2746 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) + (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-862))))) + ((*1 *1 *2) + (-2835 + (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) + (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) + (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) + (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) + ((*1 *1 *2) + (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) (-4 *3 (-1068)) + (-4 *4 (-805)) (-4 *5 (-862))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) (-5 *5 (-1191 *2)) + (-4 *2 (-13 (-442 *6) (-27) (-1221))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) + (-5 *5 (-419 (-1191 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1221))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8))))) +(((*1 *1) (-5 *1 (-1287)))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1195))) (-5 *1 (-837))))) +(((*1 *2) (-12 (-5 *2 (-1166 (-1177))) (-5 *1 (-403))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-1095 *3 *4 *5))) (-4 *3 (-1119)) + (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) + (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) + (-5 *1 (-1096 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) + (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-1286 *2)) (-4 *5 (-317)) + (-4 *6 (-1011 *5)) (-4 *2 (-13 (-421 *6 *7) (-1057 *6))) + (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1262 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1080 *4 *3)) + (-4 *3 (-1262 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) + (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-600 *4)) (-4 *4 (-360))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-701 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462))))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1068)) (-4 *3 (-1119)) - (-5 *2 (-2 (|:| |val| *1) (|:| -3175 (-576)))) (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -3175 (-905 *3)))) - (-5 *1 (-905 *3)) (-4 *3 (-1119)))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1121 *4)) (-4 *4 (-1119)) (-5 *2 (-1 *4)) + (-5 *1 (-1036 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) - (-4 *7 (-966 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -3175 (-576)))) - (-5 *1 (-967 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) - (-15 -3905 (*7 $)))))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1119)) - (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-1095 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) - (-5 *1 (-1095 *3 *4 *2)) - (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) - (-4 *2 (-1278 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-4 *5 (-1263 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) - (-4 *2 (-1278 *6)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) - (-5 *1 (-554 *4 *2)) (-4 *2 (-1278 *4)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1172 *4))))) -(((*1 *2 *1) - (-12 (-4 *2 (-966 *3 *5 *4)) (-5 *1 (-1006 *3 *4 *5 *2)) - (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -4015 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1263 *4))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *2 *2 *3) + (-12 (-5 *3 (-1113 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1066))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1054)) (-5 *1 (-766))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) + (-5 *2 (-1054)) (-5 *1 (-759))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1195)) (-4 *5 (-442 *4)) + (-4 *4 (-1119)) (-5 *1 (-585 *4 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) +(((*1 *2 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *3) (-12 - (-5 *2 + (-5 *3 (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) (-253 *4 (-419 (-576))))) - (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1196))) (-14 *5 (-783)) + (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) (-5 *1 (-517 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1082))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) - (-14 *3 (-656 (-1196)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1068)) - (-5 *2 (-1287 (-1287 *5))) (-5 *1 (-1048 *5)) (-5 *4 (-1287 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1955 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-783)) (-4 *3 (-1236)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1) (-5 *1 (-173))) + ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1119)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1177)) (-4 *1 (-401)))) + ((*1 *1) (-5 *1 (-406))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) + ((*1 *1) + (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) + (-4 *4 (-678 *3)))) + ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1161 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1068)))) + ((*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) + ((*1 *1 *1) (-5 *1 (-1195))) ((*1 *1) (-5 *1 (-1195))) + ((*1 *1) (-5 *1 (-1216)))) +(((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-783))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) + (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) - (-5 *2 (-656 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)) - (-4 *7 (-966 *4 *6 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) - (-5 *1 (-935 *4))))) -(((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) + (-12 (-4 *4 (-568)) (-5 *2 (-1191 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *4 (-624 $)) $)) + (-15 -1549 ((-1144 *4 (-624 $)) $)) + (-15 -3563 ($ (-1144 *4 (-624 $)))))))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) + (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1068)) (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *1 *1 *1) (-4 *1 (-485))) + ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-896)))) + ((*1 *1 *1) (-5 *1 (-990))) + ((*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1287 (-656 *3))) (-4 *4 (-317)) - (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874))))) -(((*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) - (-12 (-5 *2 (-173)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) + (-4 *7 (-1262 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-586 *6 *7))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) (-5 *2 (-2 (|:| |mval| (-701 *4)) (|:| |invmval| (-701 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-960 *4)) (-4 *1 (-1153 *4)) - (-4 *4 (-1068)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-960 (-227))) (-5 *2 (-1292)) - (-5 *1 (-1289))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-2 (|:| -4282 *3) (|:| -4353 *4)))) + (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *1 (-1212 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1212 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1119)) - (-4 *3 (-1237)) (-4 *3 (-1119)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1) (-5 *1 (-340)))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *6 (-112)) - (-4 *7 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-1222) (-976) (-29 *7))) + (-12 (-5 *3 (-446)) (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *7 *3)) (-5 *5 (-855 *3))))) + (-656 + (-3 (|:| -2706 (-1195)) + (|:| -3187 (-656 (-3 (|:| S (-1195)) (|:| P (-969 (-576))))))))) + (-5 *1 (-1199))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *7 (-915 *6)) + (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) + (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461))))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1195)) (-5 *1 (-598 *2)) (-4 *2 (-1057 *3)) + (-4 *2 (-374)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) + (-4 *2 (-13 (-442 *4) (-1021) (-1221))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-1021) (-1221))) + (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-1195)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-976))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) + (-4 *4 (-1119)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-988 *4 *3)) + (-4 *3 (-1262 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) + (-4 *4 (-38 (-419 (-576))))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-1082))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1177)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1054)) + (-5 *1 (-762))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *3 *5)) + (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) + (-4 *5 (-668 (-419 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1262 *4)) (-5 *1 (-819 *4 *2 *5 *3)) + (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-668 *2)) + (-4 *3 (-668 (-419 *2)))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3242 *4))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-947))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) + (-4 *3 (-1262 (-419 *4)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-240 *3)) + (-4 *3 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236))))) +(((*1 *2 *3) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1068)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) + (-4 *4 (-568)) (-5 *2 (-419 (-1191 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1221))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-1191 (-419 (-1191 *3)))) (-5 *1 (-572 *6 *3 *7)) + (-5 *5 (-1191 *3)) (-4 *7 (-1119)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1282 *5)) (-14 *5 (-1195)) (-4 *6 (-1068)) + (-5 *2 (-1259 *5 (-969 *6))) (-5 *1 (-964 *5 *6)) (-5 *3 (-969 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-1191 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1191 *1)) + (-4 *1 (-966 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) + (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-419 (-1191 *3))) + (-5 *1 (-967 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1191 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))) + (-4 *7 (-966 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862)) + (-4 *6 (-1068)) (-5 *1 (-967 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) (-4 *5 (-568)) + (-5 *2 (-419 (-1191 (-419 (-969 *5))))) (-5 *1 (-1062 *5)) + (-5 *3 (-419 (-969 *5)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-360)) (-4 *2 (-1068)) (-5 *1 (-724 *2 *3)) + (-4 *3 (-1262 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) + (-5 *1 (-1133 *4 *5)) (-5 *3 (-1259 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1218))))) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-368 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-540 *4))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) + (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) + (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) + (-4 *7 (-1236))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-860)) (-4 *4 (-374)) (-5 *2 (-783)) + (-5 *1 (-962 *4 *5)) (-4 *5 (-1262 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-966 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (-5 *1 (-941 *5 *6 *7 *8))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-996 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-360)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -1707 (-656 (-2 (|:| |irr| *3) (|:| -2011 (-576))))))) + (-5 *1 (-218 *5 *3)) (-4 *3 (-1262 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-112))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) + (-14 *4 (-656 (-1195))))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) (-4 *1 (-294))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *1 *2) + (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) + (-14 *5 (-938)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) + (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) + (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) + (-5 *2 (-1054)) (-5 *1 (-758))))) +(((*1 *2 *3) + (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-5 *2 (-1291)) (-5 *1 (-1198)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1195)) + (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *2 (-1291)) + (-5 *1 (-1198)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1195)) + (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *2 (-1291)) + (-5 *1 (-1198))))) +(((*1 *2 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-656 *3)) (-5 *5 (-938)) (-4 *3 (-1262 *4)) + (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) + (-14 *4 *2)))) +(((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) + (-4 *4 (-442 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-115)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) + (-4 *4 (-442 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-115)) (-5 *1 (-164)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) + (-4 *4 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) + ((*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *4 (-1119)) (-5 *1 (-441 *3 *4)) + (-4 *3 (-442 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) + (-4 *4 (-442 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) + ((*1 *2 *2) + (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) + (-4 *4 (-13 (-442 *3) (-1021) (-1221))))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1209 *2)) (-4 *2 (-1119))))) +(((*1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-763))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) (((*1 *2 *3) (-12 (-5 *3 @@ -1511,96 +2318,1234 @@ (|:| |expense| (-390)) (|:| |accuracy| (-390)) (|:| |intermediateResults| (-390)))) (-5 *2 (-1054)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1277 *4)) + (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-1176 *4))) + (-5 *1 (-1279 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-1006 (-419 (-576)) (-876 *3) (-245 *4 (-783)) + (-253 *3 (-419 (-576))))) + (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-1005 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) + (-4 *3 (-384 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) + (-5 *1 (-705 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) + (-4 *6 (-1262 *5)) + (-5 *2 (-2 (|:| -3896 *7) (|:| |rh| (-656 (-419 *6))))) + (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) + (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1255 *4 *5 *3)) + (-4 *3 (-1262 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1057 (-48))) + (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 (-1191 (-48)))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1262 *5))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) + (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3653 *3)))) + (-5 *1 (-218 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1082))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1286 *5)) (-4 *5 (-317)) + (-4 *5 (-1068)) (-5 *2 (-701 *5)) (-5 *1 (-1048 *5))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-996 *3 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1158)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) + (-5 *2 (-701 (-227))) (-5 *1 (-276))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) (-4 *3 (-626 (-390))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-938)) (-5 *2 (-171 (-390))) (-5 *1 (-797 *3)) + (-4 *3 (-626 (-390))))) + ((*1 *2 *3) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-174)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-938)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 (-390))) + (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-568)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) + (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) + (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) + (-5 *1 (-797 *5))))) +(((*1 *2 *3) + (-12 (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 - (-2 (|:| |solns| (-656 *5)) - (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1147 *3 *5)) (-4 *3 (-1263 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-989)))) - ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-1092)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-1137))))) + (-656 + (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) + (-253 *4 (-419 (-576)))))) + (-5 *1 (-517 *4 *5)) + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) + (-253 *4 (-419 (-576)))))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-174)) (-4 *2 (-1262 *4)) (-5 *1 (-179 *4 *2 *3)) + (-4 *3 (-736 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-419 (-969 *5)))) (-5 *4 (-1195)) + (-5 *2 (-969 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-5 *2 (-969 *4)) + (-5 *1 (-302 *4)) (-4 *4 (-464)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) + (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1195)) + (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) + (-4 *5 (-13 (-374) (-860))))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-969 (-419 (-576)))) + (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1195)) + (-5 *2 (-969 (-419 (-576)))) (-5 *1 (-791 *5)) + (-4 *5 (-13 (-374) (-860)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *3 (-969 (-576))) + (-5 *1 (-340)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1111 (-969 (-576)))) (-5 *1 (-340))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) (((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| -2996 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) + (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) + (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) + (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))) + (-5 *4 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) + (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))) (-5 *4 (-419 (-576))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-419 (-576))) + (-5 *2 (-656 (-2 (|:| -4143 *5) (|:| -4154 *5)))) (-5 *1 (-1039 *3)) + (-4 *3 (-1262 (-576))) (-5 *4 (-2 (|:| -4143 *5) (|:| -4154 *5))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) + (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-419 (-576)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) + (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-419 (-576)))) + (-5 *4 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-419 (-576))) + (-5 *2 (-656 (-2 (|:| -4143 *4) (|:| -4154 *4)))) (-5 *1 (-1040 *3)) + (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-419 (-576))) + (-5 *2 (-656 (-2 (|:| -4143 *5) (|:| -4154 *5)))) (-5 *1 (-1040 *3)) + (-4 *3 (-1262 *5)) (-5 *4 (-2 (|:| -4143 *5) (|:| -4154 *5)))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-5 *2 (-2 (|:| -4282 *3) (|:| -4353 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1) (|partial| -4 *1 (-1171)))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-133))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-541))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1115)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) + ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1054)) + (-5 *1 (-758))))) +(((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1195))) + (-4 *5 (-568)) (-5 *2 (-656 (-656 (-969 *5)))) (-5 *1 (-1204 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1119))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1214))))) +(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) + (-4 *2 (-1262 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) + (-4 *2 (-13 (-862) (-21)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-568) (-148))) + (-5 *2 (-2 (|:| -4143 *3) (|:| -4154 *3))) (-5 *1 (-1256 *4 *3)) + (-4 *3 (-1262 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1119)) + (-5 *1 (-690 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 (-419 *2))) + (-4 *2 (-1262 *4)) (-5 *1 (-352 *3 *4 *2 *5)) + (-4 *3 (-353 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1240)) + (-4 *4 (-1262 (-419 *2))) (-4 *2 (-1262 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3)) + (-4 *2 (-1262 *3))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) + (-4 *2 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) + (-4 *3 (-1236)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) + (-5 *1 (-749 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) + (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1195)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1221))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-862)) + (-4 *5 (-805)) (-4 *2 (-275 *4))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1093)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1068)) + (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-966 *2 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1262 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317)) + (-4 *10 (-966 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-656 (-1191 *10))) + (|:| |dterm| + (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) + (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1191 *10)) (-5 *4 (-656 *6)) + (-5 *5 (-656 *10))))) +(((*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) + (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1138)))) + ((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) + (-5 *2 (-701 *6)) (-5 *1 (-1048 *6)) (-4 *6 (-374)) (-4 *6 (-1068)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1048 *4)) + (-4 *4 (-374)) (-4 *4 (-1068)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) + (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) + (-5 *1 (-818 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| -1839 *4) (|:| -1433 (-576))))) + (-4 *4 (-1262 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-430 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1068)) + (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-1231 *3)) + (-4 *3 (-993))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) + (-5 *1 (-760))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1068)) + (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-864 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) + (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-865 *5 *3)) + (-4 *3 (-864 *5))))) +(((*1 *1) (-5 *1 (-835)))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4))) - (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) - (-4 *6 (-464))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1262 *5)) + (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1057 (-576)))) + (-4 *7 (-1262 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) + (-4 *2 (-353 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) + (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) - ((*1 *1 *1) (-4 *1 (-161)))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *1 *1) (-4 *1 (-505))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) +(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1159 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) + (-5 *2 (-112)) (-5 *1 (-1160 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) + (-15 -1549 ((-1144 *3 (-624 $)) $)) + (-15 -3563 ($ (-1144 *3 (-624 $)))))))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) + (-4 *4 (-13 (-1119) (-34)))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) + (-4 *3 (-1262 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-419 (-969 *5)) (-1185 (-1196) (-969 *5)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5))))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-763))))) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1176 *7))) (-4 *6 (-862)) + (-4 *7 (-966 *5 (-543 *6) *6)) (-4 *5 (-1068)) + (-5 *2 (-1 (-1176 *7) *7)) (-5 *1 (-1145 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1262 (-171 *3)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1191 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) + (-5 *2 (-831 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) + (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) + (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) + (-5 *2 (-656 (-656 (-960 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) (-4 *4 (-1068)) + (-4 *1 (-1153 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 (-960 *3)))) (-4 *3 (-1068)) + (-4 *1 (-1153 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) + (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) + (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) + (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-656 (-960 *5)))) (-5 *3 (-656 (-173))) + (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-148))) + (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) + (-5 *1 (-1148 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-148))) + (-5 *2 (-1184 (-656 (-326 *5)) (-656 (-304 (-326 *5))))) + (-5 *1 (-1148 *5))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1111 (-855 *3))) (-4 *3 (-13 (-1221) (-976) (-29 *5))) + (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1111 (-855 *3))) (-5 *5 (-1177)) + (-4 *3 (-13 (-1221) (-976) (-29 *6))) + (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-221 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1111 (-855 (-326 *5)))) + (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1111 (-855 (-326 *6)))) + (-5 *5 (-1177)) + (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1111 (-855 (-419 (-969 *5))))) (-5 *3 (-419 (-969 *5))) + (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1111 (-855 (-419 (-969 *6))))) (-5 *5 (-1177)) + (-5 *3 (-419 (-969 *6))) + (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 + (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-222 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) + (-4 *3 (-13 (-1221) (-976) (-29 *5))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) + (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) + (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) + (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) + (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) + (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) + (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) + (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) + (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) + (-5 *5 (-1177)) (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) + (-5 *5 (-1195)) (-5 *2 (-1054)) (-5 *1 (-577)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1262 *4)) + (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) + (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) + ((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-862)) + (-4 *3 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1195)) (-5 *1 (-969 *3)) (-4 *3 (-38 (-419 (-576)))) + (-4 *3 (-1068)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-4 *2 (-862)) + (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-966 *3 (-543 *2) *2)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) + (-5 *1 (-1179 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1192 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-38 (-419 (-576)))) + (-4 *3 (-1068)))) + ((*1 *1 *1 *2) + (-2835 + (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1068)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1221)) + (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1195)) (-4 *1 (-1246 *3)) (-4 *3 (-1068)) + (-12 (|has| *3 (-15 -1991 ((-656 *2) *3))) + (|has| *3 (-15 -3848 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) + ((*1 *1 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-2835 + (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1068)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1221)) + (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1195)) (-4 *1 (-1267 *3)) (-4 *3 (-1068)) + (-12 (|has| *3 (-15 -1991 ((-656 *2) *3))) + (|has| *3 (-15 -3848 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1267 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1271 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-2835 + (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1068)) + (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1221)) + (-4 *3 (-38 (-419 (-576)))))) + (-12 (-5 *2 (-1195)) (-4 *1 (-1277 *3)) (-4 *3 (-1068)) + (-12 (|has| *3 (-15 -1991 ((-656 *2) *3))) + (|has| *3 (-15 -3848 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + ((*1 *1 *1) + (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) + (-5 *1 (-767))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1313 *5 *6 *7)) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-969 *4))) + (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-1065 *4 *5))) (-5 *1 (-1313 *4 *5 *6)) + (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1021)))))) + (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-193)) (-5 *3 (-576)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-340))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) + (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) + (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-738))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-996 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1079)))) (((*1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) + (-4 *3 (-1119))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *1 *1 *1) (-5 *1 (-390))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) - (|:| |genIdeal| (-516 *3 *4 *5 *6)))) - (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2))))) + (-2 (|:| -3495 (-794 *3)) (|:| |coef1| (-794 *3)) + (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) + (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 *4)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| -1706 *3) (|:| -3605 *4)))) + (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) + (-5 *2 (-1176 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-656 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1262 *4)) + (-5 *2 (-1286 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) + (-5 *7 (-701 (-576))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-765))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1221) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) (-4 *5 (-148)) + (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) + (-5 *1 (-601 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) + (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) + (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862))))) +(((*1 *2) + (-12 (-4 *1 (-360)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1119)) + (-4 *2 (-862))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-571))))) +(((*1 *2 *1) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-1191 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1237 *2)) + (-4 *2 (-1119)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-862)) + (-5 *1 (-1237 *2))))) +(((*1 *2) + (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1262 *4)) + (-5 *2 (-2 (|:| -2119 (-635 *4 *5)) (|:| -4227 (-419 *5)))) + (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) + (-14 *3 (-938)) (-4 *4 (-1068)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-464)) (-4 *3 (-1068)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1262 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-656 *5)) + (-5 *1 (-903 *4 *5)) (-4 *5 (-1236))))) +(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1191 *9))) + (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) + (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-966 *9 *10 *11)) + (-4 *10 (-805)) (-5 *2 (-656 (-1191 *12))) + (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1191 *12))))) +(((*1 *2 *3) + (-12 (-5 *3 (-419 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-568)) + (-4 *4 (-1068)) (-4 *2 (-1277 *4)) (-5 *1 (-1280 *4 *5 *6 *2)) + (-4 *6 (-668 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-975 (-1191 *4))) (-5 *1 (-368 *4)) + (-5 *3 (-1191 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-2 (|:| -1839 (-1191 *6)) (|:| -4274 (-576))))) + (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-419 (-576)))) + (-5 *2 + (-656 + (-2 (|:| |outval| *4) (|:| |outmult| (-576)) + (|:| |outvect| (-656 (-701 *4)))))) + (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *1 (-1007 *3 *4 *5 *6 *7)))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *1 (-1126 *3 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-162)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-688)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1085)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1115))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237))))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3)))) + ((*1 *1 *1) (-4 *1 (-1224)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) + (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) + (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) + (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) + (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1195))) (-5 *1 (-643 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) + (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *6 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) + (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-966 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-656 (-2 (|:| -1839 (-1191 *9)) (|:| -4274 (-576))))))) + (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-5 *1 (-1207 *4)) (-4 *4 (-862))))) + (-12 (-4 *4 (-805)) + (-4 *5 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) (-4 *6 (-568)) + (-5 *2 (-2 (|:| -4415 (-969 *6)) (|:| -3987 (-969 *6)))) + (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-966 (-419 (-969 *6)) *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1262 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) + (-5 *1 (-540 *4))))) (((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1163)))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3)))) + ((*1 *1 *1) (-4 *1 (-1224)))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) +(((*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1054)) (-5 *1 (-766))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) + (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) + (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-926)) (-4 *5 (-805)) + (-4 *6 (-862)) (-5 *1 (-923 *4 *5 *6 *7)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1191 *5))) (-5 *3 (-1191 *5)) + (-4 *5 (-1262 *4)) (-4 *4 (-926)) (-5 *1 (-924 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874))))) (((*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-943)))) @@ -1613,100 +3558,1020 @@ ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-960 (-227)) (-227))) (-5 *3 (-1113 (-227))) (-5 *1 (-944))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-591))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3)))) + ((*1 *1 *1) (-4 *1 (-1224)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1286 (-656 *3))) (-4 *4 (-317)) + (-5 *2 (-656 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-158))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-767))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-107 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3)))) + ((*1 *1 *1) (-4 *1 (-1224)))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-130))) + ((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) + ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) + ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1195))) + ((*1 *1) (-12 (-5 *1 (-1201 *2)) (-14 *2 (-938)))) + ((*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938)))) + ((*1 *1) (-5 *1 (-1241))) ((*1 *1) (-5 *1 (-1242))) + ((*1 *1) (-5 *1 (-1243))) ((*1 *1) (-5 *1 (-1244)))) +(((*1 *1) (-5 *1 (-629)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 (-960 *4))) (-4 *1 (-1153 *4)) (-4 *4 (-1068)) + (-5 *2 (-783))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1119)) (-5 *2 (-783))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -1346 (-656 *7)))) + (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) + (-4 *5 (-1262 *4)) + (-5 *2 (-2 (|:| -3116 (-419 *5)) (|:| |coeff| (-419 *5)))) + (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-384 *3)) + (-4 *3 (-1236))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3)))) + ((*1 *1 *1) (-4 *1 (-1224)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-960 (-227)) (-227) (-227))) + (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-767))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-586 *5 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3)))) + ((*1 *1 *1) (-4 *1 (-1224)))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862)) + (-4 *8 (-966 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1286 (-419 *8)) "failed")) + (|:| -3713 (-656 (-1286 (-419 *8)))))) + (-5 *1 (-681 *5 *6 *7 *8))))) (((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) + (-12 (-5 *2 (-701 (-927 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) + (-14 *4 (-938)))) + ((*1 *2) + (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) + (-14 *4 + (-3 (-1191 *3) + (-1286 (-656 (-2 (|:| -3142 *3) (|:| -3257 (-1139))))))))) + ((*1 *2) + (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-938))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-996 *4 *5 *6 *7))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-317)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2202 *1))) + (-4 *1 (-317))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021) (-1221)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) + (-5 *1 (-1143 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) +(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)))) + ((*1 *2 *2) + (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) + (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) + (-4 *3 (-1236)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4462)) (-4 *1 (-120 *3)) + (-4 *3 (-1236)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) + (-4 *2 (-1236)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1195)) (-5 *1 (-644)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1253 (-576))) (|has| *1 (-6 -4462)) (-4 *1 (-663 *2)) + (-4 *2 (-1236)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4462)) (-4 *1 (-1029 *2)) + (-4 *2 (-1236)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1212 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) + (-4 *2 (-1236)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) + (-4 *3 (-1236)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) + (-4 *2 (-1236))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-996 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) + (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1346 (-656 *9)))) + (-5 *3 (-656 *9)) (-4 *1 (-1229 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -1346 (-656 *8)))) + (-5 *3 (-656 *8)) (-4 *1 (-1229 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1191 *6)) (-4 *6 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-1191 *7)) (-5 *1 (-331 *4 *5 *6 *7)) + (-4 *7 (-966 *6 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021) (-1221)))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) + (-5 *2 (-1054)) (-5 *1 (-765))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-1196)) (|:| |c| (-1309 *3))))) - (-5 *1 (-1309 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-1286 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1151 *4 *2)) + (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1195)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1195)) (-5 *2 (-112)) (-5 *1 (-624 *4)) + (-4 *4 (-1119)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1119)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4)) + (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1119)) + (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5)))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-576)))) + (-4 *4 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3495 ($ $ $))))) + (-4 *3 (-568)) (-5 *1 (-1265 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-938)) (-5 *1 (-798))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1286 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) + (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-938)) (-4 *4 (-374)) (-5 *2 (-1286 *1)) + (-4 *1 (-339 *4)))) + ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1286 *1)) (-4 *1 (-339 *3)))) + ((*1 *2) + (-12 (-4 *3 (-174)) (-4 *4 (-1262 *3)) (-5 *2 (-1286 *1)) + (-4 *1 (-421 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1311 *3 *4))))) - (-5 *1 (-1311 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) - (-5 *1 (-1295 *4)) (-4 *4 (-374))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) + (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) + (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) + (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) ((*1 *2 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119)))) - ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-450 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1119)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-982)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1094 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1134)))) - ((*1 *1 *1) (-5 *1 (-1196)))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-703 (-1154))) (-5 *1 (-1170))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) + (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) + (-5 *2 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) + (-4 *6 (-421 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-429 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1286 (-1286 *4))) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1291)) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-862) + (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 (*2 $)) + (-15 -3712 (*2 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-862) + (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 (*2 $)) + (-15 -3712 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) + ((*1 *1 *1) (-4 *1 (-294))) + ((*1 *2 *3) + (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) + (-5 *2 (-656 (-2 (|:| -1706 (-783)) (|:| |logand| *4)))) + (-5 *1 (-330 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *2 *1) + (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) + (-5 *1 (-1181 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) + (-4 *5 (-862)) (-5 *1 (-1302 *4 *5 *2)) (-4 *2 (-1307 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) + (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) + (-5 *1 (-760))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-284))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 *3 (-656 *1))) + (-4 *1 (-1090 *4 *5 *6 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) + (-4 *3 (-13 (-1221) (-29 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) + (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-926)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) + (-5 *1 (-924 *4 *5)) (-5 *3 (-1191 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-765))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021) (-1221)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-701 (-969 *4))) (-5 *1 (-1047 *4)) + (-4 *4 (-1068))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1177)) (-5 *1 (-1288)))) + ((*1 *1 *1) (-5 *1 (-1288)))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557))))) +(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1731 *4) (|:| -2483 (-576))))) - (-4 *4 (-1119)) (-5 *2 (-1 *4)) (-5 *1 (-1036 *4))))) + (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) + (-5 *1 (-1129))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862)) + (-5 *1 (-1206 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *1)) (-5 *4 (-1286 *1)) (-4 *1 (-651 *5)) + (-4 *5 (-1068)) + (-5 *2 (-2 (|:| -2689 (-701 *5)) (|:| |vec| (-1286 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) + (-5 *2 (-701 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) + (-5 *2 (-2 (|:| -2689 (-701 *4)) (|:| |vec| (-1286 *4)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) + (-5 *2 (-701 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) + (-4 *3 (-660 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) + (-4 *3 (-660 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) + ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068))))) +(((*1 *2) + (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-354 *3 *4)) (-14 *3 (-938)) + (-14 *4 (-938)))) + ((*1 *2) + (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-1191 *3)))) + ((*1 *2) + (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) + (-14 *4 (-938))))) +(((*1 *2) + (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) + (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1068)) (-4 *4 (-1262 *3)) (-5 *1 (-165 *3 *4 *2)) + (-4 *2 (-1262 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))))) + (-5 *2 (-1054)) (-5 *1 (-315)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054)))) + (-5 *2 (-1054)) (-5 *1 (-315))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) + (-5 *2 (-1054)) (-5 *1 (-766))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) + (-5 *2 (-1054)) (-5 *1 (-759))))) (((*1 *2 *1) (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *5)) (-5 *1 (-898 *3 *4 *5)) (-4 *3 (-1119)) (-4 *5 (-678 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1205))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1837 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2861 *4))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) + (-5 *1 (-207))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1031))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-112)) (-5 *1 (-1183 *4 *5)) + (-14 *4 (-938)) (-4 *5 (-1068))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1177)) (-5 *4 (-1139)) (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) + (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) + (-5 *1 (-800))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) + (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) + (-5 *2 (-2 (|:| -3239 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) + (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)))) + (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568)) + (-4 *7 (-966 *3 *5 *6)) + (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *8) (|:| |radicand| *8))) + (-5 *1 (-970 *5 *6 *3 *7 *8)) (-5 *4 (-783)) + (-4 *8 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1179 *4)) + (-4 *4 (-1068))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-14 *5 (-656 (-1195))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) + (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1313 *5 *6 *7)) + (-14 *6 (-656 (-1195))) (-14 *7 (-656 (-1195))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-969 *4))) + (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1313 *4 *5 *6)) + (-14 *5 (-656 (-1195))) (-14 *6 (-656 (-1195)))))) +(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) +(((*1 *2 *2) + (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) + (-5 *1 (-178 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) + (-5 *2 (-2 (|:| -1706 (-576)) (|:| |var| (-624 *1)))) + (-4 *1 (-442 *3))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1119)) + (-5 *1 (-690 *2)))) ((*1 *2 *2) - (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) + (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1119)) (-5 *1 (-694 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) + ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-858))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1236)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-686 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2861 *4))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)) + (-4 *2 (-464)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1392 *4) (|:| -2369 (-576))))) - (-4 *4 (-1263 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4))))) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1262 (-576))) (-5 *2 (-656 (-576))) + (-5 *1 (-498 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)) (-4 *3 (-464))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) + (-4 *3 (-13 (-442 *4) (-1021)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-194)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-310)))) + ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1177)) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1113 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-315)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) + (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-174)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *3) + (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) + (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) + (-4 *4 (-699 *2 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-969 (-576)))) (-5 *1 (-449)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-227))) (-5 *2 (-1123)) + (-5 *1 (-771)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1195)) (-5 *4 (-701 (-576))) (-5 *2 (-1123)) + (-5 *1 (-771))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-340))))) +(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) + (-4 *4 (-1262 *2))))) +(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1289))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) + (-5 *2 (-419 (-576))) (-5 *1 (-1039 *4)) (-4 *4 (-1262 (-576)))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-240 *3)) + (-4 *3 (-1119)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-240 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) + (-5 *1 (-749 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) + (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-759))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1191 (-1191 *5)))) + (-5 *1 (-1234 *5)) (-5 *3 (-1191 (-1191 *5)))))) +(((*1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1219))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1068)) (-4 *3 (-374)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) + (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1113 (-855 (-390)))) (-5 *2 (-1113 (-855 (-227)))) + (-5 *1 (-315))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *1) (-5 *1 (-390)))) -(((*1 *1 *1 *1) (-4 *1 (-986)))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *1) (-5 *1 (-131)))) + (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) + (-4 *3 (-568)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) + (-4 *3 (-1119)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) + (-4 *3 (-1119)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) + (-4 *3 (-1057 *2))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1176 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *1 *2) (-12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3))))) +(((*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1198))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-921 *4)) + (-4 *4 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1256 *3 *2)) + (-4 *2 (-1262 *3))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1054)) (-5 *1 (-761)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-400)) (-5 *2 (-1054)) (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-969 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *5)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *5)))))))))) + (-5 *4 (-1177)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-966 *5 *7 *6)) + (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-576)) + (-5 *1 (-941 *5 *6 *7 *8))))) +(((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 *2) (-4 *5 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-938)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-938)))) + ((*1 *2) + (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) + (-5 *2 (-938)))) + ((*1 *2 *3) + (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-374)) + (-5 *2 (-783)) (-5 *1 (-679 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) (-5 *2 (-783)) + (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-783))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-5 *2 (-1176 *3)) (-5 *1 (-1179 *3)) + (-4 *3 (-1068)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1303 *4 *3)) + (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-326 (-227)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) + (-5 *1 (-207))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) + (-5 *1 (-1148 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) + (-5 *1 (-1148 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1195))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) + (-5 *1 (-1148 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) + (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1148 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-304 (-419 (-969 *5))))) (-5 *4 (-656 (-1195))) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) + (-5 *1 (-1148 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) + (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) + (-5 *1 (-1148 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) + (-4 *3 (-1084 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-1286 *4)) + (-5 *1 (-1196 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-938)) (-5 *2 (-1286 *3)) (-5 *1 (-1196 *3)) + (-4 *3 (-1068))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-624 *5))) (-5 *3 (-1196)) (-4 *5 (-442 *4)) - (-4 *4 (-1119)) (-5 *1 (-585 *4 *5))))) + (|partial| -12 (-5 *3 (-1195)) + (-4 *4 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-548))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-975 *3)) (-5 *1 (-1182 *4 *3)) + (-4 *3 (-1262 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1262 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1145 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) + (-4 *4 (-1068)) (-4 *3 (-862)) (-5 *1 (-1145 *4 *3 *5)) + (-4 *5 (-966 *4 (-543 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1230 *4))) (-5 *3 (-1195)) (-5 *1 (-1230 *4)) + (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270))))) +(((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *2) + (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) + (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1176 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1068)) + (-5 *1 (-1179 *4))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4154 *6) (|:| |sol?| (-112))) (-576) + *6)) + (-4 *6 (-374)) (-4 *7 (-1262 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -3116 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) + (-5 *1 (-770))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) + (|:| |f4| (-656 *5)))) + (-5 *1 (-1206 *6)) (-5 *4 (-656 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1236)) + (-4 *3 (-1119)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-1119)) + (-5 *2 (-576)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) + (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-541)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)) (-5 *3 (-142)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-152 *3)))) + (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-249 *2)) (-4 *2 (-1236))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) + (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 *5))) + (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1286 *5)) + (-5 *1 (-650 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 *5))) + (-2746 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1286 (-419 *5))) + (-5 *1 (-650 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-152 *3)))) ((*1 *1 *2) (-12 - (-5 *2 (-656 (-2 (|:| -3175 (-783)) (|:| -2553 *4) (|:| |num| *4)))) - (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) + (-5 *2 (-656 (-2 (|:| -4274 (-783)) (|:| -2387 *4) (|:| |num| *4)))) + (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-112)) (-5 *1 (-449)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-5 *3 (-656 (-1196))) (-5 *4 (-112)) (-5 *1 (-449)))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-5 *3 (-656 (-1195))) (-5 *4 (-112)) (-5 *1 (-449)))) ((*1 *2 *1) - (-12 (-5 *2 (-1176 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1237)))) + (-12 (-5 *2 (-1176 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1236)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-174)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-5 *1 (-676 *3 *4)) @@ -1723,24 +4588,24 @@ ((*1 *1 *2 *3) (-12 (-5 *1 (-725 *2 *3 *4)) (-4 *2 (-862)) (-4 *3 (-1119)) (-14 *4 - (-1 (-112) (-2 (|:| -2550 *2) (|:| -3175 *3)) - (-2 (|:| -2550 *2) (|:| -3175 *3)))))) + (-1 (-112) (-2 (|:| -3257 *2) (|:| -4274 *3)) + (-2 (|:| -3257 *2) (|:| -4274 *3)))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-850)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) + (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 *4)))) + (-12 (-5 *2 (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 *4)))) (-4 *4 (-1119)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-656 *5)) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-656 (-1159 *3 *5))) (-5 *1 (-1159 *3 *5)) (-4 *3 (-13 (-1119) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -4385 *5)))) + (-12 (-5 *3 (-656 (-2 (|:| |val| *4) (|:| -3887 *5)))) (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-656 (-1159 *4 *5))) (-5 *1 (-1159 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4385 *4))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3887 *4))) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *4)))) ((*1 *1 *2 *3) @@ -1762,102 +4627,102 @@ (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1185 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) + (-12 (-5 *1 (-1184 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1222) (-976)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-693)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1137))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1119) (-1057 *5))) + (-4 *5 (-899 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-948 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) - (-5 *4 (-656 (-938))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) - (-5 *4 (-656 (-938))) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) - ((*1 *1 *1) (-5 *1 (-480)))) -(((*1 *1) (-5 *1 (-301)))) + (-12 (-4 *5 (-1119)) (-4 *2 (-915 *5)) (-5 *1 (-704 *5 *2 *3 *4)) + (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4461))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |k| (-1195)) (|:| |c| (-1308 *3))))) + (-5 *1 (-1308 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |k| *3) (|:| |c| (-1310 *3 *4))))) + (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1139)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) + (-4 *2 (-1262 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1262 *4)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-1274 *3)) (-4 *3 (-1236)) (-5 *2 (-783))))) (((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-14 *6 (-1287 (-701 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))))) + (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-14 *6 (-1286 (-701 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))))) ((*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1237)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1236)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103 'JINT 'X 'ELAM) (-4103) (-711)))) - (-5 *1 (-61 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573 'JINT 'X 'ELAM) (-3573) (-711)))) + (-5 *1 (-61 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103) (-4103 'XC) (-711)))) - (-5 *1 (-63 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573) (-3573 'XC) (-711)))) + (-5 *1 (-63 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4103 'X) (-4103) (-711))) (-5 *1 (-64 *3)) - (-14 *3 (-1196)))) + (-12 (-5 *2 (-350 (-3573 'X) (-3573) (-711))) (-5 *1 (-64 *3)) + (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4103) (-4103 'XC) (-711))) (-5 *1 (-66 *3)) - (-14 *3 (-1196)))) + (-12 (-5 *2 (-350 (-3573) (-3573 'XC) (-711))) (-5 *1 (-66 *3)) + (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103 'X) (-4103 '-1435) (-711)))) - (-5 *1 (-71 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573 'X) (-3573 '-2565) (-711)))) + (-5 *1 (-71 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103) (-4103 'X) (-711)))) - (-5 *1 (-74 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573) (-3573 'X) (-711)))) + (-5 *1 (-74 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103 'X 'EPS) (-4103 '-1435) (-711)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) - (-14 *5 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573 'X 'EPS) (-3573 '-2565) (-711)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) + (-14 *5 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103 'EPS) (-4103 'YA 'YB) (-711)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1196)) (-14 *4 (-1196)) - (-14 *5 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573 'EPS) (-3573 'YA 'YB) (-711)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1195)) (-14 *4 (-1195)) + (-14 *5 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4103) (-4103 'X) (-711))) (-5 *1 (-77 *3)) - (-14 *3 (-1196)))) + (-12 (-5 *2 (-350 (-3573) (-3573 'X) (-711))) (-5 *1 (-77 *3)) + (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4103) (-4103 'X) (-711))) (-5 *1 (-78 *3)) - (-14 *3 (-1196)))) + (-12 (-5 *2 (-350 (-3573) (-3573 'X) (-711))) (-5 *1 (-78 *3)) + (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103) (-4103 'XC) (-711)))) - (-5 *1 (-79 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573) (-3573 'XC) (-711)))) + (-5 *1 (-79 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103) (-4103 'X) (-711)))) - (-5 *1 (-80 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573) (-3573 'X) (-711)))) + (-5 *1 (-80 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103 'X '-1435) (-4103) (-711)))) - (-5 *1 (-82 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573 'X '-2565) (-3573) (-711)))) + (-5 *1 (-82 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-4103 'X '-1435) (-4103) (-711)))) - (-5 *1 (-83 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-701 (-350 (-3573 'X '-2565) (-3573) (-711)))) + (-5 *1 (-83 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-4103 'X) (-4103) (-711)))) (-5 *1 (-84 *3)) - (-14 *3 (-1196)))) + (-12 (-5 *2 (-701 (-350 (-3573 'X) (-3573) (-711)))) (-5 *1 (-84 *3)) + (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103 'X) (-4103) (-711)))) - (-5 *1 (-85 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573 'X) (-3573) (-711)))) + (-5 *1 (-85 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-350 (-4103 'X) (-4103 '-1435) (-711)))) - (-5 *1 (-86 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-1286 (-350 (-3573 'X) (-3573 '-2565) (-711)))) + (-5 *1 (-86 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-701 (-350 (-4103 'XL 'XR 'ELAM) (-4103) (-711)))) - (-5 *1 (-87 *3)) (-14 *3 (-1196)))) + (-12 (-5 *2 (-701 (-350 (-3573 'XL 'XR 'ELAM) (-3573) (-711)))) + (-5 *1 (-87 *3)) (-14 *3 (-1195)))) ((*1 *1 *2) - (-12 (-5 *2 (-350 (-4103 'X) (-4103 '-1435) (-711))) (-5 *1 (-89 *3)) - (-14 *3 (-1196)))) + (-12 (-5 *2 (-350 (-3573 'X) (-3573 '-2565) (-711))) (-5 *1 (-89 *3)) + (-14 *3 (-1195)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) (-14 *4 (-783)) (-4 *5 (-174)))) @@ -1871,8 +4736,8 @@ (-12 (-5 *2 (-245 *4 *5)) (-14 *4 (-783)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)))) ((*1 *2 *3) - (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) - (-5 *2 (-1287 (-701 (-419 (-969 *4))))) (-5 *1 (-191 *4)))) + (-12 (-5 *3 (-1286 (-701 *4))) (-4 *4 (-174)) + (-5 *2 (-1286 (-701 (-419 (-969 *4))))) (-5 *1 (-191 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1111 (-326 *4))) (-4 *4 (-13 (-862) (-568) (-626 (-390)))) (-5 *2 (-1111 (-390))) @@ -1880,18 +4745,18 @@ ((*1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284)))) ((*1 *2 *1) - (-12 (-4 *2 (-1263 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) + (-12 (-4 *2 (-1262 *3)) (-5 *1 (-299 *3 *2 *4 *5 *6 *7)) (-4 *3 (-174)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1272 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) - (-14 *5 (-1196)) (-14 *6 *4) + (-12 (-5 *2 (-1271 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) + (-14 *5 (-1195)) (-14 *6 *4) (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) (-5 *1 (-323 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) + (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) ((*1 *2 *3) (-12 (-4 *4 (-360)) (-4 *2 (-339 *4)) (-5 *1 (-358 *3 *4 *2)) (-4 *3 (-339 *4)))) @@ -1900,93 +4765,93 @@ (-4 *3 (-339 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-1311 *3 *4)))) + (-5 *2 (-1310 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-1302 *3 *4)))) + (-5 *2 (-1301 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-394)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-394)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-394)))) ((*1 *1 *2) (-12 (-5 *2 (-701 (-711))) (-4 *1 (-394)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-395)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-395)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-395)))) ((*1 *2 *3) (-12 (-5 *2 (-406)) (-5 *1 (-405 *3)) (-4 *3 (-1119)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-171 (-390))))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-576)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-390)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-706)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-711)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-304 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-706))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-711))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) - (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) + (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1196)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-14 *3 (-1195)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) - (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1196)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-14 *5 (-656 (-1196))) (-14 *6 (-1200)))) + (-12 (-5 *2 (-340)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1195)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-14 *5 (-656 (-1195))) (-14 *6 (-1199)))) ((*1 *1 *2) (-12 (-5 *2 (-341 *4)) (-4 *4 (-13 (-862) (-21))) (-5 *1 (-439 *3 *4)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))))) @@ -2006,52 +4871,52 @@ (-12 (-5 *2 (-1144 *3 (-624 *1))) (-4 *3 (-1068)) (-4 *3 (-1119)) (-4 *1 (-442 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-446)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-446)))) + ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-446)))) ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-449)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-452)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-452)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-711))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1286 (-711))) (-4 *1 (-452)))) ((*1 *1 *2) (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1200)) (|:| -3424 (-656 (-340))))) + (-5 *2 (-2 (|:| |localSymbols| (-1199)) (|:| -2401 (-656 (-340))))) (-4 *1 (-453)))) ((*1 *1 *2) (-12 (-5 *2 (-340)) (-4 *1 (-453)))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-4 *1 (-453)))) ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-419 (-969 *3)))) (-4 *3 (-174)) - (-14 *6 (-1287 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-14 *4 (-938)) (-14 *5 (-656 (-1196))))) + (-12 (-5 *2 (-1286 (-419 (-969 *3)))) (-4 *3 (-174)) + (-14 *6 (-1286 (-701 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-14 *4 (-938)) (-14 *5 (-656 (-1195))))) ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-480)))) ((*1 *1 *2) - (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1196)) + (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-1068)) (-14 *4 (-1195)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-514)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-514)))) ((*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618)))) ((*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-619 *3 *2)) (-4 *2 (-756 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1) (-12 (-4 *1 (-625 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1236)))) ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1068)))) ((*1 *2 *1) - (-12 (-5 *2 (-1307 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-12 (-5 *2 (-1306 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) ((*1 *2 *1) - (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) ((*1 *1 *2) (-12 (-4 *3 (-174)) (-5 *1 (-647 *3 *2)) (-4 *2 (-756 *3)))) @@ -2078,7 +4943,7 @@ ((*1 *2 *1) (-12 (-5 *2 (-390)) (-5 *1 (-711)))) ((*1 *2 *3) (-12 (-5 *3 (-326 (-576))) (-5 *2 (-326 (-713))) (-5 *1 (-713)))) - ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722)))) + ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722)))) ((*1 *2 *1) (-12 (-4 *2 (-174)) (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) @@ -2088,7 +4953,7 @@ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -1856 *3) (|:| -1585 *4)))) + (-12 (-5 *2 (-656 (-2 (|:| -1706 *3) (|:| -3605 *4)))) (-4 *3 (-1068)) (-4 *4 (-738)) (-5 *1 (-747 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-775)))) ((*1 *1 *2) @@ -2096,60 +4961,60 @@ (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-227))) - (|:| -2920 (-656 (-1113 (-855 (-227))))) + (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) (-5 *1 (-781)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-227))) - (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-781)))) - ((*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1237)))) + ((*1 *2 *3) (-12 (-5 *2 (-786)) (-5 *1 (-785 *3)) (-4 *3 (-1236)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *1 (-820)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-836)))) + ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-836)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) + (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (|:| |lsa| (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3503 (-656 (-227))))))) + (|:| -1538 (-656 (-227))))))) (-5 *1 (-853)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) (-5 *1 (-853)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) + (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *1 (-853)))) @@ -2171,7 +5036,7 @@ (-2 (|:| |start| (-227)) (|:| |finish| (-227)) (|:| |grid| (-783)) (|:| |boundaryType| (-576)) (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) (|:| |tol| (-227)))) (-5 *1 (-913)))) ((*1 *1 *2) @@ -2187,8 +5052,8 @@ ((*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-936 *4)) (-4 *4 (-568)))) - ((*1 *2 *3) (-12 (-5 *2 (-1292)) (-5 *1 (-1052 *3)) (-4 *3 (-1237)))) - ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1052 *2)) (-4 *2 (-1237)))) + ((*1 *2 *3) (-12 (-5 *2 (-1291)) (-5 *1 (-1052 *3)) (-4 *3 (-1236)))) + ((*1 *2 *3) (-12 (-5 *3 (-322)) (-5 *1 (-1052 *2)) (-4 *2 (-1236)))) ((*1 *1 *2) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5)) @@ -2204,114 +5069,1612 @@ ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-874)))) ((*1 *1 *2) (-12 (-5 *2 (-145)) (-4 *1 (-1163)))) ((*1 *2 *3) - (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1068)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1186 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1193 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) - (-14 *5 *3) (-5 *1 (-1194 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1195)))) - ((*1 *2 *1) (-12 (-5 *2 (-1209 (-1196) (-449))) (-5 *1 (-1200)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1208 *3)) (-4 *3 (-1119)))) - ((*1 *2 *3) (-12 (-5 *2 (-1217)) (-5 *1 (-1216 *3)) (-4 *3 (-1119)))) + (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1195)) + (-14 *5 *3) (-5 *1 (-1193 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1194)))) + ((*1 *2 *1) (-12 (-5 *2 (-1208 (-1195) (-449))) (-5 *1 (-1199)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1207 *3)) (-4 *3 (-1119)))) + ((*1 *2 *3) (-12 (-5 *2 (-1216)) (-5 *1 (-1215 *3)) (-4 *3 (-1119)))) ((*1 *1 *2) - (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-5 *1 (-1231 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-1068)))) + (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-5 *1 (-1230 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1230 *3)) (-4 *3 (-1068)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1113 *3)) (-4 *3 (-1237)) (-5 *1 (-1254 *3)))) + (-12 (-5 *2 (-1113 *3)) (-4 *3 (-1236)) (-5 *1 (-1253 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) + (-12 (-5 *2 (-1282 *4)) (-14 *4 (-1195)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1068)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1260 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1196)) - (-14 *5 *3) (-5 *1 (-1279 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1288)))) - ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1288)) (-5 *1 (-1291)))) + (-12 (-5 *2 (-1259 *4 *3)) (-4 *3 (-1068)) (-14 *4 (-1195)) + (-14 *5 *3) (-5 *1 (-1278 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-874)) (-5 *1 (-1287)))) + ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1287)) (-5 *1 (-1290)))) ((*1 *1 *2) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) + (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) ((*1 *2 *1) - (-12 (-5 *2 (-1311 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) + (-12 (-5 *2 (-1310 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) ((*1 *2 *1) - (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) + (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)))) ((*1 *1 *2) (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *1 (-1307 *3 *4))))) + (-5 *1 (-1306 *3 *4))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1068)) + (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) + (-15 -1549 ((-1144 *3 (-624 $)) $)) + (-15 -3563 ($ (-1144 *3 (-624 $)))))))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1199))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-403))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1262 (-419 (-576)))) + (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) + (-5 *1 (-930 *3 *4)) (-4 *4 (-1262 (-419 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) + (-4 *3 (-1262 (-419 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-855 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1262 *4)) (-4 *4 (-1240)) + (-4 *6 (-1262 (-419 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-353 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-568)) (-4 *8 (-966 *7 *5 *6)) - (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *9) (|:| |radicand| *9))) - (-5 *1 (-970 *5 *6 *7 *8 *9)) (-5 *4 (-783)) - (-4 *9 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *8)) (-15 -3894 (*8 $)) (-15 -3905 (*8 $)))))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-250 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) + (-5 *1 (-1179 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1068)) + (-14 *4 (-1195)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1129))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1068)) + (-4 *2 (-1277 *3))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3116 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-374)) (-4 *7 (-1262 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) + (-2 (|:| -3116 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-673)))) +(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) + ((*1 *1 *1) (-5 *1 (-1139)))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1200))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) + (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-966 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1068)) (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) + (-4 *1 (-1262 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1176 *4))) (-4 *4 (-374)) + (-4 *4 (-1068)) (-5 *2 (-1176 *4)) (-5 *1 (-1179 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-1262 *4)) (-4 *4 (-1068)) + (-5 *2 (-1286 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-246))))) +(((*1 *1 *1 *1) (-4 *1 (-673)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) + ((*1 *1 *1 *1) (-5 *1 (-1139)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1191 *2)) (-5 *4 (-1195)) (-4 *2 (-442 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-938)) (-4 *1 (-1031)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-938)) (-5 *4 (-874)) + (-4 *1 (-1031)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-938)) (-4 *4 (-13 (-860) (-374))) + (-4 *1 (-1087 *4 *2)) (-4 *2 (-1262 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *3 (-656 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) + (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 (-1286 *6)) + (-5 *1 (-643 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-975 (-1139))) + (-5 *1 (-357 *4))))) +(((*1 *2) + (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) + (-5 *2 (-656 (-656 *4))) (-5 *1 (-352 *3 *4 *5 *6)) + (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-4 *3 (-379)) (-5 *2 (-656 (-656 *3)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1291)) (-5 *1 (-1287))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) + (-4 *3 (-167 *6)) (-4 (-969 *6) (-899 *5)) + (-4 *6 (-13 (-899 *5) (-174))) (-5 *1 (-180 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-899 *4)) + (-4 *4 (-1119)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) + (-4 *6 (-13 (-1119) (-1057 *3))) (-4 *3 (-899 *5)) + (-5 *1 (-948 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) + (-4 *3 (-13 (-442 *6) (-626 *4) (-899 *5) (-1057 (-624 $)))) + (-5 *4 (-905 *5)) (-4 *6 (-13 (-568) (-899 *5))) + (-5 *1 (-949 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-902 (-576) *3)) (-5 *4 (-905 (-576))) (-4 *3 (-557)) + (-5 *1 (-950 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-624 *6)) (-4 *5 (-1119)) + (-4 *6 (-13 (-1119) (-1057 (-624 $)) (-626 *4) (-899 *5))) + (-5 *4 (-905 *5)) (-5 *1 (-951 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-898 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) + (-4 *6 (-899 *5)) (-4 *3 (-678 *6)) (-5 *1 (-952 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-905 *6) (-902 *6 *3))) + (-4 *8 (-862)) (-5 *2 (-902 *6 *3)) (-5 *4 (-905 *6)) + (-4 *6 (-1119)) (-4 *3 (-13 (-966 *9 *7 *8) (-626 *4))) + (-4 *7 (-805)) (-4 *9 (-13 (-1068) (-899 *6))) + (-5 *1 (-953 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) + (-4 *3 (-13 (-966 *8 *6 *7) (-626 *4))) (-5 *4 (-905 *5)) + (-4 *7 (-899 *5)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *8 (-13 (-1068) (-899 *5))) (-5 *1 (-953 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1119)) (-4 *3 (-1011 *6)) + (-4 *6 (-13 (-568) (-899 *5) (-626 *4))) (-5 *4 (-905 *5)) + (-5 *1 (-956 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-902 *5 (-1195))) (-5 *3 (-1195)) (-5 *4 (-905 *5)) + (-4 *5 (-1119)) (-5 *1 (-957 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-656 (-905 *7))) (-5 *5 (-1 *9 (-656 *9))) + (-5 *6 (-1 (-902 *7 *9) *9 (-905 *7) (-902 *7 *9))) (-4 *7 (-1119)) + (-4 *9 (-13 (-1068) (-626 (-905 *7)) (-1057 *8))) + (-5 *2 (-902 *7 *9)) (-5 *3 (-656 *9)) (-4 *8 (-1068)) + (-5 *1 (-958 *7 *8 *9))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-687 *2)) (-4 *2 (-1068)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) + ((*1 *1 *1 *1) (-5 *1 (-1139)))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3) + (-12 (-5 *2 (-656 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1177)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) + (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1229 *2 *3 *4 *5)) (-4 *2 (-568)) + (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1291)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-969 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *5)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *5)))))))))) + (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1195))) (-4 *8 (-966 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-969 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *5)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *5)))))))))) + (-5 *1 (-941 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) + (|:| |wcond| (-656 (-969 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *4)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *4)))))))))) + (-5 *1 (-941 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *5 (-938)) (-4 *9 (-966 *6 *8 *7)) + (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1195)))) + (-4 *8 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) + (|:| |wcond| (-656 (-969 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *6)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *6)))))))))) + (-5 *1 (-941 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-938)) + (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) + (|:| |wcond| (-656 (-969 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *6)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *6)))))))))) + (-5 *1 (-941 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-938)) (-4 *8 (-966 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) + (|:| |wcond| (-656 (-969 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *5)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *5)))))))))) + (-5 *1 (-941 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1177)) + (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) + (-5 *1 (-941 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1195))) (-5 *5 (-1177)) + (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) + (-5 *1 (-941 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-5 *4 (-1177)) (-4 *8 (-966 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) + (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-938)) + (-5 *6 (-1177)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) + (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) + (-5 *1 (-941 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1195))) (-5 *5 (-938)) + (-5 *6 (-1177)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) + (-4 *8 (-13 (-862) (-626 (-1195)))) (-4 *9 (-805)) (-5 *2 (-576)) + (-5 *1 (-941 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *9)) (-5 *4 (-938)) (-5 *5 (-1177)) + (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-13 (-862) (-626 (-1195)))) (-4 *8 (-805)) (-5 *2 (-576)) + (-5 *1 (-941 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1119))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1054)) (-5 *1 (-765))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (-4 *4 (-1068)) + (-5 *1 (-1047 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) (-4 *4 (-1068)) + (-5 *1 (-1047 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1) (-4 *1 (-986)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1262 *5)) + (-5 *1 (-739 *5 *2)) (-4 *5 (-374))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) (-4 *3 (-862)) + (-4 *2 (-1236)))) + ((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) + ((*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1236)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) + ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1262 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) + (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-304 (-419 (-969 (-171 (-576))))))) + (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 (-171 (-576))))) + (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-969 (-171 (-576)))))) + (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) + (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) + (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-766))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))) + ((*1 *1 *1) (-4 *1 (-414)))) +(((*1 *1 *1) (-4 *1 (-673)))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1284 *3)) (-4 *3 (-23)) (-4 *3 (-1236))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-1119)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-4 *1 (-397 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) + ((*1 *1 *1 *1) (-4 *1 (-464))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-783))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) + (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) + (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-317)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1191 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-1191 *7))) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-317)) (-5 *2 (-1191 *7)) (-5 *1 (-933 *4 *5 *6 *7)) + (-4 *7 (-966 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-938))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) + (-4 *2 (-1262 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *5 (-938)) + (-5 *2 (-1291)) (-5 *1 (-480)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1291)) (-5 *1 (-480)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-886)) (-5 *5 (-938)) + (-5 *2 (-1291)) (-5 *1 (-480))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1191 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1068)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) + ((*1 *2 *3 *2 *2 *4 *5) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1068)) + (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1119))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-1258 *4 *3)) - (-4 *3 (-1263 *4))))) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-1134))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1195)) (-5 *1 (-687 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4461)) (-4 *1 (-34)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-990)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-576)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-858))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1068)) + (-5 *1 (-1048 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-419 (-1191 (-326 *3)))) (-4 *3 (-568)) + (-5 *1 (-1149 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) + (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1221))) + (-5 *1 (-595 *4 *2)) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))))) ((*1 *2 *3) - (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) - ((*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) + (-12 (-5 *3 (-598 (-419 (-969 *4)))) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-601 *4))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) + (-4 *3 (-1119))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-173)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-783)) (-5 *3 (-960 *5)) (-4 *5 (-1068)) + (-5 *1 (-1183 *4 *5)) (-14 *4 (-938)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1183 *4 *5)) + (-14 *4 (-938)) (-4 *5 (-1068)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) + (-5 *1 (-1183 *4 *5)) (-14 *4 (-938))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) + (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) + (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *9)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) + (-4 *8 (-1068)) (-4 *2 (-966 *9 *7 *5)) + (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) + (-4 *4 (-966 *8 *6 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-109))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) + (-4 *2 (-568)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-568))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) + (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-783))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) + (-5 *1 (-988 *3 *4)))) + ((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) + (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) + ((*1 *2 *2 *2) + (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *2 (-1231 (-943))) + (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *7 (-1177)) + (-5 *2 (-1231 (-943))) (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) + (-5 *2 (-1231 (-943))) (-5 *1 (-328)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1177)) + (-5 *2 (-1231 (-943))) (-5 *1 (-328))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) + (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) + (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) + (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -2387 *5) (|:| -2366 *5)))) + (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) + (-4 *6 (-668 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) + (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -2387 *4) (|:| -2366 *4)))) + (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) + (-4 *6 (-668 (-419 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) + (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) + (-4 *5 (-1262 *4)) (-5 *2 (-656 (-2 (|:| -2387 *5) (|:| -2366 *5)))) + (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) + (-4 *3 (-668 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) + (-4 *4 (-1262 *5)) (-5 *2 (-656 (-2 (|:| -2387 *4) (|:| -2366 *4)))) + (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) + (-4 *3 (-668 (-419 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) + ((*1 *1 *1 *1) (-4 *1 (-464)))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) + (-5 *1 (-1179 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1068)) + (-14 *4 (-1195)) (-14 *5 *3)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1221) (-1021)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) + (-5 *1 (-1294 *4)) (-4 *4 (-374))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) + (-5 *1 (-831 *3)) (-4 *3 (-862)))) + ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *3) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1068)) + (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))) + (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) + (-5 *1 (-921 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-975 (-783))) (-5 *1 (-343))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-938))) (-5 *4 (-112)) + (-5 *1 (-1129))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-656 + (-2 + (|:| -4282 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) + (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) + (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4353 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390))))))) + (-5 *1 (-815))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559)))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) + (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) + (-4 *2 (-699 *3 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-390)) (-5 *1 (-1082))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-1191 *4))) (-5 *3 (-1191 *4)) + (-4 *4 (-926)) (-5 *1 (-675 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-656 (-969 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-656 (-969 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-969 *3))))) + ((*1 *2) + (-12 (-5 *2 (-656 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-1192 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) + (-12 (-5 *3 (-1286 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-969 *4))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) + (-14 *5 (-938)) (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1057 *4)) (-4 *3 (-317)) + (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) (-4 *6 (-421 *4 *5)) + (-14 *7 (-1286 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1286 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1011 *3)) + (-4 *5 (-1262 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) + ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *1 *1) (-5 *1 (-548)))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1029 *2)) (-4 *2 (-1236))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) + (-5 *2 + (-656 + (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1184 (-1195) (-969 *4)))) + (|:| |geneigvec| (-656 (-701 (-419 (-969 *4)))))))) + (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4))))))) +(((*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-996 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1068)) + (-5 *3 (-576))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *2))))) +(((*1 *2) + (-12 (-5 *2 (-2 (|:| -3884 (-656 *3)) (|:| -3140 (-656 *3)))) + (-5 *1 (-1237 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) + (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) + ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) + (-5 *4 (-656 (-1195))) (-5 *2 (-656 (-656 (-171 *5)))) + (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860)))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1158)))) +(((*1 *2 *1) + (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) + (-4 *3 (-384 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) + (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1192 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) + (-12 (-5 *3 (-701 *4)) (-4 *4 (-1011 *2)) (-4 *2 (-568)) + (-5 *1 (-705 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1263 *4)) (-5 *2 (-656 *1)) - (-4 *1 (-1087 *4 *3))))) + (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-1255 *2 *4 *3)) + (-4 *3 (-1262 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-246)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-576)) (-5 *1 (-246))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-576)) + (-5 *6 + (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390)))) + (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) + (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) + (-5 *1 (-800)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-576)) + (-5 *6 + (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -3540 (-390)))) + (-5 *7 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) + (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) + (-5 *1 (-800))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)))) - ((*1 *2 *3 *1) + (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1088 *7 *8 *9 *3 *4)) (-4 *4 (-1090 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-4 *3 (-1084 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-783)) (-5 *6 (-112)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-862)) (-4 *3 (-1084 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1164 *7 *8 *9 *3 *4)) (-4 *4 (-1128 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-4 *3 (-1084 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) + (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1277 *5)) + (-5 *1 (-1279 *5 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) + (-4 *3 (-862)) (-5 *2 (-783))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) ((*1 *1) (-4 *1 (-557))) + ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) + (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1262 *4)) + (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1221) (-294)))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-767))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-1262 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1068) (-862))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195)))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) + (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) + (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) + (-5 *2 + (-2 (|:| -4040 (-783)) (|:| |curves| (-783)) + (|:| |polygons| (-783)) (|:| |constructs| (-783))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) + (-5 *1 (-178 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1090 *4 *5 *6 *7)))) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1195))) (-5 *1 (-212)) + (-5 *3 (-1195)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1195))) + (-5 *1 (-276)))) + ((*1 *2 *1) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) + (-5 *2 (-656 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) + (-4 *2 (-13 (-862) (-21)))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) +(((*1 *1 *2) + (-12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-13 (-374) (-148))) + (-5 *1 (-411 *3 *4))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) + (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3896 (-656 *9)) (|:| -3887 *4) (|:| |ineq| (-656 *9)))) + (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) + (-4 *4 (-1090 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) + (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) + (-5 *2 + (-2 (|:| -3896 (-656 *9)) (|:| -3887 *4) (|:| |ineq| (-656 *9)))) + (-5 *1 (-1126 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) + (-4 *4 (-1090 *6 *7 *8 *9))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) + (-5 *2 (-656 (-960 *4))) (-5 *1 (-1232)) (-5 *3 (-960 *4))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1191 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-786)) (-5 *1 (-52))))) +(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-938)) (-4 *5 (-317)) (-4 *3 (-1262 *5)) + (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) + (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) + (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1068)) + (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-864 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) + (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-865 *5 *3)) + (-4 *3 (-864 *5))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1159 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) + (-5 *1 (-1160 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-656 (-1159 *3 *4))) (-4 *3 (-13 (-1119) (-34))) + (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200))))) +(((*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1068)) + (-4 *7 (-1068)) (-4 *2 (-1262 *5)) (-5 *1 (-513 *5 *2 *6 *7)) + (-4 *6 (-1262 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) + (-4 *4 (-1262 *5)) (-5 *2 (-1191 *7)) (-5 *1 (-513 *5 *4 *6 *7)) + (-4 *6 (-1262 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1054)) + (-5 *1 (-758))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1221))) + (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1221))) + (-5 *1 (-612 *4 *5 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-947))))) +(((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) + (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1262 *6)) + (-14 *7 (-938))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-598 *3)) (-4 *3 (-374))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) + (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-1311))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) + (-5 *2 (-112)) (-5 *1 (-1159 *5 *6))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1195)) (-5 *1 (-548)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) - ((*1 *2 *3 *1) + (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1195)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-656 (-1195))) (-5 *2 (-1195)) (-5 *1 (-716 *3)) + (-4 *3 (-626 (-548)))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1068)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-568)))) + ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *3 (-1084 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *1)))) (-4 *1 (-1090 *4 *5 *6 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *5 *6)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1119))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1019 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-656 *7) *7 (-1191 *7))) (-5 *5 (-1 (-430 *7) *7)) + (-4 *7 (-1262 *6)) (-4 *6 (-13 (-374) (-148) (-1057 (-419 (-576))))) + (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -3896 *3)))) + (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) + (-4 *8 (-668 (-419 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 + (-656 (-2 (|:| |frac| (-419 *6)) (|:| -3896 (-666 *6 (-419 *6)))))) + (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-194))))) +(((*1 *2 *3) + (-12 (-4 *4 (-862)) + (-5 *2 + (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) + (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) + (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 (-656 *4))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-853)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-852)))) + ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) + (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1054)) + (-5 *1 (-852)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) + (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1054)) (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) + (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) + (-5 *2 (-1054)) (-5 *1 (-852))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) + (-5 *2 (-1054)) (-5 *1 (-760))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-837))))) (((*1 *2 *2) - (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1200))))) + (|partial| -12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) + (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1195))))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) + (-14 *4 (-656 (-1195))) (-5 *1 (-640 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) + (-5 *1 (-315))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1195)) (-5 *6 (-656 (-624 *3))) + (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *7))) + (-4 *7 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) + (-5 *1 (-569 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) +(((*1 *2 *1) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-938)))) + ((*1 *2 *3) + (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) + (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) + (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-938))))) + ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1262 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) + (-4 *3 (-862)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-862)) + (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) + (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) + (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) + (-5 *2 (-783)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) + (-5 *1 (-929 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) + (-4 *7 (-1262 *6)) (-4 *4 (-1262 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) + (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) + (-5 *1 (-1037 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-4 *3 (-568)) + (-5 *2 (-783)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))) +(((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1191 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-322)) (-5 *1 (-306)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-322)) (-5 *1 (-306)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1177))) (-5 *3 (-1177)) (-5 *2 (-322)) + (-5 *1 (-306))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771))))) +(((*1 *1) (-5 *1 (-145)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) + (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) + (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1262 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-4 *1 (-920 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) + (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) + (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1236)) + (-5 *2 (-656 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837))))) +(((*1 *2 *1) + (-12 (-5 *2 (-874)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) + (-4 *3 (-1236))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) + (-5 *2 (-2 (|:| -1706 *1) (|:| |gap| (-783)) (|:| -2091 *1))) + (-4 *1 (-1084 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -1706 *1) (|:| |gap| (-783)) (|:| -2091 *1))) + (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -4317 (-576)) (|:| -1707 (-656 *3)))) + (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990))))) +(((*1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-1119)))) + ((*1 *1 *1) (-12 (-4 *1 (-707 *2)) (-4 *2 (-1119))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1191 *2)) (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) + (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) + (-4 *4 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) + (-4 *6 (-568))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-4 *4 (-1236)) (-5 *2 (-112)) + (-5 *1 (-1176 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) + (-4 *2 (-1262 *4))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-768))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-419 *5)) (-4 *4 (-1240)) (-4 *5 (-1262 *4)) + (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1262 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-192)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1195))) + (-5 *4 (-1286 (-326 (-227)))) (-5 *1 (-207)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1119)) + (-4 *3 (-1236)) (-5 *1 (-304 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-319 *2)) (-4 *2 (-1119)) (-4 *2 (-1236)) + (-5 *1 (-304 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) + (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 (-656 *1)))) + (-4 *1 (-312)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1119)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1197 (-419 (-576)))) + (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) + (-4 *4 (-862)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1195)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) + (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) + (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) + (-4 *5 (-1068)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-656 (-783))) + (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) + (-4 *5 (-1068)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1195)) + (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-626 (-548))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1195)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) + (-4 *4 (-626 (-548))))) + ((*1 *1 *1) + (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-626 (-548))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-1195))) (-4 *1 (-442 *3)) (-4 *3 (-1119)) + (-4 *3 (-626 (-548))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1195)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) + (-4 *3 (-626 (-548))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1236)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) + (-4 *4 (-1119)) (-4 *5 (-1236)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1195)) (-4 *4 (-568)) + (-5 *1 (-1062 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-656 (-1195))) (-5 *4 (-656 (-419 (-969 *5)))) + (-5 *2 (-419 (-969 *5))) (-4 *5 (-568)) (-5 *1 (-1062 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-5 *2 (-419 (-969 *4))) + (-4 *4 (-568)) (-5 *1 (-1062 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) (-5 *2 (-419 (-969 *4))) + (-4 *4 (-568)) (-5 *1 (-1062 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1176 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1177)) (-5 *1 (-798))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) + (-5 *2 (-656 (-227))) (-5 *1 (-315))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-996 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-536))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1195))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) + (-14 *4 (-783)) (-4 *5 (-174))))) +(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) + (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1119))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-568))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-701 (-419 (-969 (-576))))) + (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)) + (-5 *3 (-326 (-576)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-246)) (-5 *3 (-1177)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-246)))) + ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-764))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1236)) (-4 *3 (-1236))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) + (-14 *3 (-938)) (-4 *4 (-1068))))) +(((*1 *2 *1) + (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) +(((*1 *1 *1) (-4 *1 (-881 *2)))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-760))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) - (-5 *1 (-767))))) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1191 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1191 *3))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-804)) (-4 *3 (-174))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-656 + (-2 (|:| -3606 (-783)) + (|:| |eqns| + (-656 + (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (|:| |fgb| (-656 *7))))) + (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) + (-5 *1 (-941 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-766))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-996 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1079)))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-1177)) (-5 *5 (-701 (-227))) + (-5 *2 (-1054)) (-5 *1 (-759))))) +(((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) + ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) + ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-983 *3))) (-5 *1 (-983 *3)) (-4 *3 (-1119))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-143 *3 *4 *2)) (-4 *2 (-384 *4)))) @@ -2322,203 +6685,711 @@ (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568)) (-5 *2 (-701 *4)) (-5 *1 (-705 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-1256 *3 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) + (-12 (-4 *3 (-568)) (-4 *4 (-1011 *3)) (-5 *1 (-1255 *3 *4 *2)) + (-4 *2 (-1262 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1113 (-855 (-227)))) (-5 *1 (-315))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1199)) (-5 *1 (-1198))))) +(((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) + (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021))))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) + ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *5 (-1119)) (-5 *2 (-112)) + (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) + (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1221)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-419 (-969 *6)) (-1184 (-1195) (-969 *6)))) + (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *6))))) + (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-969 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-419 (-969 *5)) (-1184 (-1195) (-969 *5)))) + (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) + (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) + (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5))))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877)))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1119))))) +(((*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-379)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360)))) + ((*1 *2 *1) + (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1119)) + (-14 *4 + (-1 (-112) (-2 (|:| -3257 *2) (|:| -4274 *3)) + (-2 (|:| -3257 *2) (|:| -4274 *3))))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) + (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) + (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119))))) +(((*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317))))) +(((*1 *2 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-874)))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) - (|:| |polypart| *6))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1192 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) - (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| -4015 (-419 *5)) (|:| |coeff| (-419 *5)))) - (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) - (-5 *1 (-1180 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) - (-14 *4 (-1196)) (-14 *5 *3)))) + (|partial| -12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1068)) + (-4 *2 (-1246 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1019 *3))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)) + (-4 *3 (-568)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))) + (|partial| -12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1054)) (-5 *1 (-765))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) (((*1 *2 *3) - (-12 (-4 *1 (-937)) (-5 *2 (-2 (|:| -1856 (-656 *1)) (|:| -2582 *1))) - (-5 *3 (-656 *1))))) + (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *2 (-1291)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *1) (-5 *1 (-131)))) +(((*1 *2 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) + (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) + ((*1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)) (-4 *2 (-317)))) + ((*1 *2 *2) + (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *4 (-1068)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-988 *2 *3)) + (-4 *3 (-1262 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) + (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) + (-5 *1 (-766))))) (((*1 *2 *3) - (-12 (-5 *3 (-1154)) (-5 *2 (-703 (-290))) (-5 *1 (-169))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1237))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1119)) + (-4 *3 (-1119))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1192 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *4 (-624 $)) $)) - (-15 -3905 ((-1144 *4 (-624 $)) $)) - (-15 -4092 ($ (-1144 *4 (-624 $)))))))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -1832 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) + (-5 *1 (-726 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1057 (-419 (-576))))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-249 *2)) (-4 *2 (-1236))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195))))) +(((*1 *1 *2) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1222 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-656 (-1222 *2))) (-5 *1 (-1222 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-5 *2 (-480)) (-5 *1 (-1287))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) - (-4 *7 (-862)) (-4 *8 (-1068)) (-4 *9 (-966 *8 *6 *7)) - (-4 *6 (-805)) (-5 *2 (-1192 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1237)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *2 *7)) (-4 *6 (-1068)) - (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-568)) - (-5 *2 (-2 (|:| -2215 (-701 *5)) (|:| |vec| (-1287 (-656 (-938)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) + (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *6))) + (-4 *6 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-569 *6 *3))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1195)) + (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-587 *4 *2)) + (-4 *2 (-13 (-1221) (-976) (-1158) (-29 *4)))))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-656 (-1195))) (-4 *2 (-174)) + (-4 *3 (-243 (-3485 *4) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *3)) + (-2 (|:| -3257 *5) (|:| -4274 *3)))) + (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) + (-4 *7 (-966 *2 *3 (-876 *4)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-903 *4 *3)) + (-4 *3 (-1236)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48)))))) + (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) + (-5 *2 (-1286 (-576))) (-5 *1 (-1314 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1177)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1119)) + (-4 *4 (-1119)))) + ((*1 *1 *2) + (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1057 *4)) (-4 *3 (-568))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-764))))) -(((*1 *2) + (-12 (-4 *5 (-374)) (-4 *7 (-1262 *5)) (-4 *4 (-736 *5 *7)) + (-5 *2 (-2 (|:| -2689 (-701 *6)) (|:| |vec| (-1286 *5)))) + (-5 *1 (-823 *5 *6 *7 *4 *3)) (-4 *6 (-668 *5)) (-4 *3 (-668 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1277 *4)) (-5 *1 (-1279 *4 *2)) + (-4 *4 (-38 (-419 (-576))))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1259 *4 *5)) (-5 *3 (-656 *5)) (-14 *4 (-1195)) + (-4 *5 (-374)) (-5 *1 (-940 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *5)) (-4 *5 (-374)) (-5 *2 (-1191 *5)) + (-5 *1 (-940 *4 *5)) (-14 *4 (-1195)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-783)) (-4 *6 (-374)) + (-5 *2 (-419 (-969 *6))) (-5 *1 (-1069 *5 *6)) (-14 *5 (-1195))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-841))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-1287 (-656 (-2 (|:| -1731 (-927 *3)) (|:| -2550 (-1139)))))) - (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) - ((*1 *2) - (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1731 *3) (|:| -2550 (-1139)))))) - (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1192 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1287 (-656 (-2 (|:| -1731 *3) (|:| -2550 (-1139)))))) - (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-91 *3))))) + (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) + (-5 *1 (-1194))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) + (-5 *1 (-760))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1277 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) + (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1277 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -2568 (-783)))) + (-5 *1 (-794 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2568 (-783)))) + (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) + ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) + (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) + (-5 *1 (-800)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) + (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) + (-5 *1 (-800))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) + (-5 *2 (-2 (|:| -1706 (-419 *5)) (|:| |poly| *3))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1166 *3))))) + (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) + (-5 *1 (-1194))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1262 *4)) + (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1221) (-294)))))) (((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 *2) (-4 *5 (-174)))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1240)) (-4 *3 (-1262 *4)) + (-4 *5 (-1262 (-419 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-938)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-938)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-938)))) + (-12 (-4 *4 (-374)) (-5 *2 (-845 (-938))) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) ((*1 *2) - (-12 (-4 *1 (-381 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-938)))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1279 *3 *2)) + (-4 *2 (-1277 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) + (-5 *1 (-1256 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *2 (-1054)) (-5 *1 (-769))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) + (-5 *1 (-1194))))) +(((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4)))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) + (-5 *2 (-1054)) (-5 *1 (-766))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) - (-5 *2 (-783)) (-5 *1 (-679 *5)))) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-783)) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-783))))) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1126 *5 *6 *7 *8 *3))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1054)) (-5 *3 (-1195)) (-5 *1 (-194))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 *4)))) + (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-764))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507))))) + (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *2 (-1291)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1262 (-419 *5))) (-14 *7 *6)))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-62 *3)) (-14 *3 (-1195)))) + ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-69 *3)) (-14 *3 (-1195)))) + ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-72 *3)) (-14 *3 (-1195)))) + ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1291)))) + ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-409)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-1157)))) + ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1157)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1157))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1109))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1291) (-1286 *5) (-1286 *5) (-390))) + (-5 *3 (-1286 (-390))) (-5 *5 (-390)) (-5 *2 (-1291)) + (-5 *1 (-800))))) (((*1 *2 *3) - (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-317)) - (-5 *2 (-419 (-430 (-969 *4)))) (-5 *1 (-1061 *4))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) + (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))) (((*1 *2 *3) (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-429 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-148)) (-4 *2 (-317)) (-4 *2 (-464)) (-4 *3 (-862)) - (-4 *4 (-805)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-576))) (-5 *1 (-1138)))) - ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-656 (-270))) (-5 *1 (-1289)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1178)) (-5 *1 (-1289)))) - ((*1 *1 *1) (-5 *1 (-1289)))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-1257 *3 *2)) - (-4 *2 (-1263 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) + (-5 *1 (-1194))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) + (-12 (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) + (-4 *3 (-1262 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-1236)) (-5 *1 (-184 *3 *2)) + (-4 *2 (-686 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-4 *3 (-1119)) + (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) + (-4 *3 (-1262 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) + (-4 *5 (-668 (-419 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-419 *5)) + (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1262 *4)) + (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) + ((*1 *1 *1 *1) (-4 *1 (-1158)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1262 *3)) (-4 *3 (-1068)) (-5 *2 (-1191 *3))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-403))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1119))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) (-4 *2 (-1236)) + (-4 *2 (-1119))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-1262 (-419 *3))) (-5 *2 (-938)) + (-5 *1 (-930 *4 *5)) (-4 *5 (-1262 (-419 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1119)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6))) + (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4)) + (-4 *3 (-1057 (-1195))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 (-969 *3)))) + (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1068)) + (-2746 (-4 *3 (-1057 (-1195)))) (-4 *3 (-899 *5)) + (-4 *4 (-626 (-905 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1119)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4)) + (-2746 (-4 *3 (-1057 (-1195)))) (-2746 (-4 *3 (-1068))) + (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1291)) (-5 *1 (-403)))) + ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-403))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) + (-5 *6 (-227)) (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1054)) (-5 *1 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-969 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1157)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1157))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (-5 *1 (-276))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) + (-5 *5 (-1 (-430 *7) *7)) + (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *6 (-1262 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) + (-5 *5 (-1 (-430 *7) *7)) + (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *7 (-1262 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) + (-4 *6 (-1262 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1262 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) + (-4 *6 (-1262 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) + (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-762))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) + (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) + (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1176 *3))) (-5 *1 (-1176 *3)) (-4 *3 (-1236))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) + (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) + (-4 *2 (-699 *3 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-938)) (-5 *1 (-1051 *2)) + (-4 *2 (-13 (-1119) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1236))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-4 *4 (-1119)) + (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1082)) (-5 *3 (-1177))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-304 *2)) (-4 *2 (-738)) (-4 *2 (-1236))))) +(((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1286 (-3 (-480) "undefined"))) (-5 *1 (-1287))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 (-449))))) + (-5 *1 (-1199))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-982)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1008)))) + ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *2 *3)) + (-4 *3 (-13 (-1119) (-34)))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1159 *3 *2)) (-4 *3 (-13 (-1119) (-34))) + (-4 *2 (-13 (-1119) (-34)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1222 *3)) (-4 *3 (-1119))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 - (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4)))) - (|:| |geneigvec| (-656 (-701 (-419 (-969 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4))))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) - (-5 *2 (-112)) (-5 *1 (-1159 *5 *6))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1109))))) + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))) + (-5 *1 (-571)))) + ((*1 *2 *1) + (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-656 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227))))) + (-5 *1 (-815))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *6)))) + (-5 *4 (-1045 (-855 (-576)))) (-5 *5 (-1195)) (-5 *7 (-419 (-576))) + (-4 *6 (-1068)) (-5 *2 (-874)) (-5 *1 (-607 *6))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1221) (-1021)))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) + (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1291)) + (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-981 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) + (-4 *3 (-1119))))) (((*1 *2 *2 *2) (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-5 *1 (-711)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-374)) (-5 *1 (-997 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-52)) (-5 *1 (-905 *4)) + (-4 *4 (-1119))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-938)) + (-5 *2 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) + (-5 *1 (-357 *4)) (-4 *4 (-360))))) +(((*1 *2 *3) + (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1057 (-576))) + (-4 *4 (-568)) (-5 *2 (-1191 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-624 *1)) (-4 *1 (-1068)) (-4 *1 (-312)) + (-5 *2 (-1191 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) +(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-862)) + (-4 *3 (-1119))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-173))))))) + (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) + (-4 *3 (-568)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) + (-4 *3 (-1119)))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) + (-4 *3 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) + (-5 *2 (-419 (-576))))) + ((*1 *2 *3) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) (-4 *3 (-1057 *2))))) +(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1195)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) + (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236)) + (-4 *7 (-1236)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) + (-4 *3 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) (((*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) (-4 *2 (-374)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-227)))) ((*1 *1 *1 *1) - (-3765 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) + (-2835 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) ((*1 *1 *1 *1) (-4 *1 (-374))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) ((*1 *1 *2 *2) @@ -2526,7 +7397,7 @@ (-4 *1 (-442 *3)))) ((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) ((*1 *1 *1 *1) (-5 *1 (-548))) ((*1 *1 *2 *3) (-12 (-4 *4 (-174)) (-5 *1 (-633 *2 *4 *3)) (-4 *2 (-38 *4)) @@ -2547,7 +7418,7 @@ ((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-878 *2 *3 *4 *5)) (-4 *2 (-374)) - (-4 *2 (-1068)) (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-783))) + (-4 *2 (-1068)) (-14 *3 (-656 (-1195))) (-14 *4 (-656 (-783))) (-14 *5 (-783)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)))) @@ -2555,56 +7426,79 @@ (-12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-374)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1294 *2)) (-4 *2 (-374)))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1293 *2)) (-4 *2 (-374)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-374)) (-4 *2 (-1068)) (-4 *3 (-862)) (-4 *4 (-805)) (-14 *6 (-656 *3)) - (-5 *1 (-1299 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-966 *2 *4 *3)) + (-5 *1 (-1298 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-966 *2 *4 *3)) (-14 *7 (-656 (-783))) (-14 *8 (-783)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1068)) + (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-374)) (-4 *2 (-1068)) (-4 *3 (-858))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-1306 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-174))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *1 *1) (-5 *1 (-163))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1196)) - (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) - (-5 *2 - (-2 (|:| -4015 (-419 (-969 *5))) (|:| |coeff| (-419 (-969 *5))))) - (-5 *1 (-582 *5)) (-5 *3 (-419 (-969 *5)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-1 *4 (-576))) (-4 *4 (-1068)) - (-5 *1 (-1180 *4))))) + (-12 (-5 *3 (-1177)) (-5 *2 (-576)) (-5 *1 (-1218 *4)) + (-4 *4 (-1068))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) + (-5 *2 (-701 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) + (-14 *3 (-656 (-1195))) (-4 *4 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1195))) + (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1068)) + (-4 *5 (-243 (-3485 *3) (-783))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) + (-14 *3 (-656 (-1195))) (-4 *4 (-1068))))) (((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1292)) (-5 *1 (-834))))) + (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1221) (-1021)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1195)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) + (-4 *4 (-626 (-548))) (-4 *5 (-1236)) (-4 *6 (-1236))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-4 *1 (-416)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *2 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-135))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) - (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 ((-1292) $)) - (-15 -3237 ((-1292) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) + (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 ((-1291) $)) + (-15 -3712 ((-1291) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1236)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) @@ -2616,58 +7510,86 @@ (-4 *4 (-384 *2)))) ((*1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-21))))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-21))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3))))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119)) - (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-692 *5 *6 *2))))) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1195)))) + (-4 *7 (-805)) + (-5 *2 + (-656 + (-2 (|:| -3606 (-783)) + (|:| |eqns| + (-656 + (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (|:| |fgb| (-656 *8))))) + (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-783))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) + (-5 *1 (-709))))) +(((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1286 *4)) (|:| |den| *4)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-1288))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1192 (-1192 *4)))) - (-5 *1 (-1235 *4)) (-5 *3 (-1192 (-1192 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-767))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-783) *2)) (-5 *4 (-783)) (-4 *2 (-1119)) - (-5 *1 (-690 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-783) *3)) (-4 *3 (-1119)) (-5 *1 (-694 *3))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390)))) + (-5 *1 (-815))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) + (-4 *4 (-862)) (-5 *1 (-1206 *4))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) + (-5 *2 (-656 (-1195))) (-5 *1 (-1095 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) + (-5 *2 (-656 (-419 (-969 *4)))) (-5 *1 (-941 *4 *5 *6 *7)) + (-4 *7 (-966 *4 *6 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) + (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1195)) + (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-158))) ((*1 *1 *1 *1) (-12 (-5 *1 (-216 *2)) (-4 *2 (-13 (-862) - (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 ((-1292) $)) - (-15 -3237 ((-1292) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) + (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 ((-1291) $)) + (-15 -3712 ((-1291) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-25)) (-4 *2 (-1236)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-374) (-148))) (-5 *1 (-411 *3 *2)) - (-4 *2 (-1263 *3)))) + (-4 *2 (-1262 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) ((*1 *1 *1 *1) @@ -2680,557 +7602,607 @@ ((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-25))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1119)) - (-5 *1 (-585 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) - (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-966 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) - (-4 *1 (-1263 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-390)) (-5 *1 (-1082))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1287 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1263 *5)) - (-5 *2 (-701 *5))))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-656 (-2 (|:| -1392 (-576)) (|:| -3175 (-576)))))))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-25))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1262 (-171 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1262 (-171 *2)))))) +(((*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3149 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -4015 (-419 *6)) (|:| |coeff| (-419 *6)))) - (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) + (-5 *2 (-1 *5)) (-5 *1 (-695 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-568)) (-4 *2 (-966 *3 *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-969 *6))) (-4 *5 (-805)) - (-4 *4 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1201))) (-5 *1 (-1201))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-1300 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1300 *5 *6 *7 *8))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) - (-4 *3 (-1119)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) - (-5 *1 (-921 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-938)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) - ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) + (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-112)) + (-5 *1 (-270))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-304 (-969 (-576)))) + (-5 *2 + (-2 (|:| |varOrder| (-656 (-1195))) + (|:| |inhom| (-3 (-656 (-1286 (-783))) "failed")) + (|:| |hom| (-656 (-1286 (-783)))))) + (-5 *1 (-241))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-289))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-112)) + (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1205))))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-969 (-576))) (-5 *3 (-1195)) + (-5 *4 (-1113 (-419 (-576)))) (-5 *1 (-30))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-966 *3 *5 *4)) + (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) + (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *6))))) +(((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1119))))) (((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-881 *2)))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 (-656 *3)) - (-5 *1 (-1257 *4 *3)) (-4 *3 (-1263 *4))))) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) - (-5 *2 (-656 (-1196))) (-5 *1 (-1095 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) -(((*1 *1 *1) (-4 *1 (-1163)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) - (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1278 *5)) (-5 *2 (-656 *6)) - (-5 *1 (-1280 *5 *6))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-541))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-360)) (-5 *2 (-430 (-1192 (-1192 *5)))) - (-5 *1 (-1235 *5)) (-5 *3 (-1192 (-1192 *5)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1054)) (-5 *1 (-765))))) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) + (-5 *2 (-656 (-656 (-656 (-783)))))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-794 *3))) (-5 *1 (-794 *3)) (-4 *3 (-568)) - (-4 *3 (-1068))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-127 *3))))) + (-12 (-5 *2 (-2 (|:| -2861 *3) (|:| |coef1| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-656 (-115)))))) (((*1 *2 *1) + (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) + (-4 *5 (-243 (-3485 *3) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3257 *2) (|:| -4274 *5)) + (-2 (|:| -3257 *2) (|:| -4274 *5)))) + (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-966 *4 *5 (-876 *3)))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-4 *3 (-1084 *6 *7 *8)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) + (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3887 *9)))) + (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) + (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3887 *9)))) + (-5 *1 (-1127 *6 *7 *4 *8 *9))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119))))) +(((*1 *1) (-5 *1 (-480)))) +(((*1 *2 *3) + (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4)) + (-5 *3 (-656 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *2 (-1128 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) + (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1123)) + (-5 *1 (-409)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1195))))) + (-5 *6 (-656 (-1195))) (-5 *3 (-1195)) (-5 *2 (-1123)) + (-5 *1 (-409)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-656 (-1195))) (-5 *5 (-1198)) (-5 *3 (-1195)) + (-5 *2 (-1123)) (-5 *1 (-409))))) +(((*1 *2) + (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) + (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783))))) +(((*1 *2 *2 *2) (-12 (-5 *2 - (-656 - (-656 - (-3 (|:| -4124 (-1196)) - (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576)))))))))) - (-5 *1 (-1200))))) + (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) + (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1195))) (-4 *6 (-464)) + (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) + (-4 *5 (-13 (-374) (-860)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1193 *4 *5 *6)) + (-4 *4 (-1068)) (-14 *5 (-1195)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1259 *5 *4)) (-5 *1 (-1278 *4 *5 *6)) + (-4 *4 (-1068)) (-14 *5 (-1195)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *2) - (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) - (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -4220 *6))) - (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-804))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1200)) (-5 *1 (-1199))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) + (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -2689 (-701 (-419 (-969 *4)))) + (|:| |vec| (-656 (-419 (-969 *4)))) (|:| -3606 (-783)) + (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) + (-5 *2 + (-2 (|:| |partsol| (-1286 (-419 (-969 *4)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *4))))))) + (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-938)) + (-5 *2 + (-3 (-1191 *4) + (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139))))))) + (-5 *1 (-357 *4)) (-4 *4 (-360))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5)) + (-4 *3 (-1119)) (-4 *5 (-678 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-182)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-693)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-989)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1092)))) + ((*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-1137))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-665 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *6 (-1263 *5)) (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-666 *7 (-419 *7))) (-5 *4 (-1 (-656 *6) *7)) - (-5 *5 (-1 (-430 *7) *7)) - (-4 *6 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *7 (-1263 *6)) (-5 *2 (-656 (-419 *7))) (-5 *1 (-824 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1263 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-666 *5 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-5 *2 (-656 (-419 *5))) (-5 *1 (-824 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-1 (-430 *6) *6)) - (-4 *6 (-1263 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-5 *2 (-656 (-419 *6))) (-5 *1 (-824 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4)) - (-5 *3 (-656 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) - ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1176 (-576)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) +(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1085))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 *4)))) + (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1104))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-798))))) (((*1 *2 *3) - (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315))))) + (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) + (-5 *1 (-1206 *4)) (-4 *4 (-862))))) +(((*1 *1) (-5 *1 (-1082)))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-656 *11)) + (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3887 *11)))))) + (-5 *6 (-783)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3887 *11)))) + (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) + (-4 *11 (-1090 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-862)) (-5 *1 (-1088 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-656 *11)) + (|:| |todo| (-656 (-2 (|:| |val| *3) (|:| -3887 *11)))))) + (-5 *6 (-783)) + (-5 *2 (-656 (-2 (|:| |val| (-656 *10)) (|:| -3887 *11)))) + (-5 *3 (-656 *10)) (-5 *4 (-656 *11)) (-4 *10 (-1084 *7 *8 *9)) + (-4 *11 (-1128 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-805)) + (-4 *9 (-862)) (-5 *1 (-1164 *7 *8 *9 *10 *11))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-832)) (-14 *5 (-1195)) (-5 *2 (-656 (-1259 *5 *4))) + (-5 *1 (-1133 *4 *5)) (-5 *3 (-1259 *5 *4))))) (((*1 *2) - (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) -(((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) + (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) + (-4 *7 (-1262 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1206))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) - (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1291)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-480)) - (-5 *1 (-1291)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-480)) (-5 *1 (-1291))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1008)))) + ((*1 *2 *1) + (-12 (-4 *4 (-1236)) (-5 *2 (-1195)) (-5 *1 (-1076 *3 *4)) + (-4 *3 (-1112 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1111 *3)) (-4 *3 (-1236)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1264 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) + (-5 *2 (-1195)))) + ((*1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1282 *3)) (-14 *3 *2)))) +(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-145)))) + ((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) + (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3)))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-862)) (-5 *2 (-112)))) ((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *2 *1 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) - (-4 *3 (-13 (-1119) (-34)))))) -(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-576))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *1 *2) - (-12 (-4 *3 (-1068)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-833))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))) (((*1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) -(((*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -3791 (-656 (-2 (|:| |irr| *3) (|:| -2136 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2) (-12 (-5 *2 (-855 (-576))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1119))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1104))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-507))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1177)) (-5 *1 (-1217))))) +(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-656 (-173))))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) (|partial| -4 *1 (-734)))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) + ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-317)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1045 *3)) (-4 *3 (-1236))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -3791 (-656 (-2 (|:| |irr| *3) (|:| -2136 (-576))))))) - (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576)))))) + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-270)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *2 (-1291)) (-5 *1 (-1288)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -2816 (-227)) + (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) + (-5 *1 (-1288)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *1 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) + (-4 *2 (-464)))) + ((*1 *1 *1) + (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) + (-4 *4 (-1262 (-419 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)) (-4 *3 (-464)))) + ((*1 *1 *1) + (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-464)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1182 *3 *2)) + (-4 *2 (-1262 *3))))) (((*1 *2 *1) - (-12 (-4 *2 (-1119)) (-5 *1 (-981 *3 *2)) (-4 *3 (-1119))))) -(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) + (-12 (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1263 *4)) (-5 *2 (-576)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1057 *2) (-651 *2) (-464))) - (-5 *2 (-576)) (-5 *1 (-1135 *4 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1135 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-1178)) - (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) - (-5 *1 (-1135 *6 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-576)) - (-5 *1 (-1136 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-855 (-419 (-969 *6)))) - (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-576)) - (-5 *1 (-1136 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1196)) - (-5 *5 (-1178)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *6)))) + (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1054)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-938))) (-5 *4 (-922 (-576))) + (-5 *2 (-701 (-576))) (-5 *1 (-602)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1068))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-759))))) + (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) + (-5 *1 (-602)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-922 (-576)))) + (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-988 *2 *4)) + (-4 *4 (-1262 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-693)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1137))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1195)) (-5 *2 (-624 *6)) + (-4 *6 (-442 *5)) (-4 *5 (-1119)) (-5 *1 (-585 *5 *6))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) + (-5 *1 (-935 *4))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1195)) (-5 *1 (-276))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1706 *3) (|:| |gap| (-783)) (|:| -3824 (-794 *3)) + (|:| -2091 (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) + (-5 *2 + (-2 (|:| -1706 *1) (|:| |gap| (-783)) (|:| -3824 *1) + (|:| -2091 *1))) + (-4 *1 (-1084 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 + (-2 (|:| -1706 *1) (|:| |gap| (-783)) (|:| -3824 *1) + (|:| -2091 *1))) + (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *2)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-938)) (-4 *1 (-1264 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-804)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1267 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-576))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1057 (-576)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) +(((*1 *2) + (-12 (-4 *3 (-1240)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) + (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-4 *4 (-1262 *3)) + (-5 *2 + (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-1262 (-576))) + (-5 *2 + (-2 (|:| -3713 (-701 (-576))) (|:| |basisDen| (-576)) + (|:| |basisInv| (-701 (-576))))) + (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) + ((*1 *2) + (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) + (-5 *2 + (-2 (|:| -3713 (-701 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-701 *4)))) + (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-360)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 *4)) + (-5 *2 + (-2 (|:| -3713 (-701 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-701 *4)))) + (-5 *1 (-1295 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-1163)))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) (((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1263 (-419 *3))) (-5 *2 (-938)) - (-5 *1 (-930 *4 *5)) (-4 *5 (-1263 (-419 *4)))))) + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1068)) + (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1154)) (-5 *3 (-301)) (-5 *1 (-169))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-326 (-576)))) + (-5 *1 (-1050))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) + (-15 -1549 ((-1144 *3 (-624 $)) $)) + (-15 -3563 ($ (-1144 *3 (-624 $)))))))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1236)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) + ((*1 *1 *1) (-5 *1 (-874))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-960 (-227))) (-5 *2 (-227)) (-5 *1 (-1232)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1068))))) (((*1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-4 *5 (-243 (-2048 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2550 *2) (|:| -3175 *5)) - (-2 (|:| -2550 *2) (|:| -3175 *5)))) - (-4 *2 (-862)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-966 *4 *5 (-876 *3)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-5 *2 (-1286 *3)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1262 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1235))) (-5 *3 (-1235)) (-5 *1 (-693))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-966 *4 *6 *5)) (-4 *4 (-464)) + (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1006 *4 *5 *6 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) + (-5 *3 (-656 (-576)))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-624 *1)) (-4 *1 (-312))))) (((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-122 *3)) (|:| |greater| (-122 *3)))) (-5 *1 (-122 *3)) (-4 *3 (-862)))) ((*1 *2 *2) - (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1222))) + (-12 (-5 *2 (-598 *4)) (-4 *4 (-13 (-29 *3) (-1221))) (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-595 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-598 (-419 (-969 *3)))) (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *1 (-601 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -2296 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -2960 *3) (|:| |special| *3))) (-5 *1 (-739 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1287 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) + (-12 (-5 *4 (-1286 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1287 (-1287 *5))) (-4 *5 (-374)) (-4 *5 (-1068)) + (-12 (-5 *4 (-1286 (-1286 *5))) (-4 *5 (-374)) (-4 *5 (-1068)) (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-656 (-701 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-656 *1)) (-4 *1 (-1163)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-145)) (-5 *2 (-656 *1)) (-4 *1 (-1163))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-764))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) - (-4 *5 (-862)) (-5 *2 (-969 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) - (-4 *5 (-862)) (-5 *2 (-969 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1068)) - (-5 *2 (-969 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1278 *4)) (-4 *4 (-1068)) - (-5 *2 (-969 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568)))) - ((*1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1222)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1287 (-701 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 (-701 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) - (-5 *2 (-1287 (-701 (-419 (-969 *5))))) (-5 *1 (-1105 *5)) - (-5 *4 (-701 (-419 (-969 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1196))) (-4 *5 (-374)) - (-5 *2 (-1287 (-701 (-969 *5)))) (-5 *1 (-1105 *5)) - (-5 *4 (-701 (-969 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) - (-5 *2 (-1287 (-701 *4))) (-5 *1 (-1105 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-656 (-656 (-576)))) - (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| -1348 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-862)) - (-5 *2 - (-2 (|:| |f1| (-656 *4)) (|:| |f2| (-656 (-656 (-656 *4)))) - (|:| |f3| (-656 (-656 *4))) (|:| |f4| (-656 (-656 (-656 *4)))))) - (-5 *1 (-1207 *4)) (-5 *3 (-656 (-656 (-656 *4))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1045 *3)) (-4 *3 (-1237))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-568)) (-4 *2 (-1068)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *1)))) - (-4 *1 (-1090 *4 *5 *6 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-983 *3))) (-5 *1 (-983 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-763))))) -(((*1 *2 *1) - (-12 (-4 *3 (-13 (-374) (-148))) - (-5 *2 (-656 (-2 (|:| -3175 (-783)) (|:| -2553 *4) (|:| |num| *4)))) - (-5 *1 (-411 *3 *4)) (-4 *4 (-1263 *3))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130)))))) -(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317))))) -(((*1 *2 *1) (-12 (-5 *2 (-975 (-185 (-140)))) (-5 *1 (-343)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-618))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340))))) -(((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) (-4 *2 (-317)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) - (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) - (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1119)) - (-4 *2 (-132))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1302 (-1196) *3)) (-4 *3 (-1068)) (-5 *1 (-1309 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) - (-5 *1 (-1311 *3 *4))))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) - (-5 *1 (-1180 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) - (-14 *4 (-1196)) (-14 *5 *3)))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) - (-5 *1 (-1024))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) - (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) - (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-112)) - (-5 *1 (-941 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) - (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) - ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-738) *3)))) - ((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-738) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1119)) (-4 *6 (-1119)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *5 (-1119))))) -(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-403))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) - (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) - (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1021)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) (((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-783)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-938)))) ((*1 *1 *1 *1) @@ -3239,12 +8211,12 @@ ((*1 *1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-158)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-158)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222))) + (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221))) (-5 *1 (-229 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1237)))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1236)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1237)))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-1131)) (-4 *2 (-1236)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-372 *2)) (-4 *2 (-1119)))) @@ -3256,11 +8228,11 @@ ((*1 *1 *1 *2) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-4 *6 (-243 (-2048 *3) (-783))) + (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) + (-4 *6 (-243 (-3485 *3) (-783))) (-14 *7 - (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *6)) - (-2 (|:| -2550 *5) (|:| -3175 *6)))) + (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *6)) + (-2 (|:| -3257 *5) (|:| -4274 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-862)) (-4 *2 (-966 *4 *6 (-876 *3))))) ((*1 *1 *1 *2) @@ -3271,7 +8243,7 @@ (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) ((*1 *1 *1 *1) (-5 *1 (-548))) ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-658 *2)) (-4 *2 (-1131)))) @@ -3301,7 +8273,7 @@ ((*1 *1 *1 *1) (-4 *1 (-732))) ((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) + (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-568)) (-5 *1 (-988 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1131)))) ((*1 *1 *1 *1) (-4 *1 (-1131))) @@ -3315,706 +8287,918 @@ (-12 (-4 *3 (-1068)) (-4 *4 (-862)) (-5 *1 (-1145 *3 *4 *2)) (-4 *2 (-966 *3 (-543 *4) *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-960 (-227))) (-5 *3 (-227)) (-5 *1 (-1233)))) + (-12 (-5 *2 (-960 (-227))) (-5 *3 (-227)) (-5 *1 (-1232)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) + (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-738)))) + (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-738)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-21)))) + (-12 (-5 *2 (-576)) (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-21)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) + (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) + (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) - (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1302 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *1 (-676 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-676 *3 *4)) (-5 *1 (-1307 *3 *4)) - (-4 *3 (-862)) (-4 *4 (-174))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) - (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4))))) + (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) + (-4 *8 (-966 *7 *5 *6)) + (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *3) (|:| |radicand| *3))) + (-5 *1 (-970 *5 *6 *7 *8 *3)) (-5 *4 (-783)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *8)) (-15 -1536 (*8 $)) (-15 -1549 (*8 $)))))))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) + (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-158)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-131)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) + (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-656 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576))))) + (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-969 *9)))) + (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) + (-4 *9 (-13 (-317) (-148))) (-4 *12 (-966 *9 *11 *10)) + (-4 *10 (-13 (-862) (-626 (-1195)))) (-4 *11 (-805)) (-5 *2 - (-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) - (|:| |singularities| (-1176 (-227))))) - (-5 *1 (-105))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4463)) (-4 *1 (-501 *3)) - (-4 *3 (-1237))))) + (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) + (|:| |wcond| (-656 (-969 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *9)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *9))))))))) + (-5 *1 (-941 *9 *10 *11 *12))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-938)) (-4 *5 (-1068))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1) (-4 *1 (-360)))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) - (-4 *3 (-1084 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1165 *5 *6 *7 *3))) (-5 *1 (-1165 *5 *6 *7 *3)) - (-4 *3 (-1084 *5 *6 *7))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1119))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-759))))) + (-12 (-5 *2 (-576)) (|has| *1 (-6 -4462)) (-4 *1 (-1274 *3)) + (-4 *3 (-1236))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-576)) (-5 *5 (-1177)) (-5 *6 (-701 (-227))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4463)) (-4 *4 (-374)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) (-5 *2 (-419 (-969 *4))) (-5 *1 (-941 *4 *5 *6 *3)) + (-4 *3 (-966 *4 *6 *5)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4463)) (-4 *4 (-568)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *8 (-384 *7)) - (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) - (-4 *10 (-699 *7 *8 *9)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) + (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) (-5 *2 (-701 (-419 (-969 *4)))) + (-5 *1 (-941 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-656 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227)))))) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) (-5 *2 (-656 (-419 (-969 *4)))) + (-5 *1 (-941 *4 *5 *6 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -3653 *5)))) + (-4 *5 (-1262 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) + (-5 *1 (-218 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-2 (|:| -1839 *5) (|:| -1433 (-576))))) + (-5 *4 (-576)) (-4 *5 (-1262 *4)) (-5 *2 (-656 *5)) + (-5 *1 (-708 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1299 *4 *5 *6 *7))) + (-5 *1 (-1299 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) + (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1299 *6 *7 *8 *9))) + (-5 *1 (-1299 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-430 *3)) (-4 *3 (-557)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) + (-5 *2 (-656 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) + (-5 *2 (-656 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) + (-12 (-5 *2 (-1176 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1119)))) + (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-738)))) + ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-656 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1057 (-419 (-576))))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) + (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1068)) (-5 *2 (-1176 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3))))) + (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-576)) (-5 *1 (-959))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-1200))) (-5 *1 (-893))))) +(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4452)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) + ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-1176 (-576)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) + (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3896 *3)))) + (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) + (-4 *7 (-668 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *6 (-1262 *5)) + (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3896 (-666 *6 (-419 *6)))))) + (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-750))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3887 *8))) + (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -3887 *8))) + (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1126 *4 *5 *6 *7 *8))))) (((*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-112)) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-112)) - (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *2) + (-12 (-5 *2 (-1271 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1195)) + (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) - (-14 *5 (-656 (-1196))) (-4 *6 (-464)) (-5 *2 (-1287 *6)) - (-5 *1 (-643 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1237)) (-5 *1 (-184 *3 *2)) (-4 *2 (-686 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938)))) - ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245)))) + (|partial| -12 (-5 *2 (-1286 *4)) (-5 *3 (-701 *4)) (-4 *4 (-374)) + (-5 *1 (-679 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-374)) + (-4 *5 (-13 (-384 *4) (-10 -7 (-6 -4462)))) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462)))) + (-5 *1 (-680 *4 *5 *2 *3)) (-4 *3 (-699 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-656 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-374)) + (-5 *1 (-826 *2 *3)) (-4 *3 (-668 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-576))) (-5 *4 (-576)) (-5 *2 (-52)) + (-5 *1 (-1024))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *1 (-1007 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *1 (-1126 *3 *4 *5 *6 *7))))) -(((*1 *1 *1) (-4 *1 (-641))) + (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068)))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) +(((*1 *1) (-5 *1 (-1291)))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *1 (-114 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021) (-1222)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-339 *3)) (-4 *5 (-1263 *4)) - (-5 *1 (-789 *3 *4 *5 *2 *6)) (-4 *2 (-1263 *5)) (-14 *6 (-938)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *1 *1) (-12 (-4 *1 (-1306 *2)) (-4 *2 (-374)) (-4 *2 (-379))))) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1158)))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-768))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1229 *5 *6 *7 *8)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) - (-5 *2 (-656 (-656 (-656 (-960 *3)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1242)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *2 (-1292)) - (-5 *1 (-1199)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1196)) - (-5 *4 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *2 (-1292)) - (-5 *1 (-1199))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -4015 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227))))) - ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1054)) (-5 *1 (-763))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-145)))) - ((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) -(((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938)))) - ((*1 *1 *1 *1) (-5 *1 (-1242))) ((*1 *1 *1 *1) (-5 *1 (-1243))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245)))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2996 *3) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-1191 *3))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -3140 (-656 (-1195))) (|:| -3884 (-656 (-1195))))) + (-5 *1 (-1238))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463))))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-240 *3)) - (-4 *3 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1196)) - (-4 *2 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-286 *5 *2))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-938)) - (-4 *2 (-1119))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) - (|:| -4220 *6))) - (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-656 *4))) (-5 *1 (-921 *4)) - (-5 *3 (-656 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-1121 *4))) (-5 *1 (-921 *4)) - (-5 *3 (-1121 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) + (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) + (-4 *2 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-701 *4)) (-4 *4 (-1068)) (-5 *1 (-1161 *3 *4)) - (-14 *3 (-783))))) + (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) + (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1195)))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-541)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) - (-4 *5 (-384 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-1119)) (-5 *1 (-215 *4 *2)) - (-14 *4 (-938)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) - (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237))))) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) - (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548))))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *1) (-5 *1 (-449)))) + (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-317)) + (-5 *2 (-419 (-430 (-969 *4)))) (-5 *1 (-1061 *4))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-969 *6)) (-5 *4 (-1195)) + (-5 *5 (-855 *7)) + (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-4 *7 (-13 (-1221) (-29 *6))) (-5 *1 (-226 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1191 *6)) (-5 *4 (-855 *6)) + (-4 *6 (-13 (-1221) (-29 *5))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-226 *5 *6))))) +(((*1 *1) (-5 *1 (-835)))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *2 (-1292)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1263 (-419 *5))) (-14 *7 *6)))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) + (-12 (-4 *4 (-360)) (-5 *2 (-430 (-1191 (-1191 *4)))) + (-5 *1 (-1234 *4)) (-5 *3 (-1191 (-1191 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) + ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1199))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) + (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) + ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) + (-5 *2 (-390)) (-5 *1 (-276)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-390)) (-5 *1 (-315))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1119)) + (-4 *5 (-1236)) (-5 *1 (-903 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) + (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1119)) + (-4 *5 (-1236)) (-5 *1 (-903 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1195))) + (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1119)) (-4 *6 (-1236)) + (-5 *1 (-903 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-938)) (-5 *1 (-798))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-835)) (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) - ((*1 *2 *1) - (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1236)) (-4 *4 (-1119)) + (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-938)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-969 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *5)))))))))) - (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-656 *8)))) + (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) (-4 *4 (-1119)) + (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-656 (-1196))) (-4 *8 (-966 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-969 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *5)))))))))) - (-5 *1 (-941 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) + (-12 (-5 *3 (-1195)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1236)) + (-5 *2 (-326 (-576))) (-5 *1 (-955 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1195)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1236)) + (-5 *2 (-326 (-576))) (-5 *1 (-955 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1195))) (-5 *3 (-1 (-112) (-656 *6))) + (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1119)) + (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) + (-5 *1 (-1095 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1262 *2)) (-4 *2 (-1240)) (-5 *1 (-149 *2 *4 *3)) + (-4 *3 (-1262 (-419 *4)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1291)) + (-5 *1 (-1237 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1291)) + (-5 *1 (-1237 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-926))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1236)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1236)))) + ((*1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1054)) (-5 *1 (-768))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-969 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1161 *4 *2)) (-14 *4 (-938)) + (-4 *2 (-13 (-1068) (-10 -7 (-6 (-4463 "*"))))) + (-5 *1 (-919 *4 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 - (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) - (|:| |wcond| (-656 (-969 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *4)))))))))) - (-5 *1 (-941 *4 *5 *6 *7)))) + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-805)) (-4 *6 (-966 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) + (-5 *1 (-461 *4 *3 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1236)) + (-4 *5 (-1236)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *5 (-938)) (-4 *9 (-966 *6 *8 *7)) - (-4 *6 (-13 (-317) (-148))) (-4 *7 (-13 (-862) (-626 (-1196)))) - (-4 *8 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-969 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *6)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *6)))))))))) - (-5 *1 (-941 *6 *7 *8 *9)) (-5 *4 (-656 *9)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) + (-4 *7 (-1236)) (-4 *5 (-1236)) (-5 *2 (-245 *6 *5)) + (-5 *1 (-244 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-938)) - (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *9)) (|:| |neqzro| (-656 *9)) - (|:| |wcond| (-656 (-969 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *6)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *6)))))))))) - (-5 *1 (-941 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-938)) (-4 *8 (-966 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-969 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *5)))))))))) - (-5 *1 (-941 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1236)) (-4 *5 (-1236)) + (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 *9)) (-5 *5 (-1178)) - (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-941 *6 *7 *8 *9)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119)) + (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-656 (-1196))) (-5 *5 (-1178)) - (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-941 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-1178)) (-4 *8 (-966 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) - (-4 *7 (-805)) (-5 *2 (-576)) (-5 *1 (-941 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 *10)) (-5 *5 (-938)) - (-5 *6 (-1178)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-862) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-941 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-701 *10)) (-5 *4 (-656 (-1196))) (-5 *5 (-938)) - (-5 *6 (-1178)) (-4 *10 (-966 *7 *9 *8)) (-4 *7 (-13 (-317) (-148))) - (-4 *8 (-13 (-862) (-626 (-1196)))) (-4 *9 (-805)) (-5 *2 (-576)) - (-5 *1 (-941 *7 *8 *9 *10)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1236)) + (-4 *5 (-1236)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *9)) (-5 *4 (-938)) (-5 *5 (-1178)) - (-4 *9 (-966 *6 *8 *7)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-13 (-862) (-626 (-1196)))) (-4 *8 (-805)) (-5 *2 (-576)) - (-5 *1 (-941 *6 *7 *8 *9))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *6 (-227)) - (-5 *3 (-576)) (-5 *2 (-1054)) (-5 *1 (-764))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-975 *6)) (-4 *6 (-1236)) + (-4 *5 (-1236)) (-5 *2 (-975 *5)) (-5 *1 (-974 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1176 *6)) (-4 *6 (-1236)) + (-4 *3 (-1236)) (-5 *2 (-1176 *3)) (-5 *1 (-1174 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1286 *6)) (-4 *6 (-1236)) + (-4 *5 (-1236)) (-5 *2 (-1286 *5)) (-5 *1 (-1285 *6 *5))))) +(((*1 *1 *1 *2 *2 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) + (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) + (-4 *5 (-384 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-120 *3)) (-4 *3 (-1236)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 (-576))) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-576)) (-14 *5 (-783)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-783)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-783)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-174)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-783)))) + ((*1 *2 *1) + (-12 (-4 *2 (-174)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-576)) + (-14 *4 (-783)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1195)) (-5 *2 (-250 (-1177))) (-5 *1 (-216 *4)) + (-4 *4 + (-13 (-862) + (-10 -8 (-15 -2871 ((-1177) $ *3)) (-15 -2076 ((-1291) $)) + (-15 -3712 ((-1291) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1008)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-862) + (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 ((-1291) $)) + (-15 -3712 ((-1291) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-783)) (-5 *1 (-250 *4)) (-4 *4 (-862)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-250 *3)) (-4 *3 (-862)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-250 *3)) (-4 *3 (-862)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-1236)) (-4 *2 (-1236)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1236)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1240)) (-4 *3 (-1262 *2)) + (-4 *4 (-1262 (-419 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1177)) (-5 *1 (-514)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-656 (-576))) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-656 (-905 *4))) (-5 *1 (-905 *4)) + (-4 *4 (-1119)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) + (-4 *4 (-1119)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-1029 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) (-4 *2 (-1068)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-938)) (-4 *4 (-1119)) + (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) + (-5 *1 (-1095 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-938)) (-4 *4 (-1119)) + (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) + (-5 *1 (-1096 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1163))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-419 *1)) (-4 *1 (-1262 *2)) (-4 *2 (-1068)) + (-4 *2 (-374)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-419 *1)) (-4 *1 (-1262 *3)) (-4 *3 (-1068)) + (-4 *3 (-568)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1274 *3)) (-4 *3 (-1236)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) + ((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192)))) + ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1) (-4 *1 (-881 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) + (-4 *4 (-862))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *4 (-1195)) + (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-4 *3 (-13 (-27) (-1221) (-442 *6) (-10 -8 (-15 -3563 ($ *7))))) + (-4 *7 (-860)) + (-4 *8 + (-13 (-1264 *3 *7) (-374) (-1221) + (-10 -8 (-15 -2735 ($ $)) (-15 -3848 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) + (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1177)) (-4 *9 (-1002 *8)) + (-14 *10 (-1195))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) - (-5 *2 (-656 (-227))) (-5 *1 (-315))))) + (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1179 *4)) + (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112)))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)) (-4 *3 (-174)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-568)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-174))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-442 *4) (-1021))) (-4 *4 (-568)) + (-5 *1 (-285 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 (-701 *4))) (-4 *4 (-174)) - (-5 *2 (-1287 (-701 (-969 *4)))) (-5 *1 (-191 *4))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) + ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) + (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-340))))) +(((*1 *2) + (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1119))))) +(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-684 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-537))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2) (-12 (-5 *2 (-1166 (-1178))) (-5 *1 (-403))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-701 *2)) (-4 *2 (-174)) (-5 *1 (-147 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-174)) (-4 *2 (-1263 *4)) (-5 *1 (-179 *4 *2 *3)) - (-4 *3 (-736 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-969 *5)))) (-5 *4 (-1196)) - (-5 *2 (-969 *5)) (-5 *1 (-302 *5)) (-4 *5 (-464)))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) + (-14 *4 (-656 (-1195))))) ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-5 *2 (-969 *4)) - (-5 *1 (-302 *4)) (-4 *4 (-464)))) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1236)))) ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) - (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *4 (-1196)) - (-5 *2 (-969 (-171 (-419 (-576))))) (-5 *1 (-776 *5)) - (-4 *5 (-13 (-374) (-860))))) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) + (-14 *4 (-656 (-1195))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-624 *3)) + (-4 *3 (-13 (-442 *5) (-27) (-1221))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) + (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119))))) +(((*1 *1 *2) + (-12 (-5 *2 (-701 *5)) (-4 *5 (-1068)) (-5 *1 (-1073 *3 *4 *5)) + (-14 *3 (-783)) (-14 *4 (-783))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) + (-5 *1 (-1194))))) +(((*1 *2 *3) + (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) ((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-969 (-419 (-576)))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *4 (-1196)) - (-5 *2 (-969 (-419 (-576)))) (-5 *1 (-791 *5)) - (-4 *5 (-13 (-374) (-860)))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) - (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 (-576))))) - (-5 *1 (-372 *3)) (-4 *3 (-1119)))) + (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 (-783))))))) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-783))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1195))) + (-4 *6 (-13 (-568) (-1057 *5))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-969 *6)))))) (-5 *1 (-1058 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -1392 *3) (|:| -3175 (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) - (-4 *7 (-966 *5 *6 *4)) (-4 *5 (-926)) (-4 *6 (-805)) - (-4 *4 (-862)) (-5 *1 (-923 *5 *6 *4 *7))))) + (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-783))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) + (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) + (-5 *1 (-709)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-227))) + (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1 (-960 (-227)) (-227) (-227))) + (-5 *4 (-1113 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709))))) (((*1 *2 *1) - (-12 (-4 *3 (-238)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) - (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) - (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 (-1287 (-576)))) (-5 *3 (-938)) (-5 *1 (-478))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) - (-5 *2 (-1054)) (-5 *1 (-759))))) + (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-783)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-701 (-1192 *8))) (-4 *5 (-1068)) (-4 *8 (-1068)) - (-4 *6 (-1263 *5)) (-5 *2 (-701 *6)) (-5 *1 (-513 *5 *6 *7 *8)) - (-4 *7 (-1263 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) - ((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) - (-4 *2 (-13 (-27) (-1222) (-442 (-171 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-13 (-568) (-1057 (-576)))) - (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-960 (-227))))) - (-5 *2 (-656 (-1113 (-227)))) (-5 *1 (-945))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1129))))) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 (-1 *6 (-656 *6)))) + (-4 *5 (-38 (-419 (-576)))) (-4 *6 (-1277 *5)) (-5 *2 (-656 *6)) + (-5 *1 (-1279 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-240 *3)))) + ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1119))))) +(((*1 *1) (-5 *1 (-835)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1292))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1955 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) + (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) + (-5 *1 (-1194))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1112 *3)) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1236)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1113 *3)) (-5 *1 (-1111 *3)) (-4 *3 (-1236)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1195)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-656 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3116 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1221) (-27) (-442 *8))) + (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -4154 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1032 *8 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1068))) (-5 *2 (-1178)) - (-5 *1 (-838 *4)))) + (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-112)) + (-5 *1 (-684 *4))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1226 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) + (-5 *1 (-822 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1068))) - (-5 *2 (-1178)) (-5 *1 (-838 *5)))) + (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1262 *5)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 (-2 (|:| -3713 (-656 (-419 *6))) (|:| -2689 (-701 *5)))) + (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1068))) - (-5 *2 (-1292)) (-5 *1 (-838 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-840) (-1068))) (-5 *2 (-1292)) (-5 *1 (-838 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1178)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1178)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1292)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1292))))) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1262 *5)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) + (-5 *1 (-822 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1262 *5)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-5 *2 (-2 (|:| -3713 (-656 (-419 *6))) (|:| -2689 (-701 *5)))) + (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1262 *4)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) + (-5 *2 + (-2 (|:| -4274 (-783)) (|:| -1706 *5) (|:| |radicand| (-656 *5)))) + (-5 *1 (-330 *5)) (-5 *4 (-783)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-576))))) (((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-990))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-767))))) -(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) + (-14 *5 (-1195)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4463 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) + (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1262 *2)) + (-4 *4 (-699 *2 *5 *6))))) +(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-759))))) -(((*1 *1 *2 *2) + (-5 *1 (-764))))) +(((*1 *1 *1) (-5 *1 (-1194))) + ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))) + (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) + (-5 *1 (-1194))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1262 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) + (-12 (-5 *4 (-656 (-656 *8))) (-5 *3 (-656 *8)) + (-4 *8 (-966 *5 *7 *6)) (-4 *5 (-13 (-317) (-148))) + (-4 *6 (-13 (-862) (-626 (-1195)))) (-4 *7 (-805)) (-5 *2 (-112)) + (-5 *1 (-941 *5 *6 *7 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-938))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) + (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-712 *3)) + (-4 *3 (-317))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) + (-4 *2 (-668 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1195))) (-5 *2 - (-2 (|:| A (-701 *5)) - (|:| |eqs| - (-656 - (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5)) (|:| -3278 *6) - (|:| |rh| *5)))))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) - (-4 *6 (-668 *5)))) + (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) + (-5 *1 (-640 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-129)) (-5 *2 (-783))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-734))) + ((*1 *1) (-4 *1 (-738))) + ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) + ((*1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-597)) (-5 *3 (-609)) (-5 *4 (-301)) (-5 *1 (-290))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-858))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) - (-5 *2 (-2 (|:| -2215 (-701 *6)) (|:| |vec| (-1287 *5)))) - (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *5))))) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) + (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-548))) + ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 *2))) + (-5 *2 (-905 *3)) (-5 *1 (-1095 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-966 *7 *5 *6)) - (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-317))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1196))) (-4 *4 (-464)) - (-5 *1 (-935 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-877)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-464)) (-4 *4 (-1119)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) + ((*1 *1 *1) (-4 *1 (-1163)))) +(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-971))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174)))) + ((*1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) + (-4 *4 (-384 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-518)) (-4 *4 (-1119)) (-5 *1 (-946 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1195)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) + (-5 *1 (-947))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) - (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1172 *3))))) + (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-701 *3))))) -(((*1 *1 *1) (-5 *1 (-1195))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) - (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1119) (-34))) - (-4 *4 (-13 (-1119) (-34)))))) -(((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-938)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-374)) (-14 *5 (-1012 *3 *4))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -3722 (-656 (-1196))) (|:| -2877 (-656 (-1196))))) - (-5 *1 (-1239))))) + (-12 (-5 *3 (|[\|\|]| -2248)) (-5 *2 (-112)) (-5 *1 (-629)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3766)) (-5 *2 (-112)) (-5 *1 (-629)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3506)) (-5 *2 (-112)) (-5 *1 (-629)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -1325)) (-5 *2 (-112)) (-5 *1 (-703 *4)) + (-4 *4 (-625 (-874))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-625 (-874))) (-5 *2 (-112)) + (-5 *1 (-703 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-888)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-888)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-157))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1185))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-638))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1092))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-989))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-182))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1055))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-321))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-683))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-155))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1297))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1134))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-134))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-618))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-1296))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-688))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-220))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1156)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1177))) (-5 *2 (-112)) (-5 *1 (-1200)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)) (-5 *1 (-1200)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-227))) (-5 *2 (-112)) (-5 *1 (-1200)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-576))) (-5 *2 (-112)) (-5 *1 (-1200))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 (-419 (-969 *6)))) + (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 (-419 (-969 *6)))) (-5 *3 (-419 (-969 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-148))) (-5 *2 @@ -4022,173 +9206,525 @@ (|:| |limitedlogs| (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1296))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-430 *3)) (-4 *3 (-568)) (-5 *1 (-431 *3))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1080 (-1043 *3) (-1191 (-1043 *3)))) + (-5 *1 (-1043 *3)) (-4 *3 (-13 (-860) (-374) (-1041)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1222) (-29 *5)))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1176 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783))))) + (-12 (-5 *3 (-419 *6)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) + (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *3) (|:| |radicand| *6))) + (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1262 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-656 (-1095 *4 *5 *2))) (-4 *4 (-1119)) + (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) + (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-656 (-1095 *5 *6 *2))) (-5 *4 (-938)) (-4 *5 (-1119)) + (-4 *6 (-13 (-1068) (-899 *5) (-626 (-905 *5)))) + (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124))) + ((*1 *1 *1 *1) (-5 *1 (-1139)))) +(((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1236))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-317)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-783)))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1081)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1081))))) -(((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-701 *11)) (-5 *4 (-656 (-419 (-969 *8)))) - (-5 *5 (-783)) (-5 *6 (-1178)) (-4 *8 (-13 (-317) (-148))) - (-4 *11 (-966 *8 *10 *9)) (-4 *9 (-13 (-862) (-626 (-1196)))) - (-4 *10 (-805)) + (-12 (-4 *2 (-1262 *4)) (-5 *1 (-821 *4 *2 *3 *5)) + (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) + (-4 *5 (-668 (-419 *2)))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021) (-1221)))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) +(((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1068))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 - (-2 - (|:| |rgl| - (-656 - (-2 (|:| |eqzro| (-656 *11)) (|:| |neqzro| (-656 *11)) - (|:| |wcond| (-656 (-969 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *8)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *8)))))))))) - (|:| |rgsz| (-576)))) - (-5 *1 (-941 *8 *9 *10 *11)) (-5 *7 (-576))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) + (-656 + (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) + (|:| |radvect| (-656 (-701 (-326 (-576)))))))) + (-5 *1 (-1050))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) + (-4 *2 (-668 *4))))) +(((*1 *1) (-5 *1 (-1082)))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-656 (-982))) (-5 *1 (-301))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-960 *4)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1311))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-503)) (-5 *4 (-971)) (-5 *2 (-703 (-545))) + (-5 *1 (-545)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-971)) (-4 *3 (-1119)) (-5 *2 (-703 *1)) + (-4 *1 (-779 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *4 (-1195)) + (-5 *1 (-1198)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1198)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-1195)) (-5 *1 (-1199)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1195))) (-5 *1 (-1199))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1054)) + (-5 *1 (-761))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |ir| (-598 (-419 *6))) (|:| |specpart| (-419 *6)) + (|:| |polypart| *6))) + (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) + (-5 *2 (-112)) (-5 *1 (-1006 *3 *4 *5 *6)) + (-4 *6 (-966 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) + (-4 *4 (-13 (-1119) (-34)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1262 *5)) + (-5 *1 (-819 *5 *2 *3 *6)) + (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) + (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1262 *5)) + (-5 *1 (-819 *5 *2 *3 *6)) + (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) + (-4 *6 (-668 (-419 *2)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3495 (-794 *3)) (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -3495 *1) (|:| |coef2| *1))) + (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-1112 *3)) (-4 *3 (-1236))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-568)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-1240)) (-4 *5 (-1262 *3)) (-4 *6 (-1262 (-419 *5))) + (-5 *2 (-112)) (-5 *1 (-352 *4 *3 *5 *6)) (-4 *4 (-353 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-874)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) + ((*1 *1 *1 *1) (-4 *1 (-557))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-960 *4)) (-4 *4 (-1068)) (-5 *1 (-1183 *3 *4)) + (-14 *3 (-938))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1119) (-34))) + (-5 *2 (-112)) (-5 *1 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34)))))) +(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1277 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-1207 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-783))))) +(((*1 *2 *3) + (-12 (-5 *2 (-430 (-1191 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) +(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) + (-4 *4 (-1236)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) + (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-374)) (-4 *2 (-915 *3)) (-5 *1 (-598 *2)) + (-5 *3 (-1195)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) + (-4 *4 (-1119)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1262 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3242 *4))) (-5 *1 (-988 *4 *3)) + (-4 *3 (-1262 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1236))))) +(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1057 (-576))))) + (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) + (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1191 *7))) + (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-379))))) + (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-430 *1)) (-4 *1 (-966 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) + (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) + (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) + (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1265 *4 *3)) + (-4 *3 (-13 (-1262 *4) (-568) (-10 -8 (-15 -3495 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) + (-14 *5 (-656 (-1195))) + (-5 *2 + (-656 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))) + (-5 *1 (-1313 *4 *5 *6)) (-14 *6 (-656 (-1195)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1219 *3)) (-4 *3 (-1068))))) + (-12 (-5 *3 (-701 *2)) (-4 *4 (-1262 *2)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) + (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5))))) + (-5 *1 (-997 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1161 *3 *4)) (-14 *3 (-938)) (-4 *4 (-374)) + (-5 *1 (-1012 *3 *4))))) +(((*1 *1) (-5 *1 (-590))) + ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-875)))) + ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1177)) (-5 *4 (-874)) (-5 *2 (-1291)) (-5 *1 (-875)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1176 *4)) + (-4 *4 (-1119)) (-4 *4 (-1236))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-461 *5 *6 *7 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) + (-4 *3 (-13 (-1119) (-34)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) + (-5 *1 (-178 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1286 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1068)) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1262 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-656 (-304 *4))) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) + (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1262 (-419 *2))) + (-4 *2 (-1262 *5)) (-5 *1 (-217 *5 *2 *6 *3)) + (-4 *3 (-353 *5 *2 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1200)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-162)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-688)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1085)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1115))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1246 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-996 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *1 (-996 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-171 (-326 *4))) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) + (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-171 *3)) (-5 *1 (-1226 *4 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237))))) + (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1176 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1237 *3)) (-4 *3 (-1119)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1119)) (-5 *2 (-112)) + (-5 *1 (-1237 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771))))) +(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-4 *2 (-1262 *5)) + (-5 *1 (-1280 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1277 *5))))) (((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-938)) (-4 *5 (-568)) (-5 *2 (-701 *5)) - (-5 *1 (-973 *5 *3)) (-4 *3 (-668 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-220)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-451)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-850)))) + ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1134)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-656 (-1200))) (-5 *3 (-1200)) (-5 *1 (-1137))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) + ((*1 *2 *1) + (-12 (-4 *1 (-375 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177)))) + ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-450 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) + ((*1 *2 *1) (-12 (-4 *1 (-847 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-982)))) + ((*1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-1094 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1134)))) + ((*1 *1 *1) (-5 *1 (-1195)))) +(((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1 *1) (-4 *1 (-1079)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-1200)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-1200))) (-5 *1 (-1200))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145))))) +(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-767))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-656 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) + (-5 *1 (-461 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) - (-4 *2 - (-13 (-414) - (-10 -7 (-15 -4092 (*2 *4)) (-15 -3225 ((-938) *2)) - (-15 -1999 ((-1287 *2) (-938))) (-15 -3847 (*2 *2))))) - (-5 *1 (-367 *2 *4))))) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-1286 (-701 *4))))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 (-701 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) + (-5 *2 (-1286 (-701 (-419 (-969 *5))))) (-5 *1 (-1105 *5)) + (-5 *4 (-701 (-419 (-969 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1195))) (-4 *5 (-374)) + (-5 *2 (-1286 (-701 (-969 *5)))) (-5 *1 (-1105 *5)) + (-5 *4 (-701 (-969 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) + (-5 *2 (-1286 (-701 *4))) (-5 *1 (-1105 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1068)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4385 *7)))) - (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -4385 *7)))) - (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1126 *3 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1119))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-264))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-419 (-576))))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-976))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *1) (-5 *1 (-874))) + ((*1 *2 *3) + (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1179 *3)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) + (-5 *1 (-315))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) + (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) + (-4 *3 (-660 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068))))) (((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) + (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1236))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4464 "*"))) (-4 *5 (-384 *2)) (-4 *6 (-384 *2)) - (-4 *2 (-1068)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) - (-4 *4 (-699 *2 *5 *6))))) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2861 *4))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276))))) + (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 *4))))) +(((*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198)))) + ((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)) - (-4 *2 (-464)))) + (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *3 (-656 (-576))) + (-5 *1 (-896))))) +(((*1 *2 *3) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1176 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2691 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-571))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-656 *3)) + (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1128 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) + (-5 *2 + (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) + (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) + (-14 *6 (-656 (-1195))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1263 (-576))) (-5 *2 (-656 (-576))) - (-5 *1 (-498 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *3 (-464))))) -(((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1263 *4)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) + (-12 (-4 *4 (-13 (-317) (-148))) + (-5 *2 + (-656 (-2 (|:| -3416 (-1191 *4)) (|:| -1809 (-656 (-969 *4)))))) + (-5 *1 (-1097 *4 *5)) (-5 *3 (-656 (-969 *4))) + (-14 *5 (-656 (-1195))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) + (-5 *2 + (-656 (-2 (|:| -3416 (-1191 *5)) (|:| -1809 (-656 (-969 *5)))))) + (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) + (-14 *6 (-656 (-1195)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-938)) (-5 *1 (-1049 *2)) + (-4 *2 (-13 (-1119) (-10 -8 (-15 -3083 ($ $ $)))))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *1 *1) (-4 *1 (-1163)))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1213 *4 *5)) + (-4 *4 (-1119)) (-4 *5 (-1119))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-1166 *3))))) +(((*1 *1 *1) + (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) + (-4 *4 (-275 *3)) (-4 *5 (-805))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1119))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-105))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1192 *4)) - (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1178)) (-4 *1 (-375 *2 *4)) (-4 *2 (-1119)) - (-4 *4 (-1119)))) - ((*1 *1 *2) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-771))))) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1960 *4))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-1176 (-1176 (-969 *5)))) - (-5 *1 (-1295 *5)) (-5 *4 (-1176 (-969 *5)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-576)) (-5 *1 (-390))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1080 (-1043 *3) (-1192 (-1043 *3)))) - (-5 *1 (-1043 *3)) (-4 *3 (-13 (-860) (-374) (-1041)))))) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-1195)) (-4 *6 (-442 *5)) + (-4 *5 (-1119)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1068) (-651 *4))) + (-4 *4 (-568)) (-5 *2 (-1286 *4)) (-5 *1 (-650 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) (-5 *2 (-112)) + (-5 *1 (-368 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1222) (-442 *5))) + (-12 (-5 *4 (-304 (-855 *3))) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-3 (-855 *3) @@ -4197,8 +9733,8 @@ "failed")) (-5 *1 (-648 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1178)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) + (|partial| -12 (-5 *4 (-304 *3)) (-5 *5 (-1177)) + (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-855 *3)) (-5 *1 (-648 *6 *3)))) ((*1 *2 *3 *4) @@ -4219,1192 +9755,1600 @@ "failed")) (-5 *1 (-649 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-304 (-419 (-969 *6)))) (-5 *5 (-1178)) + (|partial| -12 (-5 *4 (-304 (-419 (-969 *6)))) (-5 *5 (-1177)) (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-649 *6))))) +(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1205))))) +(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1291)) (-5 *1 (-875))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-1191 *4)) + (-4 *4 (-13 (-442 *7) (-27) (-1221))) + (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) + (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1191 *4))) + (-4 *4 (-13 (-442 *7) (-27) (-1221))) + (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) + (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) + (-4 *6 (-1262 *5)) (-5 *2 (-1191 (-1191 *7))) + (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1262 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-254))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-656 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) - (-5 *2 (-1054)) (-5 *1 (-758))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-656 (-1196))) (-4 *2 (-174)) - (-4 *4 (-243 (-2048 *5) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2550 *3) (|:| -3175 *4)) - (-2 (|:| -2550 *3) (|:| -3175 *4)))) - (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) - (-4 *7 (-966 *2 *4 (-876 *5)))))) -(((*1 *2) - (-12 (-5 *2 (-1287 (-1120 *3 *4))) (-5 *1 (-1120 *3 *4)) - (-14 *3 (-938)) (-14 *4 (-938))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *3 (-915 *6)) - (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4462))))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-374)) - (-4 *5 (-13 (-374) (-860)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-1192 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-107 *3))))) + (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-1183 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1288)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1288))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *1)) (-5 *4 (-1287 *1)) (-4 *1 (-651 *5)) - (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -2215 (-701 *5)) (|:| |vec| (-1287 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) - (-5 *2 (-701 *4)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) - (-5 *2 (-2 (|:| -2215 (-701 *4)) (|:| |vec| (-1287 *4)))))) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-651 *4)) (-4 *4 (-1068)) - (-5 *2 (-701 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1068))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3))))) + (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3713 (-656 *6))) + *7 *6)) + (-4 *6 (-374)) (-4 *7 (-668 *6)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1286 *6) "failed")) + (|:| -3713 (-656 (-1286 *6))))) + (-5 *1 (-825 *6 *7)) (-5 *4 (-1286 *6))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) + (-5 *1 (-269 *2)) (-4 *2 (-1236)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1195)) (-5 *2 (-52)) + (-5 *1 (-270))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) - (-14 *4 (-656 (-1196)))))) + (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1296))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1195)) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-4 *4 (-13 (-29 *6) (-1221) (-976))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3713 (-656 *4)))) + (-5 *1 (-813 *6 *4 *3)) (-4 *3 (-668 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) - (-5 *2 (-112))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-390)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-960 *5)) (-4 *5 (-1068)) (-5 *2 (-783)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-938)) (-4 *5 (-1068)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-938))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-135))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-783)) - (-4 *5 (-13 (-464) (-1057 (-576)))) (-4 *5 (-568)) - (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *5 (-624 $)) $)) - (-15 -3905 ((-1144 *5 (-624 $)) $)) - (-15 -4092 ($ (-1144 *5 (-624 $)))))))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1112 *3)) (-4 *3 (-1237))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) + (-14 *4 *2)))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-317)) + (-5 *2 (-783)) (-5 *1 (-467 *5 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) + (-4 *2 (-1236))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) + ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) + ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-783)) (-4 *5 (-174)))) + ((*1 *2 *2 *3) + (-12 + (-5 *2 + (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) + (-253 *4 (-419 (-576))))) + (-5 *3 (-656 (-876 *4))) (-14 *4 (-656 (-1195))) (-14 *5 (-783)) + (-5 *1 (-517 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-4 *2 (-442 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1057 *4)) (-4 *3 (-568))))) +(((*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) + ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) + (-5 *2 + (-2 (|:| A (-701 *5)) + (|:| |eqs| + (-656 + (-2 (|:| C (-701 *5)) (|:| |g| (-1286 *5)) (|:| -3896 *6) + (|:| |rh| *5)))))) + (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *5)) (-5 *4 (-1286 *5)) + (-4 *6 (-668 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-668 *5)) + (-5 *2 (-2 (|:| -2689 (-701 *6)) (|:| |vec| (-1286 *5)))) + (-5 *1 (-825 *5 *6)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1045 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1 *1) (-5 *1 (-874)))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *2 (-1084 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) - (-4 *3 (-1090 *4 *5 *6 *2))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) - (-4 *2 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1119))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-683)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) + (-14 *4 (-938))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *4)) (-4 *4 (-1119)) (-5 *2 (-783)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *2 (-23)) (-5 *1 (-661 *4 *2 *5)) (-4 *4 (-1119)) (-14 *5 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-982))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1178) (-786))) (-5 *1 (-115))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-864 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) -(((*1 *2) - (-12 (-14 *4 (-783)) (-4 *5 (-1237)) (-5 *2 (-135)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1068)) (-5 *2 (-938)))) - ((*1 *2) (-12 (-4 *1 (-1294 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2128 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1263 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-836)) (-5 *1 (-837))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-656 (-1196))) (-4 *2 (-174)) - (-4 *3 (-243 (-2048 *4) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *3)) - (-2 (|:| -2550 *5) (|:| -3175 *3)))) - (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-862)) - (-4 *7 (-966 *2 *3 (-876 *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) - ((*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *6)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) - (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *3) (|:| |radicand| *6))) - (-5 *1 (-149 *5 *6 *7)) (-5 *4 (-783)) (-4 *7 (-1263 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-130))) - ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1) (-5 *1 (-558))) ((*1 *1) (-5 *1 (-559))) - ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) - ((*1 *1) (-4 *1 (-738))) ((*1 *1) (-5 *1 (-1196))) - ((*1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938)))) - ((*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-938)))) - ((*1 *1) (-5 *1 (-1242))) ((*1 *1) (-5 *1 (-1243))) - ((*1 *1) (-5 *1 (-1244))) ((*1 *1) (-5 *1 (-1245)))) -(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-52))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) - (-5 *2 (-1054)) (-5 *1 (-761))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-1111 (-969 (-576)))) (-5 *2 (-340)) - (-5 *1 (-342)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) - (-4 *3 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841)) (-5 *3 (-1178))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) - (-5 *2 (-576)) (-5 *1 (-1133 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-896)))) - ((*1 *1 *1) (-5 *1 (-990))) - ((*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 *4)))) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1289))))) +(((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1286 *5)) (-5 *3 (-783)) (-5 *4 (-1139)) (-4 *5 (-360)) + (-5 *1 (-540 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-304 (-969 (-576)))) - (-5 *2 - (-2 (|:| |varOrder| (-656 (-1196))) - (|:| |inhom| (-3 (-656 (-1287 (-783))) "failed")) - (|:| |hom| (-656 (-1287 (-783)))))) - (-5 *1 (-241))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *4 (-1196)) - (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-586 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-858))))) -(((*1 *2 *3) - (-12 (-5 *2 (-624 *4)) (-5 *1 (-623 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1119))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-143 *2 *4 *3)) - (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-515 *2 *4 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-384 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *4)) (-4 *4 (-1011 *2)) (-4 *2 (-568)) - (-5 *1 (-705 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1011 *2)) (-4 *2 (-568)) (-5 *1 (-1256 *2 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1178)) (-5 *1 (-798))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-886)))) - ((*1 *2 *3) - (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) - (-5 *2 (-1054)) (-5 *1 (-759))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1222) (-976) (-29 *4)))))) + (-12 (-5 *3 (-938)) (-5 *4 (-430 *6)) (-4 *6 (-1262 *5)) + (-4 *5 (-1068)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6))))) (((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2582 *1))) - (-4 *1 (-864 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) +(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) - (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) - (-5 *4 (-326 (-390))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) - (-5 *4 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-576)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-171 (-390))))) - (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) + (-12 + (-5 *3 + (-656 + (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1191 *2)) + (|:| |logand| (-1191 *2))))) + (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-374)) (-5 *1 (-598 *2))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) + (|:| |tol| (-227)))) + (-5 *2 (-112)) (-5 *1 (-212))))) +(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))))) + ((*1 *1 *1) (-5 *1 (-390))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) + (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) + (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1262 *4)) (-4 *4 (-1240)) + (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1262 (-419 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) + (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) + (-4 *1 (-378 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) - (-5 *4 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) - (-5 *4 (-326 (-711))) (-5 *1 (-340)))) + (-12 (-5 *2 (-1286 *4)) (-5 *3 (-1286 *1)) (-4 *4 (-174)) + (-4 *1 (-381 *4 *5)) (-4 *5 (-1262 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) + (-4 *4 (-1262 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2 *1) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-5 *2 (-112)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1262 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-738)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) + (-5 *2 (-112))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) + (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-1299 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-969 (-576)))) - (-5 *4 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-340)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) - (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))) + (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) + (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1299 *5 *6 *7 *8))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-4 *3 (-1084 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5))))) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-4 *3 (-1084 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) + (-5 *1 (-159 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) (-5 *2 (-576)) (-5 *1 (-206))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-503))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1199))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) + ((*1 *1) (-5 *1 (-874))) + ((*1 *1) + (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) + (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1104))) + ((*1 *1) + (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) + (-4 *3 (-13 (-1119) (-34))))) + ((*1 *1) (-5 *1 (-1198))) ((*1 *1) (-5 *1 (-1199)))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1) (-4 *1 (-360)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-171 (-419 (-576))))) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) + (-5 *2 (-656 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1221) (-1021)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-944)) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) + (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) + (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) + (-5 *1 (-154))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 - (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 (-171 *4))))))) - (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) + (-5 *1 (-461 *3 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) (-5 *1 (-763))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) - (-5 *2 (-1287 (-576))) (-5 *1 (-1315 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) - (-4 *4 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-915 *3)) (-5 *1 (-598 *2)) - (-5 *3 (-1196)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) - (-4 *4 (-1119)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1263 *3)) (-4 *3 (-1068))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-840) (-1068))) (-5 *2 (-1177)) + (-5 *1 (-838 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *1 *1) (|partial| -4 *1 (-146))) ((*1 *1 *1) (-4 *1 (-360))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-146)) (-4 *1 (-926))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-503)) (-5 *4 (-971)) (-5 *2 (-703 (-545))) - (-5 *1 (-545)))) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-840) (-1068))) + (-5 *2 (-1177)) (-5 *1 (-838 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-971)) (-4 *3 (-1119)) (-5 *2 (-703 *1)) - (-4 *1 (-779 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) - (-5 *2 (-419 (-576))) (-5 *1 (-1039 *4)) (-4 *4 (-1263 (-576)))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317))))) -(((*1 *1 *1) (-4 *1 (-175))) - ((*1 *1 *1) - (-12 (-4 *1 (-375 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1287 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3940 (-115)) (|:| |arg| (-656 (-905 *3))))) - (-5 *1 (-905 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-905 *4))) - (-5 *1 (-905 *4)) (-4 *4 (-1119))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) (-5 *5 (-1192 *2)) - (-4 *2 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-624 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1196))) - (-5 *5 (-419 (-1192 *2))) (-4 *2 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *6 *2 *7)) (-4 *7 (-1119))))) + (-12 (-5 *3 (-834)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-840) (-1068))) + (-5 *2 (-1291)) (-5 *1 (-838 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-834)) (-5 *4 (-326 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-840) (-1068))) (-5 *2 (-1291)) (-5 *1 (-838 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-840)) (-5 *2 (-1177)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-840)) (-5 *3 (-112)) (-5 *2 (-1177)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *2 (-1291)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-840)) (-5 *3 (-834)) (-5 *4 (-112)) (-5 *2 (-1291))))) +(((*1 *1 *1 *1) (-5 *1 (-874)))) (((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-855 *3))) (-4 *3 (-13 (-1222) (-976) (-29 *5))) - (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *1) (-4 *1 (-360))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1111 (-855 *3))) (-5 *5 (-1178)) - (-4 *3 (-13 (-1222) (-976) (-29 *6))) - (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1191 *5))) + (|:| |prim| (-1191 *5)))) + (-5 *1 (-444 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-568) (-148))) (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-656 (-855 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-221 *6 *3)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1191 *3)) + (|:| |pol2| (-1191 *3)) (|:| |prim| (-1191 *3)))) + (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-969 *5)) (-5 *4 (-1195)) (-4 *5 (-13 (-374) (-148))) + (-5 *2 + (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) + (|:| |prim| (-1191 *5)))) + (-5 *1 (-977 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1111 (-855 (-326 *5)))) - (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1195))) + (-4 *5 (-13 (-374) (-148))) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) + (-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 *5))) + (|:| |prim| (-1191 *5)))) + (-5 *1 (-977 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1111 (-855 (-326 *6)))) - (-5 *5 (-1178)) - (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1195))) (-5 *5 (-1195)) + (-4 *6 (-13 (-374) (-148))) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-855 (-419 (-969 *5))))) (-5 *3 (-419 (-969 *5))) - (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-2 (|:| -1706 (-656 (-576))) (|:| |poly| (-656 (-1191 *6))) + (|:| |prim| (-1191 *6)))) + (-5 *1 (-977 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) + (-14 *4 (-576))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) + (-5 *1 (-768))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *8 (-1084 *5 *6 *7)) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-656 (-855 (-326 *5)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1111 (-855 (-419 (-969 *6))))) (-5 *5 (-1178)) - (-5 *3 (-419 (-969 *6))) - (-4 *6 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-2 (|:| |val| (-656 *8)) + (|:| |towers| (-656 (-1046 *5 *6 *7 *8))))) + (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *8 (-1084 *5 *6 *7)) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-656 (-855 (-326 *6)))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-222 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-3 *3 (-656 *3))) (-5 *1 (-440 *5 *3)) - (-4 *3 (-13 (-1222) (-976) (-29 *5))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) - (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3) (-12 (-5 *3 (-781)) (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) - (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-1113 (-855 (-390)))) - (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) - (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) - (-5 *5 (-390)) (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-1113 (-855 (-390))))) - (-5 *5 (-390)) (-5 *6 (-1082)) (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) - (-5 *5 (-1178)) (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-390))) (-5 *4 (-1111 (-855 (-390)))) - (-5 *5 (-1196)) (-5 *2 (-1054)) (-5 *1 (-577)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) - (-5 *2 (-598 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-3 (-326 *5) (-656 (-326 *5)))) (-5 *1 (-601 *5)))) - ((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-752 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-862)) - (-4 *3 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-969 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1068)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-4 *2 (-862)) - (-5 *1 (-1145 *3 *2 *4)) (-4 *4 (-966 *3 (-543 *2) *2)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) - (-5 *1 (-1180 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1187 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1193 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1194 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *1 (-1231 *3)) (-4 *3 (-38 (-419 (-576)))) - (-4 *3 (-1068)))) - ((*1 *1 *1 *2) - (-3765 - (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1068)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1196)) (-4 *1 (-1247 *3)) (-4 *3 (-1068)) - (-12 (|has| *3 (-15 -1541 ((-656 *2) *3))) - (|has| *3 (-15 -3597 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) - ((*1 *1 *1) - (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1251 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *1) - (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-3765 - (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1068)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1196)) (-4 *1 (-1268 *3)) (-4 *3 (-1068)) - (-12 (|has| *3 (-15 -1541 ((-656 *2) *3))) - (|has| *3 (-15 -3597 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + (-2 (|:| |val| (-656 *8)) + (|:| |towers| (-656 (-1165 *5 *6 *7 *8))))) + (-5 *1 (-1165 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-938))) (-5 *2 (-1197 (-419 (-576)))) + (-5 *1 (-192))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) ((*1 *1 *1) - (-12 (-4 *1 (-1268 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1272 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-3765 - (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1068)) - (-12 (-4 *3 (-29 (-576))) (-4 *3 (-976)) (-4 *3 (-1222)) - (-4 *3 (-38 (-419 (-576)))))) - (-12 (-5 *2 (-1196)) (-4 *1 (-1278 *3)) (-4 *3 (-1068)) - (-12 (|has| *3 (-15 -1541 ((-656 *2) *3))) - (|has| *3 (-15 -3597 (*3 *3 *2))) (-4 *3 (-38 (-419 (-576)))))))) + (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) + (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-938)))) + ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) + ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) ((*1 *1 *1) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1283 *4)) (-14 *4 (-1196)) (-5 *1 (-1279 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068)) (-14 *5 *3)))) + (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1286 (-711))) (-5 *1 (-315))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1191 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1221))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) + (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1191 *3))) + (-4 *3 (-13 (-442 *6) (-27) (-1221))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) + (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-969 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) + (-5 *2 (-1191 (-969 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1191 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1200) (-783)))) (-5 *1 (-343))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-941 *4 *5 *6 *3)) + (-4 *3 (-966 *4 *6 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) + (-5 *1 (-1179 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1119))))) -(((*1 *2 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) + (-4 *1 (-442 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) - (-5 *2 - (-2 (|:| |dpolys| (-656 (-253 *5 *6))) - (|:| |coords| (-656 (-576))))) - (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-1201) (-783)))) (-5 *1 (-343))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1) - (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) + (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) + (-4 *3 (-1119)))) ((*1 *2 *1) - (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-978 *3)) (-4 *3 (-557))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1263 *3)) (-5 *1 (-411 *3 *2)) - (-4 *3 (-13 (-374) (-148)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) - (-4 *1 (-1090 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066))))) + (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) + (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) + (-5 *1 (-967 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) + (-15 -1549 (*7 $)))))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) (((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-969 (-576))))) - (-5 *2 - (-656 - (-2 (|:| |radval| (-326 (-576))) (|:| |radmult| (-576)) - (|:| |radvect| (-656 (-701 (-326 (-576)))))))) - (-5 *1 (-1050))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1159 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1119) (-34))) (-4 *6 (-13 (-1119) (-34))) - (-5 *2 (-112)) (-5 *1 (-1160 *5 *6))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4463)) (-4 *1 (-384 *3)) - (-4 *3 (-1237))))) -(((*1 *1) (-5 *1 (-590))) - ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-875)))) - ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-875)))) + (-12 (-5 *3 (-1 (-1176 *4) (-1176 *4))) (-5 *2 (-1176 *4)) + (-5 *1 (-1312 *4)) (-4 *4 (-1236)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-874)) (-5 *2 (-1292)) (-5 *1 (-875)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1176 *4)) - (-4 *4 (-1119)) (-4 *4 (-1237))))) + (-12 (-5 *3 (-1 (-656 (-1176 *5)) (-656 (-1176 *5)))) (-5 *4 (-576)) + (-5 *2 (-656 (-1176 *5))) (-5 *1 (-1312 *5)) (-4 *5 (-1236))))) +(((*1 *1 *1 *1) (-5 *1 (-874)))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1129))))) + (-12 (-5 *3 (-656 (-1177))) (-5 *2 (-1177)) (-5 *1 (-194)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) + (-4 *3 (-1119))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 + (-3 (|:| |overq| (-1191 (-419 (-576)))) + (|:| |overan| (-1191 (-48))) (|:| -4170 (-112)))) + (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1253 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-767))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-390)) (-5 *1 (-1082))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1148 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-969 *5)))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-304 (-326 *5)))) - (-5 *1 (-1148 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1148 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1148 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-13 (-317) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *4))))) (-5 *1 (-1148 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-969 *5))))) (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *5))))) - (-5 *1 (-1148 *5)))) + (-12 (-5 *3 (-576)) (-5 *4 (-430 *2)) (-4 *2 (-966 *7 *5 *6)) + (-5 *1 (-754 *5 *6 *7 *2)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-317))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-938)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1191 *1)) + (-4 *1 (-339 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) + (-4 *2 (-1262 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) - (-4 *4 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-304 (-326 *4))))) - (-5 *1 (-1148 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-115) (-115))) (-5 *1 (-115))))) + (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-1191 *4)) + (-5 *1 (-540 *4))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-1286 + (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) + (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -4040 (-576)) + (|:| -3347 (-576)) (|:| |spline| (-576)) (|:| -3679 (-576)) + (|:| |axesColor| (-886)) (|:| -2350 (-576)) + (|:| |unitsColor| (-886)) (|:| |showing| (-576))))) + (-5 *1 (-1287))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236))))) (((*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 (-905 *6))) - (-5 *5 (-1 (-902 *6 *8) *8 (-905 *6) (-902 *6 *8))) (-4 *6 (-1119)) - (-4 *8 (-13 (-1068) (-626 (-905 *6)) (-1057 *7))) - (-5 *2 (-902 *6 *8)) (-4 *7 (-1068)) (-5 *1 (-958 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) - (-5 *2 (-1054)) (-5 *1 (-852))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -2373 *3)))) - (-5 *1 (-218 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1) (-12 (-4 *1 (-1140 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))) -(((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))) -(((*1 *2 *1) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1263 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2996 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1) (-12 (-5 *2 (-597)) (-5 *1 (-290))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1068)) + (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-864 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) + (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-865 *5 *3)) + (-4 *3 (-864 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))) (((*1 *2 *3 *3 *4) (-12 (-5 *4 (-783)) (-4 *5 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5))))) + (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 *3)) (-5 *1 (-988 *4 *3)) + (-4 *3 (-1262 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 *7)) (-5 *3 (-576)) (-4 *7 (-966 *6 *4 *5)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) - (-5 *1 (-331 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-759))))) + (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4))) + (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1287 *4))) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) - (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) - (-5 *2 (-656 (-1287 *3)))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-194))))) -(((*1 *2 *1) (-12 (-5 *2 (-256)) (-5 *1 (-343))))) -(((*1 *2 *3) - (-12 (-5 *3 (-969 (-227))) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2996 *3) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) - (-5 *3 (-656 (-576)))))) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-701 *4)) (-4 *4 (-1068)) (-5 *1 (-1161 *3 *4)) + (-14 *3 (-783))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-598 *3) *3 (-1195))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1195))) + (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1057 *4)) (-4 *3 (-442 *7)) + (-5 *4 (-1195)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464)) + (-4 *7 (-899 (-576))) (-4 *7 (-1119)) (-5 *2 (-598 *3)) + (-5 *1 (-585 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1262 *5)) + (-5 *2 (-656 (-2 (|:| -1398 *5) (|:| -3896 *3)))) + (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) + (-4 *7 (-668 (-419 *6)))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) (((*1 *2 *3) - (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1312))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-783)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) + (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) + (-5 *4 (-656 (-938))) (-5 *5 (-656 (-270))) (-5 *1 (-480)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) + (-5 *4 (-656 (-938))) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480)))) + ((*1 *1 *1) (-5 *1 (-480)))) +(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-874)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-960 *4))) (-4 *1 (-1153 *4)) (-4 *4 (-1068)) - (-5 *2 (-783))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-1139)) (-5 *2 (-112)) (-5 *1 (-833))))) + (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1291)) (-5 *1 (-480))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1104))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874)) + (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1119)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1068)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-874)))) + ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-874)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-874)) (-5 *1 (-1191 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-340))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1177)) (-5 *1 (-798))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1119)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) + (-5 *1 (-114 *4)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1119))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) + (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1119) (-34))) + (-4 *4 (-13 (-1119) (-34)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1286 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) + (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4)))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1241)) - (-4 *6 (-1263 (-419 *5))) - (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-353 *4 *5 *6))))) + (-12 (-5 *3 (-576)) (-4 *1 (-333 *4 *2)) (-4 *4 (-1119)) + (-4 *2 (-132))))) +(((*1 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) + (-4 *2 (-1236)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (|has| *1 (-6 -4461)) + (-4 *1 (-152 *2)) (-4 *2 (-1236)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) + (-4 *2 (-1236)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *2)) + (-4 *2 (-1236)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1068)) + (-5 *2 (-2 (|:| -3789 (-1191 *4)) (|:| |deg| (-938)))) + (-5 *1 (-223 *4 *5)) (-5 *3 (-1191 *4)) (-4 *5 (-568)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) + (-4 *6 (-1236)) (-4 *2 (-1236)) (-5 *1 (-244 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1262 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1119)))) + ((*1 *1 *1) + (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1262 *2)) + (-4 *4 (-1262 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1236)) (-4 *2 (-1236)) + (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119)) + (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) + ((*1 *1 *1) (-5 *1 (-507))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) + (-4 *2 (-1236)) (-5 *1 (-654 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068)) + (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) + (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) (-4 *3 (-374)) + (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1262 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-975 *5)) (-4 *5 (-1236)) + (-4 *2 (-1236)) (-5 *1 (-974 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5)) + (-14 *6 (-656 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1068)) (-4 *2 (-1068)) + (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) + (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) + (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *12 (-1072 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1176 *5)) (-4 *5 (-1236)) + (-4 *2 (-1236)) (-5 *1 (-1174 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1229 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) + (-4 *7 (-862)) (-4 *2 (-1084 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) + (-4 *2 (-1236)) (-5 *1 (-1285 *5 *2))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) + (-4 *2 (-1277 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1262 *3)) + (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1277 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1277 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) + (-5 *1 (-1172 *3))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1195)) + (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-2 (|:| -3116 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-503))))) (((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-173)))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1195))) + (-4 *2 (-13 (-442 (-171 *5)) (-1021) (-1221))) (-4 *5 (-568)) + (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1021) (-1221)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561)))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-114 *3)) (-4 *3 (-1119))))) + (-2 (|:| |mval| (-701 *3)) (|:| |invmval| (-701 *3)) + (|:| |genIdeal| (-516 *3 *4 *5 *6)))) + (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) + (-4 *3 (-1119)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) + (-5 *1 (-921 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-938)) (-5 *2 (-112)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1221))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 (-1191 (-419 (-1191 *6)))) (-5 *1 (-572 *5 *6 *7)) + (-5 *3 (-1191 *6)) (-4 *7 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1262 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1191 *11)) (-5 *6 (-656 *10)) + (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862)) + (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-966 *11 *9 *10)) + (-5 *2 (-656 (-1191 *5))) (-5 *1 (-754 *9 *10 *11 *5)) + (-5 *3 (-1191 *5)))) + ((*1 *2 *1) + (-12 (-4 *2 (-966 *3 *4 *5)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) + (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-656 (-1046 *5 *6 *7 *3))) (-5 *1 (-1046 *5 *6 *7 *3)) + (-4 *3 (-1084 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-656 *6)) (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1090 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-656 (-1165 *5 *6 *7 *3))) (-5 *1 (-1165 *5 *6 *7 *3)) + (-4 *3 (-1084 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-982))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-419 (-576))) + (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) + (-14 *3 (-576)) (-14 *4 (-783))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1199)))) + (-12 (-5 *3 (-781)) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054)))) + (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) - (-5 *1 (-1199)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1292)) - (-5 *1 (-1199))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) - (-4 *3 (-1119))))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) - (-5 *1 (-760))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-905 (-576)))) - (-4 *5 (-899 (-576))) - (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1222) (-442 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1196)) (-5 *4 (-855 *2)) (-4 *2 (-1158)) - (-4 *2 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) - (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) - (-5 *1 (-579 *5 *2))))) + (-12 (-5 *3 (-781)) (-5 *4 (-1082)) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))) (|:| |extra| (-1054)))) + (-5 *1 (-577)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-799)) (-5 *3 (-1082)) + (-5 *4 + (-2 (|:| |fn| (-326 (-227))) + (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) + (|:| |extra| (-1054)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-799)) (-5 *3 (-1082)) + (-5 *4 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)) + (|:| |extra| (-1054)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-812)) (-5 *3 (-1082)) + (-5 *4 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-820)) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))))) + (-5 *1 (-817)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-820)) (-5 *4 (-1082)) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))))) + (-5 *1 (-817)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-851)) (-5 *3 (-1082)) + (-5 *4 + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) + (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-851)) (-5 *3 (-1082)) + (-5 *4 + (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-853)) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))))) + (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-853)) (-5 *4 (-1082)) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))))) + (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-910)) (-5 *3 (-1082)) + (-5 *4 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) + (|:| |tol| (-227)))) + (-5 *2 (-2 (|:| -2502 (-390)) (|:| |explanations| (-1177)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-913)) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))))) + (-5 *1 (-912)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-913)) (-5 *4 (-1082)) + (-5 *2 + (-2 (|:| -2502 (-390)) (|:| -2706 (-1177)) + (|:| |explanations| (-656 (-1177))))) + (-5 *1 (-912))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-767))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1236)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) + (-4 *2 (-1236))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34))) + (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *4 *5))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-112)) (-5 *1 (-310))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1119)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (-5 *1 (-103 *2))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1230 *5 *6 *7 *3)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -3500 *1) (|:| -4449 *1) (|:| |associate| *1))) - (-4 *1 (-568))))) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) + (-4 *2 + (-13 (-414) + (-10 -7 (-15 -3563 (*2 *4)) (-15 -1902 ((-938) *2)) + (-15 -3713 ((-1286 *2) (-938))) (-15 -4273 (*2 *2))))) + (-5 *1 (-367 *2 *4))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4461)) (-4 *1 (-152 *3)) + (-4 *3 (-1236)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1229 *4 *5 *3 *2)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1084 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-5 *1 (-1233 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-993))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-786)) (-5 *1 (-115))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-815))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1177)) (-5 *1 (-97))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) (((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-1287 *6)) (-5 *1 (-347 *3 *4 *5 *6)) - (-4 *6 (-353 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) + (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-576)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) + (-5 *1 (-461 *5 *6 *7 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1021)))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713))))) -(((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-717 *3 *4)) (-4 *3 (-1237)) (-4 *4 (-1237))))) + (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1177)) (-5 *2 (-656 (-703 (-290)))) (-5 *1 (-169))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-768))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1068)) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1262 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-635 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -4154 *4) (|:| |sol?| (-112))) + (-576) *4)) + (-4 *4 (-374)) (-4 *5 (-1262 *4)) (-5 *1 (-586 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1221) (-976)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1054)) (-5 *1 (-768))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1177)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1129))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-317)) - (-5 *2 (-783)) (-5 *1 (-467 *5 *3))))) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3887 *9)))) + (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) + (-5 *1 (-1088 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3887 *9)))) + (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1291)) + (-5 *1 (-1164 *5 *6 *7 *8 *9))))) (((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1192 (-969 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) + (-12 + (-5 *2 + (-1286 (-656 (-2 (|:| -3142 (-927 *3)) (|:| -3257 (-1139)))))) + (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) - (-5 *2 (-1192 (-969 *3))))) + (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3142 *3) (|:| -3257 (-1139)))))) + (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 (-3 (-1191 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-815))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) - (-5 *1 (-178 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-589)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-374)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-462 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) - (-5 *1 (-997 *6)) (-5 *3 (-701 *6))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-764))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *6)))) - (-5 *4 (-1045 (-855 (-576)))) (-5 *5 (-1196)) (-5 *7 (-419 (-576))) - (-4 *6 (-1068)) (-5 *2 (-874)) (-5 *1 (-607 *6))))) + (-12 (-5 *2 (-1286 (-656 (-2 (|:| -3142 *3) (|:| -3257 (-1139)))))) + (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1068)) + (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-938)) (-4 *5 (-1068)) + (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1221) (-294))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1262 *5))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-112)))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1195))))) + ((*1 *1 *1) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) + (-14 *3 (-656 (-1195)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-938)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) + (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1068)))) + ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) ((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4))))) -(((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1199))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4)) + (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1221))) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) + (-5 *1 (-595 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-598 (-419 (-969 *4)))) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1114 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1168 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860)) + (-4 *2 (-1168 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1301 (-1195) *3)) (-5 *1 (-1308 *3)) (-4 *3 (-1068)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1301 *3 *4)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068))))) -(((*1 *1 *1) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) (-4 *4 (-862)))) - ((*1 *1) (-4 *1 (-1171)))) + ((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1161 *3 *4)) (-5 *1 (-1012 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-374)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1068)) + (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) + (-4 *7 (-243 *3 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1045 (-855 (-576)))) + (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1068)) + (-5 *1 (-607 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) + (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1191 *7)) (-5 *3 (-576)) (-4 *7 (-966 *6 *4 *5)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) + (-5 *1 (-331 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *3 (-1263 (-419 (-576)))) - (-5 *2 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576)))) - (-5 *1 (-930 *3 *4)) (-4 *4 (-1263 (-419 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) - (-4 *3 (-1263 (-419 *4)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1080 (-1043 *4) (-1191 (-1043 *4)))) (-5 *3 (-874)) + (-5 *1 (-1043 *4)) (-4 *4 (-13 (-860) (-374) (-1041)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-270)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-794 *3)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-980 *3 *2)) (-4 *2 (-132)) (-4 *3 (-568)) - (-4 *3 (-1068)) (-4 *2 (-804)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1192 *3)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-990)) (-4 *2 (-132)) (-5 *1 (-1198 *3)) (-4 *3 (-568)) - (-4 *3 (-1068)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1260 *4 *3)) (-14 *4 (-1196)) - (-4 *3 (-1068))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-656 (-1192 *11))) (-5 *3 (-1192 *11)) - (-5 *4 (-656 *10)) (-5 *5 (-656 *8)) (-5 *6 (-656 (-783))) - (-5 *7 (-1287 (-656 (-1192 *8)))) (-4 *10 (-862)) - (-4 *8 (-317)) (-4 *11 (-966 *8 *9 *10)) (-4 *9 (-805)) - (-5 *1 (-719 *9 *10 *8 *11))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1290))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1054)) (-5 *1 (-764))))) + (-12 (-5 *2 (-656 (-969 *4))) (-5 *3 (-656 (-1195))) (-4 *4 (-464)) + (-5 *1 (-935 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3081 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -2960 (-419 *6)) + (|:| |special| (-419 *6)))) + (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4)) + (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -4143 *3) (|:| -4154 *3))) (-5 *1 (-911 *3 *5)) + (-4 *3 (-1262 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) + (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) (-4 *7 (-966 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) + (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1119)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1119))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938)))) + ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242))) + ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244)))) +(((*1 *2) + (-12 (-14 *4 (-783)) (-4 *5 (-1236)) (-5 *2 (-135)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-135)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *2 (-576)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1068)) (-5 *2 (-938)))) + ((*1 *2) (-12 (-4 *1 (-1293 *3)) (-4 *3 (-374)) (-5 *2 (-135))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + (-12 (-5 *3 (-656 (-419 (-969 (-576))))) + (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) + (-12 (-5 *3 (-656 (-304 (-419 (-969 (-576)))))) + (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 (-304 (-969 *4)))) + (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-304 (-419 (-969 (-576))))) + (-5 *2 (-656 (-304 (-969 *4)))) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1195)) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-4 *4 (-13 (-29 *6) (-1221) (-976))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -3713 (-656 *4)))) + (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-656 *2)) + (-4 *2 (-13 (-29 *6) (-1221) (-976))) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1286 *5) "failed")) + (|:| -3713 (-656 (-1286 *5))))) + (-5 *1 (-679 *5)) (-5 *4 (-1286 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1286 *5) "failed")) + (|:| -3713 (-656 (-1286 *5))))) + (-5 *1 (-679 *5)) (-5 *4 (-1286 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-5 *2 + (-656 + (-2 (|:| |particular| (-3 (-1286 *5) "failed")) + (|:| -3713 (-656 (-1286 *5)))))) + (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) + (-5 *2 + (-656 + (-2 (|:| |particular| (-3 (-1286 *5) "failed")) + (|:| -3713 (-656 (-1286 *5)))))) + (-5 *1 (-679 *5)) (-5 *4 (-656 (-1286 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) + (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3713 (-656 *4)))) + (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4462)))) + (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4462)))) + (-5 *2 + (-656 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3713 (-656 *7))))) + (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) + (-4 *3 (-699 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1195))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1221) (-976))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1195)) + (-4 *7 (-13 (-29 *6) (-1221) (-976))) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1286 *7)) (|:| -3713 (-656 (-1286 *7))))) + (-5 *1 (-814 *6 *7)) (-5 *4 (-1286 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1195)) + (-4 *6 (-13 (-29 *5) (-1221) (-976))) + (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-1286 *6))) (-5 *1 (-814 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) + (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-976))) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1286 *7)) (|:| -3713 (-656 (-1286 *7))))) + (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) + (-5 *5 (-1195)) (-4 *7 (-13 (-29 *6) (-1221) (-976))) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-2 (|:| |particular| (-1286 *7)) (|:| -3713 (-656 (-1286 *7))))) + (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1195)) + (-4 *7 (-13 (-29 *6) (-1221) (-976))) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -3713 (-656 *7))) *7 "failed")) + (-5 *1 (-814 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-115)) (-5 *5 (-1195)) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -3713 (-656 *3))) *3 "failed")) + (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1221) (-976))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) + (-4 *2 (-13 (-29 *6) (-1221) (-976))) (-5 *1 (-814 *6 *2)) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) + (-4 *2 (-13 (-29 *6) (-1221) (-976))) + (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *1 (-814 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1054)) (-5 *1 (-817)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-820)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) + (-5 *2 (-1054)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) + (-5 *2 (-1054)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1286 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) + (-5 *2 (-1054)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1286 (-326 *4))) (-5 *5 (-656 (-390))) + (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -3713 (-656 *6))) "failed") + *7 *6)) + (-4 *6 (-374)) (-4 *7 (-668 *6)) + (-5 *2 (-2 (|:| |particular| (-1286 *6)) (|:| -3713 (-701 *6)))) + (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1286 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1054)) (-5 *1 (-912)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-912)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) + (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) + (-5 *2 (-1054)) (-5 *1 (-912)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1177)) + (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1054)) + (-5 *1 (-912)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 (-390))) + (-5 *1 (-1042)) (-5 *4 (-390)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1042)) + (-5 *4 (-390)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) + (-5 *3 (-326 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) + (-5 *3 (-304 (-326 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) + (-5 *3 (-304 (-326 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) + (-5 *3 (-326 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1195))) + (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)) + (-5 *3 (-656 (-304 (-326 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1195))) + (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) + (-5 *1 (-1204 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-1195))) (-4 *5 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-1204 *5)) + (-5 *3 (-656 (-304 (-419 (-969 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-568)) + (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-1204 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) + (-5 *1 (-1204 *4)) (-5 *3 (-656 (-304 (-419 (-969 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) (-4 *5 (-568)) + (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1204 *5)) + (-5 *3 (-419 (-969 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) (-4 *5 (-568)) + (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1204 *5)) + (-5 *3 (-304 (-419 (-969 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) + (-5 *1 (-1204 *4)) (-5 *3 (-419 (-969 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) + (-5 *1 (-1204 *4)) (-5 *3 (-304 (-419 (-969 *4))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1025))))) (((*1 *1) - (-12 (-4 *1 (-416)) (-2433 (|has| *1 (-6 -4453))) - (-2433 (|has| *1 (-6 -4445))))) + (-12 (-4 *1 (-416)) (-2746 (|has| *1 (-6 -4452))) + (-2746 (|has| *1 (-6 -4444))))) ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862)))) ((*1 *2 *1) (-12 (-4 *1 (-842 *2)) (-4 *2 (-862)))) ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-862)))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-656 (-1192 *13))) (-5 *3 (-1192 *13)) - (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) - (-5 *7 (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| *13))))) - (-5 *8 (-656 (-783))) (-5 *9 (-1287 (-656 (-1192 *10)))) - (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-966 *10 *11 *12)) - (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1178)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) +(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) +(((*1 *2) + (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119))))) +(((*1 *1) (-5 *1 (-301)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1191 *7)) + (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1262 *5)) + (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1262 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399))))) +(((*1 *1 *1 *1) (-5 *1 (-130))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-14 *2 (-938)))) + ((*1 *1 *1 *1) (-5 *1 (-1241))) ((*1 *1 *1 *1) (-5 *1 (-1242))) + ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-1057 (-419 *2)))) (-5 *2 (-576)) - (-5 *1 (-116 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) - (-5 *2 (-783)) (-5 *1 (-962 *5 *6)) (-4 *6 (-1263 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) + (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) + (-5 *1 (-623 *2 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) + (-4 *5 (-805)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) + (-4 *5 (-1262 *4)) + (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3896 *5)))) + (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) + (-4 *6 (-668 (-419 *5)))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-656 (-1195))) (-4 *2 (-174)) + (-4 *4 (-243 (-3485 *5) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3257 *3) (|:| -4274 *4)) + (-2 (|:| -3257 *3) (|:| -4274 *4)))) + (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-862)) + (-4 *7 (-966 *2 *4 (-876 *5)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1286 (-656 (-576)))) (-5 *1 (-492)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1236)) (-5 *1 (-1176 *3))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1119)) + (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) + (-5 *1 (-1095 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) + (-5 *1 (-1095 *3 *4 *2)) + (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) +(((*1 *2 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |partsol| (-1286 (-419 (-969 *4)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *4))))))) + (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) + (-4 *7 (-966 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-4 *4 (-1262 *3)) + (-5 *2 + (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-1262 *3)) + (-5 *2 + (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) + (-5 *2 + (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-1004 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 *3)) + (-5 *2 + (-2 (|:| -3713 (-701 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-701 *3)))) + (-5 *1 (-1295 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) - (-14 *4 (-938))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + (-12 (-5 *2 (-1301 (-1195) *3)) (-4 *3 (-1068)) (-5 *1 (-1308 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-1068)) (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-938) (-938)))) (-5 *1 (-990))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) - (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-944)) (-5 *1 (-942 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-944)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) - (-5 *1 (-944))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) - (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1178)) (-5 *1 (-798))))) + (-12 (-5 *2 (-1301 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) + (-5 *1 (-1310 *3 *4))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390)))) (((*1 *1 *2) (-12 (-5 *2 (-656 (-340))) (-5 *1 (-340))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) - (-4 *4 (-275 *3)) (-4 *5 (-805))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-62 *3)) (-14 *3 (-1196)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-69 *3)) (-14 *3 (-1196)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-72 *3)) (-14 *3 (-1196)))) - ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-1292)))) - ((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-409)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) - ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1196)))) - (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *2)) (-4 *2 (-966 *3 *5 *4))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) - (-4 *3 (-1237))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-492))))) +(((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *1) (-5 *1 (-480)))) -(((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1059))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-764))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-786)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-786)) (-5 *1 (-115))))) + (-12 (-5 *3 (-701 (-419 (-969 *4)))) (-4 *4 (-464)) + (-5 *2 (-656 (-3 (-419 (-969 *4)) (-1184 (-1195) (-969 *4))))) + (-5 *1 (-302 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-701 (-171 (-419 (-576))))) + (-5 *2 + (-656 + (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-576)) + (|:| |outvect| (-656 (-701 (-171 *4))))))) + (-5 *1 (-776 *4)) (-4 *4 (-13 (-374) (-860)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) + (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) (-4 *4 (-360)) (-5 *2 (-783)) (-5 *1 (-357 *4)))) ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) @@ -5412,103 +11356,178 @@ ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) (-14 *4 - (-3 (-1192 *3) - (-1287 (-656 (-2 (|:| -1731 *3) (|:| -2550 (-1139))))))))) + (-3 (-1191 *3) + (-1286 (-656 (-2 (|:| -3142 *3) (|:| -3257 (-1139))))))))) ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) (-14 *4 (-938))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1035 *4 *5)) - (-5 *3 (-419 *5))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-767))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-4 *1 (-920 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *3)) - (-4 *3 (-1237)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1230 *4 *5 *3 *2)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *3 (-862)) (-4 *2 (-1084 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *1 (-1234 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) - (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) (((*1 *2 *3) + (-12 (-5 *3 (-944)) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) + (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) + (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) + (-5 *1 (-154)))) + ((*1 *2 *3) (-12 + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) + (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) + (-5 *1 (-154)) (-5 *3 (-656 (-960 (-227)))))) + ((*1 *2 *3) + (-12 + (-5 *2 + (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) + (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) + (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 (-227))))))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) +(((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) + (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-799)) (-5 *2 (-1054)) (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-158)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-227)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-419 (-576))) (-5 *1 (-390))))) + (-2 (|:| |fn| (-326 (-227))) + (|:| -2691 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-799)) (-5 *2 (-1054)) + (-5 *3 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1191 *6)) (-1191 *6))) + (-4 *6 (-374)) + (-5 *2 + (-656 + (-2 (|:| |outval| *7) (|:| |outmult| (-576)) + (|:| |outvect| (-656 (-701 *7)))))) + (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1262 *4))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1031))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1195)) (-5 *1 (-548))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1119)) (-5 *2 (-624 *5)) + (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315))))) +(((*1 *2 *2) + (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) + (-5 *1 (-178 *3))))) +(((*1 *1) (-5 *1 (-158))) + ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) +(((*1 *1 *1) (-5 *1 (-227))) + ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1158))) ((*1 *1 *1 *1) (-4 *1 (-1158)))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |nullBranch| "null") + (|:| |assignmentBranch| + (-2 (|:| |var| (-1195)) + (|:| |arrayIndex| (-656 (-969 (-576)))) + (|:| |rand| + (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) + (|:| |arrayAssignmentBranch| + (-2 (|:| |var| (-1195)) (|:| |rand| (-874)) + (|:| |ints2Floats?| (-112)))) + (|:| |conditionalBranch| + (-2 (|:| |switch| (-1194)) (|:| |thenClause| (-340)) + (|:| |elseClause| (-340)))) + (|:| |returnBranch| + (-2 (|:| -1911 (-112)) + (|:| -3142 + (-2 (|:| |ints2Floats?| (-112)) (|:| -2975 (-874)))))) + (|:| |blockBranch| (-656 (-340))) + (|:| |commentBranch| (-656 (-1177))) (|:| |callBranch| (-1177)) + (|:| |forBranch| + (-2 (|:| -2691 (-1111 (-969 (-576)))) + (|:| |span| (-969 (-576))) (|:| -2719 (-340)))) + (|:| |labelBranch| (-1139)) + (|:| |loopBranch| (-2 (|:| |switch| (-1194)) (|:| -2719 (-340)))) + (|:| |commonBranch| + (-2 (|:| -2706 (-1195)) (|:| |contents| (-656 (-1195))))) + (|:| |printBranch| (-656 (-874))))) + (-5 *1 (-340))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3887 *7)))) + (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-2 (|:| |val| (-656 *6)) (|:| -3887 *7)))) + (-4 *6 (-1084 *3 *4 *5)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-1126 *3 *4 *5 *6 *7))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) + (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-419 (-576))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) + (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) + (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1222) (-442 *5))) + (-4 *6 (-13 (-27) (-1221) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) + (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) - (-4 *7 (-13 (-27) (-1222) (-442 *6))) + (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) + (-4 *7 (-13 (-27) (-1221) (-442 *6))) (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) - (-4 *3 (-13 (-27) (-1222) (-442 *7))) + (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) + (-4 *3 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1222) (-442 *7))) + (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) + (-4 *8 (-13 (-27) (-1221) (-442 *7))) (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) + (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) + (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) (-5 *1 (-471 *8 *3)))) ((*1 *1 *2) @@ -5518,181 +11537,116 @@ (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-608 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *3)))) - (-4 *3 (-1068)) (-4 *1 (-1247 *3)))) + (-4 *3 (-1068)) (-4 *1 (-1246 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-1176 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))) - (-4 *4 (-1068)) (-4 *1 (-1268 *4)))) + (-4 *4 (-1068)) (-4 *1 (-1267 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-4 *1 (-1278 *3)))) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-4 *1 (-1277 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-783)) (|:| |c| *3)))) - (-4 *3 (-1068)) (-4 *1 (-1278 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2) - (-12 (-5 *2 (-701 (-927 *3))) (-5 *1 (-362 *3 *4)) (-14 *3 (-938)) - (-14 *4 (-938)))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-363 *3 *4)) (-4 *3 (-360)) - (-14 *4 - (-3 (-1192 *3) - (-1287 (-656 (-2 (|:| -1731 *3) (|:| -2550 (-1139))))))))) - ((*1 *2) - (-12 (-5 *2 (-701 *3)) (-5 *1 (-364 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-938))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-194)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-310)))) - ((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1178)) (-5 *1 (-315))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-862)) - (-4 *5 (-805)) (-4 *2 (-275 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *4))) (-5 *3 (-1192 *4)) - (-4 *4 (-926)) (-5 *1 (-675 *4))))) + (-4 *3 (-1068)) (-4 *1 (-1277 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *3 *2) - (-12 + (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-464)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-643 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1287)))) + ((*1 *1 *1) (-5 *1 (-1287)))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-220)))) + ((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-688)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1262 *6)) + (-4 *6 (-13 (-374) (-148) (-1057 *4))) (-5 *4 (-576)) (-5 *2 - (-656 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-805)) (-4 *3 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) - (-5 *1 (-461 *4 *5 *6 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-2 (|:| |start| *3) (|:| -3791 (-430 *3)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1290))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-759))))) -(((*1 *2 *1) (-12 (-4 *1 (-133)) (-5 *2 (-783)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-384 *3)) (-4 *3 (-1237)) - (-4 *3 (-1119)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) - (-5 *2 (-576)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) - (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-541)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576)) (-5 *3 (-142)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-576))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-996 *3 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1184 3 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) - ((*1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573))))) + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -3896 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1034 *6 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) + (-5 *1 (-212))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) - (-4 *3 (-1263 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-576)) + (|:| -1707 (-656 (-2 (|:| |irr| *3) (|:| -2011 (-576))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-576)) + (|:| -1707 (-656 (-2 (|:| |irr| *3) (|:| -2011 (-576))))))) + (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1177)) (-5 *3 (-576)) (-5 *1 (-246)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-656 (-1177))) (-5 *3 (-576)) (-5 *4 (-1177)) + (-5 *1 (-246)))) + ((*1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1264 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068))))) +(((*1 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1236))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1286 *4)) (-4 *4 (-1068)) (-4 *2 (-1262 *4)) + (-5 *1 (-456 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-419 (-1191 (-326 *5)))) (-5 *3 (-1286 (-326 *5))) + (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1149 *5))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-340)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-340))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) + (-12 (-5 *3 (-1191 (-969 *6))) (-4 *6 (-568)) + (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) + (-4 *5 (-805)) + (-4 *4 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)))))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1195)) (-5 *2 (-449)) (-5 *1 (-1199))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1236)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) + (-5 *1 (-1294 *4)) (-4 *4 (-374))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) (-4 *4 (-464)) (-4 *4 (-1119)) + (-5 *1 (-585 *4 *2)) (-4 *2 (-294)) (-4 *2 (-442 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195))))) (((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-12 (-4 *1 (-384 *3)) (-4 *3 (-1236)) (-4 *3 (-862)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1236)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-3 (|:| |nullBranch| "null") - (|:| |assignmentBranch| - (-2 (|:| |var| (-1196)) - (|:| |arrayIndex| (-656 (-969 (-576)))) - (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) - (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1196)) (|:| |rand| (-874)) - (|:| |ints2Floats?| (-112)))) - (|:| |conditionalBranch| - (-2 (|:| |switch| (-1195)) (|:| |thenClause| (-340)) - (|:| |elseClause| (-340)))) - (|:| |returnBranch| - (-2 (|:| -3372 (-112)) - (|:| -1731 - (-2 (|:| |ints2Floats?| (-112)) (|:| -2870 (-874)))))) - (|:| |blockBranch| (-656 (-340))) - (|:| |commentBranch| (-656 (-1178))) (|:| |callBranch| (-1178)) - (|:| |forBranch| - (-2 (|:| -2920 (-1111 (-969 (-576)))) - (|:| |span| (-969 (-576))) (|:| -4136 (-340)))) - (|:| |labelBranch| (-1139)) - (|:| |loopBranch| (-2 (|:| |switch| (-1195)) (|:| -4136 (-340)))) - (|:| |commonBranch| - (-2 (|:| -4124 (-1196)) (|:| |contents| (-656 (-1196))))) - (|:| |printBranch| (-656 (-874))))) - (-5 *1 (-340))))) -(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) - ((*1 *1 *1) (-4 *1 (-860))) - ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) - ((*1 *1 *1) (-4 *1 (-1079))) ((*1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862)) - (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) - (-4 *8 (-966 *3 *7 *6))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-419 (-969 *6)) (-1185 (-1196) (-969 *6)))) - (-5 *5 (-783)) (-4 *6 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *6))))) - (-5 *1 (-302 *6)) (-5 *4 (-701 (-419 (-969 *6)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-419 (-969 *5)) (-1185 (-1196) (-969 *5)))) - (|:| |eigmult| (-783)) (|:| |eigvec| (-656 *4)))) - (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) - (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) - (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5)))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-969 (-576))) (-5 *3 (-1196)) - (-5 *4 (-1113 (-419 (-576)))) (-5 *1 (-30))))) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-701 *5))) (-4 *5 (-317)) (-4 *5 (-1068)) + (-5 *2 (-1286 (-1286 *5))) (-5 *1 (-1048 *5)) (-5 *4 (-1286 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-91 *3))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *2 (-1292)) + (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-480)))) ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-999 *3)))) ((*1 *2 *1) @@ -5706,699 +11660,450 @@ ((*1 *1 *1 *2) (-12 (-5 *2 (-960 *3)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)) (-5 *3 (-227))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-276))))) + (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232)) (-5 *3 (-227))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-938)) (-5 *1 (-798))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-1008)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-4 *4 (-1236)) (-5 *1 (-1076 *3 *4)) + (-4 *3 (-1112 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1113 *4)) (-4 *4 (-1236)) + (-5 *1 (-1111 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1177)) (|:| -2706 (-1177)))) + (-5 *1 (-834))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-1157)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1291)) (-5 *1 (-1157))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -3341 *1) (|:| -4448 *1) (|:| |associate| *1))) + (-4 *1 (-568))))) +(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1292)) - (-5 *1 (-1238 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1119)) (-5 *2 (-1292)) - (-5 *1 (-1238 *4))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021) (-1222)))))) + (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1221))) + (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1021) (-1221)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1195))) (-4 *5 (-1068)) + (-5 *2 (-253 *4 *5)) (-5 *1 (-961 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-576)) (|has| *1 (-6 -4452)) (-4 *1 (-416)) + (-5 *2 (-938))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) + (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1191 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2) + (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1284 *3)) (-4 *3 (-1236)) (-4 *3 (-1068)) + (-5 *2 (-701 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-656 *4)) (-4 *4 (-862)) - (-5 *1 (-1207 *4))))) + (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) +(((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-990))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1054)) (-5 *1 (-765))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) + (-5 *1 (-1007 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) + (-5 *1 (-1126 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) - (-5 *1 (-770))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (-4 *4 (-1068)) - (-5 *1 (-1047 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) (-4 *4 (-1068)) - (-5 *1 (-1047 *4))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390)))) - (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-576)) - (-5 *6 - (-2 (|:| |try| (-390)) (|:| |did| (-390)) (|:| -4081 (-390)))) - (-5 *7 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) - (-5 *2 (-1054)) (-5 *1 (-760))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2582 *1))) - (-4 *1 (-864 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1196)) - (-4 *4 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) - (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-938)) (-5 *4 (-227)) (-5 *5 (-576)) (-5 *6 (-886)) - (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-220)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-850)))) - ((*1 *2 *1) (-12 (-5 *2 (-1137)) (-5 *1 (-1134)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1201))) (-5 *3 (-1201)) (-5 *1 (-1137))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-1068)) (-4 *6 (-966 *5 *4 *2)) - (-4 *2 (-862)) (-5 *1 (-967 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *6)) (-15 -3894 (*6 $)) - (-15 -3905 (*6 $))))))) + (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1177)) (|:| |prob| (-1177)))))) + (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) + (-14 *6 (-1195)) (-14 *7 *3)))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1195))) + (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -4154 *6) (|:| |sol?| (-112))) (-576) + *6)) + (-4 *6 (-374)) (-4 *7 (-1262 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-759))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) + (-5 *1 (-702 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) + (-4 *5 (-1262 *4)) (-5 *2 (-656 (-419 *5))) (-5 *1 (-1035 *4 *5)) + (-5 *3 (-419 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1236)) (-5 *2 (-1291))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) + (-5 *1 (-1206 *6)) (-5 *5 (-656 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1236)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) - (-5 *2 (-1196)) (-5 *1 (-1062 *4))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-145))) - ((*1 *1 *1) (-4 *1 (-1163)))) + (-12 (-4 *4 (-1068)) + (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1119))))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-759))))) (((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) - (-5 *1 (-371 *3 *4)) (-14 *4 (-656 (-1196))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) - (-5 *1 (-760))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-1208 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) + (-4 *6 (-1262 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-580 *5 *6))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) + (-5 *1 (-768))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-589)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-589))))) (((*1 *2 *1) - (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) + (-5 *1 (-449))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1068)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1262 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) - (-5 *2 (-1192 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-938)) (-5 *1 (-1049 *2)) - (-4 *2 (-13 (-1119) (-10 -8 (-15 -4007 ($ $ $)))))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) + (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1176 *4))) (-5 *1 (-295 *4 *5)) + (-5 *3 (-1176 *4)) (-4 *5 (-1277 *4))))) +(((*1 *2) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1177))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-52)) (-5 *1 (-841))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1262 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) - (-4 *2 (-442 *4)))) + (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1262 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-159 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-161)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1196)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-174)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *2 *3) - (|partial| -12 - (-5 *3 (-656 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-442 *4) (-1021))) (-4 *4 (-568)) - (-5 *1 (-285 *4 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) - (-5 *1 (-767))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2)))) + (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) + (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1262 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) + (-5 *1 (-1179 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1068)) + (-14 *4 (-1195)) (-14 *5 *3)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-938)) (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-374)))) + ((*1 *2 *1) + (-12 (-4 *1 (-381 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-576) *2 *2)) (-4 *2 (-133)) (-5 *1 (-1103 *2))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-227)) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-171 (-227))) (-5 *3 (-783)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) + (-12 (-5 *2 (-1286 *4)) (-5 *3 (-938)) (-4 *4 (-360)) + (-5 *1 (-540 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (-4 *2 (-1068))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) + (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) (|:| |success| (-112)))) (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-1300 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1300 *5 *6 *7 *8))))) -(((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) - (-4 *3 (-13 (-1119) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-390))) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-390))) (-5 *1 (-480)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-886)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) - (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 (-227) (-227) (-227))) - (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) - (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) - (-4 *4 (-13 (-1119) (-34)))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-862))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 (-1196))) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) - (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) - (-14 *6 (-656 *2)) (-14 *7 (-1287 (-701 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) - (-14 *6 (-1287 (-701 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 (-1196))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1196))) - (-14 *6 (-1287 (-701 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-938)) (-14 *5 (-656 *2)) (-14 *6 (-1287 (-701 *3))))) - ((*1 *1) - (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-938)) - (-14 *4 (-656 (-1196))) (-14 *5 (-1287 (-701 *2)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-384 *2)) (-4 *2 (-1237)) - (-4 *2 (-862)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4463)) - (-4 *1 (-384 *3)) (-4 *3 (-1237))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) - (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1123)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-656 (-656 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-656 (-3 (|:| |array| (-656 *3)) (|:| |scalar| (-1196))))) - (-5 *6 (-656 (-1196))) (-5 *3 (-1196)) (-5 *2 (-1123)) - (-5 *1 (-409)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-656 (-1196))) (-5 *5 (-1199)) (-5 *3 (-1196)) - (-5 *2 (-1123)) (-5 *1 (-409))))) + (-12 (-5 *3 (-922 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) + (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1047 *4)) + (-4 *4 (-1068)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-922 (-576)))) (-5 *4 (-576)) + (-5 *2 (-656 (-701 *4))) (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) + (-5 *1 (-1047 *4)) (-4 *4 (-1068))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) + (-5 *2 (-1054)) (-5 *1 (-760))))) (((*1 *2 *1) - (-12 (-4 *2 (-1237)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1237)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| -3175 (-783)) (|:| -1856 *5) (|:| |radicand| (-656 *5)))) - (-5 *1 (-330 *5)) (-5 *4 (-783)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-576))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-5 *1 (-911 *2 *3)) - (-4 *2 (-1263 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *2) - (-12 (-5 *2 (-676 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-5 *1 (-639 *3 *4 *5)) - (-14 *5 (-938)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) - (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) - (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-568)) (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| -3587 (-635 *4 *5)) (|:| -3915 (-419 *5)))) - (-5 *1 (-635 *4 *5)) (-5 *3 (-419 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) - (-14 *3 (-938)) (-4 *4 (-1068)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1263 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) + (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1021)) + (-4 *2 (-1068))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3278 (-656 *9)) (|:| -4385 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1090 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) - (-4 *8 (-862)) (-4 *9 (-1084 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3278 (-656 *9)) (|:| -4385 *4) (|:| |ineq| (-656 *9)))) - (-5 *1 (-1126 *6 *7 *8 *9 *4)) (-5 *3 (-656 *9)) - (-4 *4 (-1090 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *1) + (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) +(((*1 *1 *1 *1) (-4 *1 (-773)))) +(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-1068)))) + ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3495 *3))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) + (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) + (-5 *2 (-1054)) (-5 *1 (-766))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1068)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1284 *2)) (-4 *2 (-1236)) (-4 *2 (-1068))))) +(((*1 *1 *1 *2) (-12 (-5 *2 - (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *3)) - (|:| |logand| (-1192 *3))))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) + (-2 (|:| -2776 (-656 (-874))) (|:| -4415 (-656 (-874))) + (|:| |presup| (-656 (-874))) (|:| -1451 (-656 (-874))) + (|:| |args| (-656 (-874))))) + (-5 *1 (-1195)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1195))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-969 (-171 *4))) (-4 *4 (-174)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-969 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-174)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) - (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-969 (-171 *4)))) (-4 *4 (-568)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-969 (-171 *5)))) (-5 *4 (-938)) - (-4 *5 (-568)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 (-390))) (-5 *2 (-171 (-390))) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 (-390))) (-5 *2 (-171 (-390))) - (-5 *1 (-797 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1237)) - (-4 *3 (-384 *4)) (-4 *5 (-384 *4))))) -(((*1 *1) (-5 *1 (-1101)))) + (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) +(((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1236)) (-5 *2 (-576))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) + (-4 *8 (-862)) (-5 *1 (-996 *6 *7 *8 *9))))) +(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) - (-5 *1 (-1180 *3))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-112)) (-5 *1 (-833))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-568)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1227 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-568)) (-4 *2 (-174))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1392 (-1192 *6)) (|:| -3175 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068))))) + (-656 + (-2 (|:| -3606 (-783)) + (|:| |eqns| + (-656 + (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) + (|:| |cols| (-656 (-576)))))) + (|:| |fgb| (-656 *7))))) + (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) (-5 *2 (-783)) + (-5 *1 (-941 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-4 *4 (-926)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) + (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-430 (-1191 *7))) + (-5 *1 (-923 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) - (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) - (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) - (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-136 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *9)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) - (-4 *8 (-1068)) (-4 *2 (-966 *9 *7 *5)) - (-5 *1 (-740 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-805)) - (-4 *4 (-966 *8 *6 *5))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 (-548))) (-5 *1 (-548))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-194))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) - (-15 -3905 ((-1144 *3 (-624 $)) $)) - (-15 -4092 ($ (-1144 *3 (-624 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) - (-15 -3905 ((-1144 *3 (-624 $)) $)) - (-15 -4092 ($ (-1144 *3 (-624 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *4 (-624 $)) $)) - (-15 -3905 ((-1144 *4 (-624 $)) $)) - (-15 -4092 ($ (-1144 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-624 *2))) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *4 (-624 $)) $)) - (-15 -3905 ((-1144 *4 (-624 $)) $)) - (-15 -4092 ($ (-1144 *4 (-624 $))))))) - (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798))))) + (-12 (-4 *4 (-926)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) + (-5 *1 (-924 *4 *5)) (-5 *3 (-1191 *5))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1054)) (-5 *1 (-769))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -2236 (-1176 *4)) (|:| -2253 (-1176 *4)))) - (-5 *1 (-1182 *4)) (-5 *3 (-1176 *4))))) + (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1191 *3) (-1191 *3))) + (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) + (-5 *1 (-563 *6 *3))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-938)) (-5 *4 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1068)) (-5 *1 (-726 *2 *4)) - (-4 *4 (-660 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1068))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) + (-5 *1 (-181 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 *8)) + (-5 *4 + (-656 + (-2 (|:| -3713 (-701 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-701 *7))))) + (-5 *5 (-783)) (-4 *8 (-1262 *7)) (-4 *7 (-1262 *6)) (-4 *6 (-360)) (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-340))))) + (-2 (|:| -3713 (-701 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-701 *7)))) + (-5 *1 (-510 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1244)))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-576)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1263 (-171 *2)))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-639 *2 *3 *4)) (-4 *2 (-862)) - (-4 *3 (-13 (-174) (-729 (-419 (-576))))) (-14 *4 (-938)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1054)) (-5 *1 (-768))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-938)) (-5 *1 (-798))))) -(((*1 *1) (-5 *1 (-158)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) - (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1222) (-29 *4)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219))))) + (-12 (-4 *2 (-1119)) (-5 *1 (-981 *3 *2)) (-4 *3 (-1119))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *7)) (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) + (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1195)))) + (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) + (-4 *2 (-1119)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-1119)) (-5 *1 (-661 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-1300 *4 *5 *6 *7))) - (-5 *1 (-1300 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) - (-4 *7 (-805)) (-4 *8 (-862)) (-5 *2 (-656 (-1300 *6 *7 *8 *9))) - (-5 *1 (-1300 *6 *7 *8 *9))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-105))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-767))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) - (-5 *2 (-1054)) (-5 *1 (-759))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-390)))) - ((*1 *1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-783))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-874)))) + (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) + (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) + (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) + (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) + (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) + (-4 *6 (-353 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-663 *2)) (-4 *2 (-1236))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) ((*1 *2 *1) - (-12 (-5 *2 (-1161 *3 *4)) (-5 *1 (-1012 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-374)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *5))) (-4 *5 (-1068)) - (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *6 (-243 *4 *5)) - (-4 *7 (-243 *3 *5))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -4165 (-576)) (|:| -3791 (-656 *3)))) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1178)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-270))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4)) - (-4 *4 (-1237)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2))))) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) + (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) + (-4 *2 (-699 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-961 *4 *5))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-864 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1178))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1287 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *1 *1) (-12 (-5 *1 (-1222 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) (-5 *2 (-701 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-1287 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-1287 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-1287 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) + (-5 *2 + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) + (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 (-1287 *5)) (-5 *1 (-1105 *5))))) -(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-378 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-783)) (-4 *2 (-1119)) - (-5 *1 (-690 *2))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1239))))) + (-12 (-5 *2 (-1191 (-576))) (-5 *1 (-959)) (-5 *3 (-576))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-384 *2)) (-4 *2 (-1236)) + (-4 *2 (-862)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4462)) + (-4 *1 (-384 *3)) (-4 *3 (-1236))))) +(((*1 *1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) + ((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) + ((*1 *1 *1) (-4 *1 (-860))) + ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)) (-4 *2 (-1079)))) + ((*1 *1 *1) (-4 *1 (-1079))) ((*1 *1 *1) (-4 *1 (-1158)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1262 *4)) + (-5 *1 (-939 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119)))) + (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1262 *4))))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1066))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1068)) + (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1262 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) + (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) + (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1236)) + (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) ((*1 *2 *3) - (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-390)) (-5 *3 (-1178)) (-5 *1 (-97))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) + (-12 (-5 *2 (-1191 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-656 (-1286 *4))) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) + (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-4 *3 (-568)) + (-5 *2 (-656 (-1286 *3)))))) +(((*1 *1) (-5 *1 (-158)))) +(((*1 *1) (-5 *1 (-188)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1195)))) + (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *2)) (-4 *2 (-966 *3 *5 *4))))) +(((*1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *1) (-4 *1 (-986)))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) + (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -2818 *6))) + (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-304 *6)) (-5 *4 (-115)) (-4 *6 (-442 *5)) (-4 *5 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) @@ -6441,265 +12146,97 @@ (-12 (-5 *4 (-115)) (-5 *5 (-304 *3)) (-5 *6 (-656 *3)) (-4 *3 (-442 *7)) (-4 *7 (-13 (-568) (-626 (-548)))) (-5 *2 (-52)) (-5 *1 (-327 *7 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1093)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-783)) (-5 *1 (-602))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-112)) (-5 *1 (-905 *4)) - (-4 *4 (-1119))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1119)) (-4 *6 (-899 *5)) (-5 *2 (-898 *5 *6 (-656 *6))) - (-5 *1 (-900 *5 *6 *4)) (-5 *3 (-656 *6)) (-4 *4 (-626 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 *3))) (-5 *1 (-900 *5 *3 *4)) - (-4 *3 (-1057 (-1196))) (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1119)) (-5 *2 (-656 (-304 (-969 *3)))) - (-5 *1 (-900 *5 *3 *4)) (-4 *3 (-1068)) - (-2433 (-4 *3 (-1057 (-1196)))) (-4 *3 (-899 *5)) - (-4 *4 (-626 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1119)) (-5 *2 (-902 *5 *3)) (-5 *1 (-900 *5 *3 *4)) - (-2433 (-4 *3 (-1057 (-1196)))) (-2433 (-4 *3 (-1068))) - (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *1 (-636 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *2 (-1128 *3 *4 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(((*1 *2 *3) (-12 (-5 *3 (-419 (-576))) (-5 *2 (-227)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2861 *4))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1119))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-767))))) (((*1 *2) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1119))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1129))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -2371 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) - (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) - (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2900 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390))))))) - (-5 *1 (-815))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1233))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-448))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4453)) (-4 *1 (-416)) - (-5 *2 (-938))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) + (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1291)) + (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *6 (-626 (-1196))) - (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *2 (-1185 (-656 (-969 *4)) (-656 (-304 (-969 *4))))) - (-5 *1 (-516 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) - (-14 *3 (-938)) (-4 *4 (-1068)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) - (-5 *5 (-112)) (-5 *2 (-1289)) (-5 *1 (-264))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1113 *3)) (-4 *3 (-966 *7 *6 *4)) (-4 *6 (-805)) - (-4 *4 (-862)) (-4 *7 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-576)))) - (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-1188 *4 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-161) (-27) (-1222))) - (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-1188 *4 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)))) - (-5 *2 (-419 (-969 *5))) (-5 *1 (-1189 *5)) (-5 *3 (-969 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)))) - (-5 *2 (-3 (-419 (-969 *5)) (-326 *5))) (-5 *1 (-1189 *5)) - (-5 *3 (-419 (-969 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-969 *5))) (-5 *3 (-969 *5)) - (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 *3)) - (-5 *1 (-1189 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) - (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-3 *3 (-326 *5))) - (-5 *1 (-1189 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1082))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-938))) (-5 *2 (-1198 (-419 (-576)))) - (-5 *1 (-192))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34))) - (-4 *5 (-13 (-1119) (-34))) (-5 *2 (-112)) (-5 *1 (-1160 *4 *5))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -1973 (-783)) (|:| |period| (-783)))) - (-5 *1 (-1176 *4)) (-4 *4 (-1237)) (-5 *3 (-783))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1103 *3)) (-4 *3 (-133))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-99 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-969 *6)) (-5 *4 (-1196)) - (-5 *5 (-855 *7)) - (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-4 *7 (-13 (-1222) (-29 *6))) (-5 *1 (-226 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1192 *6)) (-5 *4 (-855 *6)) - (-4 *6 (-13 (-1222) (-29 *5))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-226 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-558)))))) -(((*1 *2 *2 *2) - (-12 + (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-374)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *1 (-462 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-374)) (-5 *2 - (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) - (-5 *1 (-461 *3 *4 *5 *6))))) + (-2 (|:| R (-701 *6)) (|:| A (-701 *6)) (|:| |Ainv| (-701 *6)))) + (-5 *1 (-997 *6)) (-5 *3 (-701 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-656 *5)) - (-5 *1 (-903 *4 *5)) (-4 *5 (-1237))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) + ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-216 *4)) - (-4 *4 - (-13 (-862) - (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 (*2 $)) - (-15 -3237 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 (*2 $)) - (-15 -3237 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514))))) -(((*1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1220))))) -(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1128 *5 *6 *7 *8)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-603 *5 *6 *7 *8 *3))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-132)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-372 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3)) (-4 *3 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1119)) (-5 *1 (-661 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) - (-5 *2 (-656 (-684 *5))) (-5 *1 (-684 *5))))) + (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1288)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1221) (-442 *3))) + (-14 *4 (-1195)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-4 *2 (-13 (-27) (-1221) (-442 *3) (-10 -8 (-15 -3563 ($ *4))))) + (-4 *4 (-860)) + (-4 *5 + (-13 (-1264 *2 *4) (-374) (-1221) + (-10 -8 (-15 -2735 ($ $)) (-15 -3848 ($ $))))) + (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1002 *5)) + (-14 *7 (-1195))))) (((*1 *2 *3) - (|partial| -12 (-4 *5 (-1057 (-48))) - (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1192 (-48)))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1263 *5))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-938)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-938)) - (-5 *1 (-540 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390)))) - ((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-390))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290))))) + (|partial| -12 (-4 *4 (-1240)) (-4 *5 (-1262 *4)) + (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) + (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1262 (-419 *5)))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1177)) + (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) + (-5 *4 (-1 (-227) (-227) (-227) (-227))) + (-5 *2 (-1 (-960 (-227)) (-227) (-227))) (-5 *1 (-709))))) +(((*1 *1 *1) + (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) + (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3))))) (((*1 *2) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *1) (-5 *1 (-145))) ((*1 *1 *1) (-5 *1 (-874)))) + (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) - (-5 *1 (-768))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-759))))) +(((*1 *2 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) + (-5 *2 + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1271 *4 *5 *6)) + (|:| |%expon| (-329 *4 *5 *6)) + (|:| |%expTerms| + (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) + (|:| |%type| (-1177)))) + (-5 *1 (-1272 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1221) (-442 *3))) + (-14 *5 (-1195)) (-14 *6 *4)))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1286 *4)) + (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) + (-5 *1 (-480))))) (((*1 *1 *2 *3) (-12 (-5 *3 @@ -6711,673 +12248,671 @@ (-12 (-5 *3 (-2 (|:| |contp| (-576)) - (|:| -3791 (-656 (-2 (|:| |irr| *4) (|:| -2136 (-576))))))) - (-4 *4 (-1263 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *2 (-1292)) (-5 *1 (-461 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1082)) (-5 *3 (-1178))))) -(((*1 *1) (-5 *1 (-1082)))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1119)) (-4 *2 (-915 *4)) (-5 *1 (-704 *4 *2 *5 *3)) - (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4462))))))) + (|:| -1707 (-656 (-2 (|:| |irr| *4) (|:| -2011 (-576))))))) + (-4 *4 (-1262 (-576))) (-5 *2 (-430 *4)) (-5 *1 (-454 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-656 *3)) (-5 *1 (-978 *3)) (-4 *3 (-557))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) + (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 - (-2 (|:| -2954 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) + (-2 (|:| |minor| (-656 (-938))) (|:| -3896 *3) + (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-390)) (-5 *1 (-97))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1142 *3 *4 *2 *5)) (-4 *4 (-1068)) (-4 *5 (-243 *3 *4)) + (-4 *2 (-243 *3 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1068))))) +(((*1 *1) (-5 *1 (-1198)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) + (-4 *3 (-13 (-442 *6) (-27) (-1221))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1119))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 - (-2 (|:| |poly| *6) (|:| -2296 (-419 *6)) - (|:| |special| (-419 *6)))) - (-5 *1 (-739 *5 *6)) (-5 *3 (-419 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-911 *3 *4)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-783)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -2114 *3) (|:| -2128 *3))) (-5 *1 (-911 *3 *5)) - (-4 *3 (-1263 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-656 *8)) (-5 *4 (-112)) - (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) + (-2 (|:| |cycle?| (-112)) (|:| -3870 (-783)) (|:| |period| (-783)))) + (-5 *1 (-1176 *4)) (-4 *4 (-1236)) (-5 *3 (-783))))) +(((*1 *2 *1) (-12 (-5 *2 (-975 (-185 (-140)))) (-5 *1 (-343)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1235))) (-5 *1 (-618))))) +(((*1 *1 *2) + (-12 (-5 *2 (-938)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1068)) + (-4 *4 (-1236)))) + ((*1 *1 *2) + (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) + (-4 *5 (-243 (-3485 *3) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3257 *2) (|:| -4274 *5)) + (-2 (|:| -3257 *2) (|:| -4274 *5)))) + (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) + (-4 *7 (-966 *4 *5 (-876 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1232))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1191 *3)) + (-4 *3 (-13 (-442 *7) (-27) (-1221))) + (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) + (-5 *6 (-419 (-1191 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1221))) + (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119))))) +(((*1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) + (-14 *4 (-656 (-1195))))) + ((*1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) + (-14 *4 (-656 (-1195))))) + ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) + (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) + (-4 *2 (-353 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-174)))) + ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1262 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) + (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) + (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1068)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157))))) + (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) + (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) + (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4463 "*"))) (-4 *2 (-1068))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-966 *4 *5 *6)) (-5 *2 (-656 (-656 *7))) - (-5 *1 (-460 *4 *5 *6 *7)) (-5 *3 (-656 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-656 (-656 *8))) - (-5 *1 (-460 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) + (-12 (-5 *3 (-1177)) (-5 *2 (-216 (-514))) (-5 *1 (-849))))) +(((*1 *1 *1) (-5 *1 (-1082)))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 (-326 (-227)))) + (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) - (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) - (-5 *1 (-315))))) + (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1262 (-419 (-576)))) (-5 *1 (-930 *3 *2)) + (-4 *2 (-1262 (-419 *3)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(((*1 *1) (-5 *1 (-142)))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -4154 *7) (|:| |sol?| (-112))) + (-576) *7)) + (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) + (-5 *3 (-419 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-586 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) - (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-159 *4 *5)) (-4 *5 (-442 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021))))) + (-12 (-5 *3 (-1195)) (-4 *5 (-1240)) (-4 *6 (-1262 *5)) + (-4 *7 (-1262 (-419 *6))) (-5 *2 (-656 (-969 *5))) + (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-311 *4)) (-4 *4 (-312)))) - ((*1 *2 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) + (-12 (-5 *3 (-1195)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1240)) + (-4 *5 (-1262 *4)) (-4 *6 (-1262 (-419 *5))) (-4 *4 (-374)) + (-5 *2 (-656 (-969 *4)))))) +(((*1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1236)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *1) (-4 *1 (-312))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) + ((*1 *1 *1) (-5 *1 (-874)))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) + ((*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) (-12 (-5 *1 (-1231 *2)) (-4 *2 (-993))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-171 (-227)))) + (-5 *2 (-1054)) (-5 *1 (-767))))) +(((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1262 *4)) (-5 *2 (-576)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1119)) (-5 *2 (-112)) - (-5 *1 (-441 *4 *5)) (-4 *4 (-442 *5)))) + (|partial| -12 (-4 *4 (-13 (-568) (-1057 *2) (-651 *2) (-464))) + (-5 *2 (-576)) (-5 *1 (-1135 *4 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *6))) + (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) + (-5 *1 (-1135 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-1177)) + (-4 *6 (-13 (-568) (-1057 *2) (-651 *2) (-464))) (-5 *2 (-576)) + (-5 *1 (-1135 *6 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-443 *4 *5)) (-4 *5 (-442 *4)))) + (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-576)) + (-5 *1 (-1136 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1195)) (-5 *5 (-855 (-419 (-969 *6)))) + (-5 *3 (-419 (-969 *6))) (-4 *6 (-464)) (-5 *2 (-576)) + (-5 *1 (-1136 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-419 (-969 *6))) (-5 *4 (-1195)) + (-5 *5 (-1177)) (-4 *6 (-464)) (-5 *2 (-576)) (-5 *1 (-1136 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-568)) (-5 *2 (-112)) - (-5 *1 (-642 *4 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1222)))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-376 *2)) (-4 *2 (-1119)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) - (-4 *2 (-668 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-874)))) - ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-979))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3))))) + (|partial| -12 (-5 *2 (-576)) (-5 *1 (-1218 *3)) (-4 *3 (-1068))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-464)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1191 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *5 (-926)) (-5 *1 (-469 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-926))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1238 *2)) - (-4 *2 (-1119)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-862)) - (-5 *1 (-1238 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *2)) - (-4 *3 (-13 (-1119) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1298))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1137)) (-5 *1 (-1134))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1195))) (-4 *6 (-374)) + (-5 *2 (-656 (-304 (-969 *6)))) (-5 *1 (-550 *5 *6 *7)) + (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170))))) +(((*1 *2 *3) (-12 (-5 *3 (-656 (-938))) (-5 *2 (-783)) (-5 *1 (-602))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) + (-5 *1 (-902 *4 *5)) (-4 *5 (-1119)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-5 *2 (-112)) + (-5 *1 (-903 *5 *3)) (-4 *3 (-1236)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) + (-4 *6 (-1236)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-701 (-419 (-969 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050)) - (-5 *3 (-326 (-576)))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-763))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) - (-4 *7 (-862)) (-4 *8 (-317)) (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) - (-5 *2 - (-2 (|:| |upol| (-1192 *8)) (|:| |Lval| (-656 *8)) - (|:| |Lfact| - (-656 (-2 (|:| -1392 (-1192 *8)) (|:| -3175 (-576))))) - (|:| |ctpol| *8))) - (-5 *1 (-754 *6 *7 *8 *9))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317)) - (-4 *9 (-966 *8 *6 *7)) - (-5 *2 (-2 (|:| -2248 (-1192 *9)) (|:| |polval| (-1192 *8)))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9)) (-5 *4 (-1192 *8))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) (((*1 *2 *1) - (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) - (-4 *3 (-1119))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-938)) (-4 *3 (-374)) - (-14 *4 (-1012 *2 *3)))) + (-12 (-5 *2 (-656 (-1222 *3))) (-5 *1 (-1222 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1960 *4))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3))))) +(((*1 *2 *3) + (-12 (-14 *4 (-656 (-1195))) (-4 *5 (-464)) + (-5 *2 + (-2 (|:| |glbase| (-656 (-253 *4 *5))) (|:| |glval| (-656 (-576))))) + (-5 *1 (-643 *4 *5)) (-5 *3 (-656 (-253 *4 *5)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1286 (-326 (-227)))) + (-5 *2 + (-2 (|:| |additions| (-576)) (|:| |multiplications| (-576)) + (|:| |exponentiations| (-576)) (|:| |functionCalls| (-576)))) + (-5 *1 (-315))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1289))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1217)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1217))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-227)) (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1195))))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) + (-14 *3 (-656 (-1195))))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *1) (|partial| -4 *1 (-734))) - ((*1 *1 *1) (|partial| -4 *1 (-738))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1263 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1196)) (-4 *4 (-1068)) (-4 *4 (-1119)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3175 (-576)))) - (-4 *1 (-442 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1068)) (-4 *4 (-1119)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3175 (-576)))) - (-4 *1 (-442 *4)))) + (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119)))) + ((*1 *1 *1) + (-12 (-14 *2 (-656 (-1195))) (-4 *3 (-174)) + (-4 *5 (-243 (-3485 *2) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3257 *4) (|:| -4274 *5)) + (-2 (|:| -3257 *4) (|:| -4274 *5)))) + (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) + (-4 *7 (-966 *3 *5 (-876 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862)))) + ((*1 *1 *1) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1) + (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1068)) + (-4 *3 (-738)))) + ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1309 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858))))) +(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-703 (-591))) (-5 *1 (-591))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1054)) (-5 *1 (-763))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-783)) (-5 *5 (-656 *3)) (-4 *3 (-317)) (-4 *6 (-862)) + (-4 *7 (-805)) (-5 *2 (-112)) (-5 *1 (-637 *6 *7 *3 *8)) + (-4 *8 (-966 *3 *7 *6))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) + (-4 *3 (-1236))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) + (-5 *1 (-767))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) + (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) + (-5 *1 (-709))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-783)) (-4 *6 (-374)) (-5 *4 (-1230 *6)) + (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1294 *6)) + (-5 *5 (-1176 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) - (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -3175 (-576)))) - (-4 *1 (-442 *3)))) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -3175 (-783)))) - (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1207 *3)) (-4 *3 (-1119))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-874)))) + ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1291)) (-5 *1 (-979))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) + (-4 *1 (-966 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) + (-5 *2 (-1054)) (-5 *1 (-760))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-194))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1177)) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) + (-5 *1 (-226 *4 *5)) (-4 *5 (-13 (-1221) (-29 *4)))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-326 (-576))) (|:| -2060 (-326 (-390))) + (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1194)))) + (-5 *1 (-1194))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -3175 (-783)))))) + (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) + (-5 *2 (-783)))) + ((*1 *2) + (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) + (-4 *3 (-339 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) + ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) (-5 *2 (-783)))) + ((*1 *2) + (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) + (-4 *3 (-437 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-4 *5 (-1262 *4)) (-5 *2 (-783)) + (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) + (-4 *3 (-1262 *2))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) + (-4 *3 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) + (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1191 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) - (-4 *7 (-966 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -3175 (-576)))) - (-5 *1 (-967 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) - (-15 -3905 (*7 $)))))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) + (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *6 (-317))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) - (-14 *6 *4))) + (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) + (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-1273 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1222) (-442 *3))) (-14 *5 (-1196)) - (-14 *6 *4)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -4092 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1265 *3 *7) (-374) (-1222) - (-10 -8 (-15 -3614 ($ $)) (-15 -3597 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) - (-14 *10 (-1196))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1272 *3 *4 *5)) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1196)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711)))) + (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1195))))) ((*1 *2 *1) - (-12 (-4 *2 (-1119)) (-5 *1 (-725 *3 *2 *4)) (-4 *3 (-862)) - (-14 *4 - (-1 (-112) (-2 (|:| -2550 *3) (|:| -3175 *2)) - (-2 (|:| -2550 *3) (|:| -3175 *2))))))) + (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) + (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1195))))) + ((*1 *2 *1) + (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) + ((*1 *2 *1) + (-12 (-14 *3 (-656 (-1195))) (-4 *5 (-243 (-3485 *3) (-783))) + (-14 *6 + (-1 (-112) (-2 (|:| -3257 *4) (|:| -4274 *5)) + (-2 (|:| -3257 *4) (|:| -4274 *5)))) + (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) + (-4 *7 (-966 *2 *5 (-876 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1262 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) + (-4 *3 (-738)))) + ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862)) + (-4 *2 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862))))) +(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) + (-5 *2 (-1286 (-419 (-576)))) (-5 *1 (-1314 *4))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-769))))) +(((*1 *2 *1) + (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) + (-14 *6 + (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *2)) + (-2 (|:| -3257 *5) (|:| -4274 *2)))) + (-4 *2 (-243 (-3485 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-862)) (-4 *7 (-966 *4 *2 (-876 *3)))))) +(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) + ((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-764))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-804))))) +(((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-253 *4 *5))) (-5 *2 (-253 *4 *5)) - (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1054)) (-5 *1 (-764))))) + (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1256 *4 *2)) (-4 *2 (-1262 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-194)))) + (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-310)))) + (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1178))) (-5 *1 (-315))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-938)) (-4 *4 (-379)) (-4 *4 (-374)) (-5 *2 (-1192 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) + (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) + (-5 *1 (-797 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) ((*1 *2 *1) - (-12 (-4 *1 (-381 *3 *2)) (-4 *3 (-174)) (-4 *3 (-374)) - (-4 *2 (-1263 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) - (-5 *1 (-540 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-1176 (-969 *4)) (-1176 (-969 *4)))) - (-5 *1 (-1295 *4)) (-4 *4 (-374))))) -(((*1 *1) (-4 *1 (-986)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-333 *2 *4)) (-4 *4 (-132)) - (-4 *2 (-1119)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-1119)) (-5 *1 (-661 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) + ((*1 *2 *1) + (-12 (-14 *3 (-656 (-1195))) (-4 *4 (-174)) + (-4 *6 (-243 (-3485 *3) (-783))) + (-14 *7 + (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *6)) + (-2 (|:| -3257 *5) (|:| -4274 *6)))) + (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-862)) (-4 *8 (-966 *4 *6 (-876 *3))))) + ((*1 *2 *1) + (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2)) + (-4 *3 (-1068)))) + ((*1 *1 *1) + (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) + (-4 *4 (-862))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) + ((*1 *1) (-5 *1 (-590)))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *5 (-1241)) (-4 *6 (-1263 *5)) - (-4 *7 (-1263 (-419 *6))) (-5 *2 (-656 (-969 *5))) - (-5 *1 (-352 *4 *5 *6 *7)) (-4 *4 (-353 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) - (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *4 (-374)) - (-5 *2 (-656 (-969 *4)))))) + (-12 (-4 *4 (-862)) (-5 *2 (-1207 (-656 *4))) (-5 *1 (-1206 *4)) + (-5 *3 (-656 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340))))) (((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-5 *1 (-711)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-701 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-374)) (-5 *1 (-997 *5))))) + (-12 (-4 *4 (-174)) (-5 *2 (-1191 (-969 *4))) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) + (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-4 *3 (-374)) + (-5 *2 (-1191 (-969 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1191 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1195)) (-5 *3 (-446)) (-4 *5 (-1119)) + (-5 *1 (-1125 *5 *4)) (-4 *4 (-442 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-120 *2)) (-4 *2 (-1236))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1119)) (-4 *5 (-1119)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-695 *4 *5))))) -(((*1 *1) (-5 *1 (-188)))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) - (-4 *3 (-1119)) (-5 *2 (-783)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4)) - (-4 *4 (-1237)) (-5 *2 (-783))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) - (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) - (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-317)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-360)) + (-5 *2 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) + (-5 *1 (-357 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1262 *3)) (-5 *1 (-411 *3 *2)) + (-4 *3 (-13 (-374) (-148)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1177)) (-4 *4 (-13 (-317) (-148))) + (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805)) + (-5 *2 + (-656 + (-2 (|:| |eqzro| (-656 *7)) (|:| |neqzro| (-656 *7)) + (|:| |wcond| (-656 (-969 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1286 (-419 (-969 *4)))) + (|:| -3713 (-656 (-1286 (-419 (-969 *4)))))))))) + (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) + ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119))))) +(((*1 *2 *3) + (-12 (|has| *6 (-6 -4462)) (-4 *4 (-374)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-533 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1192 *7))) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-317)) (-5 *2 (-1192 *7)) (-5 *1 (-933 *4 *5 *6 *7)) - (-4 *7 (-966 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-938))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-464)) (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) - (-4 *2 (-1263 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-112)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-571))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) - (-5 *1 (-269 *2)) (-4 *2 (-1237)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-52)) - (-5 *1 (-270))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-576) "failed") *5)) (-4 *5 (-1068)) - (-5 *2 (-576)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1263 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-576) "failed") *4)) (-4 *4 (-1068)) - (-5 *2 (-576)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-464)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *5 (-926)) (-5 *1 (-469 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-926))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-804)) (-4 *3 (-174))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) - (-4 *3 (-1263 *4)) (-5 *1 (-821 *4 *3 *2 *5)) (-4 *2 (-668 *3)) - (-4 *5 (-668 (-419 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 *5)) - (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-1263 *4)) - (-5 *1 (-821 *4 *5 *2 *6)) (-4 *2 (-668 *5)) (-4 *6 (-668 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1139))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-270))) (-5 *4 (-1196)) (-5 *2 (-112)) - (-5 *1 (-270))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-576))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) - (-15 -3905 ((-1144 *3 (-624 $)) $)) - (-15 -4092 ($ (-1144 *3 (-624 $)))))))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *7))) (-5 *3 (-1192 *7)) - (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-926)) (-4 *5 (-805)) - (-4 *6 (-862)) (-5 *1 (-923 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) - (-4 *5 (-1263 *4)) (-4 *4 (-926)) (-5 *1 (-924 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) + (-12 (|has| *9 (-6 -4462)) (-4 *4 (-568)) (-4 *5 (-384 *4)) + (-4 *6 (-384 *4)) (-4 *7 (-1011 *4)) (-4 *8 (-384 *7)) + (-4 *9 (-384 *7)) (-5 *2 (-656 *6)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-699 *4 *5 *6)) + (-4 *10 (-699 *7 *8 *9)))) + ((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-656 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-700 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-4 *2 (-1068)) (-5 *1 (-726 *2 *3)) - (-4 *3 (-660 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068)))) - ((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-174)) (-4 *2 (-1068))))) + (-4 *6 (-384 *4)) (-5 *2 (-656 *6)) (-5 *1 (-700 *4 *5 *6 *3)) + (-4 *3 (-699 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) + (-5 *2 (-656 *7))))) +(((*1 *1 *1 *1) (-4 *1 (-312))) ((*1 *1 *1) (-4 *1 (-312)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-115)) (-4 *4 (-1068)) (-5 *1 (-726 *4 *2)) + (-4 *2 (-660 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) + (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) + (-5 *1 (-760))))) (((*1 *2 *3) - (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1286 *1)))) ((*1 *2 *3) - (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-384 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) - (-14 *4 *3)))) + (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-926)) + (-5 *2 (-1286 *1))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) - (-5 *2 (-656 *3)) (-5 *1 (-789 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) - (-14 *7 (-938))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-568)) - (-4 *3 (-966 *7 *5 *6)) - (-5 *2 - (-2 (|:| -3175 (-783)) (|:| -1856 *3) (|:| |radicand| (-656 *3)))) - (-5 *1 (-970 *5 *6 *7 *3 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *3)) (-15 -3894 (*3 $)) (-15 -3905 (*3 $)))))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1) (-5 *1 (-1288)))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *2) (-12 (-5 *2 (-1176 (-656 (-938)))) (-5 *1 (-896))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -3791 (-656 (-2 (|:| |irr| *10) (|:| -2136 (-576))))))) - (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317)) - (-4 *10 (-966 *3 *9 *8)) (-4 *9 (-805)) - (-5 *2 - (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) - (|:| |corrfact| (-656 (-1192 *3))))) - (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1192 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-464)))) - ((*1 *1 *1 *1) (-4 *1 (-464)))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) - (-4 *6 (-1263 *5)) (-5 *2 (-1192 (-1192 *7))) - (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1263 *6))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *8 (-1084 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1046 *5 *6 *7 *8))))) - (-5 *1 (-1046 *5 *6 *7 *8)) (-5 *3 (-656 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *8 (-1084 *5 *6 *7)) - (-5 *2 - (-2 (|:| |val| (-656 *8)) - (|:| |towers| (-656 (-1165 *5 *6 *7 *8))))) - (-5 *1 (-1165 *5 *6 *7 *8)) (-5 *3 (-656 *8))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1263 *6)) - (-4 *6 (-13 (-374) (-148) (-1057 *4))) (-5 *4 (-576)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3278 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1034 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-983 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) (-5 *6 (-1192 *3)) - (-4 *3 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-5 *6 (-419 (-1192 *3))) (-4 *3 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-572 *7 *3 *8)) (-4 *8 (-1119))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-996 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-903 *4 *3)) - (-4 *3 (-1237)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-981 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-343)) (-5 *1 (-255))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1119)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1119)) (-5 *2 (-112)) - (-5 *1 (-1238 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-805)) (-4 *2 (-966 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) + (-4 *4 (-464)) (-4 *6 (-862))))) +(((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *2) + (-12 (-5 *2 (-1286 (-1120 *3 *4))) (-5 *1 (-1120 *3 *4)) + (-14 *3 (-938)) (-14 *4 (-938))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1197 (-419 (-576)))) (-5 *2 (-419 (-576))) + (-5 *1 (-192))))) (((*1 *2 *1) - (-12 (-5 *2 (-1287 (-783))) (-5 *1 (-687 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-668 *3)) (-4 *3 (-1068)) (-4 *3 (-374)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) - (-5 *1 (-671 *5 *2)) (-4 *2 (-668 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-975 (-1139))) - (-5 *1 (-357 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-763))))) (((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-442 *4) (-1021) (-1222))) - (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1222))) - (-5 *1 (-612 *4 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1254 *3)) (-4 *3 (-1237))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) - (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) - (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) - (-5 *1 (-943)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) - (-5 *1 (-943)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) - (-5 *1 (-944)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) - (-5 *1 (-944)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) - (-5 *1 (-944)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1 (-227) (-227)))) (-5 *3 (-1113 (-227))) - (-5 *1 (-944)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) - (-5 *1 (-944)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) - (-5 *1 (-944))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) + (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) + (-4 *4 (-1262 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *5)) + (-4 *5 (-1262 (-419 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-343))))) (((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) - (-4 *4 (-360)) (-5 *2 (-1292)) (-5 *1 (-540 *4))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-996 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1292)) (-5 *1 (-1239))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-576)))) - (-4 *4 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3149 ($ $ $))))) - (-4 *3 (-568)) (-5 *1 (-1266 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-290))))) + (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-5 *2 (-576)) + (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1262 *5)) + (-4 *6 (-13 (-416) (-1057 *5) (-374) (-1221) (-294))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1262 *4)) + (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1221) (-294)))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) +(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1177) (-1200))) + (-5 *1 (-1200))))) +(((*1 *1 *1) (-4 *1 (-248))) + ((*1 *1 *1) + (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-2835 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1236))) + (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1236))))) + ((*1 *1 *1) (-4 *1 (-485))) + ((*1 *2 *2) (-12 (-5 *2 (-1286 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805)) + (-4 *6 (-568)) (-4 *7 (-966 *6 *5 *3)) + (-5 *1 (-474 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1057 (-419 (-576))) (-374) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) + (-15 -1549 (*7 $)))))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) + (-4 *4 (-881 *3)))) + ((*1 *1 *1) + (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-576)) (-4 *1 (-1248 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-1277 *3)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1248 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1277 *2))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *1) (-5 *1 (-449)))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) @@ -7386,1212 +12921,440 @@ (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-607 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1247 *3)) (-4 *3 (-1068)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1278 *3)) (-4 *3 (-1068))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-115)) (-5 *4 (-783)) + (-4 *5 (-13 (-464) (-1057 (-576)))) (-4 *5 (-568)) + (-5 *1 (-41 *5 *2)) (-4 *2 (-442 *5)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *5 (-624 $)) $)) + (-15 -1549 ((-1144 *5 (-624 $)) $)) + (-15 -3563 ($ (-1144 *5 (-624 $)))))))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576))))) (((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1176 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1278 *3)) (-4 *3 (-1068)) (-5 *2 (-1176 *3))))) -(((*1 *1 *1) - (-12 (-4 *2 (-360)) (-4 *2 (-1068)) (-5 *1 (-724 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-656 (-701 *6))) (-5 *4 (-112)) (-5 *5 (-576)) - (-5 *2 (-701 *6)) (-5 *1 (-1048 *6)) (-4 *6 (-374)) (-4 *6 (-1068)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-5 *1 (-1048 *4)) - (-4 *4 (-374)) (-4 *4 (-1068)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-5 *2 (-701 *5)) - (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-1068))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 *7)) (-5 *5 (-656 (-656 *8))) (-4 *7 (-862)) - (-4 *8 (-317)) (-4 *6 (-805)) (-4 *9 (-966 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-656 (-2 (|:| -1392 (-1192 *9)) (|:| -3175 (-576))))))) - (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1192 *9))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) - (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-571)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1119) (-1057 *5))) - (-4 *5 (-899 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-948 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-975 (-783))) (-5 *1 (-343))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1178)) (-5 *1 (-722))))) + (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-962 *2 *3)) + (-4 *3 (-1262 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-548))) (-5 *2 (-1196)) (-5 *1 (-548))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-576))))) - (-5 *1 (-430 *3)) (-4 *3 (-568)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1263 *3)) - (-5 *2 (-656 (-1192 *3))) (-5 *1 (-510 *3 *5 *6)) - (-4 *6 (-1263 *5))))) + (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1286 (-326 (-227)))) (-5 *2 (-1286 (-326 (-390)))) + (-5 *1 (-315))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1999 (-656 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -1999 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-783))))) + (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) + (-5 *1 (-178 *3))))) (((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *3 (-1084 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) (-5 *1 (-1091 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4385 *9)))) + (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -3887 *9)))) (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4385 *9)))) + (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -3887 *9)))) (-5 *1 (-1091 *6 *7 *4 *8 *9))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 - (|:| -2371 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2900 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2920 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) ((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) - (-5 *2 (-656 *4))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-1254 (-576)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-926)) (-4 *6 (-805)) - (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-430 (-1192 *8))) - (-5 *1 (-923 *5 *6 *7 *8)) (-5 *4 (-1192 *8)))) - ((*1 *2 *3) - (-12 (-4 *4 (-926)) (-4 *5 (-1263 *4)) (-5 *2 (-430 (-1192 *5))) - (-5 *1 (-924 *4 *5)) (-5 *3 (-1192 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1161 *3 *4)) (-14 *3 (-938)) (-4 *4 (-374)) - (-5 *1 (-1012 *3 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-430 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-1068)) (-5 *2 (-656 *6)) (-5 *1 (-456 *5 *6))))) -(((*1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)))) - ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1119))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-841))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-734)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-4 *3 (-13 (-27) (-1222) (-442 *6) (-10 -8 (-15 -4092 ($ *7))))) - (-4 *7 (-860)) - (-4 *8 - (-13 (-1265 *3 *7) (-374) (-1222) - (-10 -8 (-15 -3614 ($ $)) (-15 -3597 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) - (-5 *1 (-434 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1178)) (-4 *9 (-1002 *8)) - (-14 *10 (-1196))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-1006 (-419 (-576)) (-876 *3) (-245 *4 (-783)) - (-253 *3 (-419 (-576))))) - (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-1005 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) - (-5 *2 (-656 (-656 (-960 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) (-4 *4 (-1068)) - (-4 *1 (-1153 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 (-960 *3)))) (-4 *3 (-1068)) - (-4 *1 (-1153 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-656 *4)))) (-5 *3 (-112)) - (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-656 (-656 (-960 *4)))) (-5 *3 (-112)) - (-4 *1 (-1153 *4)) (-4 *4 (-1068)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-656 (-960 *5)))) (-5 *3 (-656 (-173))) - (-5 *4 (-173)) (-4 *1 (-1153 *5)) (-4 *5 (-1068))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-317)) (-4 *6 (-384 *5)) (-4 *4 (-384 *5)) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) - (-5 *1 (-1143 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-576)) (-5 *1 (-498 *4)) - (-4 *4 (-1263 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1021)))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4463)) (-4 *1 (-1029 *3)) - (-4 *3 (-1237))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1208 (-656 *4))) (-4 *4 (-862)) - (-5 *2 (-656 (-656 *4))) (-5 *1 (-1207 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) - (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) - (-14 *5 (-656 (-1196))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) - (-4 *6 (-464))))) + (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1291)) (-5 *1 (-216 *3)) + (-4 *3 + (-13 (-862) + (-10 -8 (-15 -2871 ((-1177) $ (-1195))) (-15 -2076 (*2 $)) + (-15 -3712 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-406)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-406)))) + ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-514)))) + ((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-722)))) + ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1216)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-1216))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) (((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1263 *4)))) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) + (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) + (-12 (-5 *4 (-419 (-576))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) - (-4 *3 (-1263 (-419 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1232 *3)) - (-5 *1 (-802 *3)) (-4 *3 (-993)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-112)) - (-5 *1 (-1232 *2)) (-4 *2 (-993))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-1178))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1068)) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-656 (-1 *4 (-656 *4)))) (-4 *4 (-1119)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-656 (-1 *4 (-656 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1196)) (-5 *1 (-548)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-716 *3)) (-4 *3 (-626 (-548))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-716 *3)) - (-4 *3 (-626 (-548)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1168 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) - (-4 *5 (-464)) (-5 *2 (-656 (-253 *4 *5))) (-5 *1 (-643 *4 *5))))) + (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) + (-4 *3 (-13 (-27) (-1221) (-442 *6))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) + (-5 *5 (-1253 (-419 (-576)))) (-5 *6 (-419 (-576))) + (-4 *8 (-13 (-27) (-1221) (-442 *7))) + (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-419 (-576)))) + (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1221) (-442 *8))) + (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1068)) (-4 *1 (-1269 *4 *3)) + (-4 *3 (-1246 *4))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-920 *3))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-576)) (-5 *2 (-112)) (-5 *1 (-565))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-112)) (-5 *1 (-905 *4)) + (-4 *4 (-1119))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-943))))) + (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1054)) (-5 *1 (-760))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-626 (-905 *3))) (-4 *3 (-899 *3)) (-4 *3 (-464)) - (-5 *1 (-1228 *3 *2)) (-4 *2 (-626 (-905 *3))) (-4 *2 (-899 *3)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *2 (-158)) (-5 *1 (-886)))) - ((*1 *2 *3) - (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) -(((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) - (-4 *1 (-442 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) - (-4 *3 (-1119)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) - (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) - (-5 *1 (-967 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) - (-15 -3905 (*7 $)))))))) -(((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) - (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-966 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) - (-5 *1 (-923 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-926)) (-5 *1 (-924 *2 *3)) (-4 *3 (-1263 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576)) - (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-374)) (-4 *1 (-339 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1241)) - (-4 *1 (-353 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) - (-4 *1 (-378 *4)))) + (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1057 *4) (-651 *4))) + (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *6))) + (-4 *6 (-13 (-464) (-1057 *5) (-651 *5))) (-5 *5 (-576)) + (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-576))) + (-4 *7 (-13 (-27) (-1221) (-442 *6))) + (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-576))) + (-4 *3 (-13 (-27) (-1221) (-442 *7))) + (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-174)) - (-4 *1 (-381 *4 *5)) (-4 *5 (-1263 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1263 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1031))))) -(((*1 *1 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *1 *2) - (-12 (-5 *2 (-938)) (-4 *1 (-243 *3 *4)) (-4 *4 (-1068)) - (-4 *4 (-1237)))) - ((*1 *1 *2) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-4 *5 (-243 (-2048 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2550 *2) (|:| -3175 *5)) - (-2 (|:| -2550 *2) (|:| -3175 *5)))) - (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-862)) - (-4 *7 (-966 *4 *5 (-876 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233))))) -(((*1 *1) (-5 *1 (-571)))) -(((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1263 *4)) - (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294)))))) -(((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1263 (-171 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) - (-4 *3 (-1263 (-171 *2)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-969 (-576))))) (-5 *2 (-656 (-326 (-576)))) - (-5 *1 (-1050))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *3 (-174)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-174))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1068)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) - (-5 *2 (-656 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| |k| (-906 *3)) (|:| |c| *4)))) - (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) + (-12 (-5 *2 (-576)) (-4 *4 (-1068)) (-4 *1 (-1248 *4 *3)) + (-4 *3 (-1277 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-684 *3))) (-5 *1 (-906 *3)) (-4 *3 (-862))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1263 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-708 *2)) (-4 *2 (-1263 *3))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-656 (-227))) (-5 *1 (-206))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1195)) (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) - ((*1 *2 *3) (-12 (-5 *3 (-990)) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1054)) - (-5 *1 (-758))))) -(((*1 *2 *1) - (-12 (-4 *1 (-707 *3)) (-4 *3 (-1119)) - (-5 *2 (-656 (-2 (|:| -2900 *3) (|:| -3150 (-783)))))))) + (-12 (-4 *1 (-1269 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1246 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-656 (-227))) - (-5 *1 (-480))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-4 *4 (-1119)) - (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) - (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) - (-5 *2 (-1054)) (-5 *1 (-761))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) - (-5 *2 (-656 (-2 (|:| -2670 *5) (|:| -3278 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1119)) (-5 *1 (-981 *2 *3)) (-4 *3 (-1119))))) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *6 (-626 (-1195))) + (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *2 (-1184 (-656 (-969 *4)) (-656 (-304 (-969 *4))))) + (-5 *1 (-516 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-862)) (-5 *4 (-656 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-656 *4)))) - (-5 *1 (-1207 *6)) (-5 *5 (-656 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) - (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-419 (-969 (-576))))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-419 (-969 (-390))))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-969 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-969 (-390)))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1263 *5)) - (-5 *2 (-1192 (-1192 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) - (-4 *3 (-1263 *6)) (-14 *7 (-938)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) - (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *1 (-995 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1057 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) - (|partial| -3765 - (-12 (-5 *2 (-969 *3)) - (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) - (-2433 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))) - (-12 (-5 *2 (-969 *3)) - (-12 (-2433 (-4 *3 (-557))) (-2433 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))) - (-12 (-5 *2 (-969 *3)) - (-12 (-2433 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))))) - ((*1 *1 *2) - (|partial| -3765 - (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) - (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) - (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-5 *2 (-576)) - (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1263 *5)) - (-4 *6 (-13 (-416) (-1057 *5) (-374) (-1222) (-294))))) + (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-5 *5 (-656 *8)) + (-4 *7 (-862)) (-4 *8 (-1068)) (-4 *9 (-966 *8 *6 *7)) + (-4 *6 (-805)) (-5 *2 (-1191 *8)) (-5 *1 (-331 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-759))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) + (-4 *6 (-1068)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1048 *6)) + (-5 *3 (-656 (-701 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1263 *4)) - (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-751 *3))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-340))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1263 *4)) (-5 *1 (-821 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1196)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -4015 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1222) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -2128 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1032 *8 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) - (-5 *1 (-178 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-5 *1 (-1280 *3 *2)) - (-4 *2 (-1278 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-656 (-656 *4)))) (-5 *2 (-656 (-656 *4))) - (-4 *4 (-862)) (-5 *1 (-1207 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-568)) (-5 *1 (-988 *2 *4)) - (-4 *4 (-1263 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1161 *4 *2)) (-14 *4 (-938)) - (-4 *2 (-13 (-1068) (-10 -7 (-6 (-4464 "*"))))) - (-5 *1 (-919 *4 *2))))) -(((*1 *2 *2) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1119))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3149 (-794 *3)) (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -3149 *1) (|:| |coef2| *1))) - (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-683)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1120 *3 *4)) (-14 *3 (-938)) - (-14 *4 (-938))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-872)) (-5 *2 (-703 (-561))) (-5 *3 (-561))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-831 *3)) (-4 *3 (-862))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-568)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-112)) - (-5 *1 (-902 *4 *5)) (-4 *5 (-1119)))) + (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1068)) + (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1048 *4)) + (-5 *3 (-656 (-701 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-905 *5)) (-4 *5 (-1119)) (-5 *2 (-112)) - (-5 *1 (-903 *5 *3)) (-4 *3 (-1237)))) + (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) + (-5 *3 (-656 (-701 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1119)) - (-4 *6 (-1237)) (-5 *2 (-112)) (-5 *1 (-903 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-834))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1054)) (-5 *1 (-768))))) -(((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) - (-5 *2 (-112)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-966 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1263 (-171 *3)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3005 (-656 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-1068)) - (-5 *1 (-1180 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-1279 *3 *4 *5)) (-4 *3 (-1068)) - (-14 *4 (-1196)) (-14 *5 *3)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1084 *5 *6 *7)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) (-5 *1 (-996 *5 *6 *7 *8))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-767)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) - (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) + (-12 (-5 *4 (-938)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) + (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) + (-5 *3 (-656 (-701 *5)))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1289))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1392 (-1192 *6)) (|:| -3175 (-576))))) - (-4 *6 (-317)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-576)) - (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-888))) (-5 *1 (-495))))) -(((*1 *1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) - (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) - (|:| |args| (-656 (-874))))) - (-5 *1 (-1196)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-656 (-874)))) (-5 *1 (-1196))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-783)))) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1221) (-442 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-1068)) - (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1196)) - (-4 *4 (-13 (-568) (-1057 (-576)) (-148))) (-5 *1 (-582 *4))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-5 *2 (-2 (|:| -2371 *3) (|:| -2900 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-419 (-576))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) - (-4 *2 (-1237))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1158))) ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1068)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-960 (-227))) (-5 *1 (-1233)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1068))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1068)) - (-4 *7 (-1068)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) - (-4 *6 (-1263 *2)))) + (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1068)) (-4 *7 (-1068)) - (-4 *4 (-1263 *5)) (-5 *2 (-1192 *7)) (-5 *1 (-513 *5 *4 *6 *7)) - (-4 *6 (-1263 *4))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800))))) -(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1115)))) + (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) + (-4 *3 (-13 (-27) (-1221) (-442 *6))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-325 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) + (-4 *6 (-13 (-27) (-1221) (-442 *5))) + (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *6))) + (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1253 (-783))) + (-4 *7 (-13 (-27) (-1221) (-442 *6))) + (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1195)) (-5 *5 (-304 *3)) (-5 *6 (-1253 (-783))) + (-4 *3 (-13 (-27) (-1221) (-442 *7))) + (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) + (-5 *1 (-471 *7 *3)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) + (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1277 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-234 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-783)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *1 (-272 *4)) + (-4 *4 (-1236)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-272 *3)) (-4 *3 (-1236)))) + ((*1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-909 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 (-783))) (-4 *1 (-917 *4)) + (-4 *4 (-1119)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-917 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *1 (-917 *3)) (-4 *3 (-1119))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-496 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -3116 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-374)) (-4 *7 (-1262 *6)) + (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) + (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *1)) (|has| *1 (-6 -4462)) (-4 *1 (-1029 *3)) + (-4 *3 (-1236))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-112)) (-5 *1 (-941 *4 *5 *6 *7)))) + (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1262 *4)) (-5 *1 (-822 *4 *2)) + (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-112)) - (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-966 *4 *6 *5)) (-4 *4 (-464)) - (-4 *5 (-862)) (-4 *6 (-805)) (-5 *1 (-1006 *4 *5 *6 *3))))) -(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1290))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *3) - (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-921 *4)) - (-4 *4 (-1119)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-1119)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) - (-4 *1 (-397 *3))))) + (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1262 *4)) + (-5 *1 (-822 *4 *2)) + (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1018 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) + (-4 *4 (-1236)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3149 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270))))) -(((*1 *2 *3) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1195)) + (-14 *4 *2)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1177) (-786))) (-5 *1 (-115))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1236)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2) (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) (-5 *2 (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2920 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-938)) (-5 *1 (-454 *2)) - (-4 *2 (-1263 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-938)) (-5 *4 (-783)) (-5 *1 (-454 *2)) - (-4 *2 (-1263 (-576))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *1 (-454 *2)) - (-4 *2 (-1263 (-576))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-938)) (-5 *4 (-656 (-783))) (-5 *5 (-783)) - (-5 *6 (-112)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-576))))) + (|:| -4282 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4353 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1176 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2691 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-571)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -4282 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (|:| -4353 + (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) + (|:| |expense| (-390)) (|:| |accuracy| (-390)) + (|:| |intermediateResults| (-390)))))) + (-5 *1 (-815)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-430 *2)) (-4 *2 (-1263 *5)) - (-5 *1 (-456 *5 *2)) (-4 *5 (-1068))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) + (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1119))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *2 - (-3 (|:| |%expansion| (-323 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1178)) (|:| |prob| (-1178)))))) - (-5 *1 (-432 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-14 *6 (-1196)) (-14 *7 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2))))) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) - (-4 *2 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *3)) - (-4 *3 (-1237)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-576)) (-4 *4 (-1119)) - (-5 *1 (-749 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *1 (-749 *2)) (-4 *2 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) - (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-938)) - (-5 *2 - (-3 (-1192 *4) - (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139))))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-419 (-969 *4))) (-5 *1 (-941 *4 *5 *6 *3)) - (-4 *3 (-966 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *7)) (-4 *7 (-966 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-701 (-419 (-969 *4)))) - (-5 *1 (-941 *4 *5 *6 *7)))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-717 *3 *4)) (-4 *3 (-1236)) (-4 *4 (-1236))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-576))) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-568)) (-4 *8 (-966 *7 *5 *6)) + (-5 *2 (-2 (|:| -4274 (-783)) (|:| -1706 *9) (|:| |radicand| *9))) + (-5 *1 (-970 *5 *6 *7 *8 *9)) (-5 *4 (-783)) + (-4 *9 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *8)) (-15 -1536 (*8 $)) (-15 -1549 (*8 $)))))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -3116 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1262 *7)) + (-5 *3 (-419 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-586 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-185 (-140)))) (-5 *1 (-141))))) +(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *6 *5)) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-656 (-419 (-969 *4)))) - (-5 *1 (-941 *4 *5 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 *2)) (-4 *4 (-1263 *2)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-421 *2 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (-4 *2 (-1068))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192 *6)) (-4 *6 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-1192 *7)) (-5 *1 (-331 *4 *5 *6 *7)) - (-4 *7 (-966 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-1068)) (-5 *2 (-1287 *4)) - (-5 *1 (-1197 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-5 *2 (-1287 *3)) (-5 *1 (-1197 *3)) - (-4 *3 (-1068))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1196)) (-5 *1 (-687 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) (-4 *5 (-568)) - (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-805)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -1505 ((-1196) $)) - (-15 -1615 ((-3 $ "failed") (-1196)))))) - (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *6)) - (-4 *6 - (-13 (-862) - (-10 -8 (-15 -1505 ((-1196) $)) - (-15 -1615 ((-3 $ "failed") (-1196)))))) - (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2)) - (-4 *2 (-966 (-969 *4) *5 *6))))) + (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) + (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) + (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) + (-4 *2 (-699 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1068)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1142 *2 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) + ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1206 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-548)) (-5 *1 (-547 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-548))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1206 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-656 *6)) - (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-841))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *4 *5 *6 *7)) - (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) - (-4 *7 (-1237))))) -(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-315)))) + (|partial| -12 (-4 *3 (-1068)) (-4 *3 (-1119)) + (-5 *2 (-2 (|:| |val| *1) (|:| -4274 (-576)))) (-4 *1 (-442 *3)))) ((*1 *2 *1) (|partial| -12 - (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) - (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) - (-4 *5 (-13 (-442 *4) (-1021) (-1222))) - (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1222)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1068)) - (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-289))))) + (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -4274 (-905 *3)))) + (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) + (-4 *7 (-966 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -4274 (-576)))) + (-5 *1 (-967 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) + (-15 -1549 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *2)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-845 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-855 *3)) (-4 *3 (-1119))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) + (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) + (-14 *4 (-783)) (-4 *5 (-174))))) (((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-5 *2 (-112)) (-5 *1 (-456 *4 *3)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *5 (-379)) + (-5 *2 (-783))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) + (-5 *1 (-1179 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198)))) + ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1198))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *6))) (-4 *6 (-966 *3 *5 *4)) - (-4 *3 (-13 (-317) (-148))) (-4 *4 (-13 (-862) (-626 (-1196)))) - (-4 *5 (-805)) (-5 *1 (-941 *3 *4 *5 *6))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1054)) (-5 *1 (-766))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-862)) (-5 *3 (-656 *6)) (-5 *5 (-656 *3)) - (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-656 *5)) (|:| |f3| *5) - (|:| |f4| (-656 *5)))) - (-5 *1 (-1207 *6)) (-5 *4 (-656 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) - (-5 *1 (-921 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-837))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-315)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1054))) (-5 *2 (-1054)) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *1) (-5 *1 (-1082))) - ((*1 *2 *3) - (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1173 *4)) - (-4 *4 (-1237)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *5 (-1178)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1054)) - (-5 *1 (-762))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) - (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1039 *4)) - (-4 *4 (-1263 (-576)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-862)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *1 (-999 *3)) (-4 *3 (-1068)))) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 (-516 *3 *4 *5 *6))) (-4 *3 (-374)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) @@ -8600,323 +13363,478 @@ (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) + (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1221) (-1021))) + (-5 *1 (-178 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-4 *1 (-261 *3)))) + ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) (((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *3 (-1263 *4)) (-4 *2 (-1278 *4)) - (-5 *1 (-1281 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) + (-12 (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-2 (|:| -3872 (-1176 *4)) (|:| -3882 (-1176 *4)))) + (-5 *1 (-1181 *4)) (-5 *3 (-1176 *4))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-304 (-845 *3))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-845 (-969 *5)))) (-4 *5 (-464)) + (-5 *2 (-845 (-419 (-969 *5)))) (-5 *1 (-649 *5)) + (-5 *3 (-419 (-969 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) + (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874))))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-888)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-888)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1177)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-518)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-604)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-490)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-157)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1185)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-638)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1115)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1109)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1092)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-989)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-182)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1055)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-321)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-683)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-155)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1170)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1297)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1085)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-693)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-134)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-618)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-1296)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-688)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-220)))) + ((*1 *2 *1) (-12 (-4 *1 (-1156)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1200))))) (((*1 *2 *2) - (-12 (-4 *3 (-1057 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) - (-4 *2 (-442 *3)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-1192 *4)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1068)) (-4 *1 (-312)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1192 *3)))) - ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) + (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *1 (-190 *3 *2)) + (-4 *2 (-13 (-27) (-1221) (-442 (-171 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) (-4 *4 (-13 (-568) (-1057 (-576)))) + (-5 *1 (-190 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-1225 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) + (-4 *4 (-1262 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1195)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) +(((*1 *2 *3) + (-12 (-4 *1 (-812)) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-1054))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529)))) ((*1 *2 *1) - (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) - (-4 *2 (-1263 *3))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-177))) (-5 *1 (-1104))))) + (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *3 *2)) + (-4 *3 (-13 (-1119) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-1151 *4 *2)) + (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4461) (-6 -4462)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-862)) (-4 *3 (-1236)) (-5 *1 (-1151 *3 *2)) + (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4461) (-6 -4462))))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227))) (-5 *1 (-715 *3)) + (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1195)) (-5 *2 (-1 (-227) (-227) (-227))) + (-5 *1 (-715 *3)) (-4 *3 (-626 (-548)))))) (((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1054)) - (-5 *3 - (-2 (|:| |fn| (-326 (-227))) - (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-799)) (-5 *2 (-1054)) - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-656 (-112))) (-5 *7 (-701 (-227))) - (-5 *8 (-701 (-576))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *5 (-112)) - (-5 *2 (-1054)) (-5 *1 (-766))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112))))) + (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *3 (-656 (-270))) + (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1262 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1839 *3) (|:| -1433 *4)))) + (-5 *1 (-708 *3)) (-4 *3 (-1262 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1059))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *3 (-1068)) (-5 *1 (-607 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1246 *3)) (-4 *3 (-1068)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-576))) (-4 *1 (-1277 *3)) (-4 *3 (-1068))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1236)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-171 (-326 *4))) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-171 *3)) (-5 *1 (-1225 *4 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *4)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-177)))) + (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-109))) (-5 *1 (-1104))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-795 *2)) (-4 *2 (-38 (-419 (-576)))) - (-4 *2 (-174))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-678 *5)) (-5 *1 (-898 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-317)) (-4 *6 (-1263 *4)) - (-5 *2 (-1287 (-656 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-656 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *7)) (-4 *7 (-862)) - (-4 *8 (-966 *5 *6 *7)) (-4 *5 (-568)) (-4 *6 (-805)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1287 (-419 *8)) "failed")) - (|:| -1999 (-656 (-1287 (-419 *8)))))) - (-5 *1 (-681 *5 *6 *7 *8))))) -(((*1 *1 *2 *2) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *3 (-1084 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *1)))) + (-4 *1 (-1090 *4 *5 *6 *3))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-568)) - (-4 *7 (-966 *3 *5 *6)) - (-5 *2 (-2 (|:| -3175 (-783)) (|:| -1856 *8) (|:| |radicand| *8))) - (-5 *1 (-970 *5 *6 *3 *7 *8)) (-5 *4 (-783)) - (-4 *8 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $)))))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1119)) (-4 *2 (-915 *5)) (-5 *1 (-704 *5 *2 *3 *4)) - (-4 *3 (-384 *2)) (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462))))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-492))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-4 *6 (-568)) (-5 *2 (-656 (-326 *6))) - (-5 *1 (-223 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1068)))) - ((*1 *2 *1) (-12 (-5 *1 (-430 *2)) (-4 *2 (-568)))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 *5)) (-4 *5 (-13 (-29 *4) (-1222))) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-656 *5)) - (-5 *1 (-595 *4 *5)))) + (-5 *3 + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) + (-5 *2 (-656 (-1195))) (-5 *1 (-276)))) ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-969 *4)))) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-656 (-326 *4))) (-5 *1 (-601 *4)))) + (-12 (-5 *3 (-1191 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-656 *5)) + (-5 *1 (-331 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-4 *1 (-1114 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1168 *3)))) + (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-399)))) + ((*1 *2 *1) + (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-1195))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-656 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *1)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1168 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222))))) + (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) + (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *5)) + (-5 *1 (-967 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1302 (-1196) *3)) (-5 *1 (-1309 *3)) (-4 *3 (-1068)))) + (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) + (-4 *5 (-862)) (-5 *2 (-656 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-1302 *3 *4)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1068))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-938)) (-4 *5 (-317)) (-4 *3 (-1263 *5)) - (-5 *2 (-2 (|:| |plist| (-656 *3)) (|:| |modulo| *5))) - (-5 *1 (-472 *5 *3)) (-5 *4 (-656 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1211 *2)) (-4 *2 (-374))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-597))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-1222)))) - ((*1 *2 *1) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-624 *3)) (-4 *3 (-1119))))) + (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1195))) + (-5 *1 (-1062 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-1143 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-446)) + (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119)))) + ((*1 *2 *3) + (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1))))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1177)) (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) + (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-769))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-360)) (-4 *6 (-1262 *5)) (-5 *2 (-656 - (-3 (|:| -4124 (-1196)) - (|:| -4031 (-656 (-3 (|:| S (-1196)) (|:| P (-969 (-576))))))))) - (-5 *1 (-1200))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-326 (-576))) (|:| -2221 (-326 (-390))) - (|:| CF (-326 (-171 (-390)))) (|:| |switch| (-1195)))) - (-5 *1 (-1195))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1068)) - (-5 *3 (-419 (-576))) (-5 *1 (-1180 *4))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) + (-2 (|:| -3713 (-701 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-701 *6))))) + (-5 *1 (-510 *5 *6 *7)) + (-5 *3 + (-2 (|:| -3713 (-701 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-701 *6)))) + (-4 *7 (-1262 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) - (-15 -3905 ((-1144 *3 (-624 $)) $)) - (-15 -4092 ($ (-1144 *3 (-624 $)))))))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))) + (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-1195)) + (-4 *2 (-13 (-27) (-1221) (-442 *5))) + (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-286 *5 *2))))) +(((*1 *2 *3) + (-12 (-4 *3 (-1262 *2)) (-4 *2 (-1262 *4)) + (-5 *1 (-1004 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1084 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) + (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *3 (-915 *6)) + (-5 *2 (-701 *3)) (-5 *1 (-704 *6 *3 *7 *4)) (-4 *7 (-384 *3)) + (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4461))))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1176 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1068)) + (-5 *3 (-419 (-576))) (-5 *1 (-1179 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1191 (-419 (-1191 *2)))) (-5 *4 (-624 *2)) + (-4 *2 (-13 (-442 *5) (-27) (-1221))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1119)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1191 *1)) (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) + (-4 *5 (-805)) (-4 *3 (-862)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1191 *4)) (-4 *4 (-1068)) (-4 *1 (-966 *4 *5 *3)) + (-4 *5 (-805)) (-4 *3 (-862)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1088 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1084 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1164 *6 *7 *8 *3 *4)) (-4 *4 (-1128 *6 *7 *8 *3)))) + (-12 (-5 *3 (-419 (-1191 *2))) (-4 *5 (-805)) (-4 *4 (-862)) + (-4 *6 (-1068)) + (-4 *2 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) (-15 -1549 (*7 $))))) + (-5 *1 (-967 *5 *4 *6 *7 *2)) (-4 *7 (-966 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1172 *3))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) - (-4 *2 (-1263 *4))))) + (-12 (-5 *3 (-419 (-1191 (-419 (-969 *5))))) (-5 *4 (-1195)) + (-5 *2 (-419 (-969 *5))) (-5 *1 (-1062 *5)) (-4 *5 (-568))))) +(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) + ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289))))) (((*1 *2 *3 *4) - (-12 (-4 *4 (-374)) (-5 *2 (-656 (-1176 *4))) (-5 *1 (-295 *4 *5)) - (-5 *3 (-1176 *4)) (-4 *5 (-1278 *4))))) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-938)) (-4 *5 (-862)) + (-5 *2 (-59 (-656 (-684 *5)))) (-5 *1 (-684 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) + ((*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) +(((*1 *2 *1) (-12 (-5 *2 (-215 4 (-130))) (-5 *1 (-591))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-430 *3)) (-4 *3 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-656 (-938))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-938)) + (-4 *2 (-374)) (-14 *5 (-1012 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862)) + (-4 *6 (-243 (-3485 *4) (-783))) + (-14 *7 + (-1 (-112) (-2 (|:| -3257 *5) (|:| -4274 *6)) + (-2 (|:| -3257 *5) (|:| -4274 *6)))) + (-14 *4 (-656 (-1195))) (-4 *2 (-174)) + (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-966 *2 *6 (-876 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) + (-4 *4 (-1262 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-738)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) + (-4 *4 (-1068)) (-4 *5 (-862)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) + (-4 *2 (-862)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) + (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) + (-4 *5 (-805)) (-4 *2 (-862)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-992 *4 *5 *6)) + (-4 *4 (-1068)) (-4 *5 (-804)) (-4 *6 (-862)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-992 *4 *3 *2)) (-4 *4 (-1068)) (-4 *3 (-804)) + (-4 *2 (-862))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *5 (-568)) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10)) + (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1090 *5 *6 *7 *8)) + (-4 *10 (-1128 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1065 *5 *6))) + (-5 *1 (-640 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1195))) (-5 *2 - (-2 (|:| |minor| (-656 (-938))) (|:| -3278 *3) - (|:| |minors| (-656 (-656 (-938)))) (|:| |ops| (-656 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) - (-4 *3 (-1119))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-656 *6) "failed") (-576) *6 *6)) (-4 *6 (-374)) - (-4 *7 (-1263 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) + (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) + (-5 *1 (-640 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1065 *5 *6))) + (-5 *1 (-1065 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1)) + (-4 *1 (-1090 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) + (-4 *1 (-1229 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) + (-5 *2 (-1054)) (-5 *1 (-757))))) +(((*1 *1) (-5 *1 (-131)))) (((*1 *2 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5))))) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-816 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1221) (-976)))))) +(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1221)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1195)) (-4 *5 (-626 (-905 (-576)))) + (-4 *5 (-899 (-576))) + (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) + (-4 *3 (-13 (-27) (-1221) (-442 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1195)) (-5 *4 (-855 *2)) (-4 *2 (-1158)) + (-4 *2 (-13 (-27) (-1221) (-442 *5))) + (-4 *5 (-626 (-905 (-576)))) (-4 *5 (-899 (-576))) + (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) + (-5 *1 (-579 *5 *2))))) +(((*1 *2) (-12 (-5 *2 (-1166 (-1177))) (-5 *1 (-403))))) +(((*1 *2 *1) + (-12 (-4 *1 (-707 *3)) (-4 *3 (-1119)) + (-5 *2 (-656 (-2 (|:| -4353 *3) (|:| -1456 (-783)))))))) +(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1262 *2)) + (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *4 (-1262 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) + (-4 *3 (-421 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1262 *2)) (-4 *2 (-174)))) + ((*1 *2) + (-12 (-4 *3 (-1262 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) + (-4 *4 (-421 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)) (-4 *3 (-174)))) + ((*1 *2 *3) + (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1262 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1262 *2)) (-4 *2 (-1068)) (-4 *2 (-174))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-783)) (-4 *5 (-568)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-988 *5 *3)) (-4 *3 (-1262 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) + (-4 *3 (-13 (-1221) (-29 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) + (-5 *2 (-598 (-419 (-969 *5)))) (-5 *1 (-582 *5)) + (-5 *3 (-419 (-969 *5)))))) (((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) + ((*1 *1 *1) (-5 *1 (-173))) ((*1 *1 *1) (-4 *1 (-557))) + ((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) + ((*1 *1 *1) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) (-4 *3 (-13 (-1119) (-34)))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -3149 (-794 *3)) (|:| |coef1| (-794 *3)) - (|:| |coef2| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -3149 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1207 (-656 *4))) (-4 *4 (-862)) + (-5 *2 (-656 (-656 *4))) (-5 *1 (-1206 *4))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1287 (-656 (-576)))) (-5 *1 (-492)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-576)) (-4 *7 (-966 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1054)) (-5 *1 (-768))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) + (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1262 *4)) + (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1119)) (-4 *3 (-915 *5)) (-5 *2 (-1287 *3)) - (-5 *1 (-704 *5 *3 *6 *4)) (-4 *6 (-384 *3)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462))))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-768))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *1)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1068)) (-5 *1 (-701 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *4)) (-4 *4 (-1068)) (-4 *1 (-1142 *3 *4 *5 *6)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *2) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 + (-2 (|:| |solns| (-656 *5)) + (|:| |maps| (-656 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1147 *3 *5)) (-4 *3 (-1262 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) + (-4 *3 (-429 *4)))) + ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-656 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576)))))) + (-5 *2 (-656 (-419 (-576)))) (-5 *1 (-1039 *4)) + (-4 *4 (-1262 (-576)))))) +(((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-2 - (|:| -2371 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| -4282 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -2900 + (|:| -4353 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -8932,7 +13850,7 @@ (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2920 + (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") @@ -8940,1429 +13858,1661 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-571))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-598 *3) *3 (-1196))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1196))) - (-4 *3 (-294)) (-4 *3 (-641)) (-4 *3 (-1057 *4)) (-4 *3 (-442 *7)) - (-5 *4 (-1196)) (-4 *7 (-626 (-905 (-576)))) (-4 *7 (-464)) - (-4 *7 (-899 (-576))) (-4 *7 (-1119)) (-5 *2 (-598 *3)) - (-5 *1 (-585 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-448))))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-1082))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-390)) (-5 *1 (-1059))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-656 (-656 (-960 (-227))))))) - ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-656 (-656 (-960 (-227)))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-1287 (-701 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-701 *4)) (-4 *5 (-668 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) - (-5 *2 (-112)) (-5 *1 (-1315 *4))))) + (-5 *1 (-571)))) + ((*1 *2 *1) + (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1236)) + (-5 *2 (-656 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1236)) + (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *2 *7)) (-4 *6 (-1068)) + (-4 *7 (-243 *4 *6)) (-4 *2 (-243 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-13 (-464) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) + (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-996 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1287 *5)) (-5 *3 (-783)) (-5 *4 (-1139)) (-4 *5 (-360)) - (-5 *1 (-540 *5))))) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) + (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-773)))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) (((*1 *2 *1) + (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) + (-5 *2 (-1191 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1195))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-634 *4 *2)) (-4 *2 (-13 (-1221) (-976) (-29 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1191 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) + (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-1257 *4 *3)) + (-4 *3 (-1262 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1195))) + (-4 *5 (-464)) + (-5 *2 + (-2 (|:| |gblist| (-656 (-253 *4 *5))) + (|:| |gvlist| (-656 (-576))))) + (-5 *1 (-643 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289))))) +(((*1 *2 *2) (-12 (-5 *2 - (-1287 - (-2 (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)) (|:| -2085 (-576)) - (|:| -3361 (-576)) (|:| |spline| (-576)) (|:| -4330 (-576)) - (|:| |axesColor| (-886)) (|:| -3374 (-576)) - (|:| |unitsColor| (-886)) (|:| |showing| (-576))))) - (-5 *1 (-1288))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-764))))) -(((*1 *2 *1) - (-12 (-4 *1 (-384 *3)) (-4 *3 (-1237)) (-4 *3 (-862)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-384 *4)) (-4 *4 (-1237)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3149 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) + (-516 (-419 (-576)) (-245 *4 (-783)) (-876 *3) + (-253 *3 (-419 (-576))))) + (-14 *3 (-656 (-1195))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1177))))) (((*1 *2 *3) - (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *2 (-1287 (-326 (-390)))) - (-5 *1 (-315))))) + (-12 (-5 *3 (-938)) (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-872)) (-5 *2 (-703 (-130))) (-5 *3 (-130))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))) - (-5 *1 (-815))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1236))) (-5 *3 (-1236)) (-5 *1 (-693))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) - (-5 *1 (-709)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-227))) - (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-709)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1152 (-227))) (-5 *3 (-1 (-960 (-227)) (-227) (-227))) - (-5 *4 (-1113 (-227))) (-5 *5 (-656 (-270))) (-5 *1 (-709))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1119) (-34))) - (-5 *2 (-112)) (-5 *1 (-1159 *4 *5)) (-4 *4 (-13 (-1119) (-34)))))) -(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-862)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3005 (-656 *9)))) - (-5 *3 (-656 *9)) (-4 *1 (-1230 *6 *7 *8 *9)))) + (-12 (-5 *2 (-656 (-2 (|:| -4282 (-1195)) (|:| -4353 *4)))) + (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) + (-4 *7 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-1122 *3 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *3 (-835)) (-5 *1 (-834))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-759))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) +(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3005 (-656 *8)))) - (-5 *3 (-656 *8)) (-4 *1 (-1230 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-701 (-576))) (-5 *5 (-112)) (-5 *7 (-701 (-227))) - (-5 *3 (-576)) (-5 *6 (-227)) (-5 *2 (-1054)) (-5 *1 (-766))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-656 *2))) (-5 *4 (-656 *5)) - (-4 *5 (-38 (-419 (-576)))) (-4 *2 (-1278 *5)) - (-5 *1 (-1280 *5 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *2)) (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) - (-5 *1 (-744 *5 *4 *6 *2)) (-4 *5 (-805)) - (-4 *4 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) - (-4 *6 (-568))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) - ((*1 *1 *1 *1) (-4 *1 (-805)))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1292)) - (-5 *1 (-461 *4 *5 *6 *7))))) + (-12 (-5 *4 (-938)) (-5 *2 (-390)) (-5 *1 (-797 *3)) + (-4 *3 (-626 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) + (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) + (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) + (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) + (-12 (-5 *2 (-656 (-1200))) (-5 *1 (-185 *3)) (-4 *3 (-187))))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-1287 *5)) (-4 *5 (-317)) - (-4 *5 (-1068)) (-5 *2 (-701 *5)) (-5 *1 (-1048 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290)))) - ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1290))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) - (-5 *2 (-2 (|:| -1627 (-656 *6)) (|:| -3709 (-656 *6))))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1084 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-656 *4)) - (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -4385 *4)))))) - (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) - (-5 *1 (-461 *5 *6 *7 *4))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-1192 (-419 *5))) (-5 *1 (-627 *4 *5)) - (-5 *3 (-419 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-148) (-27) (-1057 (-576)) (-1057 (-419 (-576))))) - (-5 *2 (-1192 (-419 *6))) (-5 *1 (-627 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-938)) (-4 *1 (-416)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-4 *1 (-416)))) + (-12 (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805)) (-5 *2 (-112)) + (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *2 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 (-1287 *4))) (-4 *4 (-1068)) (-5 *2 (-701 *4)) - (-5 *1 (-1048 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) + (-4 *4 (-13 (-1119) (-34)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1084 *3 *4 *5))))) + (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1221))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-860)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1262 *4)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) + ((*1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) + ((*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-783)) (-4 *4 (-360)) (-5 *1 (-218 *4 *2)) + (-4 *2 (-1262 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1197 (-419 (-576)))) + (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1236)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-112)) (-5 *1 (-833))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-1047 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-701 *3))) (-4 *3 (-1068)) (-5 *1 (-1047 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-379)) (-5 *2 (-938)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1286 *4)) (-4 *4 (-360)) (-5 *2 (-938)) + (-5 *1 (-540 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 (-624 *4))) (-4 *4 (-442 *3)) (-4 *3 (-1119)) + (-5 *1 (-585 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-120 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-118 *4)) (-14 *4 *3) - (-5 *3 (-576)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-883 *4)) (-14 *4 *3) - (-5 *3 (-576)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-419 (-576))) (-5 *1 (-884 *4 *5)) - (-5 *3 (-576)) (-4 *5 (-881 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1031)) (-5 *2 (-419 (-576))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) - (-4 *3 (-1263 *2)))) + (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) + (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4092 (*2 (-1196)))) - (-4 *2 (-1068))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *5 (-379)) - (-5 *2 (-783))))) + (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1195))) + (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310))))) +(((*1 *2 *3) + (-12 (-5 *3 (-701 (-419 (-969 (-576))))) + (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) + (-14 *6 (-656 (-1195))) (-5 *2 (-656 (-1065 *5 *6))) + (-5 *1 (-640 *5 *6))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-464))))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-783)) + (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) + (-5 *1 (-251 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-993))))) (((*1 *1) - (-12 (-4 *1 (-416)) (-2433 (|has| *1 (-6 -4453))) - (-2433 (|has| *1 (-6 -4445))))) + (-12 (-4 *1 (-416)) (-2746 (|has| *1 (-6 -4452))) + (-2746 (|has| *1 (-6 -4444))))) ((*1 *2 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-1119)) (-4 *2 (-862)))) ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-862))) ((*1 *2 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862))))) -(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) + (|:| -2818 *6))) + (-5 *1 (-1034 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-872)) (-5 *3 (-129)) (-5 *2 (-783))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1291)) (-5 *1 (-843))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *1 (-1147 *3 *2)) (-4 *3 (-1262 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1286 *4)) (-4 *4 (-1236)) (-4 *1 (-243 *3 *4))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) + (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1197 (-419 (-576)))) (-5 *1 (-192))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-142))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-978 *3)) (-4 *3 (-557)))) - ((*1 *2 *1) (-12 (-4 *1 (-1241)) (-5 *2 (-112))))) + (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-112)) + (-5 *1 (-1225 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) - (-4 *2 (-1263 (-171 *3)))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993))))) -(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-1287 *4)) - (-5 *1 (-826 *4 *3)) (-4 *3 (-668 *4))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1178)) (-5 *1 (-315))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1207 *5))))) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1262 *3)) + (-4 *3 (-13 (-374) (-148) (-1057 (-576)))) (-5 *1 (-580 *3 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-906 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1230 *2 *3 *4 *5)) (-4 *2 (-568)) - (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-1084 *2 *3 *4)))) + (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-1195))) (-5 *2 (-1291)) (-5 *1 (-1238))))) +(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-568)))) + ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568))))) +(((*1 *2 *1) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *6)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-656 *6)) (-4 *6 (-862)) (-4 *4 (-374)) (-4 *5 (-805)) + (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-966 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) - (-4 *1 (-1090 *4 *5 *6 *3))))) + (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862))))) +(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-762))))) +(((*1 *1) (-5 *1 (-227))) ((*1 *1) (-5 *1 (-390)))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) +(((*1 *2 *1) (-12 (-5 *2 (-834)) (-5 *1 (-833))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) + (-5 *2 (-656 (-1095 *3 *4 *5))) (-5 *1 (-1096 *3 *4 *5)) + (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *2) (-12 (-5 *2 (-1176 (-656 (-938)))) (-5 *1 (-896))))) +(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) + (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1221) (-442 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) + ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-1225 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) + (-12 (-5 *3 (-1286 (-656 (-2 (|:| -3142 *4) (|:| -3257 (-1139)))))) + (-4 *4 (-360)) (-5 *2 (-701 *4)) (-5 *1 (-357 *4))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-301))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1195)) + (-5 *2 + (-2 (|:| |zeros| (-1176 (-227))) (|:| |ones| (-1176 (-227))) + (|:| |singularities| (-1176 (-227))))) + (-5 *1 (-105))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) + (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) + (-4 *6 (-464)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-493 *5 *6))) (-5 *4 (-876 *5)) + (-14 *5 (-656 (-1195))) (-5 *2 (-493 *5 *6)) (-5 *1 (-643 *5 *6)) + (-4 *6 (-464))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-430 *4)) (-4 *4 (-568))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1236)) (-5 *2 (-783)) + (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) + (-4 *3 (-442 *4)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) + ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) + (-4 *3 (-809 *4)))) + ((*1 *2) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1010 *3 *4)) + (-4 *3 (-1011 *4)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1015 *3 *4)) + (-4 *3 (-1016 *4)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1030 *3)) (-4 *3 (-1031)))) + ((*1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-783)))) + ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1078 *3)) (-4 *3 (-1079))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2861 *3) (|:| |coef1| (-794 *3)) (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-656 (-227))) + (-5 *1 (-480))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-624 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))) - (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)))) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *2 (-1084 *4 *5 *6)) (-5 *1 (-788 *4 *5 *6 *2 *3)) + (-4 *3 (-1090 *4 *5 *6 *2))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 (-1183 *3 *4))) (-5 *1 (-1183 *3 *4)) + (-14 *3 (-938)) (-4 *4 (-1068)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-656 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1084 *6 *7 *8)) (-4 *6 (-568)) (-4 *7 (-805)) - (-4 *8 (-862)) (-5 *1 (-996 *6 *7 *8 *9))))) + (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) +(((*1 *1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) + ((*1 *1 *1) (-4 *1 (-1021))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1031)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1031)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-938)))) + ((*1 *1 *1) (-4 *1 (-1031)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) + (-5 *2 (-2 (|:| -2055 (-656 *6)) (|:| -3223 (-656 *6))))))) +(((*1 *1 *1 *1) (-4 *1 (-986)))) +(((*1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2) (-12 (-5 *1 (-1253 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-763))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1119)) + (-4 *6 (-1119)) (-4 *2 (-1119)) (-5 *1 (-692 *5 *6 *2))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1229 *4 *5 *3 *6)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) + ((*1 *2 *3) + (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) + ((*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1191 (-576))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1191 (-419 (-576)))) (-5 *2 (-656 *1)) (-4 *1 (-1031)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1191 *1)) (-4 *1 (-1031)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-860) (-374))) (-4 *3 (-1262 *4)) (-5 *2 (-656 *1)) + (-4 *1 (-1087 *4 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-995 *4 *5 *3 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) + (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-246))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-1253 (-576)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4385 *9)))) - (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1090 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1292)) - (-5 *1 (-1088 *5 *6 *7 *8 *9)))) + (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1262 (-48))))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4385 *9)))) - (-5 *4 (-783)) (-4 *8 (-1084 *5 *6 *7)) (-4 *9 (-1128 *5 *6 *7 *8)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-1292)) - (-5 *1 (-1164 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -2128 *7) (|:| |sol?| (-112))) - (-576) *7)) - (-5 *6 (-656 (-419 *8))) (-4 *7 (-374)) (-4 *8 (-1263 *7)) - (-5 *3 (-419 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-586 *7 *8))))) -(((*1 *2 *2) + (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) + (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-966 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) + (-4 *7 (-966 (-48) *6 *5)) (-5 *2 (-430 (-1191 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1191 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) + (-4 *3 (-1262 (-171 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1262 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) + (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1262 (-576))))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) + (-5 *3 (-171 (-576))))) + ((*1 *2 *3) + (-12 + (-4 *4 + (-13 (-862) + (-10 -8 (-15 -4076 ((-1195) $)) + (-15 -3022 ((-3 $ "failed") (-1195)))))) + (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) + (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) + (-4 *3 (-966 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1191 *4))) (-5 *1 (-470 *4)) + (-5 *3 (-1191 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) + (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) + (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1262 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) + (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) + (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) + (-4 *3 (-966 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-430 (-1191 *7)) (-1191 *7))) + (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) + (-4 *8 (-966 *7 *6 *5)) (-5 *2 (-430 (-1191 *8))) + (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1191 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-656 *5) *6)) + (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *6 (-1262 *5)) (-5 *2 (-656 (-665 (-419 *6)))) + (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-4 *5 (-1262 *4)) (-5 *2 (-656 (-665 (-419 *5)))) + (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4))) + (-5 *1 (-684 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) + (-4 *3 (-1262 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) + (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) + (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) + (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *5 + (-13 (-862) + (-10 -8 (-15 -4076 ((-1195) $)) + (-15 -3022 ((-3 $ "failed") (-1195)))))) + (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) + (-4 *3 (-966 (-969 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *5 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) (-4 *6 (-568)) + (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) + (-4 *3 (-966 (-419 (-969 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) + (-4 *3 (-966 (-419 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) + (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) + (-4 *3 (-966 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) + (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1191 *7))) + (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) + (-4 *3 (-1262 (-419 (-576)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1060 *3)) + (-4 *3 (-1262 (-419 (-969 (-576))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1262 (-419 (-576)))) + (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) + (-5 *2 (-430 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1262 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1262 (-419 (-969 (-576))))) + (-4 *5 (-13 (-374) (-148) (-736 (-419 (-969 (-576))) *4))) + (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1262 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) + (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1191 (-419 *7)))) + (-5 *1 (-1190 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1240)))) + ((*1 *2 *3) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-701 (-227))) (-5 *6 (-701 (-576))) (-5 *3 (-576)) + (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-885 (-938) (-938)))) (-5 *1 (-990))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-759))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1191 *3)) (-4 *3 (-1068)) (-4 *1 (-1262 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) + (-4 *3 (-13 (-374) (-1221) (-1021)))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1068)) (-5 *1 (-839 *2 *3)) (-4 *2 (-720 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-130)))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1277 *3)) + (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1248 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-294))) - ((*1 *2 *3) - (-12 (-5 *3 (-430 *4)) (-4 *4 (-568)) - (-5 *2 (-656 (-2 (|:| -1856 (-783)) (|:| |logand| *4)))) - (-5 *1 (-330 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *1) - (-12 (-5 *2 (-676 *3 *4)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1246 *3)) + (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1269 *3 *4)) (-4 *5 (-1002 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) + (-5 *1 (-1180 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-13 (-1068) (-729 (-419 (-576))))) - (-4 *5 (-862)) (-5 *1 (-1303 *4 *5 *2)) (-4 *2 (-1308 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-1307 *3 *4)) - (-4 *4 (-729 (-419 (-576)))) (-4 *3 (-862)) (-4 *4 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1236))) (-5 *1 (-536))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1119)) (-4 *3 (-862)) - (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) (-12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) + (-5 *1 (-1181 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-783)) (-5 *2 (-1176 (-990))) (-5 *1 (-990))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1277 *4)) + (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-1 (-1176 *4) (-656 (-1176 *4)))) (-5 *1 (-1279 *4 *5))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-701 (-419 (-969 (-576))))) + (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-576)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-317)) + (-4 *9 (-966 *8 *6 *7)) + (-5 *2 (-2 (|:| -3789 (-1191 *9)) (|:| |polval| (-1191 *8)))) + (-5 *1 (-754 *6 *7 *8 *9)) (-5 *3 (-1191 *9)) (-5 *4 (-1191 *8))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-337 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1236)) (-5 *1 (-528 *3 *4)) + (-14 *4 (-576))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1054)) (-5 *1 (-763))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) ((*1 *2 *1) - (-12 (-4 *2 (-1237)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-684 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) + (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) + (-4 *5 (-862)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1221) (-29 *6))) + (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-226 *6 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-188)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-188))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) + (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -3887 *4)))) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) + (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-996 *3 *4 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1195)) (-4 *1 (-27)) + (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *2 (-656 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1275 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *1) (-12 (-5 *1 (-656 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) - (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) + (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) + (-14 *4 (-576))))) +(((*1 *2 *1) + (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1191 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862)) + (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) + (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783))))) +(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-656 (-656 (-960 (-227))))))) + ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-656 (-656 (-960 (-227)))))))) +(((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-457 *3)) (-4 *3 (-1068))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-960 (-227)) (-960 (-227)))) (-5 *1 (-270)))) ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-833))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-339 *4)) (-4 *4 (-374)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1286 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-1286 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1262 *4)) (-5 *2 (-1286 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-421 *4 *5)) (-4 *4 (-174)) + (-4 *5 (-1262 *4)) (-5 *2 (-701 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1262 *3)) + (-5 *2 (-1286 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-429 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1286 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-701 *5))) (-5 *3 (-701 *5)) (-4 *5 (-374)) + (-5 *2 (-1286 *5)) (-5 *1 (-1105 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| -1392 *4) (|:| -2369 (-576))))) - (-4 *4 (-1263 (-576))) (-5 *2 (-749 (-783))) (-5 *1 (-454 *4)))) + (-12 (-4 *6 (-568)) (-4 *2 (-966 *3 *5 *4)) + (-5 *1 (-744 *5 *4 *6 *2)) (-5 *3 (-419 (-969 *6))) (-4 *5 (-805)) + (-4 *4 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-703 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1121 (-783))) (-5 *6 (-783)) + (-5 *2 + (-2 (|:| |contp| (-576)) + (|:| -1707 (-656 (-2 (|:| |irr| *3) (|:| -2011 (-576))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) + (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-480)) (-5 *1 (-1290)))) ((*1 *2 *3) - (-12 (-5 *3 (-430 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1068)) - (-5 *2 (-749 (-783))) (-5 *1 (-456 *4 *5))))) + (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *2 (-480)) + (-5 *1 (-1290)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) + (-5 *2 (-480)) (-5 *1 (-1290))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) (((*1 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-568)) - (-4 *4 (-1068)) (-4 *2 (-1278 *4)) (-5 *1 (-1281 *4 *5 *6 *2)) - (-4 *6 (-668 *5))))) + (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1191 *4)) (-5 *1 (-368 *4)) + (-4 *4 (-360)))) + ((*1 *1) (-4 *1 (-379))) + ((*1 *2 *3) + (-12 (-5 *3 (-938)) (-5 *2 (-1286 *4)) (-5 *1 (-540 *4)) + (-4 *4 (-360)))) + ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) + ((*1 *1 *1) (-5 *1 (-783))) + ((*1 *2 *1) (-12 (-5 *2 (-922 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) + (-4 *4 (-1119)))) + ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-557)) (-4 *2 (-568))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-656 (-419 (-969 (-576))))) (-5 *4 (-656 (-1195))) + (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) + (-4 *5 (-13 (-860) (-374))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) + (-4 *4 (-13 (-860) (-374)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-920 *3)) (-4 *3 (-1119)) (-5 *2 (-1121 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-656 *4))) (-5 *1 (-921 *4)) + (-5 *3 (-656 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1119)) (-5 *2 (-1121 (-1121 *4))) (-5 *1 (-921 *4)) + (-5 *3 (-1121 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1121 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-656 *1)) (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *3)) + (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-656 *7) (-656 *7))) (-5 *2 (-656 *7)) + (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *7))))) +(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2))))) +(((*1 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-317)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-966 *4 *5 *6)) + (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *1 (-459 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-1177)) (-4 *7 (-966 *4 *5 *6)) + (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *1 (-459 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-171 (-576))) (-5 *2 (-112)) (-5 *1 (-458)))) + ((*1 *2 *3) + (-12 + (-5 *3 + (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) + (-253 *4 (-419 (-576))))) + (-14 *4 (-656 (-1195))) (-14 *5 (-783)) (-5 *2 (-112)) + (-5 *1 (-517 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-978 *3)) (-4 *3 (-557)))) + ((*1 *2 *1) (-12 (-4 *1 (-1240)) (-5 *2 (-112))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-115))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *1 *1) + (-12 (-4 *2 (-317)) (-4 *3 (-1011 *2)) (-4 *4 (-1262 *3)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *2 (-656 *3)) (-5 *1 (-996 *4 *5 *6 *3)) - (-4 *3 (-1084 *4 *5 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-660 *5)) (-4 *5 (-1068)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-864 *5)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-701 *3)) (-4 *1 (-429 *3)) (-4 *3 (-174)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) - ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1068)) - (-5 *1 (-865 *2 *3)) (-4 *3 (-864 *2))))) + (-12 (-4 *1 (-910)) + (-5 *3 + (-2 (|:| |pde| (-656 (-326 (-227)))) + (|:| |constraints| + (-656 + (-2 (|:| |start| (-227)) (|:| |finish| (-227)) + (|:| |grid| (-783)) (|:| |boundaryType| (-576)) + (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) + (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1177)) + (|:| |tol| (-227)))) + (-5 *2 (-1054))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-317)))) + ((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-1119)) + (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3824 (-783)) (|:| -2091 (-783)))) + (-5 *1 (-783)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) + (-5 *2 (-701 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-439 *3 *2)) (-4 *3 (-13 (-174) (-38 (-419 (-576))))) - (-4 *2 (-13 (-862) (-21)))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) + (-12 (-5 *3 (-656 (-656 (-960 (-227))))) + (-5 *2 (-656 (-1113 (-227)))) (-5 *1 (-945))))) +(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1177)) (-5 *1 (-315))))) +(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1170))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119))))) (((*1 *2 *2) - (-12 (-5 *2 (-656 (-969 *3))) (-4 *3 (-464)) (-5 *1 (-371 *3 *4)) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-462 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) - (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-462 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-656 (-792 *3 (-876 *4)))) (-4 *3 (-464)) - (-14 *4 (-656 (-1196))) (-5 *1 (-640 *3 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-207)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-390))) (-5 *2 (-390)) (-5 *1 (-207))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-124)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-783)) (|:| -2248 *4))) (-5 *5 (-783)) - (-4 *4 (-966 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-461 *6 *7 *8 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289)))) - ((*1 *2 *1) - (-12 (-5 *2 (-3 (-576) (-227) (-518) (-1178) (-1201))) - (-5 *1 (-1201))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-446)) (-4 *5 (-1119)) - (-5 *1 (-1125 *5 *4)) (-4 *4 (-442 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-834)) (-5 *2 (-52)) (-5 *1 (-841))))) -(((*1 *1 *2) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1236)) + (-4 *4 (-384 *2)) (-4 *5 (-384 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) + (-4 *2 (-1236))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1277 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) + (-12 (-5 *3 (-1191 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-969 *5)) (-4 *5 (-464)) (-5 *2 (-656 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-656 (-1196))) (-5 *1 (-212)) - (-5 *3 (-1196)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-783)) (-5 *2 (-656 (-1196))) - (-5 *1 (-276)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 *3)) (-5 *1 (-639 *3 *4 *5)) (-4 *3 (-862)) - (-4 *4 (-13 (-174) (-729 (-419 (-576))))) (-14 *5 (-938)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) - (-5 *2 (-656 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3149 (-794 *3)) (|:| |coef1| (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -3149 *1) (|:| |coef1| *1))) - (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-464)) - (-5 *2 - (-656 - (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1185 (-1196) (-969 *4)))) - (|:| |eigmult| (-783)) - (|:| |eigvec| (-656 (-701 (-419 (-969 *4)))))))) - (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4))))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *3 (-656 (-576))) - (-5 *1 (-896))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *1) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-295 *3 *2)) (-4 *2 (-1278 *3))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-372 (-115))) (-4 *2 (-1068)) (-5 *1 (-726 *2 *4)) + (-4 *4 (-660 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-372 (-115))) (-5 *1 (-848 *2)) (-4 *2 (-1068))))) +(((*1 *1 *1) (-4 *1 (-557)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-695 *4 *5)) (-4 *4 (-1119)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-541)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-589)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-873))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-922 (-576))) (-5 *4 (-576)) (-5 *2 (-701 *4)) - (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) + (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) + (-4 *3 (-1262 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-701 (-576))) (-5 *1 (-1047 *4)) - (-4 *4 (-1068)))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-922 (-576)))) (-5 *4 (-576)) - (-5 *2 (-656 (-701 *4))) (-5 *1 (-1047 *5)) (-4 *5 (-1068)))) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) + (-5 *1 (-454 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1262 (-576))))) ((*1 *2 *3) - (-12 (-5 *3 (-656 (-656 (-576)))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-1047 *4)) (-4 *4 (-1068))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3) - (-12 (-4 *4 (-862)) (-5 *2 (-1208 (-656 *4))) (-5 *1 (-1207 *4)) - (-5 *3 (-656 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) + (-4 *3 (-1262 (-419 (-576)))))) ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)) (-4 *2 (-317)))) - ((*1 *2 *2) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1072 *2 *3 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *2 *4)) (-4 *4 (-317))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1176 *3))) (-5 *1 (-1176 *3)) (-4 *3 (-1237))))) -(((*1 *2 *2 *2) - (-12 + (-12 (-5 *2 (-430 *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1262 (-576)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1179 *4)) (-4 *4 (-1068)) + (-5 *3 (-576))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1112 *3)) (-4 *3 (-1237)) (-5 *2 (-576))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) + (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-659 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) + (-5 *2 (-831 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-858)) (-5 *1 (-1309 *3 *2)) (-4 *3 (-1068))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) + (-4 *3 (-1236))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) (((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) - (-5 *1 (-178 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-1139)) (-5 *1 (-855 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -2553 *5) (|:| -2510 *5)))) - (-5 *1 (-819 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) - (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -2553 *4) (|:| -2510 *4)))) - (-5 *1 (-819 *5 *4 *3 *6)) (-4 *3 (-668 *4)) - (-4 *6 (-668 (-419 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-2 (|:| -2553 *5) (|:| -2510 *5)))) - (-5 *1 (-819 *4 *5 *6 *3)) (-4 *6 (-668 *5)) - (-4 *3 (-668 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) - (-4 *4 (-1263 *5)) (-5 *2 (-656 (-2 (|:| -2553 *4) (|:| -2510 *4)))) - (-5 *1 (-819 *5 *4 *6 *3)) (-4 *6 (-668 *4)) - (-4 *3 (-668 (-419 *4)))))) -(((*1 *1) - (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) - (-4 *4 (-678 *3)))) - ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-317))))) -(((*1 *2 *1 *1 *3) + (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) + (-15 -1549 ((-1144 *3 (-624 $)) $)) + (-15 -3563 ($ (-1144 *3 (-624 $)))))))))) +(((*1 *1 *1) + (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-464)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *3 (-1084 *4 *5 *6)) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *1)))) + (-4 *1 (-1090 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1240))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-1265 *3 *2)) + (-4 *2 (-13 (-1262 *3) (-568) (-10 -8 (-15 -3495 ($ $ $)))))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-656 (-1191 *13))) (-5 *3 (-1191 *13)) + (-5 *4 (-656 *12)) (-5 *5 (-656 *10)) (-5 *6 (-656 *13)) + (-5 *7 (-656 (-656 (-2 (|:| -3149 (-783)) (|:| |pcoef| *13))))) + (-5 *8 (-656 (-783))) (-5 *9 (-1286 (-656 (-1191 *10)))) + (-4 *12 (-862)) (-4 *10 (-317)) (-4 *13 (-966 *10 *11 *12)) + (-4 *11 (-805)) (-5 *1 (-719 *11 *12 *10 *13))))) +(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1236)) (-4 *2 (-862)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1236)))) + ((*1 *2 *2) + (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) - (-5 *2 (-2 (|:| -1856 *1) (|:| |gap| (-783)) (|:| -4400 *1))) - (-4 *1 (-1084 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| -1856 *1) (|:| |gap| (-783)) (|:| -4400 *1))) - (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-767))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-783)) (-4 *5 (-174)))) - ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174)))) - ((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1068)) (-4 *1 (-699 *3 *2 *4)) (-4 *2 (-384 *3)) - (-4 *4 (-384 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-14 *2 (-783)) (-4 *3 (-1068))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) - (-4 *4 (-1119)) (-4 *5 (-1119))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-301))) - ((*1 *1) (-5 *1 (-874))) - ((*1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) - (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1104))) - ((*1 *1) - (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) - (-4 *3 (-13 (-1119) (-34))))) - ((*1 *1) (-5 *1 (-1199))) ((*1 *1) (-5 *1 (-1200)))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) - (-5 *2 (-2 (|:| -1856 (-576)) (|:| |var| (-624 *1)))) - (-4 *1 (-442 *3))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764))))) -(((*1 *1) (-5 *1 (-145))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-270))))) + (-4 *6 (-1084 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3835 *1) (|:| |upper| *1))) + (-4 *1 (-995 *4 *5 *3 *6))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-171 (-227)))) (-5 *2 (-1054)) + (-5 *1 (-766))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1054)) (-5 *1 (-764))))) +(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713)))) + ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-713))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462))))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) + (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) + (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1221) (-442 *4)))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *3 (-1084 *6 *7 *8)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) - (-5 *1 (-1127 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-2 (|:| |val| (-656 *8)) (|:| -4385 *9)))) - (-5 *5 (-112)) (-4 *8 (-1084 *6 *7 *4)) (-4 *9 (-1090 *6 *7 *4 *8)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *4 (-862)) - (-5 *2 (-656 (-2 (|:| |val| *8) (|:| -4385 *9)))) - (-5 *1 (-1127 *6 *7 *4 *8 *9))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (|has| *1 (-6 -4463)) (-4 *1 (-1275 *3)) - (-4 *3 (-1237))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-568)) (-5 *1 (-988 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-656 *11)) (-5 *5 (-656 (-1192 *9))) - (-5 *6 (-656 *9)) (-5 *7 (-656 *12)) (-5 *8 (-656 (-783))) - (-4 *11 (-862)) (-4 *9 (-317)) (-4 *12 (-966 *9 *10 *11)) - (-4 *10 (-805)) (-5 *2 (-656 (-1192 *12))) - (-5 *1 (-719 *10 *11 *9 *12)) (-5 *3 (-1192 *12))))) -(((*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1145 *4 *3 *5))) (-4 *4 (-38 (-419 (-576)))) - (-4 *4 (-1068)) (-4 *3 (-862)) (-5 *1 (-1145 *4 *3 *5)) - (-4 *5 (-966 *4 (-543 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1231 *4))) (-5 *3 (-1196)) (-5 *1 (-1231 *4)) - (-4 *4 (-38 (-419 (-576)))) (-4 *4 (-1068))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-419 (-1192 (-326 *3)))) (-4 *3 (-568)) - (-5 *1 (-1149 *3))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) + (-5 *2 (-656 (-2 (|:| -1707 (-656 *3)) (|:| -3331 *5)))) + (-5 *1 (-183 *5 *3)) (-4 *3 (-1262 (-171 *5))))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-374) (-860))) + (-5 *2 (-656 (-2 (|:| -1707 (-656 *3)) (|:| -3331 *4)))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025))))) +(((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227)))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-1068)) + (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-1262 *4))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -1707 (-656 (-2 (|:| |irr| *10) (|:| -2011 (-576))))))) + (-5 *6 (-656 *3)) (-5 *7 (-656 *8)) (-4 *8 (-862)) (-4 *3 (-317)) + (-4 *10 (-966 *3 *9 *8)) (-4 *9 (-805)) + (-5 *2 + (-2 (|:| |polfac| (-656 *10)) (|:| |correct| *3) + (|:| |corrfact| (-656 (-1191 *3))))) + (-5 *1 (-637 *8 *9 *3 *10)) (-5 *4 (-656 (-1191 *3)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) + (-5 *2 (-419 (-969 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1246 *4)) (-4 *4 (-1068)) (-4 *4 (-568)) + (-5 *2 (-419 (-969 *4)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1121 *3)) (-5 *1 (-922 *3)) (-4 *3 (-379)) - (-4 *3 (-1119))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-834))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237))))) + (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-5 *2 (-1177))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) + (-4 *1 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *1 (-1090 *4 *5 *6 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1121 (-1121 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-479)))) + ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) (((*1 *2 *3) - (-12 (-4 *3 (-1263 *2)) (-4 *2 (-1263 *4)) - (-5 *1 (-1004 *4 *2 *3 *5)) (-4 *4 (-360)) (-4 *5 (-736 *2 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *1) (-5 *1 (-390))) ((*1 *1) (-5 *1 (-390)))) + (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1262 (-576)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) + (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1177)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1291)) + (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227)))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-158))) - ((*1 *2 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-960 *4))) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) - (-5 *1 (-726 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1104))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1241)) (-5 *1 (-149 *2 *4 *3)) - (-4 *3 (-1263 (-419 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-850))) (-5 *1 (-141))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-969 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1029 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1196)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-656 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -4015 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1222) (-27) (-442 *8))) - (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) - (-5 *2 (-656 *4)) (-5 *1 (-1033 *8 *4))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-13 (-1119) (-34))) - (-4 *3 (-13 (-1119) (-34)))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-374)) (-5 *1 (-1044 *3 *2)) (-4 *2 (-668 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-5 *2 (-2 (|:| -3278 *3) (|:| -3940 (-656 *5)))) - (-5 *1 (-1044 *5 *3)) (-5 *4 (-656 *5)) (-4 *3 (-668 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-115))))) -(((*1 *2 *3) - (-12 (-4 *2 (-374)) (-4 *2 (-860)) (-5 *1 (-962 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) - ((*1 *2 *1) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944))))) -(((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-938)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-845 (-938))) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) - ((*1 *2) - (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938)))))) + (-12 (-4 *5 (-568)) + (-5 *2 (-2 (|:| -2689 (-701 *5)) (|:| |vec| (-1286 (-656 (-938)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-668 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-1084 *3 *4 *2)) (-4 *2 (-862)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-97))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1288)))) + (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) + (-4 *5 (-862)) (-5 *2 (-969 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *5)) (-4 *4 (-1068)) + (-4 *5 (-862)) (-5 *2 (-969 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237))))) + (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1068)) + (-5 *2 (-969 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *1 (-1277 *4)) (-4 *4 (-1068)) + (-5 *2 (-969 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-55))))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390)))) + ((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-390))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-938))) (-5 *4 (-922 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-602)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-938))) (-5 *2 (-656 (-701 (-576)))) - (-5 *1 (-602)))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1262 *5)) (-4 *5 (-374)) + (-5 *2 (-2 (|:| -2960 (-430 *3)) (|:| |special| (-430 *3)))) + (-5 *1 (-739 *5 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-317)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-317) (-148))) + (-4 *2 (-966 *4 *6 *5)) (-5 *1 (-941 *4 *5 *6 *2)) + (-4 *5 (-13 (-862) (-626 (-1195)))) (-4 *6 (-805))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (-5 *2 (-112)) (-5 *1 (-310))))) +(((*1 *2 *1) (-12 (-4 *1 (-972)) (-5 *2 (-1113 (-227))))) + ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-1113 (-227)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-931 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-922 (-576)))) - (-5 *2 (-656 (-701 (-576)))) (-5 *1 (-602))))) -(((*1 *1) (-5 *1 (-340)))) -(((*1 *2 *3) (-12 (-5 *3 (-969 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) + (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1195)) + (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-430 (-969 *6))) (-5 *5 (-1195)) (-5 *3 (-969 *6)) + (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-656 (-1196))))) + (-12 (-5 *2 (-1183 3 *3)) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) + ((*1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) + (-5 *5 (-112)) (-5 *2 (-1288)) (-5 *1 (-264))))) +(((*1 *2 *3) (-12 (-5 *3 (-1195)) (-5 *2 (-1291)) (-5 *1 (-1198))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1068)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2202 *1))) + (-4 *1 (-864 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1240)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-340))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 *1)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) - (-14 *4 (-656 (-1196))))) - ((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-346 *3 *4 *5 *2)) (-4 *3 (-374)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-4 *2 (-353 *3 *4 *5)))) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-174)))) - ((*1 *1) (-12 (-4 *2 (-174)) (-4 *1 (-736 *2 *3)) (-4 *3 (-1263 *2))))) -(((*1 *1) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) - (-5 *2 (-831 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-858)) (-5 *1 (-1310 *3 *2)) (-4 *3 (-1068))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1263 *3)) (-4 *3 (-1068))))) + (-12 (-5 *2 (-1286 *3)) (-4 *3 (-1068)) (-5 *1 (-701 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-656 *4)) (-4 *4 (-1068)) (-4 *1 (-1142 *3 *4 *5 *6)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-163))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-163))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-176 *3)) (-4 *3 (-317)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-686 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-752 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-862)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-656 *3)) (-4 *1 (-999 *3)) (-4 *3 (-1068)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-5 *3 (-656 *7)) (-4 *1 (-1090 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) + (-4 *1 (-1090 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-656 *1)) (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-656 *1)) + (-4 *1 (-1090 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))) (((*1 *2 *3) - (-12 (-5 *3 (-227)) (-5 *2 (-112)) (-5 *1 (-309 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-855 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-315)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *7)) (-4 *7 (-862)) (-4 *5 (-926)) (-4 *6 (-805)) + (-4 *8 (-966 *5 *6 *7)) (-5 *2 (-430 (-1191 *8))) + (-5 *1 (-923 *5 *6 *7 *8)) (-5 *4 (-1191 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-926)) (-4 *5 (-1262 *4)) (-5 *2 (-430 (-1191 *5))) + (-5 *1 (-924 *4 *5)) (-5 *3 (-1191 *5))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-215 *4 *2)) (-14 *4 (-938)) + (-4 *2 (-1119))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) (-5 *1 (-549 *4 *2)) + (-4 *2 (-1277 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) + (-4 *5 (-1262 *4)) (-4 *6 (-736 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) + (-4 *2 (-1277 *6)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-576)) (-4 *4 (-13 (-374) (-379) (-626 *3))) + (-5 *1 (-554 *4 *2)) (-4 *2 (-1277 *4)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1176 *4)) (-5 *3 (-576)) (-4 *4 (-13 (-568) (-148))) + (-5 *1 (-1172 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5))) + (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) + (-14 *6 (-938))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) - (-4 *2 (-1278 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-976))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1) (-5 *1 (-874))) + (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) + (-4 *3 (-1119)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) (-4 *3 (-1068))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-374) (-148))) - (-5 *1 (-411 *3 *4))))) + (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) + (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) + (-5 *1 (-967 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-374) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) + (-15 -1549 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-5 *2 (-656 *1)) (-4 *1 (-1153 *3))))) -(((*1 *1 *1) (-4 *1 (-568)))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206))))) + (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 (-576))))) + (-5 *1 (-372 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) + (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) + (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3984 (-783))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-2 (|:| -1839 *3) (|:| -4274 (-576))))) + (-5 *1 (-430 *3)) (-4 *3 (-568))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1310 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) + (-4 *2 (-174)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-831 *4)) (-4 *1 (-1303 *4 *2)) (-4 *4 (-862)) + (-4 *2 (-1068)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1068)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1287 *5))) (-5 *4 (-576)) (-5 *2 (-1287 *5)) - (-5 *1 (-1048 *5)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1288)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1288)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-1289)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1289))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-836)) (-5 *3 (-656 (-1196))) (-5 *1 (-837))))) + (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) + (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) + (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1262 *3))))) +(((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *1 *1) (-5 *1 (-1082)))) +(((*1 *2 *1) (-12 (-5 *2 (-430 *3)) (-5 *1 (-931 *3)) (-4 *3 (-317))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) + (-5 *2 (-1054)) (-5 *1 (-763))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-1286 (-701 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-701 *4)) (-4 *5 (-668 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-384 *2)) + (-4 *5 (-384 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-783)) (-4 *2 (-1119)) (-5 *1 (-215 *4 *2)) + (-14 *4 (-938)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1236)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *2 *6 *7)) + (-4 *6 (-243 *5 *2)) (-4 *7 (-243 *4 *2)) (-4 *2 (-1068))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1195)) + (-4 *4 (-13 (-568) (-1057 (-576)) (-148))) (-5 *1 (-582 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-2 (|:| -3747 (-1176 *4)) (|:| -3757 (-1176 *4)))) + (-5 *1 (-1181 *4)) (-5 *3 (-1176 *4))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) - (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) - (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *10)) - (-5 *1 (-636 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1090 *5 *6 *7 *8)) - (-4 *10 (-1128 *5 *6 *7 *8)))) + (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-429 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) + (-4 *3 (-1119))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6))) - (-5 *1 (-640 *5 *6)))) + (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) - (-5 *2 - (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) - (-5 *1 (-640 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6))) - (-5 *1 (-1065 *5 *6)))) + (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) + (-5 *1 (-266 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1090 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) + (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) + (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1119))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-1230 *4 *5 *6 *7))))) -(((*1 *1 *1 *1) (-4 *1 (-986)))) -(((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-1084 *3 *4 *2)) (-4 *2 (-862)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-548))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-548))))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) - (-4 *5 (-1263 *4)) - (-5 *2 (-656 (-2 (|:| |deg| (-783)) (|:| -3278 *5)))) - (-5 *1 (-821 *4 *5 *3 *6)) (-4 *3 (-668 *5)) - (-4 *6 (-668 (-419 *5)))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-759))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1068)) (-5 *1 (-726 *4 *2)) - (-4 *2 (-660 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-848 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) - (-5 *1 (-760))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-694 *3)) (-4 *3 (-1119))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-656 (-1178))) (-5 *3 (-576)) (-5 *4 (-1178)) - (-5 *1 (-246)))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1265 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068))))) + (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1119))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) + (-5 *1 (-266 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1183 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1195)) (-5 *5 (-1113 (-227))) (-5 *2 (-944)) + (-5 *1 (-942 *3)) (-4 *3 (-626 (-548))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) (-5 *2 (-944)) (-5 *1 (-942 *3)) + (-4 *3 (-626 (-548))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-944)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *3 (-1113 (-227))) + (-5 *1 (-944))))) +(((*1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-886)) (-5 *1 (-1289))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-379)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) - ((*1 *2 *1) - (-12 (-4 *2 (-862)) (-5 *1 (-725 *2 *3 *4)) (-4 *3 (-1119)) - (-14 *4 - (-1 (-112) (-2 (|:| -2550 *2) (|:| -3175 *3)) - (-2 (|:| -2550 *2) (|:| -3175 *3))))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-557))))) -(((*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) - ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) - ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-783)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1113 (-855 (-390)))) (-5 *2 (-1113 (-855 (-227)))) - (-5 *1 (-315))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1263 *5)) - (-5 *1 (-739 *5 *2)) (-4 *5 (-374))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) -(((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *1 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-862)) (-4 *1 (-385 *3 *4)) - (-4 *4 (-174))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-960 *5)) (-5 *3 (-783)) (-4 *5 (-1068)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-938))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) - (-5 *2 (-701 (-326 (-227)))) (-5 *1 (-207)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1119)) (-4 *6 (-915 *5)) (-5 *2 (-701 *6)) - (-5 *1 (-704 *5 *6 *3 *4)) (-4 *3 (-384 *6)) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4462))))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-656 (-876 *4))) + (-14 *4 (-656 (-1195))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) + (-4 *6 (-464))))) +(((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1286 *1)) (-4 *1 (-378 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-461 *4 *5 *6 *2))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2861 *4))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-337 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1236)) (-14 *4 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-326 (-390))) (-5 *2 (-326 (-227))) (-5 *1 (-315))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-996 *3 *4 *5 *6))))) -(((*1 *1 *2) + (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1262 *5)) + (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) + (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) + (-5 *1 (-928 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) + (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) + (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-929 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1119) (-34))) + (-4 *3 (-13 (-1119) (-34)))))) +(((*1 *1) (-5 *1 (-1104)))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1) (-4 *1 (-1158)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-656 (-656 (-656 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-656 *5)) (-4 *5 (-862)) (-5 *1 (-1206 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) +(((*1 *2 *1) + (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) + (-5 *2 (-425 *4 (-419 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1286 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))) + (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) (-4 *3 (-317)) + (-5 *1 (-425 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -3791 (-656 *3)) (|:| -2297 *5)))) - (-5 *1 (-183 *5 *3)) (-4 *3 (-1263 (-171 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-860))) - (-5 *2 (-656 (-2 (|:| -3791 (-656 *3)) (|:| -2297 *4)))) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237))))) -(((*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317))))) +(((*1 *1) (-5 *1 (-301)))) (((*1 *2 *2) - (-12 (-5 *2 (-656 (-493 *3 *4))) (-14 *3 (-656 (-1196))) - (-4 *4 (-464)) (-5 *1 (-643 *3 *4))))) -(((*1 *1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-862)) (-4 *4 (-805)) - (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-966 *2 *4 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-4 *1 (-812)) - (-5 *3 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-1054))))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-862))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -3495 (-794 *3)) (|:| |coef1| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1))) + (-4 *1 (-1084 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-624 *5)) (-4 *5 (-442 *4)) (-4 *4 (-1057 (-576))) - (-4 *4 (-568)) (-5 *2 (-1192 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-1068)) (-4 *1 (-312)) - (-5 *2 (-1192 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1292)) (-5 *1 (-246))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1054)) - (-5 *1 (-761))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174))))) -(((*1 *2) - (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-354 *3 *4)) (-14 *3 (-938)) - (-14 *4 (-938)))) - ((*1 *2) - (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-355 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-1192 *3)))) - ((*1 *2) - (-12 (-5 *2 (-975 (-1139))) (-5 *1 (-356 *3 *4)) (-4 *3 (-360)) - (-14 *4 (-938))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-938)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270))))) + (-12 (-4 *4 (-568)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) + (-4 *5 (-13 (-442 *4) (-1021) (-1221))) + (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1221)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) + (-14 *4 (-1195)) (-14 *5 *3)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-969 (-171 (-576))))))) - (-5 *2 (-656 (-656 (-304 (-969 (-171 *4)))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 (-171 (-576))))) - (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-969 (-171 (-576)))))) - (-5 *2 (-656 (-304 (-969 (-171 *4))))) (-5 *1 (-389 *4)) - (-4 *4 (-13 (-374) (-860)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1068) (-862))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4)) - (-4 *2 (-1263 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) + (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-764))))) + (-5 *1 (-767))))) (((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1247 *3)) - (-5 *2 (-419 (-576)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-312)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| -1627 *1) (|:| -3709 (-656 *7))))) - (-5 *3 (-656 *7)) (-4 *1 (-1230 *4 *5 *6 *7))))) + (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-1 (-1192 (-969 *4)) (-969 *4))) - (-5 *1 (-1295 *4)) (-4 *4 (-374))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-1178)) (-5 *1 (-1008)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-4 *4 (-1237)) (-5 *1 (-1076 *3 *4)) - (-4 *3 (-1112 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1113 *4)) (-4 *4 (-1237)) - (-5 *1 (-1111 *4))))) + (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1278 *4)) - (-4 *4 (-38 (-419 (-576)))) (-5 *2 (-1 (-1176 *4) (-1176 *4))) - (-5 *1 (-1280 *4 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1068)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3))))) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) + (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1262 *2))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1054)) (-5 *1 (-315)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-1054))) (-5 *2 (-1054)) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-663 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *1) (-5 *1 (-1082))) + ((*1 *2 *3) + (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1173 *4)) + (-4 *4 (-1236)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1262 *3)) (-4 *3 (-1068))))) +(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1236))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) (-5 *2 (-656 (-1065 *5 *6))) - (-5 *1 (-640 *5 *6))))) -(((*1 *1) (-12 (-4 *1 (-339 *2)) (-4 *2 (-379)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-2 (|:| -2084 (-1176 *4)) (|:| -2099 (-1176 *4)))) - (-5 *1 (-1182 *4)) (-5 *3 (-1176 *4))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1262 *6)) + (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) + (-4 *8 (-1262 (-419 *7))) (-5 *2 (-598 *3)) + (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1123))) (-5 *1 (-301))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-227)) (-5 *5 (-576)) (-5 *2 (-1231 *3)) + (-5 *1 (-802 *3)) (-4 *3 (-993)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-112)) + (-5 *1 (-1231 *2)) (-4 *2 (-993))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1129))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-783)) (-5 *3 (-960 *4)) (-4 *1 (-1153 *4)) + (-4 *4 (-1068)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-783)) (-5 *4 (-960 (-227))) (-5 *2 (-1291)) + (-5 *1 (-1288))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) + (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1170))))) (((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 *1)) - (-4 *1 (-393 *3 *4)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-738)))) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638)))) ((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-966 *3 *4 *5))))) -(((*1 *1) (-5 *1 (-1292)))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) -(((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) - (-5 *2 (-253 *4 *5)) (-5 *1 (-961 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-4 *2 (-1263 *4)) - (-5 *1 (-939 *4 *2))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1054)) (-5 *1 (-763))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-109))) (-5 *1 (-177))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1057 (-576))) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-135))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1278 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1249 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) - (-4 *5 (-1247 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1270 *4 *5)) - (-4 *6 (-1002 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-294))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *1) (-5 *1 (-390))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) - (-4 *3 (-1131)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1119)) - (-5 *1 (-694 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) - (-5 *1 (-702 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)) - (-4 *4 (-660 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1068)) - (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1068)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1068)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-419 (-576))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-938)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1278 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-130))))) -(((*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1119))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1206))))) -(((*1 *2 *3) - (-12 (-5 *3 (-253 *4 *5)) (-14 *4 (-656 (-1196))) (-4 *5 (-1068)) - (-5 *2 (-969 *5)) (-5 *1 (-961 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1237)))) + (-12 (-4 *3 (-1119)) + (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) + (-5 *1 (-1095 *3 *4 *2)) + (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-862))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-988 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-13 (-1119) (-34))) - (-4 *4 (-13 (-1119) (-34)))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-960 (-227)) (-227) (-227))) - (-5 *3 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-262))))) -(((*1 *2 *2) - (-12 (-5 *2 (-960 *3)) (-4 *3 (-13 (-374) (-1222) (-1021))) - (-5 *1 (-178 *3))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 *5))) - (-4 *5 (-374)) (-4 *5 (-568)) (-5 *2 (-1287 *5)) - (-5 *1 (-650 *5 *4)))) + (-12 (-4 *2 (-1119)) (-5 *1 (-1184 *3 *2)) (-4 *3 (-1119))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) + (-4 *3 (-568))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1068)) + (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-864 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) + (-5 *2 (-2 (|:| -3824 *3) (|:| -2091 *3))) (-5 *1 (-865 *5 *3)) + (-4 *3 (-864 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1068) (-651 *5))) - (-2433 (-4 *5 (-374))) (-4 *5 (-568)) (-5 *2 (-1287 (-419 *5))) - (-5 *1 (-650 *5 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-115)))) - ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1287)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1287)) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1287)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) + (-5 *2 (-1288)) (-5 *1 (-262)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-304 *7)) (-5 *4 (-1195)) (-5 *5 (-656 (-270))) + (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1057 (-576)))) + (-5 *2 (-1287)) (-5 *1 (-263 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1287)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1287)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1119))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-890 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1287)) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-890 *5)) (-5 *4 (-1111 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1287)) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) + (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) + (-4 *3 (-13 (-626 (-548)) (-1119))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) + (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) + (-5 *1 (-266 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) + (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) + (-5 *1 (-266 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287)) (-5 *1 (-267)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1287)) + (-5 *1 (-267)))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *2 (-1287)) (-5 *1 (-267)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-656 (-270))) + (-5 *2 (-1287)) (-5 *1 (-267)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) + (-5 *1 (-267))))) +(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1119))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-656 (-783))))) ((*1 *2 *1) (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-656 (-656 (-227)))) (-5 *4 (-227)) - (-5 *2 (-656 (-960 *4))) (-5 *1 (-1233)) (-5 *3 (-960 *4))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) - (-5 *2 (-576)) (-5 *1 (-1133 *4 *5))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-5 *1 (-1259 *4 *2)) - (-4 *2 (-1263 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1119)) - (-4 *5 (-1237)) (-5 *1 (-903 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-905 *4)) (-5 *3 (-656 (-1 (-112) *5))) (-4 *4 (-1119)) - (-4 *5 (-1237)) (-5 *1 (-903 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-905 *5)) (-5 *3 (-656 (-1196))) - (-5 *4 (-1 (-112) (-656 *6))) (-4 *5 (-1119)) (-4 *6 (-1237)) - (-5 *1 (-903 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1237)) (-4 *4 (-1119)) - (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) (-4 *4 (-1119)) - (-5 *1 (-954 *4 *2 *5)) (-4 *2 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1237)) - (-5 *2 (-326 (-576))) (-5 *1 (-955 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-656 (-1 (-112) *5))) (-4 *5 (-1237)) - (-5 *2 (-326 (-576))) (-5 *1 (-955 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-1 (-112) (-656 *6))) - (-4 *6 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) (-4 *4 (-1119)) - (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-1095 *4 *5 *6))))) + (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-656 (-783)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1286 *4)) (-4 *4 (-13 (-1068) (-651 (-576)))) + (-5 *2 (-112)) (-5 *1 (-1314 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *2 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1119)) + (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) + (-5 *1 (-1095 *3 *4 *2)) + (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1119)) (-5 *1 (-1184 *2 *3)) (-4 *3 (-1119))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-783)))) ((*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1103 *3)) (-4 *3 (-133))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1176 *3))) (-5 *2 (-1176 *3)) (-5 *1 (-1179 *3)) + (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-656 (-1196))))) + (-14 *4 (-656 (-1195))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-576)) (-14 *6 (-783)) (-4 *7 (-174)) (-4 *8 (-174)) @@ -10372,19 +15522,19 @@ (-4 *6 (-174)) (-5 *2 (-171 *6)) (-5 *1 (-170 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1068) (-862))) - (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1196))))) + (-5 *1 (-225 *3 *4)) (-14 *4 (-656 (-1195))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-5 *2 (-245 *5 *7)) + (-4 *6 (-1236)) (-4 *7 (-1236)) (-5 *2 (-245 *5 *7)) (-5 *1 (-244 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-304 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-304 *6)) (-5 *1 (-303 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-304 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-304 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1178)) (-5 *5 (-624 *6)) - (-4 *6 (-312)) (-4 *2 (-1237)) (-5 *1 (-307 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1177)) (-5 *5 (-624 *6)) + (-4 *6 (-312)) (-4 *2 (-1236)) (-5 *1 (-307 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-624 *5)) (-4 *5 (-312)) (-4 *2 (-312)) (-5 *1 (-308 *5 *2)))) @@ -10398,20 +15548,20 @@ (-4 *6 (-1119)) (-5 *2 (-326 *6)) (-5 *1 (-324 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-347 *5 *6 *7 *8)) (-4 *5 (-374)) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *9 (-374)) (-4 *10 (-1263 *9)) (-4 *11 (-1263 (-419 *10))) + (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) + (-4 *9 (-374)) (-4 *10 (-1262 *9)) (-4 *11 (-1262 (-419 *10))) (-5 *2 (-347 *9 *10 *11 *12)) (-5 *1 (-344 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-353 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-349 *3)) (-4 *3 (-1119)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1241)) (-4 *8 (-1241)) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *9 (-1263 *8)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1240)) (-4 *8 (-1240)) + (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *9 (-1262 *8)) (-4 *2 (-353 *8 *9 *10)) (-5 *1 (-351 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1263 (-419 *9))))) + (-4 *4 (-353 *5 *6 *7)) (-4 *10 (-1262 (-419 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1236)) (-4 *6 (-1236)) (-4 *2 (-384 *6)) (-5 *1 (-382 *5 *4 *6 *2)) (-4 *4 (-384 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) @@ -10424,9 +15574,9 @@ (-4 *6 (-568)) (-5 *2 (-419 *6)) (-5 *1 (-418 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-317)) - (-4 *6 (-1011 *5)) (-4 *7 (-1263 *6)) + (-4 *6 (-1011 *5)) (-4 *7 (-1262 *6)) (-4 *8 (-13 (-421 *6 *7) (-1057 *6))) (-4 *9 (-317)) - (-4 *10 (-1011 *9)) (-4 *11 (-1263 *10)) + (-4 *10 (-1011 *9)) (-4 *11 (-1262 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-424 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-421 *10 *11) (-1057 *10))))) @@ -10442,7 +15592,7 @@ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-437 *6)) (-5 *1 (-435 *5 *4 *6 *2)) (-4 *4 (-437 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1236)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-862)))) @@ -10451,9 +15601,9 @@ (-4 *6 (-374)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -4015 *5) (|:| |coeff| *5)) "failed")) + (-5 *4 (-3 (-2 (|:| -3116 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-374)) (-4 *6 (-374)) - (-5 *2 (-2 (|:| -4015 *6) (|:| |coeff| *6))) + (-5 *2 (-2 (|:| -3116 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) @@ -10473,31 +15623,31 @@ (-656 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-613 *8)) + (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8)) + (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1176 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8)) + (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1236)) (-5 *1 (-613 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-656 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-654 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-656 *6)) (-5 *5 (-656 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-656 *8)) + (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-656 *8)) (-5 *1 (-655 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-663 *3)) (-4 *3 (-1236)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1068)) (-4 *8 (-1068)) (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *2 (-699 *8 *9 *10)) @@ -10510,9 +15660,9 @@ (-4 *4 (-699 *5 *6 *7)) (-4 *9 (-384 *8)) (-4 *10 (-384 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-568)) (-4 *7 (-568)) - (-4 *6 (-1263 *5)) (-4 *2 (-1263 (-419 *8))) - (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1263 (-419 *6))) - (-4 *8 (-1263 *7)))) + (-4 *6 (-1262 *5)) (-4 *2 (-1262 (-419 *8))) + (-5 *1 (-721 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1262 (-419 *6))) + (-4 *8 (-1262 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1068)) (-4 *9 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) (-4 *2 (-966 *9 *7 *5)) @@ -10549,14 +15699,14 @@ (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *1 (-854 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-890 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-890 *6)) (-5 *1 (-889 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-895 *6)) (-5 *1 (-894 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-902 *5 *7)) @@ -10572,11 +15722,11 @@ (-4 *8 (-1068)) (-4 *6 (-805)) (-4 *2 (-13 (-1119) - (-10 -8 (-15 -4007 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) + (-10 -8 (-15 -3083 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-783)))))) (-5 *1 (-968 *6 *7 *8 *5 *2)) (-4 *5 (-966 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-975 *6)) (-5 *1 (-974 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-975 *6)) (-5 *1 (-974 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-983 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-5 *2 (-983 *6)) (-5 *1 (-985 *5 *6)))) @@ -10588,8 +15738,8 @@ (-4 *2 (-966 (-969 *4) *5 *6)) (-4 *5 (-805)) (-4 *6 (-13 (-862) - (-10 -8 (-15 -1505 ((-1196) $)) - (-15 -1615 ((-3 $ "failed") (-1196)))))) + (-10 -8 (-15 -4076 ((-1195) $)) + (-15 -3022 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1003 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-568)) (-4 *6 (-568)) @@ -10611,1942 +15761,1123 @@ (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *11 (-243 *6 *10)) (-4 *12 (-243 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1113 *6)) (-5 *1 (-1108 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-1113 *6)) (-5 *1 (-1108 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-860)) - (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-656 *6)) + (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-656 *6)) (-5 *1 (-1108 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1111 *6)) (-5 *1 (-1110 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1111 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-1111 *6)) (-5 *1 (-1110 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1114 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1168 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1176 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1176 *6)) (-5 *1 (-1174 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1176 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-1176 *6)) (-5 *1 (-1174 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-1176 *7)) - (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1176 *8)) + (-4 *6 (-1236)) (-4 *7 (-1236)) (-4 *8 (-1236)) (-5 *2 (-1176 *8)) (-5 *1 (-1175 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1068)) - (-4 *6 (-1068)) (-5 *2 (-1192 *6)) (-5 *1 (-1190 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-5 *2 (-1191 *6)) (-5 *1 (-1189 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1213 *3 *4)) (-4 *3 (-1119)) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1212 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1068)) - (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1246 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1196)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1245 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1195)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1254 *6)) (-5 *1 (-1253 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-1253 *6)) (-5 *1 (-1252 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-860)) - (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1176 *6)) - (-5 *1 (-1253 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1253 *5)) (-4 *5 (-860)) + (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1176 *6)) + (-5 *1 (-1252 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1260 *5 *6)) (-14 *5 (-1196)) - (-4 *6 (-1068)) (-4 *8 (-1068)) (-5 *2 (-1260 *7 *8)) - (-5 *1 (-1255 *5 *6 *7 *8)) (-14 *7 (-1196)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1259 *5 *6)) (-14 *5 (-1195)) + (-4 *6 (-1068)) (-4 *8 (-1068)) (-5 *2 (-1259 *7 *8)) + (-5 *1 (-1254 *5 *6 *7 *8)) (-14 *7 (-1195)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) - (-4 *2 (-1263 *6)) (-5 *1 (-1261 *5 *4 *6 *2)) (-4 *4 (-1263 *5)))) + (-4 *2 (-1262 *6)) (-5 *1 (-1260 *5 *4 *6 *2)) (-4 *4 (-1262 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1272 *5 *7 *9)) (-4 *5 (-1068)) - (-4 *6 (-1068)) (-14 *7 (-1196)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1272 *6 *8 *10)) (-5 *1 (-1267 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1196)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1271 *5 *7 *9)) (-4 *5 (-1068)) + (-4 *6 (-1068)) (-14 *7 (-1195)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1271 *6 *8 *10)) (-5 *1 (-1266 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1195)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1068)) (-4 *6 (-1068)) - (-4 *2 (-1278 *6)) (-5 *1 (-1276 *5 *6 *4 *2)) (-4 *4 (-1278 *5)))) + (-4 *2 (-1277 *6)) (-5 *1 (-1275 *5 *6 *4 *2)) (-4 *4 (-1277 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) - (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1286 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1286 *5)) (-4 *5 (-1236)) + (-4 *6 (-1236)) (-5 *2 (-1286 *6)) (-5 *1 (-1285 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1287 *5)) - (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) - (-5 *1 (-1286 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1286 *5)) + (-4 *5 (-1236)) (-4 *6 (-1236)) (-5 *2 (-1286 *6)) + (-5 *1 (-1285 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-1310 *3 *4)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-858))))) -(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1068))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-409))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *3)) - (-4 *3 (-1263 (-419 *4)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-701 *4)) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-166 *3 *4)) - (-4 *3 (-167 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) - ((*1 *2) (-12 (-4 *1 (-775)) (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-808 *3 *4)) - (-4 *3 (-809 *4)))) - ((*1 *2) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-1010 *3 *4)) - (-4 *3 (-1011 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-783)) (-5 *1 (-1015 *3 *4)) - (-4 *3 (-1016 *4)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1030 *3)) (-4 *3 (-1031)))) - ((*1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-783)))) - ((*1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-1078 *3)) (-4 *3 (-1079))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1254 (-576))) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-663 *3)) (-4 *3 (-1237))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463))))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2060)))) (-5 *3 (-227)) + (-5 *2 (-1054)) (-5 *1 (-760))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1195)) + (-4 *5 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) + (-5 *2 (-598 *3)) (-5 *1 (-569 *5 *3)) + (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-374)) (-4 *3 (-1262 *4)) (-4 *5 (-1262 (-419 *3))) + (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1262 *2)) + (-4 *5 (-1262 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) + (-4 *6 (-353 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-374)) (-4 *3 (-1262 *2)) (-4 *4 (-1262 (-419 *3))) + (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) + (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1262 *3)) + (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) + (-4 *1 (-346 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-1195))) (-5 *1 (-1195))))) +(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) + ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-701 (-227))) (-5 *6 (-112)) (-5 *7 (-701 (-576))) (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-576)) (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *1) (-5 *1 (-518)))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-1192 *3)) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-624 *3)) (-5 *5 (-419 (-1192 *3))) - (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) - (-5 *1 (-572 *6 *3 *7)) (-4 *7 (-1119))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-480)) (-5 *3 (-656 (-270))) (-5 *1 (-1288)))) - ((*1 *1 *1) (-5 *1 (-1288)))) -(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-212))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-995 *4 *5 *3 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) - (-4 *3 (-862)) (-4 *6 (-1084 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) + (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1262 (-576)))))) (((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-783)))) ((*1 *2 *1) (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-557)) (-5 *1 (-160 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068))))) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-624 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1195))) + (-4 *2 (-13 (-442 *5) (-27) (-1221))) + (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) + (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1119))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-374)) (-5 *1 (-778 *2 *3)) (-4 *2 (-720 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-1288)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) + (-14 *5 (-656 (-1195))) (-14 *6 (-1286 (-701 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1119)) + (-5 *1 (-624 *5))))) +(((*1 *1 *1) (-4 *1 (-1079))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1264 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))) (((*1 *2 *3) - (-12 (-5 *3 (-781)) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-781)) (-5 *4 (-1082)) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) - (-5 *1 (-577)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1082)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) - (|:| -2920 (-656 (-1113 (-855 (-227))))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) - (|:| |extra| (-1054)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-1082)) - (-5 *4 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)) - (|:| |extra| (-1054)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-812)) (-5 *3 (-1082)) - (-5 *4 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-820)) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1082)) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1082)) - (-5 *4 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) - (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-851)) (-5 *3 (-1082)) - (-5 *4 - (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)))))) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-194)))) ((*1 *2 *3) - (-12 (-5 *3 (-853)) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-853)) (-5 *4 (-1082)) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-910)) (-5 *3 (-1082)) - (-5 *4 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) - (|:| |tol| (-227)))) - (-5 *2 (-2 (|:| -2451 (-390)) (|:| |explanations| (-1178)))))) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-310)))) ((*1 *2 *3) - (-12 (-5 *3 (-913)) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-912)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-913)) (-5 *4 (-1082)) - (-5 *2 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *1 (-912))))) + (-12 (-5 *3 (-656 (-227))) (-5 *2 (-656 (-1177))) (-5 *1 (-315))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) + (-4 *3 (-1119))))) +(((*1 *1 *1) + (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) + (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288)))) + ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1288))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) + (-5 *4 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) + (-5 *4 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) + (-5 *4 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-171 (-390))))) + (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-576)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-171 (-390))))) + (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-576)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-171 (-390)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-390))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-576))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) + (-5 *4 (-326 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) + (-5 *4 (-326 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1195)) (-5 *3 (-656 (-969 (-576)))) + (-5 *4 (-326 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-706)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-711)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-326 (-713)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-706)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-711)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-326 (-713)))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-701 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-706))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-711))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-326 (-713))) (-5 *1 (-340)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *3 (-1177)) (-5 *1 (-340)))) + ((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1177)) (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1119))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1119)) (-4 *4 (-1119)) + (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-886)) (-5 *3 (-656 (-270))) (-5 *1 (-268))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1) (-5 *1 (-609)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-656 (-1195))) (-4 *4 (-1119)) + (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) + (-12 (-5 *3 (-1286 *5)) (-4 *5 (-804)) (-5 *2 (-112)) (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1237)) (-5 *2 (-1292))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-1 (-227) (-227) (-227) (-227))) - (-5 *2 (-1 (-960 (-227)) (-227) (-227))) (-5 *1 (-709))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) - (-5 *2 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) - (-5 *1 (-357 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360)))) - ((*1 *1) (-4 *1 (-379))) +(((*1 *2 *1) + (-12 (-4 *2 (-966 *3 *5 *4)) (-5 *1 (-1006 *3 *4 *5 *2)) + (-4 *3 (-464)) (-4 *4 (-862)) (-4 *5 (-805))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-576)) (-5 *3 (-783)) (-5 *1 (-573))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) + (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) +(((*1 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) + (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-966 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *2 (-926)) + (-5 *1 (-923 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-926)) (-5 *1 (-924 *2 *3)) (-4 *3 (-1262 *2))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119)))) + ((*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5)) + (-4 *3 (-1119)) (-4 *5 (-678 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) - (-4 *4 (-360)))) - ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-5 *1 (-783))) - ((*1 *2 *1) (-12 (-5 *2 (-922 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-922 *4)) (-5 *1 (-921 *4)) - (-4 *4 (-1119)))) - ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-557)) (-4 *2 (-568))))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-587 *4 *2)) - (-4 *2 (-13 (-1222) (-976) (-1158) (-29 *4)))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-938)) - (-5 *2 (-1287 (-656 (-2 (|:| -1731 *4) (|:| -2550 (-1139)))))) - (-5 *1 (-357 *4)) (-4 *4 (-360))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-1095 *3 *4 *5))) (-4 *3 (-1119)) - (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) - (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) - (-5 *1 (-1096 *3 *4 *5))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3) - (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-493 *4 *5)) - (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1196)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297))))) + (-12 (-5 *3 (-983 *4)) (-4 *4 (-1119)) (-5 *2 (-1121 *4)) + (-5 *1 (-984 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-374) (-860))) (-5 *1 (-183 *3 *2)) + (-4 *2 (-1262 (-171 *3)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2861 *3) (|:| |coef2| (-794 *3)))) + (-5 *1 (-794 *3)) (-4 *3 (-568)) (-4 *3 (-1068))))) +(((*1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1195)) (-4 *4 (-568)) (-5 *1 (-159 *4 *2)) + (-4 *2 (-442 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-161)) (-5 *2 (-1195)))) + ((*1 *1 *1) (-4 *1 (-161)))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) + (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) + (-14 *3 (-656 (-1195)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |var| (-656 (-1195))) (|:| |pred| (-52)))) + (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174))))) +(((*1 *2) (-12 (-5 *2 (-845 (-576))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1119))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1237)) (-5 *2 (-783)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-686 *4))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -4015 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1263 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -4015 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *1 *2) - (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1057 *4)) (-4 *3 (-317)) - (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *6 (-421 *4 *5)) - (-14 *7 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *6)) (-4 *6 (-421 *4 *5)) (-4 *4 (-1011 *3)) - (-4 *5 (-1263 *4)) (-4 *3 (-317)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-874)))) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1229 *3 *4 *5 *2)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) + (-5 *1 (-754 *5 *4 *6 *3)) (-4 *3 (-966 *6 *5 *4))))) +(((*1 *2) + (-12 (-5 *2 (-1291)) (-5 *1 (-1213 *3 *4)) (-4 *3 (-1119)) + (-4 *4 (-1119))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1194)) (-5 *1 (-340))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *3)) (-4 *3 (-317)) (-5 *1 (-712 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-805)) + (-4 *3 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) (-4 *5 (-568)) + (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1068)) (-4 *5 (-805)) + (-4 *3 + (-13 (-862) + (-10 -8 (-15 -4076 ((-1195) $)) + (-15 -3022 ((-3 $ "failed") (-1195)))))) + (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-656 *6)) + (-4 *6 + (-13 (-862) + (-10 -8 (-15 -4076 ((-1195) $)) + (-15 -3022 ((-3 $ "failed") (-1195)))))) + (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2)) + (-4 *2 (-966 (-969 *4) *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-304 *3))) (-5 *1 (-304 *3)) (-4 *3 (-568)) + (-4 *3 (-1236))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-656 *7) *7 (-1192 *7))) (-5 *5 (-1 (-430 *7) *7)) - (-4 *7 (-1263 *6)) (-4 *6 (-13 (-374) (-148) (-1057 (-419 (-576))))) - (-5 *2 (-656 (-2 (|:| |frac| (-419 *7)) (|:| -3278 *3)))) - (-5 *1 (-821 *6 *7 *3 *8)) (-4 *3 (-668 *7)) - (-4 *8 (-668 (-419 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) + (-12 (-5 *5 (-112)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-4 *3 (-1084 *6 *7 *8)) (-5 *2 - (-656 (-2 (|:| |frac| (-419 *6)) (|:| -3278 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) - (-4 *7 (-1263 (-419 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3346 *3))) - (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))) + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1088 *6 *7 *8 *3 *4)) (-4 *4 (-1090 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) (-5 *2 - (-2 (|:| |answer| (-419 *6)) (|:| -3346 (-419 *6)) - (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) - (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 (-938))) (-4 *2 (-374)) (-5 *1 (-153 *4 *2 *5)) - (-14 *4 (-938)) (-14 *5 (-1012 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-132)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1263 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-738)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) - (-4 *4 (-1068)) (-4 *5 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) - (-4 *2 (-862)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) - (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) - (-4 *5 (-805)) (-4 *2 (-862)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *2 (-966 *4 (-543 *5) *5)) - (-5 *1 (-1145 *4 *5 *2)) (-4 *4 (-1068)) (-4 *5 (-862)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-969 *4)) (-5 *1 (-1231 *4)) - (-4 *4 (-1068))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) - (-5 *1 (-902 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-304 (-845 *3))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-845 *3)) (-5 *1 (-648 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-845 (-969 *5)))) (-4 *5 (-464)) - (-5 *2 (-845 (-419 (-969 *5)))) (-5 *1 (-649 *5)) - (-5 *3 (-419 (-969 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 (-419 (-969 *5)))) (-5 *3 (-419 (-969 *5))) - (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-649 *5))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-783)) - (-4 *3 (-13 (-738) (-379) (-10 -7 (-15 ** (*3 *3 (-576)))))) - (-5 *1 (-251 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-656 *3)) (-4 *3 (-1237))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-1155))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-834))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1196)) - (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) (-5 *1 (-1199))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1263 (-576))) (-5 *1 (-498 *3))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-656 (-493 *4 *5))) (-5 *3 (-876 *4)) - (-14 *4 (-656 (-1196))) (-4 *5 (-464)) (-5 *1 (-643 *4 *5))))) + (-2 (|:| |done| (-656 *4)) + (|:| |todo| (-656 (-2 (|:| |val| (-656 *3)) (|:| -3887 *4)))))) + (-5 *1 (-1164 *5 *6 *7 *3 *4)) (-4 *4 (-1128 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-548))))) (((*1 *2) - (|partial| -12 (-4 *3 (-568)) (-4 *3 (-174)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -1999 (-656 *1)))) - (-4 *1 (-378 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -1999 (-656 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1192 (-419 (-969 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-783))) (-5 *1 (-988 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-920 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-374) (-148) (-1057 (-576)))) (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1034 *4 *5)) (-5 *3 (-419 *5))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1054)) (-5 *1 (-763))))) -(((*1 *1 *1) (-5 *1 (-1082)))) + (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) + (-4 *3 (-568)))) + ((*1 *1) + (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1195))) + (-14 *3 (-656 (-1195))) (-4 *4 (-399)))) + ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1221)))) (((*1 *2 *3 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576))))) ((*1 *2 *3) (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-656 (-576)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-656 *2)) (-4 *2 (-1119)) (-4 *2 (-1237))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-656 *1)) (-4 *1 (-442 *4)) - (-4 *4 (-1119)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-576)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-516 (-419 (-576)) (-245 *4 (-783)) (-876 *3) - (-253 *3 (-419 (-576))))) - (-14 *3 (-656 (-1196))) (-14 *4 (-783)) (-5 *1 (-517 *3 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-419 (-576))) - (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-759))))) +(((*1 *2 *1) + (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) + (-4 *3 (-1119))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-701 *3)) + (-4 *3 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-4 *4 (-1262 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) + (-5 *1 (-431 *4)))) + ((*1 *1 *1) (-5 *1 (-943))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) + ((*1 *1 *1) (-5 *1 (-944))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) + (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) + (-5 *1 (-1039 *3)) (-4 *3 (-1262 (-576))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) + (-5 *4 (-419 (-576))) (-5 *1 (-1040 *3)) (-4 *3 (-1262 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -4143 (-419 (-576))) (|:| -4154 (-419 (-576))))) + (-5 *1 (-1040 *3)) (-4 *3 (-1262 (-419 (-576)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) + (-4 *3 (-1262 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-458)) (-5 *3 (-576))))) +(((*1 *1 *1) + (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) +(((*1 *2 *2) (-12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-960 (-227)))) (-5 *1 (-1287))))) +(((*1 *2 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) + ((*1 *2 *1) (-12 (-4 *1 (-1079)) (-5 *2 (-576))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-576)) (-5 *5 (-112)) (-5 *6 (-701 (-227))) + (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) - (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) - (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) - (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-960 (-227)))))) + (-5 *3 + (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) + (|:| |abserr| (-227)) (|:| |relerr| (-227)))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1119)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1119)) + (-5 *1 (-114 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) + (-5 *1 (-114 *4)))) ((*1 *2 *3) - (-12 + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) + (-5 *1 (-114 *4)) (-4 *4 (-1119)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) + (-5 *1 (-726 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3))))) +(((*1 *1) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) + (-4 *4 (-174))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1221))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1286 (-1195))) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) + (-14 *6 (-656 (-1195))) (-14 *7 (-1286 (-701 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1195)) (-5 *3 (-1286 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-174)) (-14 *5 (-938)) + (-14 *6 (-656 *2)) (-14 *7 (-1286 (-701 *4))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1286 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) + (-14 *6 (-1286 (-701 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1286 (-1195))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-174)) (-14 *4 (-938)) (-14 *5 (-656 (-1195))) + (-14 *6 (-1286 (-701 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1195)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-174)) + (-14 *4 (-938)) (-14 *5 (-656 *2)) (-14 *6 (-1286 (-701 *3))))) + ((*1 *1) + (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-174)) (-14 *3 (-938)) + (-14 *4 (-656 (-1195))) (-14 *5 (-1286 (-701 *2)))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-656 (-783))) (-5 *3 (-173)) (-5 *1 (-1183 *4 *5)) + (-14 *4 (-938)) (-4 *5 (-1068))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) - (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) - (-5 *1 (-154)) (-5 *3 (-656 (-656 (-960 (-227))))))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-374))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1292)) - (-5 *1 (-445 *3 *4)) (-4 *4 (-442 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *1 (-1147 *3 *2)) (-4 *3 (-1263 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317))))) -(((*1 *1 *1) (-12 (-4 *1 (-384 *2)) (-4 *2 (-1237)) (-4 *2 (-862)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-384 *3)) (-4 *3 (-1237)))) + (-656 + (-2 (|:| |eigval| (-3 (-419 (-969 *4)) (-1184 (-1195) (-969 *4)))) + (|:| |eigmult| (-783)) + (|:| |eigvec| (-656 (-701 (-419 (-969 *4)))))))) + (-5 *1 (-302 *4)) (-5 *3 (-701 (-419 (-969 *4))))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-153 *2 *3 *4)) (-14 *2 (-938)) (-4 *3 (-374)) + (-14 *4 (-1012 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1262 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) + ((*1 *1 *1) (|partial| -4 *1 (-734))) + ((*1 *1 *1) (|partial| -4 *1 (-738))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) + (-4 *2 (-1262 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-656 (-922 *3))) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) - (-4 *6 (-1084 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3892 *1) (|:| |upper| *1))) - (-4 *1 (-995 *4 *5 *3 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1029 *3)) (-4 *3 (-1237)) (-4 *3 (-1119)) - (-5 *2 (-112))))) + (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1179 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1119)) (-4 *6 (-1119)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-696 *4 *5 *6)) (-4 *4 (-1119))))) + (-12 (-4 *4 (-1068)) + (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1221) (-294))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1262 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1011 *2)) (-4 *4 (-1262 *3)) (-4 *2 (-317)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3))))) + ((*1 *2 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) + ((*1 *2 *1) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) + (-5 *1 (-633 *3 *4 *2)) (-4 *3 (-38 *4)))) + ((*1 *2 *1) + (-12 (-4 *4 (-174)) (-4 *2 (|SubsetCategory| (-738) *4)) + (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-729 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-833))))) +(((*1 *1) (-5 *1 (-518)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1262 *5))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) (((*1 *2 *2) - (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-576)) (-5 *5 (-1178)) (-5 *6 (-701 (-227))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) -(((*1 *2 *3) (-12 (-5 *2 (-390)) (-5 *1 (-797 *3)) (-4 *3 (-626 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-5 *2 (-390)) (-5 *1 (-797 *3)) - (-4 *3 (-626 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) + (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021)))))) +(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) (-4 *5 (-862)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-1196)) (-4 *6 (-442 *5)) - (-4 *5 (-1119)) (-5 *2 (-656 (-624 *6))) (-5 *1 (-585 *5 *6))))) -(((*1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) - ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) - (-14 *4 (-576))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *5)) (-4 *5 (-174)) (-5 *1 (-137 *3 *4 *5)) - (-14 *3 (-576)) (-14 *4 (-783))))) -(((*1 *2 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *4))))))) - (-5 *3 (-656 *7)) (-4 *4 (-13 (-317) (-148))) - (-4 *7 (-966 *4 *6 *5)) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *1 (-941 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-656 (-1191 *7))) (-5 *3 (-1191 *7)) + (-4 *7 (-966 *5 *6 *4)) (-4 *5 (-926)) (-4 *6 (-805)) + (-4 *4 (-862)) (-5 *1 (-923 *5 *6 *4 *7))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) -(((*1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-129))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-4 *4 (-1119)) - (-5 *1 (-585 *4 *2)) (-4 *2 (-442 *4))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-687 *2)) (-4 *2 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1237)))) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1236)))) ((*1 *1 *2) - (-12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-969 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-326 (-390))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-390))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) ((*1 *1 *2) - (-12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-969 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) - (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1196))) - (-14 *4 (-656 (-1196))) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-326 (-576))) (-5 *1 (-350 *3 *4 *5)) + (-4 *5 (-1057 (-576))) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))) (-4 *5 (-399)))) ((*1 *1 *2) - (-12 (-5 *2 (-1196)) (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 *2)) - (-14 *4 (-656 *2)) (-4 *5 (-399)))) + (|partial| -12 (-5 *2 (-1195)) (-5 *1 (-350 *3 *4 *5)) + (-14 *3 (-656 *2)) (-14 *4 (-656 *2)) (-4 *5 (-399)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 *5)) (-4 *5 (-399)) (-5 *1 (-350 *3 *4 *5)) - (-14 *3 (-656 (-1196))) (-14 *4 (-656 (-1196))))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 (-576))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-969 (-390))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-969 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-969 (-390)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-576)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-390)))) (-4 *1 (-453)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| |mdnia| - (-2 (|:| |fn| (-326 (-227))) - (|:| -2920 (-656 (-1113 (-855 (-227))))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))))) - (-5 *1 (-781)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *1 (-820)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) - (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-656 (-326 (-227)))) - (|:| -3503 (-656 (-227))))))) - (-5 *1 (-853)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) - (|:| |tol| (-227)))) - (-5 *1 (-913)))) + (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-399)) + (-5 *1 (-350 *3 *4 *5)) (-14 *3 (-656 (-1195))) + (-14 *4 (-656 (-1195))))) ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *1 (-995 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1057 *2)) (-4 *2 (-1237)))) + (|partial| -12 (-5 *2 (-701 (-419 (-969 (-576))))) (-4 *1 (-395)))) ((*1 *1 *2) - (-3765 - (-12 (-5 *2 (-969 *3)) - (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) - (-2433 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))) - (-12 (-5 *2 (-969 *3)) - (-12 (-2433 (-4 *3 (-557))) (-2433 (-4 *3 (-38 (-419 (-576))))) - (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))) - (-12 (-5 *2 (-969 *3)) - (-12 (-2433 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862))))) + (|partial| -12 (-5 *2 (-701 (-419 (-969 (-390))))) (-4 *1 (-395)))) ((*1 *1 *2) - (-3765 - (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) - (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) + (|partial| -12 (-5 *2 (-701 (-969 (-576)))) (-4 *1 (-395)))) ((*1 *1 *2) - (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068)) - (-4 *4 (-805)) (-4 *5 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-874))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *1 *2) - (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) - (-4 *3 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-368 *4)) - (-4 *4 (-360))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-1289))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-656 (-938))) (-5 *4 (-112)) - (-5 *1 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *1) - (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) - (-14 *4 (-656 (-1196))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862)) - (-4 *8 (-966 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1068)) - (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) - ((*1 *2 *1) - (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1263 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) - (-4 *3 (-862)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-992 *3 *2 *4)) (-4 *3 (-1068)) (-4 *4 (-862)) - (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1278 *3)) - (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1247 *3)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1306 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) - (-5 *2 (-783))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) - ((*1 *2 *3) - (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227))))) - (-5 *1 (-571)))) - ((*1 *2 *1) - (-12 (-4 *1 (-622 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-656 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227))))) - (-5 *1 (-815))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1119)) (-5 *1 (-1214 *3 *2)) (-4 *3 (-1119))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-783)) (-4 *6 (-1119)) (-4 *7 (-915 *6)) - (-5 *2 (-701 *7)) (-5 *1 (-704 *6 *7 *3 *4)) (-4 *3 (-384 *7)) - (-4 *4 (-13 (-384 *6) (-10 -7 (-6 -4462))))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-862)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-292 *2)) (-4 *2 (-1237)))) + (|partial| -12 (-5 *2 (-701 (-969 (-390)))) (-4 *1 (-395)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -2371 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (|:| -2900 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2920 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-571)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-707 *2)) (-4 *2 (-1119)))) + (|partial| -12 (-5 *2 (-701 (-326 (-576)))) (-4 *1 (-395)))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -2371 - (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) - (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) - (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (|:| -2900 - (-2 (|:| |stiffness| (-390)) (|:| |stability| (-390)) - (|:| |expense| (-390)) (|:| |accuracy| (-390)) - (|:| |intermediateResults| (-390)))))) - (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1292)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (|has| *1 (-6 -4462)) - (-4 *1 (-152 *2)) (-4 *2 (-1237)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) - (-4 *2 (-1237)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) - (-4 *2 (-1237)))) + (|partial| -12 (-5 *2 (-701 (-326 (-390)))) (-4 *1 (-395)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-969 (-576)))) (-4 *1 (-408)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-419 (-969 (-390)))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-969 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-576))) (-4 *1 (-408)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-390))) (-4 *1 (-408)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1286 (-419 (-969 (-576))))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1286 (-419 (-969 (-390))))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1286 (-969 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1286 (-969 (-390)))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1286 (-326 (-576)))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1286 (-326 (-390)))) (-4 *1 (-453)))) ((*1 *2 *3) - (-12 (-4 *4 (-1068)) - (-5 *2 (-2 (|:| -2248 (-1192 *4)) (|:| |deg| (-938)))) - (-5 *1 (-223 *4 *5)) (-5 *3 (-1192 *4)) (-4 *5 (-568)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-245 *5 *6)) (-14 *5 (-783)) - (-4 *6 (-1237)) (-4 *2 (-1237)) (-5 *1 (-244 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-174)) (-5 *1 (-299 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1263 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-568)) (-4 *2 (-1119)))) - ((*1 *1 *1) - (-12 (-4 *1 (-346 *2 *3 *4 *5)) (-4 *2 (-374)) (-4 *3 (-1263 *2)) - (-4 *4 (-1263 (-419 *3))) (-4 *5 (-353 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1237)) (-4 *2 (-1237)) - (-5 *1 (-382 *5 *4 *2 *6)) (-4 *4 (-384 *5)) (-4 *6 (-384 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1119)) (-4 *2 (-1119)) - (-5 *1 (-435 *5 *4 *2 *6)) (-4 *4 (-437 *5)) (-4 *6 (-437 *2)))) - ((*1 *1 *1) (-5 *1 (-507))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-656 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-654 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1068)) (-4 *2 (-1068)) - (-4 *6 (-384 *5)) (-4 *7 (-384 *5)) (-4 *8 (-384 *2)) - (-4 *9 (-384 *2)) (-5 *1 (-697 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-699 *5 *6 *7)) (-4 *10 (-699 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-723 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (|partial| -12 (-4 *4 (-360)) (-4 *5 (-339 *4)) (-4 *6 (-1262 *5)) + (-5 *2 (-1191 (-1191 *4))) (-5 *1 (-789 *4 *5 *6 *3 *7)) + (-4 *3 (-1262 *6)) (-14 *7 (-938)))) ((*1 *1 *2) - (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + (|partial| -12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) + (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-4 *1 (-995 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1057 *2)) (-4 *2 (-1236)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-374)) - (-4 *3 (-174)) (-4 *1 (-736 *3 *4)))) + (|partial| -2835 + (-12 (-5 *2 (-969 *3)) + (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) + (-2746 (-4 *3 (-38 (-576)))) (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-862))) + (-12 (-5 *2 (-969 *3)) + (-12 (-2746 (-4 *3 (-557))) (-2746 (-4 *3 (-38 (-419 (-576))))) + (-4 *3 (-38 (-576))) (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-862))) + (-12 (-5 *2 (-969 *3)) + (-12 (-2746 (-4 *3 (-1011 (-576)))) (-4 *3 (-38 (-419 (-576)))) + (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) (-4 *4 (-805)) + (-4 *5 (-862))))) ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-975 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-974 *5 *2)))) + (|partial| -2835 + (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) + (-12 (-2746 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) + (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) + (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195)))) + (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-1053 *3 *4 *5 *2 *6)) (-4 *2 (-966 *3 *4 *5)) - (-14 *6 (-656 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1068)) (-4 *2 (-1068)) - (-14 *5 (-783)) (-14 *6 (-783)) (-4 *8 (-243 *6 *7)) - (-4 *9 (-243 *5 *7)) (-4 *10 (-243 *6 *2)) (-4 *11 (-243 *5 *2)) - (-5 *1 (-1074 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1072 *5 *6 *7 *8 *9)) (-4 *12 (-1072 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1176 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-1174 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1230 *5 *6 *7 *2)) (-4 *5 (-568)) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *2 (-1084 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) - (-4 *2 (-1237)) (-5 *1 (-1286 *5 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-656 *5))) (-4 *5 (-1278 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1176 *4) (-656 (-1176 *4)))) (-5 *1 (-1280 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-676 *4 *5))) - (-5 *1 (-639 *4 *5 *6)) (-4 *5 (-13 (-174) (-729 (-419 (-576))))) - (-14 *6 (-938))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-126 *2)) (-4 *2 (-1119))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-568))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1045 (-855 (-576)))) - (-5 *3 (-1176 (-2 (|:| |k| (-576)) (|:| |c| *4)))) (-4 *4 (-1068)) - (-5 *1 (-607 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-922 *3))) (-4 *3 (-1119)) (-5 *1 (-921 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-1223 *3))) (-5 *1 (-1223 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-760))))) -(((*1 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *6)) (-4 *6 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-1192 (-419 (-1192 *6)))) (-5 *1 (-572 *5 *6 *7)) - (-5 *3 (-1192 *6)) (-4 *7 (-1119)))) + (|partial| -12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) + (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1195))) + (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)))) + ((*1 *1) (-4 *1 (-1171)))) +(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1291)) (-5 *1 (-390))))) +(((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) + (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1262 *4)) + (-5 *2 (-1286 *6)) (-5 *1 (-425 *3 *4 *5 *6)) + (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) ((*1 *2 *1) - (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1263 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1192 *11)) (-5 *6 (-656 *10)) - (-5 *7 (-656 (-783))) (-5 *8 (-656 *11)) (-4 *10 (-862)) - (-4 *11 (-317)) (-4 *9 (-805)) (-4 *5 (-966 *11 *9 *10)) - (-5 *2 (-656 (-1192 *5))) (-5 *1 (-754 *9 *10 *11 *5)) - (-5 *3 (-1192 *5)))) + (-12 (-4 *3 (-1068)) (-4 *3 (-1119)) (-5 *2 (-1144 *3 (-624 *1))) + (-4 *1 (-442 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1144 (-576) (-624 (-507)))) (-5 *1 (-507)))) ((*1 *2 *1) - (-12 (-4 *2 (-966 *3 *4 *5)) (-5 *1 (-1053 *3 *4 *5 *2 *6)) - (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-14 *6 (-656 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) - ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *2 *1) (-12 (-4 *1 (-187)) (-5 *2 (-656 (-112)))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) + (-12 (-4 *3 (-174)) (-4 *2 (-38 *3)) (-5 *1 (-633 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-738) *3)))) + ((*1 *2 *1) + (-12 (-4 *3 (-174)) (-4 *2 (-729 *3)) (-5 *1 (-674 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-738) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568))))) +(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-771))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) (((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *1 (-1232 *3)) - (-4 *3 (-993))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-158))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1054)) (-5 *1 (-766))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-975 *3)) (-5 *1 (-1183 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1192 *2)) (-4 *2 (-442 *4)) (-4 *4 (-568)) - (-5 *1 (-32 *4 *2))))) + (-12 (-4 *3 (-374)) (-4 *4 (-1262 *3)) (-4 *5 (-1262 (-419 *4))) + (-5 *2 (-1286 *6)) (-5 *1 (-347 *3 *4 *5 *6)) + (-4 *6 (-353 *3 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-656 *2) *2 *2 *2)) (-4 *2 (-1119)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1119)) (-5 *1 (-103 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 (-227))) (-5 *2 (-326 (-419 (-576)))) - (-5 *1 (-315))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1191 *3)) (-4 *3 (-379)) (-4 *1 (-339 *3)) + (-4 *3 (-374))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 *4) (-1021) (-1222))) - (-5 *1 (-612 *4 *2 *3)) - (-4 *3 (-13 (-442 (-171 *4)) (-1021) (-1222)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) + (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-406)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1177))) (-5 *1 (-1216))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-600 *4)) - (-4 *4 (-360))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-143 *4 *5 *3)) - (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-384 *4)) (-4 *3 (-384 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| (-701 *4)) (|:| |den| *4))) - (-5 *1 (-705 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) - (-4 *6 (-1263 *5)) - (-5 *2 (-2 (|:| -3278 *7) (|:| |rh| (-656 (-419 *6))))) - (-5 *1 (-819 *5 *6 *7 *3)) (-5 *4 (-656 (-419 *6))) - (-4 *7 (-668 *6)) (-4 *3 (-668 (-419 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-1011 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1256 *4 *5 *3)) - (-4 *3 (-1263 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1278 *4)) - (-4 *4 (-38 (-419 (-576)))) - (-5 *2 (-1 (-1176 *4) (-1176 *4) (-1176 *4))) (-5 *1 (-1280 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-317) (-148))) - (-4 *2 (-966 *4 *6 *5)) (-5 *1 (-941 *4 *5 *6 *2)) - (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805))))) -(((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-656 (-656 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-656 (-656 *5))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 *3))) (-5 *1 (-1208 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1279 *2 *3 *4)) (-4 *2 (-1068)) (-14 *3 (-1196)) - (-14 *4 *2)))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-4 *8 (-966 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) - (-4 *7 (-805)) - (-5 *2 - (-656 - (-2 (|:| -4049 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *8))))) - (-5 *1 (-941 *5 *6 *7 *8)) (-5 *4 (-783))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) - (-12 +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-270)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *2 (-1292)) (-5 *1 (-1289)))) + (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-112)) (-5 *1 (-115))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-249 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1236)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-227)) (|:| |phi| (-227)) (|:| -1372 (-227)) - (|:| |scaleX| (-227)) (|:| |scaleY| (-227)) (|:| |scaleZ| (-227)) - (|:| |deltaX| (-227)) (|:| |deltaY| (-227)))) - (-5 *1 (-1289)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) + (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1082))))) +(((*1 *2 *3) + (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-14 *4 (-656 (-1196))) (-14 *5 (-783)) + (-12 (-5 *3 (-1286 *5)) (-4 *5 (-13 (-1068) (-651 *4))) + (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-133)) (-5 *3 (-783)) (-5 *2 (-1291))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1119)) (-4 *2 (-915 *4)) (-5 *1 (-704 *4 *2 *5 *3)) + (-4 *5 (-384 *2)) (-4 *3 (-13 (-384 *4) (-10 -7 (-6 -4461))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1 *2) + (-12 (-5 *2 (-656 - (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576)))))) - (-5 *1 (-517 *4 *5)) - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576)))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-121 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-969 (-576)))) (-5 *1 (-449)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-227))) (-5 *2 (-1123)) - (-5 *1 (-771)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-701 (-576))) (-5 *2 (-1123)) - (-5 *1 (-771))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-656 *7)) (|:| |badPols| (-656 *7)))) - (-5 *1 (-996 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) + (-2 + (|:| -4282 + (-2 (|:| |var| (-1195)) (|:| |fn| (-326 (-227))) + (|:| -2691 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) + (|:| |relerr| (-227)))) + (|:| -4353 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1176 (-227))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -2691 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-571))))) (((*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 - (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) + (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) (|:| |ub| (-656 (-855 (-227)))))) (-5 *2 (-1054)))) ((*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) + (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -1538 (-656 (-227))))) (-5 *2 (-1054))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *9 (-1084 *6 *7 *8)) - (-5 *2 - (-656 - (-2 (|:| -3278 (-656 *9)) (|:| -4385 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *9 (-1084 *6 *7 *8)) - (-5 *2 - (-656 - (-2 (|:| -3278 (-656 *9)) (|:| -4385 *10) (|:| |ineq| (-656 *9))))) - (-5 *1 (-1126 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-548))) (-5 *1 (-548))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) + (-4 *2 (-13 (-317) (-10 -8 (-15 -2732 ((-430 $) $))))) + (-4 *5 (-1262 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-103 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-4 *5 (-374)) (-5 *2 (-656 (-1231 *5))) - (-5 *1 (-1295 *5)) (-5 *4 (-1231 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1178)) (-5 *3 (-835)) (-5 *1 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-322)) (-5 *1 (-306)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1178))) (-5 *3 (-1178)) (-5 *2 (-322)) - (-5 *1 (-306))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-699 *3 *4 *5)))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1262 (-48)))))) +(((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-52)) (-5 *1 (-843))))) +(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-430 *3)) (-4 *3 (-568)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-568)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-4 *7 (-1011 *4)) (-4 *2 (-699 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-699 *4 *5 *6)) - (-4 *8 (-384 *7)) (-4 *9 (-384 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-374)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-374)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *1 (-700 *3 *4 *5 *2)) - (-4 *2 (-699 *3 *4 *5)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-701 *2)) (-4 *2 (-374)) (-4 *2 (-1068)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1142 *2 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-243 *2 *3)) (-4 *5 (-243 *2 *3)) (-4 *3 (-374)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-1207 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-701 (-419 (-969 (-576))))) - (-5 *2 (-656 (-701 (-326 (-576))))) (-5 *1 (-1050))))) + (-12 (-5 *3 (-656 (-2 (|:| -1839 *4) (|:| -1433 (-576))))) + (-4 *4 (-1262 (-576))) (-5 *2 (-783)) (-5 *1 (-454 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1231 *3)) (-4 *3 (-993))))) +(((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1236)) (-5 *1 (-386 *4 *2)) + (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4462))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-419 (-969 *5)) (-1184 (-1195) (-969 *5)))) + (-4 *5 (-464)) (-5 *2 (-656 (-701 (-419 (-969 *5))))) + (-5 *1 (-302 *5)) (-5 *4 (-701 (-419 (-969 *5))))))) (((*1 *1 *1) - (-12 (-4 *2 (-317)) (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-421 *3 *4) (-1057 *3)))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804))))) + (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *2 (-1119)) (-4 *3 (-1119)) + (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1195)) + (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) + (-5 *2 + (-2 (|:| -3116 (-419 (-969 *5))) (|:| |coeff| (-419 (-969 *5))))) + (-5 *1 (-582 *5)) (-5 *3 (-419 (-969 *5)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-260 *2 *3 *4 *5)) (-4 *2 (-1068)) (-4 *3 (-862)) - (-4 *4 (-275 *3)) (-4 *5 (-805))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *2 (-1054)) - (-5 *1 (-768))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-635 *4 *5)) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -2128 *4) (|:| |sol?| (-112))) - (-576) *4)) - (-4 *4 (-374)) (-4 *5 (-1263 *4)) (-5 *1 (-586 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 (-969 *6))) (-4 *6 (-568)) - (-4 *2 (-966 (-419 (-969 *6)) *5 *4)) (-5 *1 (-744 *5 *4 *6 *2)) - (-4 *5 (-805)) - (-4 *4 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $)))))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *1 (-700 *4 *5 *6 *2)) - (-4 *2 (-699 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2)))) + (-1 (-3 (-2 (|:| -3116 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-374)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1262 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-419 (-576))) (-5 *1 (-315))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1183 *3 *4)) (-14 *3 (-938)) + (-4 *4 (-1068))))) +(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-834))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-3 (-112) (-656 *1))) + (-4 *1 (-1090 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *2 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-990)) (-5 *1 (-1312))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-996 *3 *4 *5 *6))))) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1277 *4)) + (-4 *4 (-38 (-419 (-576)))) + (-5 *2 (-1 (-1176 *4) (-1176 *4) (-1176 *4))) (-5 *1 (-1279 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) + ((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) - (-5 *2 (-656 (-656 (-656 (-783)))))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-227))) (-5 *1 (-276))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1163)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-862)) (-5 *1 (-122 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1215))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) + (-5 *1 (-922 *3)) (-4 *3 (-1119))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) - (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) + (-12 (-5 *2 (-656 (-171 *4))) (-5 *1 (-156 *3 *4)) + (-4 *3 (-1262 (-171 (-576)))) (-4 *4 (-13 (-374) (-860))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-656 (-171 *4))) + (-5 *1 (-183 *4 *3)) (-4 *3 (-1262 (-171 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-701 (-969 *4))) (-5 *1 (-1047 *4)) - (-4 *4 (-1068))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2128 *6) (|:| |sol?| (-112))) (-576) - *6)) - (-4 *6 (-374)) (-4 *7 (-1263 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -4015 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-182)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-321)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-989)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1013)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1055)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1092))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-529))))) + (-12 (-5 *3 (-656 *4)) (-4 *4 (-374)) (-5 *2 (-701 *4)) + (-5 *1 (-826 *4 *5)) (-4 *5 (-668 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-374)) + (-5 *2 (-701 *5)) (-5 *1 (-826 *5 *6)) (-4 *6 (-668 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-374) (-1057 (-419 *2)))) (-5 *2 (-576)) + (-5 *1 (-116 *4 *3)) (-4 *3 (-1262 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1068)) (-4 *3 (-1262 *4)) (-4 *2 (-1277 *4)) + (-5 *1 (-1280 *4 *3 *5 *2)) (-4 *5 (-668 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1121 *3)) (-5 *1 (-922 *3)) (-4 *3 (-379)) + (-4 *3 (-1119))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-103 *3)) (-4 *3 (-1119))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) + (-5 *2 (-656 *4)) (-5 *1 (-1133 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-1119)) (-5 *2 (-656 *1)) + (-4 *1 (-393 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-656 (-747 *3 *4))) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) + (-4 *4 (-738)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) + (-4 *1 (-966 *3 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) + (-5 *2 (-1054)) (-5 *1 (-767))))) +(((*1 *1 *1) (-4 *1 (-144))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1195)) + (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2910 "void"))) (-5 *1 (-1198))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) + (-4 *6 (-1262 *5)) (-4 *7 (-1262 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) - (-5 *2 (-2 (|:| -1538 (-783)) (|:| -3021 *8))) + (-5 *2 (-2 (|:| -3333 (-783)) (|:| -3356 *8))) (-5 *1 (-928 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) + (-4 *4 (-1262 (-419 (-576)))) (-4 *5 (-1262 (-419 *4))) (-4 *6 (-353 (-419 (-576)) *4 *5)) - (-5 *2 (-2 (|:| -1538 (-783)) (|:| -3021 *6))) + (-5 *2 (-2 (|:| -3333 (-783)) (|:| -3356 *6))) (-5 *1 (-929 *4 *5 *6))))) -(((*1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1311 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-831 *3)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1031)) (-5 *2 (-874))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-576)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862)) (-4 *2 (-568))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-943))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) (((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) - (-5 *2 (-2 (|:| |k| (-831 *3)) (|:| |c| *4)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) + (-14 *4 (-656 (-1195))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) + (-14 *4 (-656 (-1195)))))) +(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) + ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) + ((*1 *2 *1) + (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) + ((*1 *1 *1) (-4 *1 (-1079)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-445 *4 *3)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-442 *5)) - (-4 *5 (-13 (-568) (-1057 (-576)))) (-5 *2 (-1192 (-419 (-576)))) - (-5 *1 (-445 *5 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-419 *5)) (-4 *4 (-1241)) (-4 *5 (-1263 *4)) - (-5 *1 (-149 *4 *5 *2)) (-4 *2 (-1263 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1198 (-419 (-576)))) (-5 *2 (-419 (-576))) - (-5 *1 (-192)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-701 (-326 (-227)))) (-5 *3 (-656 (-1196))) - (-5 *4 (-1287 (-326 (-227)))) (-5 *1 (-207)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-304 *3))) (-4 *3 (-319 *3)) (-4 *3 (-1119)) - (-4 *3 (-1237)) (-5 *1 (-304 *3)))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-326 (-227))) (|:| -1538 (-656 (-227))) + (|:| |lb| (-656 (-855 (-227)))) + (|:| |cf| (-656 (-326 (-227)))) + (|:| |ub| (-656 (-855 (-227)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-656 (-326 (-227)))) + (|:| -1538 (-656 (-227))))))) + (-5 *2 (-656 (-1177))) (-5 *1 (-276))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *2 (-862)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-319 *2)) (-4 *2 (-1119)) (-4 *2 (-1237)) - (-5 *1 (-304 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 (-656 *1)))) - (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-1 *1 (-656 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 (-656 *1)))) - (-4 *1 (-312)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-1 *1 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-304 *3))) (-4 *1 (-319 *3)) (-4 *3 (-1119)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-304 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1119)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-576))) (-5 *4 (-1198 (-419 (-576)))) - (-5 *1 (-320 *2)) (-4 *2 (-38 (-419 (-576)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *1)) (-4 *1 (-385 *4 *5)) - (-4 *4 (-862)) (-4 *5 (-174)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-385 *2 *3)) (-4 *2 (-862)) (-4 *3 (-174)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *4 (-1 *1 (-656 *1))) - (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-1068)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) - (-5 *4 (-656 (-1 *1 (-656 *1)))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) - (-4 *5 (-1068)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-656 (-783))) - (-5 *4 (-656 (-1 *1 *1))) (-4 *1 (-442 *5)) (-4 *5 (-1119)) - (-4 *5 (-1068)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-656 (-115))) (-5 *3 (-656 *1)) (-5 *4 (-1196)) - (-4 *1 (-442 *5)) (-4 *5 (-1119)) (-4 *5 (-626 (-548))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1196)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) - (-4 *4 (-626 (-548))))) - ((*1 *1 *1) - (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-626 (-548))))) + (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) + (-4 *4 (-862))))) +(((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-576)) + (-5 *1 (-461 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-656 *5)) (-5 *4 (-576)) (-4 *5 (-860)) (-4 *5 (-374)) + (-5 *2 (-783)) (-5 *1 (-962 *5 *6)) (-4 *6 (-1262 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1068)) (-4 *5 (-1262 *4)) (-5 *2 (-1 *6 (-656 *6))) + (-5 *1 (-1280 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1277 *4))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) + (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-5 *1 (-996 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-1291)) (-5 *1 (-1238))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4461)) (-4 *1 (-501 *3)) (-4 *3 (-1236)) + (-4 *3 (-1119)) (-5 *2 (-783)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4461)) (-4 *1 (-501 *4)) + (-4 *4 (-1236)) (-5 *2 (-783))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-419 (-576))) (-4 *4 (-1057 (-576))) (-4 *4 (-568)) + (-5 *1 (-32 *4 *2)) (-4 *2 (-442 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-135))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-227))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-248)) (-5 *2 (-576)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) + (-4 *5 (-1277 *4)) (-5 *1 (-287 *4 *5 *2)) (-4 *2 (-1248 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-419 (-576))) (-4 *4 (-374)) (-4 *4 (-38 *3)) + (-4 *5 (-1246 *4)) (-5 *1 (-288 *4 *5 *2 *6)) (-4 *2 (-1269 *4 *5)) + (-4 *6 (-1002 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-294))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-372 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *1) (-5 *1 (-390))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-397 *2)) (-4 *2 (-1119)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-1196))) (-4 *1 (-442 *3)) (-4 *3 (-1119)) - (-4 *3 (-626 (-548))))) + (-12 (-5 *2 (-783)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) + (-4 *3 (-1131)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-576)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1196)) (-4 *1 (-442 *3)) (-4 *3 (-1119)) - (-4 *3 (-626 (-548))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1237)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *4)) (-5 *3 (-656 *5)) (-4 *1 (-526 *4 *5)) - (-4 *4 (-1119)) (-4 *5 (-1237)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-845 *3)) (-4 *3 (-374)) (-5 *1 (-730 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-419 (-969 *4))) (-5 *3 (-1196)) (-4 *4 (-568)) - (-5 *1 (-1062 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-1196))) (-5 *4 (-656 (-419 (-969 *5)))) - (-5 *2 (-419 (-969 *5))) (-4 *5 (-568)) (-5 *1 (-1062 *5)))) + (-12 (-5 *2 (-783)) (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-304 (-419 (-969 *4)))) (-5 *2 (-419 (-969 *4))) - (-4 *4 (-568)) (-5 *1 (-1062 *4)))) + (-12 (-5 *2 (-1286 *4)) (-5 *3 (-576)) (-4 *4 (-360)) + (-5 *1 (-540 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-548)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-548)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-656 (-304 (-419 (-969 *4))))) (-5 *2 (-419 (-969 *4))) - (-4 *4 (-568)) (-5 *1 (-1062 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-783)) (-4 *4 (-1119)) + (-5 *1 (-694 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)) (-4 *3 (-374)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-783)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) + (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1176 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *2 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-759))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-1079))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) + (-5 *1 (-702 *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-750))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) + (-12 (-5 *2 (-576)) (-4 *3 (-1068)) (-5 *1 (-726 *3 *4)) + (-4 *4 (-660 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-4 *4 (-1068)) + (-5 *1 (-726 *4 *5)) (-4 *5 (-660 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-738)) (-5 *2 (-783)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-848 *3)) (-4 *3 (-1068)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-115)) (-5 *3 (-576)) (-5 *1 (-848 *4)) (-4 *4 (-1068)))) + ((*1 *1 *1 *1) (-5 *1 (-874))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1021)) (-5 *2 (-419 (-576))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1131)) (-5 *2 (-938)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-576)) (-4 *1 (-1142 *3 *4 *5 *6)) (-4 *4 (-1068)) + (-4 *5 (-243 *3 *4)) (-4 *6 (-243 *3 *4)) (-4 *4 (-374)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) + (-5 *1 (-1180 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-174)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) - (-5 *1 (-700 *3 *4 *5 *6)) (-4 *6 (-699 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-712 *3)) - (-4 *3 (-317))))) -(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) - ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-576)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-1192 *4)) - (-5 *1 (-540 *4))))) -(((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-783)) - (-5 *1 (-242 *3 *4 *5)) (-4 *3 (-243 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) - (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-374)) (-5 *2 (-783)) (-5 *1 (-338 *3 *4)) - (-4 *3 (-339 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) - ((*1 *2) (-12 (-4 *1 (-379)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *3)) (-4 *3 (-1119)) (-5 *2 (-783)))) - ((*1 *2) - (-12 (-4 *4 (-1119)) (-5 *2 (-783)) (-5 *1 (-436 *3 *4)) - (-4 *3 (-437 *4)))) + (-5 *1 (-1181 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-783)) - (-5 *1 (-735 *3 *4 *5)) (-4 *3 (-736 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1025)))) + (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) + (-4 *3 (-1262 *4)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1218))))) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) - (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *4 *5 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1021)))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-922 *4)) (-4 *4 (-1119)) (-5 *2 (-656 (-783))) - (-5 *1 (-921 *4))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *1) (-4 *1 (-505))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *1 *1) + (|partial| -12 (-5 *4 (-938)) (-4 *5 (-568)) (-5 *2 (-701 *5)) + (-5 *1 (-973 *5 *3)) (-4 *3 (-668 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-874)))) +(((*1 *1 *2) + (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) + (-4 *3 (-13 (-416) (-1221))))) + ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1221)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *1 *1) + (-4 *4 (-862)) (-4 *2 (-568)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-317)))) - ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1119)) - (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-397 *3)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1720 (-783)) (|:| -4400 (-783)))) - (-5 *1 (-783)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) - (-4 *6 (-13 (-27) (-442 *5))) (-4 *5 (-13 (-568) (-1057 (-576)))) - (-4 *8 (-1263 (-419 *7))) (-5 *2 (-598 *3)) - (-5 *1 (-564 *5 *6 *7 *8 *3)) (-4 *3 (-353 *6 *7 *8))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-390))))) -(((*1 *1) (-5 *1 (-815)))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)) (-5 *3 (-1178)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-246)))) - ((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1068)) - (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-4 *5 (-1068)) - (-4 *2 (-13 (-416) (-1057 *5) (-374) (-1222) (-294))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (|has| *1 (-6 -4453)) (-4 *1 (-416)) - (-5 *2 (-938))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-403))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-112)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -4015 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-374)) (-4 *7 (-1263 *6)) - (-5 *2 (-2 (|:| |answer| (-598 (-419 *7))) (|:| |a0| *6))) - (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1292)) (-5 *1 (-1157)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-874))) (-5 *2 (-1292)) (-5 *1 (-1157))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-464)) (-4 *4 (-832)) - (-14 *5 (-1196)) (-5 *2 (-576)) (-5 *1 (-1133 *4 *5))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-557)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-449))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-783)) (-5 *2 (-701 (-227))) - (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-4 *1 (-437 *3)) (-4 *3 (-1119)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-285 *4 *3)) - (-4 *3 (-13 (-442 *4) (-1021)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1275 *3)) (-4 *3 (-1237)) (-5 *2 (-783))))) -(((*1 *2 *3) (-12 (-5 *3 (-400)) (-5 *2 (-1292)) (-5 *1 (-403)))) - ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-403))))) + (-4 *4 (-862)) (-4 *2 (-568))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 (-171 (-576))))) (-5 *2 (-656 (-171 *4))) - (-5 *1 (-389 *4)) (-4 *4 (-13 (-374) (-860))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-969 (-171 (-576)))))) - (-5 *4 (-656 (-1196))) (-5 *2 (-656 (-656 (-171 *5)))) - (-5 *1 (-389 *5)) (-4 *5 (-13 (-374) (-860)))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1196)) (-5 *6 (-656 (-624 *3))) - (-5 *5 (-624 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-2 (|:| -4015 *3) (|:| |coeff| *3))) - (-5 *1 (-569 *7 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-132))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1120 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-943))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1068)) - (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) + (-12 (-5 *4 (-656 *5)) (-4 *5 (-1262 *3)) (-4 *3 (-317)) + (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) +(((*1 *1) (-5 *1 (-590)))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *3)) (-5 *1 (-1147 *4 *3)) (-4 *4 (-1263 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-430 *4) *4)) (-4 *4 (-568)) (-5 *2 (-430 *4)) - (-5 *1 (-431 *4)))) - ((*1 *1 *1) (-5 *1 (-943))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-943)))) - ((*1 *1 *1) (-5 *1 (-944))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 (-227))) (-5 *1 (-944)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) - (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) - (-5 *4 (-419 (-576))) (-5 *1 (-1040 *3)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) - (-4 *3 (-1263 *2))))) + (-12 (-5 *3 (-938)) (-5 *2 (-1286 (-1286 (-576)))) (-5 *1 (-478))))) +(((*1 *2 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-1139))))) (((*1 *2 *3) (-12 (-5 *3 @@ -12565,7 +16896,7 @@ (-3 (|:| |str| (-1176 (-227))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -2920 + (|:| -2691 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -12573,1537 +16904,271 @@ "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1054)) (-5 *1 (-315))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1230 *4 *5 *6 *7)) - (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-5 *5 (-1 (-1192 *3) (-1192 *3))) - (-4 *3 (-13 (-27) (-442 *6))) (-4 *6 (-568)) (-5 *2 (-598 *3)) - (-5 *1 (-563 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1) (-4 *1 (-312))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4462)) (-4 *1 (-501 *4)) - (-4 *4 (-1237)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-5 *2 (-1192 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 (-449))))) - (-5 *1 (-1200))))) -(((*1 *2) - (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-4 *4 (-1263 *3)) - (-5 *2 - (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1263 (-576))) - (-5 *2 - (-2 (|:| -1999 (-701 (-576))) (|:| |basisDen| (-576)) - (|:| |basisInv| (-701 (-576))))) - (-5 *1 (-780 *3 *4)) (-4 *4 (-421 (-576) *3)))) - ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) - (-5 *2 - (-2 (|:| -1999 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1004 *3 *4 *5 *6)) (-4 *6 (-736 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-360)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) - (-5 *2 - (-2 (|:| -1999 (-701 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-701 *4)))) - (-5 *1 (-1296 *3 *4 *5 *6)) (-4 *6 (-421 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *1 *1) (-5 *1 (-390))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) - (-5 *2 (-656 (-2 (|:| C (-701 *5)) (|:| |g| (-1287 *5))))) - (-5 *1 (-997 *5)) (-5 *3 (-701 *5)) (-5 *4 (-1287 *5))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *2 (-1054)) (-5 *1 (-764))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-566 *3)) (-4 *3 (-13 (-416) (-1222))) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-656 (-969 *4))))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-656 (-969 *4))) (-5 *1 (-428 *3 *4)) - (-4 *3 (-429 *4)))) - ((*1 *2) - (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-656 (-969 *3))))) - ((*1 *2) - (-12 (-5 *2 (-656 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *2 (-656 (-969 *4))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-568)) (-4 *4 (-174)) - (-14 *5 (-938)) (-14 *6 (-656 (-1196))) (-14 *7 (-1287 (-701 *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-656 (-289))) (-5 *1 (-289)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1201))) (-5 *1 (-1201))))) -(((*1 *2 *3) - (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1209 (-938) (-783)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1292)) (-5 *1 (-878 *4 *5 *6 *7)) - (-4 *4 (-1068)) (-14 *5 (-656 (-1196))) (-14 *6 (-656 *3)) - (-14 *7 *3))) - ((*1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1068)) (-4 *5 (-862)) (-4 *6 (-805)) - (-14 *8 (-656 *5)) (-5 *2 (-1292)) - (-5 *1 (-1299 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-966 *4 *6 *5)) - (-14 *9 (-656 *3)) (-14 *10 *3)))) -(((*1 *1 *2) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-4 *3 (-379)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-368 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-360)) (-5 *2 (-112)) - (-5 *1 (-540 *4))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-442 *3) (-1021))) (-5 *1 (-285 *3 *2)) - (-4 *3 (-568))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-464) (-148))) (-5 *2 (-430 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-13 (-464) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-983 *3)) (-4 *3 (-1119)) (-5 *1 (-984 *3))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *4 (-1068)) - (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-1263 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1176 *3))) (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) - (-4 *3 (-38 (-419 (-576)))) (-4 *3 (-1068))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-1192 *4)) - (-4 *4 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-624 *4)) (-5 *6 (-419 (-1192 *4))) - (-4 *4 (-13 (-442 *7) (-27) (-1222))) - (-4 *7 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) - (-5 *1 (-572 *7 *4 *3)) (-4 *3 (-668 *4)) (-4 *3 (-1119))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-656 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-805)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-862)) - (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-576)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) - (-5 *1 (-461 *5 *6 *7 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-656 (-326 (-227)))) (-5 *3 (-227)) (-5 *2 (-112)) - (-5 *1 (-212))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) - (-5 *2 (-1054)) (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1263 (-419 (-576)))) (-5 *1 (-930 *3 *2)) - (-4 *2 (-1263 (-419 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-686 *3)) (-4 *3 (-1237)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) +(((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1177)) (-5 *1 (-722))))) +(((*1 *1 *1) (-12 (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-289))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) ((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) ((*1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-386 *4 *2)) - (-4 *2 (-13 (-384 *4) (-10 -7 (-6 -4463))))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-253 *5 *6))) (-4 *6 (-464)) - (-5 *2 (-253 *5 *6)) (-14 *5 (-656 (-1196))) (-5 *1 (-643 *5 *6))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1054)) (-5 *1 (-761)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-400)) (-5 *2 (-1054)) (-5 *1 (-761))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-270))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1243)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) - (-4 *4 (-384 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-594))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-694 *2)) (-4 *2 (-1119)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-656 *5) (-656 *5))) (-5 *4 (-576)) - (-5 *2 (-656 *5)) (-5 *1 (-694 *5)) (-4 *5 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-1192 *6)) - (-5 *1 (-331 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-227)) + (-5 *2 (-1054)) (-5 *1 (-761))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4462)) (-4 *1 (-1274 *2)) (-4 *2 (-1236))))) +(((*1 *1) (-5 *1 (-1104)))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-783)))) + (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-516 (-419 (-576)) (-245 *5 (-783)) (-876 *4) - (-253 *4 (-419 (-576))))) - (-14 *4 (-656 (-1196))) (-14 *5 (-783)) (-5 *2 (-112)) - (-5 *1 (-517 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *4 (-783)) - (-5 *2 (-701 (-227))) (-5 *1 (-276))))) -(((*1 *2) - (-12 (-4 *3 (-1068)) (-5 *2 (-975 (-724 *3 *4))) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-115))))) -(((*1 *2 *1) - (-12 (-4 *1 (-346 *3 *4 *5 *6)) (-4 *3 (-374)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) - (-5 *2 (-425 *4 (-419 *4) *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *6)) (-4 *6 (-13 (-421 *4 *5) (-1057 *4))) - (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-317)) - (-5 *1 (-425 *3 *4 *5 *6)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-374)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-516 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) - (-4 *3 (-1119))))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-622 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *2 *3 *4) - (-12 - (-5 *3 - (-656 - (-2 (|:| |scalar| (-419 (-576))) (|:| |coeff| (-1192 *2)) - (|:| |logand| (-1192 *2))))) - (-5 *4 (-656 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-374)) (-5 *1 (-598 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) + (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) - (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-783)))) + (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) + (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495))))) +(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289)))) + ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1289))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-783))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) (-4 *7 (-966 *4 *6 *5)) - (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-656 *7)) (|:| |n0| (-656 *7)))) - (-5 *1 (-941 *4 *5 *6 *7)) (-5 *3 (-656 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-171 (-227))) (-5 *6 (-1178)) - (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-805)) (-4 *2 (-966 *4 *5 *6)) (-5 *1 (-461 *4 *5 *6 *2)) - (-4 *4 (-464)) (-4 *6 (-862))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-2 (|:| -3940 (-115)) (|:| |w| (-227)))) (-5 *1 (-206))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1021)))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1045 *2)) (-4 *2 (-1237))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) - (-4 *3 (-1119))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *1) (-5 *1 (-1104)))) -(((*1 *1 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) (-12 (-5 *1 (-684 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-12 (-5 *1 (-689 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) + (-12 (-5 *2 (-783)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1068)) + (-14 *4 (-656 (-1195))))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-480))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1192 *7)) - (-4 *5 (-1068)) (-4 *7 (-1068)) (-4 *2 (-1263 *5)) - (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) - (|:| |c2| (-419 *5)) (|:| |deg| (-783)))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) -(((*1 *1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| -4049 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-941 *4 *5 *6 *7))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-665 (-419 *6))) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-5 *2 (-2 (|:| -1999 (-656 (-419 *6))) (|:| -2215 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) - (-5 *1 (-822 *5 *6)))) + (-12 (-5 *2 (-576)) (-5 *1 (-225 *3 *4)) (-4 *3 (-13 (-1068) (-862))) + (-14 *4 (-656 (-1195))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) + (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-284)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-666 *6 (-419 *6))) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-5 *2 (-2 (|:| -1999 (-656 (-419 *6))) (|:| -2215 (-701 *5)))) - (-5 *1 (-822 *5 *6)) (-5 *4 (-656 (-419 *6)))))) -(((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) - (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-754 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) + (-12 (-5 *3 (-1191 *8)) (-5 *4 (-656 *6)) (-4 *6 (-862)) + (-4 *8 (-966 *7 *5 *6)) (-4 *5 (-805)) (-4 *7 (-1068)) + (-5 *2 (-656 (-783))) (-5 *1 (-331 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-938)))) ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-430 *1)) (-4 *1 (-966 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-464)) (-5 *2 (-430 *3)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) - (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) - (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-430 *3)) (-5 *1 (-1266 *4 *3)) - (-4 *3 (-13 (-1263 *4) (-568) (-10 -8 (-15 -3149 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-14 *5 (-656 (-1196))) - (-5 *2 - (-656 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) - (-5 *2 - (-656 - (-2 (|:| |outval| *4) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *4)))))) - (-5 *1 (-791 *4)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-321)))) + (-12 (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) (-4 *4 (-174)) + (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-174)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *1 *1 *1) (-4 *1 (-673)))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-569 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) - (-4 *3 (-1119))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) - (-5 *1 (-778 *3 *4)) (-4 *3 (-720 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-374)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-864 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-374)) (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1196))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-518))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-888))) (-5 *1 (-495))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1178)) (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) - (-4 *4 (-1084 *6 *7 *8)) (-5 *2 (-1292)) - (-5 *1 (-788 *6 *7 *8 *4 *5)) (-4 *5 (-1090 *6 *7 *8 *4))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-171 (-227))) (-5 *5 (-576)) - (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1278 *3)) - (-5 *1 (-287 *3 *4 *2)) (-4 *2 (-1249 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *4 (-1247 *3)) - (-5 *1 (-288 *3 *4 *2 *5)) (-4 *2 (-1270 *3 *4)) (-4 *5 (-1002 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-341 *2)) (-4 *2 (-862)))) - ((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1181 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-576)))) - (-5 *1 (-1182 *3)))) - ((*1 *1 *1) (-4 *1 (-1225)))) -(((*1 *1 *1) (|partial| -4 *1 (-1171)))) -(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-337 *3)) (-4 *3 (-1237)))) + (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) + (-4 *4 (-1262 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) + (-4 *3 (-862)) (-5 *2 (-783)))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) - (-14 *4 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) (-4 *6 (-1263 *5)) - (-4 *7 (-1263 (-419 *6))) (-4 *8 (-353 *5 *6 *7)) - (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-112)) - (-5 *1 (-928 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-929 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-960 (-227)))) (-5 *1 (-1288))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) - (-5 *2 (-1054)) (-5 *1 (-766))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1119)) - (-4 *2 (-862))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *5))) (-5 *3 (-1192 *5)) - (-4 *5 (-167 *4)) (-4 *4 (-557)) (-5 *1 (-150 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 *3)) (-4 *3 (-1263 *5)) - (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *1 (-369 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 (-576)))) (-5 *3 (-1192 (-576))) - (-5 *1 (-584)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-656 (-1192 *1))) (-5 *3 (-1192 *1)) - (-4 *1 (-926))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) - (-5 *1 (-760))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021) (-1222)))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) - (-4 *3 (-13 (-374) (-148) (-1057 (-576)))) (-5 *1 (-580 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) - (-5 *3 (-576))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1045 (-855 (-576)))) (-5 *1 (-607 *3)) (-4 *3 (-1068))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-1178)) (-5 *1 (-194)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1178)) (|:| -4124 (-1178)))) - (-5 *1 (-834))))) -(((*1 *1 *1) (-4 *1 (-673)))) -(((*1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-374)) - (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + (-12 (-4 *1 (-992 *3 *2 *4)) (-4 *3 (-1068)) (-4 *4 (-862)) + (-4 *2 (-804)))) ((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) - ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-783)))) ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-5 *2 (-480)) (-5 *1 (-1288))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) - (-5 *4 (-3 (-1 (-227) (-227) (-227) (-227)) "undefined")) - (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) - (-5 *1 (-709))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-1292)) (-5 *1 (-1199)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1200))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 *2))) - (-5 *2 (-905 *3)) (-5 *1 (-1095 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-899 *3) (-626 *2)))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-607 *3)) (-4 *3 (-1068))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1119))))) -(((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-975 (-1192 *4))) (-5 *1 (-368 *4)) - (-5 *3 (-1192 *4))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4462)) (-4 *1 (-34)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-256)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-990)))) + (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1277 *3)) + (-5 *2 (-576)))) ((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-576)))) + (-12 (-4 *1 (-1269 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1246 *3)) + (-5 *2 (-419 (-576))))) ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-858))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *1) (-5 *1 (-629)))) -(((*1 *1 *1) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1119))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-831 *3)) (-4 *3 (-862)) (-5 *1 (-684 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1237)) (-5 *2 (-656 *1)) (-4 *1 (-1029 *3)))) + (-12 (-4 *1 (-1305 *3)) (-4 *3 (-374)) (-5 *2 (-845 (-938))))) ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1184 *3 *4))) (-5 *1 (-1184 *3 *4)) - (-14 *3 (-938)) (-4 *4 (-1068))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1007 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1126 *4 *5 *6 *7 *3)) (-4 *3 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *3)) (-4 *3 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1126 *5 *6 *7 *8 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-794 *2)) (-4 *2 (-1068)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1068)) (-4 *2 (-374)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-374)) (-5 *1 (-671 *4 *2)) - (-4 *2 (-668 *4))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021) (-1222)))))) + (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) + (-5 *2 (-783))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1158)))) +(((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) + ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-711))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *1) (-5 *1 (-815)))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-732)) (-5 *2 (-938)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-734)) (-5 *2 (-783))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1263 *5)) - (-4 *5 (-13 (-27) (-442 *4))) (-4 *4 (-13 (-568) (-1057 (-576)))) - (-4 *7 (-1263 (-419 *6))) (-5 *1 (-564 *4 *5 *6 *7 *2)) - (-4 *2 (-353 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-461 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) + (-12 (-5 *2 (-1286 *4)) (-5 *3 (-783)) (-4 *4 (-360)) + (-5 *1 (-540 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) + (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1229 *5 *6 *7 *3)) + (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-227)) (|:| |xend| (-227)) - (|:| |fn| (-1287 (-326 (-227)))) (|:| |yinit| (-656 (-227))) + (|:| |fn| (-1286 (-326 (-227)))) (|:| |yinit| (-656 (-227))) (|:| |intvals| (-656 (-227))) (|:| |g| (-326 (-227))) (|:| |abserr| (-227)) (|:| |relerr| (-227)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-390)) (|:| |stabilityFactor| (-390)))) - (-5 *1 (-207))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-518)) (-5 *3 (-656 (-982))) (-5 *1 (-109))))) -(((*1 *2 *2) (-12 (-5 *1 (-978 *2)) (-4 *2 (-557))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-464)) (-5 *2 (-112)) - (-5 *1 (-371 *4 *5)) (-14 *5 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-792 *4 (-876 *5)))) (-4 *4 (-464)) - (-14 *5 (-656 (-1196))) (-5 *2 (-112)) (-5 *1 (-640 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1068)) (-4 *4 (-174)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1304 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)) - (-4 *3 (-174))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1054)) (-5 *1 (-766))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-944))))) + (-5 *2 (-390)) (-5 *1 (-207))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| -1706 *4) (|:| -3824 *3) (|:| -2091 *3))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) + (-5 *2 (-2 (|:| -3824 *1) (|:| -2091 *1))) (-4 *1 (-1084 *3 *4 *5)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-568)) (-4 *3 (-1068)) + (-5 *2 (-2 (|:| -1706 *3) (|:| -3824 *1) (|:| -2091 *1))) + (-4 *1 (-1262 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-598 *3)) (-5 *1 (-438 *5 *3)) - (-4 *3 (-13 (-1222) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-13 (-568) (-1057 (-576)) (-148))) - (-5 *2 (-598 (-419 (-969 *5)))) (-5 *1 (-582 *5)) - (-5 *3 (-419 (-969 *5)))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-167 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) - (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-568))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) - (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-783))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-568)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-568)) - (-5 *1 (-988 *3 *4)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1072 *3 *4 *2 *5 *6)) (-4 *2 (-1068)) - (-4 *5 (-243 *4 *2)) (-4 *6 (-243 *3 *2)) (-4 *2 (-568)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-763))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) (-5 *3 (-227)) - (-5 *2 (-1054)) (-5 *1 (-760))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-659 *2)) (-4 *2 (-1119))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1119)) (-5 *2 (-656 *1)) + (-12 (-5 *3 (-1286 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-374)) + (-4 *1 (-736 *5 *6)) (-4 *5 (-174)) (-4 *6 (-1262 *5)) + (-5 *2 (-701 *5))))) +(((*1 *1) (-5 *1 (-145))) + ((*1 *2 *3) + (-12 (-5 *3 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-270))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-783)) (-4 *4 (-374)) (-5 *1 (-911 *2 *4)) + (-4 *2 (-1262 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1195)) (-4 *4 (-1068)) (-4 *4 (-1119)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4274 (-576)))) + (-4 *1 (-442 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1068)) (-4 *4 (-1119)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4274 (-576)))) + (-4 *1 (-442 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1131)) (-4 *3 (-1119)) + (-5 *2 (-2 (|:| |var| (-624 *1)) (|:| -4274 (-576)))) (-4 *1 (-442 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) - (-4 *3 (-1119)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -4274 (-783)))) + (-5 *1 (-905 *3)) (-4 *3 (-1119)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-656 *1)) (-4 *1 (-966 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-5 *2 (-2 (|:| |var| *5) (|:| -4274 (-783)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) - (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *3)) + (-4 *7 (-966 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -4274 (-576)))) (-5 *1 (-967 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) - (-15 -3905 (*7 $)))))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1057 (-576))) (-4 *1 (-312)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))) -(((*1 *2) (-12 (-5 *2 (-656 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-133))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1237)) - (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-831 *3)) (|:| |rm| (-831 *3)))) - (-5 *1 (-831 *3)) (-4 *3 (-862)))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-181 *2)) (-4 *2 (-317)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-656 *4))) (-5 *2 (-656 *4)) (-4 *4 (-317)) - (-5 *1 (-181 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *8)) - (-5 *4 - (-656 - (-2 (|:| -1999 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7))))) - (-5 *5 (-783)) (-4 *8 (-1263 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-360)) - (-5 *2 - (-2 (|:| -1999 (-701 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-701 *7)))) - (-5 *1 (-510 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *3) - (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) -(((*1 *2 *1) - (-12 (-5 *2 (-874)) (-5 *1 (-402 *3 *4 *5)) (-14 *3 (-783)) - (-14 *4 (-783)) (-4 *5 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-194)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-310)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1113 (-855 (-227)))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1119)) (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))) - (-5 *2 (-656 (-1095 *3 *4 *5))) (-5 *1 (-1096 *3 *4 *5)) - (-4 *5 (-13 (-442 *4) (-899 *3) (-626 (-905 *3))))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4385 *8))) - (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7 *8)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4385 *8))) - (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1126 *4 *5 *6 *7 *8))))) + (-10 -8 (-15 -3563 ($ *7)) (-15 -1536 (*7 $)) + (-15 -1549 (*7 $)))))))) (((*1 *2 *2) - (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-326 (-576))) (-5 *1 (-947))))) + (-12 (-4 *2 (-13 (-374) (-860))) (-5 *1 (-183 *2 *3)) + (-4 *3 (-1262 (-171 *2)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1291)) (-5 *1 (-834))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-792 *5 (-876 *6)))) (-5 *4 (-112)) (-4 *5 (-464)) - (-14 *6 (-656 (-1196))) - (-5 *2 - (-656 (-1165 *5 (-543 (-876 *6)) (-876 *6) (-792 *5 (-876 *6))))) - (-5 *1 (-640 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-767))))) -(((*1 *2) - (-12 (-4 *1 (-360)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1287 *4)) (-4 *4 (-429 *3)) (-4 *3 (-317)) - (-4 *3 (-568)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-938)) (-4 *4 (-374)) (-5 *2 (-1287 *1)) - (-4 *1 (-339 *4)))) - ((*1 *2) (-12 (-4 *3 (-374)) (-5 *2 (-1287 *1)) (-4 *1 (-339 *3)))) - ((*1 *2) - (-12 (-4 *3 (-174)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *1)) - (-4 *1 (-421 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) - (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) - (-4 *6 (-13 (-421 *4 *5) (-1057 *4))))) - ((*1 *2 *1) - (-12 (-4 *3 (-317)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) - (-5 *2 (-1287 *6)) (-5 *1 (-426 *3 *4 *5 *6 *7)) - (-4 *6 (-421 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-174)) (-5 *2 (-1287 *1)) (-4 *1 (-429 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1287 (-1287 *4))) (-5 *1 (-540 *4)) - (-4 *4 (-360))))) -(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-52))))) -(((*1 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-783))) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-559)))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1159 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1119) (-34))) (-4 *5 (-13 (-1119) (-34))) - (-5 *1 (-1160 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-656 (-1159 *3 *4))) (-4 *3 (-13 (-1119) (-34))) - (-4 *4 (-13 (-1119) (-34))) (-5 *1 (-1160 *3 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (|has| *4 (-6 (-4464 "*"))) - (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) - (|has| *4 (-6 (-4464 "*"))) (-4 *4 (-1068)) (-5 *1 (-1047 *4))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-783)) (-4 *3 (-1237)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1) (-5 *1 (-173))) - ((*1 *1) (-12 (-5 *1 (-215 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1119)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1178)) (-4 *1 (-401)))) - ((*1 *1) (-5 *1 (-406))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-4 *1 (-663 *3)) (-4 *3 (-1237)))) - ((*1 *1) - (-12 (-4 *3 (-1119)) (-5 *1 (-898 *2 *3 *4)) (-4 *2 (-1119)) - (-4 *4 (-678 *3)))) - ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1161 *3 *2)) (-14 *3 (-783)) (-4 *2 (-1068)))) - ((*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) - ((*1 *1 *1) (-5 *1 (-1196))) ((*1 *1) (-5 *1 (-1196))) - ((*1 *1) (-5 *1 (-1217)))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1091 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1104))) (-5 *1 (-301))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-227)) (-171 (-227)))) (-5 *4 (-1113 (-227))) - (-5 *2 (-1289)) (-5 *1 (-264))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1018 *3)) (-4 *3 (-174)) (-5 *1 (-811 *3))))) -(((*1 *2) (-12 (-5 *2 (-1166 (-1178))) (-5 *1 (-403))))) -(((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-903 *4 *5)) (-4 *5 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1186))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| -2371 *3) (|:| -2900 *4)))) - (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *1 (-1213 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1213 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-568)) (-4 *3 (-1119))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-438 *4 *2)) (-4 *2 (-13 (-1222) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) (-4 *5 (-148)) - (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *5)) - (-5 *1 (-601 *5))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-764))))) -(((*1 *1 *1 *1) (-4 *1 (-317))) ((*1 *1 *1 *1) (-5 *1 (-783))) - ((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-264))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-938)) (-5 *1 (-1051 *2)) - (-4 *2 (-13 (-1119) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 *4)))) - (-4 *3 (-1119)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-661 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1272 *3 *4 *5)) (-4 *3 (-374)) (-14 *4 (-1196)) - (-14 *5 *3) (-5 *1 (-329 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *3 *5)) - (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *5 (-668 (-419 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1263 *4)) (-5 *1 (-819 *4 *2 *5 *3)) - (-4 *4 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *5 (-668 *2)) - (-4 *3 (-668 (-419 *2)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1201)) (-5 *1 (-289))))) -(((*1 *1) (-5 *1 (-835)))) -(((*1 *2 *3 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-783)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-805)) (-4 *7 (-966 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-862)) - (-5 *2 (-112)) (-5 *1 (-461 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) - (-15 -3905 ((-1144 *3 (-624 $)) $)) - (-15 -4092 ($ (-1144 *3 (-624 $)))))))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) + (-5 *1 (-763))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) ((*1 *2 *1) (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1087 *4 *3)) (-4 *4 (-13 (-860) (-374))) - (-4 *3 (-1263 *4)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1196)) (-4 *5 (-626 (-905 (-576)))) - (-4 *5 (-899 (-576))) - (-4 *5 (-13 (-1057 (-576)) (-464) (-651 (-576)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-579 *5 *3)) (-4 *3 (-641)) - (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1214 *4 *5)) - (-4 *4 (-1119)) (-4 *5 (-1119))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1054)) (-5 *1 (-760))))) -(((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-166 *3 *2)) (-4 *3 (-167 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *2 *4)) (-4 *4 (-1263 *2)) - (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *4 (-1263 *2)) (-4 *2 (-174)) (-5 *1 (-420 *3 *2 *4)) - (-4 *3 (-421 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-421 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-174)))) - ((*1 *2) - (-12 (-4 *3 (-1263 *2)) (-5 *2 (-576)) (-5 *1 (-780 *3 *4)) - (-4 *4 (-421 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *3 (-174)))) - ((*1 *2 *3) - (-12 (-4 *2 (-568)) (-5 *1 (-988 *2 *3)) (-4 *3 (-1263 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1068)) (-4 *2 (-174))))) -(((*1 *2 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1176 (-990))) (-5 *1 (-990))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-430 *2)) (-4 *2 (-317)) (-5 *1 (-931 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-430 (-969 *6))) (-5 *5 (-1196)) (-5 *3 (-969 *6)) - (-4 *6 (-13 (-317) (-148))) (-5 *2 (-52)) (-5 *1 (-932 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) - (-14 *3 (-656 (-1196)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-374))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-368 *3)) (-4 *3 (-360))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-874) (-874) (-874))) (-5 *4 (-576)) (-5 *2 (-874)) - (-5 *1 (-661 *5 *6 *7)) (-4 *5 (-1119)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-874)) (-5 *1 (-866 *3 *4 *5)) (-4 *3 (-1068)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-874)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-874)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-874)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-874)) (-5 *1 (-1192 *3)) (-4 *3 (-1068))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *6)) (-5 *5 (-1 (-430 (-1192 *6)) (-1192 *6))) - (-4 *6 (-374)) + ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1291)) (-5 *1 (-834))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-656 - (-2 (|:| |outval| *7) (|:| |outmult| (-576)) - (|:| |outvect| (-656 (-701 *7)))))) - (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1068)) (-5 *1 (-907 *2 *3)) (-4 *2 (-1263 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1068)) (-5 *1 (-1180 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1287 *5)) (-4 *5 (-804)) (-5 *2 (-112)) - (-5 *1 (-857 *4 *5)) (-14 *4 (-783))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-764))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-714 *3 *5 *6 *7)) - (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237)) - (-4 *7 (-1237)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *3 *5 *6)) - (-4 *3 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *6))) (-5 *4 (-1196)) (-5 *2 (-624 *6)) - (-4 *6 (-442 *5)) (-4 *5 (-1119)) (-5 *1 (-585 *5 *6))))) -(((*1 *2 *3 *2) - (-12 + (-2 (|:| -3896 (-656 *9)) (|:| -3887 *10) (|:| |ineq| (-656 *9))))) + (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-656 *10)) (-5 *5 (-112)) (-4 *10 (-1090 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-805)) (-4 *8 (-862)) + (-4 *9 (-1084 *6 *7 *8)) (-5 *2 (-656 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-783)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-805)) (-4 *6 (-966 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-862)) - (-5 *1 (-461 *4 *3 *5 *6))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-148)) - (-4 *3 (-317)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-996 *3 *4 *5 *6))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4453)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1200))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-174)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-862)) - (-4 *4 (-1068))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *2)) (-5 *4 (-1196)) (-4 *2 (-442 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-568)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-4 *1 (-1031)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-5 *4 (-874)) - (-4 *1 (-1031)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-938)) (-4 *4 (-13 (-860) (-374))) - (-4 *1 (-1087 *4 *2)) (-4 *2 (-1263 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) - ((*1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874)))) - ((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-246)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1178))) (-5 *2 (-576)) (-5 *1 (-246))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) + (-2 (|:| -3896 (-656 *9)) (|:| -3887 *10) (|:| |ineq| (-656 *9))))) + (-5 *1 (-1126 *6 *7 *8 *9 *10)) (-5 *3 (-656 *9))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) + ((*1 *1 *1) (|partial| -4 *1 (-734)))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1236))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-701 (-227))) (-5 *5 (-701 (-576))) (-5 *3 (-576)) + (-5 *2 (-1054)) (-5 *1 (-766))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-576)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-783)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-805)) (-4 *4 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-862)) + (-5 *1 (-461 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-568)) - (-5 *2 (-874)) (-5 *1 (-32 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-576))) (-5 *1 (-284))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-783)) (-5 *1 (-59 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-59 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-701 *5))) (-5 *4 (-576)) (-4 *5 (-374)) - (-4 *5 (-1068)) (-5 *2 (-112)) (-5 *1 (-1048 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-701 *4))) (-4 *4 (-374)) (-4 *4 (-1068)) - (-5 *2 (-112)) (-5 *1 (-1048 *4))))) + (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) + (-4 *4 (-568))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *8)) (-5 *4 (-783)) (-4 *8 (-966 *5 *7 *6)) - (-4 *5 (-13 (-317) (-148))) (-4 *6 (-13 (-862) (-626 (-1196)))) - (-4 *7 (-805)) + (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1195))) (-4 *6 (-464)) (-5 *2 - (-656 - (-2 (|:| |det| *8) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (-5 *1 (-941 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-576)) (-4 *6 (-374)) (-4 *6 (-379)) - (-4 *6 (-1068)) (-5 *2 (-656 (-656 (-701 *6)))) (-5 *1 (-1048 *6)) - (-5 *3 (-656 (-701 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *4 (-379)) (-4 *4 (-1068)) - (-5 *2 (-656 (-656 (-701 *4)))) (-5 *1 (-1048 *4)) - (-5 *3 (-656 (-701 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) - (-5 *3 (-656 (-701 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-4 *5 (-374)) (-4 *5 (-379)) (-4 *5 (-1068)) - (-5 *2 (-656 (-656 (-701 *5)))) (-5 *1 (-1048 *5)) - (-5 *3 (-656 (-701 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-762))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4)))))) -(((*1 *1) (-12 (-4 *1 (-437 *2)) (-4 *2 (-379)) (-4 *2 (-1119))))) -(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-833))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-1068)) (-4 *2 (-1263 *5)) - (-5 *1 (-1281 *5 *2 *6 *3)) (-4 *6 (-668 *2)) (-4 *3 (-1278 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-931 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-759))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-1263 *4)) (-4 *4 (-1068)) - (-5 *2 (-1287 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *3)) (-4 *3 (-1068)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-656 (-783))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) - (-4 *3 (-862)) (-5 *2 (-783))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1054)) (-5 *1 (-757))))) -(((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1119)) (-4 *5 (-1119)) - (-4 *6 (-1119)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-696 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-576)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1068))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *1 (-598 *2)) (-4 *2 (-1057 *3)) - (-4 *2 (-374)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-374)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *1 (-642 *4 *2)) - (-4 *2 (-13 (-442 *4) (-1021) (-1222))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1111 *2)) (-4 *2 (-13 (-442 *4) (-1021) (-1222))) - (-4 *4 (-568)) (-5 *1 (-642 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-1196)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1111 *1)) (-4 *1 (-976))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) + (-2 (|:| |dpolys| (-656 (-253 *5 *6))) + (|:| |coords| (-656 (-576))))) + (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-873)))) + ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-874))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) + (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1177)) (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-337 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-528 *3 *4)) - (-14 *4 (-576))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-656 (-1196))) (|:| |pred| (-52)))) - (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-112)) (-5 *5 (-701 (-227))) - (-5 *2 (-1054)) (-5 *1 (-767))))) -(((*1 *1 *1) (-4 *1 (-641))) +(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-374))))) +(((*1 *2 *3) + (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-429 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1119)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-695 *4 *5)) (-4 *4 (-1119)))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021) (-1222)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-576)) (-5 *1 (-457 *2)) (-4 *2 (-1068))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-1119)) (-5 *1 (-922 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1021)) - (-4 *2 (-1068))))) -(((*1 *1) (-5 *1 (-142)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-292 *2)) (-4 *2 (-1237)) (-4 *2 (-862)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-292 *3)) (-4 *3 (-1237)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-987 *2)) (-4 *2 (-862))))) -(((*1 *2 *1) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4)))))) + (-12 (-4 *3 (-1119)) (-5 *1 (-946 *3 *2)) (-4 *2 (-442 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1195)) (-5 *2 (-326 (-576))) (-5 *1 (-947)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1303 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1068)) (-5 *1 (-1309 *2 *3)) (-4 *3 (-858))))) (((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1856 *3) (|:| |gap| (-783)) (|:| -1720 (-794 *3)) - (|:| -4400 (-794 *3)))) - (-5 *1 (-794 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) - (-5 *2 - (-2 (|:| -1856 *1) (|:| |gap| (-783)) (|:| -1720 *1) - (|:| -4400 *1))) - (-4 *1 (-1084 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 - (-2 (|:| -1856 *1) (|:| |gap| (-783)) (|:| -1720 *1) - (|:| -4400 *1))) - (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *1 *2) - (-12 (-5 *2 (-701 *5)) (-4 *5 (-1068)) (-5 *1 (-1073 *3 *4 *5)) - (-14 *3 (-783)) (-14 *4 (-783))))) + (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) + (-5 *2 (-855 *4)) (-5 *1 (-323 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) + (-14 *6 *4))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) + (-5 *2 (-855 *4)) (-5 *1 (-1272 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1221) (-442 *3))) (-14 *5 (-1195)) + (-14 *6 *4)))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -1837 *4))) (-5 *1 (-988 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *2)) (-4 *2 (-174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *4) - (-12 - (-5 *3 - (-656 - (-2 (|:| |eqzro| (-656 *8)) (|:| |neqzro| (-656 *8)) - (|:| |wcond| (-656 (-969 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *5)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *5)))))))))) - (-5 *4 (-1178)) (-4 *5 (-13 (-317) (-148))) (-4 *8 (-966 *5 *7 *6)) - (-4 *6 (-13 (-862) (-626 (-1196)))) (-4 *7 (-805)) (-5 *2 (-576)) - (-5 *1 (-941 *5 *6 *7 *8))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-701 *4))) (-5 *2 (-701 *4)) (-4 *4 (-1068)) - (-5 *1 (-1048 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 *6)) (-5 *3 (-576)) (-4 *6 (-317)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *1 (-754 *4 *5 *6 *7)) (-4 *7 (-966 *6 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-132)) - (-4 *3 (-804))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-52)) (-5 *1 (-1215))))) -(((*1 *2) - (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *2) - (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) + (-12 (-4 *4 (-568)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3495 *3))) + (-5 *1 (-988 *4 *3)) (-4 *3 (-1262 *4))))) (((*1 *2 *3) - (-12 - (-5 *2 - (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) - (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) - (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))) - (-5 *4 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) - (-5 *1 (-1039 *3)) (-4 *3 (-1263 (-576))) (-5 *4 (-419 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2114 *5) (|:| -2128 *5)))) (-5 *1 (-1039 *3)) - (-4 *3 (-1263 (-576))) (-5 *4 (-2 (|:| -2114 *5) (|:| -2128 *5))))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576)))))) - ((*1 *2 *3 *4) - (-12 - (-5 *2 - (-656 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576)))))) - (-5 *1 (-1040 *3)) (-4 *3 (-1263 (-419 (-576)))) - (-5 *4 (-2 (|:| -2114 (-419 (-576))) (|:| -2128 (-419 (-576))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2114 *4) (|:| -2128 *4)))) (-5 *1 (-1040 *3)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-576))) - (-5 *2 (-656 (-2 (|:| -2114 *5) (|:| -2128 *5)))) (-5 *1 (-1040 *3)) - (-4 *3 (-1263 *5)) (-5 *4 (-2 (|:| -2114 *5) (|:| -2128 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-246))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-374)) - (-5 *2 (-2 (|:| -2296 (-430 *3)) (|:| |special| (-430 *3)))) - (-5 *1 (-739 *5 *3))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *3 (-568))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-656 *3)) (|:| |image| (-656 *3)))) - (-5 *1 (-922 *3)) (-4 *3 (-1119))))) + (-12 (-5 *3 (-701 *4)) (-4 *4 (-374)) (-5 *2 (-1191 *4)) + (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-374)) (-4 *6 (-13 (-374) (-860)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1286 *1)) (-4 *1 (-378 *2)) (-4 *2 (-174)))) + ((*1 *2) (-12 (-4 *2 (-174)) (-5 *1 (-428 *3 *2)) (-4 *3 (-429 *2)))) + ((*1 *2) (-12 (-4 *1 (-429 *2)) (-4 *2 (-174))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-656 *1)) (-4 *1 (-1084 *4 *5 *6)) (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)))) @@ -14111,4183 +17176,1117 @@ (-12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) + (-12 (-4 *1 (-1229 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) + (-12 (-4 *1 (-1229 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-140)) (-5 *1 (-141)))) - ((*1 *2 *1) (-12 (-5 *1 (-185 *2)) (-4 *2 (-187)))) - ((*1 *2 *1) (-12 (-5 *2 (-255)) (-5 *1 (-254))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-624 *4)) (-4 *4 (-1119)) (-4 *2 (-1119)) - (-5 *1 (-623 *2 *4))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) + (-5 *2 + (-2 (|:| -3142 *4) (|:| -3331 *4) (|:| |totalpts| (-576)) + (|:| |success| (-112)))) + (-5 *1 (-801)) (-5 *5 (-576))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-1210 *2)) (-4 *2 (-374))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1195)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) + (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-548))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -2502 "void"))) - (-5 *1 (-449))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1129)) (-5 *3 (-576))))) -(((*1 *2) (-12 (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) - (-5 *2 (-2 (|:| -1856 (-419 *5)) (|:| |poly| *3))) - (-5 *1 (-149 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) + (-12 (-4 *3 (-238)) (-4 *3 (-1068)) (-4 *4 (-862)) (-4 *5 (-275 *4)) + (-4 *6 (-805)) (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1068)) (-4 *3 (-862)) (-4 *5 (-275 *3)) (-4 *6 (-805)) + (-5 *2 (-1 *1 (-783))) (-4 *1 (-260 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-275 *2)) (-4 *2 (-862))))) +(((*1 *1 *2) + (-12 (-5 *2 (-938)) (-5 *1 (-153 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-374)) (-14 *5 (-1012 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1236)) (-4 *2 (-1119)) + (-4 *2 (-862))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-565))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3)) (-4 *3 (-1236))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1195)) + (-5 *2 (-576)) (-5 *1 (-1133 *4 *5))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) (-5 *3 (-227)) + (-5 *2 (-1054)) (-5 *1 (-761))))) (((*1 *2 *3) - (-12 (-5 *2 (-1176 (-656 (-576)))) (-5 *1 (-896)) (-5 *3 (-576))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-541)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-541))))) + (-12 (-4 *4 (-862)) (-5 *2 (-656 (-656 (-656 *4)))) + (-5 *1 (-1206 *4)) (-5 *3 (-656 (-656 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1081)))) + ((*1 *1 *2) (-12 (-5 *2 (-1195)) (-5 *1 (-1081))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-446))))) +(((*1 *2 *1) + (-12 (-5 *2 (-656 (-52))) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) +(((*1 *1 *1) (-4 *1 (-641))) + ((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1021) (-1221)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) + (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) + (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) + (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-701 *4)) (-5 *3 (-938)) (|has| *4 (-6 (-4463 "*"))) + (-4 *4 (-1068)) (-5 *1 (-1047 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-656 (-701 *4))) (-5 *3 (-938)) + (|has| *4 (-6 (-4463 "*"))) (-4 *4 (-1068)) (-5 *1 (-1047 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-561)))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-152 *2)) - (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-576)))))) + (-12 (-4 *3 (-1057 (-576))) (-4 *3 (-568)) (-5 *1 (-32 *3 *2)) + (-4 *2 (-442 *3)))) + ((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-1191 *4)) (-5 *1 (-166 *3 *4)) + (-4 *3 (-167 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1068)) (-4 *1 (-312)))) + ((*1 *2) (-12 (-4 *1 (-339 *3)) (-4 *3 (-374)) (-5 *2 (-1191 *3)))) + ((*1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-174)) (-4 *2 (-1262 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1087 *3 *2)) (-4 *3 (-13 (-860) (-374))) + (-4 *2 (-1262 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) - (-4 *6 (-13 (-568) (-1057 *5))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-969 *6)))))) (-5 *1 (-1058 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-874))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-576)) (-5 *1 (-1129)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1287 (-576))) (-5 *3 (-656 (-576))) (-5 *4 (-576)) - (-5 *1 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-401)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1311 *4 *2)) (-4 *1 (-385 *4 *2)) (-4 *4 (-862)) - (-4 *2 (-174)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1304 *3 *2)) (-4 *3 (-862)) (-4 *2 (-1068)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-831 *4)) (-4 *1 (-1304 *4 *2)) (-4 *4 (-862)) - (-4 *2 (-1068)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1068)) (-5 *1 (-1310 *2 *3)) (-4 *3 (-858))))) -(((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-969 (-576)))) (-5 *4 (-656 (-1196))) - (-5 *2 (-656 (-656 (-390)))) (-5 *1 (-1042)) (-5 *5 (-390)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1065 *4 *5)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-14 *5 (-656 (-1196))) (-5 *2 (-656 (-656 (-1043 (-419 *4))))) - (-5 *1 (-1314 *4 *5 *6)) (-14 *6 (-656 (-1196))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-656 (-1043 (-419 *5))))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-969 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-656 (-1043 (-419 *4))))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-442 *3) (-1221)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1121 *4)) (-4 *4 (-1119)) (-5 *2 (-1 *4)) - (-5 *1 (-1036 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-390))) (-5 *1 (-1059)) (-5 *3 (-390)))) + (-12 (-5 *3 (-576)) (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-1232))))) +(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) ((*1 *2 *3) - (-12 (-5 *3 (-1113 (-576))) (-5 *2 (-1 (-576))) (-5 *1 (-1066))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-862)) (-4 *5 (-805)) - (-4 *6 (-568)) (-4 *7 (-966 *6 *5 *3)) - (-5 *1 (-474 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1057 (-419 (-576))) (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) - (-15 -3905 (*7 $)))))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| (-112)) (|:| -4385 *1)))) - (-4 *1 (-1090 *4 *5 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-145))) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-142))))) + (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) +(((*1 *1 *1 *1) (-4 *1 (-557)))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-132)))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-374)) (-4 *3 (-1068)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2202 *1))) + (-4 *1 (-864 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-910)) - (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) - (|:| |tol| (-227)))) - (-5 *2 (-1054))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5))))) + (-12 (-5 *3 (-1195)) (-5 *2 (-548)) (-5 *1 (-547 *4)) + (-4 *4 (-1236))))) +(((*1 *2) + (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) + (-4 *3 (-378 *4)))) + ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-301)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) +(((*1 *2 *3) + (-12 (-4 *1 (-360)) (-5 *3 (-576)) (-5 *2 (-1208 (-938) (-783)))))) (((*1 *2 *2 *3) (-12 (-4 *4 (-805)) - (-4 *3 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) (-4 *5 (-568)) + (-4 *3 (-13 (-862) (-10 -8 (-15 -4076 ((-1195) $))))) (-4 *5 (-568)) (-5 *1 (-744 *4 *3 *5 *2)) (-4 *2 (-966 (-419 (-969 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-13 (-862) - (-10 -8 (-15 -1505 ((-1196) $)) - (-15 -1615 ((-3 $ "failed") (-1196)))))) + (-10 -8 (-15 -4076 ((-1195) $)) + (-15 -3022 ((-3 $ "failed") (-1195)))))) (-5 *1 (-1003 *4 *5 *3 *2)) (-4 *2 (-966 (-969 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-656 *6)) (-4 *6 (-13 (-862) - (-10 -8 (-15 -1505 ((-1196) $)) - (-15 -1615 ((-3 $ "failed") (-1196)))))) + (-10 -8 (-15 -4076 ((-1195) $)) + (-15 -3022 ((-3 $ "failed") (-1195)))))) (-4 *4 (-1068)) (-4 *5 (-805)) (-5 *1 (-1003 *4 *5 *6 *2)) (-4 *2 (-966 (-969 *4) *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-219)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-499)))) - ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568)) (-4 *2 (-317)))) - ((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576)))) - ((*1 *1 *1) (-4 *1 (-1079)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-286 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-568) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-286 *4 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *1 *1) (-5 *1 (-390))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) - (-5 *1 (-788 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-340))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-969 (-576))))) - (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-304 (-419 (-969 (-576)))))) - (-5 *2 (-656 (-656 (-304 (-969 *4))))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 (-304 (-969 *4)))) - (-5 *1 (-391 *4)) (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-304 (-419 (-969 (-576))))) - (-5 *2 (-656 (-304 (-969 *4)))) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1196)) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-4 *4 (-13 (-29 *6) (-1222) (-976))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -1999 (-656 *4)))) - (-5 *1 (-664 *6 *4 *3)) (-4 *3 (-668 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1222) (-976))) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-664 *6 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1287 *5) "failed")) - (|:| -1999 (-656 (-1287 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1287 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1287 *5) "failed")) - (|:| -1999 (-656 (-1287 *5))))) - (-5 *1 (-679 *5)) (-5 *4 (-1287 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-4 *5 (-374)) - (-5 *2 - (-656 - (-2 (|:| |particular| (-3 (-1287 *5) "failed")) - (|:| -1999 (-656 (-1287 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 *5))) (-4 *5 (-374)) - (-5 *2 - (-656 - (-2 (|:| |particular| (-3 (-1287 *5) "failed")) - (|:| -1999 (-656 (-1287 *5)))))) - (-5 *1 (-679 *5)) (-5 *4 (-656 (-1287 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) - (-4 *7 (-13 (-384 *5) (-10 -7 (-6 -4463)))) - (-5 *2 - (-656 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1999 (-656 *7))))) - (-5 *1 (-680 *5 *6 *7 *3)) (-5 *4 (-656 *7)) - (-4 *3 (-699 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-784 *5 *2)) (-4 *2 (-13 (-29 *5) (-1222) (-976))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-701 *7)) (-5 *5 (-1196)) - (-4 *7 (-13 (-29 *6) (-1222) (-976))) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1287 *7)) (|:| -1999 (-656 (-1287 *7))))) - (-5 *1 (-814 *6 *7)) (-5 *4 (-1287 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-701 *6)) (-5 *4 (-1196)) - (-4 *6 (-13 (-29 *5) (-1222) (-976))) - (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-1287 *6))) (-5 *1 (-814 *5 *6)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 (-304 *7))) (-5 *4 (-656 (-115))) - (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1287 *7)) (|:| -1999 (-656 (-1287 *7))))) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-656 *7)) (-5 *4 (-656 (-115))) - (-5 *5 (-1196)) (-4 *7 (-13 (-29 *6) (-1222) (-976))) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-2 (|:| |particular| (-1287 *7)) (|:| -1999 (-656 (-1287 *7))))) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-115)) (-5 *5 (-1196)) - (-4 *7 (-13 (-29 *6) (-1222) (-976))) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -1999 (-656 *7))) *7 "failed")) - (-5 *1 (-814 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1196)) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -1999 (-656 *3))) *3 "failed")) - (-5 *1 (-814 *6 *3)) (-4 *3 (-13 (-29 *6) (-1222) (-976))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-304 *2)) (-5 *4 (-115)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1222) (-976))) (-5 *1 (-814 *6 *2)) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-304 *2)) (-5 *5 (-656 *2)) - (-4 *2 (-13 (-29 *6) (-1222) (-976))) - (-4 *6 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-814 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1054)) (-5 *1 (-817)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-820)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1054)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1054)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1287 (-326 (-390)))) (-5 *4 (-390)) (-5 *5 (-656 *4)) - (-5 *2 (-1054)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-656 (-390))) - (-5 *6 (-326 (-390))) (-5 *4 (-390)) (-5 *2 (-1054)) (-5 *1 (-817)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -1999 (-656 *6))) "failed") - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) - (-5 *2 (-2 (|:| |particular| (-1287 *6)) (|:| -1999 (-701 *6)))) - (-5 *1 (-825 *6 *7)) (-5 *3 (-701 *6)) (-5 *4 (-1287 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-1054)) (-5 *1 (-912)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-913)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-912)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) - (-5 *8 (-227)) (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) - (-5 *2 (-1054)) (-5 *1 (-912)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-783)) (-5 *6 (-656 (-656 (-326 *3)))) (-5 *7 (-1178)) - (-5 *5 (-656 (-326 (-390)))) (-5 *3 (-390)) (-5 *2 (-1054)) - (-5 *1 (-912)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-969 (-419 (-576)))) (-5 *2 (-656 (-390))) - (-5 *1 (-1042)) (-5 *4 (-390)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-969 (-576))) (-5 *2 (-656 (-390))) (-5 *1 (-1042)) - (-5 *4 (-390)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-10 -8 (-15 ** ($ $ (-419 (-576))))))) - (-5 *2 (-656 *4)) (-5 *1 (-1147 *3 *4)) (-4 *3 (-1263 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) - (-5 *3 (-326 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *4)))) (-5 *1 (-1150 *4)) - (-5 *3 (-304 (-326 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) - (-5 *3 (-304 (-326 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-304 (-326 *5)))) (-5 *1 (-1150 *5)) - (-5 *3 (-326 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *2 (-656 (-656 (-304 (-326 *5))))) (-5 *1 (-1150 *5)) - (-5 *3 (-656 (-304 (-326 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) - (-5 *1 (-1205 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-1196))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-1205 *5)) - (-5 *3 (-656 (-304 (-419 (-969 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-419 (-969 *4)))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-1205 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) - (-5 *1 (-1205 *4)) (-5 *3 (-656 (-304 (-419 (-969 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1205 *5)) - (-5 *3 (-419 (-969 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-568)) - (-5 *2 (-656 (-304 (-419 (-969 *5))))) (-5 *1 (-1205 *5)) - (-5 *3 (-304 (-419 (-969 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) - (-5 *1 (-1205 *4)) (-5 *3 (-419 (-969 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-656 (-304 (-419 (-969 *4))))) - (-5 *1 (-1205 *4)) (-5 *3 (-304 (-419 (-969 *4))))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1054)) (-5 *1 (-765))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) ((*1 *1) (-4 *1 (-557))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-711)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1152 (-227))) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) - (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1119))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1152 (-227))) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1119))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1152 (-227))) - (-5 *1 (-266 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-112)) (-5 *1 (-841))))) -(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-568)) (-4 *2 (-464)) (-5 *1 (-988 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-576)) (-4 *3 (-174)) (-4 *5 (-384 *3)) - (-4 *6 (-384 *3)) (-5 *1 (-700 *3 *5 *6 *2)) - (-4 *2 (-699 *3 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-783)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-783))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) - (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576))))) - (-5 *4 (-701 *12)) (-5 *5 (-656 (-419 (-969 *9)))) - (-5 *6 (-656 (-656 *12))) (-5 *7 (-783)) (-5 *8 (-576)) - (-4 *9 (-13 (-317) (-148))) (-4 *12 (-966 *9 *11 *10)) - (-4 *10 (-13 (-862) (-626 (-1196)))) (-4 *11 (-805)) - (-5 *2 - (-2 (|:| |eqzro| (-656 *12)) (|:| |neqzro| (-656 *12)) - (|:| |wcond| (-656 (-969 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1287 (-419 (-969 *9)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *9))))))))) - (-5 *1 (-941 *9 *10 *11 *12))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-240 *3)))) - ((*1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1192 (-576)))) (-5 *1 (-193)) (-5 *3 (-576))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) - (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-1119)) - (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-5 *2 (-783)) (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-738))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) - (-5 *2 - (-2 (|:| -2085 (-783)) (|:| |curves| (-783)) - (|:| |polygons| (-783)) (|:| |constructs| (-783))))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2996 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-576)) (-5 *1 (-581 *3)) (-4 *3 (-1057 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-656 (-783)))) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *5 (-227)) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1054)) - (-5 *1 (-758))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-548)) (-5 *1 (-547 *4)) - (-4 *4 (-1237))))) -(((*1 *1) (-5 *1 (-301)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-1196)) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-326 *5))) - (-5 *1 (-1148 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-317) (-148))) (-5 *2 (-656 (-656 (-326 *5)))) - (-5 *1 (-1148 *5))))) -(((*1 *1 *1) (-4 *1 (-641))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-642 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021) (-1222)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-656 (-2 (|:| |totdeg| (-783)) (|:| -2248 *3)))) - (-5 *4 (-783)) (-4 *3 (-966 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *1 (-461 *5 *6 *7 *3))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-21)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-360)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -3791 (-656 (-2 (|:| |irr| *3) (|:| -2136 (-576))))))) - (-5 *1 (-218 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-665 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-666 *2 (-419 *2))) (-4 *2 (-1263 *4)) - (-5 *1 (-822 *4 *2)) - (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576)))))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1192 *3)) (-4 *3 (-1068)) (-4 *1 (-1263 *3))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1121 (-1121 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-890 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-892 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-783)) (-5 *1 (-895 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) - ((*1 *2 *1) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-966 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-734)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-738)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 - (-3 (|:| |overq| (-1192 (-419 (-576)))) - (|:| |overan| (-1192 (-48))) (|:| -2652 (-112)))) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-360)) (-5 *1 (-368 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1237)) - (-4 *5 (-384 *4)) (-4 *3 (-384 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1236)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1119)) - (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) - (-5 *1 (-1095 *3 *4 *2)) - (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1119)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1119))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *1 *1 *1) (-5 *1 (-227))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1 (-390))) (-5 *1 (-1059)))) - ((*1 *1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-761))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-922 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-340))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1263 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) - (-4 *3 (-668 *2)) (-4 *6 (-668 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-419 *2))) (-4 *2 (-1263 *5)) - (-5 *1 (-819 *5 *2 *3 *6)) - (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *3 (-668 *2)) - (-4 *6 (-668 (-419 *2)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1119)) (-5 *1 (-902 *4 *3)) - (-4 *3 (-1119))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) - (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-70 APROD)))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-768))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-609))) (-5 *1 (-609))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-656 (-656 (-960 (-227))))) (-5 *3 (-656 (-886))) - (-5 *1 (-480))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1288)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1288)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1288)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 (-1 (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-960 (-227)) (-227))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-227) (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-960 (-227)) (-227) (-227))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *5 (-656 (-270))) (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 (-1 (-227) (-227) (-227)))) (-5 *4 (-1113 (-390))) - (-5 *2 (-1289)) (-5 *1 (-262)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-304 *7)) (-5 *4 (-1196)) (-5 *5 (-656 (-270))) - (-4 *7 (-442 *6)) (-4 *6 (-13 (-568) (-862) (-1057 (-576)))) - (-5 *2 (-1288)) (-5 *1 (-263 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1288)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1288)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1119))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-890 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-890 *5)) (-5 *4 (-1111 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1288)) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1111 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) (-5 *2 (-1289)) - (-5 *1 (-266 *3)) (-4 *3 (-13 (-626 (-548)) (-1119))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1111 (-390))) (-5 *2 (-1289)) (-5 *1 (-266 *3)) - (-4 *3 (-13 (-626 (-548)) (-1119))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-895 *6)) (-5 *4 (-1111 (-390))) (-5 *5 (-656 (-270))) - (-4 *6 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) - (-5 *1 (-266 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-895 *5)) (-5 *4 (-1111 (-390))) - (-4 *5 (-13 (-626 (-548)) (-1119))) (-5 *2 (-1289)) - (-5 *1 (-266 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1288)) (-5 *1 (-267)))) + (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) + (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) + (-4 *3 (-1262 *6)) (-4 *7 (-966 *6 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1139)) (-5 *1 (-340))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1177)) (-5 *3 (-656 (-270))) (-5 *1 (-268)))) + ((*1 *1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-270)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1287)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-1288))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) + (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1277 *5)) (-4 *6 (-1262 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) + (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) + (-5 *1 (-880 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1288)) - (-5 *1 (-267)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *2 (-1288)) (-5 *1 (-267)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-656 (-270))) - (-5 *2 (-1288)) (-5 *1 (-267)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1289)) (-5 *1 (-267)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-656 (-227))) (-5 *4 (-656 (-270))) (-5 *2 (-1289)) - (-5 *1 (-267))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-638)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1119)) - (-4 *2 (-13 (-442 *4) (-899 *3) (-626 (-905 *3)))) - (-5 *1 (-1095 *3 *4 *2)) - (-4 *4 (-13 (-1068) (-899 *3) (-626 (-905 *3)))))) - ((*1 *2 *1) - (-12 (-4 *2 (-1119)) (-5 *1 (-1185 *2 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-360)) (-5 *2 (-1287 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 *1)) (-4 *1 (-146)) (-4 *1 (-926)) - (-5 *2 (-1287 *1))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1278 *4)) (-5 *1 (-1280 *4 *2)) - (-4 *4 (-38 (-419 (-576))))))) -(((*1 *2 *1) (-12 (-4 *1 (-317)) (-5 *2 (-783))))) + (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-374)) + (-14 *6 (-1195)) (-14 *7 *5) (-5 *2 (-419 (-1259 *6 *5))) + (-5 *1 (-880 *5 *6 *7))))) +(((*1 *1 *1) (-5 *1 (-227))) ((*1 *1 *1) (-5 *1 (-390))) + ((*1 *1) (-5 *1 (-390)))) (((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-227) (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227) (-227))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-270))))) -(((*1 *1) (-5 *1 (-1082)))) -(((*1 *1 *2) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-1196))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-876 *5))) (-14 *5 (-656 (-1196))) (-4 *6 (-464)) - (-5 *2 (-656 (-656 (-253 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) - (-5 *3 (-656 (-253 *5 *6))) (-4 *7 (-464))))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2) - (-12 (-4 *3 (-1241)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-5 *2 (-1287 *1)) (-4 *1 (-353 *3 *4 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1178)) (-5 *3 (-576)) (-5 *1 (-246))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -2877 (-656 *3)) (|:| -3722 (-656 *3)))) - (-5 *1 (-1238 *3)) (-4 *3 (-1119))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-518)) (-4 *4 (-1119)) (-5 *1 (-946 *4 *2)) - (-4 *2 (-442 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-518)) (-5 *2 (-326 (-576))) - (-5 *1 (-947))))) -(((*1 *1 *1 *1) (-5 *1 (-874))) ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *3 (-576)) (-4 *1 (-881 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-374)) - (-5 *2 (-112)) (-5 *1 (-679 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-374)) (-4 *6 (-13 (-384 *5) (-10 -7 (-6 -4463)))) - (-4 *4 (-13 (-384 *5) (-10 -7 (-6 -4463)))) (-5 *2 (-112)) - (-5 *1 (-680 *5 *6 *4 *3)) (-4 *3 (-699 *5 *6 *4))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119)))) - ((*1 *1 *2) (-12 (-5 *1 (-128 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 (-1176 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) - (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1287 (-326 (-227)))) (-5 *4 (-656 (-1196))) - (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-763))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-656 *5)) (-5 *4 (-783)) (-4 *5 (-1119)) - (-5 *1 (-624 *5))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *3 (-656 (-270))) - (-5 *1 (-268)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-270)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1113 (-390)))) (-5 *1 (-480))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-479))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-5 *2 (-1178))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-1 (-112) *8))) (-4 *8 (-1084 *5 *6 *7)) - (-4 *5 (-568)) (-4 *6 (-805)) (-4 *7 (-862)) - (-5 *2 (-2 (|:| |goodPols| (-656 *8)) (|:| |badPols| (-656 *8)))) - (-5 *1 (-996 *5 *6 *7 *8)) (-5 *4 (-656 *8))))) -(((*1 *1 *1) (-4 *1 (-144))) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) + (-5 *1 (-1007 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 *5)) (-4 *5 (-1263 *3)) (-4 *3 (-317)) - (-5 *2 (-112)) (-5 *1 (-467 *3 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) - (-5 *2 (-430 (-1192 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1263 *5))))) + (-12 (-5 *2 (-656 *7)) (-4 *7 (-1090 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) + (-5 *1 (-1126 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-112)) (-5 *1 (-841))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1237)) - (-4 *5 (-384 *4)) (-4 *2 (-384 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-4 *1 (-1072 *4 *5 *6 *7 *2)) (-4 *6 (-1068)) - (-4 *7 (-243 *5 *6)) (-4 *2 (-243 *4 *6))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *1 *1 *1) (-4 *1 (-144))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-160 *2)) (-4 *2 (-557)))) - ((*1 *1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066)) - (-5 *3 (-576))))) -(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-703 (-189))) (-5 *1 (-189))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-493 *4 *5))) (-14 *4 (-656 (-1196))) - (-4 *5 (-464)) - (-5 *2 - (-2 (|:| |gblist| (-656 (-253 *4 *5))) - (|:| |gvlist| (-656 (-576))))) - (-5 *1 (-643 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-312)) (-4 *2 (-1237)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-624 *1))) (-5 *3 (-656 *1)) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-304 *1))) (-4 *1 (-312)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-304 *1)) (-4 *1 (-312))))) -(((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1) (-5 *1 (-1139)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1192 *9)) (-5 *4 (-656 *7)) (-4 *7 (-862)) - (-4 *9 (-966 *8 *6 *7)) (-4 *6 (-805)) (-4 *8 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-754 *6 *7 *8 *9)) (-5 *5 (-783))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1090 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-996 *3 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) - (-5 *2 (-656 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 *3)) (-5 *1 (-749 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-451))) (-5 *1 (-877))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1196)) (|:| |fn| (-326 (-227))) - (|:| -2920 (-1113 (-855 (-227)))) (|:| |abserr| (-227)) - (|:| |relerr| (-227)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-227))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2920 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-571))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-656 (-624 *2))) (-5 *4 (-656 (-1196))) - (-4 *2 (-13 (-442 (-171 *5)) (-1021) (-1222))) (-4 *5 (-568)) - (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-442 *5) (-1021) (-1222)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-853)) (-5 *4 (-1082)) (-5 *2 (-1054)) (-5 *1 (-852)))) - ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1054)) (-5 *1 (-852)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-656 (-390))) (-5 *5 (-656 (-855 (-390)))) - (-5 *6 (-656 (-326 (-390)))) (-5 *3 (-326 (-390))) (-5 *2 (-1054)) - (-5 *1 (-852)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) - (-5 *5 (-656 (-855 (-390)))) (-5 *2 (-1054)) (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-390))) (-5 *4 (-656 (-390))) (-5 *2 (-1054)) - (-5 *1 (-852)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-326 (-390)))) (-5 *4 (-656 (-390))) - (-5 *2 (-1054)) (-5 *1 (-852))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) + (-12 (-5 *3 (-1 (-112) *7 (-656 *7))) (-4 *1 (-1229 *4 *5 *6 *7)) + (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) + (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *2 (-1112 *3)) (-5 *1 (-1076 *2 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1113 *3)) (-5 *1 (-1111 *3)) (-4 *3 (-1237)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1112 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-656 (-419 *6))) (-5 *3 (-419 *6)) - (-4 *6 (-1263 *5)) (-4 *5 (-13 (-374) (-148) (-1057 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-580 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-432 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1222) (-442 *3))) - (-14 *4 (-1196)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-4 *2 (-13 (-27) (-1222) (-442 *3) (-10 -8 (-15 -4092 ($ *4))))) - (-4 *4 (-860)) - (-4 *5 - (-13 (-1265 *2 *4) (-374) (-1222) - (-10 -8 (-15 -3614 ($ $)) (-15 -3597 ($ $))))) - (-5 *1 (-434 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1002 *5)) - (-14 *7 (-1196))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-353 *4 *5 *6)) (-4 *4 (-1241)) - (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-2 (|:| |num| (-701 *5)) (|:| |den| *5)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1139)))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-656 (-112))) (-5 *5 (-701 (-227))) - (-5 *6 (-701 (-576))) (-5 *7 (-227)) (-5 *3 (-576)) (-5 *2 (-1054)) - (-5 *1 (-766))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-326 (-227))) (|:| -3503 (-656 (-227))) - (|:| |lb| (-656 (-855 (-227)))) (|:| |cf| (-656 (-326 (-227)))) - (|:| |ub| (-656 (-855 (-227)))))) - (-5 *1 (-276))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1194 *4 *5 *6)) - (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-783)) (-5 *2 (-1260 *5 *4)) (-5 *1 (-1279 *4 *5 *6)) - (-4 *4 (-1068)) (-14 *5 (-1196)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-656 (-1201))) (-5 *1 (-893))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-656 *6)) (-4 *1 (-966 *4 *5 *6)) (-4 *4 (-1068)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-783)))) - ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-783))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-960 *4)) (-4 *4 (-1068)) (-5 *1 (-1184 *3 *4)) - (-14 *3 (-938))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-1065 *5 *6))) (-5 *1 (-1314 *5 *6 *7)) - (-14 *6 (-656 (-1196))) (-14 *7 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-969 *4))) - (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-656 (-1065 *4 *5))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2996 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-870)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-982)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1008)))) - ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1237)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1236)) (-4 *4 (-384 *3)) + (-4 *5 (-384 *3)) (-5 *2 (-576)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1119) (-34))) (-5 *1 (-1159 *2 *3)) - (-4 *3 (-13 (-1119) (-34)))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-249 *2)) (-4 *2 (-1237))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-576)))) - ((*1 *1 *1 *1) (-5 *1 (-1139)))) -(((*1 *2 *3) - (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-29 *4) (-1222))) - (-5 *1 (-595 *4 *2)) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-598 (-419 (-969 *4)))) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-601 *4))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1196)) (-5 *5 (-656 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-148) (-1057 (-576)) (-651 (-576)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-390)) (-5 *1 (-798))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1192 (-576))) (-5 *2 (-576)) (-5 *1 (-959))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-938))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-644))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-419 (-969 *5)))) (-5 *4 (-656 (-1196))) - (-4 *5 (-568)) (-5 *2 (-656 (-656 (-969 *5)))) (-5 *1 (-1205 *5))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-966 *3 *4 *5)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-374)) (-4 *3 (-805)) (-4 *4 (-862)) - (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-966 *2 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-227)) (-5 *1 (-834))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1068)) (-14 *3 (-656 (-1196))))) - ((*1 *1 *1) - (-12 (-5 *1 (-225 *2 *3)) (-4 *2 (-13 (-1068) (-862))) - (-14 *3 (-656 (-1196))))) - ((*1 *1 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1119)))) - ((*1 *1 *1) - (-12 (-14 *2 (-656 (-1196))) (-4 *3 (-174)) - (-4 *5 (-243 (-2048 *2) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2550 *4) (|:| -3175 *5)) - (-2 (|:| -2550 *4) (|:| -3175 *5)))) - (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-862)) - (-4 *7 (-966 *3 *5 (-876 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862)))) - ((*1 *1 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) - ((*1 *1 *1) - (-12 (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1068)) - (-4 *3 (-738)))) - ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1310 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-858))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-576))) (-5 *5 (-1 (-1176 *4))) (-4 *4 (-374)) - (-4 *4 (-1068)) (-5 *2 (-1176 *4)) (-5 *1 (-1180 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1176 (-576))) (-5 *1 (-1180 *4)) (-4 *4 (-1068)) - (-5 *3 (-576))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-378 *2)) (-4 *2 (-174)) (-4 *2 (-568)))) - ((*1 *1 *1) (|partial| -4 *1 (-734)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1287 *6)) (-5 *4 (-1287 (-576))) (-5 *5 (-576)) - (-4 *6 (-1119)) (-5 *2 (-1 *6)) (-5 *1 (-1036 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-158)) (-5 *1 (-886))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-548) (-656 (-548)))) (-5 *1 (-115)))) - ((*1 *1) (-5 *1 (-590)))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2 *3 *4) + (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) + (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-937))))) +(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) + ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) +(((*1 *2 *1) (-12 (-5 *2 (-703 (-1154))) (-5 *1 (-1170))))) +(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *3 (-862)) (-5 *1 (-1207 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-1198 (-419 (-576)))) - (-5 *1 (-192))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-783)) (-4 *3 (-1068)) (-4 *1 (-699 *3 *4 *5)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-1285 *3)) (-4 *3 (-23)) (-4 *3 (-1237))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-656 *1)) - (-4 *1 (-966 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1121 (-783))) (-5 *6 (-783)) - (-5 *2 - (-2 (|:| |contp| (-576)) - (|:| -3791 (-656 (-2 (|:| |irr| *3) (|:| -2136 (-576))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1230 *3 *4 *5 *6)) (-4 *3 (-568)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1230 *4 *5 *6 *3)) (-4 *4 (-568)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1260 *5 *4)) (-4 *4 (-832)) (-14 *5 (-1196)) - (-5 *2 (-656 *4)) (-5 *1 (-1133 *4 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-576)) (-5 *1 (-430 *2)) (-4 *2 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-254))))) -(((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-576)))) (-4 *2 (-1068))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-464)) (-4 *4 (-862)) - (-4 *5 (-805)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-966 *3 *5 *4))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-701 *4)) (-5 *3 (-783)) (-4 *4 (-1068)) - (-5 *1 (-702 *4))))) -(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-771))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 -2221)))) - (-5 *2 (-1054)) (-5 *1 (-760))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1068)) (-5 *1 (-50 *2 *3)) (-14 *3 (-656 (-1196))))) - ((*1 *2 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-225 *3 *4)) - (-4 *3 (-13 (-1068) (-862))) (-14 *4 (-656 (-1196))))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *2 *3)) (-4 *3 (-1119)) (-4 *2 (-1068)))) - ((*1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *5 (-243 (-2048 *3) (-783))) - (-14 *6 - (-1 (-112) (-2 (|:| -2550 *4) (|:| -3175 *5)) - (-2 (|:| -2550 *4) (|:| -3175 *5)))) - (-4 *2 (-174)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-862)) - (-4 *7 (-966 *2 *5 (-876 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-862)) (-4 *2 (-1119)))) - ((*1 *2 *1) - (-12 (-4 *2 (-568)) (-5 *1 (-635 *2 *3)) (-4 *3 (-1263 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-720 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1068)) (-5 *1 (-747 *2 *3)) (-4 *3 (-862)) - (-4 *3 (-738)))) - ((*1 *2 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *3 (-804)) (-4 *4 (-862)) - (-4 *2 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1084 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-1178)) (-5 *5 (-701 (-227))) - (-5 *2 (-1054)) (-5 *1 (-759))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4462)) (-4 *1 (-152 *2)) (-4 *2 (-1237)) - (-4 *2 (-1119))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) - (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-194)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-1196)) - (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-656 (-227))) (-5 *1 (-310))))) + (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -3887 *4)))) + (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1140 *2)) (-4 *2 (-1236))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1195)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-656 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-656 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -3116 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1221) (-27) (-442 *8))) + (-4 *8 (-13 (-464) (-148) (-1057 *3) (-651 *3))) (-5 *3 (-576)) + (-5 *2 (-656 *4)) (-5 *1 (-1033 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)))) (-4 *3 (-568)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-442 *3)) - (-4 *2 - (-13 (-374) (-312) - (-10 -8 (-15 -3894 ((-1144 *3 (-624 $)) $)) - (-15 -3905 ((-1144 *3 (-624 $)) $)) - (-15 -4092 ($ (-1144 *3 (-624 $)))))))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1237)) - (-4 *5 (-1237)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-245 *6 *7)) (-14 *6 (-783)) - (-4 *7 (-1237)) (-4 *5 (-1237)) (-5 *2 (-245 *6 *5)) - (-5 *1 (-244 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1237)) (-4 *5 (-1237)) - (-4 *2 (-384 *5)) (-5 *1 (-382 *6 *4 *5 *2)) (-4 *4 (-384 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1119)) (-4 *5 (-1119)) - (-4 *2 (-437 *5)) (-5 *1 (-435 *6 *4 *5 *2)) (-4 *4 (-437 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-656 *6)) (-4 *6 (-1237)) - (-4 *5 (-1237)) (-5 *2 (-656 *5)) (-5 *1 (-654 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-975 *6)) (-4 *6 (-1237)) - (-4 *5 (-1237)) (-5 *2 (-975 *5)) (-5 *1 (-974 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1176 *6)) (-4 *6 (-1237)) - (-4 *3 (-1237)) (-5 *2 (-1176 *3)) (-5 *1 (-1174 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1287 *6)) (-4 *6 (-1237)) - (-4 *5 (-1237)) (-5 *2 (-1287 *5)) (-5 *1 (-1286 *6 *5))))) -(((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-701 (-419 *4)))))) -(((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) - (-4 *3 (-1263 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-1192 *3))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-576)) (-5 *6 (-1 (-1292) (-1287 *5) (-1287 *5) (-390))) - (-5 *3 (-1287 (-390))) (-5 *5 (-390)) (-5 *2 (-1292)) - (-5 *1 (-800))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-576) (-576))) (-5 *1 (-372 *3)) (-4 *3 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-783) (-783))) (-4 *1 (-397 *3)) (-4 *3 (-1119)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) - ((*1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-4 *6 (-243 (-2048 *3) (-783))) - (-14 *7 - (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *6)) - (-2 (|:| -2550 *5) (|:| -3175 *6)))) - (-5 *2 (-725 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-862)) (-4 *8 (-966 *4 *6 (-876 *3))))) - ((*1 *2 *1) - (-12 (-4 *2 (-738)) (-4 *2 (-862)) (-5 *1 (-747 *3 *2)) - (-4 *3 (-1068)))) - ((*1 *1 *1) - (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) - (-4 *4 (-862))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) + (-12 (-5 *2 (-656 *3)) (-4 *3 (-1262 (-576))) (-5 *1 (-498 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) + (-12 (-5 *4 (-1195)) (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-656 (-624 *3))) (|:| |vals| (-656 *3)))) - (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5)))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-938))) (-5 *4 (-656 (-576))) - (-5 *2 (-701 (-576))) (-5 *1 (-1129))))) -(((*1 *2 *1) - (-12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-1079)) (-4 *3 (-1222)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-656 (-419 *7))) - (-4 *7 (-1263 *6)) (-5 *3 (-419 *7)) (-4 *6 (-374)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-656 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-586 *6 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *1) (-12 (-4 *1 (-336 *2 *3)) (-4 *3 (-804)) (-4 *2 (-1068)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1196)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-969 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1196)) (-4 *1 (-29 *3)) (-4 *3 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-568))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-289))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-624 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1222) (-29 *6))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-226 *6 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-55))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-227))) (-5 *5 (-576)) (-5 *6 (-1178)) - (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-576)) (-14 *3 (-783)) - (-4 *4 (-174))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1084 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-568))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-171 (-227)))) - (-5 *2 (-1054)) (-5 *1 (-766))))) + (-5 *1 (-286 *5 *3)) (-4 *3 (-13 (-27) (-1221) (-442 *5)))))) (((*1 *2 *2) (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-243 *3 *2)) (-4 *2 (-1237)) (-4 *2 (-1068)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-960 (-227))) (-5 *2 (-227)) (-5 *1 (-1233)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1068))))) (((*1 *2 *3) - (-12 (-4 *4 (-374)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-783)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-4 *3 (-568)) (-5 *2 (-783)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *4 (-174)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4)) (-5 *2 (-783)) (-5 *1 (-700 *4 *5 *6 *3)) - (-4 *3 (-699 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-4 *5 (-568)) - (-5 *2 (-783))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *4 (-1196)) - (-5 *1 (-1199)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1199)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-1196)) (-5 *1 (-1200)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-449)) (-5 *3 (-656 (-1196))) (-5 *1 (-1200))))) -(((*1 *2 *1) - (-12 (-4 *1 (-336 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-135))))) -(((*1 *2 *1) - (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-132)) - (-5 *2 (-656 (-2 (|:| |gen| *3) (|:| -3353 *4)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -1856 *3) (|:| -1585 *4)))) - (-5 *1 (-747 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-738)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) - (-5 *2 (-1176 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1151 *4 *2)) - (-4 *2 (-13 (-616 (-576) *4) (-10 -7 (-6 -4462) (-6 -4463)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-862)) (-4 *3 (-1237)) (-5 *1 (-1151 *3 *2)) - (-4 *2 (-13 (-616 (-576) *3) (-10 -7 (-6 -4462) (-6 -4463))))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-167 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-430 *3)) (-4 *3 (-557)) - (-4 *3 (-568)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-809 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1119)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1119)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1016 *3)) (-4 *3 (-174)) (-4 *3 (-557)) - (-5 *2 (-419 (-576))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-419 (-576))) (-5 *1 (-1027 *3)) - (-4 *3 (-1057 *2))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1068)) (-5 *2 (-1287 *3)) (-5 *1 (-724 *3 *4)) - (-4 *4 (-1263 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-159 *3 *2)) (-4 *2 (-442 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-874))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-874) (-656 (-874)))) (-5 *1 (-115)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1292)) (-5 *1 (-216 *3)) - (-4 *3 - (-13 (-862) - (-10 -8 (-15 -4367 ((-1178) $ (-1196))) (-15 -1650 (*2 $)) - (-15 -3237 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-406)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-514)))) - ((*1 *2 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-722)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1217)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-576)) (-5 *2 (-1292)) (-5 *1 (-1217))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-873)))) - ((*1 *1 *2) (-12 (-5 *2 (-400)) (-5 *1 (-873))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-783)) - (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-421 *3 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-464)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-461 *3 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-326 (-390))) (-5 *1 (-315))))) -(((*1 *1 *1) (-4 *1 (-248))) - ((*1 *1 *1) - (-12 (-4 *2 (-174)) (-5 *1 (-299 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (-3765 (-12 (-5 *1 (-304 *2)) (-4 *2 (-374)) (-4 *2 (-1237))) - (-12 (-5 *1 (-304 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) - ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-360)) (-5 *1 (-540 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-727 *2 *3 *4 *5 *6)) (-4 *2 (-174)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)) (-4 *2 (-374))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-4 *4 (-13 (-568) (-148))) - (-5 *1 (-1257 *4 *2)) (-4 *2 (-1263 *4))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-833)) (-5 *4 (-52)) (-5 *2 (-1292)) (-5 *1 (-843))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-656 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) - (-4 *3 (-568))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-227) (-227))) (-5 *1 (-328)) (-5 *3 (-227))))) -(((*1 *2) (-12 (-5 *2 (-131)) (-5 *1 (-1206))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) (-5 *2 (-656 *3)) (-5 *1 (-941 *4 *5 *6 *3)) - (-4 *3 (-966 *4 *6 *5))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-701 (-576))) (-5 *3 (-656 (-576))) (-5 *1 (-1129))))) + (-12 (-5 *3 (-905 *4)) (-4 *4 (-1119)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-903 *4 *5)) (-4 *5 (-1236)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1185))))) (((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *2 (-13 (-442 (-171 *4)) (-1021) (-1222))) - (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-442 *4) (-1021) (-1222)))))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573)))) + (-12 (-5 *2 (-430 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) + (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119)))) ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-419 (-576)))) (-5 *1 (-959)) (-5 *3 (-576))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-442 *4)) (-5 *1 (-159 *4 *2)) - (-4 *4 (-568))))) + (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1191 *1))) (-5 *3 (-1191 *1))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) - (-4 *2 (-1247 *3))))) -(((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-1292)) - (-5 *1 (-1126 *3 *4 *5 *6 *7)) (-4 *7 (-1090 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1154))) (-5 *1 (-1085))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) (-5 *4 (-227)) - (-5 *2 (-1054)) (-5 *1 (-764))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |deg| (-783)) (|:| -2373 *5)))) - (-4 *5 (-1263 *4)) (-4 *4 (-360)) (-5 *2 (-656 *5)) - (-5 *1 (-218 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-2 (|:| -1392 *5) (|:| -2369 (-576))))) - (-5 *4 (-576)) (-4 *5 (-1263 *4)) (-5 *2 (-656 *5)) - (-5 *1 (-708 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *9 (-1090 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1088 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *8)) (-5 *4 (-656 *9)) (-4 *8 (-1084 *5 *6 *7)) - (-4 *9 (-1128 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-805)) - (-4 *7 (-862)) (-5 *2 (-783)) (-5 *1 (-1164 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1263 *9)) (-4 *7 (-805)) (-4 *8 (-862)) (-4 *9 (-317)) - (-4 *10 (-966 *9 *7 *8)) - (-5 *2 - (-2 (|:| |deter| (-656 (-1192 *10))) - (|:| |dterm| - (-656 (-656 (-2 (|:| -1972 (-783)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-656 *6)) (|:| |nlead| (-656 *10)))) - (-5 *1 (-790 *6 *7 *8 *9 *10)) (-5 *3 (-1192 *10)) (-5 *4 (-656 *6)) - (-5 *5 (-656 *10))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-874))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))))) - (-5 *2 (-1054)) (-5 *1 (-315)))) - ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2451 (-390)) (|:| -4124 (-1178)) - (|:| |explanations| (-656 (-1178))) (|:| |extra| (-1054)))) - (-5 *2 (-1054)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-576))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-419 (-576))) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-419 (-576)))) (-5 *4 (-304 *8)) - (-5 *5 (-1254 (-419 (-576)))) (-5 *6 (-419 (-576))) - (-4 *8 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-419 (-576)))) - (-5 *7 (-419 (-576))) (-4 *3 (-13 (-27) (-1222) (-442 *8))) - (-4 *8 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-419 (-576))) (-4 *4 (-1068)) (-4 *1 (-1270 *4 *3)) - (-4 *3 (-1247 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-1289))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-1196))) (-5 *2 (-1196)) (-5 *1 (-340))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1091 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1178)) (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *7 (-1084 *4 *5 *6)) (-5 *2 (-1292)) - (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-1068)) (-4 *5 (-805)) - (-4 *6 (-862)) (-4 *3 (-1084 *4 *5 *6)) (-4 *4 (-568)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-419 *6)) - (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) - (-5 *1 (-880 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-783)) (-5 *4 (-1279 *5 *6 *7)) (-4 *5 (-374)) - (-14 *6 (-1196)) (-14 *7 *5) (-5 *2 (-419 (-1260 *6 *5))) - (-5 *1 (-880 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-862)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1196)) (-5 *1 (-876 *3)) (-14 *3 (-656 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1008)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1237)) (-5 *2 (-1196)) (-5 *1 (-1076 *3 *4)) - (-4 *3 (-1112 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-1111 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1265 *3 *4)) (-4 *3 (-1068)) (-4 *4 (-804)) - (-5 *2 (-1196)))) - ((*1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-1283 *3)) (-14 *3 *2)))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-112))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1214 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1119))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-764))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-783)) (-5 *4 (-1287 *2)) (-4 *5 (-317)) - (-4 *6 (-1011 *5)) (-4 *2 (-13 (-421 *6 *7) (-1057 *6))) - (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1263 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-2 (|:| |den| (-576)) (|:| |gcdnum| (-576))))) - (-4 *4 (-1263 (-419 *2))) (-5 *2 (-576)) (-5 *1 (-930 *4 *5)) - (-4 *5 (-1263 (-419 *4)))))) + (-5 *2 + (-656 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-576))))) + (-5 *1 (-430 *3)) (-4 *3 (-568)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-783)) (-4 *3 (-360)) (-4 *5 (-1262 *3)) + (-5 *2 (-656 (-1191 *3))) (-5 *1 (-510 *3 *5 *6)) + (-4 *6 (-1262 *5))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1310 *3 *4)) (-4 *1 (-385 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-174)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-397 *2)) (-4 *2 (-1119)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-831 *2)) (-4 *2 (-862)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-831 *3)) (-4 *1 (-1303 *3 *4)) (-4 *3 (-862)) + (-4 *4 (-1068)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1303 *2 *3)) (-4 *2 (-862)) (-4 *3 (-1068))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-656 (-1046 *5 *6 *7 *8))) (-5 *1 (-1046 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-656 *8)) (-5 *4 (-112)) (-4 *8 (-1084 *5 *6 *7)) + (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) + (-5 *2 (-656 (-1165 *5 *6 *7 *8))) (-5 *1 (-1165 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-656 (-2 (|:| -1392 *3) (|:| -2369 *4)))) - (-5 *1 (-708 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-4 *5 (-13 (-464) (-1057 *4) (-651 *4))) - (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) + (-4 *7 (-1262 (-419 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -4385 *3))) + (-5 *1 (-574 *5 *6 *7 *3)) (-4 *3 (-353 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-1057 *5) (-651 *5))) (-5 *5 (-576)) - (-5 *2 (-52)) (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-576))) - (-4 *7 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-576))) - (-4 *3 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-576)) (-4 *4 (-1068)) (-4 *1 (-1249 *4 *3)) - (-4 *3 (-1278 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1270 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1247 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-993))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-995 *3 *4 *2 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *5 (-1084 *3 *4 *2))))) -(((*1 *1 *1) (-5 *1 (-1082)))) -(((*1 *2 *1) - (-12 (-4 *4 (-1119)) (-5 *2 (-902 *3 *4)) (-5 *1 (-898 *3 *4 *5)) - (-4 *3 (-1119)) (-4 *5 (-678 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-983 *4)) (-4 *4 (-1119)) (-5 *2 (-1121 *4)) - (-5 *1 (-984 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1285 *3)) (-4 *3 (-1237)) (-4 *3 (-1068)) - (-5 *2 (-701 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) (-4 *5 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-969 *5)))))) (-5 *1 (-782 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-969 *4))) (-4 *4 (-568)) - (-5 *2 (-656 (-656 (-304 (-419 (-969 *4)))))) (-5 *1 (-782 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-701 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1999 (-656 *6))) - *7 *6)) - (-4 *6 (-374)) (-4 *7 (-668 *6)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1262 *5)) (-4 *5 (-374)) (-5 *2 - (-2 (|:| |particular| (-3 (-1287 *6) "failed")) - (|:| -1999 (-656 (-1287 *6))))) - (-5 *1 (-825 *6 *7)) (-5 *4 (-1287 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-227))) (-5 *2 (-1287 (-711))) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-624 *5))) (-4 *4 (-1119)) (-5 *2 (-624 *5)) - (-5 *1 (-585 *4 *5)) (-4 *5 (-442 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1263 *3)))) + (-2 (|:| |answer| (-419 *6)) (|:| -4385 (-419 *6)) + (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) + (-5 *1 (-575 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) + (-15 -1549 ((-1144 *3 (-624 $)) $)) + (-15 -3563 ($ (-1144 *3 (-624 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-568)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *3 (-624 $)) $)) + (-15 -1549 ((-1144 *3 (-624 $)) $)) + (-15 -3563 ($ (-1144 *3 (-624 $))))))))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1263 *3)))) + (-12 (-5 *3 (-656 *2)) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *4 (-624 $)) $)) + (-15 -1549 ((-1144 *4 (-624 $)) $)) + (-15 -3563 ($ (-1144 *4 (-624 $))))))) + (-4 *4 (-568)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-783))) - (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1263 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *5)) (-4 *5 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *2 (-52)) (-5 *1 (-325 *5 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-304 *3)) (-4 *3 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-304 *3)) (-5 *5 (-783)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-325 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-576))) (-5 *4 (-304 *6)) - (-4 *6 (-13 (-27) (-1222) (-442 *5))) - (-4 *5 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) - (-4 *3 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-576))) (-5 *4 (-304 *7)) (-5 *5 (-1254 (-783))) - (-4 *7 (-13 (-27) (-1222) (-442 *6))) - (-4 *6 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1196)) (-5 *5 (-304 *3)) (-5 *6 (-1254 (-783))) - (-4 *3 (-13 (-27) (-1222) (-442 *7))) - (-4 *7 (-13 (-568) (-1057 (-576)) (-651 (-576)))) (-5 *2 (-52)) - (-5 *1 (-471 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1278 *3))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1057 (-576)) (-651 (-576)) (-464))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1272 *4 *5 *6)) - (|:| |%expon| (-329 *4 *5 *6)) - (|:| |%expTerms| - (-656 (-2 (|:| |k| (-419 (-576))) (|:| |c| *4)))))) - (|:| |%type| (-1178)))) - (-5 *1 (-1273 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1222) (-442 *3))) - (-14 *5 (-1196)) (-14 *6 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3) - (-12 (-4 *4 (-374)) (-5 *2 (-656 *3)) (-5 *1 (-962 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *1 *2) (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-960 *3) (-960 *3))) (-5 *1 (-178 *3)) - (-4 *3 (-13 (-374) (-1222) (-1021))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1241)) (-4 *5 (-1263 (-419 *2))) - (-4 *2 (-1263 *4)) (-5 *1 (-352 *3 *4 *2 *5)) - (-4 *3 (-353 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-353 *3 *2 *4)) (-4 *3 (-1241)) - (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-576))) (-5 *1 (-1066))))) -(((*1 *2 *3) - (-12 (-5 *2 (-430 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *4 (-1119)))) - ((*1 *2 *3) - (-12 (-4 *1 (-926)) (-5 *2 (-430 (-1192 *1))) (-5 *3 (-1192 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3)) (-4 *3 (-862))))) -(((*1 *1 *1) - (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-805)) (-4 *6 (-862)) - (-4 *3 (-1084 *4 *5 *6)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *1)))) - (-4 *1 (-1090 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1241))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-1266 *3 *2)) - (-4 *2 (-13 (-1263 *3) (-568) (-10 -8 (-15 -3149 ($ $ $)))))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-374)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) - (-4 *1 (-346 *4 *3 *5 *2)) (-4 *2 (-353 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-374)) (-4 *4 (-1263 *2)) - (-4 *5 (-1263 (-419 *4))) (-4 *1 (-346 *2 *4 *5 *6)) - (-4 *6 (-353 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-374)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) - (-4 *1 (-346 *2 *3 *4 *5)) (-4 *5 (-353 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-374)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) - (-4 *1 (-346 *3 *4 *5 *2)) (-4 *2 (-353 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-4 *6 (-353 *3 *4 *5)) (-4 *3 (-374)) - (-4 *1 (-346 *3 *4 *5 *6))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-393 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-1119)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-1176 *3)) (-5 *1 (-1180 *3)) - (-4 *3 (-1068)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-831 *4)) (-4 *4 (-862)) (-4 *1 (-1304 *4 *3)) - (-4 *3 (-1068))))) -(((*1 *2 *3) - (-12 (-4 *4 (-317)) (-4 *5 (-384 *4)) (-4 *6 (-384 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1143 *4 *5 *6 *3)) (-4 *3 (-699 *4 *5 *6))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1117 *3)) (-4 *3 (-1119)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-568)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-701 (-419 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-791 *4)) - (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-769))))) -(((*1 *2 *1) (-12 (-5 *2 (-301)) (-5 *1 (-290))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1223 *3)) (-4 *3 (-1119))))) -(((*1 *2) - (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-656 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1230 *5 *6 *7 *8)) (-4 *5 (-568)) - (-4 *6 (-805)) (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-576)) (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-384 *3)) (-4 *5 (-384 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) - (-4 *7 (-862)) (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-656 *3)) - (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1128 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) - (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) - (-14 *6 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -2210 (-1192 *4)) (|:| -3287 (-656 (-969 *4)))))) - (-5 *1 (-1097 *4 *5)) (-5 *3 (-656 (-969 *4))) - (-14 *5 (-656 (-1196))))) + (-12 (-5 *3 (-656 (-624 *2))) + (-4 *2 + (-13 (-374) (-312) + (-10 -8 (-15 -1536 ((-1144 *4 (-624 $)) $)) + (-15 -1549 ((-1144 *4 (-624 $)) $)) + (-15 -3563 ($ (-1144 *4 (-624 $))))))) + (-4 *4 (-568)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1195)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) + (-5 *1 (-342)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-317) (-148))) - (-5 *2 - (-656 (-2 (|:| -2210 (-1192 *5)) (|:| -3287 (-656 (-969 *5)))))) - (-5 *1 (-1097 *5 *6)) (-5 *3 (-656 (-969 *5))) - (-14 *6 (-656 (-1196)))))) + (-12 (-5 *3 (-1195)) (-5 *4 (-1111 (-969 (-576)))) (-5 *2 (-340)) + (-5 *1 (-342)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-783)) (-5 *1 (-687 *3)) (-4 *3 (-1068)) + (-4 *3 (-1119))))) +(((*1 *2 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-860)) (-5 *1 (-313 *3))))) (((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1054))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-944))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1) (-12 (-5 *1 (-931 *2)) (-4 *2 (-317))))) -(((*1 *2 *1) - (-12 (-4 *3 (-174)) (-4 *2 (-23)) (-5 *1 (-299 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1263 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-723 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1263 *3)) (-5 *1 (-724 *3 *2)) (-4 *3 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-727 *3 *2 *4 *5 *6)) (-4 *3 (-174)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-568) (-148))) (-5 *1 (-549 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-4 *4 (-1263 *3)) - (-4 *5 (-736 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1278 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-374) (-379) (-626 (-576)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1278 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-568) (-148))) - (-5 *1 (-1172 *3))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-783)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) - ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1841 *3) (|:| -3175 (-783)))) (-5 *1 (-599 *3)) - (-4 *3 (-557))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-406)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-1178))) (-5 *1 (-1217))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-5 *2 (-1192 *3)) (-5 *1 (-1211 *3)) - (-4 *3 (-374))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 (-52))) (-5 *2 (-1292)) (-5 *1 (-875))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-656 *3)) (-5 *5 (-938)) (-4 *3 (-1263 *4)) - (-4 *4 (-317)) (-5 *1 (-472 *4 *3))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1196)) (-4 *1 (-27)) - (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-969 *1)) (-4 *1 (-27)) (-5 *2 (-656 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-4 *4 (-568)) (-5 *2 (-656 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-568)) (-5 *2 (-656 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-227))) (-5 *4 (-656 (-1196))) - (-5 *5 (-1113 (-855 (-227)))) (-5 *2 (-1176 (-227))) (-5 *1 (-310))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-183 *4 *3)) - (-4 *4 (-13 (-374) (-860))) (-4 *3 (-1263 *2))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-118 *3)) (-14 *3 (-576)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1176 *2)) (-4 *2 (-317)) (-5 *1 (-176 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-317)) (-5 *1 (-176 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-176 (-576))) (-5 *1 (-777 *3)) (-4 *3 (-416)))) - ((*1 *2 *1) - (-12 (-5 *2 (-176 (-419 (-576)))) (-5 *1 (-883 *3)) (-14 *3 (-576)))) - ((*1 *2 *1) - (-12 (-14 *3 (-576)) (-5 *2 (-176 (-419 (-576)))) - (-5 *1 (-884 *3 *4)) (-4 *4 (-881 *3))))) -(((*1 *1) (-4 *1 (-360))) + (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-384 *2)) + (-4 *4 (-384 *2))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-227)) + (-5 *2 (-1054)) (-5 *1 (-767)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-576)) (-5 *5 (-701 (-227))) + (-5 *6 (-3 (|:| |fn| (-400)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-400)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-400)) + (-5 *4 (-227)) (-5 *2 (-1054)) (-5 *1 (-767))))) +(((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-158)))) ((*1 *2 *3) - (-12 (-5 *3 (-656 *5)) (-4 *5 (-442 *4)) (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-656 (-1192 *5))) - (|:| |prim| (-1192 *5)))) - (-5 *1 (-444 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1192 *3)) - (|:| |pol2| (-1192 *3)) (|:| |prim| (-1192 *3)))) - (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-442 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-969 *5)) (-5 *4 (-1196)) (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| |coef1| (-576)) (|:| |coef2| (-576)) - (|:| |prim| (-1192 *5)))) - (-5 *1 (-977 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-969 *5))) (-5 *4 (-656 (-1196))) - (-4 *5 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 *5))) - (|:| |prim| (-1192 *5)))) - (-5 *1 (-977 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-969 *6))) (-5 *4 (-656 (-1196))) (-5 *5 (-1196)) - (-4 *6 (-13 (-374) (-148))) - (-5 *2 - (-2 (|:| -1856 (-656 (-576))) (|:| |poly| (-656 (-1192 *6))) - (|:| |prim| (-1192 *6)))) - (-5 *1 (-977 *6))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) - (-5 *1 (-767))))) + (-12 (-5 *3 (-960 *2)) (-5 *1 (-1001 *2)) (-4 *2 (-1068))))) (((*1 *1 *1) (-5 *1 (-874))) ((*1 *2 *1) (-12 (-4 *1 (-1122 *2 *3 *4 *5 *6)) (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *2 (-1119)))) - ((*1 *1 *2) (-12 (-5 *2 (-227)) (-4 *1 (-1177)))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1177)))) - ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1196))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-783)) (-4 *5 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *5 *3)) (-4 *3 (-1263 *5))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1192 (-576))) (-5 *1 (-959)) (-5 *3 (-576))))) -(((*1 *2) (-12 (-5 *2 (-1292)) (-5 *1 (-1290))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1237)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-898 *3 *4 *5)) - (-4 *3 (-1119)) (-4 *5 (-678 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) - (-4 *4 (-1119))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1068)) (-4 *2 (-699 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-384 *4)) - (-4 *6 (-384 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |pde| (-656 (-326 (-227)))) - (|:| |constraints| - (-656 - (-2 (|:| |start| (-227)) (|:| |finish| (-227)) - (|:| |grid| (-783)) (|:| |boundaryType| (-576)) - (|:| |dStart| (-701 (-227))) (|:| |dFinish| (-701 (-227)))))) - (|:| |f| (-656 (-656 (-326 (-227))))) (|:| |st| (-1178)) - (|:| |tol| (-227)))) - (-5 *2 (-112)) (-5 *1 (-212))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-656 (-326 (-227)))) (|:| -3503 (-656 (-227))))) - (-5 *2 (-656 (-1196))) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 *7)) (-4 *7 (-966 *6 *4 *5)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1068)) (-5 *2 (-656 *5)) - (-5 *1 (-331 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-350 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-399)))) - ((*1 *2 *1) - (-12 (-4 *1 (-442 *3)) (-4 *3 (-1119)) (-5 *2 (-656 (-1196))))) - ((*1 *2 *1) - (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-656 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-1068)) - (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-656 *5)) - (-5 *1 (-967 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))))) - ((*1 *2 *1) - (-12 (-4 *1 (-992 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-804)) - (-4 *5 (-862)) (-5 *2 (-656 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-4 *6 (-1084 *3 *4 *5)) (-5 *2 (-656 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) (-5 *2 (-656 (-1196))) - (-5 *1 (-1062 *4))))) -(((*1 *1) (-5 *1 (-1104)))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1068)) - (-5 *1 (-865 *5 *2)) (-4 *2 (-864 *5))))) -(((*1 *2 *1) - (-12 (-4 *1 (-260 *3 *4 *5 *6)) (-4 *3 (-1068)) (-4 *4 (-862)) - (-4 *5 (-275 *4)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-260 *4 *3 *5 *6)) (-4 *4 (-1068)) (-4 *3 (-862)) - (-4 *5 (-275 *3)) (-4 *6 (-805)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-275 *3)) (-4 *3 (-862)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-360)) (-5 *2 (-938)))) - ((*1 *2 *3) - (-12 (-5 *3 (-347 *4 *5 *6 *7)) (-4 *4 (-13 (-379) (-374))) - (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *7 (-353 *4 *5 *6)) - (-5 *2 (-783)) (-5 *1 (-404 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-938))))) - ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-576)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-608 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1) - (-12 (-4 *3 (-568)) (-5 *2 (-576)) (-5 *1 (-635 *3 *4)) - (-4 *4 (-1263 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-783)) (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) - (-4 *3 (-862)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-752 *4 *3)) (-4 *4 (-1068)) (-4 *3 (-862)) - (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-4 *1 (-881 *3)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-921 *3)) (-4 *3 (-1119)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-922 *3)) (-4 *3 (-1119)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 *5 *6 *7 *8)) (-4 *5 (-442 *4)) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) - (-4 *8 (-353 *5 *6 *7)) (-4 *4 (-13 (-568) (-1057 (-576)))) - (-5 *2 (-783)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-347 (-419 (-576)) *4 *5 *6)) - (-4 *4 (-1263 (-419 (-576)))) (-4 *5 (-1263 (-419 *4))) - (-4 *6 (-353 (-419 (-576)) *4 *5)) (-5 *2 (-783)) - (-5 *1 (-929 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-347 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-374)) - (-4 *7 (-1263 *6)) (-4 *4 (-1263 (-419 *7))) (-4 *8 (-353 *6 *7 *4)) - (-4 *9 (-13 (-379) (-374))) (-5 *2 (-783)) - (-5 *1 (-1037 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1068)) (-4 *3 (-568)) - (-5 *2 (-783)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1265 *3 *2)) (-4 *3 (-1068)) (-4 *2 (-804))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-464)) - (-4 *3 (-568)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *1 (-996 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-112)) (-4 *7 (-1084 *4 *5 *6)) - (-4 *4 (-464)) (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-996 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-289))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-969 *4)) (-4 *4 (-1068)) (-4 *4 (-626 *2)) - (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-969 *5)) (-5 *4 (-938)) (-4 *5 (-1068)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-969 *4))) (-4 *4 (-568)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-969 *5))) (-5 *4 (-938)) (-4 *5 (-568)) - (-4 *5 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-568)) (-4 *4 (-862)) - (-4 *4 (-626 *2)) (-5 *2 (-390)) (-5 *1 (-797 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-568)) - (-4 *5 (-862)) (-4 *5 (-626 *2)) (-5 *2 (-390)) - (-5 *1 (-797 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) - (-4 *3 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-381 *4 *5)) (-4 *4 (-174)) - (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)))) - ((*1 *2) - (-12 (-4 *4 (-174)) (-4 *5 (-1263 *4)) (-5 *2 (-701 *4)) - (-5 *1 (-420 *3 *4 *5)) (-4 *3 (-421 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-701 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1119)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1192 (-419 (-1192 *2)))) (-5 *4 (-624 *2)) - (-4 *2 (-13 (-442 *5) (-27) (-1222))) - (-4 *5 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *1 (-572 *5 *2 *6)) (-4 *6 (-1119)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192 *1)) (-4 *1 (-966 *4 *5 *3)) (-4 *4 (-1068)) - (-4 *5 (-805)) (-4 *3 (-862)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192 *4)) (-4 *4 (-1068)) (-4 *1 (-966 *4 *5 *3)) - (-4 *5 (-805)) (-4 *3 (-862)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1192 *2))) (-4 *5 (-805)) (-4 *4 (-862)) - (-4 *6 (-1068)) - (-4 *2 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))) - (-5 *1 (-967 *5 *4 *6 *7 *2)) (-4 *7 (-966 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1192 (-419 (-969 *5))))) (-5 *4 (-1196)) - (-5 *2 (-419 (-969 *5))) (-5 *1 (-1062 *5)) (-4 *5 (-568))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-1196))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-701 (-419 (-969 (-576))))) - (-5 *2 (-701 (-326 (-576)))) (-5 *1 (-1050))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-960 *4))) (-5 *1 (-1184 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1068))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-783)) (-5 *1 (-868 *2)) (-4 *2 (-174))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-701 *2)) (-5 *4 (-576)) - (-4 *2 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-421 *2 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1297))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-374)) (-4 *3 (-1068)) - (-5 *1 (-1180 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1196)) - (-4 *4 (-13 (-317) (-1057 (-576)) (-651 (-576)) (-148))) - (-5 *1 (-816 *4 *2)) (-4 *2 (-13 (-29 *4) (-1222) (-976)))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1196)) (-5 *2 (-449)) (-5 *1 (-1200))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-703 (-1245)))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-938))) (-5 *1 (-153 *4 *2 *5)) (-14 *4 (-938)) - (-4 *2 (-374)) (-14 *5 (-1012 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-725 *5 *6 *7)) (-4 *5 (-862)) - (-4 *6 (-243 (-2048 *4) (-783))) - (-14 *7 - (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *6)) - (-2 (|:| -2550 *5) (|:| -3175 *6)))) - (-14 *4 (-656 (-1196))) (-4 *2 (-174)) - (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-966 *2 *6 (-876 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-862)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *2 (-568)) (-5 *1 (-635 *2 *4)) - (-4 *4 (-1263 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-720 *2)) (-4 *2 (-1068)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-747 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-738)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *5)) (-5 *3 (-656 (-783))) (-4 *1 (-752 *4 *5)) - (-4 *4 (-1068)) (-4 *5 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-752 *4 *2)) (-4 *4 (-1068)) - (-4 *2 (-862)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-783)) (-4 *1 (-864 *2)) (-4 *2 (-1068)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 (-783))) (-4 *1 (-966 *4 *5 *6)) - (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *6 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-783)) (-4 *1 (-966 *4 *5 *2)) (-4 *4 (-1068)) - (-4 *5 (-805)) (-4 *2 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 *6)) (-5 *3 (-656 *5)) (-4 *1 (-992 *4 *5 *6)) - (-4 *4 (-1068)) (-4 *5 (-804)) (-4 *6 (-862)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-992 *4 *3 *2)) (-4 *4 (-1068)) (-4 *3 (-804)) - (-4 *2 (-862))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1288)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-656 (-270))) (-5 *1 (-1289))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3)))))) -(((*1 *2 *1) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-993))))) + ((*1 *1 *2) (-12 (-5 *2 (-227)) (-5 *1 (-1177)))) + ((*1 *1 *2) (-12 (-5 *2 (-576)) (-5 *1 (-1177)))) + ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1195))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1119))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1178)) (-5 *4 (-576)) (-5 *5 (-701 (-227))) - (-5 *2 (-1054)) (-5 *1 (-769))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-1 *6 *5)) (-5 *1 (-718 *4 *5 *6)) - (-4 *4 (-626 (-548))) (-4 *5 (-1237)) (-4 *6 (-1237))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *4 *5 *6)) (-4 *4 (-317)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-459 *4 *5 *6 *2))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-317)) (-5 *1 (-181 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-770))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-227)) (-5 *4 (-576)) - (-5 *5 (-3 (|:| |fn| (-400)) (|:| |fp| (-64 G)))) (-5 *2 (-1054)) - (-5 *1 (-760))))) -(((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-285 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1021)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-145))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-626 *2) (-174))) (-5 *2 (-905 *4)) - (-5 *1 (-172 *4 *5 *3)) (-4 *4 (-1119)) (-4 *3 (-167 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-1113 (-855 (-390))))) - (-5 *2 (-656 (-1113 (-855 (-227))))) (-5 *1 (-315)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-406)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-421 *3 *4)) - (-4 *4 (-1263 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-421 *3 *4)) (-4 *3 (-174)) (-4 *4 (-1263 *3)) - (-5 *2 (-1287 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-174)) (-4 *1 (-429 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-1287 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-430 *1)) (-4 *1 (-442 *3)) (-4 *3 (-568)) - (-4 *3 (-1119)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-1084 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-475 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-548)))) - ((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1237)))) - ((*1 *1 *2) - (-12 (-4 *3 (-174)) (-4 *1 (-736 *3 *2)) (-4 *2 (-1263 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1119)))) - ((*1 *1 *2) - (-12 (-5 *2 (-969 *3)) (-4 *3 (-1068)) (-4 *1 (-1084 *3 *4 *5)) - (-4 *5 (-626 (-1196))) (-4 *4 (-805)) (-4 *5 (-862)))) - ((*1 *1 *2) - (-3765 - (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-2433 (-4 *3 (-38 (-419 (-576))))) (-4 *3 (-38 (-576))) - (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))) - (-12 (-5 *2 (-969 (-576))) (-4 *1 (-1084 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196)))) - (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862))))) - ((*1 *1 *2) - (-12 (-5 *2 (-969 (-419 (-576)))) (-4 *1 (-1084 *3 *4 *5)) - (-4 *3 (-38 (-419 (-576)))) (-4 *5 (-626 (-1196))) (-4 *3 (-1068)) - (-4 *4 (-805)) (-4 *5 (-862)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4385 *8))) - (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1090 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1178)) - (-5 *1 (-1088 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-656 *7)) (|:| -4385 *8))) - (-4 *7 (-1084 *4 *5 *6)) (-4 *8 (-1128 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-1178)) - (-5 *1 (-1164 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1201)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1217)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-874)) (-5 *3 (-576)) (-5 *1 (-1217)))) - ((*1 *2 *3) - (-12 (-5 *3 (-792 *4 (-876 *5))) - (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *5 (-656 (-1196))) - (-5 *2 (-792 *4 (-876 *6))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *6 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-969 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-792 *4 (-876 *6))) - (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1196))) - (-5 *2 (-969 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-13 (-860) (-317) (-148) (-1041))) - (-5 *2 (-1192 (-1043 (-419 *4)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196))) (-14 *6 (-656 (-1196))))) - ((*1 *2 *3) - (-12 - (-5 *3 (-1165 *4 (-543 (-876 *6)) (-876 *6) (-792 *4 (-876 *6)))) - (-4 *4 (-13 (-860) (-317) (-148) (-1041))) (-14 *6 (-656 (-1196))) - (-5 *2 (-656 (-792 *4 (-876 *6)))) (-5 *1 (-1314 *4 *5 *6)) - (-14 *5 (-656 (-1196)))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-874))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-661 *2 *3 *4)) (-4 *2 (-1119)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-687 *2)) (-4 *2 (-1068)) (-4 *2 (-1119))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-960 (-227))) (-5 *4 (-886)) (-5 *5 (-938)) - (-5 *2 (-1292)) (-5 *1 (-480)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-960 (-227))) (-5 *2 (-1292)) (-5 *1 (-480)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-656 (-960 (-227)))) (-5 *4 (-886)) (-5 *5 (-938)) - (-5 *2 (-1292)) (-5 *1 (-480))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-5 *2 (-576)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1263 *4)) - (-4 *5 (-13 (-416) (-1057 *4) (-374) (-1222) (-294)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-874)) (-5 *1 (-1176 *3)) (-4 *3 (-1119)) - (-4 *3 (-1237))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-855 (-227)))) (-5 *4 (-227)) (-5 *2 (-656 *4)) - (-5 *1 (-276))))) -(((*1 *1 *1) (-5 *1 (-548)))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *2 *3 *4)) (-4 *3 (-384 *2)) (-4 *4 (-384 *2)) - (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068)))) - ((*1 *2 *3) - (-12 (-4 *4 (-384 *2)) (-4 *5 (-384 *2)) (-4 *2 (-174)) - (-5 *1 (-700 *2 *4 *5 *3)) (-4 *3 (-699 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1142 *3 *2 *4 *5)) (-4 *4 (-243 *3 *2)) - (-4 *5 (-243 *3 *2)) (|has| *2 (-6 (-4464 "*"))) (-4 *2 (-1068))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-1043 *3)) - (-4 *3 (-13 (-860) (-374) (-1041))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-860) (-374))) (-5 *1 (-1080 *2 *3)) - (-4 *3 (-1263 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1087 *2 *3)) (-4 *2 (-13 (-860) (-374))) - (-4 *3 (-1263 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-227)) (-5 *1 (-315))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-860) (-374))) (-5 *2 (-112)) (-5 *1 (-1080 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-661 *3 *4 *5)) (-4 *3 (-1119)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119)))) - ((*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-1119))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1084 *3 *4 *5)) (-4 *3 (-1068)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-442 *2)) (-4 *2 (-1119)) (-4 *2 (-568)))) - ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-568))))) -(((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1170))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-969 *3))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-568)) (-4 *3 (-174)) (-14 *4 (-938)) - (-14 *5 (-656 (-1196))) (-14 *6 (-1287 (-701 *3)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-656 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1119)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-656 *4))) (-4 *4 (-1119)) - (-5 *1 (-114 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1119)) - (-5 *1 (-114 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-656 *4))) - (-5 *1 (-114 *4)) (-4 *4 (-1119)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-660 *3)) (-4 *3 (-1068)) - (-5 *1 (-726 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1068)) (-5 *1 (-848 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-656 (-227)))) (-5 *1 (-943))))) -(((*1 *2 *1) - (-12 (-4 *1 (-699 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-317) (-10 -8 (-15 -2100 ((-430 $) $))))) - (-4 *4 (-1263 *3)) - (-5 *2 - (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-361 *3 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-1263 *3)) - (-5 *2 - (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-780 *4 *5)) (-4 *5 (-421 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) - (-5 *2 - (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1004 *4 *3 *5 *6)) (-4 *6 (-736 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) - (-5 *2 - (-2 (|:| -1999 (-701 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-701 *3)))) - (-5 *1 (-1296 *4 *3 *5 *6)) (-4 *6 (-421 *3 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-656 (-326 (-227)))) (-5 *1 (-276))))) -(((*1 *1) (-5 *1 (-1199)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1230 *3 *4 *5 *2)) (-4 *3 (-568)) - (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1084 *3 *4 *5))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-1196))) (-5 *3 (-52)) (-5 *1 (-905 *4)) - (-4 *4 (-1119))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-656 (-960 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 (-960 *3))) (-4 *3 (-1068)) (-4 *1 (-1153 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-656 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-960 *3))) (-4 *1 (-1153 *3)) (-4 *3 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-5 *1 (-1176 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2996 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-591))))) -(((*1 *2) - (-12 (-4 *4 (-1241)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) - (-5 *2 (-112)) (-5 *1 (-352 *3 *4 *5 *6)) (-4 *3 (-353 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-2 (|:| -2371 (-1196)) (|:| -2900 *4)))) - (-5 *1 (-902 *3 *4)) (-4 *3 (-1119)) (-4 *4 (-1119)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1119)) (-4 *4 (-1119)) (-4 *5 (-1119)) (-4 *6 (-1119)) - (-4 *7 (-1119)) (-5 *2 (-656 *1)) (-4 *1 (-1122 *3 *4 *5 *6 *7))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1139)) (-4 *4 (-360)) - (-5 *1 (-540 *4))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1113 (-227))) (-5 *6 (-656 (-270))) (-5 *2 (-1152 (-227))) - (-5 *1 (-709))))) -(((*1 *1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-576)) (-5 *5 (-701 (-227))) (-5 *6 (-687 (-227))) - (-5 *3 (-227)) (-5 *2 (-1054)) (-5 *1 (-762))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -2215 (-701 (-419 (-969 *4)))) - (|:| |vec| (-656 (-419 (-969 *4)))) (|:| -4049 (-783)) - (|:| |rows| (-656 (-576))) (|:| |cols| (-656 (-576))))) - (-4 *4 (-13 (-317) (-148))) (-4 *5 (-13 (-862) (-626 (-1196)))) - (-4 *6 (-805)) - (-5 *2 - (-2 (|:| |partsol| (-1287 (-419 (-969 *4)))) - (|:| -1999 (-656 (-1287 (-419 (-969 *4))))))) - (-5 *1 (-941 *4 *5 *6 *7)) (-4 *7 (-966 *4 *6 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1057 (-419 (-576))))) (-4 *6 (-1263 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3278 *3)))) - (-5 *1 (-821 *5 *6 *3 *7)) (-4 *3 (-668 *6)) - (-4 *7 (-668 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *6 (-1263 *5)) - (-5 *2 (-656 (-2 (|:| |poly| *6) (|:| -3278 (-666 *6 (-419 *6)))))) - (-5 *1 (-824 *5 *6)) (-5 *3 (-666 *6 (-419 *6)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1304 *3 *4)) (-4 *3 (-862)) (-4 *4 (-1068)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1310 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-858))))) -(((*1 *1 *2) (-12 (-5 *2 (-886)) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *1 *1) (-5 *1 (-874))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-4 *1 (-1117 *3)))) - ((*1 *1) (-12 (-4 *1 (-1117 *2)) (-4 *2 (-1119))))) -(((*1 *2 *1) (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1068)) (-4 *4 (-1263 *3)) (-5 *1 (-165 *3 *4 *2)) - (-4 *2 (-1263 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-304 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3) - (-12 (-4 *1 (-353 *4 *3 *5)) (-4 *4 (-1241)) (-4 *3 (-1263 *4)) - (-4 *5 (-1263 (-419 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-353 *3 *4 *5)) (-4 *3 (-1241)) (-4 *4 (-1263 *3)) - (-4 *5 (-1263 (-419 *4))) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *2 (-1232 (-943))) - (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1113 (-227))) (-5 *6 (-576)) (-5 *7 (-1178)) - (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) - (-5 *2 (-1232 (-943))) (-5 *1 (-328)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-326 (-576))) (-5 *4 (-1 (-227) (-227))) - (-5 *5 (-1113 (-227))) (-5 *6 (-227)) (-5 *7 (-576)) (-5 *8 (-1178)) - (-5 *2 (-1232 (-943))) (-5 *1 (-328))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) - (-5 *2 (-656 (-783))) (-5 *1 (-790 *3 *4 *5 *6 *7)) - (-4 *3 (-1263 *6)) (-4 *7 (-966 *6 *4 *5))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *2) (-12 (-5 *2 (-576)) (-5 *1 (-573))))) -(((*1 *2 *1) - (-12 (-5 *2 (-703 (-885 (-983 *3) (-983 *3)))) (-5 *1 (-983 *3)) - (-4 *3 (-1119))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-568) (-148))) - (-5 *2 (-2 (|:| -2114 *3) (|:| -2128 *3))) (-5 *1 (-1257 *4 *3)) - (-4 *3 (-1263 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *5)) (-4 *5 (-374)) (-5 *2 (-656 *6)) - (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-374)) (-4 *4 (-13 (-374) (-860)))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *3 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-1123))) (-5 *1 (-301))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1068) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-112)) (-5 *1 (-650 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-656 *2)) (-5 *1 (-1211 *2)) (-4 *2 (-374))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-805)) (-4 *5 (-862)) (-5 *2 (-112)) - (-5 *1 (-461 *4 *3 *5 *6)) (-4 *6 (-966 *4 *3 *5))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-656 (-576))) (-5 *3 (-701 (-576))) (-5 *1 (-1129))))) -(((*1 *2 *3) (-12 (-5 *2 (-419 (-576))) (-5 *1 (-573)) (-5 *3 (-576))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1237)) (-4 *1 (-243 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-384 *3)) - (-4 *5 (-384 *3)) (-5 *2 (-576)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *5 (-1068)) - (-4 *6 (-243 *4 *5)) (-4 *7 (-243 *3 *5)) (-5 *2 (-576))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-783)) (-4 *5 (-374)) (-5 *2 (-176 *6)) - (-5 *1 (-879 *5 *4 *6)) (-4 *4 (-1278 *5)) (-4 *6 (-1263 *5))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-118 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-118 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-576)) (-5 *1 (-883 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-883 *2)) (-14 *2 (-576)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-14 *3 *2) (-5 *1 (-884 *3 *4)) - (-4 *4 (-881 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-576)) (-5 *1 (-884 *2 *3)) (-4 *3 (-881 *2)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-576)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-1068)) - (-4 *4 (-1278 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-1278 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-836))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1176 *4) (-1176 *4))) (-5 *2 (-1176 *4)) - (-5 *1 (-1313 *4)) (-4 *4 (-1237)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-656 (-1176 *5)) (-656 (-1176 *5)))) (-5 *4 (-576)) - (-5 *2 (-656 (-1176 *5))) (-5 *1 (-1313 *5)) (-4 *5 (-1237))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-576)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-430 *4)) (-4 *4 (-568))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1119)) (-4 *4 (-1119)) - (-4 *6 (-1119)) (-5 *2 (-1 *6 *5)) (-5 *1 (-696 *5 *4 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-374)) (-4 *6 (-1263 (-419 *2))) - (-4 *2 (-1263 *5)) (-5 *1 (-217 *5 *2 *6 *3)) - (-4 *3 (-353 *5 *2 *6))))) -(((*1 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1290)))) - ((*1 *2 *2) (-12 (-5 *2 (-656 (-938))) (-5 *1 (-1290))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1080 (-1043 *4) (-1192 (-1043 *4)))) (-5 *3 (-874)) - (-5 *1 (-1043 *4)) (-4 *4 (-13 (-860) (-374) (-1041)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-1196))) (-5 *1 (-548))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1178)) (-5 *5 (-701 (-227))) (-5 *6 (-227)) - (-5 *7 (-701 (-576))) (-5 *4 (-576)) (-5 *2 (-1054)) (-5 *1 (-764))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1287 *1)) (-4 *1 (-378 *4)) (-4 *4 (-174)) - (-5 *2 (-701 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-429 *3)) (-4 *3 (-174)) (-5 *2 (-701 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 (-1196))) (-4 *6 (-374)) - (-5 *2 (-656 (-304 (-969 *6)))) (-5 *1 (-550 *5 *6 *7)) - (-4 *5 (-464)) (-4 *7 (-13 (-374) (-860)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-375 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-794 *3)) (|:| |polden| *3) (|:| -1522 (-783)))) - (-5 *1 (-794 *3)) (-4 *3 (-1068)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1068)) (-4 *4 (-805)) (-4 *5 (-862)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1522 (-783)))) - (-4 *1 (-1084 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *1 (-1223 *2)) (-4 *2 (-1119)))) - ((*1 *1 *2) - (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-1223 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-656 (-1223 *2))) (-5 *1 (-1223 *2)) (-4 *2 (-1119))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-783)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-862)) - (-4 *3 (-1119))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1178)) (-5 *1 (-1218))))) -(((*1 *1 *1) (-12 (-5 *1 (-176 *2)) (-4 *2 (-317)))) - ((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1198 (-419 (-576)))) (-5 *1 (-192)))) - ((*1 *1 *1) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1237)))) - ((*1 *1 *1) (-4 *1 (-881 *2))) - ((*1 *1 *1) - (-12 (-4 *1 (-992 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-804)) - (-4 *4 (-862))))) -(((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-738) (-25)))))) -(((*1 *2 *1) (-12 (-4 *1 (-167 *2)) (-4 *2 (-174)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-5 *2 (-326 *4)) - (-5 *1 (-190 *4 *3)) (-4 *3 (-13 (-27) (-1222) (-442 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1057 (-576)) (-651 (-576)))) - (-5 *1 (-1226 *3 *2)) (-4 *2 (-13 (-27) (-1222) (-442 *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-665 *4)) (-4 *4 (-353 *5 *6 *7)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1999 (-656 *4)))) - (-5 *1 (-818 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) (-4 *6 (-568)) - (-5 *2 (-2 (|:| -2746 (-969 *6)) (|:| -2632 (-969 *6)))) - (-5 *1 (-744 *4 *5 *6 *3)) (-4 *3 (-966 (-419 (-969 *6)) *4 *5))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-1196)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-312)) (-5 *3 (-115)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1196)) (-5 *2 (-112)) (-5 *1 (-624 *4)) - (-4 *4 (-1119)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-112)) (-5 *1 (-624 *4)) (-4 *4 (-1119)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-847 *3)) (-4 *3 (-1119)) (-5 *2 (-112)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1119)) (-5 *2 (-112)) (-5 *1 (-900 *5 *3 *4)) - (-4 *3 (-899 *5)) (-4 *4 (-626 (-905 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *6)) (-4 *6 (-899 *5)) (-4 *5 (-1119)) - (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *4)) (-4 *4 (-626 (-905 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-317)) (-5 *2 (-430 *3)) - (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-966 *6 *4 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1068)) (-5 *1 (-724 *3 *2)) (-4 *2 (-1263 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-1084 *4 *5 *6)) (-4 *4 (-568)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *1 (-996 *4 *5 *6 *2))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1238 *3)) (-4 *3 (-1119))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-656 *1)) (-4 *1 (-937))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-656 *7)) (-4 *7 (-1084 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-1126 *4 *5 *6 *7 *8)) (-4 *8 (-1090 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-576)) (-4 *4 (-805)) (-4 *5 (-862)) (-4 *2 (-1068)) - (-5 *1 (-331 *4 *5 *2 *6)) (-4 *6 (-966 *2 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) (-4 *5 (-1119)) - (-4 *6 (-1237)) (-5 *2 (-1 *6 *5)) (-5 *1 (-653 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) - (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 *6)) (-5 *4 (-656 *5)) (-4 *6 (-1119)) - (-4 *5 (-1237)) (-5 *2 (-1 *5 *6)) (-5 *1 (-653 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-4 *5 (-1119)) - (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-656 *5)) (-5 *4 (-656 *6)) - (-4 *5 (-1119)) (-4 *6 (-1237)) (-5 *1 (-653 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-656 *5)) (-5 *4 (-656 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1119)) (-4 *2 (-1237)) (-5 *1 (-653 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1163)) (-5 *3 (-145)) (-5 *2 (-783))))) -(((*1 *1 *1) - (-12 (-5 *1 (-350 *2 *3 *4)) (-14 *2 (-656 (-1196))) - (-14 *3 (-656 (-1196))) (-4 *4 (-399)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-881 *3)) (-5 *2 (-576)))) - ((*1 *1 *1) (-4 *1 (-1021))) - ((*1 *1 *2) (-12 (-5 *2 (-576)) (-4 *1 (-1031)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-576))) (-4 *1 (-1031)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-938)))) - ((*1 *1 *1) (-4 *1 (-1031)))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-701 (-227))) (-5 *4 (-576)) (-5 *5 (-112)) - (-5 *2 (-1054)) (-5 *1 (-757))))) -(((*1 *2 *2) - (-12 (-5 *2 (-656 *6)) (-4 *6 (-966 *3 *4 *5)) (-4 *3 (-317)) - (-4 *4 (-805)) (-4 *5 (-862)) (-5 *1 (-459 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-459 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-656 *7)) (-5 *3 (-1178)) (-4 *7 (-966 *4 *5 *6)) - (-4 *4 (-317)) (-4 *5 (-805)) (-4 *6 (-862)) - (-5 *1 (-459 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-5 *2 (-419 (-576))) (-5 *1 (-329 *3 *4 *5)) (-4 *3 (-374)) - (-14 *4 (-1196)) (-14 *5 *3)))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-390) (-390))) (-5 *4 (-390)) - (-5 *2 - (-2 (|:| -1731 *4) (|:| -2297 *4) (|:| |totalpts| (-576)) - (|:| |success| (-112)))) - (-5 *1 (-801)) (-5 *5 (-576))))) -(((*1 *1 *1) (-12 (-4 *1 (-1275 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-5 *2 (-1292)) (-5 *1 (-834))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-142)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1163)) (-5 *2 (-145))))) -(((*1 *2 *3) - (-12 (-5 *3 (-969 *5)) (-4 *5 (-1068)) (-5 *2 (-253 *4 *5)) - (-5 *1 (-961 *4 *5)) (-14 *4 (-656 (-1196)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 *4)) (-5 *1 (-1160 *3 *4)) - (-4 *3 (-13 (-1119) (-34))) (-4 *4 (-13 (-1119) (-34)))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-886)) - (-5 *5 (-938)) (-5 *6 (-656 (-270))) (-5 *2 (-1288)) - (-5 *1 (-1291)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-656 (-656 (-960 (-227))))) (-5 *4 (-656 (-270))) - (-5 *2 (-1288)) (-5 *1 (-1291))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1263 (-48))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) - (-5 *2 (-430 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-966 (-48) *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-48))) (-4 *5 (-862)) (-4 *6 (-805)) - (-4 *7 (-966 (-48) *6 *5)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1192 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-168 *4 *3)) - (-4 *3 (-1263 (-171 *4))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-374) (-860))) (-5 *2 (-430 *3)) - (-5 *1 (-183 *4 *3)) (-4 *3 (-1263 (-171 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-360)) (-5 *2 (-430 *3)) (-5 *1 (-218 *4 *3)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-656 (-783))) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-656 (-783))) (-5 *5 (-783)) (-5 *2 (-430 *3)) - (-5 *1 (-454 *3)) (-4 *3 (-1263 (-576))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-783)) (-5 *2 (-430 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1263 (-576))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 (-171 (-576)))) (-5 *1 (-458)) - (-5 *3 (-171 (-576))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-862) - (-10 -8 (-15 -1505 ((-1196) $)) - (-15 -1615 ((-3 $ "failed") (-1196)))))) - (-4 *5 (-805)) (-4 *7 (-568)) (-5 *2 (-430 *3)) - (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-568)) - (-4 *3 (-966 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-317)) (-5 *2 (-430 (-1192 *4))) (-5 *1 (-470 *4)) - (-5 *3 (-1192 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-374)) - (-4 *7 (-13 (-374) (-148) (-736 *5 *6))) (-5 *2 (-430 *3)) - (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1263 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) - (-5 *2 (-430 *3)) (-5 *1 (-552 *5 *6 *7 *3)) - (-4 *3 (-966 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-430 (-1192 *7)) (-1192 *7))) - (-4 *7 (-13 (-317) (-148))) (-4 *5 (-862)) (-4 *6 (-805)) - (-4 *8 (-966 *7 *6 *5)) (-5 *2 (-430 (-1192 *8))) - (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1192 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-430 *3)) (-5 *1 (-570 *3)) (-4 *3 (-557)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-656 *5) *6)) - (-4 *5 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *6 (-1263 *5)) (-5 *2 (-656 (-665 (-419 *6)))) - (-5 *1 (-669 *5 *6)) (-5 *3 (-665 (-419 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-374) (-148) (-1057 (-576)) (-1057 (-419 (-576))))) - (-4 *5 (-1263 *4)) (-5 *2 (-656 (-665 (-419 *5)))) - (-5 *1 (-669 *4 *5)) (-5 *3 (-665 (-419 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-831 *4)) (-4 *4 (-862)) (-5 *2 (-656 (-684 *4))) - (-5 *1 (-684 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-576)) (-5 *2 (-656 *3)) (-5 *1 (-708 *3)) - (-4 *3 (-1263 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) (-5 *2 (-430 *3)) - (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-966 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-360)) - (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-710 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 - (-13 (-862) - (-10 -8 (-15 -1505 ((-1196) $)) - (-15 -1615 ((-3 $ "failed") (-1196)))))) - (-4 *6 (-317)) (-5 *2 (-430 *3)) (-5 *1 (-742 *4 *5 *6 *3)) - (-4 *3 (-966 (-969 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) - (-4 *5 (-13 (-862) (-10 -8 (-15 -1505 ((-1196) $))))) (-4 *6 (-568)) - (-5 *2 (-430 *3)) (-5 *1 (-744 *4 *5 *6 *3)) - (-4 *3 (-966 (-419 (-969 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-13 (-317) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-745 *4 *5 *6 *3)) - (-4 *3 (-966 (-419 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) - (-5 *2 (-430 *3)) (-5 *1 (-753 *4 *5 *6 *3)) - (-4 *3 (-966 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-862)) (-4 *5 (-805)) (-4 *6 (-13 (-317) (-148))) - (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-430 (-1192 *7))) - (-5 *1 (-753 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1026 *3)) - (-4 *3 (-1263 (-419 (-576)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1060 *3)) - (-4 *3 (-1263 (-419 (-969 (-576))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1263 (-419 (-576)))) - (-4 *5 (-13 (-374) (-148) (-736 (-419 (-576)) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1098 *4 *5 *3)) (-4 *3 (-1263 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1263 (-419 (-969 (-576))))) - (-4 *5 (-13 (-374) (-148) (-736 (-419 (-969 (-576))) *4))) - (-5 *2 (-430 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1263 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-805)) (-4 *5 (-862)) (-4 *6 (-464)) - (-4 *7 (-966 *6 *4 *5)) (-5 *2 (-430 (-1192 (-419 *7)))) - (-5 *1 (-1191 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-430 *1)) (-4 *1 (-1241)))) - ((*1 *2 *3) - (-12 (-5 *2 (-430 *3)) (-5 *1 (-1252 *3)) (-4 *3 (-1263 (-576)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-832)) (-14 *5 (-1196)) (-5 *2 (-656 (-1260 *5 *4))) - (-5 *1 (-1133 *4 *5)) (-5 *3 (-1260 *5 *4))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-568)) (-4 *3 (-1068)) - (-5 *2 (-2 (|:| -1720 *1) (|:| -4400 *1))) (-4 *1 (-864 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-568)) (-4 *5 (-1068)) - (-5 *2 (-2 (|:| -1720 *3) (|:| -4400 *3))) (-5 *1 (-865 *5 *3)) - (-4 *3 (-864 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1287 *4)) (-4 *4 (-1068)) (-4 *2 (-1263 *4)) - (-5 *1 (-456 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-419 (-1192 (-326 *5)))) (-5 *3 (-1287 (-326 *5))) - (-5 *4 (-576)) (-4 *5 (-568)) (-5 *1 (-1149 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-374)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-966 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-1023 *3)) (-14 *3 (-576))))) -(((*1 *1) (-5 *1 (-449)))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-301))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-177))))) -(((*1 *1 *2) - (-12 (-5 *2 (-419 (-576))) (-4 *1 (-566 *3)) - (-4 *3 (-13 (-416) (-1222))))) - ((*1 *1 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-566 *2)) (-4 *2 (-13 (-416) (-1222)))))) -(((*1 *2 *2) (-12 (-5 *2 (-227)) (-5 *1 (-228)))) - ((*1 *2 *2) (-12 (-5 *2 (-171 (-227))) (-5 *1 (-228)))) - ((*1 *2 *2) - (-12 (-4 *3 (-568)) (-5 *1 (-443 *3 *2)) (-4 *2 (-442 *3)))) - ((*1 *1 *1) (-4 *1 (-1158)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-656 (-419 (-969 (-576))))) (-5 *4 (-656 (-1196))) - (-5 *2 (-656 (-656 *5))) (-5 *1 (-391 *5)) - (-4 *5 (-13 (-860) (-374))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-969 (-576)))) (-5 *2 (-656 *4)) (-5 *1 (-391 *4)) - (-4 *4 (-13 (-860) (-374)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) (-5 *2 (-656 *4)) - (-5 *1 (-1127 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-656 (-1095 *4 *5 *2))) (-4 *4 (-1119)) - (-4 *5 (-13 (-1068) (-899 *4) (-626 (-905 *4)))) - (-4 *2 (-13 (-442 *5) (-899 *4) (-626 (-905 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-656 (-1095 *5 *6 *2))) (-5 *4 (-938)) (-4 *5 (-1119)) - (-4 *6 (-13 (-1068) (-899 *5) (-626 (-905 *5)))) - (-4 *2 (-13 (-442 *6) (-899 *5) (-626 (-905 *5)))) - (-5 *1 (-54 *5 *6 *2))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1153 *3)) (-4 *3 (-1068)) (-5 *2 (-1184 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1184 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1068)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1289)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152 (-227))) (-5 *1 (-1289))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-176 *3)) (-4 *3 (-317))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-691 *3 *2)) (-4 *3 (-1119)) (-4 *2 (-1119))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-805)) (-4 *4 (-862)) (-4 *5 (-317)) - (-5 *1 (-933 *3 *4 *5 *2)) (-4 *2 (-966 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1192 *6)) (-4 *6 (-966 *5 *3 *4)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *5 (-317)) (-5 *1 (-933 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 *2)) (-4 *2 (-966 *6 *4 *5)) - (-5 *1 (-933 *4 *5 *6 *2)) (-4 *4 (-805)) (-4 *5 (-862)) - (-4 *6 (-317))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-229 *2)) (-4 *2 (-13 (-374) (-1222))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *1 *2) (-12 (-5 *1 (-730 *2)) (-4 *2 (-374)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-390)) (-5 *2 (-1292)) (-5 *1 (-1288))))) -(((*1 *2) - (-12 (-4 *4 (-174)) (-5 *2 (-112)) (-5 *1 (-377 *3 *4)) - (-4 *3 (-378 *4)))) - ((*1 *2) (-12 (-4 *1 (-378 *3)) (-4 *3 (-174)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-783)) (-5 *3 (-960 *5)) (-4 *5 (-1068)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-938)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-783)) (-5 *1 (-1184 *4 *5)) - (-14 *4 (-938)) (-4 *5 (-1068)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-656 (-783))) (-5 *3 (-960 *5)) (-4 *5 (-1068)) - (-5 *1 (-1184 *4 *5)) (-14 *4 (-938))))) -(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289)))) - ((*1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-1289))))) -(((*1 *2 *1) - (-12 (-4 *2 (-720 *3)) (-5 *1 (-839 *2 *3)) (-4 *3 (-1068))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1196)) (-5 *4 (-969 (-576))) (-5 *2 (-340)) - (-5 *1 (-342))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-691 *2 *3)) (-4 *2 (-1119)) (-4 *3 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1178)) (-5 *2 (-576)) (-5 *1 (-1219 *4)) - (-4 *4 (-1068))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-624 *1)) (-4 *1 (-442 *4)) (-4 *4 (-1119)) - (-4 *4 (-568)) (-5 *2 (-419 (-1192 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-624 *3)) (-4 *3 (-13 (-442 *6) (-27) (-1222))) - (-4 *6 (-13 (-464) (-1057 (-576)) (-148) (-651 (-576)))) - (-5 *2 (-1192 (-419 (-1192 *3)))) (-5 *1 (-572 *6 *3 *7)) - (-5 *5 (-1192 *3)) (-4 *7 (-1119)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1283 *5)) (-14 *5 (-1196)) (-4 *6 (-1068)) - (-5 *2 (-1260 *5 (-969 *6))) (-5 *1 (-964 *5 *6)) (-5 *3 (-969 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-966 *3 *4 *5)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *5 (-862)) (-5 *2 (-1192 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-805)) (-4 *3 (-862)) (-5 *2 (-1192 *1)) - (-4 *1 (-966 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-805)) (-4 *4 (-862)) (-4 *6 (-1068)) - (-4 *7 (-966 *6 *5 *4)) (-5 *2 (-419 (-1192 *3))) - (-5 *1 (-967 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1192 *3)) - (-4 *3 - (-13 (-374) - (-10 -8 (-15 -4092 ($ *7)) (-15 -3894 (*7 $)) (-15 -3905 (*7 $))))) - (-4 *7 (-966 *6 *5 *4)) (-4 *5 (-805)) (-4 *4 (-862)) - (-4 *6 (-1068)) (-5 *1 (-967 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1196)) (-4 *5 (-568)) - (-5 *2 (-419 (-1192 (-419 (-969 *5))))) (-5 *1 (-1062 *5)) - (-5 *3 (-419 (-969 *5)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-336 *2 *3)) (-4 *2 (-1068)) (-4 *3 (-804)) - (-4 *2 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-353 *2 *3 *4)) (-4 *2 (-1241)) (-4 *3 (-1263 *2)) - (-4 *4 (-1263 (-419 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-864 *2)) (-4 *2 (-1068)) (-4 *2 (-464)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-966 *3 *4 *2)) (-4 *3 (-1068)) (-4 *4 (-805)) - (-4 *2 (-862)) (-4 *3 (-464)))) - ((*1 *1 *1) - (-12 (-4 *1 (-966 *2 *3 *4)) (-4 *2 (-1068)) (-4 *3 (-805)) - (-4 *4 (-862)) (-4 *2 (-464)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-317)) (-4 *3 (-568)) (-5 *1 (-1183 *3 *2)) - (-4 *2 (-1263 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-185 (-255))) (-5 *1 (-254))))) -(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-773)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-921 (-576))) (-5 *1 (-934)))) - ((*1 *2 *3) - (-12 (-5 *3 (-656 (-576))) (-5 *2 (-921 (-576))) (-5 *1 (-934))))) -(((*1 *2 *3) - (-12 (-4 *4 (-568)) (-5 *2 (-783)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-429 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-749 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119)))) - ((*1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-1119))))) -(((*1 *2 *2) (-12 (-5 *2 (-1113 (-855 (-227)))) (-5 *1 (-315))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1054)) (-5 *3 (-1196)) (-5 *1 (-194))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-783)) (-5 *1 (-1120 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-23))))) -(((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1119)) (-5 *1 (-224 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-656 *3)) (-4 *3 (-1237)) (-4 *1 (-261 *3)))) - ((*1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1237))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-568)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2996 *4))) - (-5 *1 (-988 *4 *3)) (-4 *3 (-1263 *4))))) -(((*1 *2 *1) - (-12 (-14 *3 (-656 (-1196))) (-4 *4 (-174)) - (-14 *6 - (-1 (-112) (-2 (|:| -2550 *5) (|:| -3175 *2)) - (-2 (|:| -2550 *5) (|:| -3175 *2)))) - (-4 *2 (-243 (-2048 *3) (-783))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-862)) (-4 *7 (-966 *4 *2 (-876 *3)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-442 *3) (-1222)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-695 *4 *3)) (-4 *4 (-1119)) - (-4 *3 (-1119))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1068)) (-4 *5 (-1263 *4)) (-5 *2 (-1 *6 (-656 *6))) - (-5 *1 (-1281 *4 *5 *3 *6)) (-4 *3 (-668 *5)) (-4 *6 (-1278 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-944)) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) - (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) - (-5 *1 (-154)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-419 (-576))) - (-5 *2 - (-2 (|:| |brans| (-656 (-656 (-960 (-227))))) - (|:| |xValues| (-1113 (-227))) (|:| |yValues| (-1113 (-227))))) - (-5 *1 (-154))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1002 *2)) (-4 *2 (-1222))))) -(((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-32 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *3 (-783)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1196)) (-5 *1 (-115)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-159 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1196)) (-5 *2 (-115)) (-5 *1 (-164)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-285 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1021))))) - ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-311 *3)) (-4 *3 (-312)))) - ((*1 *2 *2) (-12 (-4 *1 (-312)) (-5 *2 (-115)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1119)) (-5 *1 (-441 *3 *4)) - (-4 *3 (-442 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-443 *3 *4)) - (-4 *4 (-442 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-624 *3)) (-4 *3 (-1119)))) - ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-568)) (-5 *1 (-642 *3 *4)) - (-4 *4 (-13 (-442 *3) (-1021) (-1222))))) - ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1038)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1210 *2)) (-4 *2 (-1119))))) -(((*1 *2 *3) - (-12 (-5 *3 (-855 (-390))) (-5 *2 (-855 (-227))) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-656 - (-2 (|:| -4049 (-783)) - (|:| |eqns| - (-656 - (-2 (|:| |det| *7) (|:| |rows| (-656 (-576))) - (|:| |cols| (-656 (-576)))))) - (|:| |fgb| (-656 *7))))) - (-4 *7 (-966 *4 *6 *5)) (-4 *4 (-13 (-317) (-148))) - (-4 *5 (-13 (-862) (-626 (-1196)))) (-4 *6 (-805)) (-5 *2 (-783)) - (-5 *1 (-941 *4 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-874)))) -(((*1 *2 *3) (-12 (-5 *3 (-227)) (-5 *2 (-711)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-656 (-326 (-227)))) (-5 *2 (-112)) (-5 *1 (-276)))) - ((*1 *2 *3) (-12 (-5 *3 (-326 (-227))) (-5 *2 (-112)) (-5 *1 (-276)))) - ((*1 *2 *3) - (-12 (-4 *4 (-568)) (-4 *5 (-805)) (-4 *6 (-862)) (-5 *2 (-112)) - (-5 *1 (-996 *4 *5 *6 *3)) (-4 *3 (-1084 *4 *5 *6))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-253 *3 *4)) - (-14 *3 (-656 (-1196))) (-4 *4 (-1068)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-14 *3 (-656 (-1196))) - (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1068)) - (-4 *5 (-243 (-2048 *3) (-783))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-656 (-576))) (-5 *1 (-493 *3 *4)) - (-14 *3 (-656 (-1196))) (-4 *4 (-1068))))) -(((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-145))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-656 (-874))) (-5 *1 (-874)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -3134 (-656 (-874))) (|:| -2746 (-656 (-874))) - (|:| |presup| (-656 (-874))) (|:| -3941 (-656 (-874))) - (|:| |args| (-656 (-874))))) - (-5 *1 (-1196))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-701 *3)) (-4 *3 (-1068)) (-5 *1 (-702 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-518)) (-5 *2 (-656 (-982))) (-5 *1 (-301))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-576)) (-5 *4 (-701 (-227))) (-5 *2 (-1054)) + (-5 *1 (-764))))) +(((*1 *1) (-12 (-5 *1 (-703 *2)) (-4 *2 (-625 (-874)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1177)) (-5 *2 (-1291)) (-5 *1 (-448))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-390)) (-5 *2 (-1291)) (-5 *1 (-1288))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1068) (-651 *4))) - (-4 *4 (-568)) (-5 *2 (-1287 *4)) (-5 *1 (-650 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-656 (-624 *1))) (-4 *1 (-312))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-317)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2582 *1))) - (-4 *1 (-317))))) -(((*1 *2) - (-12 (-4 *3 (-568)) (-5 *2 (-656 (-701 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-429 *3))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-783)))) - ((*1 *1 *1) (-4 *1 (-414)))) + (|partial| -12 (-4 *4 (-13 (-568) (-1057 (-576)))) (-4 *5 (-442 *4)) + (-5 *2 (-430 (-1191 (-419 (-576))))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1262 *5))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-805)) (-4 *7 (-862)) - (-4 *3 (-1084 *5 *6 *7)) - (-5 *2 (-656 (-2 (|:| |val| *3) (|:| -4385 *4)))) - (-5 *1 (-1091 *5 *6 *7 *3 *4)) (-4 *4 (-1090 *5 *6 *7 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1122 *3 *4 *5 *6 *7)) (-4 *3 (-1119)) (-4 *4 (-1119)) - (-4 *5 (-1119)) (-4 *6 (-1119)) (-4 *7 (-1119)) (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1139)) (-5 *2 (-1292)) (-5 *1 (-843))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1068)) - (-4 *2 (-13 (-416) (-1057 *4) (-374) (-1222) (-294))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) - ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-684 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-689 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-831 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-906 *3)) (-4 *3 (-862)))) - ((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1237)) (-5 *2 (-783)))) - ((*1 *2 *1) (-12 (-5 *2 (-783)) (-5 *1 (-1234 *3)) (-4 *3 (-1237)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1285 *2)) (-4 *2 (-1237)) (-4 *2 (-1021)) - (-4 *2 (-1068))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-518)) (-5 *2 (-703 (-786))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1178)) (-5 *2 (-786)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-982))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4463)) (-4 *1 (-120 *2)) (-4 *2 (-1237))))) -(((*1 *2 *1) (-12 (-4 *1 (-809 *2)) (-4 *2 (-174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-174))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1196)) (-5 *3 (-390)) (-5 *1 (-1082))))) -((-1321 . 731199) (-1322 . 731090) (-1323 . 731007) (-1324 . 730778) - (-1325 . 730102) (-1326 . 730030) (-1327 . 729877) (-1328 . 729662) - (-1329 . 729578) (-1330 . 729476) (-1331 . 729263) (-1332 . 729201) - (-1333 . 729055) (-1334 . 728976) (-1335 . 728894) (-1336 . 728627) - (-1337 . 728575) (-1338 . 728201) (-1339 . 727909) (-1340 . 727842) - (-1341 . 727811) (-1342 . 727418) (-1343 . 727335) (-1344 . 726168) - (-1345 . 726101) (-1346 . 725703) (-1347 . 725550) (-1348 . 725451) - (-1349 . 725355) (-1350 . 725071) (-1351 . 724921) (-1352 . 724724) - (-1353 . 724672) (-1354 . 724563) (-1355 . 724486) (-1356 . 724419) - (-1357 . 724240) (-1358 . 724145) (-1359 . 723990) (-1360 . 723848) - (-1361 . 723783) (-1362 . 723724) (-1363 . 723129) (-1364 . 721727) - (-1365 . 721634) (-1366 . 721554) (-1367 . 721456) (-1368 . 721377) - (-1369 . 721276) (-1370 . 720909) (-1371 . 720751) (-1372 . 720472) - (-1373 . 720061) (-1374 . 719981) (-1375 . 719907) (-1376 . 719635) - (-1377 . 719205) (-1378 . 719177) (-1379 . 719024) (-1380 . 718844) - (-1381 . 718557) (-1382 . 718342) (-1383 . 718109) (-1384 . 718054) - (-1385 . 717975) (-1386 . 717947) (-1387 . 717866) (-1388 . 717725) - (-1389 . 717484) (-1390 . 717198) (-1391 . 717063) (-1392 . 711549) - (-1393 . 711269) (-1394 . 711146) (-1395 . 711019) (-1396 . 710909) - (-1397 . 710856) (-1398 . 710799) (-1399 . 710577) (-1400 . 710460) - (-1401 . 709994) (-1402 . 709875) (-1403 . 709482) (-1404 . 708609) - (-1405 . 708470) (-1406 . 708082) (-1407 . 708014) (-1408 . 707945) - (-1409 . 707800) (-1410 . 707720) (-1411 . 707579) (-1412 . 706916) - (-1413 . 706677) (-1414 . 706384) (-1415 . 705942) (-1416 . 705857) - (-1417 . 705539) (-1418 . 705475) (-1419 . 705313) (-1420 . 705095) - (-1421 . 704779) (-1422 . 704702) (-1423 . 704514) (-1424 . 704343) - (-1425 . 704159) (-1426 . 704096) (-1427 . 703950) (-1428 . 703615) - (-1429 . 703520) (-1430 . 703405) (-1431 . 703242) (-1432 . 703099) - (-1433 . 702946) (-1434 . 702826) (-1435 . 702557) (-1436 . 702505) - (-1437 . 701909) (-1438 . 701750) (-1439 . 701504) (-1440 . 701424) - (-1441 . 701350) (-1442 . 701260) (-1443 . 701119) (-1444 . 701045) - (-1445 . 700916) (-1446 . 700833) (-1447 . 700766) (-1448 . 700617) - (-1449 . 700459) (-1450 . 700301) (-1451 . 700198) (-1452 . 700146) - (-1453 . 700118) (-1454 . 699948) (-1455 . 699852) (-1456 . 699098) - (-1457 . 698846) (-1458 . 698687) (-1459 . 698615) (-1460 . 698400) - (-1461 . 698298) (-1462 . 698110) (-1463 . 697591) (-1464 . 697143) - (-1465 . 696936) (-1466 . 696902) (-1467 . 696725) (-1468 . 696629) - (-1469 . 696527) (-1470 . 696426) (-1471 . 696137) (-1472 . 695864) - (-1473 . 695811) (-1474 . 695681) (-1475 . 695604) (-1476 . 695551) - (-1477 . 695215) (-1478 . 695111) (-1479 . 694970) (-1480 . 694855) - (-1481 . 694826) (-1482 . 694760) (-1483 . 693880) (-1484 . 693813) - (-1485 . 693566) (-1486 . 693500) (-1487 . 692898) (-1488 . 692716) - (-1489 . 692613) (-1490 . 692488) (-1491 . 692359) (-1492 . 692246) - (-1493 . 692135) (-1494 . 692021) (-1495 . 691947) (-1496 . 691640) - (-1497 . 691243) (-1498 . 691212) (-1499 . 691105) (-1500 . 691012) - (-1501 . 690854) (-1502 . 690527) (-1503 . 690259) (-1504 . 690203) - (-1505 . 686536) (-1506 . 686484) (-1507 . 686389) (-1508 . 686218) - (-1509 . 686130) (-1510 . 686052) (-1511 . 685908) (-1512 . 685768) - (-1513 . 685639) (-1514 . 685568) (-1515 . 685512) (-1516 . 685428) - (-1517 . 685188) (-1518 . 683558) (-1519 . 683498) (-1520 . 683426) - (-1521 . 683261) (-1522 . 683162) (-1523 . 683108) (-1524 . 682917) - (-1525 . 682768) (-1526 . 682662) (-1527 . 682541) (-1528 . 682478) - (-1529 . 681619) (-1530 . 681531) (-1531 . 681475) (-1532 . 681142) - (-1533 . 681039) (-1534 . 680199) (-1535 . 680147) (-1536 . 679811) - (-1537 . 679715) (-1538 . 677459) (-1539 . 677332) (-1540 . 677303) - (-1541 . 676007) (-1542 . 675579) (-1543 . 675512) (-1544 . 675354) - (-1545 . 675266) (-1546 . 675057) (-1547 . 674604) (-1548 . 674533) - (-1549 . 674482) (-1550 . 674334) (-1551 . 674174) (-1552 . 673853) - (-1553 . 673749) (-1554 . 672601) (-1555 . 672092) (-1556 . 672011) - (-1557 . 671898) (-1558 . 671803) (-1559 . 671257) (-1560 . 671229) - (-1561 . 671105) (-1562 . 671031) (-1563 . 670933) (-1564 . 670814) - (-1565 . 670624) (-1566 . 670178) (-1567 . 669465) (-1568 . 669410) - (-1569 . 669333) (-1570 . 669281) (-1571 . 669228) (-1572 . 668364) - (-1573 . 668240) (-1574 . 668037) (-1575 . 667861) (-1576 . 667784) - (-1577 . 667732) (-1578 . 667628) (-1579 . 667561) (-1580 . 667466) - (-1581 . 667343) (-1582 . 667182) (-1583 . 667105) (-1584 . 666923) - (-1585 . 666647) (-1586 . 665889) (-1587 . 665442) (-1588 . 665372) - (-1589 . 665154) (-1590 . 665069) (-1591 . 664681) (-1592 . 664612) - (-1593 . 664512) (-1594 . 664441) (-1595 . 663978) (-1596 . 662212) - (-1597 . 661922) (-1598 . 661797) (-1599 . 661713) (-1600 . 661629) - (-1601 . 661025) (-1602 . 660926) (-1603 . 660873) (-1604 . 660655) - (-1605 . 660623) (-1606 . 660495) (-1607 . 660424) (-1608 . 658969) - (-1609 . 658837) (-1610 . 658658) (-1611 . 658473) (-1612 . 658351) - (-1613 . 658258) (-1614 . 658125) (-1615 . 657606) (-1616 . 657070) - (-1617 . 656881) (-1618 . 656489) (-1619 . 656408) (-1620 . 656335) - (-1621 . 654845) (-1622 . 654509) (-1623 . 654454) (-1624 . 654045) - (-1625 . 653621) (-1626 . 653309) (-1627 . 653150) (-1628 . 653013) - (-1629 . 652894) (-1630 . 652552) (-1631 . 652455) (-1632 . 652356) - (-1633 . 652222) (-1634 . 652069) (-1635 . 651979) (-1636 . 651801) - (-1637 . 651751) (-1638 . 651670) (-1639 . 651506) (-1640 . 651412) - (-1641 . 651325) (-1642 . 651200) (-1643 . 651073) (-1644 . 650337) - (-1645 . 650263) (-1646 . 650122) (-1647 . 649955) (-1648 . 649807) - (-1649 . 649704) (-1650 . 648950) (-1651 . 648872) (-1652 . 648770) - (-1653 . 647952) (-1654 . 647656) (-1655 . 647275) (-1656 . 647223) - (-1657 . 647060) (-1658 . 646574) (-1659 . 645992) (-1660 . 645676) - (-1661 . 645581) (-1662 . 645442) (-1663 . 645329) (-1664 . 645234) - (-1665 . 645096) (-1666 . 645026) (-1667 . 644809) (-1668 . 644747) - (-1669 . 644445) (-1670 . 644317) (-1671 . 644250) (-1672 . 643947) - (-1673 . 643814) (-1674 . 643702) (-1675 . 643580) (-1676 . 643552) - (-1677 . 643300) (-1678 . 642908) (-1679 . 642852) (-1680 . 642800) - (-1681 . 642156) (-1682 . 641869) (-1683 . 641690) (-1684 . 641616) - (-1685 . 641520) (-1686 . 641386) (-1687 . 640205) (-1688 . 639920) - (-1689 . 639646) (-1690 . 639547) (-1691 . 639421) (-1692 . 638249) - (-1693 . 638083) (-1694 . 638033) (-1695 . 637927) (-1696 . 637771) - (-1697 . 637685) (-1698 . 637632) (-1699 . 637559) (-1700 . 637435) - (-1701 . 637154) (-1702 . 637052) (-1703 . 636818) (-1704 . 636703) - (-1705 . 636496) (-1706 . 636399) (-1707 . 636316) (-1708 . 636101) - (-1709 . 635982) (-1710 . 635801) (-1711 . 635749) (-1712 . 635608) - (-1713 . 635485) (-1714 . 635364) (-1715 . 635264) (-1716 . 635115) - (-1717 . 633978) (-1718 . 633926) (-1719 . 633766) (-1720 . 633516) - (-1721 . 633365) (-1722 . 633313) (-1723 . 633230) (-1724 . 633153) - (-1725 . 633085) (-1726 . 633032) (-1727 . 632690) (-1728 . 632394) - (-1729 . 632302) (-1730 . 632219) (-1731 . 631906) (-1732 . 631776) - (-1733 . 631696) (-1734 . 631052) (-1735 . 630950) (-1736 . 630707) - (-1737 . 630629) (-1738 . 630357) (-1739 . 630138) (-1740 . 629951) - (-1741 . 629859) (-1742 . 629675) (-1743 . 629167) (-1744 . 628858) - (-1745 . 628588) (-1746 . 628535) (-1747 . 627856) (-1748 . 627646) - (-1749 . 626350) (-1750 . 626120) (-1751 . 625978) (-1752 . 625835) - (-1753 . 625783) (-1754 . 625577) (-1755 . 625491) (-1756 . 625212) - (-1757 . 625005) (-1758 . 624926) (-1759 . 624852) (-1760 . 624547) - (-1761 . 624366) (-1762 . 624114) (-1763 . 623934) (-1764 . 623816) - (-1765 . 623656) (-1766 . 623409) (-1767 . 623313) (-1768 . 623214) - (-1769 . 622919) (-1770 . 622610) (-1771 . 622497) (-1772 . 621983) - (-1773 . 621867) (-1774 . 621552) (-1775 . 621499) (-1776 . 621356) - (-1777 . 621107) (-1778 . 620991) (-1779 . 620920) (-1780 . 620792) - (-1781 . 620760) (-1782 . 620561) (-1783 . 620446) (-1784 . 620417) - (-1785 . 620206) (-1786 . 620111) (-1787 . 620059) (-1788 . 619941) - (-1789 . 619750) (-1790 . 619191) (-1791 . 615128) (-1792 . 615025) - (-1793 . 614963) (-1794 . 614892) (-1795 . 614689) (-1796 . 614585) - (-1797 . 614499) (-1798 . 614096) (-1799 . 614043) (-1800 . 613969) - (-1801 . 613719) (-1802 . 613384) (-1803 . 613277) (-1804 . 612718) - (-1805 . 612623) (-1806 . 612500) (-1807 . 612447) (-1808 . 612361) - (-1809 . 612128) (-1810 . 611841) (-1811 . 611623) (-1812 . 611500) - (-1813 . 611415) (-1814 . 611337) (-1815 . 611251) (-1816 . 610933) - (-1817 . 610734) (-1818 . 610664) (-1819 . 610540) (-1820 . 610336) - (-1821 . 610204) (-1822 . 609893) (-1823 . 609865) (-1824 . 609773) - (-1825 . 609590) (-1826 . 609503) (-1827 . 609417) (-1828 . 609267) - (-1829 . 609092) (-1830 . 608997) (-1831 . 608718) (-1832 . 608634) - (-1833 . 608509) (-1834 . 607875) (-1835 . 607532) (-1836 . 607376) - (-1837 . 607276) (-1838 . 607223) (-1839 . 607155) (-1840 . 604810) - (-1841 . 604564) (-1842 . 604393) (-1843 . 594943) (-1844 . 594890) - (-1845 . 594357) (-1846 . 594006) (-1847 . 593347) (-1848 . 593200) - (-1849 . 592771) (-1850 . 592661) (-1851 . 592332) (-1852 . 592026) - (-1853 . 591772) (-1854 . 590510) (-1855 . 590482) (-1856 . 590124) - (-1857 . 590072) (-1858 . 589881) (-1859 . 589812) (-1860 . 589616) - (-1861 . 589521) (-1862 . 589438) (-1863 . 589338) (-1864 . 589243) - (-1865 . 589140) (-1866 . 589051) (-1867 . 588967) (-1868 . 588801) - (-1869 . 588745) (-1870 . 588662) (-1871 . 588569) (-1872 . 588458) - (-1873 . 588303) (-1874 . 588085) (-1875 . 587558) (-1876 . 587433) - (-1877 . 587296) (-1878 . 587128) (-1879 . 587078) (-1880 . 587025) - (-1881 . 585593) (-1882 . 585492) (-1883 . 585337) (-1884 . 585269) - (-1885 . 585172) (-1886 . 585084) (-1887 . 584924) (-1888 . 584816) - (-1889 . 584368) (-1890 . 584315) (-1891 . 584260) (-1892 . 584112) - (-1893 . 583994) (-1894 . 583448) (-1895 . 583305) (-1896 . 583139) - (-1897 . 582921) (-1898 . 582893) (-1899 . 582799) (-1900 . 582716) - (-1901 . 582625) (-1902 . 582493) (-1903 . 582350) (-1904 . 582230) - (-1905 . 582176) (-1906 . 582006) (-1907 . 581868) (-1908 . 581788) - (-1909 . 581280) (-1910 . 581192) (-1911 . 581049) (-1912 . 581018) - (-1913 . 580899) (-1914 . 580803) (-1915 . 580340) (-1916 . 580241) - (-1917 . 580140) (-1918 . 580070) (-1919 . 580018) (-1920 . 579873) - (-1921 . 579820) (-1922 . 579752) (-1923 . 579460) (-1924 . 579323) - (-1925 . 579184) (-1926 . 578507) (-1927 . 578201) (-1928 . 577951) - (-1929 . 577807) (-1930 . 577748) (-1931 . 577635) (-1932 . 577547) - (-1933 . 577404) (-1934 . 577238) (-1935 . 576501) (-1936 . 576309) - (-1937 . 576257) (-1938 . 576196) (-1939 . 576007) (-1940 . 575832) - (-1941 . 575593) (-1942 . 575446) (-1943 . 575134) (-1944 . 575021) - (-1945 . 574905) (-1946 . 574852) (-1947 . 574690) (-1948 . 574400) - (-1949 . 573836) (-1950 . 573766) (-1951 . 573692) (-1952 . 573591) - (-1953 . 573234) (-1954 . 573157) (-1955 . 572454) (-1956 . 572262) - (-1957 . 572174) (-1958 . 572088) (-1959 . 571975) (-1960 . 571664) - (-1961 . 571418) (-1962 . 571070) (-1963 . 571003) (-1964 . 570718) - (-1965 . 570665) (-1966 . 570424) (-1967 . 570396) (-1968 . 570343) - (-1969 . 570001) (-1970 . 569810) (-1971 . 569667) (-1972 . 569556) - (-1973 . 569494) (-1974 . 569442) (-1975 . 569345) (-1976 . 569214) - (-1977 . 568883) (-1978 . 568801) (-1979 . 568713) (-1980 . 568511) - (-1981 . 568452) (-1982 . 568279) (-1983 . 568221) (-1984 . 568066) - (-1985 . 568013) (-1986 . 567916) (-1987 . 567819) (-1988 . 567691) - (-1989 . 567595) (-1990 . 567535) (-1991 . 567193) (-1992 . 566423) - (-1993 . 566166) (-1994 . 565856) (-1995 . 565797) (-1996 . 565744) - (-1997 . 565629) (-1998 . 565578) (-1999 . 564710) (-2000 . 564619) - (-2001 . 564509) (-2002 . 564286) (-2003 . 564132) (-2004 . 563674) - (-2005 . 563471) (-2006 . 563337) (-2007 . 563285) (-2008 . 563037) - (-2009 . 562924) (-2010 . 562847) (-2011 . 562261) (-2012 . 562098) - (-2013 . 562000) (-2014 . 561929) (-2015 . 561733) (-2016 . 561125) - (-2017 . 561063) (-2018 . 561029) (-2019 . 560835) (-2020 . 560763) - (-2021 . 560656) (-2022 . 559795) (-2023 . 559451) (-2024 . 559399) - (-2025 . 559267) (-2026 . 559058) (-2027 . 558796) (-2028 . 558723) - (-2029 . 558614) (-2030 . 558559) (-2031 . 558480) (-2032 . 558427) - (-2033 . 558068) (-2034 . 557981) (-2035 . 557858) (-2036 . 557619) - (-2037 . 557487) (-2038 . 557309) (-2039 . 557151) (-2040 . 556870) - (-2041 . 556704) (-2042 . 555966) (-2043 . 555781) (-2044 . 555696) - (-2045 . 555639) (-2046 . 555611) (-2047 . 555525) (-2048 . 555108) - (-2049 . 555003) (-2050 . 554796) (-2051 . 554707) (-2052 . 554532) - (-2053 . 554410) (-2054 . 554314) (-2055 . 554094) (-2056 . 554023) - (-2057 . 553950) (-2058 . 553426) (-2059 . 553355) (-2060 . 553324) - (-2061 . 553230) (-2062 . 553202) (-2063 . 553067) (-2064 . 552979) - (-2065 . 552858) (-2066 . 552767) (-2067 . 552667) (-2068 . 552607) - (-2069 . 552466) (-2070 . 552334) (-2071 . 552238) (-2072 . 552073) - (-2073 . 551985) (-2074 . 551497) (-2075 . 551401) (-2076 . 551349) - (-2077 . 551254) (-2078 . 551125) (-2079 . 551058) (-2080 . 550631) - (-2081 . 550467) (-2082 . 550410) (-2083 . 550368) (-2084 . 549638) - (-2085 . 549545) (-2086 . 549425) (-2087 . 549226) (-2088 . 549111) - (-2089 . 548775) (-2090 . 548724) (-2091 . 548313) (-2092 . 548214) - (-2093 . 548033) (-2094 . 547999) (-2095 . 547868) (-2096 . 547722) - (-2097 . 547505) (-2098 . 547452) (-2099 . 546722) (-2100 . 545449) - (-2101 . 544421) (-2102 . 544354) (-2103 . 544287) (-2104 . 544153) - (-2105 . 543760) (-2106 . 543617) (-2107 . 543583) (-2108 . 543350) - (-2109 . 543298) (-2110 . 543100) (-2111 . 542423) (-2112 . 542343) - (-2113 . 542257) (-2114 . 541919) (-2115 . 541890) (-2116 . 541529) - (-2117 . 541422) (-2118 . 541362) (-2119 . 541244) (-2120 . 540975) - (-2121 . 540752) (-2122 . 540611) (-2123 . 540046) (-2124 . 539950) - (-2125 . 539686) (-2126 . 539440) (-2127 . 539309) (-2128 . 538971) - (-2129 . 538725) (-2130 . 538672) (-2131 . 538582) (-2132 . 538479) - (-2133 . 538000) (-2134 . 537891) (-2135 . 537722) (-2136 . 537614) - (-2137 . 537503) (-2138 . 536938) (-2139 . 536740) (-2140 . 536494) - (-2141 . 536329) (-2142 . 536124) (-2143 . 536055) (-2144 . 535952) - (-2145 . 535892) (-2146 . 535763) (-2147 . 535696) (-2148 . 535153) - (-2149 . 534588) (-2150 . 534502) (-2151 . 534342) (-2152 . 534205) - (-2153 . 534140) (-2154 . 533925) (-2155 . 533872) (-2156 . 533815) - (-2157 . 533733) (-2158 . 533662) (-2159 . 533558) (-2160 . 533392) - (-2161 . 532717) (-2162 . 532610) (-2163 . 532354) (-2164 . 532118) - (-2165 . 531478) (-2166 . 531353) (-2167 . 531217) (-2168 . 531094) - (-2169 . 531020) (-2170 . 530772) (-2171 . 530680) (-2172 . 530409) - (-2173 . 529734) (-2174 . 529650) (-2175 . 529590) (-2176 . 529528) - (-2177 . 529148) (-2178 . 529064) (-2179 . 528936) (-2180 . 528268) - (-2181 . 528179) (-2182 . 528060) (-2183 . 527898) (-2184 . 527160) - (-2185 . 527094) (-2186 . 526095) (-2187 . 525993) (-2188 . 525854) - (-2189 . 525776) (-2190 . 525652) (-2191 . 525482) (-2192 . 525306) - (-2193 . 525254) (-2194 . 525181) (-2195 . 524618) (-2196 . 524439) - (-2197 . 523374) (-2198 . 522304) (-2199 . 522209) (-2200 . 522142) - (-2201 . 522089) (-2202 . 521789) (-2203 . 521718) (-2204 . 521575) - (-2205 . 521523) (-2206 . 521419) (-2207 . 520856) (-2208 . 520755) - (-2209 . 520468) (-2210 . 520153) (-2211 . 520018) (-2212 . 519946) - (-2213 . 519836) (-2214 . 519765) (-2215 . 519661) (-2216 . 519609) - (-2217 . 519572) (-2218 . 519436) (-2219 . 519291) (-2220 . 518728) - (-2221 . 518650) (-2222 . 518390) (-2223 . 518331) (-2224 . 518234) - (-2225 . 518184) (-2226 . 518090) (-2227 . 517788) (-2228 . 517602) - (-2229 . 517551) (-2230 . 517523) (-2231 . 517455) (-2232 . 517217) - (-2233 . 516796) (-2234 . 516683) (-2235 . 516585) (-2236 . 515909) - (-2237 . 515836) (-2238 . 515732) (-2239 . 515637) (-2240 . 515522) - (-2241 . 515304) (-2242 . 515161) (-2243 . 515107) (-2244 . 515058) - (-2245 . 515026) (-2246 . 514974) (-2247 . 514038) (-2248 . 513940) - (-2249 . 513866) (-2250 . 513648) (-2251 . 513591) (-2252 . 513294) - (-2253 . 512618) (-2254 . 512549) (-2255 . 512358) (-2256 . 512231) - (-2257 . 512130) (-2258 . 511992) (-2259 . 508042) (-2260 . 507970) - (-2261 . 507812) (-2262 . 507586) (-2263 . 507308) (-2264 . 507182) - (-2265 . 507119) (-2266 . 506443) (-2267 . 505952) (-2268 . 505918) - (-2269 . 505377) (-2270 . 505324) (-2271 . 505013) (-2272 . 504663) - (-2273 . 504561) (-2274 . 504323) (-2275 . 504269) (-2276 . 504196) - (-2277 . 504140) (-2278 . 504071) (-2279 . 503973) (-2280 . 503906) - (-2281 . 503342) (-2282 . 503179) (-2283 . 503126) (-2284 . 502916) - (-2285 . 502763) (-2286 . 502552) (-2287 . 502334) (-2288 . 502224) - (-2289 . 502106) (-2290 . 502011) (-2291 . 501926) (-2292 . 501781) - (-2293 . 501666) (-2294 . 501102) (-2295 . 500135) (-2296 . 500057) - (-2297 . 499748) (-2298 . 499674) (-2299 . 499549) (-2300 . 499470) - (-2301 . 499393) (-2302 . 499274) (-2303 . 499218) (-2304 . 498584) - (-2305 . 498214) (-2306 . 498000) (-2307 . 497436) (-2308 . 497176) - (-2309 . 497080) (-2310 . 496919) (-2311 . 496634) (-2312 . 496581) - (-2313 . 495241) (-2314 . 494827) (-2315 . 494769) (-2316 . 494596) - (-2317 . 494033) (-2318 . 493684) (-2319 . 493489) (-2320 . 493433) - (-2321 . 493255) (-2322 . 493088) (-2323 . 493000) (-2324 . 492126) - (-2325 . 492032) (-2326 . 491937) (-2327 . 491839) (-2328 . 491683) - (-2329 . 491120) (-2330 . 491067) (-2331 . 490996) (-2332 . 490903) - (-2333 . 490775) (-2334 . 490673) (-2335 . 490569) (-2336 . 490421) - (-2337 . 490372) (-2338 . 490275) (-2339 . 490057) (-2340 . 489494) - (-2341 . 489435) (-2342 . 489298) (-2343 . 489189) (-2344 . 488347) - (-2345 . 488295) (-2346 . 488195) (-2347 . 488110) (-2348 . 488027) - (-2349 . 487971) (-2350 . 487823) (-2351 . 487746) (-2352 . 487183) - (-2353 . 487053) (-2354 . 486979) (-2355 . 486878) (-2356 . 486816) - (-2357 . 486643) (-2358 . 486476) (-2359 . 482867) (-2360 . 482796) - (-2361 . 480381) (-2362 . 480186) (-2363 . 480098) (-2364 . 479503) - (-2365 . 479284) (-2366 . 479128) (-2367 . 479001) (-2368 . 478438) - (-2369 . 476324) (-2370 . 476216) (-2371 . 476062) (-2372 . 475974) - (-2373 . 475877) (-2374 . 475783) (-2375 . 475691) (-2376 . 475603) - (-2377 . 475551) (-2378 . 470212) (-2379 . 470157) (-2380 . 470104) - (-2381 . 470019) (-2382 . 469903) (-2383 . 469732) (-2384 . 469680) - (-2385 . 469490) (-2386 . 469402) (-2387 . 469108) (-2388 . 468992) - (-2389 . 468933) (-2390 . 468769) (-2391 . 468738) (-2392 . 468594) - (-2393 . 467673) (-2394 . 467351) (-2395 . 467197) (-2396 . 467057) - (-2397 . 466961) (-2398 . 466530) (-2399 . 466475) (-2400 . 466345) - (-2401 . 466230) (-2402 . 466160) (-2403 . 465244) (-2404 . 465080) - (-2405 . 464900) (-2406 . 464803) (-2407 . 464387) (-2408 . 464310) - (-2409 . 464121) (-2410 . 464089) (-2411 . 463961) (-2412 . 463770) - (-2413 . 463696) (-2414 . 463589) (-2415 . 463402) (-2416 . 462994) - (-2417 . 462855) (-2418 . 462772) (-2419 . 462659) (-2420 . 462606) - (-2421 . 462527) (-2422 . 462456) (-2423 . 462274) (-2424 . 462210) - (-2425 . 462064) (-2426 . 461568) (-2427 . 461516) (-2428 . 461444) - (-2429 . 461330) (-2430 . 459741) (-2431 . 459290) (-2432 . 458716) - (-2433 . 458657) (-2434 . 458294) (-2435 . 457964) (-2436 . 457867) - (-2437 . 457761) (-2438 . 457675) (-2439 . 457621) (-2440 . 457494) - (-2441 . 457427) (-2442 . 457221) (-2443 . 457064) (-2444 . 456866) - (-2445 . 456801) (-2446 . 456178) (-2447 . 456033) (-2448 . 455863) - (-2449 . 455739) (-2450 . 455623) (-2451 . 452324) (-2452 . 452246) - (-2453 . 452168) (-2454 . 451921) (-2455 . 451751) (-2456 . 451536) - (-2457 . 451471) (-2458 . 451443) (-2459 . 451300) (-2460 . 451216) - (-2461 . 450828) (-2462 . 450769) (-2463 . 450659) (-2464 . 450507) - (-2465 . 449919) (-2466 . 449835) (-2467 . 449807) (-2468 . 449527) - (-2469 . 449390) (-2470 . 449234) (-2471 . 448368) (-2472 . 448109) - (-2473 . 448036) (-2474 . 447921) (-2475 . 447861) (-2476 . 447805) - (-2477 . 433572) (-2478 . 433325) (-2479 . 432173) (-2480 . 432065) - (-2481 . 431944) (-2482 . 431802) (-2483 . 431364) (-2484 . 431011) - (-2485 . 430911) (-2486 . 430784) (-2487 . 430661) (-2488 . 430390) - (-2489 . 429886) (-2490 . 429759) (-2491 . 429708) (-2492 . 429566) - (-2493 . 429514) (** . 426519) (-2495 . 426460) (-2496 . 426326) - (-2497 . 426223) (-2498 . 426093) (-2499 . 426041) (-2500 . 425989) - (-2501 . 425893) (-2502 . 425864) (-2503 . 425548) (-2504 . 425345) - (-2505 . 425190) (-2506 . 425123) (-2507 . 424951) (-2508 . 424868) - (-2509 . 424715) (-2510 . 424386) (-2511 . 424268) (-2512 . 424062) - (-2513 . 423938) (-2514 . 423832) (-2515 . 423713) (-2516 . 423613) - (-2517 . 423494) (-2518 . 422842) (-2519 . 422713) (-2520 . 422415) - (-2521 . 422360) (-2522 . 422286) (-2523 . 422085) (-2524 . 421940) - (-2525 . 421707) (-2526 . 421414) (-2527 . 421357) (-2528 . 421233) - (-2529 . 421118) (-2530 . 421063) (-2531 . 420907) (-2532 . 420836) - (-2533 . 420783) (-2534 . 420703) (-2535 . 420357) (-2536 . 420216) - (-2537 . 420053) (-2538 . 419970) (-2539 . 419671) (-2540 . 419598) - (-2541 . 419475) (-2542 . 419379) (-2543 . 419324) (-2544 . 419225) - (-2545 . 419103) (-2546 . 419001) (-2547 . 418886) (-2548 . 418691) - (-2549 . 418626) (-2550 . 418299) (-2551 . 418193) (-2552 . 418105) - (-2553 . 417774) (-2554 . 417702) (-2555 . 417618) (-2556 . 417514) - (-2557 . 417342) (-2558 . 417207) (-2559 . 417103) (-2560 . 416874) - (-2561 . 416664) (-2562 . 416611) (-2563 . 416515) (-2564 . 416462) - (-2565 . 416241) (-2566 . 416207) (-2567 . 414239) (-2568 . 413964) - (-2569 . 413884) (-2570 . 413490) (-2571 . 413335) (-2572 . 413284) - (-2573 . 413253) (-2574 . 413176) (-2575 . 413063) (-2576 . 412727) - (-2577 . 412630) (-2578 . 412286) (-2579 . 412209) (-2580 . 412036) - (-2581 . 411970) (-2582 . 411359) (-2583 . 411285) (-2584 . 411257) - (-2585 . 410932) (-2586 . 410852) (-2587 . 410700) (-2588 . 410369) - (-2589 . 410251) (-2590 . 410154) (-2591 . 410102) (-2592 . 409869) - (-2593 . 409764) (-2594 . 409676) (-2595 . 409161) (-2596 . 409053) - (-2597 . 408969) (-2598 . 408617) (-2599 . 407734) (-2600 . 407660) - (-2601 . 407608) (-2602 . 407549) (-2603 . 407434) (-2604 . 407378) - (-2605 . 407304) (-2606 . 407122) (-2607 . 407027) (-2608 . 406963) - (-2609 . 406877) (-2610 . 406824) (-2611 . 406751) (-2612 . 406663) - (-2613 . 406582) (-2614 . 406424) (-2615 . 406336) (-2616 . 406139) - (-2617 . 406086) (-2618 . 405957) (-2619 . 405782) (-2620 . 405730) - (-2621 . 405503) (-2622 . 405450) (-2623 . 405289) (-2624 . 405062) - (-2625 . 405034) (-2626 . 404939) (-2627 . 404839) (-2628 . 404524) - (-2629 . 404469) (-2630 . 404138) (-2631 . 404035) (-2632 . 403966) - (-2633 . 403864) (-2634 . 403334) (-2635 . 403281) (-2636 . 403188) - (-2637 . 403114) (-2638 . 403041) (-2639 . 402823) (-2640 . 402655) - (-2641 . 402456) (-2642 . 402308) (-2643 . 401931) (-2644 . 401815) - (-2645 . 401326) (-2646 . 401243) (-2647 . 401166) (-2648 . 401062) - (-2649 . 401009) (-2650 . 400676) (-2651 . 400608) (-2652 . 400440) - (-2653 . 399552) (-2654 . 399480) (-2655 . 399409) (-2656 . 399357) - (-2657 . 399198) (-2658 . 399098) (-2659 . 399049) (-2660 . 398982) - (-2661 . 398910) (-2662 . 398664) (-2663 . 398581) (-2664 . 397762) - (-2665 . 397657) (-2666 . 397505) (-2667 . 397031) (-2668 . 396935) - (-2669 . 396783) (-2670 . 396366) (-2671 . 396284) (-2672 . 396227) - (-2673 . 396141) (-2674 . 396044) (-2675 . 395776) (-2676 . 395476) - (-2677 . 394660) (-2678 . 394365) (-2679 . 394306) (-2680 . 394240) - (-2681 . 394120) (-2682 . 393967) (-2683 . 393677) (-2684 . 393612) - (-2685 . 393480) (-2686 . 392663) (-2687 . 392508) (-2688 . 392389) - (-2689 . 392312) (-2690 . 391921) (-2691 . 391761) (-2692 . 391666) - (-2693 . 391503) (-2694 . 391238) (-2695 . 391150) (-2696 . 390936) - (-2697 . 390883) (-2698 . 390787) (-2699 . 390535) (-2700 . 390482) - (-2701 . 389869) (-2702 . 389809) (-2703 . 388582) (-2704 . 388096) - (-2705 . 387592) (-2706 . 387364) (-2707 . 387307) (-2708 . 387104) - (-2709 . 386944) (-2710 . 386850) (-2711 . 386689) (-2712 . 386262) - (-2713 . 385970) (-2714 . 385827) (-2715 . 385759) (-2716 . 385656) - (-2717 . 385519) (-2718 . 385452) (-2719 . 385403) (-2720 . 385329) - (-2721 . 385234) (-2722 . 384574) (-2723 . 384416) (-2724 . 384314) - (-2725 . 383925) (-2726 . 383647) (-2727 . 383489) (-2728 . 382813) - (-2729 . 382730) (-2730 . 382642) (-2731 . 382526) (-2732 . 382419) - (-2733 . 382157) (-2734 . 381724) (-2735 . 381471) (-2736 . 381418) - (-2737 . 380858) (-2738 . 380800) (-2739 . 380730) (-2740 . 380545) - (-2741 . 380444) (-2742 . 380302) (-2743 . 380056) (-2744 . 379896) - (-2745 . 379762) (-2746 . 379661) (-2747 . 379457) (-2748 . 379311) - (-2749 . 379128) (-2750 . 379045) (-2751 . 378527) (-2752 . 378425) - (-2753 . 378273) (-2754 . 377728) (-2755 . 377647) (-2756 . 377168) - (-2757 . 377089) (-2758 . 376987) (-2759 . 376916) (-2760 . 376786) - (-2761 . 376595) (-2762 . 376421) (-2763 . 376061) (-2764 . 375945) - (-2765 . 375636) (-2766 . 375494) (-2767 . 375378) (-2768 . 375254) - (-2769 . 375110) (-2770 . 374788) (-2771 . 374720) (-2772 . 374649) - (-2773 . 374562) (-2774 . 374493) (-2775 . 374115) (-2776 . 374081) - (-2777 . 372635) (-2778 . 372582) (-2779 . 372138) (-2780 . 372070) - (-2781 . 371979) (-2782 . 371901) (-2783 . 371823) (-2784 . 371713) - (-2785 . 371538) (-2786 . 371452) (-2787 . 371314) (-2788 . 371219) - (-2789 . 371054) (-2790 . 370739) (-2791 . 370653) (-2792 . 370528) - (-2793 . 370446) (-2794 . 370387) (-2795 . 370034) (-2796 . 369926) - (-2797 . 369793) (-2798 . 369721) (-2799 . 369478) (-2800 . 369379) - (-2801 . 369326) (-2802 . 369277) (-2803 . 369038) (-2804 . 368908) - (-2805 . 368805) (-2806 . 368359) (-2807 . 367241) (-2808 . 367051) - (-2809 . 366896) (-2810 . 366844) (-2811 . 366559) (-2812 . 366471) - (-2813 . 366328) (-2814 . 366205) (-2815 . 366153) (-2816 . 365981) - (-2817 . 365800) (-2818 . 365595) (-2819 . 365399) (-2820 . 365303) - (-2821 . 365233) (-2822 . 365159) (-2823 . 364977) (-2824 . 364010) - (-2825 . 363955) (-2826 . 363802) (-2827 . 363486) (-2828 . 363314) - (-2829 . 363036) (-2830 . 362876) (-2831 . 362730) (-2832 . 362634) - (-2833 . 362528) (-2834 . 362371) (-2835 . 362302) (-2836 . 362097) - (-2837 . 361690) (-2838 . 361630) (-2839 . 361458) (-2840 . 360974) - (-2841 . 360847) (-2842 . 360751) (-2843 . 359553) (-2844 . 359501) - (-2845 . 359321) (-2846 . 359269) (-2847 . 359023) (-2848 . 358925) - (-2849 . 358678) (-2850 . 358506) (-2851 . 357876) (-2852 . 357657) - (-2853 . 357573) (-2854 . 357513) (-2855 . 357409) (-2856 . 357184) - (-2857 . 357129) (-2858 . 356988) (-2859 . 356916) (-2860 . 356888) - (-2861 . 356814) (-2862 . 356629) (-2863 . 356420) (-2864 . 356367) - (-2865 . 356271) (-2866 . 356113) (-2867 . 355973) (-2868 . 355921) - (-2869 . 355811) (-2870 . 355673) (-2871 . 355610) (-2872 . 355467) - (-2873 . 355293) (-2874 . 355089) (-2875 . 354961) (-2876 . 354858) - (-2877 . 354801) (-2878 . 354636) (-2879 . 354565) (-2880 . 354537) - (-2881 . 354395) (-2882 . 353736) (-2883 . 353650) (-2884 . 353570) - (-2885 . 353374) (-2886 . 353209) (-2887 . 353123) (-2888 . 352845) - (-2889 . 352777) (-2890 . 352170) (-2891 . 352004) (-2892 . 351405) - (-2893 . 350981) (-2894 . 350842) (-2895 . 350789) (-2896 . 350652) - (-2897 . 350333) (-2898 . 350256) (-2899 . 349505) (-2900 . 348303) - (-2901 . 348174) (-2902 . 348024) (-2903 . 347924) (-2904 . 347802) - (-2905 . 347634) (-2906 . 347533) (-2907 . 347456) (-2908 . 347419) - (-2909 . 347318) (-2910 . 347173) (-2911 . 346782) (-2912 . 346408) - (-2913 . 346223) (-2914 . 345829) (-2915 . 345495) (-2916 . 345299) - (-2917 . 344944) (-2918 . 344736) (-2919 . 344608) (-2920 . 344469) - (-2921 . 344391) (-2922 . 344253) (-2923 . 344108) (-2924 . 343889) - (-2925 . 343810) (-2926 . 343738) (-2927 . 343310) (-2928 . 343032) - (-2929 . 342953) (-2930 . 342852) (-2931 . 342649) (-2932 . 342491) - (-2933 . 341953) (-2934 . 341852) (-2935 . 341653) (-2936 . 341435) - (-2937 . 341407) (-2938 . 341174) (-2939 . 341072) (-2940 . 340777) - (-2941 . 340630) (-2942 . 340542) (-2943 . 340490) (-2944 . 340330) - (-2945 . 340257) (-2946 . 339882) (-2947 . 339827) (-2948 . 339699) - (-2949 . 339484) (-2950 . 339405) (-2951 . 339063) (-2952 . 338902) - (-2953 . 338602) (-2954 . 338546) (-2955 . 338409) (-2956 . 338306) - (-2957 . 338185) (-2958 . 338086) (-2959 . 338025) (-2960 . 337925) - (-2961 . 337414) (-2962 . 337026) (-2963 . 336912) (-2964 . 336769) - (-2965 . 336600) (-2966 . 336547) (-2967 . 336510) (-2968 . 336432) - (-2969 . 336375) (-2970 . 336289) (-2971 . 336223) (-2972 . 335891) - (-2973 . 335672) (-2974 . 331129) (-2975 . 330931) (-2976 . 330854) - (-2977 . 330600) (-2978 . 330355) (-2979 . 330217) (-2980 . 330019) - (-2981 . 329873) (-2982 . 329773) (-2983 . 329658) (-2984 . 329478) - (-2985 . 329408) (-2986 . 329253) (-2987 . 329197) (-2988 . 328955) - (-2989 . 328797) (-2990 . 328702) (-2991 . 328595) (-2992 . 328409) - (-2993 . 328323) (-2994 . 327939) (-2995 . 327837) (-2996 . 327450) - (-2997 . 327342) (-2998 . 327137) (-2999 . 326979) (-3000 . 326951) - (-3001 . 326513) (-3002 . 326458) (-3003 . 326391) (-3004 . 326314) - (-3005 . 326257) (-3006 . 325660) (-3007 . 325522) (-3008 . 325212) - (-3009 . 324602) (-3010 . 324483) (-3011 . 324402) (-3012 . 324307) - (-3013 . 324130) (-3014 . 324077) (-3015 . 323892) (-3016 . 323633) - (-3017 . 323581) (-3018 . 323402) (-3019 . 323259) (-3020 . 323187) - (-3021 . 322741) (-3022 . 322689) (-3023 . 322361) (-3024 . 322278) - (-3025 . 322194) (-3026 . 322106) (-3027 . 322053) (-3028 . 321822) - (-3029 . 321024) (-3030 . 320703) (-3031 . 320591) (-3032 . 320486) - (-3033 . 320419) (-3034 . 320303) (-3035 . 319825) (-3036 . 319710) - (-3037 . 319630) (-3038 . 319531) (-3039 . 319449) (-3040 . 319365) - (-3041 . 319264) (-3042 . 319053) (-3043 . 318246) (-3044 . 318064) - (-3045 . 317581) (-3046 . 317460) (-3047 . 317404) (-3048 . 317347) - (-3049 . 317261) (-3050 . 316895) (-3051 . 316676) (-3052 . 316580) - (-3053 . 316373) (-3054 . 316283) (-3055 . 316146) (-3056 . 316044) - (-3057 . 315928) (-3058 . 315611) (-3059 . 315544) (-3060 . 314002) - (-3061 . 313472) (-3062 . 313313) (-3063 . 312905) (-3064 . 312732) - (-3065 . 312637) (-3066 . 312302) (-3067 . 312225) (-3068 . 312157) - (-3069 . 312098) (-3070 . 311931) (-3071 . 311548) (-3072 . 311230) - (-3073 . 311196) (-3074 . 310777) (-3075 . 310679) (-3076 . 310168) - (-3077 . 310131) (-3078 . 309985) (-3079 . 309735) (-3080 . 309383) - (-3081 . 309331) (-3082 . 309135) (-3083 . 308900) (-3084 . 308794) - (-3085 . 308635) (-3086 . 308574) (-3087 . 308540) (-3088 . 308474) - (-3089 . 308311) (-3090 . 308219) (-3091 . 308047) (-3092 . 307905) - (-3093 . 307819) (-3094 . 307661) (-3095 . 306481) (-3096 . 306409) - (-3097 . 306235) (-3098 . 306010) (-3099 . 305908) (-3100 . 305698) - (-3101 . 305617) (-3102 . 305543) (-3103 . 305282) (-3104 . 305230) - (-3105 . 305123) (-3106 . 304901) (-3107 . 304821) (-3108 . 304649) - (-3109 . 304471) (-3110 . 303681) (-3111 . 303622) (-3112 . 303278) - (-3113 . 303192) (-3114 . 302682) (-3115 . 302506) (-3116 . 302411) - (-3117 . 302324) (-3118 . 302223) (-3119 . 301772) (-3120 . 301705) - (-3121 . 301619) (-3122 . 301536) (-3123 . 301507) (-3124 . 301454) - (-3125 . 301382) (-3126 . 301055) (-3127 . 300967) (-3128 . 300802) - (-3129 . 300577) (-3130 . 300329) (-3131 . 299745) (-3132 . 299414) - (-3133 . 299186) (-3134 . 299152) (-3135 . 299057) (-3136 . 298980) - (-3137 . 298882) (-3138 . 298823) (-3139 . 298769) (-3140 . 298416) - (-3141 . 298301) (-3142 . 298042) (-3143 . 297581) (-3144 . 297358) - (-3145 . 297284) (-3146 . 297234) (-3147 . 297161) (-3148 . 297071) - (-3149 . 295969) (-3150 . 295730) (-9 . 295702) (-3152 . 295581) - (-3153 . 295479) (-3154 . 295285) (-3155 . 295148) (-3156 . 295053) - (-3157 . 294701) (-3158 . 294280) (-3159 . 294252) (-3160 . 294127) - (-8 . 294099) (-3162 . 293952) (-3163 . 293840) (-3164 . 293465) - (-3165 . 293292) (-3166 . 293258) (-3167 . 293010) (-3168 . 292885) - (-3169 . 292832) (-3170 . 292752) (-7 . 292724) (-3172 . 292672) - (-3173 . 292533) (-3174 . 292319) (-3175 . 291851) (-3176 . 291368) - (-3177 . 290941) (-3178 . 289863) (-3179 . 288646) (-3180 . 288543) - (-3181 . 288293) (-3182 . 288175) (-3183 . 288095) (-3184 . 287996) - (-3185 . 287944) (-3186 . 287578) (-3187 . 287468) (-3188 . 287325) - (-3189 . 287232) (-3190 . 287160) (-3191 . 287029) (-3192 . 286961) - (-3193 . 286753) (-3194 . 286551) (-3195 . 286470) (-3196 . 286351) - (-3197 . 286173) (-3198 . 286121) (-3199 . 285993) (-3200 . 285799) - (-3201 . 284957) (-3202 . 284744) (-3203 . 284364) (-3204 . 284219) - (-3205 . 282642) (-3206 . 282498) (-3207 . 282392) (-3208 . 282318) - (-3209 . 282026) (-3210 . 281873) (-3211 . 281845) (-3212 . 281816) - (-3213 . 281734) (-3214 . 281580) (-3215 . 281442) (-3216 . 281071) - (-3217 . 280948) (-3218 . 280695) (-3219 . 280639) (-3220 . 280572) - (-3221 . 280495) (-3222 . 280401) (-3223 . 280300) (-3224 . 280184) - (-3225 . 280040) (-3226 . 279945) (-3227 . 279745) (-3228 . 279624) - (-3229 . 279394) (-3230 . 279024) (-3231 . 278996) (-3232 . 278786) - (-3233 . 278704) (-3234 . 278652) (-3235 . 278580) (-3236 . 278522) - (-3237 . 278100) (-3238 . 277984) (-3239 . 277745) (-3240 . 277686) - (-3241 . 277240) (-3242 . 277094) (-3243 . 277042) (-3244 . 276810) - (-3245 . 276630) (-3246 . 276561) (-3247 . 276398) (-3248 . 276314) - (-3249 . 276228) (-3250 . 276083) (-3251 . 275989) (-3252 . 275837) - (-3253 . 275780) (-3254 . 275709) (-3255 . 274281) (-3256 . 274135) - (-3257 . 273597) (-3258 . 273506) (-3259 . 273279) (-3260 . 273192) - (-3261 . 273097) (-3262 . 273003) (-3263 . 272850) (-3264 . 272800) - (-3265 . 272716) (-3266 . 272597) (-3267 . 272051) (-3268 . 271961) - (-3269 . 271878) (-3270 . 271819) (-3271 . 271725) (-3272 . 271646) - (-3273 . 271615) (-3274 . 271426) (-3275 . 270716) (-3276 . 270615) - (-3277 . 270541) (-3278 . 270331) (-3279 . 268550) (-3280 . 268469) - (-3281 . 268328) (-3282 . 268110) (-3283 . 268059) (-3284 . 267958) - (-3285 . 267891) (-3286 . 267820) (-3287 . 266628) (-3288 . 266574) - (-3289 . 266288) (-3290 . 266158) (-3291 . 266079) (-3292 . 265955) - (-3293 . 265885) (-3294 . 265754) (-3295 . 265632) (-3296 . 265476) - (-3297 . 265042) (-3298 . 264793) (-3299 . 264613) (-3300 . 264484) - (-3301 . 264368) (-3302 . 264311) (-3303 . 264213) (-3304 . 264159) - (-3305 . 263742) (-3306 . 263683) (-3307 . 263574) (-3308 . 263519) - (-3309 . 263356) (-3310 . 263328) (-3311 . 263260) (-3312 . 263104) - (-3313 . 262728) (-3314 . 262626) (-3315 . 262556) (-3316 . 262482) - (-3317 . 262366) (-3318 . 261851) (-3319 . 261663) (-3320 . 261518) - (-3321 . 261363) (-3322 . 261267) (-3323 . 261147) (-3324 . 261067) - (-3325 . 261005) (-3326 . 260041) (-3327 . 259550) (-3328 . 259468) - (-3329 . 259388) (-3330 . 259315) (-3331 . 259234) (-3332 . 258833) - (-3333 . 258537) (-3334 . 258276) (-3335 . 258197) (-3336 . 258064) - (-3337 . 257985) (-3338 . 257869) (-3339 . 257773) (-3340 . 257702) - (-3341 . 257603) (-3342 . 257311) (-3343 . 257282) (-3344 . 257159) - (-3345 . 255303) (-3346 . 255125) (-3347 . 254967) (-3348 . 254327) - (-3349 . 254241) (-3350 . 254145) (-3351 . 253947) (-3352 . 253524) - (-3353 . 252323) (-3354 . 252225) (-3355 . 251994) (-3356 . 251814) - (-3357 . 251682) (-3358 . 251079) (-3359 . 251027) (-3360 . 250886) - (-3361 . 250793) (-3362 . 250585) (-3363 . 250506) (-3364 . 250439) - (-3365 . 250055) (-3366 . 249998) (-3367 . 249941) (-3368 . 248945) - (-3369 . 248871) (-3370 . 248737) (-3371 . 248581) (-3372 . 248275) - (-3373 . 248041) (-3374 . 247657) (-3375 . 247605) (-3376 . 247487) - (-3377 . 247416) (-3378 . 247040) (-3379 . 246767) (-3380 . 246548) - (-3381 . 246289) (-3382 . 246197) (-3383 . 246028) (-3384 . 245969) - (-3385 . 245874) (-3386 . 245758) (-3387 . 245614) (-3388 . 245435) - (-3389 . 245336) (-3390 . 244752) (-3391 . 244637) (-3392 . 244543) - (-3393 . 244430) (-3394 . 244314) (-3395 . 244230) (-3396 . 244065) - (-3397 . 243673) (-3398 . 243415) (-3399 . 243168) (-3400 . 242941) - (-3401 . 242812) (-3402 . 242726) (-3403 . 242248) (-3404 . 241961) - (-3405 . 241803) (-3406 . 241493) (-3407 . 241349) (-3408 . 241183) - (-3409 . 240640) (-3410 . 240439) (-3411 . 240341) (-3412 . 240227) - (-3413 . 240156) (-3414 . 240073) (-3415 . 239941) (-3416 . 239748) - (-3417 . 239676) (-3418 . 239038) (-3419 . 238917) (-3420 . 238708) - (-3421 . 238223) (-3422 . 238043) (-3423 . 237557) (-3424 . 236376) - (-3425 . 236218) (-3426 . 236166) (-3427 . 236078) (-3428 . 236044) - (-3429 . 235657) (-3430 . 235587) (-3431 . 235455) (-3432 . 235280) - (-3433 . 234759) (-3434 . 234652) (-3435 . 234485) (-3436 . 234427) - (-3437 . 234372) (-3438 . 234215) (-3439 . 234117) (-3440 . 233959) - (-3441 . 233720) (-3442 . 233621) (-3443 . 233500) (-3444 . 233439) - (-3445 . 233272) (-3446 . 233154) (-3447 . 232954) (-3448 . 232595) - (-3449 . 232432) (-3450 . 232380) (-3451 . 229539) (-3452 . 229223) - (-3453 . 229146) (-3454 . 228908) (-3455 . 228822) (-3456 . 228684) - (-3457 . 228197) (-3458 . 228114) (-3459 . 228004) (-3460 . 227825) - (-3461 . 227346) (-3462 . 227201) (-3463 . 227123) (-3464 . 226989) - (-3465 . 226939) (-3466 . 226911) (-3467 . 226697) (-3468 . 226619) - (-3469 . 226529) (-3470 . 226372) (-3471 . 226294) (-3472 . 225743) - (-3473 . 225625) (-3474 . 225566) (-3475 . 225498) (-3476 . 225414) - (-3477 . 225318) (-3478 . 225169) (-3479 . 224788) (-3480 . 224715) - (-3481 . 224620) (-3482 . 224493) (-3483 . 224261) (-3484 . 224191) - (-3485 . 224088) (-3486 . 224036) (-3487 . 223963) (-3488 . 223812) - (-3489 . 223691) (-3490 . 223592) (-3491 . 223171) (-3492 . 222893) - (-3493 . 222823) (-3494 . 222429) (-3495 . 222307) (-3496 . 222191) - (-3497 . 221846) (-3498 . 221349) (-3499 . 221280) (-3500 . 221091) - (-3501 . 220958) (-3502 . 220684) (-3503 . 220559) (-3504 . 220451) - (-3505 . 220400) (-3506 . 220256) (-3507 . 220194) (-3508 . 220103) - (-3509 . 220017) (-3510 . 219807) (-3511 . 219710) (-3512 . 219597) - (-3513 . 219238) (-3514 . 219135) (-3515 . 219035) (-3516 . 218985) - (-3517 . 218603) (-3518 . 218485) (-3519 . 218355) (-3520 . 218281) - (-3521 . 218228) (-3522 . 218088) (-3523 . 217989) (-3524 . 217874) - (-3525 . 217819) (-3526 . 217765) (-3527 . 217605) (-3528 . 217499) - (-3529 . 217429) (-3530 . 217316) (-3531 . 217203) (-3532 . 216782) - (-3533 . 216599) (-3534 . 216503) (-3535 . 216293) (-3536 . 216211) - (-3537 . 215625) (-3538 . 215576) (-3539 . 215452) (-3540 . 215284) - (-3541 . 215180) (-3542 . 214900) (-3543 . 214829) (-3544 . 214770) - (-3545 . 214548) (-3546 . 214467) (-3547 . 214241) (-3548 . 214149) - (-3549 . 214044) (-3550 . 213856) (-3551 . 213796) (-3552 . 213660) - (-3553 . 213563) (-3554 . 213432) (-3555 . 213349) (-3556 . 213297) - (-3557 . 213087) (-3558 . 212887) (-3559 . 212786) (-3560 . 212622) - (-3561 . 212441) (-3562 . 212389) (-3563 . 212293) (-3564 . 212234) - (-3565 . 212104) (-3566 . 212030) (-3567 . 211782) (-3568 . 211727) - (-3569 . 211586) (-3570 . 211447) (-3571 . 211396) (-3572 . 211218) - (-3573 . 210954) (-3574 . 210877) (-3575 . 210778) (-3576 . 210722) - (-3577 . 210497) (-3578 . 210423) (-3579 . 209200) (-3580 . 209106) - (-3581 . 208748) (-3582 . 208644) (-3583 . 208467) (-3584 . 208254) - (-3585 . 208169) (-3586 . 207209) (-3587 . 207114) (-3588 . 207036) - (-3589 . 206884) (-3590 . 206817) (-3591 . 206743) (-3592 . 206493) - (-3593 . 205966) (-3594 . 205892) (-3595 . 205821) (-3596 . 205599) - (-3597 . 198656) (-3598 . 198543) (-3599 . 197951) (-3600 . 197695) - (-3601 . 197564) (-3602 . 197487) (-3603 . 197381) (-3604 . 197308) - (-3605 . 197177) (-3606 . 197057) (-3607 . 196901) (-3608 . 196807) - (-3609 . 196748) (-3610 . 196613) (-3611 . 196421) (-3612 . 196292) - (-3613 . 195528) (-3614 . 194466) (-3615 . 194378) (-3616 . 194241) - (-3617 . 194128) (-3618 . 194061) (-3619 . 193927) (-3620 . 193689) - (-3621 . 193636) (-3622 . 193426) (-3623 . 193176) (-3624 . 190395) - (-3625 . 190251) (-3626 . 190217) (-3627 . 190049) (-3628 . 189846) - (-3629 . 189720) (-3630 . 189636) (-3631 . 189509) (-3632 . 189457) - (-3633 . 189389) (-3634 . 188963) (-3635 . 188865) (-3636 . 188558) - (-3637 . 188400) (-3638 . 188257) (-3639 . 188185) (-3640 . 188040) - (-3641 . 187970) (-3642 . 187753) (-3643 . 187610) (-3644 . 187541) - (-3645 . 187471) (-3646 . 187191) (-3647 . 187073) (-3648 . 187002) - (-3649 . 186924) (-3650 . 186620) (-3651 . 186356) (-3652 . 186239) - (-3653 . 186184) (-3654 . 186104) (-3655 . 186052) (-3656 . 185518) - (-3657 . 185466) (-3658 . 185255) (-3659 . 185169) (-3660 . 184817) - (-3661 . 184475) (-3662 . 184346) (-3663 . 184053) (-3664 . 184001) - (-3665 . 183909) (-3666 . 183629) (-3667 . 182894) (-3668 . 182608) - (-3669 . 182485) (-3670 . 182213) (-3671 . 182146) (-3672 . 181876) - (-3673 . 181826) (-3674 . 181665) (-3675 . 181613) (-3676 . 181536) - (-3677 . 181212) (-3678 . 181160) (-3679 . 180796) (-3680 . 180667) - (-3681 . 180422) (-3682 . 180326) (-3683 . 180230) (-3684 . 180014) - (-3685 . 179720) (-3686 . 179617) (-3687 . 179125) (-3688 . 179051) - (-3689 . 178996) (-3690 . 178917) (-3691 . 178823) (-3692 . 178629) - (-3693 . 178548) (-3694 . 178356) (-3695 . 178248) (-3696 . 177955) - (-3697 . 177795) (-3698 . 177737) (-3699 . 177660) (-3700 . 177562) - (-3701 . 177505) (-3702 . 177326) (-3703 . 176028) (-3704 . 175887) - (-3705 . 175832) (-3706 . 175692) (-3707 . 175642) (-3708 . 175586) - (-3709 . 175412) (-3710 . 175266) (-3711 . 174623) (-3712 . 174524) - (-3713 . 174276) (-3714 . 173894) (-3715 . 173621) (-3716 . 173538) - (-3717 . 173400) (-3718 . 173287) (-3719 . 173101) (-3720 . 173013) - (-3721 . 172958) (-3722 . 172901) (-3723 . 172818) (-3724 . 172756) - (-3725 . 172660) (-3726 . 172575) (-3727 . 172145) (-3728 . 171919) - (-3729 . 171866) (-3730 . 171736) (-3731 . 171650) (-3732 . 171594) - (-3733 . 171500) (-3734 . 171364) (-3735 . 171054) (-3736 . 170970) - (-3737 . 170899) (-3738 . 170618) (-3739 . 169998) (-3740 . 169945) - (-3741 . 169840) (-3742 . 169695) (-3743 . 169623) (-3744 . 169461) - (-3745 . 169282) (-3746 . 169174) (-3747 . 168786) (-3748 . 168460) - (-3749 . 168350) (-3750 . 168234) (-3751 . 168167) (-3752 . 168009) - (-3753 . 167810) (-3754 . 167590) (-3755 . 167144) (-3756 . 166892) - (-3757 . 166815) (-3758 . 166616) (-3759 . 166485) (-3760 . 166426) - (-3761 . 166315) (-3762 . 166153) (-3763 . 165681) (-3764 . 165529) - (-3765 . 165357) (-3766 . 165253) (-3767 . 165143) (-3768 . 165080) - (-3769 . 164968) (-3770 . 164898) (-3771 . 164864) (-3772 . 164769) - (-3773 . 164685) (-3774 . 163909) (-3775 . 163762) (-3776 . 163691) - (-12 . 163519) (-3778 . 163463) (-3779 . 163370) (-3780 . 163262) - (-3781 . 163096) (-3782 . 162529) (-3783 . 162370) (-3784 . 162318) - (-3785 . 162089) (-3786 . 161957) (-3787 . 161869) (-3788 . 161825) - (-3789 . 161459) (-3790 . 161266) (-3791 . 160926) (-3792 . 160749) - (-3793 . 160722) (-3794 . 159637) (-3795 . 159579) (-3796 . 159548) - (-3797 . 159495) (-3798 . 159315) (-3799 . 159196) (-3800 . 159053) - (-3801 . 158879) (-3802 . 154719) (-3803 . 154293) (-3804 . 154222) - (-3805 . 154154) (-3806 . 154102) (-3807 . 154050) (-3808 . 153832) - (-3809 . 153265) (-3810 . 153107) (-3811 . 152951) (-3812 . 152923) - (-3813 . 152891) (-3814 . 152771) (-3815 . 152475) (-3816 . 152415) - (-3817 . 151983) (-3818 . 151900) (-3819 . 151801) (-3820 . 151732) - (-3821 . 151704) (-3822 . 151544) (-3823 . 151448) (-3824 . 151349) - (-3825 . 150977) (-3826 . 150702) (-3827 . 150601) (-3828 . 150393) - (-3829 . 150313) (-3830 . 150150) (-3831 . 149959) (-3832 . 149900) - (-3833 . 149840) (-3834 . 149769) (-3835 . 149632) (-3836 . 149501) - (-3837 . 149279) (-3838 . 149176) (-3839 . 149042) (-3840 . 148861) - (-3841 . 148743) (-3842 . 148642) (-3843 . 148175) (-3844 . 147802) - (-3845 . 147742) (-3846 . 147641) (-3847 . 147339) (-3848 . 147207) - (-3849 . 146855) (-3850 . 146633) (-3851 . 146551) (-3852 . 146468) - (-3853 . 146123) (-3854 . 146005) (-3855 . 145910) (-3856 . 145758) - (-3857 . 145354) (-3858 . 145301) (-3859 . 145231) (-3860 . 145082) - (-3861 . 144785) (-3862 . 144733) (-3863 . 144082) (-3864 . 144022) - (-3865 . 143134) (-3866 . 143030) (-3867 . 142937) (-3868 . 142864) - (-3869 . 142204) (-3870 . 142176) (-3871 . 141649) (-3872 . 141525) - (-3873 . 141448) (-3874 . 141221) (-3875 . 141140) (-3876 . 140963) - (-3877 . 140935) (-3878 . 140782) (-3879 . 140629) (-3880 . 140405) - (-3881 . 140332) (-3882 . 140194) (* . 136081) (-3884 . 136026) - (-3885 . 135974) (-3886 . 135901) (-3887 . 135786) (-3888 . 135554) - (-3889 . 135504) (-3890 . 135367) (-3891 . 135298) (-3892 . 135197) - (-3893 . 135057) (-3894 . 134353) (-3895 . 134129) (-3896 . 134032) - (-3897 . 133962) (-3898 . 133885) (-3899 . 133667) (-3900 . 133611) - (-3901 . 133425) (-3902 . 133328) (-3903 . 133170) (-3904 . 133082) - (-3905 . 132401) (-3906 . 132345) (-3907 . 132054) (-3908 . 131930) - (-3909 . 131857) (-3910 . 131798) (-3911 . 131761) (-3912 . 131663) - (-3913 . 131613) (-3914 . 131519) (-3915 . 131352) (-3916 . 131196) - (-3917 . 131113) (-3918 . 130660) (-3919 . 130388) (-3920 . 130338) - (-3921 . 130250) (-3922 . 130013) (-3923 . 129806) (-3924 . 129599) - (-3925 . 128898) (-3926 . 128645) (-3927 . 128543) (-3928 . 128117) - (-3929 . 128013) (-3930 . 126921) (-3931 . 126634) (-3932 . 126504) - (-3933 . 126403) (-3934 . 125060) (-3935 . 124983) (-3936 . 124604) - (-3937 . 124497) (-3938 . 124419) (-3939 . 124282) (-3940 . 124203) - (-3941 . 124169) (-3942 . 123941) (-3943 . 123836) (-3944 . 123605) - (-3945 . 123042) (-3946 . 122675) (-3947 . 122604) (-3948 . 122537) - (-3949 . 122455) (-3950 . 122385) (-3951 . 122308) (-3952 . 122200) - (-3953 . 122027) (-3954 . 121914) (-3955 . 121827) (-3956 . 121608) - (-3957 . 121556) (-3958 . 121505) (-3959 . 121431) (-3960 . 121255) - (-3961 . 121004) (-3962 . 120825) (-3963 . 120510) (-3964 . 120406) - (-3965 . 118628) (-3966 . 118469) (-3967 . 118396) (-3968 . 118295) - (-3969 . 117982) (-3970 . 117827) (-3971 . 117690) (-3972 . 117513) - (-3973 . 117440) (-3974 . 117385) (-3975 . 117281) (-3976 . 117104) - (-3977 . 117017) (-3978 . 116877) (-3979 . 116805) (-3980 . 116668) - (-3981 . 116612) (-3982 . 116441) (-3983 . 116409) (-3984 . 116215) - (-3985 . 116101) (-3986 . 116067) (-3987 . 115840) (-3988 . 115754) - (-3989 . 115502) (-3990 . 115186) (-3991 . 114810) (-3992 . 114667) - (-3993 . 114593) (-3994 . 114449) (-3995 . 114256) (-3996 . 114128) - (-3997 . 114059) (-3998 . 113950) (-3999 . 113747) (-4000 . 113617) - (-4001 . 113377) (-4002 . 113280) (-4003 . 113121) (-4004 . 113049) - (-4005 . 112797) (-4006 . 112435) (-4007 . 111249) (-4008 . 111059) - (-4009 . 110946) (-4010 . 110878) (-4011 . 110705) (-4012 . 110583) - (-4013 . 110440) (-4014 . 110099) (-4015 . 110044) (-4016 . 110012) - (-4017 . 109935) (-4018 . 108753) (-4019 . 108682) (-4020 . 108558) - (-4021 . 108470) (-4022 . 108363) (-4023 . 108123) (-4024 . 108039) - (-4025 . 107747) (-4026 . 107665) (-4027 . 107570) (-4028 . 105362) - (-4029 . 105274) (-4030 . 105121) (-4031 . 105060) (-4032 . 104997) - (-4033 . 104813) (-4034 . 104571) (-4035 . 104381) (-4036 . 104269) - (-4037 . 104152) (-4038 . 103954) (-4039 . 103902) (-4040 . 103510) - (-4041 . 103412) (-4042 . 103294) (-4043 . 103239) (-4044 . 103180) - (-4045 . 103125) (-4046 . 102997) (-4047 . 102847) (-4048 . 102770) - (-4049 . 101520) (-4050 . 101443) (-4051 . 101370) (-4052 . 100930) - (-4053 . 100802) (-4054 . 100685) (-4055 . 100607) (-4056 . 100454) - (-4057 . 100284) (-4058 . 100188) (-4059 . 99936) (-4060 . 99729) - (-4061 . 99482) (-4062 . 99399) (-4063 . 99322) (-4064 . 99212) - (-4065 . 98721) (-4066 . 98644) (-4067 . 98426) (-4068 . 98326) - (-4069 . 98273) (-4070 . 98058) (-4071 . 97979) (-4072 . 97757) - (-4073 . 97729) (-4074 . 97633) (-4075 . 97547) (-4076 . 97480) - (-4077 . 97036) (-4078 . 96929) (-4079 . 96774) (-4080 . 96725) - (-4081 . 96669) (-4082 . 96575) (-4083 . 96494) (-4084 . 96440) - (-4085 . 96274) (-4086 . 96209) (-4087 . 96157) (-4088 . 95534) - (-4089 . 94945) (-4090 . 94797) (-4091 . 94459) (-4092 . 75884) - (-4093 . 75789) (-4094 . 75761) (-4095 . 75376) (-4096 . 75288) - (-4097 . 75169) (-4098 . 75083) (-4099 . 74939) (-4100 . 74880) - (-4101 . 74668) (-4102 . 74484) (-4103 . 71663) (-4104 . 71569) - (-4105 . 71443) (-4106 . 71415) (-4107 . 71348) (-4108 . 71314) - (-4109 . 71229) (-4110 . 71150) (-4111 . 70945) (-4112 . 70720) - (-4113 . 70534) (-4114 . 70363) (-4115 . 70290) (-4116 . 70195) - (-4117 . 70030) (-4118 . 69908) (-4119 . 69776) (-4120 . 69663) - (-4121 . 69476) (-4122 . 69415) (-4123 . 69334) (-4124 . 68688) - (-4125 . 68563) (-4126 . 68307) (-4127 . 68183) (-4128 . 67766) - (-4129 . 67624) (-4130 . 67538) (-4131 . 67367) (-4132 . 67249) - (-4133 . 67166) (-4134 . 67138) (-4135 . 66974) (-4136 . 66382) - (-4137 . 66308) (-4138 . 65956) (-4139 . 65823) (-4140 . 65587) - (-4141 . 65472) (-4142 . 65368) (-4143 . 65175) (-4144 . 64916) - (-4145 . 64736) (-4146 . 64669) (-4147 . 64507) (-4148 . 64248) - (-4149 . 63992) (-4150 . 63873) (-4151 . 63653) (-4152 . 63600) - (-4153 . 63447) (-4154 . 63112) (-4155 . 62735) (-4156 . 62599) - (-4157 . 62398) (-4158 . 62179) (-4159 . 62127) (-4160 . 62054) - (-4161 . 62002) (-4162 . 61748) (-4163 . 61669) (-4164 . 61494) - (-4165 . 61410) (-4166 . 61314) (-4167 . 61119) (-4168 . 61063) - (-4169 . 60964) (-4170 . 60890) (-4171 . 60817) (-4172 . 60672) - (-4173 . 60517) (-4174 . 60461) (-4175 . 60331) (-4176 . 60220) - (-4177 . 60002) (-4178 . 59904) (-4179 . 59803) (-4180 . 59676) - (-4181 . 59588) (-4182 . 59437) (-4183 . 59254) (-4184 . 59177) - (-4185 . 58737) (-4186 . 58556) (-4187 . 58432) (-4188 . 57907) - (-4189 . 57505) (-4190 . 57130) (-4191 . 57071) (-4192 . 56485) - (-4193 . 56457) (-4194 . 56344) (-4195 . 56286) (-4196 . 56112) - (-4197 . 56018) (-4198 . 55610) (-4199 . 55383) (-4200 . 54810) - (-4201 . 54671) (-4202 . 54618) (-4203 . 54545) (-4204 . 54385) - (-4205 . 54332) (-4206 . 54279) (-4207 . 54121) (-4208 . 53984) - (-4209 . 53729) (-4210 . 53611) (-4211 . 53458) (-4212 . 53256) - (-4213 . 53058) (-4214 . 52996) (-4215 . 52569) (-4216 . 52472) - (-4217 . 52226) (-4218 . 52140) (-4219 . 52070) (-4220 . 51997) - (-4221 . 51806) (-4222 . 51747) (-4223 . 51680) (-4224 . 51598) - (-4225 . 51476) (-4226 . 51251) (-4227 . 51137) (-4228 . 49407) - (-4229 . 49096) (-4230 . 48972) (-4231 . 48877) (-4232 . 48625) - (-4233 . 48568) (-4234 . 48540) (-4235 . 48361) (-4236 . 48208) - (-4237 . 48145) (-4238 . 47763) (-4239 . 47696) (-4240 . 47629) - (-4241 . 47560) (-4242 . 47457) (-4243 . 47362) (-4244 . 47291) - (-4245 . 47225) (-4246 . 47196) (-4247 . 46955) (-4248 . 45651) - (-4249 . 45569) (-4250 . 45442) (-4251 . 45274) (-4252 . 43488) - (-4253 . 43454) (-4254 . 43370) (-4255 . 43152) (-4256 . 43069) - (-4257 . 42988) (-4258 . 42843) (-4259 . 42776) (-4260 . 42500) - (-4261 . 42448) (-4262 . 42416) (-4263 . 42338) (-4264 . 42120) - (-4265 . 42047) (-4266 . 41333) (-4267 . 40943) (-4268 . 40616) - (-4269 . 40546) (-4270 . 40451) (-4271 . 40374) (-4272 . 40248) - (-4273 . 40177) (-4274 . 40128) (-4275 . 40076) (-4276 . 40021) - (-4277 . 39936) (-4278 . 39706) (-4279 . 39608) (-4280 . 39481) - (-4281 . 39375) (-4282 . 39251) (-4283 . 39128) (-4284 . 38866) - (-4285 . 38644) (-4286 . 37970) (-4287 . 37887) (-4288 . 37752) - (-4289 . 37644) (-4290 . 37616) (-4291 . 33953) (-4292 . 33925) - (-4293 . 33809) (-4294 . 33757) (-4295 . 33674) (-4296 . 33564) - (-4297 . 33511) (-4298 . 33412) (-4299 . 33316) (-4300 . 33145) - (-4301 . 32972) (-4302 . 32701) (-4303 . 32624) (-4304 . 32527) - (-4305 . 31225) (-4306 . 31173) (-4307 . 31114) (-4308 . 31031) - (-4309 . 30913) (-4310 . 30666) (-4311 . 30529) (-4312 . 30356) - (-4313 . 30203) (-4314 . 30151) (-4315 . 30056) (-4316 . 30028) - (-4317 . 29954) (-4318 . 29922) (-4319 . 29829) (-4320 . 29498) - (-4321 . 29466) (-4322 . 29371) (-4323 . 27310) (-4324 . 27210) - (-4325 . 26783) (-4326 . 26600) (-4327 . 26568) (-4328 . 26494) - (-4329 . 26368) (-4330 . 26114) (-4331 . 25579) (-4332 . 25443) - (-4333 . 25314) (-4334 . 25172) (-4335 . 24370) (-4336 . 24208) - (-4337 . 24107) (-4338 . 24000) (-4339 . 23842) (-4340 . 23684) - (-4341 . 23583) (-4342 . 23499) (-4343 . 23425) (-4344 . 23366) - (-4345 . 22999) (-4346 . 22714) (-4347 . 22449) (-4348 . 22384) - (-4349 . 22325) (-4350 . 22052) (-4351 . 21945) (-4352 . 21674) - (-4353 . 21527) (-4354 . 21448) (-4355 . 21392) (-4356 . 21234) - (-4357 . 20999) (-4358 . 20687) (-4359 . 20288) (-4360 . 20187) - (-4361 . 20114) (-4362 . 19951) (-4363 . 19198) (-4364 . 19102) - (-4365 . 18806) (-4366 . 18712) (-4367 . 14712) (-4368 . 14596) - (-4369 . 14536) (-4370 . 14463) (-4371 . 14406) (-4372 . 14268) - (-4373 . 14157) (-4374 . 14085) (-4375 . 11857) (-4376 . 11114) - (-4377 . 11036) (-4378 . 10942) (-4379 . 10823) (-4380 . 10733) - (-4381 . 10150) (-4382 . 10016) (-4383 . 9921) (-4384 . 9709) - (-4385 . 9647) (-4386 . 9540) (-4387 . 9427) (-4388 . 9297) - (-4389 . 9168) (-4390 . 9112) (-4391 . 9084) (-4392 . 9050) - (-4393 . 8892) (-4394 . 8858) (-4395 . 8631) (-4396 . 8553) - (-4397 . 8501) (-4398 . 8157) (-4399 . 7828) (-4400 . 7620) - (-4401 . 7555) (-4402 . 7261) (-4403 . 7202) (-4404 . 7049) - (-4405 . 6999) (-4406 . 6718) (-4407 . 6663) (-4408 . 6614) - (-4409 . 6513) (-4410 . 6383) (-4411 . 6302) (-4412 . 6171) - (-4413 . 5983) (-4414 . 5871) (-4415 . 5769) (-4416 . 5672) - (-4417 . 5469) (-4418 . 5374) (-4419 . 5325) (-4420 . 5184) - (-4421 . 5030) (-4422 . 4924) (-4423 . 4839) (-4424 . 4772) - (-4425 . 4662) (-4426 . 4557) (-4427 . 4454) (-4428 . 4356) - (-4429 . 4198) (-4430 . 4092) (-4431 . 3828) (-4432 . 1696) - (-4433 . 1533) (-4434 . 1310) (-4435 . 1034) (-4436 . 924) - (-4437 . 875) (-4438 . 680) (-4439 . 565) (-4440 . 203) (-4441 . 117) - (-4442 . 30))
\ No newline at end of file + (-12 (-5 *4 (-656 *3)) (-4 *3 (-1128 *5 *6 *7 *8)) + (-4 *5 (-13 (-317) (-148))) (-4 *6 (-805)) (-4 *7 (-862)) + (-4 *8 (-1084 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-603 *5 *6 *7 *8 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1236))))) +((-1320 . 731220) (-1321 . 731010) (-1322 . 730830) (-1323 . 730750) + (-1324 . 730681) (-1325 . 730622) (-1326 . 730503) (-1327 . 730432) + (-1328 . 730111) (-1329 . 729984) (-1330 . 729446) (-1331 . 729343) + (-1332 . 729290) (-1333 . 729217) (-1334 . 728913) (-1335 . 727949) + (-1336 . 727498) (-1337 . 727090) (-1338 . 726599) (-1339 . 726264) + (-1340 . 726046) (-1341 . 725873) (-1342 . 725778) (-1343 . 725526) + (-1344 . 725443) (-1345 . 724928) (-1346 . 724871) (-1347 . 724653) + (-1348 . 724592) (-1349 . 724483) (-1350 . 724415) (-1351 . 724169) + (-1352 . 723990) (-1353 . 723919) (-1354 . 723567) (-1355 . 723482) + (-1356 . 722946) (-1357 . 722673) (-1358 . 722620) (-1359 . 722450) + (-1360 . 721791) (-1361 . 721707) (-1362 . 721619) (-1363 . 721591) + (-1364 . 721433) (-1365 . 721341) (-1366 . 721197) (-1367 . 721153) + (-1368 . 721119) (-1369 . 720964) (-1370 . 720880) (-1371 . 720784) + (-1372 . 720300) (-1373 . 720241) (-1374 . 719984) (-1375 . 719843) + (-1376 . 719685) (-1377 . 719553) (-1378 . 719474) (-1379 . 719422) + (-1380 . 719317) (-1381 . 719199) (-1382 . 718954) (-1383 . 718833) + (-1384 . 718761) (-1385 . 718706) (-1386 . 718611) (-1387 . 718495) + (-1388 . 718129) (-1389 . 718076) (-1390 . 717978) (-1391 . 717904) + (-1392 . 717685) (-1393 . 717158) (-1394 . 716963) (-1395 . 716817) + (-1396 . 716667) (-1397 . 716240) (-1398 . 715823) (-1399 . 715728) + (-1400 . 715654) (-1401 . 715516) (-1402 . 715447) (-1403 . 715344) + (-1404 . 715094) (-1405 . 714995) (-1406 . 714742) (-1407 . 714613) + (-1408 . 714536) (-1409 . 714480) (-1410 . 714359) (-1411 . 714301) + (-1412 . 713667) (-1413 . 713596) (-1414 . 713309) (-1415 . 713205) + (-1416 . 713117) (-1417 . 713064) (-1418 . 712962) (-1419 . 711884) + (-1420 . 711785) (-1421 . 711685) (-1422 . 711517) (-1423 . 711358) + (-1424 . 710931) (-1425 . 710639) (-1426 . 710218) (-1427 . 710121) + (-1428 . 710013) (-1429 . 709985) (-1430 . 709932) (-1431 . 709830) + (-1432 . 709603) (-1433 . 707489) (-1434 . 707388) (-1435 . 707273) + (-1436 . 706764) (-1437 . 706735) (-1438 . 706651) (-1439 . 706387) + (-1440 . 706172) (-1441 . 706109) (-1442 . 706052) (-1443 . 705984) + (-1444 . 704919) (-1445 . 704865) (-1446 . 704780) (-1447 . 704752) + (-1448 . 704634) (-1449 . 704404) (-1450 . 704171) (-1451 . 704137) + (-1452 . 704007) (-1453 . 703480) (-1454 . 703132) (** . 700137) + (-1456 . 699898) (-1457 . 699847) (-1458 . 699538) (-1459 . 699385) + (-1460 . 699234) (-1461 . 699045) (-1462 . 698907) (-1463 . 698704) + (-1464 . 698305) (-1465 . 697954) (-1466 . 697738) (-1467 . 697650) + (-1468 . 697584) (-1469 . 697471) (-1470 . 697397) (-1471 . 696856) + (-1472 . 696743) (-1473 . 696583) (-1474 . 696440) (-1475 . 696124) + (-1476 . 696000) (-1477 . 695926) (-1478 . 695831) (-1479 . 695704) + (-1480 . 695651) (-1481 . 695577) (-1482 . 695456) (-1483 . 695206) + (-1484 . 694819) (-1485 . 694723) (-1486 . 694598) (-1487 . 694502) + (-1488 . 694365) (-1489 . 694198) (-1490 . 694121) (-1491 . 693874) + (-1492 . 693818) (-1493 . 693784) (-1494 . 693623) (-1495 . 693570) + (-1496 . 693474) (-1497 . 693400) (-1498 . 693219) (-1499 . 693141) + (-1500 . 692901) (-1501 . 692763) (-1502 . 692570) (-1503 . 692433) + (-1504 . 692399) (-1505 . 692278) (-1506 . 692073) (-1507 . 692007) + (-1508 . 691929) (-1509 . 691738) (-1510 . 691368) (-1511 . 689922) + (-1512 . 689869) (-1513 . 689716) (-1514 . 689660) (-1515 . 689589) + (-1516 . 689536) (-1517 . 689407) (-1518 . 689225) (-1519 . 689168) + (-1520 . 689015) (-1521 . 688488) (-1522 . 688270) (-1523 . 687909) + (-1524 . 687751) (-1525 . 687686) (-1526 . 687616) (-1527 . 687394) + (-1528 . 687299) (-1529 . 687174) (-1530 . 687093) (-1531 . 686996) + (-1532 . 686813) (-1533 . 686653) (-1534 . 686565) (-1535 . 686515) + (-1536 . 685811) (-1537 . 685743) (-1538 . 685618) (-1539 . 681075) + (-1540 . 680882) (-1541 . 680848) (-1542 . 680693) (-1543 . 680598) + (-1544 . 680517) (-1545 . 680375) (-1546 . 680347) (-1547 . 680294) + (-1548 . 680151) (-1549 . 679470) (-1550 . 679327) (-1551 . 678110) + (-1552 . 677842) (-1553 . 677718) (-1554 . 676722) (-1555 . 676655) + (-1556 . 676560) (-1557 . 675958) (-1558 . 675666) (-1559 . 675517) + (-1560 . 675289) (-1561 . 675222) (-1562 . 675163) (-1563 . 675077) + (-1564 . 675003) (-1565 . 673933) (-1566 . 673763) (-1567 . 673660) + (-1568 . 673556) (-1569 . 673367) (-1570 . 673114) (-1571 . 673061) + (-1572 . 672501) (-1573 . 672400) (-1574 . 671741) (-1575 . 671663) + (-1576 . 671603) (-1577 . 671547) (-1578 . 671494) (-1579 . 671442) + (-1580 . 671348) (-1581 . 671204) (-1582 . 670977) (-1583 . 670870) + (-1584 . 670775) (-1585 . 670655) (-1586 . 670452) (-1587 . 670171) + (-1588 . 670070) (-1589 . 669811) (-1590 . 669715) (-1591 . 669684) + (-1592 . 669553) (-1593 . 669451) (-1594 . 669233) (-1595 . 669120) + (-1596 . 668810) (-1597 . 668563) (-1598 . 668493) (-1599 . 668369) + (-1600 . 668253) (-1601 . 668055) (-1602 . 668027) (-1603 . 667974) + (-1604 . 667895) (-1605 . 667752) (-1606 . 667653) (-1607 . 664872) + (-1608 . 664723) (-1609 . 664622) (-1610 . 664464) (-1611 . 664327) + (-1612 . 664204) (-1613 . 664097) (-1614 . 663849) (-1615 . 663658) + (-1616 . 663349) (-1617 . 663167) (-1618 . 663138) (-1619 . 663067) + (-1620 . 662914) (-1621 . 662644) (-1622 . 662398) (-1623 . 662318) + (-1624 . 662038) (-1625 . 661942) (-1626 . 661890) (-1627 . 661799) + (-1628 . 661684) (-1629 . 660926) (-1630 . 660740) (-1631 . 660546) + (-1632 . 646313) (-1633 . 646177) (-1634 . 646108) (-1635 . 646012) + (-1636 . 645766) (-1637 . 645207) (-1638 . 645133) (-1639 . 645037) + (-1640 . 644921) (-1641 . 644640) (-1642 . 644572) (-1643 . 640509) + (-1644 . 640435) (-1645 . 640149) (-1646 . 640097) (-1647 . 639996) + (-1648 . 639832) (-1649 . 639273) (-1650 . 639027) (-1651 . 638973) + (-1652 . 638835) (-1653 . 638634) (-1654 . 638578) (-1655 . 638347) + (-1656 . 638264) (-1657 . 638026) (-1658 . 637970) (-1659 . 637893) + (-1660 . 637808) (-1661 . 637178) (-1662 . 637065) (-1663 . 636977) + (-1664 . 636795) (-1665 . 636655) (-1666 . 636545) (-1667 . 636365) + (-1668 . 636248) (-1669 . 636074) (-1670 . 635927) (-1671 . 635627) + (-1672 . 635553) (-1673 . 635458) (-1674 . 635430) (-1675 . 634951) + (-1676 . 634899) (-1677 . 634756) (-1678 . 634541) (-1679 . 634413) + (-1680 . 634384) (-1681 . 634279) (-1682 . 633852) (-1683 . 633689) + (-1684 . 633559) (-1685 . 633415) (-1686 . 633344) (-1687 . 633164) + (-1688 . 633076) (-1689 . 632975) (-1690 . 632594) (-1691 . 632516) + (-1692 . 630171) (-1693 . 630117) (-1694 . 630014) (-1695 . 629912) + (-1696 . 629757) (-1697 . 629612) (-1698 . 629180) (-1699 . 629056) + (-1700 . 628922) (-1701 . 628849) (-1702 . 628817) (-1703 . 628785) + (-1704 . 628494) (-1705 . 628247) (-1706 . 627889) (-1707 . 627549) + (-1708 . 626939) (-1709 . 626766) (-1710 . 626241) (-1711 . 626140) + (-1712 . 625823) (-1713 . 625724) (-1714 . 624526) (-1715 . 624442) + (-1716 . 623998) (-1717 . 623939) (-1718 . 623812) (-1719 . 623668) + (-1720 . 623598) (-1721 . 623452) (-1722 . 623320) (-1723 . 622963) + (-1724 . 622845) (-1725 . 622635) (-1726 . 622457) (-1727 . 622402) + (-1728 . 622234) (-1729 . 622118) (-1730 . 622048) (-1731 . 621622) + (-1732 . 621280) (-1733 . 621231) (-1734 . 621010) (-1735 . 620840) + (-1736 . 620734) (-1737 . 620646) (-1738 . 620528) (-1739 . 620136) + (-1740 . 620053) (-1741 . 619907) (-1742 . 619879) (-1743 . 619794) + (-1744 . 619171) (-1745 . 619018) (-1746 . 618922) (-1747 . 618681) + (-1748 . 618230) (-1749 . 618107) (-1750 . 618047) (-1751 . 617997) + (-1752 . 617651) (-1753 . 617359) (-1754 . 617222) (-1755 . 617123) + (-1756 . 616998) (-1757 . 616884) (-1758 . 616453) (-1759 . 616032) + (-1760 . 615585) (-1761 . 615300) (-1762 . 615228) (-1763 . 615001) + (-1764 . 614828) (-1765 . 614649) (-1766 . 614578) (-1767 . 614359) + (-1768 . 614292) (-1769 . 614192) (-1770 . 613394) (-1771 . 613363) + (-1772 . 613175) (-1773 . 613111) (-1774 . 612816) (-1775 . 612735) + (-1776 . 612503) (-1777 . 612409) (-1778 . 612323) (-1779 . 612235) + (-1780 . 612132) (-1781 . 612064) (-1782 . 611956) (-1783 . 611785) + (-1784 . 611364) (-1785 . 611270) (-1786 . 610841) (-1787 . 610696) + (-1788 . 610601) (-1789 . 610492) (-1790 . 610386) (-1791 . 610323) + (-1792 . 609934) (-1793 . 609468) (-1794 . 609340) (-1795 . 609273) + (-1796 . 608520) (-1797 . 608386) (-1798 . 608319) (-1799 . 608203) + (-1800 . 607831) (-1801 . 607779) (-1802 . 607492) (-1803 . 606869) + (-1804 . 606802) (-1805 . 606435) (-1806 . 606201) (-1807 . 606127) + (-1808 . 605934) (-1809 . 604742) (-1810 . 604674) (-1811 . 604530) + (-1812 . 604324) (-1813 . 604196) (-1814 . 604077) (-1815 . 603913) + (-1816 . 603511) (-1817 . 603336) (-1818 . 603117) (-1819 . 603065) + (-1820 . 602963) (-1821 . 602746) (-1822 . 602565) (-1823 . 602469) + (-1824 . 602341) (-1825 . 602171) (-1826 . 601921) (-1827 . 601800) + (-1828 . 601633) (-1829 . 601556) (-1830 . 600993) (-1831 . 600934) + (-1832 . 600855) (-1833 . 600740) (-1834 . 600662) (-1835 . 600561) + (-1836 . 600488) (-1837 . 600311) (-1838 . 600277) (-1839 . 594763) + (-1840 . 594689) (-1841 . 594593) (-1842 . 594526) (-1843 . 594476) + (-1844 . 594394) (-1845 . 594251) (-1846 . 593662) (-1847 . 593450) + (-1848 . 593307) (-1849 . 593200) (-1850 . 593025) (-1851 . 592991) + (-1852 . 592806) (-1853 . 592413) (-1854 . 591875) (-1855 . 591714) + (-1856 . 591614) (-1857 . 591452) (-1858 . 590586) (-1859 . 590466) + (-1860 . 590145) (-1861 . 589968) (-1862 . 589886) (-1863 . 589745) + (-1864 . 589303) (-1865 . 589236) (-1866 . 589183) (-1867 . 588980) + (-1868 . 588839) (-1869 . 588787) (-1870 . 588728) (-1871 . 588675) + (-1872 . 588538) (-1873 . 588479) (-1874 . 588409) (-1875 . 588310) + (-1876 . 587975) (-1877 . 587832) (-1878 . 587561) (-1879 . 587339) + (-1880 . 587214) (-1881 . 587055) (-1882 . 586914) (-1883 . 586570) + (-1884 . 586460) (-1885 . 586390) (-1886 . 586245) (-1887 . 586165) + (-1888 . 586029) (-1889 . 585942) (-1890 . 585872) (-1891 . 585703) + (-1892 . 585428) (-1893 . 585150) (-1894 . 585079) (-1895 . 584933) + (-1896 . 584820) (-1897 . 584648) (-1898 . 584552) (-1899 . 584437) + (-1900 . 583891) (-1901 . 583529) (-1902 . 583385) (-1903 . 583063) + (-1904 . 582992) (-1905 . 582826) (-1906 . 582729) (-1907 . 582626) + (-1908 . 582553) (-1909 . 582338) (-1910 . 582090) (-1911 . 581784) + (-1912 . 581704) (-1913 . 581642) (-1914 . 581589) (-1915 . 581498) + (-1916 . 580577) (-1917 . 580528) (-1918 . 580456) (-1919 . 580429) + (-1920 . 580322) (-1921 . 580251) (-1922 . 580192) (-1923 . 579903) + (-1924 . 579845) (-1925 . 579766) (-1926 . 579682) (-1927 . 579628) + (-1928 . 579448) (-1929 . 579347) (-1930 . 579140) (-1931 . 578992) + (-1932 . 578843) (-1933 . 578675) (-1934 . 578604) (-1935 . 578541) + (-1936 . 578447) (-1937 . 578319) (-1938 . 578282) (-1939 . 578196) + (-1940 . 578141) (-1941 . 578046) (-1942 . 577907) (-1943 . 577769) + (-1944 . 577712) (-1945 . 577464) (-1946 . 577212) (-1947 . 575670) + (-1948 . 575638) (-1949 . 575458) (-1950 . 575199) (-1951 . 574943) + (-1952 . 574752) (-1953 . 574640) (-1954 . 574313) (-1955 . 574232) + (-1956 . 574114) (-1957 . 574023) (-1958 . 573679) (-1959 . 573519) + (-1960 . 572816) (-1961 . 572701) (-1962 . 572643) (-1963 . 572057) + (-1964 . 571988) (-1965 . 571804) (-1966 . 571776) (-1967 . 571657) + (-1968 . 569689) (-1969 . 569603) (-1970 . 567973) (-1971 . 567921) + (-1972 . 567869) (-1973 . 567816) (-1974 . 567743) (-1975 . 567682) + (-1976 . 567630) (-1977 . 567512) (-1978 . 567385) (-1979 . 567284) + (-1980 . 566425) (-1981 . 566359) (-1982 . 566236) (-1983 . 566044) + (-1984 . 565915) (-1985 . 565707) (-1986 . 565578) (-1987 . 565498) + (-1988 . 565169) (-1989 . 565015) (-1990 . 564797) (-1991 . 563501) + (-1992 . 563172) (-1993 . 562862) (-1994 . 562785) (-1995 . 562535) + (-1996 . 562449) (-1997 . 562354) (-1998 . 562286) (-1999 . 562190) + (-2000 . 562058) (-2001 . 561975) (-2002 . 561680) (-2003 . 561446) + (-2004 . 561348) (-2005 . 561052) (-2006 . 560844) (-2007 . 560751) + (-2008 . 560677) (-2009 . 560384) (-2010 . 560082) (-2011 . 559974) + (-2012 . 559816) (-2013 . 559249) (-2014 . 557188) (-2015 . 556692) + (-2016 . 556537) (-2017 . 556340) (-2018 . 556285) (-2019 . 556185) + (-2020 . 556060) (-2021 . 555100) (-2022 . 555022) (-2023 . 554903) + (-2024 . 554804) (-2025 . 554646) (-2026 . 554533) (-2027 . 553947) + (-2028 . 553864) (-2029 . 553744) (-2030 . 552777) (-2031 . 552676) + (-2032 . 552610) (-2033 . 552143) (-2034 . 551805) (-2035 . 551704) + (-2036 . 551649) (-2037 . 551519) (-2038 . 551431) (-2039 . 551379) + (-2040 . 548964) (-2041 . 548895) (-2042 . 548722) (-2043 . 548598) + (-2044 . 548443) (-2045 . 548125) (-2046 . 548046) (-2047 . 547941) + (-2048 . 547849) (-2049 . 547589) (-2050 . 547516) (-2051 . 546842) + (-2052 . 545076) (-2053 . 545018) (-2054 . 544946) (-2055 . 544787) + (-2056 . 544716) (-2057 . 544661) (-2058 . 544534) (-2059 . 544485) + (-2060 . 544407) (-2061 . 543730) (-2062 . 543629) (-2063 . 543422) + (-2064 . 543195) (-2065 . 541740) (-2066 . 541548) (-2067 . 541471) + (-2068 . 541370) (-2069 . 541300) (-2070 . 541226) (-2071 . 541173) + (-2072 . 541121) (-2073 . 540990) (-2074 . 539500) (-2075 . 539448) + (-2076 . 538694) (-2077 . 538164) (-2078 . 538064) (-2079 . 537969) + (-2080 . 537867) (-2081 . 537773) (-2082 . 537676) (-2083 . 537648) + (-2084 . 537495) (-2085 . 537412) (-2086 . 537088) (-2087 . 536736) + (-2088 . 536673) (-2089 . 536606) (-2090 . 536578) (-2091 . 536370) + (-2092 . 535774) (-2093 . 535556) (-2094 . 535250) (-2095 . 534514) + (-2096 . 534361) (-2097 . 534287) (-2098 . 534235) (-2099 . 533903) + (-2100 . 533788) (-2101 . 533702) (-2102 . 533650) (-2103 . 533471) + (-2104 . 533358) (-2105 . 533195) (-2106 . 533098) (-2107 . 532990) + (-2108 . 532934) (-2109 . 532711) (-2110 . 532520) (-2111 . 532228) + (-2112 . 532063) (-2113 . 531891) (-2114 . 531829) (-2115 . 530941) + (-2116 . 530813) (-2117 . 530761) (-2118 . 530334) (-2119 . 530239) + (-2120 . 530094) (-2121 . 529956) (-2122 . 529873) (-2123 . 529647) + (-2124 . 529527) (-2125 . 529145) (-2126 . 529092) (-2127 . 528987) + (-2128 . 528806) (-2129 . 528162) (-2130 . 527322) (-2131 . 527195) + (-2132 . 527138) (-2133 . 527037) (-2134 . 526924) (-2135 . 526829) + (-2136 . 526670) (-2137 . 526386) (-2138 . 526282) (-2139 . 526203) + (-2140 . 526056) (-2141 . 526004) (-2142 . 524832) (-2143 . 524758) + (-2144 . 524642) (-2145 . 524231) (-2146 . 524178) (-2147 . 524014) + (-2148 . 523078) (-2149 . 522906) (-2150 . 522743) (-2151 . 522533) + (-2152 . 522367) (-2153 . 522252) (-2154 . 522133) (-2155 . 522054) + (-2156 . 521705) (-2157 . 521547) (-2158 . 521452) (-2159 . 521275) + (-2160 . 521168) (-2161 . 521078) (-2162 . 521019) (-2163 . 520839) + (-2164 . 520705) (-2165 . 520631) (-2166 . 519494) (-2167 . 519423) + (-2168 . 519314) (-2169 . 519263) (-2170 . 519050) (-2171 . 518662) + (-2172 . 518464) (-2173 . 518379) (-2174 . 518283) (-2175 . 518156) + (-2176 . 518071) (-2177 . 517983) (-2178 . 517608) (-2179 . 517534) + (-2180 . 517480) (-2181 . 517337) (-2182 . 517149) (-2183 . 516890) + (-2184 . 515547) (-2185 . 515397) (-2186 . 515341) (-2187 . 515212) + (-2188 . 515042) (-2189 . 514971) (-2190 . 514940) (-2191 . 514588) + (-2192 . 514102) (-2193 . 514074) (-2194 . 513995) (-2195 . 513891) + (-2196 . 513664) (-2197 . 513445) (-2198 . 513368) (-2199 . 513336) + (-2200 . 513259) (-2201 . 512735) (-2202 . 512124) (-2203 . 511334) + (-2204 . 510896) (-2205 . 510772) (-2206 . 510609) (-2207 . 510243) + (-2208 . 510160) (-2209 . 510131) (-2210 . 510044) (-2211 . 509974) + (-2212 . 509861) (-2213 . 509726) (-2214 . 509487) (-2215 . 509410) + (-2216 . 509357) (-2217 . 509279) (-2218 . 508908) (-2219 . 508805) + (-2220 . 508668) (-2221 . 508205) (-2222 . 508138) (-2223 . 508034) + (-2224 . 507938) (-2225 . 507846) (-2226 . 507722) (-2227 . 507552) + (-2228 . 507411) (-2229 . 507221) (-2230 . 506713) (-2231 . 506646) + (-2232 . 506578) (-2233 . 506426) (-2234 . 506362) (-2235 . 506288) + (-2236 . 506151) (-2237 . 505792) (-2238 . 505677) (-2239 . 505567) + (-2240 . 505505) (-2241 . 505438) (-2242 . 505388) (-2243 . 505238) + (-2244 . 505122) (-2245 . 505048) (-2246 . 503267) (-2247 . 502954) + (-2248 . 502926) (-2249 . 502771) (-2250 . 502614) (-9 . 502586) + (-2252 . 502558) (-2253 . 502358) (-2254 . 502275) (-2255 . 502141) + (-2256 . 501983) (-2257 . 501860) (-2258 . 501764) (-2259 . 501303) + (-2260 . 501241) (-8 . 501213) (-2262 . 501116) (-2263 . 501013) + (-2264 . 500527) (-2265 . 500319) (-2266 . 500171) (-2267 . 499938) + (-2268 . 499879) (-2269 . 499708) (-2270 . 499651) (-7 . 499623) + (-2272 . 499465) (-2273 . 499377) (-2274 . 499300) (-2275 . 499147) + (-2276 . 498943) (-2277 . 498787) (-2278 . 498706) (-2279 . 498546) + (-2280 . 498166) (-2281 . 497745) (-2282 . 497546) (-2283 . 497469) + (-2284 . 497409) (-2285 . 496823) (-2286 . 496737) (-2287 . 496647) + (-2288 . 496554) (-2289 . 496378) (-2290 . 496082) (-2291 . 495689) + (-2292 . 495618) (-2293 . 495390) (-2294 . 495318) (-2295 . 495263) + (-2296 . 495179) (-2297 . 495120) (-2298 . 494842) (-2299 . 494646) + (-2300 . 494441) (-2301 . 494311) (-2302 . 494185) (-2303 . 494151) + (-2304 . 494021) (-2305 . 493964) (-2306 . 493870) (-2307 . 493704) + (-2308 . 493230) (-2309 . 493011) (-2310 . 492585) (-2311 . 492367) + (-2312 . 492301) (-2313 . 492239) (-2314 . 491949) (-2315 . 491882) + (-2316 . 491829) (-2317 . 491695) (-2318 . 491565) (-2319 . 491480) + (-2320 . 491318) (-2321 . 491225) (-2322 . 491122) (-2323 . 490999) + (-2324 . 490690) (-2325 . 490602) (-2326 . 490516) (-2327 . 490412) + (-2328 . 490356) (-2329 . 490263) (-2330 . 490202) (-2331 . 489774) + (-2332 . 489576) (-2333 . 489452) (-2334 . 489356) (-2335 . 489278) + (-2336 . 489099) (-2337 . 489032) (-2338 . 488926) (-2339 . 488825) + (-2340 . 488545) (-2341 . 488430) (-2342 . 488111) (-2343 . 487759) + (-2344 . 487689) (-2345 . 487640) (-2346 . 487545) (-2347 . 487489) + (-2348 . 487318) (-2349 . 487266) (-2350 . 486882) (-2351 . 486783) + (-2352 . 486631) (-2353 . 486476) (-2354 . 486424) (-2355 . 486350) + (-2356 . 486166) (-2357 . 486072) (-2358 . 485942) (-2359 . 485784) + (-2360 . 485631) (-2361 . 485530) (-2362 . 485424) (-2363 . 485279) + (-2364 . 485193) (-2365 . 485099) (-2366 . 484770) (-2367 . 484702) + (-2368 . 484064) (-2369 . 483991) (-2370 . 483840) (-2371 . 483761) + (-2372 . 483620) (-2373 . 483429) (-2374 . 483376) (-2375 . 483245) + (-2376 . 483120) (-2377 . 482980) (-2378 . 482882) (-2379 . 482810) + (-2380 . 482599) (-2381 . 482488) (-2382 . 482328) (-2383 . 482268) + (-2384 . 482027) (-2385 . 481932) (-2386 . 481875) (-2387 . 481544) + (-2388 . 481165) (-2389 . 481058) (-2390 . 480714) (-2391 . 480462) + (-2392 . 480410) (-2393 . 480339) (-2394 . 480229) (-2395 . 480100) + (-2396 . 480051) (-2397 . 479968) (-2398 . 477127) (-2399 . 477041) + (-2400 . 476611) (-2401 . 475430) (-2402 . 475075) (-2403 . 474994) + (-2404 . 474894) (-2405 . 474811) (-2406 . 474686) (-2407 . 474633) + (-2408 . 474556) (-2409 . 474489) (-2410 . 474386) (-2411 . 474290) + (-2412 . 474000) (-2413 . 473593) (-2414 . 473477) (-2415 . 473406) + (-2416 . 472490) (-2417 . 472011) (-2418 . 471773) (-2419 . 471615) + (-2420 . 471542) (-2421 . 471446) (-2422 . 471387) (-2423 . 471190) + (-2424 . 471004) (-2425 . 470871) (-2426 . 469991) (-2427 . 469697) + (-2428 . 469322) (-2429 . 469007) (-2430 . 468714) (-2431 . 468485) + (-2432 . 468433) (-2433 . 468277) (-2434 . 468224) (-2435 . 468113) + (-2436 . 467891) (-2437 . 467638) (-2438 . 467440) (-2439 . 467412) + (-2440 . 467318) (-2441 . 467245) (-2442 . 466967) (-2443 . 466898) + (-2444 . 466846) (-2445 . 457396) (-2446 . 456661) (-2447 . 456439) + (-2448 . 456362) (-2449 . 456098) (-2450 . 454521) (-2451 . 454410) + (-2452 . 454264) (-2453 . 454176) (-2454 . 454012) (-2455 . 453889) + (-2456 . 453741) (-2457 . 453307) (-2458 . 453224) (-2459 . 453169) + (-2460 . 453083) (-2461 . 453000) (-2462 . 452972) (-2463 . 452769) + (-2464 . 452562) (-2465 . 451595) (-2466 . 451412) (-2467 . 451110) + (-2468 . 450670) (-2469 . 450166) (-2470 . 450076) (-2471 . 450009) + (-2472 . 449939) (-2473 . 449765) (-2474 . 449618) (-2475 . 449562) + (-2476 . 449395) (-2477 . 449239) (-2478 . 449153) (-2479 . 448988) + (-2480 . 448770) (-2481 . 448686) (-2482 . 448483) (-2483 . 448331) + (-2484 . 448247) (-2485 . 448163) (-2486 . 447996) (-2487 . 447944) + (-2488 . 447688) (-2489 . 447492) (-2490 . 447425) (-2491 . 447284) + (-2492 . 447234) (-2493 . 447185) (-2494 . 447040) (-2495 . 446966) + (-2496 . 446479) (-2497 . 446401) (-2498 . 446175) (-2499 . 446030) + (-2500 . 445822) (-2501 . 445718) (-2502 . 442419) (-2503 . 442352) + (-2504 . 442236) (-2505 . 442072) (-2506 . 441949) (-2507 . 441858) + (-2508 . 441706) (-2509 . 441046) (-2510 . 440204) (-2511 . 439888) + (-2512 . 439815) (-2513 . 439579) (-2514 . 439512) (-2515 . 439302) + (-2516 . 439221) (-2517 . 439168) (-2518 . 438933) (-2519 . 438487) + (-2520 . 438242) (-2521 . 434633) (-2522 . 434543) (-2523 . 434446) + (-2524 . 434315) (-2525 . 434171) (-2526 . 434013) (-2527 . 433685) + (-2528 . 433617) (-2529 . 433540) (-2530 . 433487) (-2531 . 433401) + (-2532 . 432837) (-2533 . 432777) (-2534 . 432697) (-2535 . 432641) + (-2536 . 432256) (-2537 . 432186) (-2538 . 431976) (-2539 . 431924) + (-2540 . 431836) (-2541 . 431763) (-2542 . 431509) (-2543 . 431131) + (-2544 . 431032) (-2545 . 430937) (-2546 . 430777) (-2547 . 430674) + (-2548 . 430493) (-2549 . 430416) (-2550 . 430130) (-2551 . 429912) + (-2552 . 429852) (-2553 . 429492) (-2554 . 429117) (-2555 . 428955) + (-2556 . 428794) (-2557 . 428666) (-2558 . 428589) (-2559 . 428479) + (-2560 . 428323) (-2561 . 428090) (-2562 . 427986) (-2563 . 427851) + (-2564 . 427817) (-2565 . 427548) (-2566 . 427497) (-2567 . 426889) + (-2568 . 426790) (-2569 . 426612) (-2570 . 426538) (-2571 . 426156) + (-2572 . 425568) (-2573 . 425473) (-2574 . 425389) (-2575 . 425013) + (-2576 . 424919) (-2577 . 424409) (-2578 . 424299) (-2579 . 424135) + (-2580 . 422987) (-2581 . 422874) (-2582 . 422796) (-2583 . 422762) + (-2584 . 421986) (-2585 . 421876) (-2586 . 421640) (-2587 . 421554) + (-2588 . 421170) (-2589 . 420772) (-2590 . 420657) (-2591 . 420427) + (-2592 . 420349) (-2593 . 420212) (-2594 . 420184) (-2595 . 420131) + (-2596 . 420003) (-2597 . 419626) (-2598 . 419557) (-2599 . 419502) + (-2600 . 419405) (-2601 . 419351) (-2602 . 419141) (-2603 . 418829) + (-2604 . 417711) (-2605 . 417335) (-2606 . 416800) (-2607 . 416734) + (-2608 . 416648) (-2609 . 416401) (-2610 . 416318) (-2611 . 416234) + (-2612 . 415637) (-2613 . 415564) (-2614 . 415031) (-2615 . 414961) + (-2616 . 414533) (-2617 . 414287) (-2618 . 414181) (-2619 . 414129) + (-2620 . 414041) (-2621 . 413989) (-2622 . 413937) (-2623 . 413903) + (-2624 . 413766) (-2625 . 413474) (-2626 . 413358) (-2627 . 413291) + (-2628 . 413197) (-2629 . 413082) (-2630 . 412947) (-2631 . 412851) + (-2632 . 412721) (-2633 . 412449) (-2634 . 412288) (-2635 . 412210) + (-2636 . 412176) (-2637 . 412088) (-2638 . 411616) (-2639 . 411421) + (-2640 . 411304) (-2641 . 410864) (-2642 . 410709) (-2643 . 410621) + (-2644 . 410521) (-2645 . 410403) (-2646 . 410332) (-2647 . 410174) + (-2648 . 410001) (-2649 . 409749) (-2650 . 409721) (-2651 . 409667) + (-2652 . 409614) (-2653 . 409471) (-2654 . 409248) (-2655 . 408588) + (-2656 . 407984) (-2657 . 407712) (-2658 . 407659) (-2659 . 407483) + (-2660 . 406843) (-2661 . 406769) (-2662 . 406719) (-2663 . 405421) + (-2664 . 405277) (-2665 . 405131) (-2666 . 404987) (-2667 . 404840) + (-2668 . 404783) (-2669 . 404721) (-2670 . 404569) (-2671 . 404451) + (-2672 . 404374) (-2673 . 404258) (-2674 . 404172) (-2675 . 404140) + (-2676 . 404006) (-2677 . 403891) (-2678 . 403749) (-2679 . 402885) + (-2680 . 401589) (-2681 . 401492) (-2682 . 401302) (-2683 . 401245) + (-2684 . 401109) (-2685 . 400979) (-2686 . 400837) (-2687 . 400760) + (-2688 . 400594) (-2689 . 400490) (-2690 . 400154) (-2691 . 400015) + (-2692 . 399857) (-2693 . 399805) (-2694 . 399726) (-2695 . 399630) + (-2696 . 399546) (-2697 . 398845) (-2698 . 398606) (-2699 . 398496) + (-2700 . 398394) (-2701 . 398284) (-2702 . 398141) (-2703 . 398109) + (-2704 . 398042) (-2705 . 397985) (-2706 . 397339) (-2707 . 397052) + (-2708 . 396966) (-2709 . 396821) (-2710 . 396749) (-2711 . 396696) + (-2712 . 396435) (-2713 . 396184) (-2714 . 396110) (-2715 . 396000) + (-2716 . 395664) (-2717 . 395605) (-2718 . 395524) (-2719 . 394932) + (-2720 . 394769) (-2721 . 394617) (-2722 . 394565) (-2723 . 394463) + (-2724 . 394386) (-2725 . 394286) (-2726 . 394178) (-2727 . 393983) + (-2728 . 393625) (-2729 . 393523) (-2730 . 393361) (-2731 . 393083) + (-2732 . 391810) (-2733 . 391739) (-2734 . 391591) (-2735 . 390529) + (-2736 . 390445) (-2737 . 390332) (-2738 . 390248) (-2739 . 390181) + (-2740 . 390099) (-2741 . 390033) (-2742 . 389881) (-2743 . 389793) + (-2744 . 389691) (-2745 . 389442) (-2746 . 389383) (-2747 . 389318) + (-2748 . 389033) (-2749 . 388762) (-2750 . 388681) (-2751 . 388604) + (-2752 . 388304) (-2753 . 387901) (-2754 . 387625) (-2755 . 387403) + (-2756 . 387202) (-2757 . 386716) (-2758 . 386651) (-2759 . 386459) + (-2760 . 386325) (-2761 . 386265) (-2762 . 386166) (-2763 . 386071) + (-2764 . 385992) (-2765 . 385963) (-2766 . 385785) (-2767 . 385572) + (-2768 . 385507) (-2769 . 385450) (-2770 . 385394) (-2771 . 385262) + (-2772 . 385093) (-2773 . 385031) (-2774 . 384959) (-2775 . 384801) + (-2776 . 384767) (-2777 . 384669) (-2778 . 384239) (-2779 . 384151) + (-2780 . 383933) (-2781 . 383722) (-2782 . 383581) (-2783 . 383503) + (-2784 . 383449) (-2785 . 383364) (-2786 . 383038) (-2787 . 379375) + (-2788 . 379277) (-2789 . 379153) (-2790 . 379094) (-2791 . 378845) + (-2792 . 378623) (-2793 . 378134) (-2794 . 378081) (-2795 . 377995) + (-2796 . 377918) (-2797 . 377828) (-2798 . 377740) (-2799 . 377565) + (-2800 . 377394) (-2801 . 377342) (-2802 . 377290) (-2803 . 377225) + (-2804 . 376801) (-2805 . 376672) (-2806 . 376604) (-2807 . 376416) + (-2808 . 376326) (-2809 . 376237) (-2810 . 375990) (-2811 . 375892) + (-2812 . 375822) (-2813 . 375599) (-2814 . 375526) (-2815 . 375348) + (-2816 . 375069) (-2817 . 374772) (-2818 . 374699) (-2819 . 374616) + (-2820 . 374392) (-2821 . 374313) (-2822 . 374114) (-2823 . 374010) + (-2824 . 373824) (-2825 . 373691) (-2826 . 373460) (-2827 . 373302) + (-2828 . 373247) (-2829 . 372219) (-2830 . 372086) (-2831 . 371993) + (-2832 . 371897) (-2833 . 371386) (-2834 . 371116) (-2835 . 370944) + (-2836 . 370916) (-2837 . 370791) (-2838 . 370742) (-2839 . 370571) + (-2840 . 370505) (-2841 . 370392) (-2842 . 370076) (-2843 . 369967) + (-2844 . 369788) (-2845 . 369243) (-2846 . 369000) (-2847 . 368947) + (-2848 . 368751) (-2849 . 368169) (-12 . 367997) (-2851 . 367879) + (-2852 . 367614) (-2853 . 367110) (-2854 . 367009) (-2855 . 366915) + (-2856 . 366862) (-2857 . 366644) (-2858 . 366616) (-2859 . 366479) + (-2860 . 366300) (-2861 . 365913) (-2862 . 365854) (-2863 . 365718) + (-2864 . 365235) (-2865 . 365140) (-2866 . 365091) (-2867 . 364946) + (-2868 . 364851) (-2869 . 364533) (-2870 . 364480) (-2871 . 360480) + (-2872 . 360392) (-2873 . 360262) (-2874 . 359081) (-2875 . 358842) + (-2876 . 358705) (-2877 . 358494) (-2878 . 358420) (-2879 . 358299) + (-2880 . 358141) (-2881 . 357994) (-2882 . 357862) (-2883 . 357733) + (-2884 . 357655) (-2885 . 357462) (-2886 . 357347) (-2887 . 356195) + (-2888 . 356142) (-2889 . 355924) (-2890 . 355833) (-2891 . 355619) + (-2892 . 355497) (-2893 . 355440) (-2894 . 355318) (-2895 . 355290) + (-2896 . 354844) (-2897 . 354726) (-2898 . 354640) (-2899 . 354537) + (-2900 . 354455) (-2901 . 354328) (-2902 . 354222) (-2903 . 354112) + (-2904 . 354018) (-2905 . 353815) (-2906 . 353708) (-2907 . 353493) + (-2908 . 353410) (-2909 . 353293) (-2910 . 353264) (-2911 . 353209) + (-2912 . 353038) (-2913 . 352985) (-2914 . 352888) (-2915 . 352305) + (-2916 . 352114) (-2917 . 352077) (-2918 . 351928) (-2919 . 351470) + (-2920 . 351401) (-2921 . 351318) (-2922 . 351249) (-2923 . 350730) + (-2924 . 350415) (-2925 . 350337) (-2926 . 350260) (-2927 . 349749) + (-2928 . 349332) (-2929 . 349244) (-2930 . 349172) (-2931 . 348860) + (-2932 . 348718) (-2933 . 348666) (-2934 . 348059) (-2935 . 348006) + (-2936 . 347684) (-2937 . 347586) (-2938 . 347484) (-2939 . 347410) + (-2940 . 346776) (-2941 . 346709) (-2942 . 346632) (-2943 . 346452) + (-2944 . 346364) (-2945 . 346290) (-2946 . 346223) (-2947 . 346173) + (-2948 . 346096) (-2949 . 345897) (-2950 . 345566) (* . 341453) + (-2952 . 340361) (-2953 . 340296) (-2954 . 340199) (-2955 . 340054) + (-2956 . 340002) (-2957 . 339923) (-2958 . 339842) (-2959 . 339740) + (-2960 . 339662) (-2961 . 339566) (-2962 . 339250) (-2963 . 338965) + (-2964 . 338857) (-2965 . 338786) (-2966 . 338659) (-2967 . 338564) + (-2968 . 338532) (-2969 . 337533) (-2970 . 337463) (-2971 . 336896) + (-2972 . 336819) (-2973 . 336564) (-2974 . 336465) (-2975 . 336327) + (-2976 . 335781) (-2977 . 335709) (-2978 . 335598) (-2979 . 335451) + (-2980 . 335332) (-2981 . 335229) (-2982 . 334904) (-2983 . 334709) + (-2984 . 334428) (-2985 . 333833) (-2986 . 332493) (-2987 . 331729) + (-2988 . 331457) (-2989 . 331313) (-2990 . 331176) (-2991 . 331055) + (-2992 . 330967) (-2993 . 330872) (-2994 . 330799) (-2995 . 330732) + (-2996 . 330668) (-2997 . 330327) (-2998 . 330255) (-2999 . 330200) + (-3000 . 330147) (-3001 . 330091) (-3002 . 330054) (-3003 . 329947) + (-3004 . 329861) (-3005 . 329525) (-3006 . 329472) (-3007 . 329376) + (-3008 . 329288) (-3009 . 329109) (-3010 . 328878) (-3011 . 328744) + (-3012 . 328598) (-3013 . 328246) (-3014 . 328157) (-3015 . 328050) + (-3016 . 327983) (-3017 . 327923) (-3018 . 327789) (-3019 . 327719) + (-3020 . 327682) (-3021 . 327579) (-3022 . 327060) (-3023 . 326884) + (-3024 . 326797) (-3025 . 326554) (-3026 . 326332) (-3027 . 326208) + (-3028 . 326073) (-3029 . 325271) (-3030 . 325242) (-3031 . 325124) + (-3032 . 325056) (-3033 . 324899) (-3034 . 324756) (-3035 . 324637) + (-3036 . 324578) (-3037 . 324419) (-3038 . 324364) (-3039 . 324067) + (-3040 . 324012) (-3041 . 323875) (-3042 . 323616) (-3043 . 323407) + (-3044 . 323241) (-3045 . 322793) (-3046 . 322555) (-3047 . 322283) + (-3048 . 322089) (-3049 . 322002) (-3050 . 321866) (-3051 . 321620) + (-3052 . 321277) (-3053 . 320674) (-3054 . 320485) (-3055 . 320418) + (-3056 . 320314) (-3057 . 320286) (-3058 . 320201) (-3059 . 319671) + (-3060 . 319384) (-3061 . 319325) (-3062 . 319194) (-3063 . 319096) + (-3064 . 318957) (-3065 . 318707) (-3066 . 318579) (-3067 . 318493) + (-3068 . 318353) (-3069 . 318321) (-3070 . 318136) (-3071 . 318015) + (-3072 . 317964) (-3073 . 317573) (-3074 . 317520) (-3075 . 317367) + (-3076 . 317150) (-3077 . 316992) (-3078 . 316894) (-3079 . 316776) + (-3080 . 316681) (-3081 . 316625) (-3082 . 316420) (-3083 . 315234) + (-3084 . 314960) (-3085 . 314742) (-3086 . 314548) (-3087 . 314427) + (-3088 . 313948) (-3089 . 313796) (-3090 . 313630) (-3091 . 313410) + (-3092 . 312996) (-3093 . 312939) (-3094 . 312796) (-3095 . 311614) + (-3096 . 311352) (-3097 . 311212) (-3098 . 311103) (-3099 . 311047) + (-3100 . 310969) (-3101 . 310854) (-3102 . 310480) (-3103 . 310260) + (-3104 . 310167) (-3105 . 309583) (-3106 . 309495) (-3107 . 307287) + (-3108 . 307228) (-3109 . 307176) (-3110 . 306864) (-3111 . 306780) + (-3112 . 306728) (-3113 . 306014) (-3114 . 305918) (-3115 . 305756) + (-3116 . 305701) (-3117 . 305617) (-3118 . 305565) (-3119 . 305508) + (-3120 . 305434) (-3121 . 305201) (-3122 . 305044) (-3123 . 304940) + (-3124 . 304845) (-3125 . 304651) (-3126 . 304599) (-3127 . 304446) + (-3128 . 304347) (-3129 . 304267) (-3130 . 303925) (-3131 . 303856) + (-3132 . 303771) (-3133 . 303653) (-3134 . 303443) (-3135 . 302848) + (-3136 . 302795) (-3137 . 302649) (-3138 . 302572) (-3139 . 302520) + (-3140 . 302463) (-3141 . 302355) (-3142 . 302042) (-3143 . 301940) + (-3144 . 301778) (-3145 . 301695) (-3146 . 301613) (-3147 . 301497) + (-3148 . 301420) (-3149 . 301309) (-3150 . 301200) (-3151 . 301044) + (-3152 . 300961) (-3153 . 300619) (-3154 . 300166) (-3155 . 299959) + (-3156 . 298181) (-3157 . 297962) (-3158 . 297876) (-3159 . 297795) + (-3160 . 297650) (-3161 . 297567) (-3162 . 297294) (-3163 . 297242) + (-3164 . 297107) (-3165 . 296397) (-3166 . 296263) (-3167 . 295839) + (-3168 . 295625) (-3169 . 295558) (-3170 . 295505) (-3171 . 295375) + (-3172 . 295276) (-3173 . 295134) (-3174 . 295067) (-3175 . 295017) + (-3176 . 294939) (-3177 . 294604) (-3178 . 294410) (-3179 . 294057) + (-3180 . 293961) (-3181 . 293866) (-3182 . 293657) (-3183 . 293485) + (-3184 . 293387) (-3185 . 293178) (-3186 . 292993) (-3187 . 292932) + (-3188 . 292381) (-3189 . 292225) (-3190 . 292082) (-3191 . 292005) + (-3192 . 291267) (-3193 . 291128) (-3194 . 290962) (-3195 . 290790) + (-3196 . 290661) (-3197 . 290609) (-3198 . 290495) (-3199 . 290396) + (-3200 . 290317) (-3201 . 289986) (-3202 . 289734) (-3203 . 289581) + (-3204 . 289423) (-3205 . 289251) (-3206 . 289019) (-3207 . 288964) + (-3208 . 288851) (-3209 . 288685) (-3210 . 288323) (-3211 . 288031) + (-3212 . 287715) (-3213 . 287269) (-3214 . 287165) (-3215 . 286993) + (-3216 . 286745) (-3217 . 286663) (-3218 . 286606) (-3219 . 286216) + (-3220 . 286098) (-3221 . 285961) (-3222 . 285749) (-3223 . 285575) + (-3224 . 285438) (-3225 . 285385) (-3226 . 285213) (-3227 . 284920) + (-3228 . 284722) (-3229 . 284581) (-3230 . 284239) (-3231 . 284168) + (-3232 . 283950) (-3233 . 283887) (-3234 . 283804) (-3235 . 283153) + (-3236 . 282971) (-3237 . 282702) (-3238 . 282605) (-3239 . 282506) + (-3240 . 282319) (-3241 . 282267) (-3242 . 282167) (-3243 . 281348) + (-3244 . 281320) (-3245 . 281292) (-3246 . 281210) (-3247 . 281056) + (-3248 . 280978) (-3249 . 280807) (-3250 . 280748) (-3251 . 280477) + (-3252 . 280380) (-3253 . 280346) (-3254 . 280207) (-3255 . 280152) + (-3256 . 280014) (-3257 . 279687) (-3258 . 279603) (-3259 . 279544) + (-3260 . 279059) (-3261 . 279007) (-3262 . 278866) (-3263 . 278024) + (-3264 . 277951) (-3265 . 277884) (-3266 . 277440) (-3267 . 277357) + (-3268 . 277139) (-3269 . 277013) (-3270 . 276912) (-3271 . 276749) + (-3272 . 276642) (-3273 . 276249) (-3274 . 276134) (-3275 . 275932) + (-3276 . 275774) (-3277 . 275703) (-3278 . 275603) (-3279 . 275569) + (-3280 . 275492) (-3281 . 275307) (-3282 . 275227) (-3283 . 275139) + (-3284 . 275011) (-3285 . 274940) (-3286 . 274546) (-3287 . 274360) + (-3288 . 274217) (-3289 . 274104) (-3290 . 274009) (-3291 . 273757) + (-3292 . 273702) (-3293 . 273589) (-3294 . 273409) (-3295 . 273323) + (-3296 . 273144) (-3297 . 273093) (-3298 . 273020) (-3299 . 272960) + (-3300 . 272887) (-3301 . 272838) (-3302 . 272660) (-3303 . 272544) + (-3304 . 272401) (-3305 . 272333) (-3306 . 268383) (-3307 . 268276) + (-3308 . 268173) (-3309 . 268007) (-3310 . 267893) (-3311 . 267798) + (-3312 . 267594) (-3313 . 267498) (-3314 . 267446) (-3315 . 267320) + (-3316 . 267208) (-3317 . 267086) (-3318 . 266753) (-3319 . 266660) + (-3320 . 266608) (-3321 . 266510) (-3322 . 266433) (-3323 . 266249) + (-3324 . 266166) (-3325 . 265453) (-3326 . 265393) (-3327 . 265001) + (-3328 . 264973) (-3329 . 264924) (-3330 . 264841) (-3331 . 264532) + (-3332 . 264389) (-3333 . 262133) (-3334 . 262003) (-3335 . 261907) + (-3336 . 261620) (-3337 . 261527) (-3338 . 261445) (-3339 . 261346) + (-3340 . 261067) (-3341 . 260878) (-3342 . 260725) (-3343 . 260467) + (-3344 . 260407) (-3345 . 260325) (-3346 . 260159) (-3347 . 260066) + (-3348 . 259387) (-3349 . 259150) (-3350 . 258659) (-3351 . 258085) + (-3352 . 258008) (-3353 . 257939) (-3354 . 257774) (-3355 . 257321) + (-3356 . 256875) (-3357 . 256691) (-3358 . 256638) (-3359 . 256495) + (-3360 . 256414) (-3361 . 256295) (-3362 . 256130) (-3363 . 255976) + (-3364 . 255875) (-3365 . 255701) (-3366 . 255518) (-3367 . 255184) + (-3368 . 255098) (-3369 . 255002) (-3370 . 254947) (-3371 . 254819) + (-3372 . 254724) (-3373 . 254502) (-3374 . 254192) (-3375 . 253973) + (-3376 . 253562) (-3377 . 253380) (-3378 . 253225) (-3379 . 253155) + (-3380 . 252995) (-3381 . 252927) (-3382 . 252785) (-3383 . 252145) + (-3384 . 252032) (-3385 . 251939) (-3386 . 251820) (-3387 . 251747) + (-3388 . 250931) (-3389 . 250832) (-3390 . 250776) (-3391 . 250133) + (-3392 . 250033) (-3393 . 249858) (-3394 . 249715) (-3395 . 249541) + (-3396 . 249422) (-3397 . 249277) (-3398 . 249146) (-3399 . 249090) + (-3400 . 248932) (-3401 . 248828) (-3402 . 248582) (-3403 . 248119) + (-3404 . 247973) (-3405 . 247901) (-3406 . 247676) (-3407 . 245946) + (-3408 . 245817) (-3409 . 245274) (-3410 . 245131) (-3411 . 244973) + (-3412 . 244547) (-3413 . 243974) (-3414 . 243895) (-3415 . 243636) + (-3416 . 243321) (-3417 . 243269) (-3418 . 243141) (-3419 . 243059) + (-3420 . 242962) (-3421 . 242747) (-3422 . 242631) (-3423 . 242486) + (-3424 . 242386) (-3425 . 242187) (-3426 . 242132) (-3427 . 241890) + (-3428 . 241804) (-3429 . 241720) (-3430 . 241689) (-3431 . 241592) + (-3432 . 241229) (-3433 . 241148) (-3434 . 240480) (-3435 . 240359) + (-3436 . 240287) (-3437 . 240131) (-3438 . 240072) (-3439 . 239989) + (-3440 . 239872) (-3441 . 239770) (-3442 . 239637) (-3443 . 239091) + (-3444 . 238983) (-3445 . 238924) (-3446 . 238820) (-3447 . 238733) + (-3448 . 238508) (-3449 . 238381) (-3450 . 238218) (-3451 . 238145) + (-3452 . 238020) (-3453 . 237905) (-3454 . 237687) (-3455 . 237571) + (-3456 . 237504) (-3457 . 237066) (-3458 . 237016) (-3459 . 236929) + (-3460 . 236041) (-3461 . 235649) (-3462 . 234895) (-3463 . 234034) + (-3464 . 233878) (-3465 . 233824) (-3466 . 233745) (-3467 . 233690) + (-3468 . 233289) (-3469 . 232995) (-3470 . 232628) (-3471 . 232547) + (-3472 . 232448) (-3473 . 232395) (-3474 . 232308) (-3475 . 232256) + (-3476 . 232157) (-3477 . 231861) (-3478 . 231636) (-3479 . 231536) + (-3480 . 231484) (-3481 . 231376) (-3482 . 231317) (-3483 . 231218) + (-3484 . 231132) (-3485 . 230715) (-3486 . 230635) (-3487 . 230563) + (-3488 . 230489) (-3489 . 230347) (-3490 . 230174) (-3491 . 229783) + (-3492 . 229681) (-3493 . 229574) (-3494 . 229247) (-3495 . 228145) + (-3496 . 228023) (-3497 . 227816) (-3498 . 227785) (-3499 . 227701) + (-3500 . 227518) (-3501 . 226866) (-3502 . 226789) (-3503 . 226687) + (-3504 . 226074) (-3505 . 225952) (-3506 . 225924) (-3507 . 225857) + (-3508 . 225656) (-3509 . 225479) (-3510 . 225381) (-3511 . 221221) + (-3512 . 221082) (-3513 . 221010) (-3514 . 220796) (-3515 . 220369) + (-3516 . 220249) (-3517 . 220059) (-3518 . 219987) (-3519 . 219903) + (-3520 . 219847) (-3521 . 219755) (-3522 . 219487) (-3523 . 219381) + (-3524 . 219309) (-3525 . 219229) (-3526 . 217001) (-3527 . 216832) + (-3528 . 216740) (-3529 . 216429) (-3530 . 216327) (-3531 . 215982) + (-3532 . 215245) (-3533 . 215153) (-3534 . 215119) (-3535 . 215048) + (-3536 . 214949) (-3537 . 214860) (-3538 . 214711) (-3539 . 214459) + (-3540 . 214403) (-3541 . 214326) (-3542 . 214273) (-3543 . 214148) + (-3544 . 214093) (-3545 . 214007) (-3546 . 213973) (-3547 . 213643) + (-3548 . 213546) (-3549 . 213458) (-3550 . 213368) (-3551 . 213150) + (-3552 . 213077) (-3553 . 212897) (-3554 . 212671) (-3555 . 212599) + (-3556 . 212247) (-3557 . 212102) (-3558 . 211828) (-3559 . 211778) + (-3560 . 211717) (-3561 . 211432) (-3562 . 211305) (-3563 . 192730) + (-3564 . 192658) (-3565 . 192572) (-3566 . 192324) (-3567 . 192218) + (-3568 . 192117) (-3569 . 191861) (-3570 . 191761) (-3571 . 191608) + (-3572 . 191441) (-3573 . 188620) (-3574 . 188532) (-3575 . 188179) + (-3576 . 187892) (-3577 . 187819) (-3578 . 187604) (-3579 . 187352) + (-3580 . 187271) (-3581 . 187188) (-3582 . 186940) (-3583 . 186837) + (-3584 . 186316) (-3585 . 186091) (-3586 . 185993) (-3587 . 185919) + (-3588 . 185569) (-3589 . 185462) (-3590 . 185331) (-3591 . 185299) + (-3592 . 185170) (-3593 . 185117) (-3594 . 184802) (-3595 . 184616) + (-3596 . 184560) (-3597 . 184456) (-3598 . 184360) (-3599 . 184297) + (-3600 . 184116) (-3601 . 183920) (-3602 . 183760) (-3603 . 182537) + (-3604 . 182384) (-3605 . 182108) (-3606 . 180858) (-3607 . 180410) + (-3608 . 179867) (-3609 . 179755) (-3610 . 179587) (-3611 . 179504) + (-3612 . 179453) (-3613 . 179380) (-3614 . 179218) (-3615 . 178400) + (-3616 . 178298) (-3617 . 178088) (-3618 . 178030) (-3619 . 177890) + (-3620 . 177789) (-3621 . 177718) (-3622 . 177577) (-3623 . 176834) + (-3624 . 176775) (-3625 . 176619) (-3626 . 176524) (-3627 . 176409) + (-3628 . 176308) (-3629 . 176256) (-3630 . 175992) (-3631 . 175873) + (-3632 . 175821) (-3633 . 175740) (-3634 . 175480) (-3635 . 175297) + (-3636 . 175173) (-3637 . 175091) (-3638 . 175020) (-3639 . 174828) + (-3640 . 174700) (-3641 . 174356) (-3642 . 174156) (-3643 . 174073) + (-3644 . 174045) (-3645 . 173993) (-3646 . 173883) (-3647 . 173495) + (-3648 . 173113) (-3649 . 172963) (-3650 . 172883) (-3651 . 172786) + (-3652 . 172479) (-3653 . 172382) (-3654 . 172245) (-3655 . 172055) + (-3656 . 171907) (-3657 . 171855) (-3658 . 171755) (-3659 . 171681) + (-3660 . 170798) (-3661 . 170696) (-3662 . 170588) (-3663 . 170535) + (-3664 . 170219) (-3665 . 169836) (-3666 . 169629) (-3667 . 169572) + (-3668 . 169393) (-3669 . 169301) (-3670 . 169177) (-3671 . 169053) + (-3672 . 168986) (-3673 . 168627) (-3674 . 168497) (-3675 . 168444) + (-3676 . 168374) (-3677 . 168252) (-3678 . 168123) (-3679 . 167869) + (-3680 . 167721) (-3681 . 167648) (-3682 . 167312) (-3683 . 167153) + (-3684 . 166880) (-3685 . 166582) (-3686 . 165998) (-3687 . 165506) + (-3688 . 165451) (-3689 . 165399) (-3690 . 165285) (-3691 . 165087) + (-3692 . 165019) (-3693 . 164967) (-3694 . 164872) (-3695 . 164778) + (-3696 . 164722) (-3697 . 164667) (-3698 . 164581) (-3699 . 164495) + (-3700 . 164297) (-3701 . 164195) (-3702 . 164063) (-3703 . 163981) + (-3704 . 163850) (-3705 . 163554) (-3706 . 163375) (-3707 . 163215) + (-3708 . 163163) (-3709 . 162998) (-3710 . 161771) (-3711 . 161718) + (-3712 . 161296) (-3713 . 160428) (-3714 . 160356) (-3715 . 160282) + (-3716 . 160214) (-3717 . 159979) (-3718 . 159316) (-3719 . 159238) + (-3720 . 158942) (-3721 . 158827) (-3722 . 158746) (-3723 . 158594) + (-3724 . 158462) (-3725 . 158361) (-3726 . 158196) (-3727 . 157678) + (-3728 . 157609) (-3729 . 157449) (-3730 . 157354) (-3731 . 156050) + (-3732 . 155956) (-3733 . 155731) (-3734 . 155648) (-3735 . 155589) + (-3736 . 155378) (-3737 . 155246) (-3738 . 155033) (-3739 . 154870) + (-3740 . 154511) (-3741 . 154233) (-3742 . 154137) (-3743 . 154042) + (-3744 . 153947) (-3745 . 153895) (-3746 . 153834) (-3747 . 153104) + (-3748 . 152946) (-3749 . 152914) (-3750 . 152820) (-3751 . 152740) + (-3752 . 152627) (-3753 . 152574) (-3754 . 152515) (-3755 . 152388) + (-3756 . 152314) (-3757 . 151584) (-3758 . 151478) (-3759 . 151401) + (-3760 . 151297) (-3761 . 151082) (-3762 . 150849) (-3763 . 150778) + (-3764 . 150704) (-3765 . 150599) (-3766 . 150571) (-3767 . 150037) + (-3768 . 149360) (-3769 . 149308) (-3770 . 149257) (-3771 . 149134) + (-3772 . 149079) (-3773 . 149005) (-3774 . 148889) (-3775 . 148840) + (-3776 . 148695) (-3777 . 148572) (-3778 . 148007) (-3779 . 147954) + (-3780 . 147537) (-3781 . 147484) (-3782 . 147153) (-3783 . 146912) + (-3784 . 146771) (-3785 . 146676) (-3786 . 146605) (-3787 . 146550) + (-3788 . 145985) (-3789 . 145887) (-3790 . 145815) (-3791 . 145707) + (-3792 . 145468) (-3793 . 145150) (-3794 . 144943) (-3795 . 144783) + (-3796 . 144731) (-3797 . 144493) (-3798 . 143928) (-3799 . 143711) + (-3800 . 143450) (-3801 . 143345) (-3802 . 143182) (-3803 . 142851) + (-3804 . 142796) (-3805 . 142722) (-3806 . 142606) (-3807 . 142183) + (-3808 . 141508) (-3809 . 141477) (-3810 . 141301) (-3811 . 141099) + (-3812 . 141005) (-3813 . 140955) (-3814 . 140860) (-3815 . 140769) + (-3816 . 140385) (-3817 . 140054) (-3818 . 139650) (-3819 . 139513) + (-3820 . 138838) (-3821 . 138786) (-3822 . 138700) (-3823 . 138540) + (-3824 . 138290) (-3825 . 138014) (-3826 . 137633) (-3827 . 137495) + (-3828 . 137299) (-3829 . 136946) (-3830 . 136869) (-3831 . 136131) + (-3832 . 136029) (-3833 . 135943) (-3834 . 135851) (-3835 . 135750) + (-3836 . 135589) (-3837 . 135426) (-3838 . 135267) (-3839 . 134988) + (-3840 . 134799) (-3841 . 134236) (-3842 . 133721) (-3843 . 133498) + (-3844 . 133355) (-3845 . 133192) (-3846 . 132548) (-3847 . 132432) + (-3848 . 125489) (-3849 . 125301) (-3850 . 124934) (-3851 . 124127) + (-3852 . 123564) (-3853 . 123365) (-3854 . 123192) (-3855 . 123118) + (-3856 . 123039) (-3857 . 122937) (-3858 . 122746) (-3859 . 122650) + (-3860 . 122527) (-3861 . 122475) (-3862 . 122393) (-3863 . 121830) + (-3864 . 121602) (-3865 . 121425) (-3866 . 121357) (-3867 . 121329) + (-3868 . 121246) (-3869 . 121091) (-3870 . 121029) (-3871 . 120977) + (-3872 . 120301) (-3873 . 120234) (-3874 . 119840) (-3875 . 119787) + (-3876 . 119548) (-3877 . 119520) (-3878 . 119234) (-3879 . 119063) + (-3880 . 118966) (-3881 . 118704) (-3882 . 118028) (-3883 . 117933) + (-3884 . 117876) (-3885 . 117611) (-3886 . 117318) (-3887 . 117256) + (-3888 . 116837) (-3889 . 116537) (-3890 . 116400) (-3891 . 116008) + (-3892 . 115599) (-3893 . 115504) (-3894 . 114828) (-3895 . 114689) + (-3896 . 114479) (-3897 . 114361) (-3898 . 114154) (-3899 . 113766) + (-3900 . 113711) (-3901 . 113613) (-3902 . 113014) (-3903 . 112916) + (-3904 . 112641) (-3905 . 112077) (-3906 . 111976) (-3907 . 111818) + (-3908 . 111699) (-3909 . 111626) (-3910 . 111523) (-3911 . 111471) + (-3912 . 111400) (-3913 . 111327) (-3914 . 111276) (-3915 . 111222) + (-3916 . 110658) (-3917 . 110578) (-3918 . 110498) (-3919 . 110358) + (-3920 . 110207) (-3921 . 110175) (-3922 . 109995) (-3923 . 109621) + (-3924 . 109458) (-3925 . 109406) (-3926 . 109350) (-3927 . 109279) + (-3928 . 108715) (-3929 . 108512) (-3930 . 108470) (-3931 . 108418) + (-3932 . 108272) (-3933 . 108220) (-3934 . 108082) (-3935 . 106650) + (-3936 . 106583) (-3937 . 106472) (-3938 . 106435) (-3939 . 105872) + (-3940 . 105704) (-3941 . 104619) (-3942 . 104334) (-3943 . 102202) + (-3944 . 102119) (-3945 . 102008) (-3946 . 101781) (-3947 . 101606) + (-3948 . 101043) (-3949 . 100901) (-3950 . 100824) (-3951 . 100685) + (-3952 . 100601) (-3953 . 100457) (-3954 . 100344) (-3955 . 100144) + (-3956 . 99270) (-3957 . 99088) (-3958 . 98525) (-3959 . 98419) + (-3960 . 98334) (-3961 . 98240) (-3962 . 98087) (-3963 . 98025) + (-3964 . 97730) (-3965 . 97671) (-3966 . 97451) (-3967 . 97373) + (-3968 . 97314) (-3969 . 96751) (-3970 . 96638) (-3971 . 96565) + (-3972 . 96537) (-3973 . 96485) (-3974 . 95318) (-3975 . 95145) + (-3976 . 95021) (-3977 . 94968) (-3978 . 94595) (-3979 . 94435) + (-3980 . 94313) (-3981 . 93750) (-3982 . 93604) (-3983 . 93508) + (-3984 . 92307) (-3985 . 92251) (-3986 . 92036) (-3987 . 91967) + (-3988 . 91896) (-3989 . 91697) (-3990 . 91534) (-3991 . 91228) + (-3992 . 91098) (-3993 . 90933) (-3994 . 90881) (-3995 . 90663) + (-3996 . 90392) (-3997 . 90257) (-3998 . 90159) (-3999 . 88757) + (-4000 . 88627) (-4001 . 88436) (-4002 . 88321) (-4003 . 88247) + (-4004 . 88180) (-4005 . 88026) (-4006 . 87861) (-4007 . 87779) + (-4008 . 87724) (-4009 . 87637) (-4010 . 87295) (-4011 . 87049) + (-4012 . 86962) (-4013 . 86838) (-4014 . 86786) (-4015 . 86679) + (-4016 . 86521) (-4017 . 86105) (-4018 . 86025) (-4019 . 85517) + (-4020 . 85322) (-4021 . 85141) (-4022 . 84939) (-4023 . 84889) + (-4024 . 84635) (-4025 . 84332) (-4026 . 84052) (-4027 . 83820) + (-4028 . 83721) (-4029 . 83544) (-4030 . 83297) (-4031 . 83144) + (-4032 . 82985) (-4033 . 82215) (-4034 . 82145) (-4035 . 81947) + (-4036 . 81818) (-4037 . 81753) (-4038 . 81627) (-4039 . 81501) + (-4040 . 81408) (-4041 . 81276) (-4042 . 81022) (-4043 . 80970) + (-4044 . 80869) (-4045 . 80775) (-4046 . 80661) (-4047 . 80476) + (-4048 . 80317) (-4049 . 80111) (-4050 . 80053) (-4051 . 79973) + (-4052 . 79922) (-4053 . 79893) (-4054 . 79666) (-4055 . 79074) + (-4056 . 73735) (-4057 . 73614) (-4058 . 73561) (-4059 . 73283) + (-4060 . 73144) (-4061 . 73035) (-4062 . 72789) (-4063 . 72718) + (-4064 . 72600) (-4065 . 71298) (-4066 . 70999) (-4067 . 70939) + (-4068 . 70842) (-4069 . 70754) (-4070 . 70725) (-4071 . 70640) + (-4072 . 68854) (-4073 . 68564) (-4074 . 68451) (-4075 . 68377) + (-4076 . 64710) (-4077 . 64643) (-4078 . 64533) (-4079 . 64441) + (-4080 . 64389) (-4081 . 64324) (-4082 . 63810) (-4083 . 63422) + (-4084 . 63089) (-4085 . 62973) (-4086 . 62855) (-4087 . 62757) + (-4088 . 62678) (-4089 . 62608) (-4090 . 62520) (-4091 . 62270) + (-4092 . 62218) (-4093 . 62165) (-4094 . 62045) (-4095 . 61973) + (-4096 . 61889) (-4097 . 61770) (-4098 . 61645) (-4099 . 61566) + (-4100 . 61506) (-4101 . 61437) (-4102 . 61325) (-4103 . 61244) + (-4104 . 61128) (-4105 . 61024) (-4106 . 60908) (-4107 . 60813) + (-4108 . 60533) (-4109 . 60330) (-4110 . 60187) (-4111 . 60019) + (-4112 . 59960) (-4113 . 59727) (-4114 . 59422) (-4115 . 59345) + (-4116 . 59166) (-4117 . 59009) (-4118 . 58804) (-4119 . 58703) + (-4120 . 58609) (-4121 . 58476) (-4122 . 58397) (-4123 . 58327) + (-4124 . 58209) (-4125 . 57533) (-4126 . 57462) (-4127 . 57330) + (-4128 . 57242) (-4129 . 57018) (-4130 . 56610) (-4131 . 56512) + (-4132 . 56417) (-4133 . 56343) (-4134 . 56156) (-4135 . 55862) + (-4136 . 55804) (-4137 . 55721) (-4138 . 55633) (-4139 . 55530) + (-4140 . 55502) (-4141 . 54240) (-4142 . 54154) (-4143 . 53816) + (-4144 . 53661) (-4145 . 53496) (-4146 . 53410) (-4147 . 53382) + (-4148 . 53260) (-4149 . 53140) (-4150 . 52955) (-4151 . 52902) + (-4152 . 52724) (-4153 . 52671) (-4154 . 52333) (-4155 . 52178) + (-4156 . 52025) (-4157 . 51795) (-4158 . 51672) (-4159 . 51426) + (-4160 . 51342) (-4161 . 51290) (-4162 . 51084) (-4163 . 50875) + (-4164 . 50511) (-4165 . 50438) (-4166 . 50310) (-4167 . 50135) + (-4168 . 49647) (-4169 . 49521) (-4170 . 49353) (-4171 . 49295) + (-4172 . 49135) (-4173 . 48980) (-4174 . 48915) (-4175 . 48797) + (-4176 . 48745) (-4177 . 48489) (-4178 . 48347) (-4179 . 48246) + (-4180 . 48169) (-4181 . 47955) (-4182 . 47872) (-4183 . 47819) + (-4184 . 47725) (-4185 . 47444) (-4186 . 47303) (-4187 . 47221) + (-4188 . 47097) (-4189 . 47069) (-4190 . 46840) (-4191 . 46703) + (-4192 . 46669) (-4193 . 46602) (-4194 . 46499) (-4195 . 46439) + (-4196 . 46360) (-4197 . 46241) (-4198 . 46185) (-4199 . 46073) + (-4200 . 45929) (-4201 . 45813) (-4202 . 45697) (-4203 . 45628) + (-4204 . 45555) (-4205 . 45503) (-4206 . 45432) (-4207 . 45308) + (-4208 . 45204) (-4209 . 44726) (-4210 . 44667) (-4211 . 44536) + (-4212 . 44441) (-4213 . 44096) (-4214 . 43969) (-4215 . 43909) + (-4216 . 43706) (-4217 . 43654) (-4218 . 43479) (-4219 . 43381) + (-4220 . 42903) (-4221 . 42722) (-4222 . 42642) (-4223 . 42528) + (-4224 . 42430) (-4225 . 42234) (-4226 . 42104) (-4227 . 41937) + (-4228 . 41602) (-4229 . 41295) (-4230 . 40887) (-4231 . 40816) + (-4232 . 40721) (-4233 . 40693) (-4234 . 40665) (-4235 . 40446) + (-4236 . 40333) (-4237 . 40086) (-4238 . 40000) (-4239 . 39630) + (-4240 . 39527) (-4241 . 39422) (-4242 . 39314) (-4243 . 39201) + (-4244 . 39124) (-4245 . 39000) (-4246 . 38827) (-4247 . 38771) + (-4248 . 38566) (-4249 . 38470) (-4250 . 38411) (-4251 . 38344) + (-4252 . 38085) (-4253 . 38033) (-4254 . 37771) (-4255 . 37507) + (-4256 . 37378) (-4257 . 37240) (-4258 . 37109) (-4259 . 37023) + (-4260 . 36946) (-4261 . 36270) (-4262 . 36196) (-4263 . 36103) + (-4264 . 35960) (-4265 . 35594) (-4266 . 35420) (-4267 . 35348) + (-4268 . 35187) (-4269 . 34876) (-4270 . 34609) (-4271 . 34541) + (-4272 . 34401) (-4273 . 34099) (-4274 . 33631) (-4275 . 31775) + (-4276 . 31576) (-4277 . 31449) (-4278 . 31317) (-4279 . 31255) + (-4280 . 31196) (-4281 . 30986) (-4282 . 30832) (-4283 . 30709) + (-4284 . 30505) (-4285 . 30349) (-4286 . 30286) (-4287 . 30190) + (-4288 . 30056) (-4289 . 30005) (-4290 . 29385) (-4291 . 29232) + (-4292 . 29065) (-4293 . 28943) (-4294 . 28696) (-4295 . 28574) + (-4296 . 27823) (-4297 . 27691) (-4298 . 27511) (-4299 . 27427) + (-4300 . 27354) (-4301 . 27216) (-4302 . 27139) (-4303 . 27080) + (-4304 . 27046) (-4305 . 26856) (-4306 . 26576) (-4307 . 26418) + (-4308 . 26311) (-4309 . 26134) (-4310 . 26029) (-4311 . 25800) + (-4312 . 25659) (-4313 . 25563) (-4314 . 25187) (-4315 . 25117) + (-4316 . 24740) (-4317 . 24656) (-4318 . 24541) (-4319 . 24353) + (-4320 . 24038) (-4321 . 23938) (-4322 . 23886) (-4323 . 23776) + (-4324 . 23618) (-4325 . 23539) (-4326 . 23381) (-4327 . 23277) + (-4328 . 23136) (-4329 . 22739) (-4330 . 22680) (-4331 . 22428) + (-4332 . 22313) (-4333 . 20724) (-4334 . 20566) (-4335 . 20489) + (-4336 . 20249) (-4337 . 20093) (-4338 . 20033) (-4339 . 19964) + (-4340 . 19912) (-4341 . 19834) (-4342 . 19772) (-4343 . 19275) + (-4344 . 19119) (-4345 . 19013) (-4346 . 18918) (-4347 . 18699) + (-4348 . 18595) (-4349 . 18567) (-4350 . 18428) (-4351 . 18340) + (-4352 . 18153) (-4353 . 16951) (-4354 . 16809) (-4355 . 16715) + (-4356 . 16605) (-4357 . 16460) (-4358 . 16149) (-4359 . 15907) + (-4360 . 15775) (-4361 . 15725) (-4362 . 15572) (-4363 . 15538) + (-4364 . 15458) (-4365 . 15430) (-4366 . 15257) (-4367 . 14930) + (-4368 . 14542) (-4369 . 14446) (-4370 . 14349) (-4371 . 14321) + (-4372 . 14183) (-4373 . 14131) (-4374 . 13998) (-4375 . 13946) + (-4376 . 13866) (-4377 . 13816) (-4378 . 13706) (-4379 . 13600) + (-4380 . 13527) (-4381 . 13300) (-4382 . 13194) (-4383 . 12884) + (-4384 . 12573) (-4385 . 12395) (-4386 . 12305) (-4387 . 10877) + (-4388 . 10758) (-4389 . 10422) (-4390 . 9605) (-4391 . 9225) + (-4392 . 9142) (-4393 . 9111) (-4394 . 9015) (-4395 . 8944) + (-4396 . 8891) (-4397 . 8408) (-4398 . 7917) (-4399 . 7798) + (-4400 . 7675) (-4401 . 7605) (-4402 . 7553) (-4403 . 7500) + (-4404 . 7106) (-4405 . 6958) (-4406 . 6733) (-4407 . 6597) + (-4408 . 6489) (-4409 . 6416) (-4410 . 6328) (-4411 . 6300) + (-4412 . 6269) (-4413 . 5396) (-4414 . 5341) (-4415 . 5240) + (-4416 . 5183) (-4417 . 4943) (-4418 . 4670) (-4419 . 4586) + (-4420 . 4140) (-4421 . 2960) (-4422 . 2864) (-4423 . 2735) + (-4424 . 2302) (-4425 . 2250) (-4426 . 2032) (-4427 . 1929) + (-4428 . 1806) (-4429 . 1615) (-4430 . 1496) (-4431 . 1365) + (-4432 . 1258) (-4433 . 916) (-4434 . 803) (-4435 . 691) (-4436 . 638) + (-4437 . 566) (-4438 . 327) (-4439 . 228) (-4440 . 131) (-4441 . 30))
\ No newline at end of file |